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Basis Construction for the Design of Boundary Feedback Controls
from Reduced Order Models

R. Chris Camphouse 1

Control Design and Analysis Branch
Air Vehicles Directorate

Wright-Patterson Air Force Base

Abstract
In this paper, we develop a reduced basis construction method that allows for separate consideration of baseline and actuated

dynamics in the reduced modeling process. A prototype initial boundary value problem, governed by the two-dimensional
Burgers equation, is formulated to demonstrate the utility of the method in a boundary control setting. A weak formulation
approach, in combination with proper orthogonal decomposition and Galerkin projection, is used to develop a reduced model of
the distributed parameter system. Comparisons are done between reduced and full order solutions under open-loop boundary
actuation to illustrate advantages gained by separate consideration of actuated dynamics in the reduced modeling process. A
tracking control problem is specified for the full order system using a linear quadratic regulator formulation. Comparisons of
feedback control effectiveness are done to demonstrate benefits in control effectiveness obtained from separate consideration of
actuated dynamics during model reduction.

Nomenclature

L covariance matrix
S solution snapshot
N total number of snapshots
T actuated snapshot
NA total number of actuated snapshots
φ, α basis mode and temporal coefficient, respectively
M total number of basis modes
MB , MA total number of baseline and actuator modes, respectively
ξ, η baseline and actuator mode, respectively
θ, β baseline and actuator mode temporal coefficient, respectively
λ, v eigenvalue and eigenvector, respectively
A,B state and control matrices, respectively
G,F nonlinear and forcing matrices, respectively
Q,R state and control weight matrices, respectively
K feedback gain matrix
γ control robustness parameter
Ω spatial domain
t time
x spatial coordinate vector
h spatial step-size

Introduction

Reduced order modeling has received significant research attention in recent years. For many problems
of practical interest, the order of the system describing the application must be reduced. An illustrative
example where this is required is the development of feedback control laws for fluid flow configurations. It
is not uncommon for discretized flow models to describe millions of state variables.1 Unfortunately, the
development of systematic feedback control laws from systems of such large dimension is a computationally
intractable problem. For example, if one uses a linear quadratic regulator (LQR) control formulation, roughly
1012 Riccati unknowns need to be calculated for a discretized flow model describing 106 states. The Riccati
unknowns are solutions to a nonlinear matrix equation.2 Existing computing power and computational
algorithms are not capable of solving an LQR problem of such large dimension. For dynamical models that

1Mathematician, Member AIAA
2210 Eighth St., Bldg 146, Room 305
WPAFB OH, 45433
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are very large scale, such as those describing fluid flow configurations, it is apparent that the order of the
system must be reduced prior to control law design.3

Several research efforts have been concerned with, or relied upon, the development of order reduction
strategies that provide reduced order models in a form amenable to state-space feedback control law de-
sign.4–14 For the case of boundary control, the development of such models has been an open problem.
For many applications of practical interest, such as feedback control of the air flow over an airplane wing,
boundary actuation is a requirement. These applications require actuation to be located on the surface if
they are to be implemented in hardware in the physical system. Most reduced modeling efforts have either
been concerned with the case of control action via a body force or have approximated boundary actuation
by a body force on the domain interior. The reduced modeling task is usually simpler in the case of body
forcing due to the presence of homogeneous boundary conditions.

Few techniques have been obtained thus far providing reduced order models with explicit boundary
input that can be used for systematic design of feedback control laws. The case of boundary actuation is
simply more difficult than the case of body forcing. It is difficult to extract the boundary control input in
the reduced model. When proper orthogonal decomposition (POD) is used in conjunction with Galerkin
projection, boundary conditions are absorbed in the process. An additional step is required to make the
action of the control input explicit in the model. Approximating boundary actuation as a body force near the
boundary is convenient. It circumvents the difficulty associated with making boundary control inputs explicit
in the reduced model. However, feedback control by body forcing is a very different problem mathematically
than the problem of boundary control. In the context of systems governed by partial differential equations,
boundary control leads to an unbounded control input operator.15 In other words, when viewed as an
operator equation, boundary control leads to an unbounded B operator in the state equation

ẋ = Ax + Bu, (1)
x(0) = x0. (2)

For the case of body forcing, the B operator is typically bounded. As a result, while convenient, the reliability
associated with approximating a boundary control as a distributed body force is questionable.

