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Abstract

Kalman filtering and multiple model adaptive estimation (MMAE) methods

have been applied by researchers in several engineering disciplines to a multitude of

problems as diverse as aircraft flight control and drug infusion monitoring. MMAE

methods have been used to adapt to an uncertain noise environment and/or identify

important system parameters in these problems. All of the model-based estimation

(and control) problems considered in this earlier research have at their core a linear

(or mildly nonlinear) model based on finite-dimensional differential (or difference)

equations perturbed by random inputs (noise). However, many real-world systems

are more naturally modelled using an infinite-dimensional continuous-time linear

systems model, such as those most naturally modelled as partial differential equations

or time-delayed differential equations. Thus, we are motivated to extend existing

finite-dimensional techniques, such as the Kalman filter, to allow the engineer to

apply familiar tools to a larger class of problems.

The focus of this research is (1) to extend the Kalman filtering technique

to encompass infinite-dimensional continuous-time systems with sampled-data mea-

surements and (2) to approximate the infinite-dimensional continuous-time system

model descriptions with an essentially equivalent finite-dimensional discrete-time

model upon which a filtering algorithm could be based.

The infinite-dimensional sampled-data Kalman filter (ISKF) is a mathemat-

ical extension of the finite-dimensional sampled-data Kalman filter. The ISKF is

rigorously developed using the definition-theorem-proof format. First, we derive the

linear infinite-dimensional minimum variance unbiased estimator (LIMVUE) based

on a dynamics model driven by a Wiener process (Brownian motion) and based on

the Classical Projection Theorem to handle the state estimator’s measurement up-

date cycle. Then we create an equivalent discrete-time model description based on

xxviii



the problem’s natural continuous-time model to provide a means to propagate the

state estimator between measurement updates.

Next, the algorithm to create an essentially equivalent finite-dimensional

discrete-time model from an infinite-dimensional continuous-time model is con-

structed by combining an existing technique for producing an equivalent discrete-

time model for a finite-dimensional system and a novel Galerkin-like technique for a

stochastic differential equation that completely captures the important qualities of

the original infinite-dimensional description.

An extended example featuring these new tools is presented for a stochastic

partial differential equation. Specifically, the temperature profile along a slender

rod is estimated using a Kalman filter for the case of a one-dimensional stochastic

heat equation with Neumann boundary conditions. Additionally, the MMAE with a

bank of Kalman filters is used to estimate the heat profile in the face of an unknown

noise environment (zero-mean white Gaussian noises with uncertain covariances in

the dynamics and/or measurement models) and to perform system identification

(to determine the thermal diffusivity constant) in the face of an unknown noise

environment.
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SAMPLED-DATA KALMAN FILTERING AND

MULTIPLE MODEL ADAPTIVE ESTIMATION FOR

INFINITE-DIMENSIONAL CONTINUOUS-TIME SYSTEMS

I. Introduction

In the 1960’s, Kalman, Bucy, and Falb [95, 96, 51] devised what we shall

call the (sampled-data measurement) Kalman filter, the (continuous-time measure-

ment) Kalman-Bucy filter, and the infinite-dimensional (continuous-time measure-

ment) Kalman-Bucy filter (IKBF), respectively. Shortly after the finite-dimensional

filters were put forth, Magill [125] introduced a nonlinear technique to address the

case of uncertain model parameters using a bank of Kalman filters. This nonlinear

technique is now known as multiple model adaptive estimation (MMAE). Kalman

filtering and multiple model methods used to adapt to an uncertain noise environ-

ment and/or identify important system parameters have been applied to dozens of

problems in many engineering disciplines; several examples of these applications and

the MMAE theory in general are presented to the reader in Chapter II. All of the

model-based estimation (and control) problems considered in the research discussed

in Chapter II have at their core a linear (or mildly nonlinear) model based on a sys-

tem of finite-dimensional differential (or difference) equations perturbed by random

inputs (noise). In contrast to finite-dimensional or lumped-parameter system (LPS)

theory in which the spatial behavior of the system is concentrated at a single point in

space, the field of infinite-dimensional or distributed-parameter system (DPS) theory

is concerned with the dynamic behavior of processes distributed in space as well as

evolving in time. While continuous-time systems of the lumped parameter variety

are adequately modeled with systems of ordinary differential equations, many real-
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world systems are more naturally modeled using an infinite-dimensional DPS model

such as a partial differential equation (PDE), like the heat equation given by

∂

∂t
x(t, ρ) =

∂

∂ρ
x(t, ρ) + u(t, ρ) (1.1)

where the temperature, x(t, ρ), is called the state and u(t, ρ) is some control input,

or by a time-delayed differential equation (TDE), such as

d

dt
x(t) = F1(t)x(t) + F2(t)x(t− τ) + u1(t) + u2(t− τ) (1.2)

where the state and control input are partitioned into current time and portions

delayed by amount τ and Fj(t) for j = 1, 2 represents the system dynamics. In

Chapter III, we shall generalize these equations for a stochastic state with random

additive disturbances.

Two good places for an engineer to begin an investigation of DPSs are the com-

pilations edited by Ray and Lainiotis [163] in 1978 that consists of broad chapter-

long surveys written by DPS experts that fully cover the entire scope of DPS the-

ory at that time, and the two-volume collection of benchmark papers put together

by Stavroulakis [184, 185] a few years later. The notes by Curtain and Pritchard

[38] presents a solid continuous-time system mathematical foundation for infinite-

dimensional linear system theory. Note that, generally speaking, there are two main

camps of researchers at work in this field: those concerned with the practical im-

plementation of a solution for an application most often refer to the field as DPS

theory, while those more interested in the theoretical or mathematical foundations

talk of infinite-dimensional linear systems theory. However, the terms are most often

treated as synonyms in the literature, as they are in this research.

We are interested in both areas of research, hence the focus of this research

is twofold. On the mathematical foundations side, we begin by extending the

Kalman filtering technique to encompass infinite-dimensional sampled-data mea-
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surement systems: that is, we will derive, in Chapter III, the infinite-dimensional

sampled-data Kalman filter (ISKF), thus completing the mathematical quartet of

filters begun over forty years ago. Then we give a method for mapping an infinite-

dimensional continuous-time model to an equivalent infinite-dimensional discrete-

time model, so that the new ISKF can be used for both continuous-time and discrete-

time models. On the practical side, we use a subspace spectral method, in the

spirit of the Galerkin technique [62] for stochastic differential equations, to create

an essentially-equivalent finite-dimensional discrete-time model from the equivalent

infinite-dimensional discrete-time model; this approximation completely captures the

important qualities of the original infinite-dimensional description. Thus, we have

crafted a new method for transforming a DPS problem into an LPS problem that

can be solved using existing tools and techniques.

1.1 Overview

The primary purpose of this research is to extend the applicability of Kalman

filtering and MMAE to problems well-modeled using infinite-dimensional continuous-

time linear systems with sampled-data measurements1. In this research, we derive

the ISKF algorithm — this is accomplished in Chapter III. The ISKF can be ap-

plied to a large class of DPS problems modeled by an infinite-dimensional stochastic

differential equation.

In Figure 1.1 we have captured the primary solution paths taken by other

researchers in the top two paths and this research in the bottom path to solve

infinite-dimensional problems using finite-dimensional tools (F1, F2, Fopt). From left

to right, the path begins with a projection of the “truth” onto an infinite-dimensional

continuous-time system and discrete-time (sampled-data) measurement model. The

top two paths conceptually represent existing suboptimal methods used to map

the infinite-dimensional continuous-time model to a finite-dimensional discrete-time

1Infinite-dimensional discrete-time linear systems with discrete-time measurements are also
covered.
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Figure 1.1 Mapping the Infinite-Dimensional Continuous-Time Model to Finite-
Dimensional Discrete-Time Models.

model so that a digital filtering algorithm can be used to estimate the state and/or

parameter of interest associated with the approximate model. The top path could

represent an infinite-dimensional system modeled by a partial differential equation

with stochastic (and perhaps deterministic) inputs. Then, S1 represents the process

of approximating the spatial (and thus the notation S1) partial derivatives, thus

reducing the dimension of the model to some finite number. Finite elements [89, 30]
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and finite differences [44, 111] are common approximation methods. A discrete-

time model (that is perhaps equivalent in the same sense as in our path as explained

below) could be found next, and thus T1 could be Topt or any other ad hoc technique.

The middle path could be used to demonstrate the time-delay problem, modeled by

a stochastic retarded differential equation. The measurement time delay issue could

be approximated by T2. Then S2 would be an identity operation as it is not needed

for this problem.

The bottom path is fully developed in Chapter IV where we demonstrate

our technique for creating an equivalent infinite-dimensional discrete-time model

(denoted by Topt on Figure 1.1) from the original infinite-dimensional continuous-

time model. The model is termed equivalent2 because the (infinite-dimensional)

state3 is identical in the continuous-time and discrete-time models at an arbitrary

time instant. Thus an equivalent discrete-time model properly characterizes the

continuous-time dynamics model of the system. Next, we demonstrate how to cre-

ate an essentially-equivalent finite-dimensional discrete-time model by projecting the

infinite-dimensional model onto a finite-dimensional subspace — denoted by Sopt. We

need a finite-dimensional subspace so that we can use a digital computer to imple-

ment an algorithm. How the projection is undertaken is very important because the

remaining dimensions of the infinite-dimensional model should be those “directions”

of the vector space which are dominated by the noise inputs (i.e., the uncertainties in

2When we have a continuous-time dynamics model, we follow Maybeck [129] and create an
equivalent discrete-time model prior to designing a digital filter to process the data optimally. A
less desirable method would be to design a continuous-time filter matched to the continuous-time
model and then discretize the filter to allow computation on a digital computer. This second
method involves numerically solving a Riccati equation — this should be avoided if at all possible
because these solutions are often unstable (despite theoretical solution stability); hence the solution
might not converge. Moreover, the discretized version of an optimal continuous-time-measurement
algorithm is not guaranteed to be optimal and generally is not.

3For finite dimensional systems, the state is the set of numbers (that may change as time
progresses) used to describe the system; the state and the inputs to the system determine the
behavior of the system [129]. More generally, the state is an element in the smallest dimensional
vector space that fully describes the system; and with knowledge of the inputs (which includes the
noises and uncertainties), determines the behavior of the system.

1-5



the system model, measurement inaccuracies, and other disturbances) and thus these

excised dimensions are of little value to the engineer. So, by essentially-equivalent we

mean that the most essential subspace of the infinite-dimensional space is retained in

the model. Additionally, unlike S1, there is no finite element approximation to spa-

tial differentiation, but instead a projection using a finite number of basis functions

(versus the infinite number needed to describe the original function completely).

By creating a finite-dimensional model, we are able to take full advantage of the

existing body of knowledge concerning digital filtering and simulation techniques and

software. Finally, we use the discrete Kalman filter (Fopt) to process the available

data optimally to determine a solution recursively. The solution space might also

be called the result space since not all methods are guaranteed to produce an actual

solution — our process is.

1.2 Historical Overview

In 1960, the American Society of Mechanical Engineers (ASME) published

Kalman’s [95] extraordinary extension of the Wiener filter [208]; shortly thereafter,

Kalman and Bucy added a second paper tackling the more mathematically sophisti-

cated continuous-time problem, often called the Kalman-Bucy filter [96]. Kalman’s

filter employed a new approach that embraced signals of finite time duration, time-

varying system models, and nonstationary noise processes [129] in the language of the

new state space (time-domain) formulation [217, 97, 164] versus frequency-domain

methods required by most Wiener filter techniques [208, 207, 129]. Kalman’s work

has been republished in many collections, such as [183, 12]. For a control theory

point of view, see any of these excellent texts: [91, 141, 3, 129, 130, 131] or these

signal processing texts: [170, 100, 77], or these newer texts that concentrate on utiliz-

ing the Kalman and related filters for tracking: [190, 193, 14]. Additionally, Kalman

filtering can be viewed much as Kalman did in [95] within the mathematical frame-
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work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering

[96, 32] is an especially important application of stochastic calculus [104, 159, 66].

The seeds of the multiple model technique were planted by researchers seeking

to extend Kalman’s work to the case of uncertain Gaussian noise process strength

using a bank of parallel Kalman filters. Magill [125] was the first to publish such an

extension using a structured multiple model approach. Specifically, he investigated

optimal estimation of stochastic processes which can be well modeled by a sampled

Gauss-Markov process with some initially unknown yet deterministic parameters4;

in Magills’s research, the uncertain parameters affected the statistics of the zero-

mean white Gaussian dynamics driving noise. State estimation in this case is an

adaptive estimation process since the estimator must adapt itself to an unknown

noise environment [59]. The system chooses the “correct” parameter value from a

discrete a priori set based on the hypothesis conditional probability calculations.

Even though a parameter may vary over a continuous range of values, the MMAE

method fundamentally assumes that the true parameter can be found in a discrete

set. Restricting ourselves to a discrete set actually improves the performance of

the MMAE since top performance occurs when the distinguishability between the

elemental filters is high. When the filters “look” the same, the MMAE cannot

readily “decide” which model coded in a particular elemental filter best matches the

true scenario as observed in the measurements; consequently the probability flow

is hampered — this topic is discussed in considerable depth in the next chapter in

Sections 2.3 and 2.7.3.

4What is a parameter? A parameter is usually constant (or essentially constant over the time
period of interest) in the form of a scalar, vector, or matrix that relates two (or more) quantities
(states or signals) that vary with time (or in space). A simple deterministic parameter is the
assumed-constant mass in Newton’s equation relating the force on a body undergoing acceleration:
F (t) = m a(t), where F (t) is the time-varying force, a(t) is the time-varying acceleration, and the
mass m is the parameter relating the two time varying “signals.” If the parameter is not strictly
constant, but varies slowly in comparison to the other quantities, we could represent the parameter
by a set of values. For example, let the set of masses be expressed as a piece-wise constant function
of time.
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We continue our introduction to this research with a simple physically meaning-

ful example that motivates the use of a Kalman filter and the MMAE methodology.

The multiple model method effectively partitions a complex problem into adaptive

and nonadaptive parts. The adaptive part is the MMAE framework that blends the

estimates of several filters together to produce excellent results — usually superior to

that of a single filter. The nonadaptive portion is comprised of the elemental filters

themselves. While these filters could be made adaptive, this will not be pursued in

this research.

1.3 Example: Navigation

To help the reader envision how an MMAE scheme improves state estimation

when there are uncertainties in a subset of the parameters describing the system

dynamics/measurement model or the statistics characterizing the dynamics driving

noise or measurement-corruption noise, a simple example that closely resembles and

then extends the “lost at sea” example by Maybeck [129] is developed in Subsections

1.3.1 and 1.3.2 respectively.

1.3.1 Kalman Filter with Known Noise Strengths. Suppose that you and

a friend are sailing north from Port A to Port B. We can use a chronograph to com-

pute our east-west position (longitude) and a sextant to determine our north-south

(latitude) position. For simplicity, we assume that we have a perfect chronograph

and associated charts and can thus exactly calculate our longitude. Thus you only

need to find the scalar latitude position to navigate from Port A to Port B.

The one-dimensional noise that corrupts these scalar measurements obtained

with a sextant by sighting the stars is an additive noise process. While you have

never used your star sighting skills to navigate the sea, your friend is an accom-

plished expert. You take the initial star sighting to compute your latitude; let’s call

it measurement z(t1) = z1 and use this to establish your position at time t1. The
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Figure 1.2 First Sextant Sighting.

precision of your measurements is characterized by the standard deviation, given by

σz1 , or equivalently, the expected variance, σ2
z1

, of the estimate. With this informa-

tion, we can establish the conditional probability density function (PDF) of x(t1),

for the estimated position at time t1, conditioned on the observed measurement z1.

Thus, we have two statistical moments with which to describe the conditional PDF

fx(t1)|z(t1)(ξ|z1). Furthermore, if we assume that this conditional PDF is Gaussian,

then we have completely characterized the PDF, since only the first two moments

are required to characterize the Gaussian PDF fully, as shown in Figure 1.2.

Based on the information so far, our best position (or state) estimate is

x̂(t1) = z1 (1.3)
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Figure 1.3 Second Sextant Sighting. The solid black line is for the second sighting
and the dash-dotted gray line is for the initial sighting. The areas under the two
PDFs are equivalent. The peak of the second PDF is higher since its width (charac-
terized by the standard deviation σz2 of the PDF) is smaller than the width of the
first PDF.

and the variance of the estimate error is

σ2
x(t1) = σ2

z1
(1.4)

A few moments later, your friend takes a sighting at time t2 ∼= t1, and we

assume that the true position has not changed at all — this is equivalent to taking

the two measurements at the same time with two identical sextants. Label his

measurement z2 with error variance σ2
z2

. Note that the difference in the models is

confined to the assessed skill of the sextant operator. Figure 1.3 shows conditional

PDFs for both measurements.
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Now we have two measurements with which to estimate our position. How do

we combine them to yield the best estimate? If we didn’t have any knowledge about

the precision of the measurements, we would simply average the measurements to

estimate the position at time t2

x̂(t2) =
1

2
z1 +

1

2
z2 (1.5)

Observe that the coefficients sum to one. Since we know the precision of each mea-

surement — in terms of the expected variance — let’s use them. A clever person

might propose a weighted average of the measurements z1 and z2 in terms of the

expected variances to yield a position estimate at time t2 of [17]

x̂(t2) =
σ2

z2

σ2
z1

+ σ2
z2

z1 +
σ2

z1

σ2
z1

+ σ2
z2

z2 (1.6)

where the coefficients yet again sum to one and the expected variance of the position

estimate conditioned on the accuracy of the measurements is

σ2
x(t2) =

1

(1/σ2
z1

) + (1/σ2
z2

)
(1.7)

In fact, it can be shown that Equations (1.6) and (1.7) correspond to the conditional

mean and error covariance of a Gaussian PDF conditioned on the two measurements

[129]. Given this conditional Gaussian PDF, this estimate is optimal under many

criteria, such as the minimum mean-squared error — see Chapter II in general and

Section 2.3.2 in particular. The mean is simply a weighted average of the two mea-

surements and the variance is reduced by adding a second measurement — regardless

of the precision of or the variance associated with the second measurement, assuming

that the variance is not infinite. Curiously, the equation for the new variance is of

the same structure as that of adding two resistors in parallel. Next we substitute
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Equation (1.3) into Equation (1.6) and rewrite it in a “predictor-corrector” form

x̂(t2) = x̂(t1) + K(t2)[z2 − x̂(t1)] (1.8)

where K(t2), the so-called Kalman gain, which is “chosen” to minimize the mean-

squared error between the position estimate and the true position, is given by

K(t2) =
σ2

z1

σ2
z1

+ σ2
z2

(1.9)

Similarly, the variance in Equation (1.7) can be rewritten using Equation (1.9) with

Equation (1.4) as

σ2
x(t2) = σ2

x(t1)−K(t2) σ2
x(t1) (1.10)

Thus, the Gaussian conditional PDF fx(t2)|z(t1),z(t2)(ξ|z1, z2) at time t2 is completely

specified by mean µ = x̂(t2) and variance σ2 = σ2
x(t2) shown in Equations (1.8)

and (1.10) respectively, with the Kalman filter gain defined in Equation (1.9) and

displayed in Figure 1.4.

Now that we have shown how to update the initial estimate with a second

measurement, let’s add some dynamics to the problem in order to estimate a future

position before we take a third measurement. Basic kinematics enables us to model

your change in position as

dx/dt = u + w (1.11)

where dx/dt represents the rate of change in position or velocity, u is some nominal

velocity, and the uncertainty in the velocity due to unmodeled effects and other

disturbances is described with a zero-mean Gaussian random variable w, often simply

referred to as “noise.” This noise is uncorrelated in time (i.e., it is a white process)

and has strength Q; the strength Q of the noise corresponds to the amplitude of the

power spectral density (PSD) curve over all frequencies, which for this white noise

process is constant for all time. With this simple model, we can predict the position
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Figure 1.4 First and Second Sextant Sightings Combined. Solid black line is the
combination of the two sightings, the dashed gray line is for the second sighting, and
the dash-dotted gray line is for the first sighting.

at time t3 as

x̂(t−3 ) = x̂(t2) + u[t3 − t2] (1.12)

where the time t−3 is a notational convenience representing our prediction at time t3

before a new measurement is added and the variance of the estimate grows to

σ2
x(t

−
3 ) = σ2

x(t2) + Q[t3 − t2] (1.13)

With this construction, we have in effect propagated the Gaussian conditional PDF

from time t2 until time t3, which we represent as t−3 in order to keep track of our

propagation and update stages. For the linear dynamics model in Equation (1.11)

driven by known inputs u and white Gaussian noise w, the PDF will continue to be

Gaussian [129].
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Next, we add a third measurement taken by your friend and update the position

estimate. This update will complete the second step of this two-stage process that

consists of propagating the optimal estimate forward in time using the dynamics

model and then updating the estimate with a new measurement. Note that the

variance of our estimate grows during the propagation stage for this problem because

of the uncertainty in our initial position estimate x̂(t1) and the uncertainty in how

our position changes over time (due to the w). On the other hand, the variance is

reduced during the update stage because we have added new information to refine

the position estimate. Using Equations (1.8) and (1.10) with the Kalman filter gain

defined in Equation (1.9) as our template, we write the optimal position prediction

at time t3 as

x̂(t3) = x̂(t−3 ) + K(t3)[z3 − x̂(t−3 )] (1.14)

with variance

σ2
x(t3) = σ2

x(t
−
3 )−K(t3) σ2

x(t
−
3 ) (1.15)

where the Kalman gain is

K(t3) =
σ2

x(t
−
3 )

σ2
x(t

−
3 ) + σ2

z3

(1.16)

Hence, the optimal estimate of the position x at time t3 is the optimal predicted

position just before the latest measurement, x̂(t−3 ), plus a correction term based on

the weighted residual between the new measurement and the measurement predic-

tion K(t3)[z3 − x̂(t−3 )], where the Kalman gain K(t3) provides the weighting and

[z3 − x̂(t−3 )] is called the residual. The weighting represents our relative confidence

in the measurements and predicted position estimates. We can continue this process

of propagating and updating indefinitely until our objective (reaching Port B) is

achieved. If our sighting variances σ2
zi
, for each measurement are accurate, then we

can expect good results from this single Kalman filter. However, if there is some un-

certainty in the declared statistics (and/or models), then the performance generally

degrades from what we would otherwise expect.
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1.3.2 Multiple Model Adaptive Estimation. Now that we have shown how a

Kalman filter can assist our navigation solution by improving our latitude estimate,

we shall consider the case for which there is an unpredictable uncertainty with the

quality of our sextant measurements. Specifically, we will consider a system char-

acterized by a known dynamics noise strength and two possible measurement noise

covariances in order to motivate the utility of a multiple model estimator. For our

example, these two “choices” represent the measurement-corruption variances for a

properly calibrated sextant and another for an uncalibrated sextant. This problem is

similar to the problem that Magill [125] studied, except that he did not limit himself

to just two possibilities and he was concerned with an uncertain dynamics driving

noise.

Once again, you and a friend are sailing from Port A to Port B on a clear night.

You take the initial sighting using the calibrated sextant and determine your latitude

z(t1) = z1 at time t1 with variance σ2
z1

. As you hand the sextant to your friend to take

the remainder of the measurements, it slips from your grip and falls to the deck. You

are uncertain if this fall has spoiled the calibration of your instrument; however, you

have a measurement variance recorded in your log book for uncalibrated sextants.

So, you are faced with more uncertainty in your measurements...or are you? The

question remains whether the measurement variance for the subsequent sightings is

equal to either Rcal or Runcal, where Rcal < Runcal. But don’t despair, the MMAE

can tell you whether the sextant is most likely calibrated or not after just a few more

measurements and it can give you the best latitude estimate possible. The MMAE

technique is well suited to give the proper “advice.”

In this simple example, we shall operate two Kalman filters F1 and F2 in

parallel (see Figure 1.5) — one for a calibrated sensor and one for an uncalibrated

sextant — each processing the same measurements, z(ti) = zi, and each propagating

the estimate using the same algorithm developed in Section 1.3.1. In block D we

determine the probability, pj, that elemental filter Fj is the best modeled filter. The
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F1

F2

-

-

z

-
x̂cal

-
x̂uncal

D

-
x̂cal, pcal

-
x̂uncal, puncal

Σ -
x̂

Figure 1.5 Multiple Model Adaptive Estimation: Two Kalman Filters in Parallel

Σ block processes the estimates from the elemental filters and creates an overall

position estimate.

Let’s begin by building two filters and label the first filter “cal” for a properly

calibrated sensor and the second, “uncal” for an uncalibrated sensor. Recall that

you performed the first measurement using the calibrated sextant, call it z(t1) = z1

at time t1. The initial position estimate is the same for both the “cal” and “uncal”

filters

z1 = x̂cal(t1) = x̂uncal(t1) (1.17)

with the same initial measurement-corruption noise covariance

σ2
z1

= Rcal (1.18)

since it was taken using the calibrated sextant before it was dropped. Using Equa-

tions (1.12) and (1.13) the position estimate at time ti is

x̂cal(t
−
i ) = x̂cal(ti−1) + u[ti − ti−1] (1.19)

x̂uncal(t
−
i ) = x̂uncal(ti−1) + u[ti − ti−1] (1.20)
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with variances for the calibrated and uncalibrated models

σ2
cal(t

−
i ) = σ2

cal(ti−1) + Q[ti − ti−1] (1.21)

σ2
uncal(t

−
i ) = σ2

uncal(ti−1) + Q[ti − ti−1] (1.22)

and the dynamics-process noise strength, Q, is assumed constant for all time ti.

Next, the two filters are updated at time ti using the latest measurement

z(ti) = zi following the form of Equations (1.14) through (1.16) we obtain

x̂cal(ti) = x̂cal(t
−
i ) + Kcal(ti)[zi − x̂cal(t

−
i )] (1.23)

x̂uncal(ti) = x̂uncal(t
−
i ) + Kuncal(ti)[zi − x̂uncal(t

−
i )] (1.24)

with variances

σ2
cal(ti) = σ2

cal(t
−
i )−Kcal(ti) σ2

cal(t
−
i ) (1.25)

σ2
uncal(ti) = σ2

uncal(t
−
i )−Kuncal(ti) σ2

uncal(t
−
i ) (1.26)

and Kalman gains of

Kcal(ti) = σ2
cal(t

−
i )

[
σ2

cal(t
−
i ) + Rcal

]−1
(1.27)

Kuncal(ti) = σ2
uncal(t

−
i )

[
σ2

uncal(t
−
i ) + Runcal

]−1
(1.28)

where the measurement precision is quantified by the assumed constant variances

of the corruption noises Rcal and Runcal for all time ti. The difference between the

predicted measurement, x̂cal(t
−
i ) or x̂uncal(t

−
i ), and the actual observation, zi for all

time ti, is termed the residual in each of the two elemental filters. The residual,

[zi − x̂cal(t
−
i )] or [zi − x̂uncal(t

−
i )], is our connection to the “real” world in Equations

(1.23) and (1.24), respectively.
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Now that we have our two elemental filters set up, how do we decide which

one is the most accurate so that we can form the best estimate of our position? In

this development, we have implicitly assumed that the sextant is either calibrated or

uncalibrated and that one of the filters will give us the best results. The probability,

pr{·}, that a hypothesis is true given the observations is termed the hypothesis

conditional probability. The hypothesis conditional probability for the calibrated

sextant, pcal(ti), and uncalibrated sextant, puncal(ti), are defined as

pcal(ti) , pr{R = Rcal|z(t1) = z1, z(t2) = z2, . . . , z(ti) = zi} (1.29)

puncal(ti) , pr{R = Runcal|z(t1) = z1, z(t2) = z2, . . . , z(ti) = zi} (1.30)

such that pcal(ti), puncal(ti) ≥ 0, and they sum to one: pcal(ti) + puncal(ti) = 1 for

every time ti. We introduce the following shorthand notations for the PDFs for the

measurement at time ti conditioned on the assumed parameter value for R and the

sequence of observations from time t1 through time ti−1 — this is also known simply

as the conditional PDF for the incoming measurement and is given here as [130]

fcal(ti) ≡ fz(ti)|R,z(t1),...,z(ti−1)(zi|Rcal, z1, . . . , zi−1) (1.31)

funcal(ti) ≡ fz(ti)|R,z(t1),...,z(ti−1)(zi|Runcal, z1, . . . , zi−1) (1.32)

These PDFs are a function of the residual, [zi − x̂cal(t
−
i )] or [zi − x̂uncal(t

−
i )],

as seen in Equations (1.23) and (1.24), and the filter-computed residual variance,

[σ2
cal(t

−
i ) + Rcal] or [σ2

uncal(t
−
i ) + Runcal], which appear in Equations (1.27) and (1.28).

Thus, these PDFs contain the information we use to calculate the hypothesis condi-

tional probabilities. These probabilities indicate how well the hypothesized models,

R = Rcal for the calibrated sextant filter model and R = Runcal for the uncalibrated

sextant filter model, match the real world. We judge the quality of the match us-

ing the sequence of residuals created from the predicted measurements x̂cal(t
−
i ) and

x̂uncal(t
−
i ) and the observed measurements zi for all time ti. The filter model that
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best matches the reality will produce the “whitest” sequence of residuals5, a mean

that is closest to zero, and a residual sequence variance that is most in consonance

with the filter-computed variance, [σ2
cal(t

−
i ) + Runcal] or [σ2

uncal(t
−
i ) + Runcal]. This

will, in turn, increase the value of the measurement conditional PDF evaluated for

a measurement at time ti, which in turn leads to a higher hypothesis conditional

probability that this particular model matches the real world the best. Additionally,

the measurement uncertainties are visible in the Kalman gain Equations (1.27) and

(1.28). Furthermore, it can be shown that these measurement conditional PDFs are

Gaussian with a mean equal to the predicted state estimate, x̂cal(t
−
i ) or x̂uncal(t

−
i ),

and a known variance [σ2
cal(t

−
i ) + Rcal] or [σ2

uncal(t
−
i ) + Runcal].

The measurement conditional PDFs can be evaluated for a particular assumed

R, and thus fcal(ti) and funcal(ti) are evaluated as numbers once z(ti) = zi becomes

available. Then, the probability that the sextant is calibrated or uncalibrated at

time ti > t1 is6

pcal(ti) =
fcal(ti) pcal(ti−1)

fcal(ti) pcal(ti−1) + funcal(ti) puncal(ti−1)
(1.33)

puncal(ti) =
funcal(ti) puncal(ti−1)

fcal(ti) pcal(ti−1) + funcal(ti) puncal(ti−1)
(1.34)

These two probabilities are nonnegative and the denominator in Equations (1.33)

and (1.34) serves to scale the probabilities so that they sum to one. For the first

measurement, we assumed that the sextant was calibrated; thus we had pcal(t1) = 1

and puncal(t1) = 0. Using Equations (1.33) and (1.34), we can calculate the hypothesis

5A sequence of white residuals is one of the criteria that indicates that the assumed filter model
is in consonance with the real world or with the truth model in the case of a simulation [129] as
discussed in Section 2.3.3.3.

6Recall that we assumed that the sextant was initially calibrated; thus pcal(t1) = 1 and
puncal(t1) = 0.
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conditional probabilities at time t2 as

pcal(t2) =
fcal(ti) · 1

fcal(ti) · 1 + funcal(ti) · 0 =
fcal(ti)

fcal(ti)
= 1 (1.35)

puncal(t2) =
funcal(ti) · 0

fcal(ti) · 1 + funcal(ti) · 0 =
0

fcal(ti)
= 0 (1.36)

Thus, pcal(ti) = 1 and puncal(ti) = 0 for all time ti. This presents a problem with a

known remedy. An elemental filter is virtually removed from the filter bank if the

hypothesis conditional probability goes to zero. By inspection of Equations (1.33)

and (1.34), we see that the probability at the next instant of time can no longer

change after it becomes zero. A popular method used to counteract the “lock-out”

problem attributed to this particular method used to compute the probabilities using

Equations (1.33) and (1.34) is to introduce some additional logic into the algorithm.

One technique that has been used with success imposes a lower bound7 on the

value that the hypothesis conditional probabilities may assume, thus prohibiting it

from being driven to zero. We shall choose one tenth as our lower bound for this

example. Thus we need to recompute the calibrated and uncalibrated hypothesis

conditional probabilities given in Equations (1.35) and (1.36) using pcal(t1) = 0.9

and puncal(t1) = 0.1. Hence,

pcal(t2) =
fcal(ti) · 0.9

fcal(ti) · 0.9 + funcal(ti) · 0.1 (1.37)

puncal(t2) =
funcal(ti) · 0.1

fcal(ti) · 0.9 + funcal(ti) · 0.1 (1.38)

If pcal(t2) ≥ 0.1 and puncal(t2) ≥ 0.1, then we have acceptable probabilities and we

are done with this time step. However, if either inequality fails to be true, then we

round the too-low probability up to 0.1 and round the other probability down to 0.9.

Note that this lower bounding process becomes more involved when we have more

than two elemental filters: once the lower bounds are imposed, all probabilities must

7See Section 2.4.6 for more information on lower bounding the hypothesis conditional probability.
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be rescaled to ensure that their sum is one. We then proceed to time t3 in the same

fashion.

We compute the hypothesis conditional probabilities to determine whether the

sextant is either calibrated or uncalibrated. If the drop did not affect the calibration

of the sextant, then, it is likely that pcal(ti) > puncal(ti) and the best position estimate

will use the “cal” filter since it has the highest hypothesis conditional probability.

But since our two models were chosen rather arbitrarily from a continuous set of pos-

sibilities, a blended estimate based on the position estimates from both elemental

filters might be best approach, with blending weights given by the hypothesis con-

ditional probabilities. Note that the parameter estimate will fall at the end points

or in between the values used in the models; i.e., we don’t extrapolate outside of the

filter bank. Thus, choosing a small Rcal value for a tightly calibrated sextant and a

high Runcal value for a very uncalibrated sextant might produce the best results.

The Bayesian state estimate is readily computed via the MMAE. The Bayesian

estimate represents the minimum mean-squared error blending of information pro-

vided by the MMAE in the form of position estimates and hypothesis conditional

probabilities for each elemental filter. The hypothesis conditional probabilities are

used to weight each position estimate as shown

x̂MMAE(ti) = x̂cal(ti) pcal(ti) + x̂uncal(ti) puncal(ti) (1.39)

We could also form an estimate of the measurement variance based on these two fil-

ters, if for instance the sextant was slightly damaged and thus partially uncalibrated,

this might reveal itself in the measurement residuals and thus

R̂MMAE(ti) = Rcal pcal(ti) + Runcal puncal(ti) (1.40)

would give us a better estimate than either filter by itself.
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In this section we have shown how two Kalman filters can be used in the

MMAE framework to supply positional estimates needed to navigate north to the

Port B latitude better than one filter when the precision of the sensor measurements

is in doubt. The derivations to some of these equations will be undertaken in the

next chapter, while most are simply stated with reference to where the reader may

find the derivation. An overview of the advanced topics used in this research is next.

1.4 Advanced Topics Overview

The linear systems theory state space approach [217, 164, 155] for solving sys-

tems of linear differential equations was just taking root when Kalman [95] reported

his new approach for linear filtering and prediction over forty years ago. These

foundations have been further refined and extolled by many researchers, in engi-

neering and applied mathematics, studying the complementary fields of mathemat-

ical optimization, information theory, signal processing, estimation, system iden-

tification, and control, such as Kalman, Bucy, Falb, Arbib, Sorenson, and others

[97, 183, 182, 6]. In this research, we will be mainly interested in the extensions

of linear systems filtering theory to infinite dimensions [38, 18, 19, 39]8, since all

real physical systems are truly distributed [163, 184, 185]. The bulk of the work

on infinite-dimensional systems theory has been reported for specific problem types,

such as the solution to a parabolic PDE, see for example [161, 18, 19], while in

this research, we make no assumptions on the particular type of infinite-dimensional

system during our derivation of the ISKF. However, discussions of topics such as

observability are largely problem-specific and usually apply to subclasses of prob-

lems such as various types of PDEs [38, 163, 184, 185, 18, 19]. We will not report

any results with regard to the very important topic of observability or its dual, con-

trollability. Other researchers have extended the study of infinite-dimensional linear

8Other than the seminal paper by Kalman, most of the references cited in this section are simply
good references that have been used by the author during this research and may or may not be
(although they sometimes are) the first or definitive work on the subject.
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systems theory to functional differential equations, as reported in [103]. Addition-

ally, the semigroup theory has been steadily developed to characterize the solutions

to a multitude of initial value or abstract Cauchy problems (ACP) that feature the

evolution equation [83, 216, 160, 48]. During the past thirty years, mathematical

control theorists have studied and reported on the evolution equation formulation

[38, 160, 39]. Probability theory, stochastic processes, and stochastic calculus, as

developed in [42, 40, 66, 45], are needed to characterize fully the additive noise pro-

cesses perturbing our evolution equations representing the dynamics model as well

as the measurement model equations. Finally, our development of ISKF is framed

and executed using the tools of functional analysis [83, 154, 36, 37, 24].

While Chapter II gives a thorough background for the MMAE, it provides

only brief descriptions of some of the advanced material mentioned above. All of the

advanced topics given above are developed to the level necessary for the derivation of

the ISKF and the algorithm for creating the equivalent infinite-dimensional discrete-

time model in Chapter III. Furthermore, we employ a Galerkin-like method9 to

create an essentially-equivalent discrete-time model for our stochastic PDE problem

in Chapter IV. But first, we conclude this chapter with some notes to the reader, a

summary, and a fuller outline of the rest of the dissertation.

1.5 Notes to the Reader

1. References: When multiple references are cited in the text, the ordering is

generally in chronological order from the first source to the most recent. The

primary exceptions to this rule occurs when a source is difficult to obtain and

a more recent source adequately explains the topic (or sometimes more clearly

than the original source) and gives proper credit to the original source; such a

source will be listed first. This will usually occur without further clarification.

9See [63, 89, 62, 30, 61] for an accounting of the Galerkin method that has been used to find
approximate solutions to PDEs.
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On the other hand, the bibliography cites the references in strictly alphabet-

ical order for each author and chronologically for each author with multiple

contributions.

2. Notations: Due to the confluence of several engineering and mathematical

notational conventions, we have at times created a new or slightly altered

symbol for a common quantity or concept so that a single symbol rarely has

multiple meanings that must be ascertained from the context. Oftentimes the

font type is used to differentiate two similar symbols. For the most part, the

notational convention used by Maybeck [129, 130] is used; e.g., x is a random

state variable as indicted by the sans serif font used, while a realization of

x is denoted by x(ω) = x. A second example calls on the Hilbert space, H,

the measurement distribution operator, H, and the measurement distributor

matrix, H; all are typeset using upper case lettering, but with different font

types. Another good example is the set of real numbers, R, the measurement

residual vector, r, the measurement noise covariance matrix, R, the range of a

mapping, R, and the random measurement noise covariance R we just saw in

the navigation example. In addition to the general rules that follow, see the

complete list of symbols beginning on page xvii.