Recently, inroads have been made allowing for the extraction of boundary conditions in reduced order
POD models. For the most part, these methods utilize POD in combination with a weak formulation of the
Galerkin projection.16–19 The advantage of a weak formulation is that boundary conditions appear naturally
when the reduced model is written weakly. In this paper, we utilize a method16 incorporating difference
approximations in the weak formulation to construct reduced models with boundary control input appearing
explicitly.

Special care must be taken when POD is used for the development of feedback control laws. For many
canonical control formulations, the dynamics induced by the feedback control are not known a priori. Thus,
it is difficult to construct a set of POD basis modes capable of spanning the baseline solution as well as the
dynamics of the system with boundary actuation. It is entirely possible that the dynamics induced by a
feedback control are not adequately represented by the reduced model if the POD basis is not constructed
carefully. Construction of a POD basis capable of spanning the baseline solution, as well as dynamics
introduced by boundary actuation, is the subject of this paper.

Model Problem

A distributed parameter system is formulated which models convective flow over an obstacle. The re-
sulting model problem is used to demonstrate the importance of careful reduced model design. Let Ω1 ⊆ R2

be the rectangle given by (a, b] × (c, d). Let Ω2 ⊆ Ω1 be the rectangle given by [a1, a2] × [b1, b2] where
a < a1 < a2 < b and c < b1 < b2 < d. The problem domain, Ω, is given by Ω = Ω1 \ Ω2. In this configura-
tion, Ω2 is the obstacle. Dirichlet boundary controls are located on the obstacle bottom and top, denoted
by ΓB and ΓT , respectively.

The dynamics of the system are described by the two-dimensional Burgers equation

∂

∂t
w(t, x, y) +∇ · F (w) =

1
Re

∆w(t, x, y) (3)
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Figure 1: Problem Geometry.

for t > 0 and (x, y) ∈ Ω. In (3), F (w) has the form

F (w) =
[
C1

w2(t, x, y)
2

C2
w2(t, x, y)

2

]T

, (4)

where C1, C2 are nonnegative constants. This equation has a convective nonlinearity like that found in
the Navier-Stokes momentum equation modeling fluid flow.20 The quantity Re, a nonnegative constant, is
analogous to the Reynolds number in the Navier-Stokes momentum equation.

To complete the model of the system, boundary conditions must be specified as well as an initial condition.
For simplicity, boundary controls are assumed to be separable. With this assumption, we specify conditions
on the obstacle bottom and top of the form

w(t,ΓB) = uB(t)ΨB(x), (5)
w(t,ΓT ) = uT (t)ΨT (x). (6)

In (5)-(6), uB(t) and uT (t) are the controls on the bottom and top of the obstacle, respectively. The profile
functions ΨB(x) and ΨT (x) describe the spatial influence of the controls on the boundary. A parabolic inflow
condition is specified of the form

w(t,Γin) = f(y). (7)

At the outflow, a Neumann condition is specified according to

∂

∂x
w(t,Γout) = 0. (8)

For notational convenience, denote the remaining boundary as ΓU . We require that values be fixed at zero
along ΓU as time evolves. The resulting boundary condition is of the form

w(t,ΓU ) = 0. (9)

The initial condition of the system is given by

w(0, x, y) = w0(x, y) ∈ L2(Ω). (10)

Reduced Basis Construction

In this work, we use a POD algorithm21 based on the snapshot method22 to construct the low order
basis needed for the development of the reduced order model. A data ensemble of snapshots {Si(x)}N

i=1 is
generated for the system via numerical simulation or experiment, where N is the total number of snapshots.
Each snapshot consists of instantaneous system data. With the snapshot ensemble in hand, the N × N
correlation matrix L defined by

Li,j = 〈Si, Sj〉 (11)

is constructed. In this work, we utilize the standard L2(Ω) inner product

〈Si, Sj〉 =
∫

Ω

SiS
∗
j dx, (12)
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where S∗j denotes the complex conjugate of Sj , in the construction of L.
The eigenvalues {λi}N

i=1 of L are calculated and sorted in descending order. The ratio

100

(∑M
i=1 λi∑N
i=1 λi

)
(13)

is used to determine the number of POD basis functions to construct. The quantity in (13) provides a
measure of the ensemble energy that is captured by a POD basis consisting of M modes. By requiring a
percentage of the energy contained in the snapshot ensemble be contained in the basis, the smallest value of
M is calculated such that the quantity in (13) is greater than or equal to that percentage.