. Scalars are denoted by both upper and lower case letters in italic type for

Arabic letters and lower case only for Greek letters. For example, j, N , and κ

are all scalars.

. Vectors are denoted by lower case letters in boldface type, such as x or α.

. Matrices are denoted by upper case letters in boldface type like R and Φ.

Additionally, an n×m matrix, for m = 1 or n = 1, while technically a vector

or the transpose of a vector, will sometimes retain the boldface upper case

typesetting when there is more to gain by using the familiar typeset.

. Functions are generally denoted in the same fashion as are scalars; however,

when a function is treated as an element in an infinite-dimensional vector space,
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it is often written as a vector in boldface type. For example, f and x are both

functions; f is a scalar function, while x is generally an n-vector of functions;

however, n could be one.

. Transformations and operators are denoted by upper case letters in italic,

as in F for transformations (and operators) that are associated with Kalman

filtering, and calligraphy type script for other ‘standard’ operators such as the

conditional expectation operator E . The only reason for this difference is sim-

ply to maintain the aesthetics of the notation developed for finite-dimensional

filtering.

. Sets are denoted by upper case double-lined blackboard type: A and X.

Special sets such as the σ field, F , are usually denoted using the calligraphy

font.

. Set operators are often denoted by a second calligraphy type. Two examples

are B and F.

. Random vectors and vector stochastic processes are set in boldface sans serif

type, e.g., x.

. Random variables and scalar stochastic processes are set in sans serif type,

as in x.

. Realizations of the random vector are set in boldface roman type, x(ωi) = x,

while its scalar components (realizations of random variables) are denoted in

italics as xk, for k = 1, 2, . . ..

. Similarly, samples of the stochastic vector process are set in boldface roman

type, x(t, ωi) = x(t), while its scalar components (samples of stochastic scalar

processes) are denoted by xk(t), for k = 1, 2, . . ..

. Finally, a few special operators are given in standard form: the integral,
∫ b

a
x(t) dt; the sum,

∑N
i=1 xi; the product,

∏N
i=1 xi; the intersection,

⋂N
i=1 Ai.
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1.6 Summary

In this chapter we introduced the Kalman filter and the multiple model adap-

tive estimation (MMAE) technique which is used to extend Kalman filtering in two

manners. Using a bank of elemental filters, the MMAE method can improve state

estimation by readily adapting to an unknown noise environment or by identifying

uncertain system parameters. Additionally, it can be tuned to focus on perform-

ing system identification (also known as parameter estimation) in either a known

or unknown noise environment. Previous researchers have concentrated on finite-

dimensional problems; this research expands the class of problems to encompass

problems more accurately modeled using infinite-dimensional state space descrip-

tions. Much of the previous work on distributed-parameter systems and systems

featuring time-delayed differential equation models have relied on ad hoc methods to

solve their problems. This research puts these sorts of problems on firm theoretical

ground. While one must make approximations at some point to produce an algo-

rithm to run on a digital computer, these approximations occur later in the design

process presented herein, and they can be optimized for the computational load or

whatever criteria is most important for the application.

1.7 The Rest of the Dissertation

In Chapter II we give a lengthly accounting of MMAE techniques. While only

a small portion of this extensive review is necessary for understanding the fixed-bank

MMAE method employed in this research, it was included as a useful survey for the

reader interested in extending this line of research where more robust moving-bank

variants of MMAE are essential to improved estimation performance or in response

to tighter restrictions on the computational loading.

In Chapter III we derive the infinite-dimensional sampled-data Kalman fil-

ter (ISKF). We also develop a method (analogous to the technique used for finite-

dimensional systems as described in the previous chapter) for creating the equivalent
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infinite-dimensional discrete-time model from the infinite-dimensional continuous-

time model. Finally, we extend the structure of fixed-bank MMAE framework so that

it may accept the ISKF, thus creating the generalized infinite-dimensional MMAE

(GIMMAE).

In Chapter IV we demonstrate our new and modified techniques in an extended

example using the stochastic heat equation. To demonstrate the power and advan-

tages of the methodology developed in the previous chapter, we devote a considerable

portion of this work to simulating, in Chapter V, the state estimation performance of

an MMAE populated with Kalman filters based on the essentially-equivalent finite-

dimensional discrete-time model we created. The MMAE demonstrates good state

estimation performance while operating in an uncertain noise environment; addition-

ally, the MMAE is shown to be capable of quickly performing system identification.

In Chapter VI we begin by reviewing the contributions of this research. Next,

we draw some conclusions, and finally, we offer recommendations for future work.

1-27



II. Multiple Model Adaptive Estimation

2.1 Introduction

As we saw in Chapter I there are many problems which can be adequately

modeled by stochastic differential equations, upon which a Kalman filter or set of

Kalman filters could be based. When there are uncertain model parameters, a group

of Kalman filters, such as a parallel bank of filters, acting in concert, generally

provides a better state estimate than a single filter. In addition to providing a

superior state estimate, the filter bank structure provides good estimates of the

uncertain model parameters. To that end, we endeavor to describe and discuss

the estimation framework known as multiple model adaptive estimation (MMAE).

Additionally, many enhancements to the basic structure are presented in this chapter.

Multiple model methods have been employed in the following areas: target tracking

[140, 14, 137], aided inertial navigation systems [50, 144], sensor and actuator failure

detection and identification [56], aircraft and space structures (guidance and control)

[65, 171], drug infusion1 [127, 215], and chemical process control [173].

Only the first four sections of this background chapter are necessary to under-

stand the formative stages and the basic fundamental concepts of MMAE as applied

in this research. Following this introductory section, we give a synopsis of the early

contributions that laid the groundwork for today’s MMAE research. Next, the struc-

ture and components of MMAE are presented. The final section of essential reading

contains an extensive collection of practical performance enhancements to improve

the performance of the MMAE. Section 2.5 provides an excellent example on how

a single filter relates to a bank of filters. Lastly, Section 2.6 introduces a class of

1Drug infusion is a diffusion process with time-varying parameters; hence it is one of the areas
that may benefit from the infinite-dimensional approach developed in this research.
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dynamic filter bank techniques used both to increase the breadth of the filter bank

while retaining the resolution of a narrowly focused static bank of filters.

2.2 The Beginnings of Multiple Model Adaptive Estimation and Control

In this section, we highlight the first twenty years of MMAE-related research

appearing in the literature. This research laid the groundwork for the multiple

model methodology that has blossomed over the past forty years since Magill [125]

proposed his method for employing a set of Kalman filters [95] in an uncertain noise

environment. While we have assumed a certain familiarity with Kalman filtering,

we have described and discussed in-depth the dynamics and measurement models2,

as well as the filtering algorithm itself. A significant cross-section of the available

literature is cited as we endeavor to prepare a solid foundation for a deep coverage of

multiple model methodology and associated techniques that are the main subjects

of this chapter. This first subsection is organized chronologically to emphasize the

growth and increasing sophistication of the research area over time.

In 1965, Magill [125] presented a novel state estimation technique for a sampled

Gauss-Markov stochastic process. He employed multiple models to address the prob-

lem of unknown parameter variation from within a finite set of known values. For

this inaugural work, the parameters described the statistics of the dynamics driving

noise, which for a time-invariant system model are stationary. Each of the param-

eter values corresponded to a hypothesis of the real world with a stationary noise

process and was used to construct an elemental filter. These hypotheses were tested

by computing the conditional probability of each hypothesis being correct. These

probabilities are conditioned on the observed measurements for each filter. Magill

established the notion that a random “switch” selects the elemental stochastic pro-

cess that is in force. Using the hypothesis conditional probabilities as weights, he

2In the estimation research discussed in this dissertation, the operation of the system or plant
is governed by a dynamics model, while the system behavior is imperfectly observed using a mea-
surement model.
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formed a weighted sum of the state estimates from each filter; therefore the estimate

is a blend of all of the models hypothesized to represent the real world system. This

estimate is optimal provided that one of the assumed models matches the physical

process when the unknown parameter is a constant vector. Furthermore, he asserted

that a sufficient condition for this optimality is: if all of the elemental stochastic

processes are ergodic, then the weighting coefficients will converge with probability

one to unity for the true process and to zero for the others.

Early in 1969, Hillborn and Lainiotis [82] extended Magill’s work from the case

of scalar measurements to the vector measurement case and presented an optimal

conditional mean estimator based on unknown (but constant) parameters. They

state that, under certain necessary and sufficient conditions, in a Bayesian sense, the

optimality of their state estimate is independent of the convergence to the value of

the unknown parameter Hence at each step their state estimate is optimal, whereas

Magill’s estimator is only optimal if the true value of the parameter precisely matches

one of the elemental filters in the bank.

Later in 1969, Sengbush and Lainiotis [174] proposed a binary method to quan-

tize the parameter space efficiently; the discretization process must be fine enough

so that the true parameter value can be accurately estimated, but since computer

resources are finite, the quantization must also be sufficiently coarse. Their tech-

nique is itself iterative in nature and only requires two quantization levels for each

parameter (of the uncertain parameter vector) being estimated.

In 1970, Ackerson and Fu [2] generalized Magill’s work when they proposed a

method to extend the discrete Kalman-Bucy filter by allowing a nonstationary noise

process consisting of a group of Gaussian distributions to drive the filter. They al-

lowed the input and noise process statistics to change (or switch) in discrete “jumps”

according to a Markov transition process matrix. Hence the system can be charac-

terized by a model with Markov switching parameters. Whereas Magill’s formulation

employed multiple models to identify the statistics of a static or unchanging system,
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this work used multiple models to characterize a dynamic, time-varying system.

Since the optimal algorithm suffers from needing an ever-growing amount of mem-

ory3, they proposed a suboptimal finite-memory estimator that assumes that the

hypothesis conditional probability is normally distributed when in fact it is a sum

of Gaussians that grows exponentially with increasing time.

In 1971, Lainiotis [107] showed how an estimator, from a class of nonlin-

ear adaptive estimators, may be decomposed into a nonadaptive part (the bank

of Kalman or Kalman-Bucy filters) and a nonlinear adaptive part which is tasked

with identifying the “mode” of the system. A weighted sum of hypothesis conditional

probabilities is used to identify the true system mode. He applied this decomposition

to the problem of state estimation with non-Gaussian initial state.

In 1973, Moose and Wang [151] proposed modeling the modes or states of

the system with a semi-Markov process. In a semi-Markov process, the transitions

between states are dictated by the familiar Markov transition matrix; however, the

amount of time spent in the current state before switching to the next state is a

random variable, i.e., not constant as with a Markov process. They claimed that this

modification completely solved the problem of needing increasing computer storage

capacity with increasing time. Two years later, Moose [150] applied this formulation

to the maneuvering target problem.

In 1974, Fry and Sage [59] employed the hierarchical estimation theory devel-

oped by Smith and Sage [179] to reduce the computational requirements of Magill’s

method4. The hierarchical approach is used to decompose a complex system into

3To characterize the parameter history fully requires Ki hypotheses — and thus Ki elemental
filters are required. For example, at time t1, we have, for all intents and purposes, the constant
parameter case and thus we need just K elemental filters; one for each of the assumed values that
the parameter may assume. Then, at time t2, we now require K2 elemental filters since there are
now K2 possible parameter value trajectories, and so on. Consequently, the number of elemental
filters, and hence the memory required, grows exponentially when we desire an elemental filter that
can exactly match the parameter’s time history.

4This paper by Fry and Sage contains an excellent review of Magill’s paper; see also, Maybeck’s
second volume for a review of the multiple model adaptive filter [130].
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several simple subsystems. The melding of these two techniques enables the appli-

cation of multiple model methods for hierarchically structured problems that would

otherwise require an insurmountable computation load.

In 1976, Lainiotis unified many of the ideas regarding partitioned or MMAE

techniques in [108] and presented the idea of cascading controllers with the elemental

filters [109]. Thus, multiple model adaptive control (MMAC) was born.

In 1976, Hawkes and Moore [75, 76] reported two important results. They

calculated an upper bound for the mean-squared error obtained for a finite parameter

set assumption. Secondly, they established some necessary and sufficient conditions

for exponential convergence of the Bayesian estimate to the true values in the mean-

squared error sense for systems with measurements corrupted by stationary zero-

mean Gaussian random processes.

In 1977, a group led by Athans [10] devised the first practical implementation of

MMAE and MMAC in a problem that failed to showcase the potential of the multiple

model methods because the F-8C aircraft flight controller did not need an adaptive

estimator or controller. Nonetheless, hundreds of researchers have contributed many

articles and books devoted to estimation (and control) using multiple model methods

in the past thirty years; this large volume alone is an indication of its utility and

applicability.

In 1978, Chang and Athans [34] proved that if one of the models in the set of

K constant-parameter elemental filters exactly matched the real world system, then

an MMAE based estimator was optimal. In the event that we don’t discretize the

parameter space such that one of the K elemental filter models is the truth, then

we may say that the MMAE will converge to the closest hypothesized model in the

Baram sense [16, 15, 175, 177]. However, no research has yet given us a guaranteed

convergence rate [79]. Additionally, Chang and Athans proposed an optimal estima-

tor using K2 elemental filters for the case in which the unknown parameter vector

is allowed to vary or switch, specifically, when it follows a Markov process, i.e., the
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present parameter vector value depends only on the previous parameter vector value.

This estimator is known as a switching parameter algorithm.

In 1979, Tugnait [195] pointed out that Chang and Athans’ development [34]

was actually suboptimal for the Markov parameter case. Tugnait stated that the

Chang and Athans paper approximated the probability density function (PDF) (at

time ti) for each of the K2 elemental filter residual processes using a single Gaussian

PDF. The actual PDF needed to determine the true state optimally for each ele-

mental filter was a Gaussian mixture — a weighted5 sum of Gaussian PDFs, Ki−2

in this case.

In 1980, Tugnait [196] investigated the behavior of a Bayes optimal estimator

with unknown continuous parameter vector. Specifically, he studied the convergence

properties of a conditional mean estimator in which the unknown parameter is to

be determined from an infinite countable set. He also applied his results to a linear

time-invariant Gauss-Markov system model.

In 1983, Dasgupta and Westphal [41] extended Hawkes and Moore’s [76] con-

vergence results to include systems with unknown biases. They note that in simu-

lations, oftentimes the multiple model estimator preferred the zero-mean elemental

filter, hence implementation of non-zero-mean filters should be considered carefully.

In 1984, Blom [22, 23] proposed a computationally efficient algorithm for filter-

ing a system characterized by Markov switching parameters — a problem previously

investigated by Ackerson and Fu [2]. The interacting multiple model (IMM) tech-

nique reduces the required number of elemental filters in the filter bank through a

novel hypothesis merging routine.

Additionally, many researchers have explored MMAE methods to improve the

operating characteristics of a system through feedback control. MMAE-based control

occurs when the control action is based on a state estimate provided by the MMAE

5The weights sum to one so that the mixture retains all the properties of a PDF.
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estimator; see for example Stepaniak and Maybeck [186]. On the other hand, MMAC

employs a parallel bank of controllers, each matched to a particular filter within

the bank of state estimators. As previously noted, Lainiotis [109] was the first

to propose this pairing of filters and controllers; a group led by Athans was the

first to implement it [10]. The research developed in this dissertation is primarily

concerned with MMAE; however, on occasion, we shall discuss MMAE-based control

and MMAC to shed additional light on the estimation framework itself.

2.3 Multiple Model Adaptive Estimation Fundamentals

MMAE employs a parallel bank of elemental filters to process noise-corrupted

measurements and recursively identify uncertain parameters, estimate states, and

compute the residuals between model-based measurement predictions and actual

observed measurements. As such, an MMAE algorithm can adapt itself to an un-

certain noise environment, perform parameter (or system mode) identification, and

compute an accurate state estimate. To accomplish these tasks, the MMAE algo-

rithm processes known inputs and noise-corrupted measurements at discrete times

with a set of parallel elemental filters which are developed using a mathematical

system model based on a pair of stochastic equations representing the internal state

dynamics and measurement processes. Each of the filters in the bank represents

a possible mode of the system; each filter is designed using a different hypothesis

about the assumed value for the parameters used to describe the structure of the

dynamics or measurement models and/or characterize the statistical properties of

the dynamics and measurement noise.

The MMAE framework is shown graphically in Figure 2.1. The noise sources

are not explicitly labeled and the time dependence has been suppressed in this

diagram. The system processes known inputs u and corrupted measurements z

with a parallel set of K elemental filters F1, F2, . . . , FK based on parameter vectors

a1, a2, . . . , aK , respectively. Each elemental filter produces a state estimate x̂k, a
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Figure 2.1 Multiple Model Adaptive Estimation

measurement residual rk, and a filter-computed residual covariance matrix Ak. The

measurement residuals and covariance matrices are used in block D to compute the

probability pk of the assumed system mode parameter vector ak matching the true

parameter. In Σ, the probabilities are used in conjunction with the individual state

estimates x̂1, x̂2, . . . , x̂K and the known parameters a1, a2, . . . , aK to estimate the

system state x̂ and identify the system mode parameter vector â. The following

sections fill in the details on the mathematical system model, the Kalman filter-

ing algorithm, the filter bank, the parameter and state estimates, and several key

assumptions driving the MMAE methodology.

2.3.1 Mathematical System Model. The performance of any model-based

algorithm depends heavily on creating an accurate model of the system. The real

world rarely, if ever, presents us with a truly linear system, but over limited operating

regimes, many of the systems of interest to us can be adequately modeled as linear.

Additionally, the disturbances to the system are often well modeled by a vector of

additive white Gaussian noise processes. It is often useful to denote both scalar and

vector Gaussian stochastic processes using the probability distribution notation [14]:

N[x(t); µ(t),Σ(t)], where N[·; ·, ·] is the Gaussian (normal) probability distribution,
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x(t) is the vector stochastic process in question at time t, µ(t) the mean vector, and

Σ(t) the covariance matrix.

For this research, we shall assume that our linear system model6 has

continuous-time dynamics

ẋ(t) = F(t) x(t) + B(t)u(t) + G(t)w(t) (2.1)

where ẋ(t) , dx(t)/dt, with measurements available at discrete times

z(ti) = H(ti) x(ti) + v(ti) (2.2)

and is driven by known inputs, u(t), and independent7, zero-mean white8 Gaussian

noise processes, w(·, ·) and v(·, ·), with known strength Q(t) and covariance R(ti),

respectively, and

x(t) = n× 1 state vector at time t

F(t) = n× n system dynamics matrix at time t

B(t) = n× r input distributor matrix at time t

u(t) = r × 1 control vector at time t

G(t) = n× s noise distributor matrix at time t

w(t) = s× 1 Gaussian noise process vector at time t

z(ti) = m× 1 measurement vector at time ti

H(ti) = m× n measurement distributor matrix at time ti

v(ti) = m× 1 Gaussian measurement noise process vector at time ti

Additionally, these independent noise processes have covariance kernels of

E
{
w(t)wT(t′)

}
= Q(t) δ(t − t′) and E

{
v(ti) vT(tj)

}
= R(ti) δij. Recall that the

6This section is entirely based on Maybeck [129]. Several other books such McGarty [141] also
provide this background in a similar notation.

7This assumption is not required but simply makes the presentation easier; for a discussion on
how to model correlated noise processes, see Chapter 5 of Maybeck [129] or [181].

8A noise process (or a noise sequence) that is independent in time is known as a white random
process (sequence). While continuous-time white processes don’t exist in the real world, this as-
sumption is well justified when the true band-limited noise process frequency bandwidth is much
larger than the system bandwidth [129]. Additionally, time-correlated “colored” noise is treated by
Maybeck [129] (in Chapter 4), see also [181].
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Kronecker delta is defined by [7, 154]

δij ,





1, i = j

0, i 6= j

(2.3)

and the Dirac delta function, δ(t), is defined as the function that satisfies the follow-

ing [129, 28] ∫ ∞

−∞
δ(τ) dτ = 1 and δ(τ) = 0 for all τ 6= 0 (2.4)

A more rigorous approach to modeling continuous-time system dynamics9

would employ a true differential equation driven by a Brownian motion (or Wiener)

process, b(t), with diffusion Q(t), versus the more familiar derivative-based Equation

(2.1) driven by a zero-mean white Gaussian noise:

dx(t) = [F(t) x(t) + B(t)u(t)]dt + G(t)db(t) (2.5)

where b(t) is an s × 1 Brownian motion noise process vector at time t, having a

diffusion of Q(t); the hypothetical derivative of b(t) would be the w(t) in Equation

(2.1).

Since our algorithm will be implemented on a digital computer, we require

an equivalent discrete-time model for the system dynamics10. We shall begin with

Equation (2.5) to create a stochastic difference equation; we only report the results

here — see, for example, Maybeck [129], for the proper procedure, or our development

in Section 3.4 for a more general case. Thus our mathematical model of the system

dynamics and measurement process becomes

x(ti+1) = Φ(ti+1, ti) x(ti) + Bd(ti)u(ti) + Gd(ti)wd(ti) (2.6)

z(ti) = H(ti) x(ti) + v(ti) (2.7)

9The measurement model of Equation (2.2) is unchanged.
10Here we implicitly assume that the control input u(t) is a piece-wise constant function such

that u(t) = u(ti) for time ti ≤ t < ti+1.
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where

x(ti) = n× 1 state process vector at time ti

Φ(ti+1, ti) = n× n state transition matrix from time ti to time ti+1

Bd(ti) = n× r discrete-time input distributor matrix at time ti

u(ti) = r × 1 discrete-time control vector at time ti

Gd(ti) = n× s discrete-time noise distributor matrix at time ti

wd(ti) = s× 1 discrete-time white Gaussian noise process vector at time ti

z(ti) = m× 1 measurement process vector at time ti

H(ti) = m× n measurement distributor matrix at time ti

v(ti) = m× 1 white Gaussian measurement noise process vector at time ti

and the discrete-time noise distributor matrix is chosen without loss of generality to

be an n× n identity matrix: Gd(ti) = I.

Since we began with a continuous-time dynamics model, the state transition

matrix must satisfy the following differential equation with initial condition

dΦ(t, t0)/dt = F(t)Φ(t, t0)

Φ(t0, t0) = I

(2.8)

The state transition matrix has several important properties:

1. Φ(t, t′) is uniquely defined for all times t and t′ in [0,∞).

2. Semi-group property: Φ(t′′, t) = Φ(t′′, t′)Φ(t′, t) for any times t, t′, t′′ ∈ [0,∞)

with t ≤ t′ ≤ t′′.

3. Semi-group property, special case: Φ(t′, t)Φ(t, t′) = I for any times t, t′ ∈
[0,∞) with t ≤ t′.

4. Nonsingular11: Φ−1(t, t0) = Φ(t0, t) for any times t, t0 ∈ [0,∞) with t ≥ t0.

When F is time-invariant, i.e., a constant matrix, then the state transition matrix be-

comes a function of the difference of the time arguments and is explicitly represented

11The state transition matrix is guaranteed to be nonsingular when we begin with a continuous-
time system description; this is not necessarily so for naturally discrete-time systems.
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as the matrix exponential

Φ(t, t0) = Φ(t− t0) = exp{F(t− t0)} (2.9)

The equivalent discrete-time input distributor matrix, Bd(ti), is found by integrating

the continuous-time input distributor matrix weighted by the state transition matrix

over one sample period so that

Bd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)B(τ)dτ (2.10)

The covariance kernel for the zero-mean white12 Gaussian dynamics noise sequence

is given by

E
{
wd(ti)wT

d (tj)
}

=





Qd(ti), ti = tj

0, ti 6= tj

(2.11)

where the continuous-time noise strength Q(t) is used to determine the positive

semi-definite discrete-time noise covariance matrix, Qd(ti), expressed as

Qd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)Q(τ)GT(τ)ΦT(ti+1, τ) dτ (2.12)

The covariance kernel for the zero-mean white Gaussian measurement noise sequence

is given by

E
{
v(ti) vT(tj)

}
=





R(ti), ti = tj

0, ti 6= tj

(2.13)

where R(ti) is assumed to be positive definite. The discrete-time noise processes

wd(·, ·) and v(·, ·) are assumed to be independent, random processes. Additionally,

the initial state condition x(t0) is not known precisely; it will be modeled as a

Gaussian random vector, independent of both noise processes wd(·, ·) and v(·, ·),

12A white process is independent in time and thus has a zero (matrix) covariance kernel for the
ti 6= tj case; see the second line of Equations (2.11) and (2.13).
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with a mean and covariance of

E{x(t0)} = x̂0 (2.14)

E
{
[x(t0)− x̂0][x(t0)− x̂0]

T
}

= P0 (2.15)

respectively, where P0 is positive semi-definite matrix.

For naturally discrete-time systems, the dynamics model could be described

more generally with

Gd(ti) = n× s noise distributor matrix at time ti

wd(ti) = s× 1 noise process vector at time ti

where the noise process wd(·, ·) is zero-mean white Gaussian noise process vector at

time ti with positive semi-definite s × s covariance matrix Qd(ti). However, all of

the equations in this section and those that follow are invariant with respect to the

dimensions of Gd and wd.

The time-varying model has been used extensively for state estimation prob-

lems, but for identifying parameter variation over a set of constant (or slowly time-

varying) parameters, we will generally employ the following time-invariant system

model equations:

x(ti) = Φ x(ti−1) + Bd u(ti−1) + wd(ti−1) (2.16)

z(ti) = Hx(ti) + v(ti), (2.17)

where the time-invariance property gives Bd(ti−1) = Bd and H(ti) = H, uniform

spacing between time samples yields a state transition matrix independent of time,

i.e., Φ(ti, ti−1) = Φ, and stationary noises processes result in: Qd(ti) = Qd and

R(ti) = R for all time ti. In this time-invariant case, these zero-mean white Gaussian

noise processes wd(·, ·) and v(·, ·) can be thought of as sequences of independent,

identically distributed (IID) random variables and denoted by wd(ti) ∼ N(0,Qd)

and v(ti) ∼ N(0,R), where the N indicates that the random vector process has a
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normal or Gaussian distribution [159, 170]. Furthermore, a derivation of the steady-

state Kalman filter is based on the time-invariant system model [129] .

For some problems of interest, one or both of the noise sources can be discrete

space-time point processes versus continuous-time (for the dynamics) or discrete-time

(for the measurement and/or dynamics) Gaussian processes. In order to preserve

the Markov nature of the state estimate, the noise process must be an independent

increment process, i.e., the noise processes for nonoverlapping (disjoint) periods of

time are independent — see Definition 60 in Chapter III. Thus, the Gaussian prop-

erty assumed for the driving noise during the development of the Kalman filter is

not a necessary condition to derive an optimal filter, it is merely sufficient since the

white Gaussian process is an independent increment process. If the dynamics noise

wd and/or the measurement noise v is a generalized Poisson point process, we can

still derive an optimal filter. The Snyder filter assumes that the measurement noise

process is a Poisson point process [180]. The Snyder filter was employed Meer [142]

and others [218, 93, 74] in an MMAE structure to control the pointing and tracking

of particle beams. This will not be pursued further herein.

Some useful notation for describing the stochastic measurement history and its

realization are defined as:

Z(ti) ,




z(t1)

z(t2)

...

z(ti)




and Zi ,




z1

z2

...

zi




(2.18)

respectively, where zi is a convenient notation for z(ti), a specific realization of the

random vector z(ti). Note that these vectors “grow” over time.

2.3.2 Kalman Filtering. An optimal solution to the estimation problem

discussed above in Equations (2.6) through (2.15) was given by Kalman in his 1960
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paper “A New Approach to Linear Filtering and Prediction Problems” [95]13. The

following year, Kalman and Bucy presented their solution for the continuous-time

problem [96]. A recent derivation of Kalman’s results were presented by Catlin [33]

to the mathematical community in his 1989 book: Estimation, Control, and the

Discrete Kalman Filter as a “beautiful illustration of functional analysis in action”

in which the projection theorem in a Hilbert space plays a central role14. Recall that

the intent of this research is to explore the utility of employing multiple models in

a parallel structure in order to improve state estimation (or to identify the system

mode parameters themselves); hence we shall only develop those concepts directly

related to the structure. We will follow Maybeck’s treatment of the Kalman filter —

an optimal15 recursive data processing algorithm [129]. The Kalman filter recursively

generates the optimal state estimate to the problem posed above with a two stage

process: first, it predicts the state for time ti using only the dynamics model and

the measurements up through time ti−1 and then corrects or updates the estimate

with noise-corrupted measurements16.

According to the Bayesian viewpoint espoused by Maybeck [129], the sampled-

data Kalman filter algorithm consists of (initializing and then) recursively propagat-

13Kalman’s original paper has been republished in many collections, such as the Kalman filtering
collection edited by Sorenson [183] and another collection edited by Başar that focuses on control
theory [12].

14The infinite-dimensional sampled-data Kalman filter we derive in Chapter 3 is a more general
beautiful illustration of functional analysis in action.

15The Kalman filter produces the optimal state estimate, x̂(t+i ), for a stochastic linear system
driven by zero-mean, white Gaussian noise processes with known covariances [129]! In the Bayesian
sense, x̂(t+i ) is the optimal state estimate because it is the mean, median, and mode of the Gaussian
conditional PDF fx(ti)|Z(ti)(ξ|Zi). x̂(t+i ) minimizes the mean-squared error (MSE) and the symmet-
ric cost function by virtue of being the conditional mean of the Gaussian conditional PDF. x̂(t+i )
is the maximum a posteriori (MAP) state estimate and when there is no initial state information,
i.e., P−1

0 = 0, then x̂(t+i ) is also the maximum likelihood (ML) estimate. When the noises are
nonGaussian, the Kalman filter estimate is the optimal linear estimator: it is the linear minimum
variance unbiased (MVU) estimate; thus, we’re saying that a nonlinear estimator may do better.
And finally, as Kalman originally posed [95], x̂(t+i ) is the orthogonal projection of the true state
x(ti) onto the subspace spanned by the random measurement history Z(ti), i.e., x̂(t+i ) satisfies the
projection theorem [122] and is thus the optimal estimate of x(ti) given measurements Z(ti).

16For nonlinear models, the extended Kalman filter (EKF) is an appropriate tool; see Maybeck
[130] or Sworder and Boyd [193] for information on the EKF and other nonlinear filters.
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ing and updating the state conditional PDF. The sampled-data Kalman filter

algorithm is [129]:

1. Initialize the Gaussian PDF, fx(t0)(ξ). The initial state is modeled by a Gaus-

sian random vector with mean and covariance given by the initial state estimate

x̂(t0) and initial covariance estimate P(t0):

x̂(t0) , E{x(t0)} = x̂0 (2.19)

and

P(t0) , E
{
[x(t0)− x̂0][x(t0)− x̂0]

T
}

= P0 (2.20)

2. Propagate the Gaussian conditional PDF. The propagation is entirely based

on the known internal dynamics model conditioned on the observed measure-

ments. This stage predicts the state estimate at time ti
17 given the optimal

estimate at time ti−1:

x̂(t−i ) , E{x(ti)|Z(ti−1) = Zi−1}

= Φ(ti, ti−1) x̂(t+i−1) + Bd(ti−1)u(ti−1)

(2.21)

and

P(t−i ) , E
{
[x(ti)− x̂(t−i )][x(ti)− x̂(t−i )]T|Z(ti−1) = Zi−1

}

= Φ(ti, ti−1)P(t+i−1)Φ
T(ti, ti−1) + Gd(ti−1)Qd(ti−1)G

T
d (ti−1)

(2.22)

where the expectation is taken with respect to conditional PDF

fx(ti)|Z(ti−1)(ξ|Zi−1).

3. Update the Gaussian conditional PDF. Update the state and covariance esti-

mates at time ti with the latest measurement z(ti, ωj) = zi to produce x̂(t+i )

17Time t−i represents the time ti just prior to measurement update; some authors [170] use the
notation ti| ti−1 and while others [13] often use only the indices, i.e., i|i − 1. Time t+i represents
the time ti just after measurement update; some authors write this as ti| ti or i|i.
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and P(t+i ). The filter-computed residual covariance A(ti) and Kalman gain

K(ti) are computed first as:

A(ti) ≡ H(ti)P(t−i )HT(ti) + R(ti) (2.23)

and

K(ti) ≡ P(t−i )HT(ti)A
−1(ti) (2.24)

Using the conditional PDF, fx(ti)|Z(ti)(ξ|Zi), we can compute the optimal state

estimate18 given by

x̂(t+i ) , E {x(ti)|Z(ti) = Zi}

= x̂(t−i ) + K(ti) r(ti)

(2.25)

where the Kalman filter residual r(ti) is

r(ti) ≡ zi −H(ti) x̂(t−i ) (2.26)

where H(ti) x̂(t−i ) is the predicted measurement sometimes denoted ẑ(t−i ), and

the updated error covariance is

P(t+i ) , E
{
[x(ti)− x̂(t+i )][x(ti)− x̂(t+i )]T|Z(ti) = Zi

}

= P(t−i )−K(ti)H(ti)P(t−i )

(2.27)

4. Return to step 2

2.3.3 Filter Bank. A natural way to extend the concept of state estimation

using a single filter into the realm of joint state and parameter estimation is to employ

18The state estimate x̂(t+i ) is the sum of a prediction x̂(t−i ), which is a sufficient statistic for
the state x(ti) given Z(ti−1) [100], and a correction term K(ti)r(ti) which represents the “new
information” provided by the current measurement.
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a parallel bank of filters, i.e., a filter bank. Observe that the conditional PDF for the

state (at measurement update) can be interpreted as a marginal conditional PDF

computed from the joint conditional PDF, i.e.,

fx(ti)|Z(ti)(ξ|Zi) =

∫ ∞

−∞
fx(ti),a(ti)|Z(ti)(ξ,α|Zi) dα (2.28)

where the system mode a(ti) is a random vector and α represents a particular mode

of the system. While the structure of an elemental filter is designed using the same

mathematical system model based on a pair of stochastic equations representing

the internal state dynamics and measurement processes, each mode of the system

is characterized by a unique parameter vector and described probabilistically by

a Gaussian PDF: fx(ti)|a(ti),Z(ti)(ξ|α,Zi), with mean x̂(t+i ) and covariance P(t+i ) as

computed by a Kalman filter based on the parameter value a(ti) = α. From the

Bayesian point of view, we are motivated to pursue the joint state and parameter

vector conditional PDF:

fx(ti),a(ti)|Z(ti)(ξ,α|Zi) = fx(ti)|a(ti),Z(ti)(ξ|α,Zi) fa(ti)|Z(ti)(α|Zi) (2.29)

since it features all of the variables that we are interested in estimating, given all of

the available measurements. The second term of Equation (2.29) is

fa(ti)|Z(ti)(α|Zi) =
K∑

k=1

pk(ti) δ(α− ak) (2.30)

with pk(ti) defined by

pk(ti) , pr{a(ti) = ak|Z(ti) = Zi} (2.31)

where ak is the kth system mode parameter vector.
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Once Equation (2.29) is so established, we can write (via marginal PDFs):

fx(ti)|Z(ti)(ξ|Zi) =

∫ ∞

−∞
fx(ti),a(ti)|Z(ti)(ξ, α|Zi) dα (2.32)

Then applying the sifting property of the Dirac delta function, δ(·), yields

fx(ti)|Z(ti)(ξ|Zi) =
K∑

k=1

fx(ti)|a(ti),Z(ti)(ξ|ak,Zi) pr{a(ti) = ak|Z(ti) = Zi} (2.33)

Hence, the development of the single filter as a lumped expression of a (truly dis-

tributed) system is naturally represented by a filter bank via the total probability

theorem19.

We will continue to consider and develop these ideas in the sections that fol-

low in terms of the concept of the uncertain parameter and the parameter space

discretization process — a process which can be viewed using the total probability

theorem. Finally, the state and parameter estimates generated by the MMAE are

given and then the assumptions underlying the (static) multiple model methods are

reviewed. Later in the chapter, in Sections 2.4.7, we introduce and briefly discuss

several dynamic multiple model techniques.

2.3.3.1 Parameter Vector. The first step in building a filter bank

is to identify the parameter vectors which we use to represent the system modes20.

From the discussion in Section 2.3.1, we know that the elements of the matrices:

Φ(ti, ti−1),Bd(ti),Gd(ti),H(ti),Qd(ti),R(ti) describe the structure and/or charac-

terize the statistics of the dynamics and measurement models given, respectively,

in Equations (2.6) and (2.7). The elements of these matrices can be functions of

a set of quantities that are called the parameters ; each scalar parameter can affect

one or more elements of these matrices. Together the parameters, equations, and

19Compare this observation with the virtual filter bank discussed in Section 2.5.
20In actuality, the parameter vector represents the portion of the system model which varies and

consequently gives rise to the different system modes.
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other assumptions and comments define the mathematical system model. Our goal

is to estimate a small subset of these parameters (which are assumed to be constant

over time for a static filter bank or allowed to vary slowly21 with time for a dynamic

or moving bank of filters) at each point in time ti; this estimation process is called

parameter identification22.

Specifically, the parameter vector a(ti) represents uncertainty in any of the

elements of Φ(ti, ti−1), Bd(ti), Gd(ti), H(ti), Qd(ti), or R(ti). It is important to

note that the uncertainty in Φ(ti, ti−1), Bd(ti), Gd(ti), or Qd(ti) may be due to

uncertainty in the continuous-time dynamics structure F(t). Uncertainties in the

plant noise distributor G(t) or Gd(ti) are treated equivalently as uncertainties in

Qd(ti) and oftentimes, we roll the uncertainties in H(ti) into either Φ(ti, ti−1) or

Bd(ti) by an alternative choice of state variables, since we often cannot isolate both

at the same time.

This subset of uncertain parameters is modeled as a slowly varying discrete

random process23 and is denoted by a(ti). Oftentimes the choice is obvious, but when

it is not, an empirical study is conducted on the entire list of parameters to determine

the J parameters most crucial for the task at hand; this analysis often depends on

whether we are most interested in identifying the parameter in force, improving the

state estimate, or enhancing control action [175]. The random parameter vector

(representing the system mode that may vary with time) and its realization are

21Slowly as compared to the dominant time constants of the system or measurement process.
22For a comprehensive explication of the standard methods see, for example, the fine texts by

Sorenson [182], Sage and Melsa [167], and Ljung [121]
23Much of the literature, beginning with Magill [125], takes the approach of calling the param-

eter vector a deterministic quantity that is simply a collection of unknown constants and uses an
analysis of the residuals to determine which filter or linear combination of filters best estimates this
parameter value.
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denoted, respectively, by

a(ti) ,




a1(ti)

a2(ti)

...

aJ(ti)




and a(ti) ,




a1(ti)

a2(ti)

...

aJ(ti)




(2.34)

Each element of the realization is defined on a subset of the real number line

aj ∈ Aj ⊂ R,∀j = 1, 2, . . . , J (2.35)

and the entire parameter space is denoted by a product set

A , A1 × A2 × · · · × AJ ⊂ RJ (2.36)

where [154]

A1 × A2 × . . .× AJ , {(a1, a2, . . . , aJ)|aj ∈ Aj ∀j = 1, 2, . . . , J} (2.37)

These subsets, Aj for every j = 1, 2, . . . , J , on the real line may be discrete, con-

tinuous, or mixed. Within this work, we will sometimes use the terms “parameter

vector”, “mode”, and “model” interchangeably even though the parameter vector

only refers to part of the model used to represent the difference between the system

modes.

An example will help to clarify this notation. Let J = 2 and thus a =

[ a1 a2
]T. Then let a1 ∈ A1 = [0,∞) represent the unknown nonnegative scalar

multiplier used to specify the dynamics noise strength, Q = a1I, where I is an identity

matrix of the appropriate size. Next, let a2 ∈ A2 = {0, 1} be an important parameter

in the dynamics matrix, F, that is either zero or one. If we were to conduct an exper-
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iment like this, we would be performing system identification in an uncertain noise

environment. Finally, we see that parameter space A = A1×A2 = [0,∞)×{0, 1} is

indeed a subset of R2. Since the MMAE fundamentally assumes that a parameter

may only assume values from among a finite set, we will need to approximate the

nonnegative real line [0,∞) with a discrete set of points versus the continuous set of

points currently assumed. How to choose the “best” set of points is still an active

area of research.

2.3.3.2 Parameter Space Discretization. The earliest attempt to

sample or discretize the admissible set of parameter values was accomplished by

Sengbush and Lainiotis [174]; they proposed two algorithms for a binary quantization

of the admissible set. A decade later, Lamb and Westphal [110] used a simplex

method of nonlinear programming to direct the discretization process.

The process of “choosing” K points in the parameter space is often called dis-

cretization; the collection of the K points is called the parameter set24. The goal of

parameter discretization is to represent the parameter space accurately with a small

set of discrete points in order to reduce the computational burden and to increase

the distinguishability of the elemental filters in the filter bank. The success of the

MMAE depends on the distinguishability of the models used in the bank of elemen-

tal filters. To determine which parameter value to use, there must be appreciable

differences between the characteristics of the residuals for the “correct” model ver-

sus the other, mismatched, filters. Additionally, when Kalman filters are used in the

bank, conservative tuning should be avoided to prevent the residuals from becoming

too close together and affecting the discrimination of the algorithm; this effect will

be discussed in more depth later. In the limit as the residuals become indistinguish-

able, the adaptation process is totally incapacitated. For fast and reliable parameter

24Some authors refer to this entire process as defining the model set, i.e., defining which models
to use in the bank of filters, see for example [120, 117, 119]. Note that defining the model set is
more general since it also includes filter bank composition.
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identification, assuming one of the hypothesized filters models is based on the true

parameter value, the residuals should be as distinct as possible [124, 130].

The set A is the admissible set of parameter values, called points, that the

parameter vector may assume. This admissible set is normally a subset of J-

dimensional Euclidean space and is commonly called the parameter space. In or-

der to implement the multiple model algorithm, the designer must choose (in some

intelligent fashion) a subset of points from A in order to represent the parameter

space25.

Continuing the example of the previous section, we choose a maximum prac-

tical value for the set A1 to be 10. Thus we now have26 the closed interval

A1 = [0, 10]; we shall discretize it into the set {0, 5, 10}. After discretizing A1 we

have27 A = {0, 5, 10} × {0, 1} = {(0, 0), (5, 0), (10, 0), (0, 1), (5, 1), (10, 1)}. We now

have six points in A from which to choose, thus the number of elemental filters, K,

is equal to six. Additionally, we shall assume that all six of these points represent

legitimate parameter values with which we can design a filter. Since our discretiza-

tion of A1 was completely arbitrary, it is possible that an alternate discretization of

the half-line A1 = [0,∞) would yield better results in terms of improved state or

parameter estimation.

The simplest (and most likely the least effective [177]) approach to discretizing

the parameter space is to divide the domain uniformly for each of the J parameters

in the parameter vector into Nj−1 intervals, where Nj can be different for each of the

J parameters, and then design a filter at each boundary point [53, 98]. (Note that

this is the method that we used to discretize A1 = [0, 10] in the example a couple

of paragraphs back, where N1 = 3 gave rise to two intervals and the set {0, 5, 10}.)

25Magill [125] assumed that the parameter space was populated with a finite set of known values.
26Note that we have used the same notation for the set A1 both before and after discretization

in the same spirit as when a computer program assigns a new value to an existing variable.
27As with the set A1, we have redefined the product space A after discretization process to be

A.
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A slightly more effective method would divide the domain uniformly for each of the

J parameters in the parameter vector into Nj intervals and then design a filter at

the center of each interval [177]; for this case, we would get A1 = {12
3
, 5, 81

3
}. In

either case, we construct N1N2 = K filters. For some parameters, it might make

sense to space the intervals logarithmically28 [81, 136]. In theory and in practice,

the parameter space does not have to be convex, thus K is the maximum number of

distinct filters that can be constructed from the product set. In other words, one or

more of the defining J-tuple points may, in fact, be invalid. These simple methods

are accomplished off-line and the number of filters is held constant.

A better ad hoc sampling scheme would include some measure of performance

to control the discretization process and would (most likely) result in a nonuniformly

sampled space. We could begin by designing the first Kalman filter in the bank at

some nominal point. Then, while monitoring the estimation accuracy (or some

function of the residuals29 or estimation errors), vary one parameter in one direction

at a time. Choose the points which only allow the accuracy to degrade by some set

amount [113, 128, 114, 49, 50].

Recently, Erickson [49, 50] discretized his parameter set by monitoring an

information distance measure [16] as he varied a single parameter. This so-called

Baram distance is basically the likelihood quotient of the Gaussian conditional PDF,

which will be discussed and defined in Section 2.3.3.3, Equation (2.44). Since he had

seven measurements, he expected the true value of the likelihood quotient to be

seven for a properly tuned Kalman filter. He found that, by choosing his parameter

points such that the likelihood quotient increased to the same value, which in this

28This simple scheme is utilized in this research even though it may not be optimal for our
problem.

29The residual, which was defined mathematically in Equation (2.26), is simply the difference of
the predicted and observed measurements and thus contains information on how well a filter model
matches up against the true system. An appropriate and hence very common function of the mea-
surement residual vector is the likelihood quotient defined in Equation (2.46): rT

k (ti)A−1
k (ti) rk(ti).
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case was 14, gave a viable parameter variation in all directions. He also invoked the

idea of foveal versus peripheral regions30 for filter bank discretization.

Sheldon [175, 176, 177] and Lund [123, 124] have both contributed to un-

derstanding parameter set creation via the discretization process. Sheldon’s main

contribution was an optimal discretization procedure that allowed the designer to

focus on state or parameter estimation or control regulation using a user specified

cost functional. A weighting matrix allows the designer to tailor the weight placed

on each state, parameter, or control action. Lund proposed an online algorithm that

would maintain the distinguishability (by lowering the dynamics noise strength Q or

Kalman filter gain K) of the elemental filters as environment changes necessitated

modifying the existing filter bank. Lund’s work was extended for the discrete-time

case by Miller [149] and Vasquez [198].

Vasquez [198] and Miller [149] modified Sheldon’s “static” algorithm to provide

on-line discretization of an adaptive MMAE bank; we shall call this dynamic dis-

cretization as the filters are allowed to be based upon piecewise constant parameter

values rather then constant ones, to respond better to a nonstationary environment.

Previous approaches required that the moving-bank algorithm store predetermined

discretizations [130, 132, 69, 68, 172]. This dynamic algorithm can run in real-time

and the optimization assumes a finite horizon (rather than an infinite horizon and

steady state values) in the computation of the discrete parameter values. Discretiza-

tions do not have to be predetermined although filters may be pre-computed and

stored for speed enhancement.

A few observations regarding the discretization process :

1. Since we are unlikely to have a model that exactly matches the real world in

the bank, we can still attain good performance if we interpolate between the

30An analogy to the foveal and peripheral regions of human eyesight, where the foveal high-
resolution vision is concentrated at the center of the field of view and peripheral low-resolution
vision is more sensitive to light changes and covers the remaining portion of the field of view.
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Figure 2.2 Surround the true parameter. Legend: © elemental filter; F true
parameter within the filter bank; ¥ true parameter outside of the filter bank.

existing filters — this results in a blended estimate which will be discussed in

Section 2.3.4 [198]. The elemental filters should surround31 the true parameter

[198], as seen in Figure 2.2 when we have a two-dimensional parameter set,

i.e., a set of ordered pairs (a1, a2). The open circles represent the location of

elemental filters in the bank. The black star is the true parameter at operating

point within the filter bank, while the black squares are at points that must be

extrapolated since they are not surrounded by the bank of elemental filters.

2. The coarser the discretization, the farther (on average) the true parameter

is from the assumed point; in other words, discretization directly affects how

31The parameter estimate â = [â1 â2 . . . âJ ]T is surrounded whenever aµ ≤ â ≤ aν , i.e., whenever
aµ,j ≤ âj ≤ aν,j for some µ, ν ∈ {1, 2, . . . , K} for all J parameters.
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Figure 2.3 Coarse and fine discretization of filter bank. Legend: © elemental
filters for a coarse discretization; ◦ elemental filters for a fine discretization; F true
parameter within the filter bank.

close32 the parameter estimate may be to the true parameter and how well

(or how closely) the filter bank surrounds the true parameter [198]. Figure

2.3 shows a coarse discretization of the filter bank using large circles and fine

discretization of the filter bank using small circles for a two-dimensional pa-

rameter set.

3. The measurement precision (R) inherently places a lower bound on the prac-

tical level of discretization attainable since noisy measurements (a “large” R)

will mask a fine discretization. When multiple filters roughly match the real

32Closeness can be determined in several ways. Here it refers to “distance” between the true
parameter and the assumed parameter used to construct an elemental filter. In a later section,
closeness is determined by how accurately the predicted measurement matches the observed mea-
surement; see Section 2.3.4.
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world, then the probability flow between them can become unstable when these

filters are essentially indistinguishable from one another33.

4. It is also possible that some intermediate level of discretization can result in

a biased estimate since the most appropriate filter may be located “farther”

from the true value and the observed parameter value could lie between the

assumed parameter values of a pair of filters; however, the estimate is thus

biased towards a filter farther from the true parameter value [88].

2.3.3.3 Elemental Filters. Each elemental filter in the bank (shown

in Figure 2.1) represents a different system mode and is thus based upon a different

hypothesis for the parameter values, e.g., the kth elemental filter design model is

constructed assuming that a(ti) = ak. The discrete-time model equations for the

kth elemental filter are:

xk(ti) = Φk(ti, ti−1) xk(ti−1) + Bdk(ti−1)u(ti−1) + wdk(ti−1) (2.38)

z(ti) = Hk(ti) xk(ti) + vk(ti) (2.39)

where the properties of Φk(ti, ti−1), Bdk(ti), Hk(ti), Qdk(ti), and Rk(ti) were dis-

cussed in Section 2.3.1. Note that most of the research on MMAE has employed the

following time-invariant system model equations:

xk(ti) = Φk(ti − ti−1) xk(ti−1) + Bdk u(ti−1) + wdk(ti−1) (2.40)

z(ti) = Hk xk(ti) + vk(ti) (2.41)

where the time-invariance gives Bdk(ti) = Bdk and Hk(ti) = Hk, and for uniform

spacing between time samples, ∆t = ti − ti−1 for all i, the state transition matrix

is independent of time: Φk(ti, ti−1) = Φk(ti − ti−1) = Φk(∆t), and for stationary

noises processes: Qdk(ti) = Qdk and Rk(ti) = Rk for all time ti. These assumptions

33Note that distinguishability of filters is a function of the filter measurement residuals which
is the difference between the predicted and observed measurements as defined in Equation (2.26).
Thus we note that parameter set creation by discretization and filter bank composition are closely
tied together.
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allow the construction of a steady-state Kalman filter model. For the purposes of

this research, we will not limit ourselves to steady state filtering.

The appropriateness or validity of each hypothesis, a(ti) = ak, is readily ob-

tained through an analysis of the filter residuals — the difference between the ob-

served measurement and the predicted measurement, rk(ti) = zi−H(ti) x̂(t−i ) [129].

This “correctness” information is encoded in the hypothesis conditional probability

pk(ti), which is defined as the probability, pr{·}, that a(ti) assumes the value ak

(for k = 1, 2, . . . , K), conditioned on the observed measurement history to time ti

[130, 132]:

pk(ti) , pr{a(ti) = ak|Z(ti) = Zi} (2.31)

such that

pk(ti) ≥ 0 for all k and
K∑

k=1

pk(ti) = 1 (2.42)

and the mode conditional probability density function is actually a conditional prob-

ability mass function for a discrete random parameter vector [133, 178]:

fa(ti)|Z(ti)(α|Zi) =
K∑

k=1

pk(ti)δ(α− ak) (2.30)

If we first assume that the prior probabilities pk(t0) are known (or well mod-

eled), for example, pk(t0) = 1/K for k = 1, . . . , K, then the definition for the

hypothesis conditional probability given in Equation (2.31), can be expressed as the

following recursion [125, 107, 11, 108, 130, 132, 14]

pk(ti) =
fz(ti)|a(ti),Z(ti−1)(zi|ak,Zi−1) pk(ti−1)∑K
j=1 fz(ti)|a(ti),Z(ti−1)(zi|aj,Zi−1) pj(ti−1)

(2.43)
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where the conditional PDF34:

fz(ti)|a(ti),Z(ti−1)(zi|ak,Zi−1) = βk(ti) exp
{−1

2
Lk(ti)

}
(2.44)

is a zero-mean Gaussian with covariance Ak(ti), scale factor

βk(ti) =
1

(2π)m/2|Ak(ti)|1/2
(2.45)

and measurement dimension m. The likelihood quotient, which is a measure of the

“correctness” of the parameter values for this particular model [130], is

Lk(ti) = rT
k (ti)A

−1
k (ti) rk(ti) (2.46)

where rk(ti) and Ak(ti) are the residual and associated residual covariance calculated

by the kth Kalman filter as in Equations (2.26) and (2.23), respectively. If we

denote the true residual covariance as Atrue(ti), then Ak(ti) = Atrue(ti) whenever

the kth elemental filter properly matches the real world condition. Since the scaling

factor, βk(ti), only ensures that the function always integrates to unity, the important

(“shape”) information in this PDF is encoded in likelihood quotient, Lk(ti) — the

weighted square of the residuals.

It has been shown [94, 129] that the sequence of residuals {rk(ti)} resulting

from linear filtering forms a zero-mean white Gaussian sequence with known residual

covariance Ak(ti). Thus, if a filter model matches the “true” system, then the

residual rk(ti) should be a zero-mean white Gaussian process with known residual

covariance Ak(ti).

Since we did not derive Equation (2.43), it might not be readily apparent that

the denominator is simply the PDF for the current measurement conditioned on the

34Note that conditional PDF fz(ti)|a(ti),Z(ti−1)(ζi|ak,Zi−1), where ζi is a dummy variable for the
stochastic measurement process, becomes a real number fz(ti)|a(ti),Z(ti−1)(zi|ak,Zi−1) when evalu-
ated with the measurement z(ti, ωj) = zi at time ti.
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past measurements [210], i.e.,

fz(ti)|Z(ti−1)(zi|Zi−1) =

∫

A
fz(ti)|a(ti),Z(ti−1)(ζi|α,Zi−1) fa(ti)|Z(ti−1)(α|Zi−1) dα (2.47)

=
K∑

j=1

fz(ti)|a(ti),Z(ti−1)(zi|aj,Zi−1) pj(ti−1) (2.48)

where the second equality is due to the sifting property of the Dirac delta, as in

Equation (2.30). This observation allows us to interpret the discretization of the

parameter space into a discrete set of points, each representing a system mode [210].

Recall that the total probability theorem requires that an event, such as the current

measurement, be partitioned into a set of disjoint or mutually exclusive partitions

such that the union of these partitions equals the event in question [159]. This is in

agreement with the discretization guidance given in Section 2.3.3.2. Thus, proper

sampling of the parameter space is analogous to proper partitioning of the event space

as required by the total probability theorem. In other words, the representation of

the parameter space by a discrete set of points is essentially an insightful use of the

total probability theorem [210].

2.3.4 State and Parameter Estimates. The MMAE estimation technique

uses the information from all of the Kalman filter residuals to estimate the “true”

parameter vector in effect and thus determine the true system mode. This technique

is optimal when there is a unique filter paired to each of a finite number of system

modes. We shall populate the filter bank with K filters; each based on a unique

J-dimensional parameter vector.

From the Bayesian point of view, the MMAE framework can be used to com-

pute a state (or parameter) estimate that is characterized by minimizing the MSE

between the predicted and measured state estimates; this is most often called a min-

imum mean-squared error (MMSE) estimate and is the conditional mean. An alter-

nate approach is called the MAP estimate; its estimate corresponds to the largest
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hypothesis conditional probability and is dubbed the “closest” model to the real

world; the corresponding estimate is the conditional mode. We identify the Bayesian

estimate as the standard MMAE estimate and write it as [130, 132, 14]:

x̂MMAE(t+i ) , E{x(ti)|Z(ti) = Zi} =
K∑

k=1

x̂k(t
+
i ) pk(ti) (2.49)

where x̂k(t
+
i ) is the state estimate generated by the kth Kalman filter based on the

assumption that the parameter vector a(ti) = ak. The conditional covariance of x(ti)

is [130, 14]

PMMAE(t+i )

, E
{
[x(ti)− x̂MMAE(t+i )][x(ti)− x̂MMAE(t+i )]T|Z(ti) = Zi

}
(2.50)

=
K∑

k=1

{
Pk(t

+
i ) + [x̂k(t

+
i )− x̂MMAE(t+i )][x̂k(t

+
i )− x̂MMAE(t+i )]T

}
pk(ti) (2.51)

where Pk(t
+
i ) is the state error covariance computed by the kth Kalman filter.

Additionally, the PDF of the state of the system, given the measurement history

Z(ti) = Zi, is given by a weighted sum of Gaussian PDFs known as a Gaussian

mixture [14]

fx(ti)|Z(ti)(xi|Zi) =
K∑

k=1

N[x(ti); x̂k(t
+
i ),Pk(t

+
i )] pk(ti) (2.52)

where N[x(ti); x̂k(t
+
i ),Pk(t

+
i )] is the Gaussian (normal) PDF of x(t) for the kth

elemental filter. The parameter estimate is given by:

âMMAE(t+i ) , E{a(ti)|Z(ti) = Zi} =
K∑

k=1

ak pk(ti) (2.53)

with conditional covariance of a(ti) [129]:
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Pa,MMAE(t+i )

, E
{
[a(ti)− âMMAE(t+i )][a(ti)− âMMAE(t+i )]T|Z(ti) = Zi

}
(2.54)

=
K∑

k=1

[ak − âMMAE(t+i )][ak − âMMAE(t+i )]T pk(ti) (2.55)

Using the hypothesis conditional probabilities, we can assign a ranking of close-

ness of the assumed parameter to the true parameter value. Hence the MAP-MMAE

state and parameter estimates produced by the Kalman filter with the largest hy-

pothesis conditional probability are given by

x̂MAP−MMAE(t+i ) , x̂k∗(t
+
i ) (2.56)

and

âMAP−MMAE(t+i ) , ak∗ (2.57)

where

k∗ , arg
{

max
k

[p1(ti), p2(ti), . . . , pK(ti)]
}

(2.58)

The Bayesian estimates provide smoother transitions as the situation changes,

compared to the MAP estimates which may jump from filter to filter. With a

properly designed bank of filters, i.e., one which has been properly, if not optimally,

discretized, the difference between the Bayesian and MAP estimates is small [68, 139].

2.4 Practical Performance Enhancements for Multiple Model Adaptive Estimation

Depending on the specific problem at hand, there are numerous ad hoc ad-

justments that can be made to the standard MMAE structure to increase either

parameter or state estimation performance. Several researchers have compiled lists

of some of these techniques. Vasquez [198] compiled his list to improve the composi-

tion or positioning of the bank in moving-bank MMAE. Maybeck and Hanlon [135]

assembled an assortment of methods to improve sensor/actuator failure detection
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and identification. Several other improvement techniques gathered from the litera-

ture were not previously considered under the title “enhancement”; however, they

will be labeled as such here.

2.4.1 Kalman Filter Tuning. Since no model is exact, the art of filter

tuning is the first tool to which we turn after designing a filter. To tune an elemental

Kalman filter we adjust its process noise covariance Qdk and/or measurement noise

covariance Rk using an ad hoc trial-and-error process [129, 133, 14]. Even though

this technique is not analytic, we can use physical insights to help us determine the

order of magnitude of the noise covariances. Specifically, one seeks tuning conditions

where Lk(ti) = rT
k (ti)A

−1
k (ti) rk(ti) is: (1) approximately equal to the number of

measurements m when the hypothesized parameter value ak is a good match to the

true parameter value and (2) significantly larger (or smaller) than m when the model

is a poor match. Note that the likelihood quotient is directly affected by the tuning

of Rk since Ak = Hk P−
k HT

k + Rk and indirectly influenced by Qdk through the

calculation of P−
k .

While increasing Qd can improve the responsiveness or performance of an in-

dividual filter by masking assumed model inadequacies, it may result in slower prob-

ability flow between filters because as Qd increases, distinguishability among the

filters decreases. Too high a value of Rk can deteriorate the detection capability of

the algorithm and will often result in detection delays [130, 132, 47, 46, 71].

2.4.2 Harmonically Balanced Kalman Filters. Muravez [153] designed a

harmonically balanced Kalman filter bank to track a target exhibiting a maneuver

well modeled by second-order periodically correlated acceleration (PCA) shaping

filter in the presence of uncertain measurement noise covariance. The elemental

filters were designed to cover the entire frequency range of expected power spectral

densities with constant bandwidth filters overlapping at the half-power point. This

method as originally proposed requires a large bank of filters and has only been
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applied to tracking in a single dimension thus far, i.e., scalar state estimation with

scalar measurements. However, it is possible to use a smaller number of filters of the

same PCA form with good success [133, 90, 112]. Although this technique is novel,

it appears to suffer from having poor distinguishability between the large number of

filters required to implement this method “properly” as given in his thesis.

2.4.3 Scalar Residual Monitoring. One way to reduce sensor failure iden-

tification ambiguities is through a technique called scalar residual monitoring. The

scalar likelihood quotient associated with the jth scalar residual is defined as [139]:

Lkj
(ti) , r2

kj
(ti)A

−1
kjj

(ti) (2.59)

which is simply the jjth term of the likelihood quotient35 when written in summation

notation:

Lk(ti) =
J∑

µ=1

J∑
ν=1

rkµ(ti) rkν (ti)A
−1
kµν

(ti) (2.60)

= r2
kj

(ti)A
−1
kjj

(ti) +
J∑

µ=1

J∑
ν=1︸ ︷︷ ︸

except µ=ν=j

rkµ(ti) rkν (ti)A
−1
kµν

(ti) (2.61)

With respect to sensor failure detection and identification, the predominant

indicator of a failure should be a large value for jth scalar residual Lkj
(ti) in every

elemental filter except for the one designed to detect this particular failure36. This

makes sense because this term only contains information regarding a particular hy-

pothesis about a particular failure [139]. As with many useful ad hoc techniques,

a threshold must be specified to compare to the scalar likelihood quotient given by

35The likelihood quotient appears in the exponential portion of the hypothesis conditional PDF
defined in Equation (2.44)

36Sensor failures are often modeled by zeroing out the row of the output distributor matrix
H corresponding to the failed device and single actuator failures are modeled by zeroing out the
appropriate column of the input distributor matrix B.
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Equation (2.59). This technique may be used to augment other methods to identify

sensor failures or it may be the method to identify them.

2.4.4 β Dominance Compensation. The group led by Athans [10] discov-

ered that the “β dominance” problem hampered flight condition estimation. Suizu

[191] tackled this problem that occurs whenever the elemental filter likelihood quo-

tients are all approximately equal, i.e.,

L1(ti) ≈ L2(ti) ≈ · · · ≈ LK(ti), (2.62)

where Lk(ti) = rT
k (ti)A

−1
k (ti) rk(ti), then the hypothesis conditional PDF de-

fined in Equation (2.44) is dominated by the Gaussian PDF scale factor

βk(ti) = [(2π)m/2|Ak(ti)|1/2]−1; hence the term “β dominance”. Thus the hy-

pothesis conditional probabilities are inversely related to the determinant of the

filter-computed residual covariance |Ak(ti)|. Hence the model receiving the largest

probability is the one that has the smallest filter-computed residual covariance de-

terminant |Ak(ti)|. This is totally useless...and worse, it still gives us answers, albeit

incorrect ones. For example, a typical representation of a sensor failure is to zero out

the row of Hk(ti) corresponding to the failed sensor. All other things being equal,

the filters designed for this type of failure will tend to have smaller |Ak(ti)| values,

thus an MMAE devised for sensor failure detection will be prone to false alarms on

sensors.

Two simple methods have been implemented to remove this β dominance effect

[132, 139, 70, 145, 135, 147, 187, 186]. One method uses scalar residual monitoring

and the other simply removes the βk term from the PDF equation. Thus Equation

(2.44) becomes:

fz(ti)|a(ti),Z(ti−1)(zi|ak,Zi−1) = exp
{−1

2
rT

k (ti)A
−1
k (ti) rk(ti)

}
(2.63)
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While Equation (2.63) is not strictly a PDF (because the area under the function

is not one), the hypothesis conditional probabilities defined in Equation (2.43) still

sum to one because of the scaling effect of the denominator.

2.4.5 Scalar Penalty Modification. Another quantity appearing in the

definition for the conditional PDF in Equation (2.44) that has been adjusted is the 1
2

sitting out in front of the likelihood quotient Lk(ti) [70, 135]. Modifying this number

has the same effect as scaling the filter-computed residual covariance inverse A−1

by some scalar “penalty”; with this modification, we are essentially admitting that

our PDF is not exactly a Gaussian PDF. By increasing the magnitude, we can raise

sensitivity to large residuals, and we can decrease the probability-convergence time

for the MMAE. This technique drives the probabilities associated with large residuals

to zero faster. Ideally, this should result in a faster convergence of the conditional

probabilities; however, increasing the scalar penalty also increases fluctuations in the

probabilities and thus results in an increased false alarm rate [70, 135].

2.4.6 Lower Bounding Conditional Probabilities. Placing a lower bound

on each of the K hypothesis conditional probabilities, {pk}, has been used to pre-

vent filter lock-out [10]. While small probabilities result in excessive delays for

actuator/sensor failure identification, true filter lock-out precludes the identifica-

tion of the hypotheses associated with the probability that has been set to zero

[130, 132, 139, 69, 70, 145, 68, 47, 135, 147, 187, 46, 186]; likewise for other appli-

cations that feature abrupt changes in the dynamics of the system such as carrier

phase ambiguity resolution [80, 79] and detection of incidents on freeways [212].

Filter lock-out occurs when a hypothesis conditional probability for an elemen-

tal filter becomes zero. By inspection of Equation (2.43) one can easily see that once

a probability becomes zero at time ti, then it will remain zero for all time t > ti. This

is equivalent to removing the filter from the filter bank altogether. Consequently, it is

impossible to identify a failure associated with that particular filter once it has been
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“removed.” But with an artificial lower bound in place, a filter cannot be totally

locked out and thus it may recover within a “few” iterations and properly declare

the failure. The lower bound is an empirically determined value that is greater than

zero and for practical purposes, much less than 1/K. Note that if the lower bound

were set at 1/K, then all of the elemental filters would receive the same probability

and hence completely incapacitate the estimator. The larger the lower bound is, the

more agile the probability flow is. When a new probability is calculated that would

otherwise be less than the lower bound, it is set equal to the lower bound and the

entire set of probabilities are re-scaled so that they sum to one.

One drawback to this method is that, when the blended state and parameter

estimates are calculated, as shown in Section 2.3.4, they give more weight to the

elemental filter estimates which have had their hypothesis conditional probabilities

increased by lower bounding. This can be fixed by adding logic to the estimate calcu-

lation that simply excludes those filters that have been kept active in the filter bank

via lower bounding of computed pk values, if it becomes problematic. Alternatively,

lower bounding does not bias the MAP estimates, provided the lower bound is much

smaller than 1/K for a bank of K elemental filters.

2.4.7 Markov Process Modeling of Hypothesis Conditional Probabilities.

Ackerson and Fu [2] introduced the concept of modeling the transition from one

system mode, represented by parameter vector a(ti−1), to a new system mode, a(ti),

as a Markov process37. These transitions represent abrupt changes in the dynamics

of the system and thus necessitate switching from one elemental filter to another

based on a different assumed parameter vector. Under this concept, the hypothesis

conditional probabilities are propagated via the Markov process as developed in

references [2, 130, 197, 22, 23, 14]. The probability that a Markov system will

37The Markov property allows the conditional PDF for the current parameter value to depend
not on the entire time history of parameter values, but on just the previous parameter value, i.e.,
f [a(ti)|a(ti−1), a(ti−2), . . . , a(t1)] = f [a(ti)|a(ti−1)].
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transition from mode an to mode am at time ti, is given by

Tmn(ti, ti−1) = pr{a(ti) = am|a(ti−1) = an} (2.64)

such that
∑K

m=1 Tmn(ti, ti−1) = 1. Hence the sequence of modes: a(t0), a(t1), . . .,

a(ti) forms a Markov chain. The hypothesis conditional probability vector at time

ti is

p(ti) = T(ti, ti−1)p(ti−1) (2.65)

where the elements, Tmn(ti, ti−1), of the K × K transition probability matrix,

T(ti, ti−1), are given in Equation (2.64) and the hypothesis conditional probability

vector

p(ti) ,




p1(ti)

p2(ti)

...

pK(ti)




(2.66)

is composed of elements: pk(ti) for k = 1, 2, . . . , K, previously given in Equation

(2.43). The difficult part of utilizing this method is to compute the elements of

matrix T(ti, ti−1) in a meaningful manner; Sullivan and Woodall [192] have pro-

posed a method for “estimating” a Markov state transition matrix. Recently, Jilkov

and Li [92] have proposed four algorithms to address the case in which the transition

probability matrix is assumed to be time-invariant and random. When T is the iden-

tity matrix, i.e., when the transition probabilities, Tmn = δmn, then the “dynamic”

multiple model method becomes a “static” multiple model technique.

The Markov chain assumption obviates the need to employ a lower bounding

technique for the hypothesis conditional probabilities, since no matter how small the

hypothesis conditional probability, the mode can still “jump” from a high probability

to a low probability mode based on the transition probability. Unfortunately, once
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we assume that the mode transitions form a Markov chain, the resulting algorithm

requires an ever growing amount of memory, hence an optimal algorithm is generally

not a feasible option for most applications. However, several suboptimal algorithms

have been developed for this Markov-switching concept38: the generalized pseudo

Bayesian (GPB) [197, 14] and the interacting multiple model (IMM) [22, 23, 14] are

two useful suboptimal methods.

An IMM estimator is an extension of MMAE with Markovian switching that

intermixes the state estimates from time ti to time ti+1 in order to approximate the

optimal algorithm closely while realizing a huge computational cost savings as com-

pared to the optimal algorithm [22, 23]. Thus, the algorithm trades state estimation

accuracy for computational savings.

2.4.8 Hypothesis Swapping. Similar to the hidden Markov modeling of the

mode transitions discussed in the previous section, “hypothesis swapping” involves

using additional knowledge about how a system operates to help estimate the current

mode or parameter. Hoffman [84] used the fact that the T-wave almost always follows

a ventricular depolarization and contraction represented by the QRS complex in an

electrocardiogram (ECG) signal. Additionally, the T-wave is followed by a variable

length “rest” period which is followed by the P-wave. For our purposes here, this

knowledge can also be thought of as another form of moving-bank MMAE since only

a subset of the entire bank of filters is used at any one time — its composition is

modified as necessary as determined by logic rules using information coded in the

measurement residuals and other a priori information; see Section 2.6.

2.4.9 Probability Smoothing. Immediately following a change in the system

operating mode, the probabilities undergo a transition period before converging to

the “correct” solution. Probability smoothing is used to minimize the momentary

38See the brief survey paper by Tugnait, reference [197], for two more types of suboptimal
algorithms.
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false alarms associated with these transients [70, 145, 135, 147, 187, 186]. The

probabilities are smoothed over a moving window, i.e., averaged over a number of

data samples. The size of the window is chosen empirically: a large window induces

a longer delay and a small window allows more false alarms.

2.4.10 Increased Residual Propagation. Another method used to help speed

convergence to the best model by skipping a few measurement update cycles while

continuing to propagate the Kalman filter state estimates. While still monitoring the

filters residuals, they are allowed to grow without the masking affects of measure-

ments. This allows discrepancies between the real world and the model to become

more pronounced or visible in the residuals. The number of update samples skipped

is determined empirically of course. The risk involved in implementing this technique

is an increase in the fluctuations of the conditional probabilities, which gives an in-

crease in false alarms [70, 135]...which can be mitigated by probability smoothing.

By skipping measurement updates, we might also degrade the state estimates unless

we had an artificially high sampling rate as far as state estimation was concerned.

2.4.11 Dithering. Dithering is the purposeful introduction of periodic (or

random) excitation to the system in order to increase the observability of actuator

failures through enhanced persistent excitation [145, 146, 58, 57, 147, 187, 71, 186,

73]. Additionally, the sinusoidal dither signal can be explicitly used to identify

mismodeled filters. For the properly modeled filter, i.e., the one that matches the real

world, the frequency content of the power spectral density (PSD) remains white39,

while for the mismodeled filters, a spike appears at the dither frequency [71, 73].

Hanlon [71, 73] harnessed the power of the subliminal dither using a new hy-

pothesis conditional probability calculation to maximize the observability of failed

flight control actuators. Since the dither is a highly time-correlated (usually peri-

39Since the dither effect in the observed measurements zi is matched by effects in the predicted
measurement Hx̂(t−i ), the dither is not present in the measurement residuals.
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odic) signal, it can be used to mark the filters that are based on a poor model with

respect to the real world with a spike at the known dither frequency in the residual’s

PSD plot. The residual’s PSD is formed by Fourier transforming the residual’s auto-

correlation. Hence, the filter that matches the real world failure will have zero-mean

white residuals, while the filters that don’t match the real world failure will pass

residual signal power at the dither frequency.

2.4.12 Filter Pruning. For some applications, the parameter space is natu-

rally discrete, hence there does exist an elemental filter that exactly matches the true

parameter state. Determining the carrier phase ambiguity for a Global Positioning

System (GPS) receiver is one such example [80, 79]. In order to converge on the

parameter estimate quickly, we must somehow eliminate or prune the filters that

are “obviously” incorrect (according to the filter measurement residuals) by incor-

porating an empirically-based logic rule. Pruning reduces the number of elemental

filters in the fixed-bank structure. The distinctiveness of the parameters chosen to

represent the parameter set (i.e., the coarseness of the discretization) highly influ-

ences what percentage of the filters will be pruned. The filter pruning technique

employed by Henderson [80, 79] provides a state estimate that is similar to using the

MAP parameter estimate. He cautioned that we must prune carefully so that noisy

measurements do not cause the algorithm to delete the “correct” filter mistakenly!

There is a design tradeoff between implementing an exhaustive bank of filters

that may have the best answer in it and a small bank of filters that is more com-

putationally feasible. This idea was the impetus for creating a “moving-bank” of

filters [130, 81, 136, 132]; the moving-bank MMAE will be developed in Section 2.6.

Additionally, the structure of the moving-bank MMAE has been cast in terms of a

hierarchical structure [59, 188, 203, 138, 139] discussed in Section 2.7.1 and a filter

spawning structure [54, 55], see Section 2.7.2.
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For abrupt system mode (or parameter) changes, the number of required hy-

potheses (or, more correctly, decision tree branches) grows. In Markov-switching

parameter systems, the number of hypotheses is K i at time ti! Hence, prudent

pruning [4] and/or merging [22, 23] of hypotheses is essential [130].

2.4.13 Filter Restart. When the difference between the predicted measure-

ment Hk(ti) x̂k(t
−
i ) and the observed measurement zi increases over time, the filter

is said to be diverging [130]. Such divergence can occur in practice because, when

tuning each elemental filter, one must avoid adding too much pseudonoise to the fil-

ter dynamics model (i.e., increase Qdk too much), since although such conservative

tuning can reduce divergence, it can also incapacitate the adaptation in MMAE al-

gorithms. In other words, when the likelihood quotient Lk(ti) grows without bound

and surpasses some threshold, the filter is based on a poor model, i.e., this condition

is indicative of a poor match between the real world and the model [105, 106]. As

the filter diverges, its output is consequently of little value at best and misleading

at worst. Hence, a divergent filter must be restarted. One popular method for pre-

venting this situation is to simply re-initialize or restart the divergent filter with the

current state estimate, i.e., set x̂k(t
−
i ) = x̂MMAE(t−i ), where the current state esti-

mate is computed using only the nondivergent elemental filters [133]. Additionally,

it may prove useful to restart the covariance estimate P(t−i ) as well.

2.4.14 Maximum Entropy with Identity Covariance. Ordinarily, the resid-

uals r(t−i ) are weighted by the filter-computed residual covariance A(t−i ) when de-

termining the hypothesis conditional PDF fz(ti)|a(ti),Z(ti−1)(ζi|ak,Zi−1); see Equations

(2.44), (2.45), and (2.46). However, when the filter computed covariance, A(t−i ),

is suspect, or varies a great deal across the parameter set, A, then this technique

is applied to ensure that the elemental filter with the smallest residual autocorrela-

tion is awarded the highest hypothesis conditional probability, pk(ti) as computed in

Equation (2.43). We suppress the relative weighting of the residuals by setting the
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covariance equal to an m×m identity matrix [175, 69, 67, 68], i.e.,

A(t−i ) = I (2.67)

and thus we obtain the maximum entropy with identity covariance hypothesis con-

ditional PDF:

fz(ti)|a(ti),Z(ti−1)(zi|ak,Zi−1) =
1

(2π)m/2
exp

{−1
2
rT

k (ti) rk(ti)
}

(2.68)

Sheldon called this modification to the algorithm maximum entropy with identity

covariance (ME/I) since it maximizes the entropy of the residual information [175].