The eigenvectors {vi}M
i=1 corresponding to the M eigenvalues of largest magnitude are calculated. Each

eigenvector is normalized so that

‖vi‖2 =
1
λi

. (14)

The orthonormal POD basis set {φi(x)}M
i=1 is constructed according to

φi(x) =
N∑

j=1

vi,jSj(x), (15)

where vi,j is the jth component of vi. The POD basis is optimal in an energy sense.21 It captures the mean
square energy of the snapshot ensemble better than any other basis.

With the basis in hand, the system solution w(t,x) is approximated as a linear combination of POD
modes, i.e.,

w(t,x) ≈
M∑

i=1

αi(t)φi(x). (16)

Galerkin projection onto the basis results in a system of ordinary differential equations for the temporal
coefficients {αi}M

i=1.

Snapshot Decomposition

Using an energy argument based on (13) is a convenient way to determine the number of POD modes
needed for the reduced model. However, blindly applying (13) to determine the necessary number of modes
is problematic in a feedback control setting. First, the snapshot ensemble typically consists of baseline (zero
control input) and actuated data. Actuated data is obtained by stimulating the system with open-loop
control inputs. Using an energy argument based on open-loop information to make conclusions about the
energy of the system under feedback control is problematic. The energy content of open-loop data is likely
very different than the energy content of the system under feedback control. Second, in many applications it
is possible that energy content in the snapshot ensemble is dominated by that in the baseline data. This is
particularly troublesome in the context of boundary control. In boundary control applications, it is usually
desired that control input energy be as small as possible while still satisfying the control objective. For
example, in flow control applications where the control is located on a surface, it is desired that small control
inputs yield large changes in the flow field behavior.23 In essence, effects of small control inputs are amplified
by the natural instabilities and comparatively high energy content of the baseline flow field. Simply applying
(13) to an ensemble consisting of baseline and actuated data presents the risk of important structures due
to control input being discarded if they are of much lower energy content than structures associated with
the baseline solution. For these reasons, we extend the POD algorithm described above so that baseline and
control input energy are considered separately. The resulting basis set will consist of modes significant to
the baseline solution as well as those significant to the system under control actuation.

The basic idea is to decompose each snapshot in the ensemble into a component in the span of the
baseline POD basis and an orthogonal component. This is done by employing useful properties of orthogonal
projections on Hilbert spaces.24 By considering the case of baseline and actuated data separately, the
orthogonal component is constructed such that it contains new information due to the control input. This

4



new information can be used in conjunction with (13) to determine additional modes that are significant
from a control standpoint.

An ensemble of solution snapshots is generated for the case of zero control input. From this baseline
snapshot ensemble, a set of POD modes is constructed using the snapshot algorithm discussed previously.
For notational convenience, denote the baseline basis by {ξj}MB

j=1 where MB is the total number of baseline
modes. By employing the energy ratio in (13), MB can be chosen such that the baseline basis contains an
arbitrary amount of the energy contained in the baseline snapshot ensemble.

With a set of baseline modes in hand, an ensemble of solution snapshots is generated for the case of
nonzero control input. Denote the actuated ensemble by {Ti}NA

i=1 where NA is the total number of actuated
snapshots.

For each snapshot in the actuated ensemble, we determine the component that is in the span of the
baseline basis. In particular, define bij according to

bij = 〈Ti, ξj〉 , 1 ≤ i ≤ NA, 1 ≤ j ≤ MB . (17)

Then, bij is the projection of the ith actuated snapshot Ti onto the jth baseline POD mode ξj . In other
words, the product bijξj is the component of Ti that is in the direction of ξj . The linear combination∑MB

j=1 bijξj is the component of Ti in the span of the baseline basis.
Define T̃i according to

T̃i = Ti −
MB∑

j=1

bijξj . (18)

Then, T̃i is the component of Ti not contained in the span of the baseline basis. As Ti is a solution snapshot
for the case of nonzero control input, T̃i consists of new information due to the control input that is not
already contained in the span of the baseline modes.

A second set of POD modes is constructed from the data ensemble {T̃i}NA
i=1. Denote this set of “actuator

modes” by {ηi}MA

i=1 , where MA is the total number of modes. The energy ratio in (13) is used to determine
MA such that the basis of actuator modes contains an arbitrary amount of the additional energy resulting
from the control input.