2.4.15 Pseudo-Residuals. A novel method for detecting measurement bias

jumps (such as GPS spoofing [206, 205, 204]) uses a pseudo-residual vice the true

measurement residual as defined in Equation (2.26). The pseudo-residuals are used

only for inspecting the residuals while the true residuals are used to update the

elemental filters. While true residual sequences (at steady state) are zero-mean

white Gaussian sequences with known covariances, the pseudo-residual sequences

have a nonzero mean equal to the assumed bias. Hence this formulation allows the

bias to be detected.

2.4.16 Generalized Residuals. For some applications, one might conjecture

that the MMAE may benefit from a different form for the measurement residual. For

instance, when the uncertain parameter (a) affects the measurement model’s struc-

ture (H) and/or statistics (R) and propagation errors dominate the state estimate

[80, 79], then perhaps an analysis of the “post-fit” residuals

r(t+i ) , zi −H(ti) x̂(t+i ) (2.69)
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with an error covariance of:

A(t+i ) , H(ti)P(t+i )HT(ti) + R(ti) (2.70)

may be the best method for adaptively estimating the parameter — compare to

the standard forms given in Equations (2.26) and (2.23), respectively. That is, the

distinguishability of the elemental filters is (assumed to be) more evident through

an analysis of the post-fit residuals than with the standard set. In a more detailed

analysis, Ormsby [156] showed that these post-fit residuals actually resulted in no

performance improvement when compared to an MMAE using traditional residuals.

In showing this he constructed a generalized residual as a weighted sum of the

traditional and post-fit residuals:

r∗(ti) = γr(t−i ) + (1− γ)r(t+i ), (2.71)

where the scalar γ is chosen by the designer to optimize the performance. When

γ = 1 we have the traditional residual and when γ = 0 we have the post-fit residual.

There is no theory regarding how to determine an optimal γ, however, it is suspected

that the optimal γ is a number between zero and one.

Ormsby [156, 157] showed that previous researchers [80, 79] who used the

post-fit residuals would have gotten equivalent results using the traditional form of

the residuals. One side effect of the generalized residual, for γ 6= 1, is the beta

dominance effect which was previously discussed in Section 2.4.4; hence researchers

must be careful when choosing the weighting factor.

2.5 A Virtual Filter Bank Using Only a Single Filter

Hanlon and Maybeck [71, 72] have proposed a computation-saving virtual fil-

ter bank using a single Kalman filter combined with a set of linear transformations,

2-45



rather than a set of K elemental filters40. The linear transformations capture the

differences between the model used for the single filter and the models for the vir-

tual filters. The virtual filter bank is composed of a bank of linear transformations

that compute equivalent state estimates and residuals based on a single Kalman

filter which produces the reference state estimate and measurement residual. They

have developed the necessary linear transforms to model differences in the input dis-

tributor matrix Bd
41, output or measurement distributor matrix H, and the state

transition matrix Φ. Their development is based on the time invariant model as

in Equations (2.16) and (2.17). Additionally, they have assumed that the Kalman

filter models and the truth model dynamics noise covariance Qd, measurement noise

covariance R, and noise distributor matrices Gd are equivalent. They indicate that

these conditions are common in failure detection applications for which the MMAE

methodology has been used.

The development begins by rewriting the measurement residuals as defined in

Equation (2.26) for the jth filter with the goal of eliminating the explicit mention of

the state estimate from the jth filter. After several lines of algebra, they write:

rj(ti) = rk(ti) + HjΦj∆εjk(t
+
i−1) + [Hj∆Φkj + ∆HkjΦk]x̂k(t

+
i−1)

+ [Hj∆Bkj + ∆HkjBk]u(ti−1)

(2.72)

where the difference in the state estimation errors for the jth and kth filters, εjk(t
+
i ),

is algebraically equivalent to the difference in the state estimates

∆εjk(t
+
i ) , εj(t

+
i )− εj(t

+
i ) = x̂k(t

+
i )− x̂j(t

+
i ) (2.73)

40While this section does not directly support the work documented in this dissertation, it is an
example of potentially useful insights.

41For the purposes of this section, the subscript d — which is simply a reminder of the discrete
nature of the quantity — will be suppressed in the discussion following this introductory paragraph.
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which can be expressed using the following recursion:

∆εjk(t
+
i ) = (I−KjHj)Φj∆εjk(t

+
i−1)

+ [(I−KkHk)Φk − (I−KjHj)Φj]x̂k(t
+
i−1)

+ [(I−KkHk)Bk − (I−KjHj)Bj]u(ti−1) + ∆Kkjz(ti)

(2.74)

and finally, four equivalence relations

∆Bkj ≡ Bk −Bj

∆Hkj ≡ Hk −Hj

∆Φkj ≡ Φk −Φj

∆Kkj ≡ Kk −Kj

(2.75)

While the linear transforms represented by Equations (2.72) and (2.74) appear

to be very complex, in practice, they often simplify drastically — at least for the

failure detection application that Hanlon and Maybeck have addressed.

2.5.1 An Example: Different Input Distributor Matrices. To create an

actual filter to model a single actuator failure, we would zero out a column of the

input distributor matrix B. If we assume that the only difference between the

reference model (call it the kth filter) and this one used to detect an actuator failure

in the jth filter, then of the four increment matrices given in Equation (2.75) only

∆Bkj is nonzero, hence Equations (2.74) and (2.72) simplify to

∆εjk(t
+
i ) = (I−KjHj)Φj∆εjk(t

+
i−1) + (I−KjHj)∆Bkju(ti−1) (2.76)

and

rj(ti) = rk(ti) + HjΦj∆εjk(t
+
i−1) + Hj∆Bkju(ti−1) (2.77)
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Hanlon and Maybeck [71, 72] have developed similar relations for the case of

a single sensor failure (different measurement distributor matrices, i.e., ∆Hkj 6= 0,

which also means that the Kalman gains are likely to be different, hence ∆Kkj 6= 0)

and for different state transition matrices Φk 6= Φj (again ∆Kkj 6= 0).

2.5.2 Equivalent Residuals. While we won’t reproduce their work here,

we must note that they spent considerable effort showing that the difference in

the equivalent residual produced by Equation (2.72) is essentially identical to the

measurement residual from the actual filter — nominally within the precision of

the simulation software. Thus, this technique is viable provided that the extra work

necessary to set up the new algorithmic apparatus is more than offset by the reduced

computational load provided by this framework.

2.5.3 Computational Savings. While results will vary depending on the

particular application, they have estimated (using an operations counting technique)

that this virtual filter bank design can yield savings of about 30% for the case of

different input distributor matrices as in the example above. Similarly, they found

that the equivalent residual version of the Kalman filter bank reduces the required

operations count by about 15% compared to the fully implemented Kalman filter

bank. It is noted that there are basically no savings if the differences are confined

to the state transition matrices.

2.5.4 Comment. While the thrust of the current research is to extend the

MMAE, one can not overemphasize the practical matter of reducing the computa-

tional load whenever possible. Aside from the utility of this formulation, Hanlon

and Maybeck have noted the similarity of this work to the generalized likelihood

ratio test that also uses the residuals from a single Kalman filter to detect failures

[211, 71, 72, 198].
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2.6 Moving Bank Multiple Model Adaptive Estimation Fundamentals

Until now, the system mode (parameter vector) was assumed to be time-

invariant for static fixed bank MMAEs. If the system mode is allowed to vary slowly

with time over a large set of admissible parameter vectors, then a finely discretized

parameter space may give rise to a prohibitively large collection of elemental filters.

Since the number of filters kept on-line is generally limited, we are motivated to

consider methods capable of adjusting the composition of the filter bank. Maybeck

[130] suggested an ad hoc approach to track slowly varying parameter vectors via a

“dynamically redefinable (or ‘moving’) bank of filters” as opposed to a fixed “static”

bank of filters. With this technique, the bank of filters can be both closely spaced

(a necessary condition for producing good state/parameter estimates) and still cover

the entire range of system modes while adhering to the constraint of keeping only K

elemental filters online at any point in time.

Hentz and Maybeck [81, 136] completed the first feasibility study of this “mov-

ing bank” MMAE structure. The moving-bank MMAE estimates the parameter

vector using only a small subset of the entire filter bank. Subsequent investigations

were undertaken by Maybeck, Gustafson, Griffin, Schiller, Vasquez, and Erickson

[132, 172, 68, 64, 198, 200, 199, 49, 201, 50] to reduce the number of on-line filters

required in the MMAE bank. Li and Bar-Shalom [120] have proposed a similar archi-

tecture for the IMM called variable structure; this enhancement allows the model-set

to be dynamically redeclared online.

If the parameter estimate changes appreciably, as indicated by the filter resid-

ual statistics, then the bank of on-line filters should be adjusted so that the parameter

estimate is always surrounded by a “moving” bank of elemental filters42. Hence a

primary purpose for changing the elemental filters used in the MMAE bank is to

track the true parameter vector value using a small number of filters with fine dis-

42The subset of filters appears to move through the parameter set as the parameter changes while
time unfolds.
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cretization of the parameter space to reduce the number of filters that must be kept

on-line. A second reason for changing the elemental filters used in the MMAE filter

bank is to acquire (or reacquire) the true state vector using a coarse discretization

of the entire parameter space; this may occur multiple times during the course of a

simulation or actual use. The composition of this moving bank is governed by a set

of logic rules that will be discussed shortly.

2.6.1 Moving-Bank versus Fixed-Bank Multiple Model Adaptive Estimation.

The moving-bank MMAE posed by Maybeck and Hentz is the same as the fil-

ter bank estimator discussed previously except that K now refers to a smaller

number of elemental filters in the moving bank rather than the total number

of possible elemental filters based on all possible discrete parameter vector val-

ues, usually K << Kfixed−bank, where Kfixed−bank is the total number of filters in

the reservoir known as the fixed bank. Usually the bank of K elemental filters

“moves” within a previously constructed fixed bank of elemental filters such that

each ak ∈ {a1, a2, . . . , aKfixed−bank
} ⊂ A, for k = 1, . . . , K, as was originally imple-

mented and investigated [132, 172, 68, 64]; also, the K elemental filters may be

created on-line and may “roam” throughout the entire parameter space, i.e., ak ∈ A
by discretizing the parameter set on-line as reported by Miller, Vasquez, and May-

beck [149, 198, 200, 199, 201]. Several decision logics designed to reassign the K

“mobile” filters from the larger set of Kfixed−bank filters have been suggested and are

presented later in this section. Several of these rules are also used by the dynamic

bank implementation created on-line based on a modified formulation of Sheldon’s

optimal parameter discretization strategy [175, 176, 177].

In addition to moving the filter bank while we track the parameter changes,

we may also expand the filter bank region of coverage43 when it appears, i.e., when

43When the region of coverage is expanded, the number of elemental filters in the filter bank is
usually held constant. The IMM variable structure approach [120] is one method that allows the
number of elemental filters to vary.
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the statistics of the filter residuals suggest it, that the true parameter value lies

outside the bounds of the current bank. To expand the bank, we simply increase the

coarseness of the discretization. This will hopefully place the true parameter value

within the confines of the moving bank once again; i.e., we’d like to surround the

parameter we are trying to estimate. Note that moving the bank and expanding the

bank are two separate decisions.

Once a bank has been expanded in order to recapture the true value, the

quality (or accuracy) of the parameter estimate falls off (assuming that the number

of filters in the bank is kept constant) until we contract the bank. In other words,

it is important that the true parameter lie within the bank of filter’s coverage area

for adequate parameter estimation. This will increase our chances that one of our

elemental filters is “close” to the true parameter value. The level of discretization

of the continuous parameter set directly impacts the ability of the filter bank to

surround and come as close as possible to the true parameter value.

Many researchers have proposed novel ways of adjusting the bank of el-

emental filters, e.g., the new set of rules developed by Vasquez and Maybeck

[198, 199, 200, 201]. Additionally, several authors have proposed different “moving-

bank” architectures for modifying the bank of filters. For example, the “filter spawn-

ing” architecture [54, 55] will be discussed in Section 2.7.2, while the variable struc-

ture approach designed by Li and Bar-Shalom [120, 118] is outside the scope of this

research.

2.6.2 A Short Glossary of Bank Manipulation Terms. Before proceeding

with a review of the logic rules used to control the composition of the filter bank,

we shall discuss a few important terms regarding the movement of the moving-bank

MMAE framework:

Contract The filter bank contracts when the discretization level is made finer (as-

suming that the same number of filters is maintained in the bank.)
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Expand The filter bank expands when the discretization level is made coarser (as-

suming that the same number of filters is maintained in the bank.)

Move To move the filter bank is to re-center the bank on the latest parameter

estimate while the discretization level is (possibly) held constant.

Surround The filter bank surrounds the true parameter value when the bank con-

tains filters that bound the parameter estimate both above and below in all

“directions” of the parameter set.

Track The filter bank tracks the true parameter value by keeping the parameter

estimate surrounded at all times; this may require the move, expand, and

contract filter bank operations.

2.6.3 Logic Rules for Moving the Bank. Five standard decision logics have

been suggested and investigated by Maybeck [132] and others in order to keep the

estimate of the parameter within the bounds of the bank. A brief summary of

each follows. Additionally, Vasquez and Maybeck [198, 199, 201] have developed an

algorithm that exploits the information contain in a conditional PDF to move the

filter bank.

2.6.3.1 Residual Monitoring. The likelihood quotient defined in

Equation (2.46):

Lk(ti) = rT
k (ti)A

−1
k (ti)rk(ti), (2.46)

captures the useful information pertaining to the correctness of the parameter values.

For scalar measurements, this is simply the current residual squared, divided by the

filter computed variance for the residual: Lk(ti) = r2
k(ti)/Ak(ti). When the true

parameter value does not lie in the current moving-bank region, all K likelihood

quotients can be expected to exceed a threshold level TL, the numerical value of
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which is set in an ad hoc manner during performance evaluations44. Thus, a possible

detection logic would indicate that the bank should be either moved or expanded at

time ti if

min{L1(ti), . . . , LK(ti)} ≥ TL (2.78)

In other words, we should expand the moving bank when all of the likelihood quo-

tients are too large. If we apply the test in Equation (2.78) to only a specific subset of

the current bank, we may infer movement of the true parameter and thus direct that

the bank be moved in order to track the true parameter. For example, if all of the

likelihood quotients for the filters along the bank’s edge exceed some threshold, then

the appropriate action would be to move the bank in the opposite direction where

the likelihood quotients are smaller. This tool is prone to false alarms because it is

based on a single residual at time ti. We could lower false alarms by averaging over

several time samples, but this strategy would tend to decrease our responsiveness to

real world changes in the parameter, which, as you will recall, is the hallmark of this

method. Hence we need a better logic rule.

2.6.3.2 Parameter Position Estimate Monitoring. Since our intent

may well be to track the actual value of the parameter through the parameter set, we

could explicitly monitor the actual position estimate of the parameter as a function

of time. Recall that the Bayesian MMAE parameter estimate given by Equation

(2.53) is45

â(ti) = E{a(ti)|Z(ti) = Zi} =
K∑

k=1

ak pk(ti) (2.79)

If the difference between the parameter estimate â(ti) and the “center” of the filter

bank, acenter, becomes too large, i.e., larger than some chosen threshold, then the

filter should be moved in such a manner as to bring the center acenter and â closer

44See Hanlon’s [71] work on Neyman-Pearson hypothesis testing process as an alternative for the
ad hoc method with which the threshold is set.

45We have suppressed the difference between the propagated and update estimate here since this
is not germane to the discussion.
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together. Since â(ti) depends on a history of measurements rather than just the

single current measurement, it is less prone to the false alarms compared to the

simple residual monitoring method discussed above.

2.6.3.3 Parameter Position and Velocity Estimate Monitoring. An-

other way to incorporate more data into our decision making logic is to use the

history of â(ti) to generate a meaningful estimate of the parameter velocity46 if the

true parameters vary slowly with time — otherwise we will get what may appear to

be as random motion:

˙̂a(ti) ∼= â(ti)− â(ti−1)

ti − ti−1

(2.80)

The parameter estimate velocity ˙̂a(ti) and current position estimate â(ti) can be used

to predict the parameter position one sample period into the future by rearranging

Equation (2.80):

â(ti+1) ∼= â(ti) + ˙̂a(ti)[ti+1 − ti] (2.81)

If the distance between the bank center and that prediction â(ti+1) exceeds some

selected threshold, then the bank can be moved in anticipation of the true parameter

movement. This approach introduces lead into the moving-bank logic, but also a

higher level of uncertainty and possibly erratic bank movement if the true value of

the parameter changes too rapidly.

2.6.3.4 Probability Monitoring. The conditional hypothesis probabil-

ities, pk(ti), computed using Equation (2.43), are another indication of the correct-

ness of the parameter values ak assumed by the elemental filters of the current bank.

If any of these probabilities rise above a chosen threshold level, the bank can be

moved in the direction of the ak associated with the highest pk(ti). In this scheme,

the bank seeks to center itself on the elemental filter with the highest conditional

probability weighting. Again, since pk(ti) depends on a history of measurements,

46Velocity is simply the time rate of change of position.
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this method should somewhat insensitive to singular instances of measurement cor-

ruption as is the case under residual monitoring.

2.6.3.5 Parameter Estimation Error Covariance Monitoring.

Whereas residual monitoring may be used to increase the spacing of the filters in the

filter bank, i.e., expand the bank, this technique allows us to contract the bank by

decreasing the discretization level of the parameter set. By starting with a coarsely

discretized parameter set, a1, . . . , aK , we increase our chances of surrounding the

true parameter value. Then with proper testing we may contract the bank centered

on that parameter estimate. A good way to help make such a contraction decision

is to monitor the parameter estimation error conditional covariance [130] given in

Equations (2.54) and (2.55) and repeated here (minus the “MMAE” subscripts)

Pa(t
+
i ) , E

{
[a(ti)− â(t+i )][a(ti)− â(t+i )]T|Z(ti) = Zi

}
(2.82)

=
K∑

k=1

[ak − â(t+i )][ak − â(t+i )]T pk(ti) (2.83)

When an appropriately chosen norm (a scalar function indicating size or distance)

of this matrix falls below a selected threshold, the bank can be contracted about the

parameter estimate. One such norm is the weighted sum of the diagonal terms of

the covariance matrix Pa(ti) for a moving bank constrained to be a square region in

a two-dimensional parameter set [132]:

||Pa(ti)|| ,
K∑

k=1

[Pa]kk(ti) (2.84)

In general, one could use different discretization coarseness decisions in individual

directions of the parameter set, allowing rectangular banks as well as squares.
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Note that we can rewrite the state equations for a deterministic time-invariant

system47 into diagonal canonical form if the eigenvalues of the system transfer func-

tion are unique (non-repeated) or into a modified canonical form if there are repeated

roots. Similarly, we can use the eigenvalues and eigenvectors of the covariance ma-

trix Pa(ti) at time ti to find the principal axes. With these principal axes, we could

describe elliptical shaped banks in the parameter set [129].

An indication of the need to expand the size of the bank can be obtained from

residual monitoring as before. When all of the likelihood quotients from Equation

(2.46) are large in magnitude (indicating that none of the current elemental filters

appear to have a good model or hypothesized parameter value), then it is more

appropriate to expand the bank than to attempt to move it because no clear indi-

cation of the true parameter’s value is provided with this particular bank of filters.

The error covariance could then be monitored for making the decision to return the

bank to a smaller size. Since Equation (2.83) depends on the current choice of ak

values, this error covariance is not a reliable indicator for the decision to expand

because the computed Pa(ti) is artificially bounded above by the current size of the

bank. Regardless of which technique is used to move, contract, or expand the filter

bank, the newly declared models ak must be initialized with values for x̂k(ti), Pk(ti),

and pk(ti). A common and reasonable choice for x̂k(ti) is the current moving-bank

blended estimate x̂(t+i ). For the new pk(ti), we equally divide up the probability

weight of the discontinued filters, i.e., if filters one through three had a total prob-

ability of just one tenth, then each of the new filters will have probability of one

47The deterministic time-invariant system is

ẋ(t) = Fx(t) + Bu(t)
z(ti) = Hx(t)

where F, B, and H are as described in Section 2.3.1. The system transfer function matrix for this
system is

G(s) = HT[sI− F]−1B (2.85)

where s is the Laplace transform variable [129].
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third of one tenth. Another method apportions the probability based on the relative

correctness of the new filters being added [81, 136]. This correctness is based on an

evaluation of the likelihood quotients determined from Equation (2.46) for each new

filter; it is used to divide the probability proportionately. This method equates the

smallest likelihood quotient with the most correct filter and thus the most correct

filter shall receive the greatest probability allocated to the new filters. However,

this apportionment technique doesn’t usually perform better in practice relative to

simpler equal-distribution methods.

2.6.3.6 Density Algorithm: Logic Rules for Moving the Bank. As

opposed to the simple rules just discussed in the preceding subsections, the “density

algorithm” developed by Vasquez and Maybeck [198, 199, 201] provides intelligent

decision making for movement, contraction, and expansion of the adaptive MMAE

filter bank. The density algorithm gets its name by exploiting information provided

by the hypothesis conditional probability density function fz(ti)|a(ti),Z(ti−1)(ζi|ak,Zi−1)

defined in Equation (2.44). Unfortunately, this algorithm relies heavily on uniform

spacing of the parameter values of the online filters. Note that uniform parameter

value spacing is not a usual feature of the bank composition. This prompted Vasquez

[198] to combine the basic density algorithm with a new online discretization tech-

nique that does not rely on simple uniform spacing of the parameter values.

2.6.4 Hypothesis Testing. Multiple model estimation employs hypothesis

testing in a variety of ways, using the filter measurement residuals to help make

decisions. Hypothesis testing of the residuals (or more commonly, a function of the

residuals) is used to determine when the composition of the bank should be changed

and how it should be modified. The testing of the hypotheses is how changes in

the system are detected; this is known as detection theory, see, e.g., [170, 101]. The

multiple model estimation schemes discussed in this document would not be possible

without hypothesis testing.
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The proximity of the parameter estimate to the true value is dependent on the

coarseness of the discretization. Larger than expected residual magnitudes indicates

a mismatch between the filter model and the “truth” model. The truth model is the

best model that we can build irrespective of its feasibility of employment — we desire

the closest possible representation of the real world system. A parameter change in

the true system would be reflected as a change in magnitude of the residuals of filters

based on different hypotheses when the change occurred. The change in the residuals

can appear as a nonzero mean or a change of covariance.

In addition to the hypothesis conditional probability computed for each model,

see Equation (2.43), we can also gather additional information about the models

through decision theory via hypothesis testing. Hypothesis testing is a process of

establishing the validity of a hypothesis, where the statistical hypothesis is simply an

“assumption about the value of one or more parameters of a statistical model” [159]

or more precisely, an “assertion about the [probability] distribution of one or more

random variables” [86]. The null hypothesis is usually the condition of no change

while the alternative hypothesis encapsulates the “change.” The hypothesis test is a

rule which can be used to determine whether or not to reject the null hypothesis48.

The two common classes of errors are the type I and type II errors. Type I

errors occur when we mistakenly reject a null hypothesis that is actually in force

(true); a type II error happens when we fail to reject (or accept) a null hypothesis

that is not in force, i.e., false [168]. For our work, the null hypothesis occurs when

the system is functioning as intended, while a malfunctioning system would be the

alternate hypothesis; as the name suggests, there may be more than one alternate

hypothesis in a multiple hypothesis testing scheme. When a hypothesis test falsely

indicates that the system is malfunctioning, a type I error has occurred — this error

is commonly known as a false alarm. Similarly, a type II error is committed whenever

48Note that if a hypothesis is not rejected that it is not necessarily true, this acceptance merely
indicates that the data considered supports the conjecture; likewise, a rejected hypothesis is not
necessarily false [168].
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the test indicates that the system is functioning properly, when in fact it is operating

“poorly” in some respect; this error is often called a missed detection in that the

test missed detecting the problem. When applied to the target detection problem,

a false alarm simply says that there was a target present when none truly was, and

a missed detection is simply that the target was present, but that the test indicated

a target free area.

2.6.4.1 Chi-Squared Test. The chi-squared test is one of the earliest

methods used for statistical inference [86]; in failure detection, it uses the measure-

ment residuals from a (Kalman) filter to determine whether a failure has occurred.

Thus, this test gathers knowledge of the system dynamics by interpreting the filter

measurement residuals. The chi-squared random variable, χ2(ti), provides a test

statistic that places a quadratic penalty on residual variance for the kth Kalman

filter model [198]:

χ2(ti) =
i∑

l = i−N+1

rT
k (tl)A

−1
k (tl)rk(tl) (2.86)

where N is the size of the sliding window used to make the decision. A detection

rule with an empirically determined threshold Tχ2 is:

χ2(ti) > Tχ2 → Parameter Change

χ2(ti) ≤ Tχ2 → No Parameter Change

(2.87)

The threshold will be chosen to meet the performance specifications and to minimize

false alarms (type I errors) and missed detections (type II errors) [170]. The chi-

squared test has been a highly effective and consistent failure detector [152]; however,

this test is basically an alarm method that isn’t of much use for isolating failures if

not used in a multiple model structure [211].

2.6.4.2 Neyman-Pearson Test. The most powerful test is defined

as the hypothesis test which yields the greatest probability of detection for a given
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level of false alarms. The Neyman-Pearson (hypothesis) test, based on the Neyman-

Pearson lemma, yields the most powerful test [170]. Hanlon [71] replaced the stan-

dard N -ary hypothesis test with a Neyman-Pearson based hypothesis test extended

especially for the MMAE structure. In an N = 2 binary hypothesis test, the null

hypothesis is either rejected or accepted, whereas in a Neyman-Pearson test, a third

option located “between” acceptance and rejection of the null hypothesis is avail-

able. The somewhat noncommittal third response is to reject the null hypothesis

with a certain probability as determined by the test function; thus acceptance of

the null hypothesis is the same as rejection with zero probability. With Hanlon’s

Neyman-Pearson hypothesis testing algorithm [71], the residual sequence from a sin-

gle Kalman filter could be used to perform multiple hypothesis tests, as opposed to

having an entire bank of filters feeding an N -ary hypothesis testing algorithm used

by the standard MMAE.

2.6.4.3 Sequential Probability Ratio Test. For “short” fixed-length

data sets, there may not be enough information to distinguish between the various

hypothesis. In this case, it is desirable to have a test that continues to collect

data until there is enough information to make a decision. When this occurs, the

sequential probability ratio test (SPRT) developed by Wald [202] is superior to the

Neyman-Pearson test [120].

2.6.4.4 Generalized Likelihood Ratio Test. The generalized likelihood

ratio (GLR) test is similar to the chi-squared test, but it has the capability to detect

abrupt changes in dynamic systems and isolate failures [214, 211, 213, 212, 152,

206, 198, 101]. A hypothesis for each type of failure that can affect the system

is constructed. The GLR test processes the measurement residuals from a single

Kalman filter in parallel in order to detect changes (failures) in the system, whereas

in MMAE, we have a bank of Kalman filters. One key benefit of the GLR is that it

needs only one estimator for each failure type since it produces its own estimate of the
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failure magnitude. This magnitude may be used in a feedback loop to aid the system

in terms of recovery or reconfiguration. The MMAE has generally outperformed the

GLR test.

2.7 Advanced Moving-Bank Multiple Model Adaptive Estimation Structures and

Techniques

In this section, we shall briefly discuss several advanced/specialized techniques

beginning with two moving-bank-like structures that have been applied to the failure

detection problem. Next we’ll cover two algorithms for discretizing the parameter

space. Then we’ll investigate a modification to the hypothesis conditional PDF which

results in a hypothesis testing algorithm designed not only to detect failures, but to

isolate them. Finally, we briefly introduce a method for improving state estimation

by using an MMAE to identify the system mode, i.e., the unknown system parameter,

and then using a separate Kalman filter for state estimation.

2.7.1 Hierarchical Structured Filter Bank. Hierarchical estimation theory

was studied by Smith and Sage [179], blended with Magill’s multiple model method

[125] by Fry and Sage [59], and later implemented by Stevens, Maybeck, and others

[188, 138, 139, 145, 147, 47, 46, 35] as a way to reduce the required number of

elemental filters to detect multiple actuator/sensor failures for reconfigurable flight

control via MMAE methods. If a multiple model algorithm were based on all possible

single and double failures of N sensors and actuators, then we would need filters to

correspond to the cases of: Fully functional (1 filter), single failure (N filters), and

double failures ( N !
(N−2)! 2!

filters49) for a total of 1 + N + N !
(N−2)! 2!

elemental filters.

To avoid this computational burden, we could cast the problem into a hierarchical

structure where we only have N +1 on-line filters at any given time. The initial bank

of filters are denoted by the title “Level Zero” which corresponds to zero failures

49Recall that for positive integer N , the factorial is the product: N ! = N · (N − 1) · · · 1.
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detected, i.e., the models are based on the condition that no failures have been

detected. We also have have N banks of N + 1 filters on standby; the “Level One”

banks. Upon confirmation of an initial failure, we bring on-line the appropriate

bank designed with the assumption that a failure has occurred in the nth sensor

or actuator surface. In this “Level One” bank, we also include the “no failure”

filter to handle the possibility that the sensor (or actuator) was mistakenly declared

inoperative or allow for the possibility that it can get better; hence N +1 filters. So,

at most, we will have 11 filters online in the case of N = 10 sensors, versus 56 —

quite a savings!

2.7.2 Filter Spawning. Filter spawning is a type of moving-bank filter

structure which focuses on improved parameter identification with computational

savings. This architecture was implemented to help determine the amount of degra-

dation suffered by a failing or failed actuator/sensor. This work originated with

Fisher [54, 55]; it features a permanent collection of filters that are always on-line

and an additional set of filters that may be called upon to augment the standard

set as necessary. These augmenting sets of filters are “spawned” only after a specific

actuator surface is declared to have failed to some degree, i.e., a partial failure is

detected. These spawned filters assist in determining the level of failure.

2.7.3 Optimal Parameter Discretization. Several ad hoc techniques de-

signed to discretize the parameter set were discussed in Section 2.3.3.2. Sheldon

[175, 176, 177] cast the previously ad hoc process of continuous variable parameter

discretization as an optimization problem designed to improve either the state or

parameter estimation or state control/regulation. His research delivered a static op-

timal parameter discretization since the parameter set was discretized off-line prior

to running the algorithm; hence the bank of (steady-state) filters is static 50

50Miller [149] and Vasquez [198] jointly extended the static optimal parameter discretization to
enable a bank of (time-varying) filters to be redeclared while on-line, i.e., the parameter set may
be rediscretized on-line; this is a dynamic discretization method.
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The basic question being addressed by this algorithm is: “If we are allowed to

choose the K points in the parameter set, where should they be placed in order to

yield ‘optimal’ MMAE performance?” The optimal MMAE performance was defined

as that which minimized the average mean-squared estimation error of states or

parameters51.

The key ingredient of this approach is the creation of the cost functional used

to optimize the parameter discretization for state estimation:

Cx ,
∫
AE{[x− x̂]TWx[x− x̂]}da∫

A da
(2.88)

where A denotes the admissible parameter set discussed in Equations (2.36) and

(2.37), Wx is the user-specified weighting matrix used to emphasize or deemphasize

various states, and the denominator,
∫
A da ,

∫
AJ
· · · ∫A2

∫
A1

da1 da2 · · ·daJ , normalizes

the contribution of the parameter set. Similarly, the cost functional minimized to

optimize the parameter estimate is:

Ca ,
∫
AE{[a− â]TWa[a− â]}da∫

A da
(2.89)

where the matrix Wa is a user-specified weighting scheme.

Sheldon made several assumptions in order to keep the mathematics tractable:

the structure of the system model is known except for a J-vector of parameters,

a, from the infinite set A, the bank is composed of K constant-gain, steady-state

filters, and the MMAE converges to the “best” model in the “Baram” sense [16, 15]

with probability one. Given that there are sufficient conditions for the MMAE to

converge in the Baram sense, Sheldon found that the MMAE will converge to the

51Sheldon [175, 177] also applied his methodology to optimize the average mean-squared regula-
tion error performance of the controller as criterion for the optimization of the MMAC.
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jth filter governed by [175, 177]

lj(ti) = min
k=1,...,K

lk(ti) (2.90)

where lk(ti) is defined as the proximity of the kth filter generated as

lk(ti) ≡ ln|Ak(ti)|+ tr
{
A−1

k (ti) [Ωk(ti) + Rt(ti)]
}

(2.91)

where Ak(ti) is the filter-computed residual covariance and Ωk(ti) is a quadratically-

scaled steady-state state-estimation error autocorrelation, and Rt(ti) is the truth

measurement covariance — see [175] for the details.

Finally, Sheldon devised a five-step (off-line) algorithm to approximate nu-

merically and minimize the cost functional. This algorithm required (among other

things) a truth model of the system, the number of filters, K, to be implemented in

the estimator, and an initial sample set, {a1, a2, ..., aK} to begin the minimization

[175]. Additionally, Sheldon extended his work to account for the design practice of

placing lower bounds on the filter probabilities, pk, to avoid the estimator lock-up

problem previously discussed in Section 2.4.6.

2.7.4 Inter-Residual Distance Feedback. The success of the MMAE de-

pends on the “distinguishability” of the models used in the bank of Kalman filters.

To determine which parameter value to use, there must be appreciable differences

between the characteristics of the residuals for the “correct” model versus the other,

mismatched, filters. In the limit as the residuals become indistinguishable, the adap-

tation process is totally incapacitated. For fast and reliable parameter identification,

assuming one of the hypothesized filters models is based on the true parameter value,

the residuals should be as distinct as possible [124, 130].

Inter-residual distance feedback (IRDF) [123, 124] provides for the on-line mod-

ification of the Kalman filters in the MMAE bank for the purpose of maintaining
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the distinguishability of the elemental filters. The discrimination property of the

MMAE is preserved by continually adjusting the Kalman filters to keep the pre-

dicted measurements from becoming too close with respect to some performance

metric.

Modification of the elemental filters is achieved by de-tuning the filters through

the modulation of either the dynamic driving noise covariance, Qdk, or the new

information sk = Kkrk directly, where Kk is the kth Kalman filter gain matrix and

rk is the residual of the kth Kalman filter. The modulation process is governed by a

scalar quantity computed from a distance measure between the residuals. Lund

stressed the trade-off between discrimination and state tracking; tracking is the

ability of the filter to predict the state x(ti) and output z(ti) given the measurement

history Zi−1. The trade-off is between the desire for good tracking capabilities when

one model matches the true system versus the desire for the residuals of the various

filters to be distinct from each other, enabling fast and reliable model discrimination.

If small Kalman filter gains are used to de-emphasize the impact of the measurement

information, then the residuals of the various filters will tend to be more distant from

each other. Thus, the elemental filters should not be tuned totally independently of

the other filters [130] and the distance between the residuals should be large enough

for inter-residual distinguishability [124].

With that in mind, Lund defined the inter-residual difference measure

Jjk(ti) , rT
jk(ti)Γjkrjk(ti), ∀j 6= k (2.92)

where the inter-residual difference is defined as

rjk(ti) , rj(ti)− rk(ti) (2.93)
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with the jth Kalman filter residual rj(ti) and Γjk is a positive definite scaling matrix

that is often diagonal. To maintain distinguishable residuals, we seek to keep Jjk(ti)

above some threshold we’ll call J0
jk by adjusting filter gains.

A general approach52 used to keep the inter-residual distance measure, Jjk(ti),

above some specified limit J0
jk is to vary the dynamics noise covariance, Qdk, which

by inspection of Equations (2.22) through (2.24) in Section 2.3.2 directly modifies

the Kalman filter gains. We adjust Qdk with a modulating parameter η by

Q′
dk(ti) = η(ti)Qdk(ti), ∀k ∈ {1, 2, . . . , K} (2.94)

where η(ti) ∈ [ηmin, 1]. In order to maintain system stability, the lower bound must

be nonnegative, i.e., ηmin ≥ 0; Lund [124] and Miller [149] both discuss how one might

smartly choose η(ti). Simulations are often used to help determine good values.

If the system models are linear, as they are in this research, then another way

to impart change in the system is by modulating the new information53 sk(ti) ,
Kk(ti)rk(ti) as we did the dynamics noise

s′k(ti) = η(ti)sk(ti), ∀k ∈ {1, 2, . . . , K} (2.95)

The filter gains are now pre-computable and only the modulation parameter η(ti) is

computed on-line. Furthermore, modulating sk(ti) versus Qdk(ti) leads to a faster

adaptation because we don’t have to wait for the filter error covariance transients to

die before the corresponding filter gains are changed.

52While Lund’s [123, 124] work was with continuous-time systems with sampled measurements,
we are assuming that we have a discrete-time system (or at least we are using an equivalent discrete-
time model for a continuous system) and thus the rest of the development will follow Miller’s work
[149].

53For a discussion on the statistics of the new information, see for example Section 5.4 of Maybeck
[129].
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2.7.5 Probability-Based Discretization Method. The IRDF, discussed in

the previous section, worked to ensure stable probability flow in the filter bank by

maintaining adequate distinguishability among the elemental filters in a relatively

fixed bank. In this section, we introduce a technique aimed at enhanced “motion”

and “sizing” of the filter bank for a moving-bank MMAE. Recall that the primary

advantage of the moving bank is that potentially fewer filters are required to identify

the parameter or system mode. The central concept employed by the probability-

based discretization method (PBDM) [198, 200, 201] is to determine the parameter

values for the elemental (Kalman) filters based on the calculation of the probability

pr(χ2
k ≤ Tχ2), where the chi squared random variable, χ2

k, is defined as

χ2
k = rT

k A−1
k rk (2.96)

which is the same as the familiar likelihood quotient, Lk, previously defined in Equa-

tion (2.46), for threshold Tχ2 . In most cases, χ2
k, is a generalized chi squared random

variable since the filter-computed residual covariance is only equal to the true resid-

ual covariance when the model matches the real world (truth) condition, i.e., only

when ak = at will we have a chi squared random variable. When χ2
k ≤ m, where m

is the length of the residual vector, then we see that filter model is a good match

to the true condition, while χ2
k >> m is an indication of a poor match with the

real world condition. Thus, rather than using the ad hoc movement and resizing

rules discussed earlier, this algorithm attempts to rediscretize the parameter space

dynamically to achieve dynamic movement and sizing of the filter bank using the

information already available to the algorithm.