By construction, the set of baseline modes consists of orthonormal basis functions. Similarly, the actuator
modes are orthonormal. It is easy to show that the set of baseline modes is orthogonal to the set of actuator
modes. Consider the inner product of ξk and T̃i for arbitrary i, k. We see that

〈
T̃i, ξk

〉
=

〈
Ti −

MB∑

j=1

bijξj , ξk

〉
(19)

= 〈Ti, ξk〉 −
MB∑

j=1

bij 〈ξj , ξk〉 . (20)

As the baseline modes are orthonormal, 〈ξj , ξk〉 = 0 unless j = k. For j = k, 〈ξj , ξk〉 = 1. As a result,

〈Ti, ξk〉 −
MB∑

j=1

bij 〈ξj , ξk〉 = 〈Ti, ξk〉 − bik. (21)

By definition (17), bik = 〈Ti, ξk〉. Thus, we have
〈
T̃i, ξk

〉
= 0, for arbitrary i, k. (22)

From (15), each actuator mode ηi is a linear combination of the snapshots {T̃i}NA
i=1. As a result, (22) in

combination with the linearity of the inner product yields

〈ηi, ξk〉 = 0, for arbitrary i, k. (23)

5



Therefore, we have
{ηi} ⊥ {ξj}. (24)

This result allows us to combine the baseline and actuator modes into an overall basis set

{φi}MB+MA
i=1 = {ξ1, ξ2, ..., ξMB

, η1, η2, ..., ηMA
}, (25)

where all modes in the basis are orthonormal. This is advantageous for the development of reduced order
models. The system solution w(t,x) is still approximated as a linear combination of modes as in (16).
Moreover, separate consideration of baseline and actuated energy allows us to write this linear combination
as

w(t,x) ≈
MB∑

j=1

θj(t)ξj(x) +
MA∑

i=1

βi(t)ηi(x), (26)

where {θj}MB
j=1 and {βi}MA

i=1 are temporal coefficients for the baseline and actuator basis, respectively. This
allows us to consider the system solution as a baseline component and an additional component induced by
the control input.

Reduced Order Model

We now develop a reduced order model for the system described by (3), (5)-(10). Our aim is to develop
a low order state-space model where the Dirichlet control inputs specified by (5)-(6) appear in the model
explicitly.

Taking the inner product of both sides of (3) with the ith POD mode φi(x, y) and utilizing Green’s
identities results in the weak formulation∫

Ω

∂

∂t
w(t, x, y)φi(x, y)dx =

1
Re

[∫

∂Ω

(∇w(t, x, y) · n)φi(x, y)dA(x)−
∫

Ω

∇w(t, x, y) · ∇φi(x, y)dx
]

−
[∫

∂Ω

(F (w) · n)φi(x, y)dA(x)−
∫

Ω

F · ∇φi(x, y)dx
]

,

(27)

where n denotes the unit outward normal.
As seen in (15), each POD mode is a linear combination of solution snapshots. From (9), snapshot values

along ΓU are specified to be zero. As a result, POD modes are zero along ΓU . Thus, the first boundary
integral in (27) is decomposed as

∫

∂Ω

(∇w(t, x, y)·n)φi(x, y)dA(x)

=
∫ a2

a1

(
∂

∂y
w(t, x, b1)φi(x, b1)− ∂

∂y
w(t, x, b2)φi(x, b2)

)
dx−

∫ d

c

∂

∂x
w(t, a, y)φi(a, y)dy,

(28)

where condition (8) has been used to specify that
∫ d

c

∂

∂x
w(t, b, y)φi(b, y)dy = 0. (29)

In a similar fashion, the remaining boundary integral in (27) is decomposed as
∫

∂Ω

(F (w) · n)φi(x, y)dA(x) =
1
2

∫ d

c

(
w(t, b, y)2φi(b, y)− f(y)2φi(a, y)

)
dy, (30)

where (7) has been used to incorporate the inflow condition f(y).
Control inputs and the Dirichlet inflow condition are not explicit in (28). They can be made explicit by

approximating partial derivatives along the boundary. For h > 0, we see that

∂

∂y
w(t, x, b1) ≈ uB(t)ΨB(x)− w(t, x, b1 − h)

h
, (31)

∂

∂y
w(t, x, b2) ≈ w(t, x, b2 + h)− uT (t)ΨT (x)

h
, (32)

∂

∂x
w(t, a, y) ≈ w(t, a + h, y)− f(y)

h
. (33)
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These expressions are substituted into (28). Approximating w(t, x, y) as a linear combination of POD
modes in (27), (28), and (30) results in a reduced order system model. This system is of the form

α̇ = Aα + Bu + G(α) + F, (34)

where

A(i, j) = − 1
hRe

[
∫ a2

a1

(φj(x, b1 − h)φi(x, b1) + φj(x, b2 + h)φi(x, b2))dx

+
∫ d

c

φj(a + h, y)φi(a, y)dy + h

∫

Ω

∇φi(x, y) · ∇φj(x, y)]dx,

(35)

B =
1

hRe




∫ a2

a1
φ1(x, b1)ΨB(x)dx

∫ a2

a1
φ1(x, b2)ΨT (x)dx

. .

. .

. .∫ a2

a1
φM (x, b1)ΨB(x)dx

∫ a2

a1
φM (x, b2)ΨT (x)dx




M×2

, (36)

G(α) =
1
2




∫
Ω

(∑M
j=1 αjφj(x, y)

)2
∂
∂xφ1(x, y)dx− ∫ d

c

(∑M
j=1 αjφj(b, y)

)2

φ1(b, y)dy

.

.

.
∫
Ω

(∑M
j=1 αjφj(x, y)

)2
∂
∂xφM (x, y)dx− ∫ d

c

(∑M
j=1 αjφj(b, y)

)2

φM (b, y)dy




M×1

, (37)

F =




∫ d

c
( 1

hRef(y) + 1
2f(y)2)φ1(a, y)dy
.
.
.∫ d

c
( 1

hRef(y) + 1
2f(y)2)φM (a, y)dy




M×1

, (38)

u =
[
uB(t)
uT (t)

]

2×1

. (39)

Projecting the initial condition w0(x, y) onto the POD basis results in an initial condition for the reduced
order model of the form

α(0) = α0. (40)

Open-Loop Comparisons

We now demonstrate the impact of basis construction technique on the ability of the reduced model to
represent dynamics induced by a boundary control input. Instantaneous snapshots are generated for (3),
(5)-(10) via numerical simulation. A positive parabolic profile with unit maximum amplitude is specified for
the inlet condition in boundary condition (7). In (4), we set C1 = 1 and C2 = 0 in order to obtain solutions
that convect from left to right for the positive inlet. In addition, we specify that Re = 300. The problem
domain Ω is discretized, resulting in a uniform grid with spatial step-size h. We utilize a finite difference
scheme25 to numerically solve the model problem with and without boundary control input. The resulting
discretized system describes roughly 2,000 states.

7



We construct reduced order models from snapshot ensembles obtained for two scenarios. In the first
scenario, snapshots are generated for the baseline solution and for boundary actuation at a fixed frequency.
For the second case, snapshots are generated for the baseline solution and a more complicated boundary
input where the frequency varies with time. For both scenarios, we compare model agreement resulting from
combining baseline and actuator snapshots into an overall lumped snapshot ensemble to that obtained by
decomposing snapshots into their baseline and actuated components and constructing the POD basis as in
(25). In the results that follow, basis construction from a lumped snapshot ensemble is referred to as the
“lumped” method. Constructing the basis by considering baseline and actuated energy separately is referred
to as the “split” method.

Scenario 1

Snapshots are generated for the baseline solution and for the solution arising under periodic boundary
actuation. Inputs specified are of the form

uB(t) = sin(πt) uT (t) = 0, (41)
uB(t) = 0 uT (t) = sin(πt). (42)

In (41), periodic actuation is done on the bottom of the obstacle while values along the obstacle top are held
at zero. In (42), values along the obstacle bottom are held at zero with periodic actuation occurring at the
top. For each control input listed in (41)-(42), snapshots are taken in increments of ∆t = 0.1 starting from
t = 0 and ending at t = 15. The steady baseline solution is used for the initial condition.

With an ensemble of snapshots in hand, ratio (13) is used to determine the number of basis modes to
construct. Requiring that 99.9% of the ensemble energy be contained in the POD basis results in a lumped
basis consisting of 7 modes. Separate consideration of baseline and actuated energy results in a split basis
consisting of 1 baseline mode and 16 actuator modes.

We now employ linear combination (16) to compare boundary condition agreement between the full order
system and reduced models obtained via the lumped and split POD bases. By specifying characteristic
functions for the control profiles ΨB(x) and ΨT (x) in (5)-(6), we see that

M∑

i=1

αi(t)φi(ΓB) ≈ w(t,ΓB) = uB(t), (43)

M∑

i=1

αi(t)φi(ΓT ) ≈ w(t,ΓT ) = uT (t), (44)

We construct the linear combinations on the left in (43)-(44) and compare them to the exact boundary
conditions uB(t) and uT (t) specified in the full order system. We first perform comparisons for boundary
inputs explicitly used during ensemble generation. Results obtained for the baseline solution and for the
solution with periodic boundary actuation of the form sin(πt) are shown in Figure 2. In that figure, dashed
curves denote the linear combination of POD modes restricted to the boundary. Solid curves denote the
exact full order boundary input. Results obtained for the lumped basis method are plotted on the left.
Split POD basis results are plotted on the right. As seen in Figure 2, both methods result in very good
agreement between the exact boundary conditions and the linear combination of POD modes restricted to
the boundary. Dashed and solid curves are virtually identical.