2.7.6 Residual Correlation Kalman Filter Bank. Hanlon [71, 73] harnessed

the power of the subliminal dither, previously discussed in Section 2.4.11, using a
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new hypothesis conditional probability calculation54 to maximize the observability

of failed flight control actuators. Since the dither is a highly time-correlated (usually

periodic) signal, it can be used to mark the filters that are based on a poor model with

respect to the real world with a spike at the known dither frequency in the residual

sequence PSD plot. While the standard MMAE does not exploit the whiteness of the

residual sequence for a properly matched system model, Hanlon’s algorithm directly

harnesses this knowledge. The purposeful dither appearing in the measurement is

canceled by a dither in the predicted measurement which matches the real world

condition, while an incorrectly predicted measurement will not cancel the dither

present in the actual sensor output. Thus, the end result is that the elemental filter

which matches the real world failure will have zero-mean white residuals, while the

filters that don’t match the real world failure will pass the dither at the chosen

frequency.

An algorithm which utilizes the purposeful dither is the residual correlation

Kalman filter bank (RCKFB) technique; this method is based on a time-invariant

system model for the elemental filters as shown in Equations (2.40) and (2.41).

The residual sequence is assumed to be ergodic55 so that the periodogram can be

used to estimate the PSD [99]. The hypothesis conditional PDF employed by the

RCKFB hypothesis testing algorithm is formed using different components for the

residual vector (r) and covariance matrix (A). The measurement is replaced by the

estimated PSD of the measurement residual (Ψ̂), while the analog of the predicted

measurement is the conditional mean of the PSD measurement residual (
¯̂
Ψ). The

residual is given by the difference of the estimated PSD and the conditional mean

of the PSD evaluated at the known dither frequency: rψ = Ψ̂ − ¯̂
Ψ. The covariance

54The standard hypothesis testing algorithm is described in Section 2.3.3.3 with Equations (2.31)
through (2.46).

55An ergodic sequence has the property that moments such as the mean and correlation can be
computed based on the time average over a single sequence versus over a set of realizations — a
statistical average. Ergodic sequences are a subset of stationary sequences.
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matrix of the estimated PSD (Aψ) is used in place of the filter-computed residual

covariance matrix.

The RCKFB employs the same basic testing algorithm but with a different

hypothesis conditional PDF formed by exchanging a few terms, as indicated in the

previous paragraph. With these modifications, it is an MMAE method to find the

large PSD content at the known frequency of the dither. The drawback of the

RCKFB is that it takes slightly longer to identify the failure, but the advantage is

that the amplitude of the purposeful dither signal injected into the flight control

actuators can be subliminal. Hence a combination of the standard MMAE and the

MMAE with a RCKFB may prove useful.

2.7.7 Modified Multiple Model Adaptive Estimation. In traditional MMAE

architectures, the designer has had to make a tradeoff decision between an optimal

design for state estimation and a design concerned with accurate parameter estima-

tion [130, 124]. Miller, however, developed the Modified MMAE (M3AE) architecture

[149] that exploits the benefits of an MMAE designed for accurate parameter esti-

mation and that performs at least as well in state estimation precision as an MMAE

designed specifically for accurate state estimation. This architecture offers enhanced

design flexibility in optimizing each estimator for its intended purpose. The MMAE

portion of the M3AE is designed for parameter estimation. The elemental filters of

the MMAE are designed and tuned such that the resulting hypotheses are as distin-

guishable as possible from each other. This increases the MMAE’s ability to detect

parameter changes in the system accurately. The estimated parameter from the the

standard MMAE framework is then fed into a single Kalman filter designed to ac-

cept the parameter estimate. This filter is designed for accurate state estimation

conditioned on the measurements and knowledge of the parameters provided by the

parameter estimator. Miller [149, 148] found that the M3AE performed better than

the standard MMAE when blending occurred between two or more elemental filters

in the parameter estimator portion of the M3AE. Thus, the parameter estimate â
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from the MMAE within the M3AE algorithm would be different from (and better

than) any of the hypothesized ak values used as a basis for that MMAE’s elemental

filters. To ensure that the parameter estimate is a good blend of two or more pa-

rameter, we need to have a fairly fine discretization of the parameter set so that a

single elemental filter does not absorb all of the probability weight. The moving-bank

MMAE design fits this scenario quite well and in fact, the M3AE doesn’t typically

provide any substantial improvements in performance without a moving bank of

filters.

2.8 A Final Note

The goal of this background chapter was to prepare the reader for the research

in the subsequent chapters. We have satisfied that requirement, however, there are

a plethora of advanced techniques and applications that we didn’t have space to

discuss. The interested reader is encouraged to dive into the literature to search out

those advanced techniques in order to extend the research discussed in this document.
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III. Infinite-Dimensional Sampled-Data Kalman Filter

3.1 Introduction

The original intent of multiple model adaptive estimation (MMAE) [125] was to

extend the applicability of the linear discrete-time Kalman filter [95]1 to problems in

which there was uncertainty in the strength of the dynamics noise model. Subsequent

work extended the applicability of MMAE to the other parameters characterizing

the structure of the model and the statistics of the noise models [108, 129, 196, 132]

as reviewed in Chapter II. In this chapter we shall extend the linear sampled-data

Kalman filter to allow an infinite-dimensional state space description [38, 39, 40]

thereby creating the infinite-dimensional sampled-data Kalman filter (ISKF). The

ISKF formulation will enable us to apply many of the tools of Kalman filtering previ-

ously applied to finite-dimensional, lumped parameter systems described by a vector

stochastic differential equation (SDE) to systems best described with distributed pa-

rameters [163] or time-delayed measurements, using a stochastic partial differential

equation (SPDE) [38, 87, 40] or a stochastic retarded differential equation (SRDE)

[102, 38, 18, 40, 103].

It is well known that the Kalman filter optimally combines the state esti-

mate from a static (sampled-data measurement update) minimum variance unbiased

(MVU) estimator with state predictions based on a presumed dynamics model to

estimate the state recursively [91, 129, 3, 29, 14]. The development of our ISKF

extension of Kalman’s filter [95] was primarily influenced by the presentations given

by McGarty [141], Luenberger [122], Catlin [33], and Scharf [170], augmented by the

infinite-dimensional linear systems theory reported by Curtain and Pritchard [38]

and the more general framework of stochastic equations in infinite dimensions by

1Kalman’s seminal work [95] has been republished in collections edited by Sorenson [183] and
Başar [12].
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Da Prato and Zabczyk [40]. Additionally, most of the linear operator and transfor-

mation theory was gleaned from Naylor and Sell [154] as well as an introduction to

topics in probability and measure theory which were more fully studied in Grigoriu

[66] and Royden [166], respectively. A recent text by Bobrowski [24] combines the

study of functional analysis, probability theory, and stochastic processes; his work

aided this author in combining these concepts in a coherent fashion in the pages that

follow.

The following section briefly discusses several topics in mathematical and func-

tional analysis and probability theory. Most of the section is presented as definitions

(with a few lemmas which we will prove since they are not common) and a few well-

known theorems presented without proof. Next, we develop the new linear infinite-

dimensional MVU estimator (LIMVUE) and then we generalize the LIMVUE to al-

low for recursive measurements. Then, we present an infinite-dimensional dynamics

model which leads us to the new ISKF. We conclude this chapter with the generalized

infinite-dimensional multiple model adaptive estimation (GIMMAE) framework.

3.2 Preliminary Concepts

We have assumed that the reader is familiar with the abstract mathematical

concept of a vector space and in particular that of a linear vector space, hereafter

referred to simply as a linear space. However, we will introduce some basic definitions

and theorems to familiarize the reader with our notation and conventions. These

results are well known and are thus given without proof. On the other hand, the

proofs in the following sections flow more smoothly with the lemmas that we propose

and prove in this section. The order in which we present the following concepts is

simply as we need them, thus dependent concepts are presented after the independent

concepts; e.g., an inner product and inner product space are defined before we talk

about a Hilbert space.
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•
y = Tx

Figure 3.1 Boxology of a Transformation or Mapping.

In this dissertation, we often use a graphical depiction of the mappings em-

ployed in this research, referred to as the boxology of the mapping by Oxley [158].

These boxology diagrams help us to understand the relationships between the inputs,

transformations, and outputs, and in particular, these diagrams identify the spaces

in which the inputs, transformations, and outputs reside. This is in contrast to many

control system and/or circuit diagrams that focus on the input/output or transfer

function relationship itself. Figure 3.1 illustrates a simple example of the boxology

employed in this dissertation and the following definition explains the notation.

Definition 1 (Transformations and Operators) Let X and Y be vector spaces

over the same field (R or C). Let T : X→ Y represent a mapping from vector space

X to Y, then T is a transformation and T (X,Y) denotes the set of transformations

from X to Y, and T ∈ T (X,Y); this space of transformations is graphically depicted

using the dashed box in Figure 3.1. If T : Y→ Y is a mapping from Y to itself, then

we write that T ∈ O(Y), i.e., T is an operator.

Now we shall add the structure of linearity to our mappings in the following

definitions.

Definition 2 (Linear Transformations and Operators) Let X and Y be vector

spaces over the same field (R or C) and let α be a scalar. Let L : X→ Y represent

a mapping from vector space X to Y. L is a linear transformation if [154]:
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L Y

•
y = Lx

Figure 3.2 Boxology of a Linear Transformation.

1. Scalar multiplication: L(αx) = αL(x) for all x ∈ X and all scalars α, and

2. Vector addition: L(x1 + x2) = L(x1) + L(x2) for all x1,x2 ∈ X.

Otherwise, L is a nonlinear transformation. Notationally, LT (X,Y) denotes the

set of linear transformations from X to Y, and L ∈ LT (X,Y); this relationship is

illustrated in Figure 3.2. If L : Y→ Y is a linear mapping from Y to itself, then we

write that L ∈ LO(Y), i.e., L is a linear operator.

A linear functional is a special type of linear transformation that maps the

vector space over a scalar field to that scalar field, typically, the real numbers, R.

We use several linear functionals in this research; the inner product, defined later in

this section, is one such example of a linear functional.

Definition 3 (Linear Functional) Let Y be a linear space over R or C. A linear

functional over either field (R or C) simply maps (or transforms) a linear space to

that field (R or C). [154]. We often denote the linear functional over R using the

familiar notation for a function: `(·), where the value `(y) ∈ R, for any y ∈ Y [158].

The most general type of topological space that we will employ in this research

is a metric space; for our purposes, a metric space is defined as follows:

Definition 4 (Metric Space) The pair (X, d) is a metric space, when X is a set

and d is a real-valued function, a “distance” metric, defined for x,y ∈ X which

adheres to the following axioms [154]:
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1. Positive: d(x,y) ≥ 0 and d(x,x) = 0 for all x,y ∈ X.

2. Strictly positive: If d(x,y) = 0, then x = y for all x,y ∈ X.

3. Symmetry: d(x,y) = d(y,x) for all x,y ∈ X.

4. Triangle inequality: d(x,y) ≤ d(x, z) + d(z,y) for all x,y, z ∈ X.

Example. Banach and Hilbert spaces are examples of metric spaces with the function

d being the appropriate norm (used as the metric) of the difference of two vectors.

The norm of the difference of element pairs in a vector space is an example of

a metric. When the norm is paired with a linear vector space, it forms a normed

linear space.

Definition 5 (Normed Linear Space) The linear space Y is a normed linear

space if there is a real-valued function, || · ||, which maps each y ∈ Y to a real

number ||y|| ∈ R. The norm is a “distance” metric that must obey the following

axioms [154]:

1. Nonnegativity: ||y|| ≥ 0 for all y ∈ Y.

2. Positive definiteness: ||y|| = 0 if and only if y = 0.

3. Triangle inequality: ||y1 + y2|| ≤ ||y1||+ ||y2|| for each y1,y2 ∈ Y.

4. Scalar multiplication: ||αy|| = |α| ||y|| for all scalars α ∈ R and each y ∈ Y.

A normed linear space is denoted by (Y, ||·||) or more simply as Y when the associated

norm is understood.

To avoid confusion when dealing with multiple normed linear spaces and their asso-

ciated norms, we often add a subscript to the norm notation, in this case, a normed

linear space is denoted by (Y, || · ||Y).

Definition 6 (Bounded Linear Transformation) Let B : X → Y be a linear

transformation. When X and Y are normed linear spaces, then the linear transfor-
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mation B is bounded, if there is a real number M ≥ 0, such that

||Bx||Y ≤ M ||x||X for all x ∈ X (3.1)

Let BLT (X,Y) denote the set of bounded linear transformations (BLTs) from X to

Y; thus, B ∈ BLT (X,Y), i.e., B is an element of the set of BLTs from X to Y [154].

When B is an operator, i.e., when Y = X, then we use the notation B ∈ BLO(X)

to denote that B is a bounded linear operator (BLO).

To combine vectors from different spaces, we employ the direct sum of the

spaces to add the vector components so that the new vector will be unique [122, 154].

Definition 7 (Direct Sum) Let X and Y be linear spaces over the same scalar

field. The direct sum of X and Y, denoted by X⊕Y, forms a new linear space. The

underlying set of X⊕Y is formed by the Cartesian product, X×Y, of sets X and Y.

A point in X × Y, is an ordered pair (x,y), where x ∈ X and y ∈ Y. Four notable

properties of the direct sum are [154]:

1. Vector addition: (x1,y1)
X×Y
+ (x2,y2) = (x1

X
+ x2,y1

Y
+ y2) for x1,x2 ∈ X and

y1,y2 ∈ Y.

2. Scalar multiplication: α(x,y) = (αx, αy), for any scalar α, and every x ∈ X,

and y ∈ Y.

3. Origin: (0, 0) ∈ X× Y.

4. Negative: −(x,y) = (−x,−y) for every x ∈ X, and y ∈ Y.

Now that we have a method for uniquely combining the vectors from multiple

normed linear spaces, we shall ascribe several useful properties to the normed linear

spaces considered in this research, beginning with what it means for a sequence of

vectors in a normed linear space to converge.

Definition 8 (Convergence) Let (Y, || · ||) be a normed linear space. An infinite

sequence of vectors {y1,y2, . . .} ⊂ Y is said to converge to a vector y if the sequence
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{||y − y1||, ||y − y2||, . . .} of real numbers converges to zero [154]. That is, given a

real number ε > 0 there exists an integer N ∈ N such that

||yn − y|| < ε (3.2)

for all n > N .

Definition 9 (Cauchy Sequence) Let (Y, || · ||) be a normed linear space. A se-

quence of vectors {y1,y2, . . .} ⊂ Y is called a Cauchy sequence if the sequence

{||ym − yn|| : m,n ∈ N} of real numbers converges to zero, that is, given a real

number ε > 0, there exists an integer N ∈ N, where N = {1, 2, . . .} is the set of

natural numbers, such that

||ym − yn|| < ε (3.3)

for all m,n > N [154].

Remark Note that every convergent sequence in a normed linear space is a Cauchy

sequence and that, in general, the contrary is not true.

Definition 10 (Completeness) The normed linear space Y is complete if every

Cauchy sequence in Y is a convergent sequence in Y [154].

When a normed linear space is complete, it is often referred to by the special name:

Definition 11 (Banach Space) A complete normed linear space is also called a

Banach space [154].

Example. An important Banach space for our research is the space Lp
[a,b] of Lebesgue

measurable functions2 for 1 ≤ p < ∞ with the finite norm [154]:

||x|| =
[∫ b

a

|x(ρ)|pdρ

]1/p

(3.4)

2To be precise, the equivalence class of Lebesgue measurable functions [154].
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The Lebesgue functions are those functions, x, defined on a closed real interval [a, b]

such that ∫ b

a

|x(ρ)|pdρ < ∞ (3.5)

i.e., functions that are absolutely integrable (for p = 1), square integrable (for p = 2),

etc.

We note that Banach spaces are important in optimization problems (such as

Kalman filtering) because the property of being a Cauchy sequence provides us a way

of determining if a sequence of vectors in the Banach space does, indeed, converge in

the space even when the limit of the sequence is unknown [122]. Another important

property is the geometrical structure of the inner product. With the addition of this

structure, we define another linear vector space, the inner product space. In general,

an inner product space is defined over a scalar field, F. Usually, the field in question

is either the complex numbers, C, or the real numbers, R. In this research, we focus

on an inner product space over the reals, R.

Definition 12 (Inner Product Space) Let Y be a linear space over R. An inner

product on Y over R is a mapping that associates to each ordered pair of vectors y1

and y2 a real-valued scalar, denoted by 〈y1,y2〉 that satisfies the following properties

for y1,y2,y3 ∈ Y [154]:

1. Additivity: 〈y1 + y2,y3〉 = 〈y1,y3〉+ 〈y2,y3〉.

2. Homogeneity: 〈αy1,y2〉 = α〈y1,y2〉 for every α ∈ R.

3. Symmetry: 〈y1,y2〉 = 〈y2,y1〉.

4. Positive definiteness: 〈y1,y1〉 > 0, when y1 6= 0.

A linear space Y with an inner product 〈·, ·〉, written as (Y, 〈·, ·〉) is known as an

inner product space.

Note that the inner product generates a norm: ||y|| , (〈y,y〉)1/2 — is often

called the induced norm on Y. If we have an inner product space (Y, 〈·, ·〉), we often
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abuse the notation and simply write Y for convenience. When it is uncertain upon

which space an inner product is defined, we will subscript the right angled bracket

with the name of the space, as in: 〈·, ·〉Y.

Example. The Euclidean space of real-valued N -vectors, RN , with inner product

defined as: 〈x,y〉 = xTy =
∑N

n=1 xnyn, for x,y ∈ RN , where the superscript T

represents the transpose operation, is an inner product space.

From the geometrical point of view, the inner product is a tool for comparing

the relative “directions” of two vectors. When two vectors are completely aligned,

their inner product is maximized, while vectors that are maximally skewed are said

to be perpendicular or orthogonal when their inner product equals zero.

Definition 13 (Orthogonality) Let (Y, 〈·, ·〉) be an inner product space over R.

The vectors y1 and y2 are said to be orthogonal if their inner product is zero, i.e.,

if 〈y1,y2〉 = 0; thus we write y1 ⊥ y2, where the perpendicular symbol ⊥ reflects the

geometrical interpretation [154]. Additionally, if A and B are two specific subsets of

Y, and 〈a,b〉 = 0 for every a ∈ A and b ∈ B, then these sets are orthogonal and

we denote this by A ⊥ B [154]. Furthermore, if (A, 〈·, ·〉) and (B, 〈·, ·〉) are subspaces

of (Y, 〈·, ·〉) and all of the subsets of A and B are orthogonal, then we say that the

spaces are orthogonal and we denote this relation by A ⊥ B [154].

While the inner product of two vectors (on an inner product space) produces

a scalar, the outer product of these two vectors defines a linear transformation.

Some authors [37] refer to the operator created by the outer product as a rank-one

operator; this is analogous to the creation of a rank-one matrix by the outer product

of finite-dimensional vectors.

Definition 14 (Outer Product) Let X and Y be inner product spaces. The outer

product of two vectors x ∈ X and y ∈ Y, denoted by x ¦y, is defined in terms of the
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inner product on Y as [38, 40]

(x ¦ y)z = x〈y, z〉, for every z ∈ Y (3.6)

The outer product forms a linear transformation, that is, x ¦ y ∈ LT (Y,X) [40].

Example. Let x and y be continuous real-valued functions defined on the interval [a, b]

and denoted by x, y ∈ C([a, b]). The outer product is defined as: (x ¦ y)z = x〈y, z〉
for all z ∈ C([a, b]). Thus, for all z ∈ C([a, b]),

[(x ¦ y)z](ρ) = x(ρ)

∫ b

a

y(ρ′)z(ρ′)dρ′ (3.7)

The following technical lemma treats the case of an outer product when the

second space is finite-dimensional:

Lemma 15 Let X and Y = RN be inner product spaces. For vectors x ∈ X and

y ∈ Y, the outer product can be represented as

x ¦ y = xyT (3.8)

Proof of Lemma 15 We begin by using the definition of the outer product such

that for every z ∈ Y the following relation holds

(x ¦ y)z , x〈y, z〉 (3.9)

= x(yTz) (3.10)

= (xyT)z (3.11)

Therefore, Equation (3.8) follows since Equation (3.11) holds for all z ∈ Y. ¥

The next lemma shows that the outer product has both the right and left

distributive property.

3-10



Lemma 16 Let X and Y be inner product spaces. (i). For vectors x ∈ X and

y1,y2 ∈ Y, the right distributive property for the outer product is

x ¦ (y1 + y2) = (x ¦ y1) + (x ¦ y2) (3.12)

(ii). For vectors x1,x2 ∈ X and y ∈ Y, the left distributive property for the outer

product is

(x1 + x2) ¦ y = (x1 ¦ y) + (x2 ¦ y) (3.13)

Remark Vector outer product takes precedence over vector addition; hence the

parentheses on the right-hand sides of Equations (3.12) and (3.13), while unnecessary,

are included for added clarity.

Proof of Lemma 16 (i). Begin by using the definition of the outer product for

arbitrary x ∈ X and y1,y2, z ∈ Y.

[x ¦ (y1 + y2)]z = x〈y1 + y2, z〉 (3.14)

= x(〈y1, z〉+ 〈y2, z〉) (3.15)

= x〈y1, z〉+ x〈y2, z〉 (3.16)

Using the definition of the outer product on the right-hand side of the equation again

yields

[x ¦ (y1 + y2)]z = (x ¦ y1)z + (x ¦ y2)z (3.17)

= [(x ¦ y1) + (x ¦ y2)]z (3.18)

where the last equality follows because we have two linear transformations applied

to the same vector. Since Equation (3.18) holds for all z ∈ Y, then we get

x ¦ (y1 + y2) = (x ¦ y1) + (x ¦ y2) (3.12)
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Thus property (i) of Lemma 16 holds.

(ii). Begin by using the definition of the outer product for arbitrary x1,x2 ∈ X and

y, z ∈ Y.

[(x1 + x2) ¦ y]z = (x1 + x2)〈y, z〉 (3.19)

= x1〈y, z〉+ x2〈y, z〉 (3.20)

Then we use the definition of the outer product again to get

[(x1 + x2) ¦ y]z = (x1 ¦ y)z + (x2 ¦ y)z (3.21)

= [(x1 ¦ y) + (x2 ¦ y)]z (3.22)

where once again, the last equality follows because we have two linear transforma-

tions applied to the same vector. Since Equation (3.22) holds for all z ∈ Y, then

(x1 + x2) ¦ y = (x1 ¦ y) + (x2 ¦ y) (3.13)

Thus property (ii) of the Lemma 16 holds. ¥

For the next lemma, we will first introduce the concept of an adjoint operator.

Definition 17 (Adjoint) Let X and Y be inner product spaces over the same field.

If B ∈ BLT (X,Y), then the adjoint of B, denoted B∗, is also a BLT, B∗ : Y→ X,

defined on X and Y such that the following holds true for all B∗ ∈ BLT (Y,X),

x ∈ X, and y ∈ Y
〈Bx,y〉Y = 〈x, B∗y〉X (3.23)

Remark The adjoint of B satisfies the property: ||B∗|| = ||B|| [154].

Lemma 18 Let U, V, X, and Y be inner product spaces over the same field. For

vectors x ∈ X and y ∈ Y, and linear transformations A ∈ LT (X,U) and B ∈
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LT (Y,V),

(Ax) ¦ (By) = A(x ¦ y)B∗ (3.24)

where B∗ is the adjoint of B.

Proof of Lemma 18 The outer product (Ax) ¦ (By) is defined by

[(Ax) ¦ (By)]z = Ax〈By, z〉 for all z ∈ V (3.25)

Note that 〈By, z〉 = 〈y, B∗z〉. Thus, for all z ∈ V,

[(Ax) ¦ (By)]z = Ax〈y, B∗z〉 (3.26)

= A(x ¦ y)B∗z (3.27)

Since Equation (3.27) holds for every z ∈ V, we get

(Ax) ¦ (By) = A(x ¦ y)B∗ (3.24)

Therefore, the lemma holds. ¥

As with the normed linear space, when we add completeness to the topology

of an inner product space, we give it a special name.

Definition 19 (Hilbert Space) A complete inner product space is also called a

Hilbert space [154].

Example. An important Hilbert space that we employ in our research is the space

of real-valued Lebesgue measurable and square integrable functions over the interval

[a, b], denoted by L2
[a,b], as defined on page 3-7, with the inner product [122]

〈x,y〉L2
[a,b]

=

∫ b

a

x(ρ)y(ρ) dρ (3.28)

3-13



Now that we have defined the Hilbert space, is there another topological prop-

erty that we desire? Yes, we desire the topological property of separability. The

separability of a metric space (which includes the Hilbert space) says that we can

arbitrarily approximate any point in the space using a countable orthonormal basis

[154]. Thus, we are interested in the separable Hilbert space so that we can arbi-

trarily approximate any point in the space using an orthonormal basis. But before

we define the separable Hilbert space, we shall introduce a few other topics: the

orthonormal set and the maximal orthonormal set.

Definition 20 (Orthonormal Set) Let (Y, 〈·, ·〉) be an inner product space. The

set, {yi ∈ Y : i ∈ N}, is called an orthonormal set if every pair of elements satisfies

〈yi,yj〉 = δij for all i, j ∈ N, where δij is the Kronecker delta function [154].

Definition 21 (Maximal Orthonormal Set) Let (Y, 〈·, ·〉) be an inner product

space. An orthonormal set B = {β1, β2, . . .} is called a maximal orthonormal set if

there is no unit vector y ∈ Y such that B ∪ {y} is an orthonormal set [154].

Definition 22 (Separable Hilbert Space) Let (H, 〈·, ·〉) be a Hilbert space. If ev-

ery orthonormal set (spanning set) is countable and there is a maximal orthonormal

set, then (H, 〈·, ·〉) is called a separable Hilbert space.

Using these definitions, we can now propose a useful tool for representing a

vector as a series of vectors.

Theorem 23 (Fourier Series) If the set {β1, β2, . . .} is any maximal orthonormal

set and y ∈ H, then y can be expressed by the Fourier series as [154, 166]:

y =
∞∑

n=1

αnβn (3.29)

where αn = 〈y, βn〉 is the nth Fourier series coefficient. Moreover, ||y||2 =
∑∞

n=1 α2
n.
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Proof of Theorem 23 See Naylor and Sell [154].

The next five operator and/or transformation properties are defined to help us

describe the types of operators that the infinite-dimensional trace operator may act

upon to produce a useful scalar; these are the trace-class operators [36, 37, 165, 40].

The trace operator is of central importance in an identity used to relate the covariance

or correlation (which is defined using an outer product) to a particular inner product.

With that in mind, the first operator property that we discuss is a useful extension

of a familiar symmetry property of complex square matrices. We say that M is

a Hermitian (symmetric) matrix if and only if M∗ = M ∈ CN×N , where ∗ is the

conjugate transpose; thus, mpq = m∗
qp for every element mpq of M. A generalization

to a Hilbert space follows.

Definition 24 (Self-Adjoint Operator) Let B be a BLO on a Hilbert space. If

B∗ = B, then B is said to be a self-adjoint operator [154].

A slightly weaker property for (possibly unbounded) operators is given by the

following.

Definition 25 (Symmetric Operator) Let L be a linear operator on a dense sub-

space in an inner product space (Y, 〈·, ·〉), i.e., the domain, D(L), is a dense set in

Y. L is said to be a symmetric operator if for every x,y ∈ D(L), 〈Lx,y〉 = 〈x, Ly〉
[39].

Remark If either the domain of the adjoint operator, D(L∗), satisfies D(L∗) = D(L),

or if L is bounded, then a symmetric operator is also self-adjoint [39].

The following lemma demonstrates that the outer product operator is symmet-

ric under certain circumstances.

Lemma 26 Let (H, 〈·, ·〉) be a real Hilbert space. For every vector u ∈ H, the outer

product u ¦ u is a symmetric linear operator.
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Proof of Lemma 26 We shall show that L = u ¦ u obeys 〈Lx,y〉 = 〈x, Ly〉 for

every u ∈ H. Let x,y ∈ H

〈(u ¦ u)x,y〉 = 〈u〈u,x〉,y〉 (3.30)

= 〈u,x〉〈u,y〉 (3.31)

= 〈u,y〉〈u,x〉 (3.32)

where the first line employed the definition of the outer product. Now reinserting

〈u,y〉 back into 〈u,x〉 yields

〈(u ¦ u)x,y〉 = 〈u〈u,y〉,x〉 (3.33)

= 〈(u ¦ u)y,x〉 (3.34)

= 〈x, (u ¦ u)y〉 (3.35)

Thus, the outer product operator, u ¦ u is a symmetric operator. ¥

Just like symmetric square matrices (and the set of real numbers), operators

may possess the property of positiveness.

Definition 27 (Positive Operator) A self-adjoint BLO B on a Hilbert space H

is positive if

〈x, Bx〉 ≥ 0 (3.36)

for all x ∈ H; this is denoted by B ≥ 0. Similarly, the operator is strictly positive if

〈x, Bx〉 > 0 (3.37)

for all x ∈ H; this is denoted by B > 0 [154].

Remark Note that the word “positive” is not used altogether consistently when

applied to operators and matrices by many authors and in this research. For example,

a real-valued matrix D ∈ RM×M is termed positive semi-definite when the inner
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product 〈x,Dx〉 is nonnegative for every vector x ∈ RM and positive definite when

the inner product is also nonzero, for all nonzero vectors in RM [189], i.e., a strictly

positive scalar.

The next two properties apply to transformations (as well as operators). In

terms of its spectral properties, a compact transformation is almost as simple as a

matrix [154]. Recall that the eigenvalues of a matrix describe its spectrum and that

the trace of a matrix is the sum of those eigenvalues. Hence it seems reasonable

that a transformation that is “like” a matrix would be “traceable.” Additionally,

the set of nuclear transformations, which includes the covariance and correlation

transformations, is a subset of compact transformations.

Definition 28 (Compact Transformation) Let X and Y be two Banach spaces

over the same field. Let L : X→ Y be a linear transformation that maps X to Y. L

is said to be a compact transformation if L(D) lies in a compact (or closed) subset

of Y, where D = {x ∈ X : ||x|| ≤ 1} [154].

Remark Compactness is also referred to as complete continuity of a linear transfor-

mation [43, 216].

Definition 29 (Nuclear Transformation) Let X and Y be Banach spaces over

the same field, X? be the dual space of X, i.e., the space of continuous linear func-

tionals defined on the space, and BLT (X,Y) be a Banach space of BLTs from X

into Y. A transformation B ∈ BLT (X,Y) is said to be nuclear if there exist two

sequences {α1, α2, . . .} ⊂ X? and {y1,y2, . . .} ⊂ Y such that [165, 40]

∑
j

||yj|| · ||αj|| < ∞ (3.38)

and B is defined by

B(x) =
∑

j

yj αj(x), x ∈ X (3.39)
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Remarks (1) The space of all nuclear transformations (NT), from X to Y, is a

Banach space, denoted NT (X,Y) with the following norm [40]

||B||NT = inf

{∑
j

||yj|| · ||αj|| : B(x) =
∑

j

yj αj(x)

}
(3.40)

(2) Since all nuclear transformations are compact [216] and all compact transforma-

tions are bounded and linear [154], nuclear transformations are necessarily compact,

bounded and linear.

Lemma 30 Let u ∈ U and v,w ∈ V be vectors in separable Hilbert spaces of

Lebesgue L2 functions. The outer product u ¦ v is a nuclear transformation from

V to U.

Proof of Lemma 30 From Definition 14, we know that the outer product u ¦ v is

defined by the relation (u ¦ v)w = u〈v,w〉 for every w ∈ V. This matches the form

(rather trivially) for transformation B in Equation (3.39). Since we have chosen

Hilbert spaces of Lebesgue L2 functions, ||u|| · 〈v,w〉 is finite since both terms are

finite. Hence, the outer product from one separable Hilbert space of Lebesgue L2

functions to another creates a nuclear transformation. ¥

The trace of a matrix is the sum of the diagonal elements [129]. A deeper look

shows that the trace of the matrix is equal to the sum of the eigenvalues [189]. The

only criterion placed on the matrix is that it be square. To extend this concept to a

Hilbert space, we must add more constraints beyond the fact that a square matrix

corresponds to an operator. The trace operator may only be applied to trace-class

operators. Since nuclear operators are the primary trace-class operators of interest

to us in this research, we will forego a more in-depth discussion of the trace-class

operators, see for example, references [37, 165, 40], for an extensive development.

Definition 31 (Trace Operator) (i). Let L be a self-adjoint operator [154], a

compact positive operator [37], or a nuclear operator [40] on a Hilbert space H; then
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the trace of L is given by

tr L =
∑

n

〈Lβn, βn〉 (3.41)

where {β1, β2, . . .} is any orthonormal basis on H.

(ii). If L is a compact self-adjoint positive operator [154] on H, then the trace of L

is given by

tr L =
∑

n

λn (3.42)

where {λ1, λ2, . . .} is the set of eigenvalues of L.

Remark A positive BLO defined on a Banach space is nuclear if and only if the

trace of the operator is finite [40].

The linear space of real N -vectors, x,y ∈ RN , with associated inner product

defined as: 〈x,y〉 = xTy and outer product: x ¦ y = xyT is a separable Hilbert

space. It is common knowledge that the trace of the outer product is equal to the

inner product3: tr(xyT) = xTy. In the next lemma, we extend this trace operator

property for the case of (possibly) infinite-dimensional vectors in a separable Hilbert

space.

Lemma 32 Let (H, 〈·, ·〉) be a separable Hilbert space of Lebesgue L2 functions. The

trace of the outer product, tr(x ¦ y), is equal to the inner product 〈x,y〉, for any

x,y ∈ H, i.e.

tr(x ¦ y) = 〈x,y〉 (3.43)

Proof of Lemma 32 From Lemma 30, we may employ Definition 31, to obtain, for

every x,y ∈ H,

tr(x ¦ y) =
∑

n

〈(x ¦ y)βn, βn〉 (3.44)

3This property of the trace is simply a specific case of a more general result [27]: tr(AB) =
tr(BA) for appropriately dimensioned matrices A and B.
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where {β1, β2, . . .} is any orthonormal basis. Using the definition of the outer prod-

uct, we can rewrite Equation (3.44) as

tr(x ¦ y) =
∑

n

〈x〈y, βn〉, βn〉 (3.45)

Factoring out the inner product yields

tr(x ¦ y) =
∑

n

〈x, βn〉〈y, βn〉 (3.46)

=
∑

n

xnyn (3.47)

= 〈x,y〉 (3.48)

where we note that x and y can be decomposed using the same orthonormal ba-

sis {β1, β2, . . .}, so that xn = 〈x, βn〉 and yn = 〈y, βn〉, respectively. Finally, we

recognize that the sum in the third line is just the inner product. ¥

For finite-dimensional vectors x,y ∈ RN , we know that x and y are orthogonal,

by definition, whenever their inner product is zero: xTy = 0. Additionally, it is true

that whenever their outer product is zero, i.e., xyT = 0 ∈ RN×N , that their inner

product is also zero (xTy = 0 ∈ R) and therefore x and y are orthogonal. Observe

that, since the trace of the zero outer product is trivially zero, the inner product is

necessarily zero as well. In the following theorem, we extend this notion of using

an outer product of vectors to identify the (geometrical) orthogonality of vectors in

a more general setting of a separable Hilbert space of Lebesgue L2 functions. Note

that this theorem helps us to preposition — in a natural fashion — the indispensable

concept of statistical orthogonality that will be discussed in Definition 49.

Theorem 33 (Orthogonal Vectors) Let (H, 〈·, ·〉) be a separable Hilbert space of

Lebesgue L2 functions. Any two vectors, x,y ∈ H, are orthogonal, i.e., 〈x,y〉 = 0,

whenever

x ¦ y = 0 ∈ LO(H) (3.49)
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Proof of Theorem 33 Applying the trace operator to both sides of Equation (3.49)

yields

tr(x ¦ y) = tr(0) (3.50)

⇒ tr(〈x,y〉) = 0 (3.51)

⇒ 〈x,y〉 = 0 (3.52)

where the second line follows since the trace of the outer product (defined on this

separable Hilbert space of Lebesgue L2 functions) is equal to the trace of the inner

product per Lemma 32 and the third lines gives the obvious result that the trace of

a scalar is that scalar. Thus x ¦ y = 0 implies that x ⊥ y for x,y ∈ H. ¥

Since the topological concept of a closed subspace is important to the Projec-

tion Theorem, we will define it before we proceed further.

Definition 34 (Closed Subspace) If (X, d) and (Y, d) are metric spaces such that

X ⊂ Y, then we call (X, d) a subspace of (Y, d). The subspace (X, d) is closed if and

only if every convergent sequence of vectors {x1, x2, . . .} in X has its limit in X.

The following two theorems are well-known and are thus stated without proof.

The first theorem is a prelude to the projection theorem and it establishes the unique-

ness of a vector that produces an error vector that is orthogonal to the subspace of

interest.

Theorem 35 Let Y be an inner product space (not necessarily complete), S a sub-

space of Y, and y an arbitrary vector in Y. If there is a vector s0 ∈ S such that

||y − s0|| ≤ ||y − s|| for all s ∈ S, then s0 is unique. A necessary and sufficient

condition that s0 be a unique minimizing vector in S is that the error vector y − s0

be orthogonal to S [122].

Theorem 36 (Classical Projection Theorem) Let H be a Hilbert space and S a

closed subspace of H. Corresponding to any vector y ∈ H, there is a unique vector

3-21



-
x

6y

¾

?

•
(x0, y0)

•
(x0, 0)

•
(0, y0)

Figure 3.3 An Illustration of the Projection Theorem.

s0 ∈ S such that ||y − s0|| ≤ ||y − s|| for all s ∈ S. Furthermore, a necessary and

sufficient condition that s0 ∈ S be the unique minimizing vector is that the error

vector y − s0 be orthogonal to S [122].

Example. Let H = {(x, y)|x, y ∈ R} be the Euclidean 2-space (R2) with the usual

inner product — the dot product. Let S = {(x, y)|x, y ∈ R, y = 0} be the x-axis and

(xs, 0) be an arbitrary vector (or a point in this case) in S. We can easily visualize

that any point in x-y plane, e.g. point (x0, y0) in Figure 3.3, corresponds to a unique

point (x0, 0) on x-axis that is found by projecting onto the x-axis. The error vector

between an arbitrary vector in H and its corresponding vector in S is given by:

(x0, y0) − (xs, 0) = (x0 − xs, y0 − 0) = (x0 − xs, y0). We find xs by minimizing the

norm of the error; which in this example, is given by the square root of the sum

of the squares: [(x0 − xs)
2 + y2

0)]
1/2. By inspection, we can see that the norm of

the error is minimized when xs = x0. Thus, the optimal point on the x-axis, which

minimizes the norm of the error is (x0, 0) as shown in Figure 3.3. Hence, the error

vector is: (x0−xs, y0)|xs=x0 = (0, y0). Next, we use the dot product to show that the

error vector, (0, y0), is orthogonal to the optimal projection of point (x0, y0) onto S:

(x0, 0). Therefore, (0, y0) · (x0, 0) = 0 · x0 + y0 · 0 = 0. Q.E.D.
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Figure 3.4 Boxology of a Random Vector.

For the static state estimation problem, we consider a Hilbert space of (possibly

infinite-dimensional) random vectors4 x ∈ X̃ = F(Ω,X) and a related linear space

given by Z̃ = F(Ω,Z) for the single observation case. The notation F(·, ·) denotes

a linear space of functions, Ω is a non-empty set called the sample space, and X is

the state space, i.e., the space of realizations of x, and Z is the observation space.

Using the boxology previously employed, we can show graphically that for each

experiment, an ω is “chosen” from the sample space Ω; this choice dictates which

Y-valued random vector (or function) in Ỹ represents the state as shown in Figure

3.4. Thus, Figure 3.4 illustrates how the probability space, random vector space,

and realization space are interrelated. We use the tilde above Y to help us associate

the set of functions that map points (outcomes) in the sample space to vectors in the

space of realizations. The remainder of the notation in the figure will be explained

in the following definitions on the next few pages. Refer back to Figure 3.4 to see

how the concepts are related.

Recall that our goal in this research is to solve an optimization problem in

order to find the “best” state estimate, x̂, which minimizes the variance between the

state estimate and the true state (i.e., the state estimation error) for a given mea-

surement z ∈ Z. To accomplish this, we need to define the probability space, random

4In the language of vector spaces, every element in a vector space is called a vector. Thus, these
random vectors may be random variables, random functions, or random matrices.
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vector space, expected value, covariance, and conditional expectation, among other

mathematical and probability theory topics. First, we will discuss a few technical

topics from measure theory that lead up to a definition of the probability space.

Definition 37 (σ-Algebra and σ-Field) Let S be a nonempty set. A σ-algebra

on S is a collection of subsets of S such that the necessary subsets in that collection

are the set itself, the empty set, the complements of all the members in the collection

and all countable unions of members. A σ-field is also called a σ-algebra [25].

Definition 38 (Borel Sets) For set A, the collection B(A) of Borel sets is the

smallest σ-algebra which contains all of the open subsets of A [166].

Definition 39 (Measurable Space and Measurable Set) A measurable space

is a pair (X,G), consisting of nonempty set X and σ-algebra G of subsets of X. A

subset Y of X is called measurable (or measurable with respect to G) if Y ∈ G. [166].

Definition 40 (Measure and Measure Space) Let X be a nonempty set and G
be a σ-algebra defined on X. A measure µ on the measurable space (X,G) is a

nonnegative set function defined for all sets in G and satisfying µ(∅) = 0 ∈ R, where

∅ is the empty or null set, and

µ

(⋃
i

Ei

)
=

∑
i

µ(Ei)

for any sequence E1,E2, . . . of disjoint measurable sets. A measure space (X,G, µ) is

a triplet formed by a measurable space (X,G) with a measure µ defined on G. [166].

If the measure of X is one, i.e., µ(X) = 1, and 0 ≤ µ(Y) ≤ 1 for every Y in G,

then µ may be called a probability measure. This leads us to define our probability

space and other associated properties and terminology.
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Definition 41 (Probability Space and Expectation) Suppose that the triplet

(Ω,F , P ) is a complete probability space5, where Ω is a non-empty set called the

sample space, F is a σ-field which consists of a collection of subsets of Ω, called

events, and P is a probability measure, a mapping that assigns a real number be-

tween zero and one (inclusive) to every event in F , with the probability of the sure

event P (Ω) = 1. Let Y be a Banach space. A Y-valued random variable is a map

y : Ω → Y which is strongly measurable6 with respect to the probability measure P .

If y is integrable (in the sense of Bochner) on Ω, we define the expectation operator,

E, with the integral expression [38]

E(y) =

∫

Ω

y dP =

∫

Ω

y(ω) P (dω) (3.53)

(Note that y is said to be Bochner integrable if
∫
Ω
||y|| dP < ∞ [40].) The random

vector y induces a measure Py on B(Y), the Borel sets of Y, which is defined as

Py(A) = P{ω : y(ω) ∈ A} (3.54)

for A ∈ B(Y), and thus (Y,B(Y), Py) is also a complete probability space. An

equivalent way of expressing Equation (3.53) using the probability measure Py is [33]

E(y) =

∫

Y
y dPy (3.55)

Remark The expectation operator is often subscripted with the pertinent random

vector, as in Ey(y). Additionally, we often denote the mean of a random vector by

µy = Ey(y).

5A probability space (Ω,F , P ) is complete if for every set A ⊂ B such that B ∈ F and P (B) = 0
we have A ∈ F so that P (A) = 0 [66].

6Strong and weak measurability concepts are identical for separable Hilbert spaces [38].
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Definition 42 (Joint Probability and Expectation) Let the triplet (Ω,F , P )

be a complete probability space. Let X and Y be Banach spaces. The joint probabil-

ity measure, Px,y, induced by random vectors x and y on a collection of the events

described by a relationship between the Borel sets B(X) and B(Y), is defined as

Px,y(A,B) = P{ω : x(ω) ∈ A and y(ω) ∈ B} (3.56)

for A ∈ B(X) and B ∈ B(Y). The joint expectation of g(x, y) is then

Ex,y[g(x, y)] =

∫

Ω

g(x, y) dP =

∫

X

∫

Y
g(x,y) dPx,y (3.57)

where g is a Baire function, i.e., a continuous function or the point-wise limit of a

continuous function [129, 21].

Next, as a continuation of Lemma 18, given on page 3-13, we find the expected

value of an outer product of random vectors.

Lemma 43 Let Ũ, Ṽ, X̃, and Ỹ be Hilbert spaces of random vectors. For random

vectors x ∈ X̃ and y ∈ Ỹ, and BLTs A ∈ BLT (X̃, Ũ) and B ∈ BLT (Ỹ, Ṽ),

Ex,y[(Ax) ¦ (By)] = AEx,y(x ¦ y)B∗ (3.58)

where B∗ is the adjoint of B and Ex,y is the joint expectation operator.

Proof of Lemma 43 From Lemma 18, for random vectors we have

(Ax) ¦ (By) = A(x ¦ y)B∗ (3.59)

Taking the expectation of both sides yields

Ex,y[(Ax) ¦ (By)] = Ex,y[A(x ¦ y)B∗] (3.60)
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Since A and B∗ are nonrandom BLTs, the expectation commutes with A and B∗

and we can pull them outside of the expectation, i.e., A and B∗ are not a function

of ω and thus they can be factored out of the integral defining the expectation in

Equation (3.53) on page 3-25 and thus

Ex,y[(Ax) ¦ (By)] = AEx,y(x ¦ y)B∗ (3.58)

Therefore, the lemma holds. ¥

The separable Hilbert spaces of Lebesgue L1 and L2 functions are the two most

important spaces that we use to form our random vector spaces in this research. We

give them here in the following example for 1 ≤ p < ∞.

Example. Let X be a separable Hilbert space. The notation Lp(Ω, P ;X) denotes the

separable Hilbert space of Lebesgue Lp functions that are measurable with respect

to P ; these functions map the sample space Ω to the realization space X, hence x is

an X-valued random vector. The Lp norm is [154]

||x||Lp = [E (||x||pX)]1/p
=

[∫

Ω

||x(ω)||pX dP (ω)

]1/p

(3.61)

and ||x(ω)||pX can be evaluated using Equation (3.4) when X = Lp
[a,b]. If X is an

N -dimensional Euclidian space RN and p = 2, then the two norm is written as:

||x(ω)||2X = xT(ω) x(ω).

For finite-dimensional problems, we can refine our definition of the expectation

operator in Equation (3.53) if we introduce the concept of a probability distribution

function.

Definition 44 (Probability Distribution Function) The probability distribu-

tion function for a Y = RN -valued random variable, y : Ω → Y, on the complete
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probability space (Ω,F , P ), is given as [66]

F (y) = P
(
y−1((−∞,y])

)
= P ({ω : y(ω) ≤ y}) = P (y ≤ y) (3.62)

where the inequality is taken element by element for the case of a multi-dimensional

vector. At the extremes, F (−∞) = 0 and F (∞) = 1.

Example. If we let Y = R, then Equation (3.62) is the accumulation of probability

for y(ω) values less than or equal to y.

The following definitions lay out a series of properties pertaining to random

vectors. For example, we are interested in the covariance operator — an extension

of the familiar covariance matrix for infinite-dimensional systems. Since our work in

this dissertation primarily uses separable Hilbert spaces (of random vectors), some

of the following definitions and results apply only to separable Hilbert spaces.

Note that in the following pair of “second moment” definitions, we restrict our

attention to a separable Hilbert space of Lebesgue L2 functions. Thus, the covariance

and correlation operators (as well as the cross-covariance and cross-correlation trans-

formations) will be bounded — and hence continuous — operators (transformations)

since Lebesgue L2 functions are absolutely square integrable. Thus, while references

[38, 40] stipulate that the covariance operator is symmetric, the covariance operator

formed using Lebesgue L2 functions creates a bounded symmetric operator; hence

the covariance operator is self-adjoint as noted in the remark following the definition

of a symmetric operator.

Definition 45 (Covariance and Cross-Covariance) Let X be a separable

Hilbert space. The covariance operator for an X-valued random vector, x ∈ X̃ =
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L2(Ω, P ;X) is defined by [38, 40]

Σ(x) , E[(x− µx) ¦ (x− µx)] (3.63)

=

∫

Ω

[(x− µx) ¦ (x− µx)] dP (3.64)

=

∫

X
[(x− µx) ¦ (x− µx)] dPx (3.65)

where µx = E(x) and Px is a probability measure induced by random vector x. The

covariance operator is self-adjoint, positive, and nuclear on X.

Similarly, for random variables x ∈ X̃ = L2(Ω, P ;X) and y ∈ Ỹ = L2(Ω, P ;Y),

the cross-covariance transformation is defined by

Σ(x, y) , E[(x− µx) ¦ (y− µy)] (3.66)

=

∫

Ω

[(x− µx) ¦ (y− µy)] dP (3.67)

=

∫

X

∫

Y
[(x− µx) ¦ (y − µy)] dPx,y (3.68)

where µy = E(y) and Px,y is a probability measure induced jointly by random vectors

x and y. Additionally, x and y are said to be uncorrelated whenever Σ(x, y) = 0.

Remarks (1) For the special case in which x, y ∈ X̃ = L2(Ω, P ;X), the cross-

covariance, while neither self-adjoint nor symmetric, is now a nuclear operator [40].

(2) Since the covariance operator is nuclear, it is also bounded and linear and is

thus a BLO; hence, Σ(x) ∈ BLO(X̃). Note that (BLO(X̃), || · ||) is a Banach space,

with the operator norm, provided that X̃ is a complete normed linear space [154].

The cross-covariance transformation is also bounded and lives in a Banach space of

BLTs, i.e., Σ(x, y) ∈ BLT (Ỹ, X̃).

Next, we will use the above definitions for the covariance operator and the

cross-covariance transformation to define the non-central second moments: the cor-

relation operator and the cross-correlation transformation.
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Definition 46 (Correlation and Cross-Correlation) Let X be a separable

Hilbert space. The correlation operator for an X-valued random vector, x ∈ X̃ =

L2(Ω, P ;X), which is self-adjoint, positive, and nuclear, is defined by

Ξ(x) , E(x ¦ x) (3.69)

=

∫

Ω

(x ¦ x) dP (3.70)

=

∫

X
(x ¦ x) dPx (3.71)

where, as we saw before, Px is a probability measure induced by random vector x.

Similarly, for random variables x ∈ X̃ = L2(Ω, P ;X) and y ∈ Ỹ = L2(Ω, P ;Y),

the cross-correlation transformation is defined by

Ξ(x, y) , E(x ¦ y) (3.72)

=

∫

Ω

(x ¦ y) dP (3.73)

=

∫

X

∫

Y
(x ¦ y) dPx,y (3.74)

where Px,y is a probability measure induced jointly by random vectors x and y.

Remarks (1) For the special case in which x, y ∈ X̃ = L2(Ω, P ;X), the cross-

correlation defined above, while neither self-adjoint nor symmetric, is now a nuclear

operator. (2) Since the covariance operator is nuclear, it is also bounded and linear

and is thus a BLO; thus it follows that the correlation operator is also a BLO, hence,

Ξ(x) ∈ BLO(X̃). The cross-correlation transformation is also bounded and lives in

a Banach space of BLTs, i.e., Ξ(x, y) ∈ BLT (Ỹ, X̃).

An extremely useful identity for the covariance, Σ(x), of random vector x that

we will use several times in this chapter is given next.
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Lemma 47 If x ∈ X̃ = L2(Ω, P ;X) is an X-valued random vector for separable

Hilbert space X, then [40]

tr[Σ(x)] = E{〈x− µx, x− µx〉} (3.75)

where µx is the mean of random vector x.

Proof of Lemma 47 Begin with the definition for the covariance and then by

continuity interchange the linear operations for the trace [37] and expectation [154]

to get

tr[Σ(x)] = tr{E[(x− µx) ¦ (x− µx)]} (3.76)

= E{tr[(x− µx) ¦ (x− µx)]} (3.77)

= E{〈x− µx, x− µx〉} (3.78)

where line three follows from Lemma 32. ¥

As a corollary to Lemma 47, the identity can be extended for the cross-

covariance operator Σ(x, y), where x, y ∈ X̃ = L2(Ω, P ;X).

Corollary 48 If x, y ∈ X̃ = L2(Ω, P ;X) is an X-valued random vector on a separable

Hilbert space, then

tr[Σ(x, y)] = E{〈x− µx, y− µy〉} (3.79)

where µx is the mean of random vector x and µy is the mean of random vector y.

For the special case of finite-dimensional random vectors, two vectors are

termed statistically orthogonal whenever their cross-correlation matrix is the zero

matrix [129], i.e., whenever Ξ(x, y) , E(xyT) = 0. To extend this concept for

infinite-dimensional systems, we propose the following definition:

Definition 49 (Statistically Orthogonal Vectors) Let x ∈ X̃ = L2(Ω, P ;X)

and y ∈ Ỹ = L2(Ω, P ;Y) be random vectors with separable Hilbert spaces X and
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Y, respectively. Any two vectors, x ∈ X̃ and y ∈ Ỹ, are statistically orthogonal

whenever their cross-correlation is the zero transformation, i.e.,

Ξ(x, y) , E(x ¦ y) = 0 ∈ LT (Y,X) (3.80)

Remark If either x or y is a zero-mean random vector, then x and y are statistically

orthogonal whenever x and y are either independent or uncorrelated.

A Hilbert space-valued random vector can be uniquely specified by its charac-

teristic functional [38].

Definition 50 (Characteristic Functional) Consider a Hilbert space-valued ran-

dom vector x ∈ X̃ = L1(Ω, P ;X), with the induced probability measure, Px. Define

the mapping χx : X→ R to be the characteristic functional for random vector x and

j ,
√−1 by [38, 40], where

χx(ξ) , Ex[exp(j〈x, ξ〉)] =

∫

X
exp(j〈x, ξ〉) dPx (3.81)

for all ξ ∈ X.

Later in our development of the ISKF, we will need to ascribe the Gaussian

property to a random vector of interest, and subsequently to a stochastic process.

Definition 51 (Gaussian Random Vector, Gaussian Measure) The charac-

teristic functional for a Hilbert space-valued random vector x ∈ X̃ = L1(Ω, P ;X),

with Gaussian probability measure Px, is given by [38]

χx(ξ) = exp
[
j〈µx, ξ〉 − 1

2
〈Σxξ, ξ〉] (3.82)

where µx ∈ X is the mean and the covariance operator Σx, with the modified notation,

which was previously defined in Definition 45, is positive, self-adjoint, and nuclear.
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There are several different types of convergence for random vectors: a sequence

of random vectors can converge in probability, in mean square, with probability one,

or in distribution [38]. If (Ω,F , P ) is a complete probability space and Y is a Banach

space, then convergence of a sequence of Y-valued random vectors in L2(Ω, P ;Y) is

called mean square convergence [66]; it is defined next. The remaining forms of

convergence will not be addressed further in this research.

Definition 52 (Mean Square Convergence) Let Y be a Banach space. A se-

quence {y1, y2, . . .} of Y-valued random vectors converges to y in mean square sense

if [38, 66]

E(||yn − y||2Y) → 0 as n →∞ (3.83)

Definition 53 (Independence) Let the triplet (Ω,F , P ) be a complete probability

space.

(i). Events A1, A2, . . . , An ∈ F are independent if [45, 24]

P

(
n⋂

i=1

Ai

)
=

n∏
i=1

P (Ai) (3.84)

(ii). Let yi : Ω → Yi be a random vector with Borel set B(Yi) for Banach space Yi.

Random vectors y1, y2, . . . , yn, are independent if [45]

P

(
n⋂

i=1

{yi ∈ Ai}
)

=
n∏

i=1

P (yi ∈ Ai) (3.85)

for all Ai ∈ B(Yi) for each i = 1, 2, . . . , n. Furthermore, both of these definitions

can be extended to countably infinite number of objects, whether events or random

vectors. A countably infinite number of objects forms an independent set if every

finite subcollection is an independent set [45].
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(iii). Let Y be a Banach space. Y-valued random vectors y1 and y2 are independent

if {ω : y1(ω) ∈ A1} and {ω : y2(ω) ∈ A2} are independent sets in the σ-field F for

any Borel sets A1,A2 ∈ B(Y) [38, 45].

(iv). Now let Y be a separable Hilbert space. If y1 and y2 are in L1(Ω, P ;Y) and are

independent, then they are also uncorrelated [38]:

Ey1,y2
(〈y1, y2〉Y) = 〈Ey1

(y1), Ey2
(y2)〉Y (3.86)

The MVU estimator, that we will develop in this chapter, is designed to ex-

ploit the statistical relationship between the observations and the states using the

conditional expectation operator. The conditioning is accomplished relative to a sub

σ-field of the observations σ-field.

Definition 54 (Sub σ-Field) Let the triplet (Ω,F , P ) be a probability space. Let

S be a subcollection of the σ-field F , i.e., S ⊂ F . We call S a sub σ-field if S is

also a σ-field of Ω [154].

Thus, we see that a sub σ-field S may only give us partial (or incomplete) knowledge

of the σ-field F . If the sub σ-field S is “equivalent” to the σ-field F , except for a

finite collection of sets of measure zero, then we gain complete knowledge, and our

estimate using S becomes as good as using F since we will be taking an expectation

of the state given the sure event.

Definition 55 (Conditional Expectation) Let the triplet (Ω,F , P ) be a com-

plete probability space. Let X be a Banach space. The conditional expectation of

an X-valued random vector x relative to sub σ-field S, denoted by E(x|S), is defined

by the relation [38, 154, 33, 40, 45]

∫

A
x dP =

∫

A
E(x|S) dP for all A ∈ S (3.87)
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Since this conditional expectation creates a random vector, we use a different sym-

bol (E) for the expectation operator. Note that E(x|S) is uniquely defined by this

relationship and must be measurable relative to the sub σ-field S.

Remark When Equation (3.87) is evaluated for a specific event, A1 ∈ S, then we

write

E(x|A1) =

∫

A1

E(x|S) dP (3.88)

Now we shall adapt this definition for conditional expectation for our eventual

estimation purposes in the following example.

Example. Let the triplet (Ω,F , P ) be a complete probability space and let

(X, B(X), Px) and (Z, B(Z), Pz) be separable Hilbert spaces of X- and Z-valued ran-

dom vectors, respectively. We condition the expectation on the Borel sets B(Z), a

sub-σ-field of F , i.e., B(Z) ⊂ F , and then write Equation (3.87) as

∫

A
x dP =

∫

A
E [x|B(Z)] dP for all A ∈ B(Z) (3.89)

The boxology for this conditional expectation is shown in Figure 3.5. Note that Ỹ

is a subspace of X̃ and the range of y is a subset of X, i.e., R(y) ⊂ X; thus we would

not expect the conditional mean estimator y to produce an estimate of x that is

equal to x = x(ω) since y maps vectors in Z to a subspace of X.

Consider the special case where x is measurable relative to the σ-field B(Z),

sometimes written as x ∈ B(Z) [45], then E [x|B(Z)] = x, i.e., x is already the best

guess for x [45, 38]. At the other extreme, consider when x is independent of B(Z),

then knowing B(Z) does not change the expectation, hence E [x|B(Z)] = E(x) [45].

We often write E(x|z) in place of the rigorous notation E [x|B(Z)]. Additionally,

we may add a subscript to the conditional expectation operator E when needed for

clarity, e.g., the conditional expectation of the sum of random vectors x + w with

respect to random vector x given z is written as Ex(x + w|z), where w is some
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(Ω,F , P )

•
ω

z : Ω → Z

?

x : Ω → X

?

Z̃ = F(Ω,Z)

•
z

X̃ = F(Ω,X)

•
x

(Z,B(Z), Pz)

•
z = z(ω)

(X, B(X), Px)

•
x = x(ω)

Ỹ = F(Z,X)

•
y

y = E [x|B(Z)] : Z→ X
-

Figure 3.5 Boxology of a Conditional Expectation. Note that B(Z) ⊂ F and Ỹ is

a subspace of X̃.

W-valued random vector. When the conditional expectation E is evaluated for a

particular event or realization of the sub σ-field or conditional random vector, e.g.,

z ∈ B(Z) or z(ω) = z, then we no longer create a random vector with the conditional

expectation operation (as noted in the remark following the definition) and thus the

notations E{x|z ∈ B(Z)} and E[x|z(ω) = z] for the realizations of E{x|B(Z)} and

E [x|z].

Definition 56 (Conditional Covariance) Let X be a separable Hilbert space.

The conditional covariance operator for an X-valued random variable, x ∈ X̃ =

L2(Ω, P ;X) relative to sub σ-field S, denoted by Σ̃(x|S), is given by

Σ̃(x|S) , E{[x− E(x|S)] ¦ [x− E(x|S)]|S} (3.90)

=

∫

A
{[x− E(x|S)] ¦ [x− E(x|S)]|S} dP for all A ∈ S (3.91)
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Remark For a specific event, A ∈ S, the conditional covariance is no longer a

random quantity; it is given by:

Σ(x|A ∈ S) =

∫

A
{[x− E(x|S)] ¦ [x− E(x|S)]|S} dP (3.92)

Since our random vectors are allowed to evolve or change over time, we must

define what is meant by a stochastic process to account for the time-varying nature.

Definition 57 (Stochastic Process) Let the triplet (Ω,F , P ) be a complete prob-

ability space. A stochastic process is a family of random vectors, given as {x(t) : t ∈
T}, that maps the product space T×Ω to the realization space X for each fixed t ∈ T,

where T is a set used to index the random vectors [141, 21]. The stochastic process is

discrete if T is countable and continuous if T is homeomorphic to R or some interval

on R. The stochastic process is denoted by either x or x(·, ·). Furthermore, both x(t)

and x(t, ·) are used to denote a random vector, while x(t, ω) = x(t) is a realization

of the random vector x(t, ·) and x(·, ω) = x(ω) is a sample of the stochastic process

x.

Definition 58 (Covariance Kernel) Let X be a separable Hilbert space and x(t) ∈
X̃ = L2(Ω, P ;X) be an X-valued random vector for each t ∈ T. The covariance kernel

is an operator on a stochastic process {x(t) : t ∈ T} defined by

Σ[x(t), x(τ)] , E{[x(t)− µx(t)] ¦ [x(τ)− µx(τ)]} (3.93)

=

∫

Ω

{[x(t)− µx(t)] ¦ [x(τ)− µx(τ)]} dP (3.94)

=

∫

X
{[x(t)− µx(t)] ¦ [x(τ)− µx(τ)]} dPx(t) (3.95)

for t, τ ∈ T, where µx(t) = E[x(t)], µx(τ) = E[x(τ)], and Px(t) is a probability

measure induced by random vector x(t).
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The models used by the estimators in this research can, in theory, be driven

by most any noise process, provided that we know (at least) the first two moments.

However, filter synthesis may prove exceedingly difficult (and the resulting filter

suboptimal) unless the discrete-time model is driven by a Gaussian process. Note

that the Wiener (or Brownian motion) process we use to drive the continuous-time

model has independent increments that are Gaussian. The following definitions will

describe Gaussian, independent increment, and finally, Wiener (or Brownian motion)

processes.

Definition 59 (Gaussian Process) Let the triplet (Ω,F , P ) be a complete prob-

ability space. An R-valued stochastic process, {x(t) : t ∈ T}, is called a Gaussian

process if every finite collection of random vectors is jointly Gaussian [42].

Definition 60 (Independent Increment Process) Let the triplet (Ω,F , P ) be a

complete probability space and {x(t) : t ∈ T} be a stochastic process, where T is

a discrete set such that 0 = t0 < t1 < · · · < tf . An increment is defined by the

difference of two random vectors as [x(tj) − x(ti)], where ti < tj for i < j. If the

disjoint increments [x(tj)− x(ti)] and [x(tl)− x(tk)] are independent, i.e., Definition

53 is satisfied for every disjoint pair of increments and without loss of generality,

we have: t0 ≤ ti < tj < tk < tl ≤ tf , then the process is called an independent

increment process.

Many texts on probability theory, stochastic processes, and filtering theory

devote an entire section (or chapter) to the Wiener (or Brownian motion7) process

[42, 91, 141, 129, 21, 40, 66, 45, 24]. Falb defined a Wiener process in his development

of the Kalman-Bucy filter on a Hilbert space [51]. We will follow Curtain and

Pritchard’s [38] abstract presentation in the following definition for a Wiener process

or Brownian motion.

7The nineteenth century botanist Robert Brown studied the random thermal motion of grain
particles suspended in a fluid and Norbert Wiener developed the mathematical foundation for this
type of random motion [209, 21].
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Definition 61 (Wiener Process or Brownian Motion) Let the triplet (Ω,F,P )

be a complete probability space. The X-valued stochastic process {b(t) : t ∈ [0, tf ]}
is called a Wiener process (or Brownian motion)8 [38] on [0, tf ] if it is an X-valued

process on [0, tf ], such that [b(t)− b(s)] ∈ L2(Ω, P ;X) for all s, t ∈ [0, tf ] and

1. E[b(t)− b(s)] = 0

2. Σ[b(t)−b(s)] = (t− s)Q, where the constant Q ∈ BLO(X̃) and is symmetric,

positive, and nuclear

3. [b(s4) − b(s3)] and [b(s2) − b(s1)] are independent whenever 0 ≤ s1 ≤ s2 ≤
s3 ≤ s4 ≤ tf

4. b(t) has continuous sample paths on [0, tf ]

Additionally, the increment [b(t)− b(s)] is Gaussian distributed with zero mean and

covariance Σ[b(t)−b(s)] = (t−s)Q, where the constant Q is often called the diffusion

of this constant-diffusion process featuring independent increments.

The Wiener process can be further generalized to include a time-varying dif-

fusion [129]

Σ[b(t)− b(s)] =

∫ t

s

Q(τ)dτ, t > s (3.96)

but we will not use this generality in the sequel since our problems of interest do not

require this property.

Definition 62 (Discrete-Time White Noise Process) Let the triplet (Ω,F , P )

be a complete probability space. A discrete-time white noise process, n(·, ·), is de-

fined as a collection of zero-mean independent random vectors {n(ti) : ti ∈ T} with

8We pay homage to Brown by denoting our Wiener process with the Arabic letter b, for Brownian
motion.
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covariance kernel operator

Σ[n(ti),n(tj)] =





Σ[n(ti)], ti = tj

0, ti 6= tj

(3.97)

where Σ[n(ti)] is positive (or positive semi-definite when the covariance takes the

form of a matrix ) and the cross-covariance between noise vectors at different times

is zero since random vectors taken from a white noise process are independent in

time and thus uncorrelated.

Remarks (1) Per Definition 45, the covariance operator is only guaranteed to be

positive. (2) However, if we assume that there is “noise” in every dimension, i.e.,

that there are no zero eigenvalues, then the noise covariance is a strictly positive

operator (or positive definite matrix). This “noise in every channel” assumption

then gives rise to a definition that provides a sufficient condition for guaranteeing

that the covariance operator (or matrix) for the measurements is invertible.

In the next section, we will begin to develop the tools needed to create the

ISKF, but first, note that:

1. All of the random vectors in the remainder of the chapter are based on the fact

that the triplet (Ω,F , P ) is a complete probability space as described in this

section and specifically in Definition 41. For the sake of brevity, this statement

will not be included in any of the definitions or theorems in the following

sections, unless it is needed for clarity.

2. We have generally tried to avoid subscripting expectation operators to provide

a cleaner look. The expectation is to be taken in a joint sense when there is

more than one random vector involved and will be specifically noted when this

is not the case. For example, we use E(x) for Ex(x) and E(x+y) for Ex,y(x+y),

while Ex(x + y) will retain the subscripting.
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3.3 Linear Infinite-Dimensional Minimum Variance Unbiased Estimator

There are two main classes of statistical signal processing techniques: the

Fisher or classical approach, in which the signal (or parameter) of interest is as-

sumed to be deterministic, yet unknown, and Bayesian, in which the signal (or

parameter) of interest is random [100, 14]. Kalman applied the Bayesian approach

to estimation theory [95]. Classical methods include techniques to produce least

squares (LS) and maximum likelihood (ML) estimators. The Bayesian counterparts

to these methods are the minimum mean-squared error (MMSE) and maximum a

posteriori (MAP) estimators, respectively. An unbiased estimator that best min-

imizes the variance of the error is called the MVU estimator; this terminology is

ordinarily associated with classical estimators [100]; however, some authors [33] use

MVU as a synonym for MMSE estimators, and others [122] apply the terminology

of MVU estimation to both classes of estimators. In this work, we will define the

MVU estimator and employ it as a Bayesian estimation technique. A benefit of the

Bayesian approach is that prior information is easily incorporated by the estimator,

whereas classical techniques do not lend themselves as effortlessly to the admission

of prior information. We can however, disguise the prior information in the form

of a previous measurement output to achieve a similar effect. Luenberger [122] and

Catlin [33] have derived MVU estimators for finite-dimensional models.

In this section, we give a series of definitions, lemmas, and theorems as we

build up the machinery to derive several estimators. First, we create a linear infinite-

dimensional MVU estimator (LIMVUE) for the case of correlated states and obser-

vations (CSO) and then follow with a more specific LIMVUE theorem to extend the

applicability of finite-dimensional MVU estimators to infinite-dimensional problems

using a technique often employed to find linear MMSE estimators. Before getting

started with our LIMVUE theorems, we shall define several terms used in describing

of Bayesian estimation. While there is more than one way to define an estimator,

the following definition serves to support this research.
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Definition 63 (Estimator, Estimate) Let x ∈ X̃ be the state and z ∈ Z̃ be a

measurement. An estimator of random vector x is defined as a random vector [33]

x̂ = g ◦ z (3.98)

where g is a Baire function and ◦ is the composition operator. When we are given

measurement z(ω) = z, then an estimate of x is

x̂(ω) = g(z(ω)) = g(z) (3.99)

Thus, an estimate is a realization of the estimator.

Remark Scharf [170] and others call the state estimator g ◦ z a statistic, i.e., a

function of one or more random vectors that does not depend on any unknown

parameters and a sufficient statistic if g ◦ z carries all of the information about the

data z [86]. In our work, the statistic may well be a transformation applied to a

function.

Definition 64 (Unbiased Estimate) Let x̂ be an estimator of random vector x.

Whenever Ex,z(x̂) = Ex(x), we say that the estimator produces an unbiased estimate

[14].

Theorem 65 (Conditional Mean Estimator) Let (X̃, 〈·, ·〉eX) be a separable

Hilbert space of X-valued random vectors, and x ∈ X̃ be a random vector called

the state. Let (Z̃, 〈·, ·〉eZ) be a Hilbert space of Z-valued random vectors, and z ∈ Z̃
be a random vector called the measurement. Then, the conditional (state) estimator

is given by

x̂ = E(x|z) (3.100)

and the error is then [x− x̂]. The conditional estimator is endowed with the following

properties:
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1. The conditional state estimator x̂ is an unbiased estimator.

2. The error, [x− x̂], is orthogonal to the measurement data z.

3. The error, [x− x̂], is orthogonal to the conditional estimator x̂.

Proof of Theorem 65 The conditional estimator can be found by correlating the

state and the statistic [170]9:

Ex,z{x ¦ (g ◦ z)} = Ez{Ex[x ¦ (g ◦ z)|z]} (3.101)

= Ez{Ex(x|z) ¦ (g ◦ z)} (3.102)

= Ez{x̂ ¦ (g ◦ z)} (3.103)

where x̂ is the conditional expectation

x̂ = Ex(x|z) = E(x|z) (3.104)

which is a function of the data z and it may or may not be a function of any unknown

parameters. Equation (3.103) can be rewritten as

Ex,z{x ¦ (g ◦ z)} − Ez{x̂ ¦ (g ◦ z)} = 0 (3.105)

and since Ez{x̂ ¦ (g ◦ z)} is also Ex,z{x̂ ¦ (g ◦ z)} then we get

E{[x− x̂] ¦ (g ◦ z)} = 0 (3.106)

Thus, we see that the error, x− x̂, is orthogonal to the statistic g ◦ z per Definition

49 on page 3-31, since the cross-correlation is zero, i.e., Ξ([x− x̂], [g ◦ z]) = 0.

9This proof is inspired by the finite-dimensional case in Scharf [170].
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To prove property 1, we let the state estimator10 in Equation (3.106) be a

constant ones vector, i.e., g ◦ z = 1, we obtain

E{[x− x̂] ¦ 1} = E[x− x̂] ¦ 1 = 0 (3.107)

where 0 is the zero operator. This implies that E[x − x̂] = 0, where 0 is now the

zero vector. Thus E(x) = E(x̂), hence the conditional estimator is unbiased.

Next, we show property 2. When the statistic is just the data, i.e., g ◦ z = z,

then we see that the error is orthogonal to the data

E{[x− x̂] ¦ z} = 0 (3.108)

Finally, for property 3, since x̂ is a function of only the data (a prerequisite for

being a statistic), we let g ◦ z = x̂ to obtain

E{[x− x̂] ¦ x̂} = 0 (3.109)

Thus the error is orthogonal to the conditional estimator. ¥

Definition 66 (Minimum Variance Estimator) For state x ∈ X̃ = L2(Ω, P ;X)

and observation z ∈ Z̃ = L2(Ω, P ;Z), the estimator x̂ = go ◦ z, given measurement

z, is called the minimum variance estimator if there exists an optimal Baire function

go such that [33]

||x− go ◦ z|| ≤ ||x− g ◦ z|| (3.110)

10Note that g ◦ z is not a statistic in this case since a ones vector is independent of the data.

3-44



holds for every Baire function g. Furthermore, the minimum variance estimator of

x based on measurement z is given by11

x̂ = E(x|z) (3.111)

Remark Since L2 is a Hilbert space, the Projection Theorem (given in Theorems

35 and 36 on page 3-21) applies. Theorem 35 tells us that if go exists, then it is

unique; hence the estimator x̂ is unique. Additionally, the error vector is orthogonal

to every vector in the measurement space, i.e., 〈x− (go ◦z), g ◦z〉 = 0 for every Baire

function g and every measurement z ∈ Z̃. The projection theorem in Theorem 36

says that a unique estimator exists for every measurement z ∈ Z̃.

Definition 67 (Linear Estimator) Let x̂ be an estimator of random vector x and

z be a measurement used as an input to the estimator, x̂ = g ◦ z to produce an

estimate, x̂(ω) = g(z(ω)). The estimator, x̂ is said to be linear whenever z =

α1z1 + α2z2, for scalars α1, α2, yields

g(z(ω)) = α1g(z1(ω)) + α2g(z2(ω)) (3.112)

and nonlinear otherwise.

The Bayesian estimation technique rests on acquiring (either analytically or ex-

perimentally) the posteriori PDF, so that we can calculate the conditional moments

of the state given the measurements. The next step involves picking the optimality

criterion that will be used to produce the optimal estimator [31, 170, 100]. For our

research, we chose to minimize the quadratic cost function, C(e) = ||e||2, where

e = x− x̂ is an estimation error for a cost function that places a high cost on large

11Technically speaking, the conditional mean estimator proposed herein is actually the minimum
variance estimator as the result of a theorem; see for example Catlin [33] for a proof that this is
indeed the definition for an estimator that achieves the minimum variance.
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errors and a small cost on small errors, to determine the optimal estimator. Thus,

we shall find the estimator that minimizes the mean-squared error (MSE).

Definition 68 (Minimum mean-squared error estimator) Let (X, 〈·, ·〉X) be a

separable Hilbert space, x ∈ X̃ = L2(Ω, P ;X) be the random state vector, (Z, 〈·, ·〉Z) be

a separable Hilbert space, and z ∈ Z̃ = L2(Ω, P ;Z) be the measurement vector. The

MMSE estimator is the random vector which minimizes the Bayesian MSE between

the estimator, x̂MMSE, and the true state, x, as [100, 170]

x̂MMSE = arg
{

min
x̂

[
Ex,z

(||x− x̂||2X
)]}

(3.113)

Lemma 69 The solution to Equation (3.113) is the conditional mean, x̂ = E(x|z).

Remark Two important properties of this estimator are (1) it is unbiased, i.e., the

estimator error is zero-mean, and (2) the estimator error and the measurements are

uncorrelated, i.e., they are orthogonal [14].

Proof of Lemma 69 We begin with the definition of the MSE and then expand

after adding a “smart” zero, [E(x|z)− E(x|z)] to obtain

Ex,z

(||x− x̂||2X
)

= Ex,z

{||x + [E(x|z)− E(x|z)]− x̂||2X
}

(3.114)

= Ex,z

{〈x− E(x|z) + E(x|z)− x̂, x− E(x|z) + E(x|z)− x̂〉X
}

(3.115)

= Ex,z

{〈x− E(x|z), x− E(x|z)〉X + 〈x− E(x|z), E(x|z)− x̂〉X
+ 〈E(x|z)− x̂, x− E(x|z)〉X + 〈E(x|z)− x̂, E(x|z)− x̂〉X

}
(3.116)

Then, taking the expectation over each term yields

Ex,z

(||x− x̂||2X
)

= Ex,z

{〈x− E(x|z), x− E(x|z)〉X
}

+ Ex,z

{〈x− E(x|z), E(x|z)− x̂〉X
}

+ Ex,z

{〈E(x|z)− x̂, x− E(x|z)〉X
}

+ Ex,z

{〈E(x|z)− x̂, E(x|z)− x̂〉X
}

(3.117)
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By Theorem 65, we note that [x − E(x|z)] ⊥ E(x|z) and [x − E(x|z)] ⊥ x̂, thus the

cross terms are zero. Note that x̂ is a statistic since it is a function of only the data.