In a feedback control setting, dynamics induced by the control are typically not known a priori. It is not
possible to specify a boundary feedback control law as an open-loop input during ensemble creation. The
specifics of the control law and the dynamics induced by it are not known at that stage. Typically, in the
closed-loop system, the boundary input resulting from the control law will be different than the inputs used to
generate the snapshot ensemble. As a result, it is useful to compare reduced and full order model agreement
for inputs not specified during ensemble creation. This provides insight into the suitability of the reduced
model for closed-loop control law design. For these reasons, we now compare boundary condition agreement
between the reduced and full order systems for open-loop inputs that were not used during ensemble creation.
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Figure 2: Boundary Condition Accuracy.

Boundary inputs specified are of the form

uB(t) = min

(
t

3
, 1

)
, (45)

uT (t) = sin

(
3
2
πt

)
. (46)

Results obtained for the lumped and split basis methods are shown in Figure 3.

0 5 10
−1

0

1

t

Lumped

0 5 10
−1

0

1

t

0 5 10
−1

0

1

t

Split

0 5 10
−1

0

1

t

Figure 3: Boundary Condition Accuracy.

As seen in Figure 3, very good agreement is seen between the reduced and full order systems for the
split method, even though the inputs considered were not specifically included in the snapshot ensemble.
Condition (46) is reconstructed well using the lumped method. However, the reconstruction of the piecewise
linear input in (45) is much less accurate when the lumped basis is used.

To further compare the lumped and split basis methods and their utility for control law design, we project
the full order solution at each time step onto the lumped and split POD bases. The resulting temporal
coefficients are compared to those predicted by the reduced order models. Boundary inputs specified are
as in (45)-(46). Results obtained for the first 5 temporal coefficients of the lumped method are shown in
Figure 4. The first 5 temporal coefficients for the split method are shown in Figure 5. In Figures 4-5,
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Figure 4: Temporal Coefficient Accuracy for the Lumped Method.

solid curves denote values of temporal coefficients obtained via the projection. Dashed curves denote the
solution of the reduced order model. Overall, the accuracy of the split method is better, particularly for
temporal coefficients with higher frequency content. Separate consideration of actuated energy during basis
construction results in better representation of dynamics induced by boundary inputs not specified during
ensemble creation. This is advantageous in a boundary feedback control setting where dynamics induced by
the control are typically not known beforehand.
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Figure 5: Temporal Coefficient Accuracy for the Split Method.

Scenario 2

It is likely that a snapshot ensemble for inputs at a single frequency results in a POD basis that does
not adequately span the dynamics induced by a feedback control. Feedback controls designed from such a
basis are bound to be ineffective when implemented in the full order system. In Scenario 2, we compare the
lumped and split basis methods using a snapshot ensemble generated from boundary inputs that excite a
range of system dynamics. Inputs specified are of the form

uB(t) = sin
(
π

(
et

)0.3
)

uT (t) = 0, (47)

uB(t) = 0 uT (t) = sin
(
π

(
et

)0.3
)

. (48)
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The sinusoidal input function is shown in Figure 6. As seen in that figure, an input of this form generates
the system response over a range of frequencies. The resulting POD basis is much more likely to adequately
span the unknown dynamics generated by a feedback control.

Instantaneous snapshots are generated for the baseline solution as well as for solutions arising from the
inputs in (47)-(48). For each control input listed in (47)-(48), snapshots are taken in increments of ∆t = 0.1
starting from t = 0 and ending at t = 15. The steady baseline solution is used for the initial condition.
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Figure 7: Boundary Condition Accuracy.

Requiring that 99.9% of the ensemble energy be contained in the POD basis results in a lumped basis
consisting of 7 modes. A split basis comprised of 1 baseline mode and 25 actuator modes are needed when
baseline and actuated energy is considered separately.

As in Scenario 1, we compare boundary condition accuracy of the lumped and split methods for boundary
inputs not specified during ensemble generation. For the sake of comparison, we use the boundary conditions
given by (45)-(46). Results obtained for the lumped and split basis methods are shown in Figure 7. As seen
in that figure, very good boundary condition agreement is seen between the reduced and full order systems
for both basis methods. In particular, by comparing Figures 3 and 7, we see that the piecewise linear
boundary condition in (45) is represented much better by the lumped method when inputs (47)-(48) are
used to generate the snapshot ensemble.

As before, we now project the full order solution at each time step onto the lumped and split POD bases.
The resulting temporal coefficients are compared to those predicted by the reduced order models. The
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results for the lumped method are shown in Figure 8. Split method results are shown in Figure 9. As seen in
those figures, the accuracy of the split method is better. For temporal coefficients with significant frequency
content, values predicted by the reduced model are virtually identical to those obtained by projecting the full
solution onto the split basis, even though the boundary inputs specified are different than those used during
ensemble creation. The split method is better suited with regard to feedback control law design as it is more
capable of accurately representing dynamics that are not explicitly included in the snapshot ensemble.
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Figure 8: Temporal Coefficient Accuracy for the Lumped Method.
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Figure 9: Temporal Coefficient Accuracy for the Split Method.

Control Formulation

We now specify the control formulation used to compare the effectiveness of the lumped and split basis
methods in a feedback control setting. The reduced system given by (34), (40) is linearized about the origin
yielding a state-space equation of the form

α̇(t) = Aα + Bu, (49)
α(0) = α0. (50)

We consider the tracking problem for (49)-(50). A fixed reference signal wref (x) is specified for the
full order system. Projecting wref (x) onto the POD basis yields tracking coefficients for the reduced order
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model, denoted by αref . The dynamics of the linearized model under tracking control are given by

˙[
α

αref

]
=

[
A 0
0 0

] [
α

αref

]
+

[
B
0

]
u (51)

= ĀX + B̄u, (52)

where we have defined the augmented state X as

X(t) =
[
α(t)
αref

]
with X0 =

[
α0

αref

]
. (53)

To formulate the control problem, we consider the γ-shifted linear quadratic regulator (LQR) cost function

J(α0, u) =
∫ ∞

0

{
(α− αref )T Q(α− αref ) + uT Ru

}
e2γtdt. (54)

In (54), Q is a diagonal, symmetric, positive semi-definite matrix of state weights. R is a diagonal, symmetric,
positive definite matrix of control weights. The quantity γ, a nonnegative constant, is an additional parameter
that provides added robustness in the control.26,27 The optimal control problem we consider is to minimize
(54) over all controls u ∈ L2(0,∞) subject to the constraints (51)-(53).

For a controllable system, the LQR problem has a unique solution of the form

uopt = −KX (55)
= −[K1 K2]X (56)

= − [
R−1BT Π11 R−1BT Π12

]
X, (57)

where Π11 is the unique symmetric, non-negative solution of the algebraic Riccati equation

(A + γI)T Π11 + Π11(A + γI)−Π11BR−1BT Π11 + Q = 0. (58)

The matrix Π12 in (57) satisfies the equation
[
(A + γI)T −Π11BR−1BT

]
Π12 = Q. (59)

The feedback control obtained from the linearized model is placed into the nonlinear state-space equation.
The resulting closed-loop nonlinear system is of the form

Ẋ = (Ā− B̄K)X + [G(α) 0]T + [F 0]T , (60)
X(0) = X0. (61)

Closed-Loop Results

We use the LQR formulation in (54) to compare closed-loop results obtained from the lumped and split
basis methods. A snapshot ensemble is constructed containing baseline solution data as well as data resulting
from nonzero boundary actuation. As it is desired that the POD basis spans unknown dynamics introduced
by the LQR feedback control, boundary inputs specified during ensemble creation are of the form

uB(t) = Csin
(
π

(
et

)0.3
)

uT (t) = 0, (62)

uB(t) = 0 uT (t) = Csin
(
π

(
et

)0.3
)

(63)

for C = 1, 2, 3.
For each control input listed in (62)-(63), snapshots are taken in increments of ∆t = 0.1 starting from

t = 0 and ending at t = 15. The steady baseline solution is specified for the initial condition. The resulting
snapshot ensemble consists of roughly 900 snapshots. Requiring that 99% of the ensemble energy be contained
in the POD basis results in a lumped basis consisting of 5 modes. A split basis comprised of 1 baseline mode
and 20 actuator modes is needed when baseline and actuated energy are considered separately. The first 9
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Figure 10: Split Basis Modes.
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Figure 11: Tracking Reference Function.

modes of the split basis are shown in Figure 10. In that figure, mode 1 is the baseline mode. Modes 2-9 are
actuator modes.