With the cross terms gone and using the induced norm notation for the remaining

terms, we get

Ex,z

(||x− x̂||2X
)

= Ex,z

{||x− E(x|z)||2X
}

+ Ex,z

{||E(x|z)− x̂||2X
}

(3.118)

Thus, by inspection, x̂ = E(x|z) minimizes Equation (3.118) since the first term does

not depend on x̂. ¥

Therefore, this MMSE technique can be used to find a linear MVU estimator

x̂ = go ◦ z; when the random vectors are jointly Gaussian, then we can obtain the

optimal MVU estimator without confining attention to only the optimum from the

class of linear estimators. Since many of the problems of interest to us feature a

generalized linear (or affine) relationship between the states and the observations, we

will eventually pose our estimation problem in terms of a linear measurement model

— see Definition 72. However, at this early stage of the development, we need only

assume that our observations and states are statistically correlated with nonzero

cross-covariances so that the observations contain information about the states; this

is a necessary condition for using the conditional expectation to find a (linear) MVU

estimator.

Definition 70 (Correlated States and Observations Measurement Model)

Let the random vector z ∈ Z̃ = L2(Ω, P ;Z) be the observation of a noise-corrupted

measurement, x ∈ X̃ = L2(Ω, P ;X) be the random state that is to be estimated, and

Z and X be separable Hilbert spaces. Furthermore, we have knowledge of the means

µz , E(z)

µx , E(x)

(3.119)
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the nonzero covariances12

Σ(z) , E[(z− µz) ¦ (z− µz)]

Σ(x) , E[(x− µx) ¦ (x− µx)]

(3.120)

and the nonzero cross-covariances

Σ(x, z) , E[(x− µx) ¦ (z− µz)]

Σ(z, x) , E[(z− µz) ¦ (x− µx)]

(3.121)

The boxology for this measurement model is illustrated in Figure 3.6.

Finally, we come to our first result in this work that applies equally to problems

with possibly nonzero-mean random vectors, a LIMVUE for CSO — this is the first

step in our development of the ISKF.

Theorem 71 (LIMVUE for CSO) Given the measurement model in Definition

70 and assuming the inverse Σ−1(z) exists13, then the state estimator, denoted by

x̂ = E(x|z), the conditional expectation of the state, x, given an observation, z,

is found by minimizing the MSE Ex,z

(||x− x̂||2X
)

and is given by the general linear

form [33]

x̂ = Kz + c (3.122)

where

K = Σ(x, z)Σ−1(z) (3.123)

12We have restricted ourselves to Hilbert spaces of Lebesgue L2 functions to guarantee the exis-
tence of covariances; however, this does not imply that their inverses exist.

13Even if the inverse does not exist, we can oftentimes find a suitable pseudoinverse [33] and still
employ this estimator. Note that this estimator will no longer be “optimal” in any sense, but it
may be a useful suboptimal algorithm nonetheless.
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•
x = x(ω)

Figure 3.6 Boxology of a Measurement Model. The lack of symmetry in this figure
is due to the process of “peeling” off information from the linear measurement model
boxology shown in Figure 3.8 on page 3-57.

and the estimator bias term is

c = µx −Kµz (3.124)

The error, e = x− x̂, is zero-mean and has covariance

Σ(e) = Σ(x)−KΣ(z, x) (3.125)

Remarks (1) We have not made any assumptions on the dimension of the state

or observation. Thus Σ(x), Σ(z), and Σ(e) are covariance operators, while Σ(x, z)

and Σ(z, x) are cross-covariance transformations as described in Definition 45, page

3-28. (2) The boxology for this estimator appears in Figure 3.7. A close look tells
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Figure 3.7 Boxology of the LIMVUE for CSO. The lack of symmetry in this figure
is due to the process of “peeling” off information from the LIMVUE boxology shown
in Figure 3.9 on page 3-63.

us quite clearly that we (a) have not assumed a form (linear or otherwise) for the

relationship between the state and the observations, but (b) have assumed that the

estimator is affine.

Proof of Theorem 71 First, we will find the estimator bias term, c. Next, we

will show that the linear state estimator, x̂, given by Equation (3.122), is unbiased.

Then we shall derive the optimal transformation K. Finally, we will show that the

error covariance, given in Equation (3.125), is correct.
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To find c, we will minimize14 J(c) = E
(||x− x̂||2) = E

[||x− (Kz + c)||2] with

respect to c. We will use the same technique as we used to show that the conditional

mean is the MMSE estimator in Lemma 69. First, let y = x−Kz, thus

J(c) = E
[||x− (Kz + c)||2X

]
= E

[||y − c||2X
]

(3.126)

Now expand the right-hand side with a wisely chosen zero µy − µy, where

µy = E(y) = E(x−Kz) = µx −Kµz (3.127)

to obtain

J(c) = E
(||y + µy − µy − c||2X

)
(3.128)

= E
(〈y − µy + µy − c, y − µy + µy − c〉X

)
(3.129)

where the second line follows from the definition of the induced norm — on an inner

product space, the norm squared is equal to the inner product of the quantity with

itself. Continuing to expand we get

J(c) = E
(〈y − µy, y − µy〉X + 〈y − µy, µy − c〉X
+ 〈µy − c, y − µy〉X + 〈µy − c, µy − c〉X

)
(3.130)

= E
(〈y − µy, y − µy〉X

)
+ E

(〈y − µy, µy − c〉X
)

+ E
(〈µy − c, y − µy〉X

)
+ E

(〈µy − c,µy − c〉X
)

(3.131)

14Note that we have minimized the MSE using the joint expectation, Ex,z(·).
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Simplify Equation (3.131) by noting that the cross terms are equal to zero since

E(y − µy) = 0 and µy − c is a nonrandom quantity, therefore

J(c) = E
(〈y − µy, y − µy〉X

)
+ 〈µy − c,µy − c〉X (3.132)

= E
(||y − µy||2X

)
+ ||µy − c||2X (3.133)

where the first term, which is independent of c, therefore J(c) is minimized when

||µy−c||2X is equal to zero, which occurs when µy−c = 0, hence c = µy = µx−Kµz.

Consequently, we can now write the state estimator, x̂ = Kz + c, as

x̂ = µx + K(z− µz) (3.134)

The estimator bias is determined by taking the joint expectation of the error

e = x− x̂ [14]. Thus,

bias(x̂) = E(x− x̂) = E{x− [µx + K(z− µz)]} (3.135)

Rearranging yields

bias(x̂) = E[(x− µx)−K(z− µz)] (3.136)

Finally, moving the expectation inside yields

bias(x̂) = E(x− µx)−KE(z− µz) = 0 (3.137)

Therefore, the estimator is unbiased as claimed.

Now we seek the transformation K ∈ BLT (Z̃, X̃), as shown in Figure 3.7,

that minimizes the expected value of the squared error between our affine estimator

x̂ = µx + K(z − µz), given observation z, and the state x. Thus, the cost function

that we want to minimize is J(K) = E{||x− [µx + K(z−µz)]||2}; hence our task is

to minimize J(K) with respect to K. We begin by writing and then expanding the
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expression for J(K)

J(K) = E[||(x− µx)−K(z− µz)||2] (3.138)

= E[〈(x− µx)−K(z− µz), (x− µx)−K(z− µz)〉] (3.139)

= tr E{[(x− µx)−K(z− µz)] ¦ [(x− µx)−K(z− µz)]} (3.140)

where the second line follows from the definition of the induced norm and the third

line is a powerful identity that relates an inner product to the trace of an outer

product (for any type of expectation operator) as stated in Equation (3.75) on page

3-31. Note that E{[(x − µx) − K(z − µz)] ¦ [(x − µx) − K(z − µz)]} is the error

correlation, Ξ(e), or equivalently, the error covariance, Σ(e), since the error is zero-

mean. Continuing,

J(K) = tr E{[(x− µx) ¦ (x− µx)]− [(x− µx) ¦K(z− µz)]

− [K(z− µz) ¦ (x− µx)] + [K(z− µz) ¦K(z− µz)]} (3.141)

= tr{E[(x− µx) ¦ (x− µx)]− E[(x− µx) ¦K(z− µz)]

− E[K(z− µz) ¦ (x− µx)] + E[K(z− µz) ¦K(z− µz)]} (3.142)

= tr{E[(x− µx) ¦ (x− µx)]− E[(x− µx) ¦ (z− µz)]K
∗

−KE[(z− µz) ¦ (x− µx)] + KE[(z− µz) ¦ (z− µz)]K
∗} (3.143)

= tr[Σ(x)−Σ(x, z)K∗ −KΣ(z, x) + KΣ(z)K∗] (3.144)

where the second line is due to the linearity of the expectation operator and the

third line is due to Lemma 43, page 3-26; K∗ is the adjoint of transformation K;

and covariance operator notation is used in the fourth line.

If J were a function of a scalar, vector, or matrix, then we could use standard

calculus to minimize the function; however, in this problem, J is function of a trans-

formation and hence, the rules of calculus [5] and/or vector calculus [126] do not

apply. So, we will use a calculus of variations method [208, 60, 122, 8] to minimize a
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function with respect to a transformation. For positive α ∈ R and transformations

K,L ∈ BLT (Z̃, X̃), the Gateaux variation, δJ(K;L), defined as

δJ(K;L) = lim
α→0

J(K + αL)− J(K)

α
(3.145)

can be used to minimize J(K) with respect to K. To find the optimal K, we assume

that K is optimal when the variation is zero for all L — then we solve for the optimal

K — this is a necessary optimality condition [208, 122]. Substituting K + αL in for

K in Equation (3.144) we can write

J(K + αL) = tr[Σ(x)−Σ(x, z) (K + αL)∗

− (K + αL)Σ(z, x) + (K + αL)Σ(z) (K + αL)∗] (3.146)

= tr[Σ(x)−Σ(x, z)K∗ −Σ(x, z) αL∗

−KΣ(z, x)− αLΣ(z, x) + KΣ(z)K∗

+ KΣ(z) αL∗ + αLΣ(z)K∗ + αLΣ(z) αL∗] (3.147)

Subtracting Equation (3.144) from Equation (3.147) yields

J(K + αL)− J(K) = tr[KΣ(z) αL∗ + αLΣ(z)K∗ + αLΣ(z) αL∗

− αLΣ(z, x)−Σ(x, z) αL∗] (3.148)

Divide by α to yield

J(K + αL)− J(K)

α
= tr[KΣ(z)L∗ + LΣ(z)K∗ + αLΣ(z)L∗

− LΣ(z, x)−Σ(x, z)L∗] (3.149)

and take the limit as α → 0: then Equation (3.145) becomes

δJ(K;L) = tr[KΣ(z)L∗ + LΣ(z)K∗ − LΣ(z, x)−Σ(x, z)L∗] (3.150)
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Factoring out L∗ and L results in

δJ(K;L) = tr{[KΣ(z)−Σ(x, z)]L∗ + L[Σ(z)K∗ −Σ(z, x)]} (3.151)

and since trA∗ = trA,

δJ(K;L) = 2tr{[KΣ(z)−Σ(x, z)]L∗} (3.152)

Assume the optimal Ko minimizes J. Then a necessary optimality condition [122]

yields the differential δJ(Ko;L) = 0 for all L, and we get

tr{[Ko Σ(z)−Σ(x, z)]L∗} = 0 for all L (3.153)

which implies that

Ko Σ(z)−Σ(x, z) = 0 (3.154)

Rearranging and assuming that our measurement covariance, Σ(z), is invertible15

Ko = Σ(x, z)Σ−1(z) (3.155)

Hence the state estimator, x̂ = µx + Ko(z− µz), from Equation (3.134), becomes

x̂ = µx + Σ(x, z)Σ−1(z) (z− µz) (3.156)

15Per Definition 45, the covariance operator is only guaranteed to be positive, which means that
it may have one (or more) eigenvalues which are zero. To be invertible, an operator may not have
any zero eigenvalues. However, in a practical system, the measurements are not perfect and hence
all of the eigenvalues are positive, versus nonnegative. Therefore, it not restrictive to assume that
Σ(z) is invertible. Additionally, we later show that, for the case of a linear measurement model
with additive noise, it is sufficient to assume that the noise covariance operator is strictly positive
to guarantee the invertibility of Σ(z).
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Since Equation (3.144) is the trace of the error covariance, we have

Σ(e) = Σ(x)−Σ(x, z)K∗ −KΣ(z, x) + KΣ(z)K∗ (3.157)

= Σ(x)−KΣ(z, x) + [KΣ(z)−Σ(x, z)]K∗ (3.158)

Using the expression in Equation (3.154) yields

Σ(e) = Σ(x)−KΣ(z, x) (3.125)

Therefore, all of the parts of this theorem have been proved. ¥

Next, we employ a generalized linear measurement model with zero-mean white

Gaussian additive noise (WGAN).

Definition 72 (Generalized Linear Measurement Model) The generalized

linear measurement model is represented by the algebraic equation

z = Hx + v (3.159)

where:

z ∈ Z̃ = L2(Ω, P ;Z) . . . measurement vector

H ∈ BLT (X̃, Z̃) . . . measurement distributor transformation

x ∈ X̃ = L2(Ω, P ;X) . . . state vector

v ∈ Ṽ = L2(Ω, P ;V) . . . measurement-corruption noise vector

and H is known and Z, X, and V are separable Hilbert spaces. Additionally, the

measurement is corrupted by zero-mean white Gaussian additive noise, v, with a

known covariance operator

Σ(v) = E(v ¦ v) = R ∈ BLO(Ṽ) (3.160)
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Figure 3.8 Boxology of a Generalized Linear Measurement Model.

which is symmetric and nuclear since it is a covariance operator (see Definition

45) and strictly positive by the nonrestrictive reasoning given in the second remark

following Definition 62. The mean of the state is µx and the covariance operator for

the random state vector given by

Σ(x) = E[(x− µx) ¦ (x− µx)] = P ∈ BLO(X̃) (3.161)

is symmetric, positive, and nuclear per Definition 45. Furthermore, we note that the

state and measurement-corruption noise are independent16.

The boxology for this linear measurement model is illustrated in Figure 3.8.

16The correctness of this statement will be demonstrated after we have completed the ISKF proof.
It will be seen that the state and the measurement-corruption noise are independent because the
measurement-corruption noise is mutually independent of the dynamics driving noise and the initial
state.
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The following lemma establishes the corresponding result for infinite-

dimensional systems on Hilbert spaces, that independent random vectors defined on

finite-dimensional Hilbert spaces are also uncorrelated, hence their cross-covariances

are zero.

Lemma 73 Let X and V be separable Hilbert spaces and x ∈ F(Ω,X) and v ∈
F(Ω,V) be X and V-valued random vectors, respectively. If x and v are independent,

then they are also uncorrelated and thus the cross-covariance transformations are

zero, i.e., Σ(x, v) = 0 and Σ(v, x) = 0.

Proof of Lemma 73 From Definition 45, the cross-covariance of random vectors x

and v is given by

Σ(x, v) , E[(x− µx) ¦ (v − µv)] (3.162)

= E[(x ¦ v)− (µx ¦ v)− (x ¦ µv) + (µx ¦ µv)] (3.163)

= E(x ¦ v)− E(µx ¦ v)− E(x ¦ µv) + E(µx ¦ µv) (3.164)

We shall show, in turn, that all four terms of Equation (3.164) are equal to µx ¦µv.

The first term, E(x ¦ v), is the correlation transformation of random vector x with

random noise vector v. For all η ∈ V we have

[E(x ¦ v)]η = E[(x ¦ v)η] = E[x〈v,η〉] (3.165)

where the last equality follows from the definition of the outer product. Since x and

v are independent, then x and a linear function of v, namely the functional 〈v,η〉,
are independent, thus

[E(x ¦ v)]η = E(x)E(〈v,η〉) = µx〈E(v), η〉 = (µx ¦ µv)η (3.166)

for all η ∈ V. Therefore, we get E(x ¦ v) = µx ¦ µv.
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The second and third terms on the right-hand side of Equation (3.164) follow

from similar arguments and, thus, only second term will be explicitly shown. For

every η ∈ V,

[E(µx ¦ v)]η = E[(µx ¦ v)η] = E[µx〈v,η〉] (3.167)

Then, since µx is not random, we obtain

[E(µx ¦ v)]η = µxE(〈v, η〉) = µx〈E(v),η〉 = (µx ¦ µv)η (3.168)

Thus, E(µx ¦ v) = µx ¦ µv and E(x ¦ µv) = µx ¦ µv.

Clearly, E(µx ¦µv) = µx ¦µv, since the means are not random. Therefore, all

four terms are µx ¦ µv and the lemma holds. An analogous set of steps will lead us

to the conclusion that Σ(v, x) = 0. ¥

In Theorem 75, we require that the measurement covariance operator, Σ(z) =

HPH∗ + R, be invertible. Hence we shall attend to it now in the following lemma.

Lemma 74 (Measurement Covariance Operator) Let H, P, and R be as de-

scribed in Definition 72, then the inverse of Σ(z) = HPH∗ + R exists.

Proof of Lemma 74 First, we show that Σ(z) is HPH∗ + R. We begin with the

definition of the covariance operator and then substitute z = Hx + v and

µz = E(z) = E(Hx + v) = HE(x) + E(v) = Hµx (3.169)

into Σ(z) and then regroup terms to get

Σ(z) , E[(z− µz) ¦ (z− µz)] (3.170)

= E[(Hx + v −Hµx) ¦ (Hx + v −Hµx)] (3.171)

= E{[H(x− µx) + v] ¦ [H(x− µx) + v]} (3.172)
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Now employ the distributive property of the outer product (shown in Lemma 16,

page 3-11) to obtain

Σ(z) = E{[H(x− µx) ¦H(x− µx)] + [H(x− µx) ¦ v]

+ [v ¦H(x− µx)] + (v ¦ v)} (3.173)

Moving the expectation in, then using Lemma 43 on page 3-26 to factor the nonran-

dom operators out of the expectation yields

Σ(z) = E[H(x− µx) ¦H(x− µx)] + E[H(x− µx) ¦ v]

+ E[v ¦H(x− µx)] + E(v ¦ v) (3.174)

= HE[(x− µx) ¦ (x− µx)]H
∗ + HE[(x− µx) ¦ v]

+ E[v ¦ (x− µx)]H
∗ + E(v ¦ v) (3.175)

= HΣ(x)H∗ + HΣ(x, v) + Σ(v, x)H∗ + Σ(v) (3.176)

and the third line results from the definition of the covariance operator and the

distributive property of the outer product.

Therefore, we can write Equation (3.176) as

Σ(z) = HΣ(x)H∗ + Σ(v) = HPH∗ + R (3.177)

since both cross-covariance terms are zero per Lemma 73.

Next we show that HPH∗ + R has an inverse. In general, we know that a

covariance operator is positive. Thus, a sufficient condition for our lemma is that

either one of the terms must be strictly positive. By our assumed specifications

on the measurement-corruption noise covariance, R is strictly positive (or positive

definite if R is the matrix representation of an operator). Let’s begin our proof by

contradiction by stating that HPH∗ + R is nonpositive, i.e., for every ζ ∈ Z̃ the
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following holds

〈(HPH∗ + R)ζ, ζ〉eZ ≤ 0 (3.178)

Using additivity property of the inner product we get

〈HPH∗ζ, ζ〉eZ + 〈Rζ, ζ〉eZ ≤ 0 (3.179)

We know that the second term, 〈Rζ, ζ〉eZ, on the left-hand side of Equation (3.179) is

greater than zero, hence the first term must be negative (a necessary condition) for

the equation to hold true. For H ∈ BLT (X̃, Z̃), the adjoint of H is H∗ ∈ BLT (Z̃, X̃)

and thus

〈HPH∗ζ, ζ〉eZ = 〈PH∗ζ,H∗ζ〉eX (3.180)

where H∗ζ = ξ and ξ ∈ X̃, so Equation (3.180) becomes

〈HPH∗ζ, ζ〉eZ = 〈Pξ, ξ〉eX (3.181)

We know that the state covariance P, defined in Equation (3.161) is positive, i.e.,

for every ξ ∈ X̃,

〈Pξ, ξ〉eX ≥ 0 (3.182)

Thus, we have a contradiction and hence HPH∗+R is strictly positive and therefore

invertible. ¥

Now we are ready to solve a more specific problem using Theorem 71 in con-

junction with the new generalized linear measurement model given in Definition

72. With this new measurement model, the LIMVUE for CSO now becomes the

LIMVUE17 for the generalized linear measurement model.

17For finite-dimensional systems, the linear MVU estimator (LMVUE) is also the best linear
unbiased estimator (BLUE), in the MMSE sense, for the class of linear and unbiased estimators.
The LMVUE (or BLUE) with jointly Gaussian random vectors is the overall best (optimal) MVU
estimator [100, 14]; hence there are no nonlinear estimators that are better, in the MMSE sense.
We expect that this LIMVUE is the overall best infinite-dimensional MVU estimator (IMVUE).
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Theorem 75 (LIMVUE) We employ the generalized linear measurement model

given in Definition 72 to describe the random vectors representing the measurement,

state, and measurement-corruption noise. The LIMVUE is

x̂ = µx + PH∗[HPH∗ + R]−1(z− µz) (3.183)

where µz = Hµx and the error covariance operator is

Σ(e) = P−PH∗[HPH∗ + R]−1HP (3.184)

Since the LIMVUE is simply the LIMVUE for CSO with the generalized linear

measurement model, the boxology for the LIMVUE (illustrated in Figure 3.9) is a

combination of the LIMVUE for CSO boxology, see Figure 3.7 on page 3-50, and

the boxology of the generalized linear measurement model shown in Figure 3.8, page

3-57.

Proof of Theorem 75 Per Theorem 71, the estimator is indeed unbiased. We shall

use Theorem 71 two more times to find the estimator and the error covariance for

this theorem.

The LIMVUE for CSO, x̂ = µx +Σ(x, z)Σ−1(z) (z−µz), as given in Equation

(3.156), is our starting point. We will first determine a new expression for the cross-

covariance Σ(x, z) by substituting z = Hx + v and

µz = E(z) = E(Hx + v) = HE(x) + E(v) = Hµx (3.185)

into the definition of Σ(x, z) to get

Σ(x, z) , E[(x− µx) ¦ (z− µz)] (3.186)

= E[(x− µx) ¦ (Hx + v −Hµx)] (3.187)
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Ṽ = L2(Ω, P ;V)

•
v

-

X̃ = L2(Ω, P ;X)

•
x

¾¾

Z̃ = L2(Ω, P ;Z)

•
z = Hx + v

BLT (X̃, Z̃)

•
H

(V,B(V), Pv)

•
v = v(ω)

(Z, B(Z), Pz)

•
z = z(ω)

x̂ : B(Z) → X
-

(X, B(X), Px)

•
x = x(ω)
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K
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Figure 3.9 Boxology of the Linear Infinite-Dimensional Minimum Variance Unbi-
ased Estimator.

Applying the distributive property in Lemma 16 (found on page 3-11) results in

Σ(x, z) = E{[(x− µx) ¦ (Hx−Hµx)] + [(x− µx) ¦ v]} (3.188)

Then it follows from the linearity of the expectation operator and, in the second line,
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from the definition of the cross-covariance

Σ(x, z) = E[(x− µx) ¦ (Hx−Hµx)] + E[(x− µx) ¦ v] (3.189)

= E[(x− µx) ¦H(x− µx)] + Σ(x, v) (3.190)

The cross-covariance Σ(x, v) is zero since x and v are independent (and thus

uncorrelated)18 hence Equation (3.190) becomes

Σ(x, z) = E[(x− µx) ¦H(x− µx)] (3.191)

= E[(x− µx) ¦ (x− µx)]H
∗ (3.192)

= PH∗ (3.193)

where the second line follows from Lemma 43 given on page 3-26. Substituting the

expressions in Equations (3.177) and (3.193) into Equation (3.156) yields

x̂ = µx + PH∗[HPH∗ + R]−1(z−Hµx) (3.183)

Next we’ll show the error covariance operator given in Equation (3.184). We’ve

already determined Σ(x, z) and Σ(z) per the assumptions for this theorem. Now,

substituting z = Hx+v and µz = Hµx into the definition for cross-covariance Σ(z, x)

and then rearranging as necessary yields

Σ(z, x) , E[(z− µz) ¦ (x− µx)] (3.194)

= E[(Hx + v −Hµx) ¦ (x− µx)] (3.195)

= E{[H(x− µx) + v] ¦ (x− µx)} (3.196)

= E{[H(x− µx) ¦ (x− µx)] + [v ¦ (x− µx)]} (3.197)

18See Lemma 73, page 3-58.
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Then applying the expectation operator to both terms gives

Σ(z, x) = E[H(x− µx) ¦ (x− µx)] + E[v ¦ (x− µx)] (3.198)

= HE[(x− µx) ¦ (x− µx)] + Σ(v, x) (3.199)

= HP (3.200)

where we note that Σ(v, x) = 0 since v and x are independent.

Finally, substituting the covariances found in Equations (3.161), (3.193),

(3.177), and (3.200) into

Σ(e) = Σ(x)−KΣ(z, x) = Σ(x)−Σ(x, z)Σ−1(z)Σ(z, x) (3.125)

yields

Σ(e) = P−PH∗[HPH∗ + R]−1HP (3.184)

Q.E.D. ¥

The operation of a Kalman filter is a natural two-step recursive process, con-

sisting of a state update with the latest measurement and a state prediction based

on the dynamics model. In the final theorem of this section, we present the LIMVUE

for a stochastic state process using a stochastic measurement process. We will ac-

complish this by generalizing the LIMVUE, given in Theorem 75, for a stochastic

measurement process which is a generalization of Definition 72.

Definition 76 (Generalized Linear Stochastic Measurement Model) Let z,

x, and v be discrete-time stochastic processes which map the product space T × Ω

into their respective realization spaces Z, X, and V, where T ⊂ R+ and Ω is the

sample space, a nonempty set associated with a complete probability space (Ω,F , P ).

At each time ti ∈ T, z(ti) ≡ z(ti, ·) ∈ Z̃, x(ti) ≡ x(ti, ·) ∈ X̃, and v(ti) ≡ v(ti, ·) ∈ Ṽ
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are random vectors. The measurement process model is defined by

z(ti) = H(ti) x(ti) + v(ti) (3.201)

where:

z(ti) ∈ Z̃ = L2(Ω, P ;Z) . . . measurement vector

H(ti) ∈ BLT (X̃, Z̃) . . . measurement distributor transformation

x(ti) ∈ X̃ = L2(Ω, P ;X) . . . state vector

v(ti) ∈ Ṽ = L2(Ω, P ;V) . . . measurement-corruption noise vector

Additionally, H(ti) is known and the white measurement-corruption noise and state

covariances are defined as

Σ[v(ti), v(tj)] = E[v(ti) ¦ v(tj)] = R(ti) δij (3.202)

Σ[x(ti), x(ti)] = E{[x(ti)− µx(ti)] ¦ [x(ti)− µx(ti)]} = P(ti) (3.203)

Since v(ti) and x(tj) are independent for all times ti and tj, and E[v(ti)] = 0,

the cross-correlations and cross-covariances are zero. Per Definition 45, the state

covariance operator, P(ti), is symmetric, positive, and nuclear for all time ti, whereas

the measurement-corruption noise covariance operator, R(ti), is symmetric, strictly

positive, and nuclear for all time ti.

The boxology for this generalized stochastic measurement model is given in Figure

3.10.

While the measurement history, defined in Equation (2.18) on page 2-14,

“stored” the elements in a growing vector, the following definition uses a set be-

cause the measurement vector may be infinite-dimensional, hence the measurement

history may be infinite-dimensional.

Definition 77 (Measurement History) Let z(·, ·) be a discrete-time stochastic

measurement process in accordance with the generalized linear stochastic measure-

3-66



(Ω,F , P )

•
ω

v(ti) : Ω → V

?

x(ti) : Ω → X

?

z(ti) : Ω → Z

?
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Figure 3.10 Boxology of a Generalized Linear Stochastic Measurement Model.

ment model of Definition 76. The stochastic measurement history and measurement

history sample, through time ti are defined as

Z(ti) , {z(t1), z(t2), . . . , z(ti)} (3.204)

Zi , {z1, z2, . . . , zi} (3.205)

respectively, where zi is a convenient notation for z(ti), a specific realization of the

random vector z(ti). Additionally, since the sets “grow” with each new measurement,

they are related as

Z(t1) ⊂ Z(t2) ⊂ · · · ⊂ Z(ti) ⊂ Z̃ (3.206)

Z1 ⊂ Z2 ⊂ · · · ⊂ Zi ⊂ Z (3.207)

3-67



Now we can state (in a theorem) the LIMVUE for a stochastic measurement

process — an estimator that employs a sequence of measurements to improve the

existing estimate. By this, we mean an estimator x̂(ti+1) that updates x̂(ti) using the

new measurement z(ti+1) — a recursive estimator for a stochastic process.

Theorem 78 (LIMVUE for Stochastic Processes) Let the state, x, measure-

ment, z, and measurement-corruption noise, v, be as described in Definition 76 and

the measurement history in Definition 77. Let z(tj) for j = 1, 2, . . . , i be the random

measurement vectors generating a subspace Z̃i of Z̃. Then x̂(ti) , E [x(ti)|Z(ti)] is

the conditional state estimator, an orthogonal projection on closed subspace Z̃i of Z̃.

Note that expectations seen in Theorems 71 and 75 are all now replaced with con-

ditional expectations, conditioned on the previous measurement history. Finally, we

denote the projection of z(ti+1) onto subspace Z̃i by ẑ(t−i+1), where z(ti+1) generates

the subspace Z̃i+1 and the superscript “−” indicates that the estimate is based on the

“old” information up through time ti.

Therefore, the LIMVUE for a stochastic measurement process is the conditional

state estimator

x̂(ti) = x̂(t−i ) + K(ti)[z(ti)− ẑ(t−i )] (3.208)

where x̂(t−i ) is the conditional state estimator based on the “old” information up

through time ti, that is, x̂(t−i ) , E [x(ti)|Z(ti−1)], and the Kalman gain transformation

takes the form

K(ti) = P(ti)H
∗(ti)A−1(ti) (3.209)

and the filter-computed residual covariance operator is

A(ti) ≡ H(ti)P(t−i )H∗(ti) + R(ti) (3.210)
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Figure 3.11 Boxology of the Stochastic LIMVUE.

Additionally, the corresponding conditional error covariance operator, defined by,

P(ti) , Σ{[x(ti)− x̂(ti)]|Z(ti) = Zi}

= E{[x(ti)− x̂(ti)] ¦ [x(ti)− x̂(ti)]|Z(ti) = Zi}
(3.211)

is given by

P(ti) = P(t−i )−K(ti)H(ti)P(t−i ) (3.212)

The boxology for this estimator is given in Figure 3.11.
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Remark Thus far, we have only considered the measurement side in preparation

of constructing the ISKF, without due regard to the dynamics of the system (or

process); this will be addressed in the following section when we introduce the dy-

namics model for the system. After the dynamics model is added, Equation (3.208)

will be amended to reflect that we are now updating the “propagated” state esti-

mator versus the previous state estimator, x̂(t1), based on the measurement at time

t1. The “propagated” state estimator is due to the dynamics model “propagating”

the state estimator from time t1 to time t2; we denote this new estimator by x̂(t−2 ),

where the superscript minus sign indicates the time instant just prior to measurement

incorporation.

Proof of Theorem 78 If we make the following substitutions:

z = z(ti) (3.213)

µz = ẑ(t−i ) (3.214)

x = x(ti) (3.215)

µx = x̂(t−i ) (3.216)

x̂ = x̂(ti) (3.217)

then we have restated Theorem 71, and thus with the aid of Lemma 74, Equation

(3.208) follows and therefore Theorem 78 holds. Note that we have used means

conditioned on the previous measurement history, ẑ(t−i ) and x̂(t−i ), in the place of

unconditional means, µz and µx, in our substitution scheme, respectively. ¥

Another way of verifying Theorem 78 begins by noting that the conditional

state estimator x̂(t1) is the best estimate of x(t1) given subspace Z̃1, where Z̃1 was

generated by measurement z(t1). The next measurement z(t2), along with z(t1),

generates subspace Z̃2, while ẑ(t−2 ) denotes the projection of z(t2) onto subspace Z̃1.

Hence, ẑ(t−2 ) is the best estimate of z(t2) given subspace Z̃1. Let r(t2) = z(t2)− ẑ(t−2 )

be the residual (or difference between the true measurement and the best prediction
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of the measurement) at time t2. It then follows that the projection of x(t2) onto the

subspace of Z̃2, denoted x̂(t2), is given by

x̂(t2) = x̂(t1) + Σ[x(t2), r(t2)]Σ
−1[r(t2)] r(t2) (3.218)

Now observe that the estimate of x(t2), which lives in subspace Z̃1 + Z̃2 ⊂ Z̃,

can be decomposed as

Z̃1 + Z̃2 = Z̃1 ⊕ Ỹ2 (3.219)

where Ỹ2 = {z : z ∈ Z̃2 and z 6∈ Z̃1}, or in words, Ỹ2 is that part of Z̃2, which is

not in Z̃1 ∩ Z̃2, and ⊕ is the direct sum operation. Thus Ỹ2 and Z̃1 are orthogonal

subspaces, i.e., Ỹ2 ⊥ Z̃1. Hence, Equation (3.218) can be written as

x̂(t2) = x̂(t1) + y(t2) (3.220)

where

y(t2) = Σ[x(t2), r(t2)]Σ
−1[r(t2)] r(t2) ∈ Ỹ2 (3.221)

represents the new information about x brought by the second measurement and

x̂(t1) ∈ Z̃1 (3.222)

represents the best estimate from the first (or previous) measurement. Therefore,

we see that the projection onto a sum of subspaces is equal to the sum of individual

projections when the subspaces are orthogonal. Q.E.D. again.

3.4 Dynamics Model

One of the first tasks in model-based estimation is to create a mathematical

model of the system of interest. Many physically motivated problems are well mod-
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eled using a linear continuous-time dynamics model of the stochastic system; our

first definition is an abstraction of that model.

Definition 79 (Continuous-Time Dynamics Model) A continuous-time and

space model for the linear dynamics of a stochastic state process x can be viewed

as a set of random vectors {x(t) : t ∈ T}, where T = [t0, tf ] ⊂ R+, by the stochastic

differential equation

dx(t) = [F(t) x(t) + B(t)u(t)]dt + G(t)db(t)

x(t0) = x0

(3.223)

where the vectors, operators, and transformations are defined at time t as

x(t) ∈ X̃ = L2(Ω, P ;X) . . . state vector

F(t) ∈ LO(X̃) . . . state distributor operator

B(t) ∈ LT (U, X̃) . . . input distributor transformation

u(t) ∈ U . . . known input vector

G(t) ∈ BLT (B̃, X̃) . . . noise distributor transformation

b(t) ∈ B̃ = L2(Ω, P ;B) . . . Brownian motion noise vector

Additionally, b is a Brownian motion process (and thus an independent increment

process19) with constant diffusion operator Q as discussed in Definition 61. Further-

more, the dynamics model must include the pertinent boundary conditions for the

specific problem at hand. For example, if F = ∇, a gradient, then we could associate

a Dirichlet or Neumann boundary condition with Equation (3.223).

While many of the problems of interest are best modeled with a continuous-

time description discussed in Definition 79, we will most likely need a discrete-

time model so that the eventual filtering algorithm can be implemented on a digital

computer as software. On the other hand, if the problem is posed in a discrete-time

format, then the following definition still applies, but without the interpretation

19The most general form of additive noise need only be an “independent increment” process,
hence we may also develop a continuous-time dynamics model which features a generalized Poisson
noise process [141, 129, 66].
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from the continuous-time model, as is already stated. One drawback to a naturally

discrete-time dynamics model is that there is no guarantee that the state transition

operator, as defined below, will be invertible; this is precisely the same situation

as discussed in Section 2.3.1, regarding the state transition matrix for the finite-

dimensional dynamics model.

The following model is termed an equivalent discrete-time model20 since the

state at any time ti is precisely the same as the state using the continuous-time model

at time t = ti. Note that the set of time instants in the continuous-time model is a

continuum, i.e., T = [t0, tf ], whereas for the discrete-time model, it is a discrete set:

T = {t0, t1, . . . , tf}. The process for creating the equivalent discrete-time model is a

substantially different process than merely sampling the continuous-time process, as

will be seen in the development following the definition.

Definition 80 (Discrete-Time Dynamics Model) A discrete-time and space

model for the linear dynamics of a stochastic state process x can be viewed as a

sequence of random vectors {x(t) : t ∈ T}, where T = {t0, t1, . . . , tf} ⊂ R+, by the

stochastic difference equation

x(ti+1) = Φ(ti+1, ti) x(ti) + Bd(ti)u(ti) + Gd(ti)wd(ti)

x(t0) = x0

(3.224)

where the vectors, operators, and transformations are defined at time ti as

x(ti) ∈ X̃ = L2(Ω, P ;X) . . . state vector

Φ(ti+1, ti) ∈ BLO(X̃) . . . state transition operator from time ti to ti+1

Bd(ti) ∈ LT (U, X̃) . . . discrete-time input distributor transformation

u(ti) ∈ U . . . known control input vector

Gd(ti) ∈ BLT (W̃, X̃) . . . discrete-time noise distributor transformation

wd(ti) ∈ W̃ = L2(Ω, P ;W) . . . zero-mean white Gaussian noise vector

20See Maybeck [129] for the analogous finite-dimensional case.
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where the zero-mean white Gaussian dynamics noise process, wd(·, ·), has covariance

kernel

Σ[wd(ti),wd(tj)] , E[wd(ti) ¦wd(tj)] = Qd(ti) δij (3.225)

where the bounded and linear covariance operator Qd(ti) ∈ BLO(W̃) is symmetric,

positive, and nuclear for all time ti. Furthermore, the initial state condition x(t0) is

not known precisely; it will be modeled as a Gaussian random vector, independent of

wd(·, ·) with mean and covariance specified as follows

E[x(t0)] = x̂0 (3.226)

Σ[x(t0)] , E{[x(t0)− x̂0] ¦ [x(t0)− x̂0]} = P0 (3.227)

where the initial error covariance operator, P0 ∈ BLO(X̃), is symmetric, positive,

and nuclear. For time ti+1 = t1, . . . , tf , the conditional error covariance operator is

defined by

P(t−i+1) , Σ{[x(ti+1)− x̂(ti+1)]|Z(ti) = Zi}

= E {[x(ti+1)− x̂(ti+1)] ¦ [x(ti+1)− x̂(ti+1)]|Z(ti) = Zi}
(3.228)

The boxology for the discrete-time dynamics model appears in Figure 3.12.