The tracking LQR problem requires the specification of the reference signal αref . In the results that
follow, αref is obtained from the unactuated steady solution for the case Re = 50. This solution is projected
onto the lumped and split bases. The temporal values obtained are used as tracking coefficients in the reduced
order control problem. The reference signal obtained by projecting the steady solution at Re = 50 onto the
split basis is shown in Figure 11. The reference function obtained by projecting onto the lumped basis is
similar. To complete the control formulation, each state in the reduced order model is prescribed a weight
of 2,500. The two boundary controls are each given unit weight. The value specified for γ in (54) is 0.25.
The closed-loop solution of the reduced order model constructed with the split POD basis is shown in Figure
12. By comparing the controlled solution of Figure 12 to the reference function in Figure 11, it is apparent
that the closed-loop reduced order model satisfies the control objective quite well. Separate consideration of
actuated energy in the split POD basis method results in satisfactory tracking of the reference signal.

When the energy ratio in (13) is applied to baseline and actuated data lumped together into an overall
snapshot ensemble, the results are much less favorable. Closed-loop solutions of the reduced order model
constructed with the lumped POD basis are shown in Figure 13. As seen in that figure, virtually no tracking
is achieved by the reduced order control. Adjusting parameters in the control formulation has little effect
on this result. Increasing the state-weights and the parameter γ to 10,000 and 0.75, respectively, does not
significantly improve the performance of the control. System information relevant from a control standpoint
is discarded when an energy argument is applied during order reduction to the lumped snapshot ensemble
containing baseline and actuated data. The resulting reduced order model does not adequately describe
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Figure 12: Closed-Loop Split Model.

Figure 13: Closed-Loop Lumped Model.

dynamics induced by the control. Consequently designing a feedback control from such a model results in
very ineffective response when the control is applied to the system.

Full Order Validation

To validate the effectiveness of the reduced order control obtained via the split basis method, we utilize a
fixed-point projection algorithm16 to incorporate the reduced order boundary control in the full order model.
The closed-loop solution of the full order system is shown in Figure 14. As seen in that figure, the reduced
order control effectively drives the full order plant to the target profile. The full order discretized model
is comprised of roughly 2,000 states. The reduced model obtained via the split basis method describes 21
states. As a result, system dimension is reduced by roughly two orders of magnitude with the resulting
reduced order control being quite effective.

Conclusions

In this paper, a reduced basis construction method was developed allowing for separate consideration
of baseline and actuated dynamics in the reduced modeling process. A prototype initial boundary value
problem, governed by the two-dimensional Burgers equation, was formulated to demonstrate the utility
of the method. A weak formulation approach was used to develop a reduced order model of the system
with boundary control appearing explicitly in the reduced model. When actuated energy was considered
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Figure 14: Closed-Loop Response with Split Method Feedback Control.

separately, much better agreement was seen between open-loop solutions of the reduced and full order
systems. Separate consideration of energy induced by the boundary control resulted in effective feedback
control for the reduced and full order systems. When actuated energy was not explicitly accounted for in
the reduced modeling process, the resulting feedback control was completely ineffective when applied to the
system.

These results demonstrate the need for separate consideration of baseline and actuated energy in the
reduced modeling process when the resulting model is to be used for feedback control law design. Basis
construction relying on an energy argument applied to a lumped snapshot ensemble containing baseline and
actuated data can result in important control information being discarded during order reduction. This is
particularly the case in a boundary control setting where ensemble energy is typically dominated by that in
the baseline data. Feedback controls developed from the resulting reduced model are likely ineffective when
applied to the system. Separate consideration of dynamics induced by boundary control input results in
reduced order controllers that are much more effective when applied to the reduced and full order systems.
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24 Debnath, L. and Mikusiński, P., Introduction to Hilbert Spaces with Applications, Academic Press, Cali-
fornia, 1999, pp. 87-130.

25 Camphouse, R. and Myatt, J., “Feedback Control for a Two-Dimensional Burgers Equation System
Model,” AIAA Paper 2004-2411, June 2004.

26 Burns, J. and Kang, S., “A Control Problem for Burgers Equation with Bounded Input/Output,” Non-
linear Dynamics, Volume 2, Kluwer Academic Publishing, New York, 1991, pp. 235-262.

27 Burns, J. and Kang, S., “A Stabilization Problem for Burgers Equation with Unbounded Control and
Observation,” Control and Estimation of Distributed Parameter Systems, Volume 100, Birkhauser Verlag,
Basel, 1991, pp. 51-72.

17