Note that, for illustrative purposes, we have chosen to use two boxes to represent

the Hilbert space of random vectors, X̃, one for time ti and one for time ti+1. On

the other hand, we have just one box for the realization space, (X,B(X), Px).

If the discrete-time dynamics model is based on the continuous-time model

detailed in Definition 79, then Φ(ti+1, ti), Bd(ti), u(ti), Gd(ti), Qd(ti), and wd(ti)

are based on the following development entailing a series of definitions and theorems,

which results from solving the stochastic differential equation. The solution (or mild
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ω
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?
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?
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•
wd(ti) = wd(ti, ω)

X̃ =

L2(Ω, P ;X)

•
x(ti)

-

W̃ =

L2(Ω, P ;W)

•
wd(ti)

¾

BLO(X̃)

Φ(ti+1, ti)

-

BLT (W̃, X̃)

•
Gd(ti)

¾

(X, B(X), Px)

•
x(ti) = x(ti, ω)

•
x(ti+1) = x(ti+1, ω)

U

•
u(ti)

¾

BLT (U, X̃)

•
Bd(ti)

6

X̃ = L2(Ω, P ;X)

•
x(ti+1) = Φ(ti+1, ti)x(ti)

+ Bd(ti)u(ti)

+ Gd(ti)wd(ti)

Figure 3.12 Boxology of a Discrete-Time Dynamics Model.

form) of Equation (3.223) is given by the so called evolution system [38, 66]

x(t) = Φ(t, t0) x0 +

∫ t

t0

Φ(t, s)B(s)u(s) ds +

∫ t

t0

Φ(t, s)G(s)db(s) (3.229)

where Φ(t, s) is the state transition or mild evolution operator associated with the

state distributor operator, F(t) [38, 160]. The theory for evolution operators is

rather technical and is not needed to develop the theory for the class of problems
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in this research21. Therefore, the full theory for (one- and two-parameter) evolution

operators will be neither reviewed nor pursued in this research.

While a time-varying state distributor operator, F(t), generates a semigroup

of two-parameter state transition operators, Φ(t, s), a time-invariant state distribu-

tor operator, F, generates a semigroup of one-parameter state transition operators,

Φ(t − s) [38, 160, 39, 48, 115]. The single parameter is denoted by the “time” dif-

ference t − s for 0 ≤ s < t < ∞, just as it was for the finite-dimensional case we

reviewed in Section 2.3.1, Equation (2.8), on page 2-11.

Briefly, the plan for the rest of this section falls into two main parts. First, we

will discuss two types of one-parameter semigroups of BLOs. Then, we will match

up the terms in Equations (3.223) and (3.229) as we determine Bd, Gd, and wd.

The pertinent theory for generating these one-parameter semigroups is included

in the following series of definitions and theorems. We begin with the definition for

a semigroup of BLOs.

Definition 81 (Semigroup of BLOs) Let X be a Banach space. A one-parameter

family of BLOs, denoted by {Φ(t) : t ≥ 0} for 0 ≤ t < ∞, is a semigroup of BLOs

on X if [160]:

1. Φ(0) = I, where I is the identity operator on X, and

2. Φ(t + s) = Φ(t)Φ(s) for every t, s ≥ 0

There are several types of one-parameter semigroups; we shall discuss just two:

the uniformly and the strongly continuous semigroup of BLOs. These categories of

operators are due to the nature of the generating time-invariant operator F discussed

above. The uniformly continuous semigroup of BLOs is included to show where the

21Limiting our explication to one-parameter semigroups is not as restrictive as it may seem ac-
cording to Engel and Nagel [48]. They (along with their collaborators) have studied population,
nuclear transport, delay differential, and Volterra equations, and both ordinary and partial dif-
ferential operators in the form of an abstract Cauchy problem using the theory of one-parameter
semigroups.
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finite-dimensional theory and the infinite-dimensional theory appear to agree in the

form of their equations, while the strongly continuous semigroup of BLOs is needed

for our extended example discussed in the next chapter.

Definition 82 (Uniformly Continuous Semigroup of BLOs) A semigroup of

BLOs, {Φ(t) : t ≥ 0}, is said to be uniformly continuous if

lim
t↓0
||Φ(t)− I|| = 0 (3.230)

In general, F does not need to be bounded, as seen in Definition 79. However,

when F is bounded, it is the infinitesimal generator for a uniformly continuous

semigroup of operators.

Theorem 83 (Properties of a Uniformly Continuous Semigroup of BLOs)

Let {Φ(t) : t ≥ 0} be a uniformly continuous semigroup of BLOs. The infinitesimal

generator F for a uniformly continuous semigroup is a BLO. Then [160]:

1. There exists a constant ω ≥ 0 such that ||Φ(t)|| ≤ exp(ωt).

2. There exists a unique BLO F such that Φ(t) = exp(tF).

3. The operator F in part (2 ) is the infinitesimal generator of {Φ(t) : t ≥ 0}.

4. t 7→ Φ(t) is differentiable in norm and

dΦ(t)

dt
= FΦ(t) = Φ(t)F (3.231)

Proof of Theorem 83 See Pazy [160].

In our research, our F is unbounded. Thus, we employ the strongly continuous

semigroup of BLOs, which is defined next.
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Definition 84 (Strongly Continuous Semigroup of BLOs) Let X be a Ba-

nach space. A semigroup, {Φ(t) : t ≥ 0}, of BLOs on X is a strongly continuous

semigroup of BLOs, for 0 ≤ t < ∞, if

lim
t↓0

Φ(t)x = x (3.232)

for every x in X. A strongly continuous semigroup of BLOs on X is called a semi-

group of class C0 or simply a C0 semigroup.

Some useful properties of this class of semigroup operators are reported in the fol-

lowing theorem22.

Theorem 85 (Properties of a Strongly Continuous Semigroup of BLOs)

Let Φ(t) be a C0 semigroup and let F be the infinitesimal generator. Then [160]:

1. For x ∈ X
lim
h→0

1

h

∫ t+h

t

Φ(s)x ds = Φ(t)x (3.233)

2. For x ∈ X ∫ t

0

Φ(s)x ds ∈ D(F) (3.234)

where D(F) denotes the domain and

F

(∫ t

0

Φ(s)x ds

)
= Φ(t)x− x (3.235)

3. For x ∈ D(F),

Φ(t)x−Φ(s)x =

∫ t

s

Φ(τ)Fx dτ =

∫ t

s

FΦ(τ)x dτ (3.236)

22Curtain [38, 39] and Lax [115] also present a similar collection of semigroup properties in the
infinite-dimensional linear systems framework.
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4. For x ∈ D(F), we have Φ(t)x ∈ D(F) and

d

dt
Φ(t)x = FΦ(t)x = Φ(t)Fx (3.237)

Proof of Theorem 85 See Pazy [160].

Now that we’ve laid the groundwork for the one-parameter semigroup of BLOs,

we turn to finding the equivalent discrete-time transformations and additive noise

shown in Equation (3.224). While we have generally limited our discussion of the

semigroups to those with a single parameter, the theory that follows does not depend

on this simplification; hence, the remainder of the development will employ the (less

restrictive) two-parameter notation for the state transition operator, Φ(t, s).

Theorem 86 (Equivalent Discrete-Time Input Distributor Transforma-

tion) Given the continuous-time dynamics model in Definition 79 and the desired

form of the discrete-time dynamics model in Definition 80, the equivalent discrete-

time input distributor transformation is given by

Bd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)B(τ) dτ (3.238)

provided u(t) is a piece-wise constant function, constant over each sample period.

Remarks (1) Practically speaking, the restriction on control input u(t) merely re-

flects that case for adjusting the control input at the end of each propagation cycle,

i.e., after a sample period has ended. If this control input is generated by a digital

computer, the interface to the continuous-time system is assumed to be through a

zero-order hold, thus keeping the control value constant over the ensuing sample

period. (2) For many problems, such as the heat equation example discussed in the

following chapter, the control input may also be a function of the spatial dimension.

There is nothing in this definition that precludes us from allowing the control input

to vary over the spatial dimension.

3-79



Proof of Theorem 86 If we were to compute the state using Equation (3.229) at the

discrete time instants T = {t0, t1, . . . , tf}, then we could rewrite it with subscripted

time arguments as follows

x(ti+1) = Φ(ti+1, ti) x(ti) +

∫ ti+1

ti

Φ(ti+1, s)B(s)u(s) ds

+

∫ ti+1

ti

Φ(ti+1, s)G(s)db(s) (3.239)

where t0 ≤ ti < ti+1 ≤ tf . Matching up the terms in Equations (3.224) and (3.239)

yields

Bd(ti)u(ti) =

∫ ti+1

ti

Φ(ti+1, s)B(s)u(s) ds (3.240)

If we assume that the control input is constant for this particular time interval, i.e.,

u(s) = u(ti) for ti ≤ s ≤ ti+1, then we may pull u(s) outside of the integral in

Equation (3.240) to get

Bd(ti)u(ti) =

∫ ti+1

ti

Φ(ti+1, s)B(s) ds u(ti) (3.241)

Since Equation (3.241) holds for all piece-wise constant u(t), we have found the

Bd(ti) operator in Equation (3.238). ¥

Definition 87 (Equivalent Discrete-Time Noise Distributor Transforma-

tion) Analogous to the finite-dimensional case developed in [129], we define Gd(ti)

to be an identity operator on W̃.

Theorem 88 (Equivalent Discrete-Time Noise Characterization) For the

continuous-time dynamics model in Definition 79 and the desired form of the

discrete-time dynamics model in Definition 80, the equivalent discrete-time noise

vector, defined by

wd(ti) =

∫ ti+1

ti

Φ(t, s)G(s)db(s) (3.242)
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is a zero-mean white Gaussian with covariance kernel operator, Σ[wd(ti),wd(tk)] =

0, for ti 6= tk, and covariance operator

Σ[wd(ti),wd(ti)] =

∫ ti+1

ti

Φ(ti+1, s)G(s)QG∗(s)Φ∗(ti+1, s) ds = Qd(ti) (3.243)

whenever ti = tk.

Proof of Theorem 88 Let the third term on the right-hand side of Equation (3.239)

be identified as equivalent discrete-time noise vector. To include the possibility of

considering wd for more than a single interval, such as ti to ti+1, we write it as a

function of two (possibly nonconsecutive) time instants ti < tj

wd(ti, tj) ,
∫ tj

ti

Φ(tj, s)G(s)db(s) (3.244)

The mean of wd(ti, tj) is zero, i.e., [38]

E[wd(ti, tj)] = E

[∫ tj

ti

Φ(tj, s)G(s)db(s)

]
= 0 (3.245)

Next, we write the covariance for the case of overlapping intervals [38]

Σ[wd(ti, tj),wd(tk, tl)] , E[wd(ti, tj) ¦wd(tk, tl)] (3.246)

Then,

E[wd(ti, tj) ¦wd(tk, tl)]

=

∫ min(tj ,tl)

max(ti,tk)

Φ(min(tj, tl), s)G(s)QG∗(s)Φ∗(min(tj, tl), s) ds (3.247)

where tj > tk. The covariance for non-overlapping intervals, i.e., whenever either

tj < tk or tl < ti is true, is [38]
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Σ[wd(ti, tj),wd(tk, tl)] = 0 (3.248)

Note that we only assumed that ti < tj and tk < tl, and that in general, tj − ti

need not equal tl − tk. When ti and tj are consecutive times such that tj = ti+1 and

similarly for tk and tl, then we need only one time argument for wd; thus, we obtain

Σ[wd(ti),wd(tk)] =





∫ ti+1

ti
Φ(ti+1, s)G(s)QG∗(s)Φ∗(ti+1, s) ds, ti = tk

0, ti 6= tk

(3.249)

Note that when ti 6= tk, that we have nonoverlapping intervals since all of our

intervals are disjoint per our construction. ¥

3.5 Infinite-Dimensional Sampled-Data Kalman Filter

The first Kalman filter was derived for a discrete-time environment with finite-

dimensional states by Kalman in 1960 [95]. One year later, Kalman and Bucy com-

bined efforts to pose the Kalman-Bucy filter to treat continuous-time-measurement

estimation problems [96]. Many physically motivated problems are set in a (more

general) Hilbert space that is not necessarily of finite dimension. In 1967, Falb con-

tributed the infinite-dimensional Kalman-Bucy filter (IKBF) [51]. Note that when

we say “infinite-dimensional,” what we are really saying is that the states do not

have to be finite length vectors: they can be functions or some other objects de-

fined on a Hilbert space. The following table shows that with the addition of the

new infinite-dimensional sampled-data Kalman filter (ISKF), linear filtering theory,

consisting of the four filters of Table 3.1, forms a complete set of optimal estimation

tools that can be applied in practice.

Before proceeding, we shall explicitly call attention to the two forms of the

conditional error covariance that we previously defined in Equation (3.211) as we
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Discrete-time Continuous-time

Finite-dimensional Kalman filter (1960) Kalman-Bucy filter (1961)

Infinite-dimensional ISKF (2007) IKBF (1967)

Table 3.1 Quartet of Kalman Filters

updated the estimate with a new observation and in Equation (3.228) in order to

propagate the estimate from time ti to time ti+1.

Definition 89 (Conditional error covariance) The propagated state estimator

error is defined by

e(t−i ) , x(ti)− x̂(t−i ) (3.250)

and the zero-mean conditional error covariance operator for the propagated state

estimator error is

P(t−i ) , Σ[e(t−i )|Z(ti−1) = Zi−1]

= E{[x(ti)− x̂(t−i )] ¦ [x(ti)− x̂(t−i )]|Z(ti−1) = Zi−1}
(3.251)

where the realization of x̂(t−i ) is used in the second line since the measurement is

given and the ordered sets Z(ti−1) and Zi−1 represent the stochastic measurement

history and measurement history sample, respectively, through time ti−1 as defined

in Equations (3.204) and (3.205).

Similarly, the updated state estimator error is defined by

e(t+i ) , x(ti)− x̂(t+i ) (3.252)

and the zero-mean conditional error covariance operator for the updated state esti-

mator error is given as

P(t+i ) , Σ[e(t+i )|Z(ti) = Zi]

= E{[x(ti)− x̂(t+i )] ¦ [x(ti)− x̂(t+i )]|Z(ti) = Zi}
(3.253)
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where the realization of x̂(t+i ) is used in the second line since the measurement is given

and the ordered sets Z(ti) and Zi represent the stochastic measurement history and

measurement history sample, respectively, through time ti as defined in Equations

(3.204) and (3.205).

We pose the following lemma relating two conditional error covariances to their

respective conditional state covariances. These relationships are common knowledge

for finite-dimensional systems [129].

Lemma 90 Given Definition 89, the following equivalences hold

Σ[e(t−i )|Z(ti−1) = Zi−1] ≡ Σ[x(ti)|Z(ti−1) = Zi−1] (3.254)

Σ[e(t+i )|Z(ti) = Zi] ≡ Σ[x(ti)|Z(ti) = Zi] (3.255)

Proof of Lemma 90 Per the definition of the error given in Equation (3.250), the

left-hand side of Equation (3.254) is

Σ[e(t−i )|Z(ti−1) = Zi−1] = Σ[x(ti)− x̂(t−i )|Z(ti−1) = Zi−1] (3.256)

Next, expand the right-hand side to get

Σ[e(t−i )|Z(ti−1) = Zi−1]

= E{[x(ti)− x̂(t−i )] ¦ [x(ti)− x̂(t−i )]|Z(ti−1) = Zi−1} (3.257)

= E{[x(ti)− E [x(ti)|Z(ti−1)]] ¦ [x(ti)− E [x(ti)|Z(ti−1)]]|Z(ti−1) = Zi−1} (3.258)

where lines one and two follow from the definition of the covariance and the defini-

tion of the conditional state estimator, respectively. Since the measurement history

through time ti−1 is known, the conditional state estimator E [x(ti)|Z(ti−1)] is really

E[x(ti)|Z(ti−1) = Zi−1], which is just the conditional state estimate x̂(t−i ), thus we
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get

Σ[e(t−i )|Z(ti−1) = Zi−1]

= E{[x(ti)− x̂(t−i )] ¦ [x(ti)− x̂(t−i )]|Z(ti−1) = Zi−1} (3.259)

= Σ[x(ti)|Z(ti−1) = Zi−1] (3.260)

since x̂(t−i ) = E[x(ti)|Z(ti−1) = Zi−1]. A similar line of reasoning holds for the

conditional error covariance following measurement update. ¥

We are now ready to state in the form of a theorem the central result in this

chapter: the infinite-dimensional sampled-data Kalman filter (ISKF).

Theorem 91 (ISKF) Given: the measurement model of Definition 76 and the

equivalent discrete-time dynamics model comprised of Definition 80. Thus, we have

the following stochastic difference equations23,

x(ti+1) = Φ(ti+1, ti) x(ti) + Bd(ti)u(ti) + Gd(ti)wd(ti) (3.261)

and

z(ti) = H(ti) x(ti) + v(ti) (3.262)

where the dynamics model is further described by

x(ti) ∈ X̃ = L2(Ω, P ;X) . . . state vector

Φ(ti+1, ti) ∈ BLO(X̃) . . . state transition operator from time ti to ti+1

Bd(ti) ∈ LT (U, X̃) . . . discrete-time input distributor transformation

u(ti) ∈ U . . . known control input vector

Gd(ti) ∈ BLT (W̃, X̃) . . . discrete-time noise distributor transformation

wd(ti) ∈ W̃ = L2(Ω, P ;W) . . . zero-mean white Gaussian noise vector

and the components of the observation model are

23Gd(ti) was not assumed to be the identity operator here, although without loss of generality,
it can be.
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z(ti) ∈ Z̃ = L2(Ω, P ;Z) . . . measurement vector

H(ti) ∈ BLT (X̃, Z̃) . . . measurement distributor transformation

x(ti) ∈ X̃ = L2(Ω, P ;X) . . . state vector

v(ti) ∈ Ṽ = L2(Ω, P ;V) . . . measurement-corruption noise vector

Additionally, we assume that v(tj), wd(ti), and the initial state x(t0) are mutually

independent for all time. Thus, x(ti) and v(tj) are independent for all time.

The ISKF algorithm consists of a two-step recursive process following initial

state and conditional error covariance estimates, which are actually the mean and

covariance of the Gaussian random vector x(t0):

x̂(t0) = E[x(t0)] = x̂0 (3.263)

P(t0) = P0 (3.264)

At time ti, the filter-computed residual covariance and Kalman gain transformation

are, respectively,

A(ti) ≡ H(ti)P(t−i )H∗(ti) + R(ti) (3.265)

K(ti) ≡ P(t−i )H∗(ti)A−1(ti) ∈ BLT (Z̃, X̃) (3.266)

When the conditional state estimator E [x(ti)|Z(ti)] is evaluated with the current mea-

surement z(ti) = zi it becomes a realization of x̂(t+i ), which we denote by x̂(t+i ), and

thus

x̂(t+i ) , E[x(ti)|Z(ti) = Zi]

= x̂(t−i ) + K(ti) r(ti)

(3.267)

where

r(ti) ≡ zi −H(ti) x̂(t−i ) (3.268)
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is called the measurement residual. The corresponding conditional error covariance

after the measurement update, defined in Equation (3.253), is given as

P(t+i ) = P(t−i )−K(ti)H(ti)P(t−i ) (3.269)

Next, the state estimator x̂(t+i ) , E [x(ti)|Z(ti)] is propagated to time ti+1 using Equa-

tion (3.261) and becomes x̂(t−i+1) , E [x(ti+1)|Z(ti)], where it is then evaluated using

the previous measurement history Z(ti) = Zi to produce the realization x̂(t−i+1), hence

x̂(t−i+1) , E[x(ti+1)|Z(ti) = Zi]

= Φ(ti+1, ti) x̂(t+i ) + Bd(ti)u(ti)

(3.270)

The corresponding conditional error covariance, defined in Equation (3.251), is

P(t−i+1) = Φ(ti+1, ti)P(t+i )Φ∗(ti+1, ti) + Gd(ti)Qd(ti)G
∗
d(ti) (3.271)

Note that t−i denotes the time just before incorporating the measurement taken at

time ti, i.e., it is the time to which the previous update is propagated, and time t+i

denotes the time at which the state is updated after the measurement was taken.

Thus, the progression of time is: t0 < t−1 < t1 < t+1 < t−2 < t2 < t+2 · · · .

The boxology for the ISKF is shown in Figure 3.13; it simply combines the

previous boxologies for the stochastic LIMVUE seen in Figure 3.11, page 3-69, and

the dynamics model boxology of Figure 3.12 on page 3-75.

Proof of Theorem 91 Equations (3.263) and (3.264) are initialization statements

that do not need proving. Similarly, Equations (3.265), (3.266), and (3.268) are

meaningful shorthand notations that are useful quantities to analyze during engi-

neering studies of the problem at hand. Equations (3.270), (3.271), (3.267), and

(3.269) remain to be proven.
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Figure 3.13 Boxology of the ISKF.
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We begin by substituting Equation (3.261) into the definition for the estimate

x̂(t−i+1) in Equation (3.270) and then simplifying

x̂(t−i+1) , E[x(ti+1)|Z(ti) = Zi] (3.272)

= E{[Φ(ti+1, ti) x(ti) + Bd(ti)u(ti)

+ Gd(ti)wd(ti)]|Z(ti) = Zi} (3.273)

Then,

x̂(t−i+1) = Φ(ti+1, ti) E[x(ti)|Z(ti) = Zi] + Bd(ti)u(ti)

+ Gd(ti) E[wd(ti)|Z(ti) = Zi] (3.274)

= Φ(ti+1, ti)x̂(t+i ) + Bd(ti)u(ti) (3.275)

where the second line follows from the definition of x̂(t+i ) and the fact that the

dynamics noise is (assumed to be) zero-mean and independent of v and hence of

Z(ti) as well. Thus Equation (3.270) results as proposed.

Next, we use the propagation Equation (3.261), for x̂(t−i+1) in the equivalence of

the conditional error covariance to the conditional state covariance given in Equation

(3.254) to obtain

P(t−i+1) = Σ[x(ti+1)|Z(ti) = Zi] (3.276)

= Σ[Φ(ti+1, ti) x(ti) + Bd(ti)u(ti) + Gd(ti)wd(ti)|Z(ti) = Zi] (3.277)

Dropping the Bd(ti)u(ti) term as it is known and thus does not contribute to the

covariance and then expanding yields

P(t−i+1) = Σ[Φ(ti+1, ti) x(ti) + Gd(ti)wd(ti)|Z(ti) = Zi] (3.278)
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Expanding again,

P(t−i+1) = Σ[Φ(ti+1, ti) x(ti)|Z(ti) = Zi]

+ Σ{[Φ(ti+1, ti) x(ti),Gd(ti)wd(ti)]|Z(ti) = Zi}
+ Σ{[Gd(ti)wd(ti),Φ(ti+1, ti) x(ti)]|Z(ti) = Zi}
+ Σ[Gd(ti)wd(ti)] (3.279)

where the conditioning for the fourth term was dropped since wd and Z(ti−1) are

independent as previously noted. The first term in Equation (3.279) is rewritten in

expectation notation as

Σ[Φ(ti+1, ti) x(ti)|Z(ti) = Zi]

= E{Φ(ti+1, ti)[x(ti)− x̂(t+i )] ¦Φ(ti+1, ti)[x(ti)− x̂(t+i )]|Z(ti) = Zi} (3.280)

= Φ(ti+1, ti)E{[x(ti)− x̂(t+i )] ¦ [x(ti)− x̂(t+i )]|Z(ti) = Zi}Φ∗(ti+1, ti) (3.281)

= Φ(ti+1, ti)Σ[x(ti)|Z(ti) = Zi]Φ
∗(ti+1, ti) (3.282)

= Φ(ti+1, ti)P(t+i )Φ∗(ti+1, ti) (3.283)

where the second equality employs Lemma 43, from page 3-26, and lines three and

four follow from definitions for a covariance operator and then the conditional error

covariance operator. The second and third terms of Equation (3.279) are cross-

covariance terms for independent random vectors, with at least one being zero-mean,

and are thus zero. The fourth term of Equation (3.279) is expanded using the

expectation notation, while noting that wd is a zero-mean stochastic noise process,

to obtain

Σ[Gd(ti)wd(ti)] = E[Gd(ti)wd(ti) ¦Gd(ti)wd(ti)] (3.284)

= Gd(ti) E[wd(ti) ¦wd(ti)]G
∗
d(ti) (3.285)

= Gd(ti)Qd(ti)G
∗
d(ti) (3.286)
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where Lemma 43 is used to produce the second equality and then Qd is simply the

covariance of wd defined in Equation (3.225). Therefore, with each of the terms

systematically addressed, Equation (3.279) becomes Equation (3.271).

The updated state estimator, x̂(t+i ), in Equation (3.267) and the conditional

error covariance, P(t+i ), in Equation (3.269), are estimators for the state and the

conditional error covariance for the stochastic LIMVUE given in Theorem 78, as

noted in the remark following the theorem, for the ith measurement Z(ti) = Zi. ¥

As reported earlier, the state and measurement-corruption noise were assumed

to be independent processes. The following lemma shows why this is true for the

discrete-time case.

Lemma 92 The state, x(ti), and measurement-corruption noise, v(tj), are indepen-

dent for all time ti, tj ∈ T.

Proof of Lemma 9224 Recall Equation (3.224) from the definition of the dynamics

model (where we have decremented all of the time indices):

x(ti) = Φ(ti, ti−1) x(ti−1) + Bd(ti−1)u(ti−1) + Gd(ti−1)wd(ti−1) (3.287)

Using this equation, we substitute in for x(ti−1) and we get

x(ti) = Φ(ti, ti−1) [Φ(ti−1, ti−2) x(ti−2) + Bd(ti−2)u(ti−2)

+ Gd(ti−2)wd(ti−2)] + Bd(ti−1)u(ti−1) + Gd(ti−1)wd(ti−1) (3.288)

which can be written as

x(ti) = Φ(ti, ti−2) x(ti−2) + Φ(ti, ti−1) [Bd(ti−2)u(ti−2)

+ Gd(ti−2)wd(ti−2)] + Bd(ti−1)u(ti−1) + Gd(ti−1)wd(ti−1) (3.289)

24The proof of this lemma closely follows Maybeck [129] for finite-dimensional random vectors.
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Now substitute in for x(ti−2) to continue the pattern

x(ti) = Φ(ti, ti−2)[Φ(ti−2, ti−3) x(ti−3) + Bd(ti−3)u(ti−3)

+ Gd(ti−3)wd(ti−3)] + Φ(ti, ti−1) [Bd(ti−2)u(ti−2)

+ Gd(ti−2)wd(ti−2)] + Bd(ti−1)u(ti−1) + Gd(ti−1)wd(ti−1) (3.290)

Simplifying,

x(ti) = Φ(ti, ti−3) x(ti−3)

+ Φ(ti, ti−2)[Bd(ti−3)u(ti−3) + Gd(ti−3)wd(ti−3)]

+ Φ(ti, ti−1) [Bd(ti−2)u(ti−2) + Gd(ti−2)wd(ti−2)]

+ Bd(ti−1)u(ti−1) + Gd(ti−1)wd(ti−1) (3.291)

The nested pattern is now clear, and thus we write Equation (3.291) as

x(ti) = Φ(ti, t0) x(t0) +
i∑

k=1

Φ(ti, tk)[Bd(tk−1)u(tk−1) + Gd(tk−1)wd(tk−1)] (3.292)

where we used the fact that Φ(ti, ti), for any time ti, is equivalent to the identity

operator. Since v(tj) is independent of each of the terms in Equation (3.292), x(ti)

and v(tj) are mutually independent random vectors for all time ti, tj ∈ T. ¥

3.6 Generalized Infinite-Dimensional Multiple Model Adaptive Estimation

The system description entails a detailed accounting of all of the parameters

used in the structure of the models and the statistics describing the dynamics and

measurement noises. Specifically, the system is determined by knowledge of the true

values for Φ, Bd, Gd, H, Qd, R, x̂0, and P0. When a subset of the model parameters

are uncertain, we can characterize this subset of uncertain parameters as stochastic

processes. For this research, we restrict ourselves to a subset of these parameters,
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and since their values are uncertain (but assumed constant), we express them in

terms of the components of a vector random-constant stochastic process a(·, ·). The

random-constant stochastic process, indexed by the times T, is a constant random

vector for all times ti ∈ T, i.e., a(ti, ·) ≡ a(ti) ∈ Ã and for a given ω ∈ Ω, the

realization is a(ti, ω) ≡ a ∈ A, which is independent of the time index since it is

assumed to be a constant for all time. More general stochastic process models than

random-constant processes can allow the parameter to be time-varying, and this can

give rise to an interactive multiple model (IMM) rather than an MMAE algorithm,

as discussed in Section 2.4.7, page 2-38. Section 2.3.3.1 has further information for

the finite-dimensional case.

Note that the form of the equations for the elemental filters and the state and

parameter estimates look exactly the same as those equations appearing in Sections

2.3.3.3 in 2.3.4. However, they are not strictly the same since in this chapter we

are dealing with the more general case of vectors in a Hilbert space, i.e., they may

be infinite-dimensional vectors, and the matrices for the finite-dimensional case are

now, in general, allowed to be transformations — thus, we have the generalized

infinite-dimensional multiple model adaptive estimation (GIMMAE).

3.6.1 Elemental Filters. Each elemental filter in the bank is based upon a

different hypothesis for the parameter values used to model the real world system,

i.e., the kth elemental filter design model is constructed assuming that a(ti) = ak.

The discrete-time model equations for the kth elemental filter are

xk(ti+1) = Φk(ti+1, ti) xk(ti) + Bdk(ti)u(ti) + Gdk(ti)wdk(ti) (3.293)

z(ti) = Hk(ti) xk(ti) + vk(ti) (3.294)

where the properties of Φk(ti+1, ti), Bdk(ti), Gdk(ti), Hk(ti), Qdk(ti), and Rk(ti) were

discussed in the previous sections.

The correctness or validity of each hypothesis, a(ti) = ak, is ordinarily ob-

tained through an analysis of the filter residuals, the difference between the ob-
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served measurement and the predicted measurement, rk(ti) = zi − Hk(ti) x̂k(t
−
i )

[129]. This “correctness” information is also coded in the hypothesis conditional

probability pk(ti), which is defined as the probability that a(ti) assumes the value

ak (for k = 1, 2, . . . , K), conditioned on the observed measurement history to time

ti [130, 132]

pk(ti) = pr{a(ti) = ak|Z(ti) = Zi} (3.295)

such that

pk(ti) ≥ 0 for all k and
K∑

k=1

pk(ti) = 1 (3.296)

A close inspection of Equations (2.44) through (2.46), specifically, Equation

(2.45), on page 2-30, shows that the PDF for the Gaussian distributed random

vector does not exist on a general Hilbert space since letting measurement dimension

m tend to infinity results in β equal to zero; hence we would have f = 0, which is not

a proper PDF25. However, it is interesting to note that the hypothesis conditional

probabilities calculated using Equation (2.43), found on page 2-29, are independent

of m, since it factors out of both the numerator and the sum of K terms in the

denominator. So, assuming that the initial probability pk(t0) for all k is known or

well modeled, for example, as pk(t0) = 1/K for k = 1, . . . , K, hypothesis conditional

probabilities are determined as

pk(ti) =
f̂z(ti)|a(ti),Z(ti−1)(zi|ak,Zi−1) pk(ti−1)∑K
j=1 f̂z(ti)|a(ti),Z(ti−1)(zi|aj,Zi−1) pj(ti−1)

(3.297)

This is an iteration expressed in terms of the previous values pk(ti−1), where the

scaled conditional probability “density” function, as denoted by f̂ , is a Gaussian-

like function with “mean” Hk(ti) x̂k(t
−
i ) and “covariance” (operator) Ak(ti)

f̂z(ti)|a(ti),Z(ti−1)(zi|ak,Zi−1) = β̂k(ti) exp
{−1

2
Lk(ti)

}
(3.298)

25We defined the Gaussian-distributed random vector using the characteristic equation, see page
3-32, because the PDF is ill-defined for the infinite-dimensional case.
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where the modified scale factor is now

β̂k(ti) =
1

||Ak(ti)||1/2
(3.299)

and where the likelihood quotient in Equation (3.298), which is a measure of the

“correctness” of the parameter values for this particular model [130], is the weighted

inner product

Lk(ti) = 〈rk(ti),A
−1
k (ti) rk(ti)〉 (3.300)

where rk(ti) = zi−Hk(ti) x̂k(t
−
i ) and Ak(ti) are the residual and associated residual

covariance calculated by the kth Kalman filter as in Equations (3.268) and (3.265),

respectively. Note that using f̂ (which is not a true PDF since the “volume” un-

der the f̂ function “surface” is not unity) rather than f (which is ill-defined in the

infinite-dimensional case) has no impact on the operation of the MMAE. Further-

more, the denominator in Equation (3.297) is simply the sum of all K numerators,

and it is thus the appropriate scale factor to guarantee that the pk(ti) values so

generated will always sum to one. Finally, note that β̂k(ti) is just a scale factor and

that the most important information to be retrieved from this “density” function

is contained in Lk(ti); hence the fact that we do not have true PDFs in Equation

(3.297) in the strict sense is not problematic.

It has been shown, for the finite-dimensional case [94, 129], that the sequence

of residuals {rk(ti)} resulting from linear filtering forms a zero-mean white Gaussian

sequence with known residual covariance Ak(ti). Thus, if a filter model matches

the “true” system, then the residual rk(ti) should be a zero-mean white Gaussian

process with known residual covariance Ak(ti).

3.6.2 State and Parameter Estimates. This estimation technique uses the

information in all of the Kalman filter residuals to estimate the “true” parameter

vector in effect. This technique is optimal when there is a unique filter for each pos-
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sible combination of parameter values, which is only possible when the parameter(s)

of interest takes on just a finite number of possible values. We shall populate the

filter bank with K filters, each based on one of the K unique parameter vectors:

{a1, a2, . . . , aK}.

From the Bayesian point of view, the MMAE framework can be used to com-

pute a state (or parameter) estimate that is characterized by minimizing the MSE

between the predicted and measured state estimates; this is most often called an

MMSE estimate and is the conditional mean. We identify the Bayesian estimate as

the standard MMAE estimate and write it as [130, 132]

x̂MMAE(t+i ) , E{x(ti)|Z(ti) = Zi} =
K∑

k=1

x̂k(t
+
i ) pk(ti) (3.301)

where x̂k(t
+
i ) is the state estimate generated by the kth Kalman filter based on the

assumption that the parameter vector a(ti) = ak for all ti. The conditional covariance

of x(ti) computed by the MMAE is given by Equation (2.50) for finite-dimensional

systems [130] and for infinite-dimensional systems is

PMMAE(t+i )

, E
{
[x(ti)− x̂MMAE(t+i )] ¦ [x(ti)− x̂MMAE(t+i )]|Z(ti) = Zi

}
(3.302)

=
K∑

k=1

{
Pk(t

+
i ) + [x̂k(t

+
i )− x̂MMAE(t+i )] ¦ [x̂k(t

+
i )− x̂MMAE(t+i )]

}
pk(ti) (3.303)

where Pk(t
+
i ) is the state error covariance computed by the kth Kalman filter. Sim-

ilarly, the parameter estimate is given by

âMMAE(t+i ) , E{a(ti)|Z(ti) = Zi} =
K∑

k=1

ak pk(ti) (3.304)

with conditional covariance of a(ti) for finite-dimensional systems [129] as given in

Equation (2.54), and adapted for infinite-dimensional systems as
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Pa,MMAE(t+i )

, E
{
[a(ti)− âMMAE(t+i )] ¦ [a(ti)− âMMAE(t+i )]|Z(ti) = Zi

}
(3.305)

=
K∑

k=1

[ak − âMMAE(t+i )] ¦ [ak − âMMAE(t+i )] pk(ti) (3.306)

3.7 Summary

The early part of this chapter focused on defining various mathematical con-

cepts needed to construct the linear infinite-dimensional minimum variance unbiased

estimator (LIMVUE) rigorously — this is a central tool in the building of the infinite-

dimensional sampled-data Kalman filter (ISKF). Along the way, we introduced the

illustrative boxology technique that we use to convey the ISKF development, from

defining the primary probability space to the spaces occupied by the random vectors,

to the probability spaces induced by the random vectors representing the noises, the

observations, and the state. We generalized the LIMVUE for stochastic processes

to create a stochastic sequential estimator. Since the majority of the problems

that we study are described by infinite-dimensional continuous-time models, we ex-

tended the known finite-dimensional method for creating an equivalent discrete-time

model from its corresponding continuous-time model for infinite-dimensional models.

The dynamics model provides us with a tool to propagate the Gaussian conditional

state “density” between measurements, the first two moments of which are esti-

mated optimally using the stochastic LIMVUE. Then, we assembled the pieces to

form the ISKF, thus completing the array of filtering techniques that began with

Kalman’s first (discrete-time) filter [95] and the continuous-time Kalman-Bucy fil-

ter [96] shortly thereafter; subsequently, Falb’s [51] extension of the Kalman-Bucy

filter (for continuous-time measurements) to encompass systems with an infinite-

dimensional continuous-time description by developing it on a Hilbert space. The

chapter closed with a short discussion and report on the modified formulae for the

multiple model adaptive estimation (MMAE) methodology as applicable to a bank

of elemental ISKFs — the GIMMAE.
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IV. An Example: The Stochastic Heat Equation

4.1 Introduction

The state space model used in this stochastic estimation research is based on a

pair of mathematical expressions: a state equation that defines the evolution of a dy-

namic process through time and a measurement equation that defines the observation

process. In general, these equations may be either stochastic or deterministic; we

shall investigate the stochastic case. The state space model may be based on differ-

ential or difference equations; our work encompasses both varieties. When presented

with a continuous-time model featuring differential equations we shall re-express

them using their equivalent discrete-time difference equations. Finally, while the

dimension of the state space model is allowed to be infinite for theoretical purposes,

for computational purposes, we must have finite-dimensional equations. Therefore,

we shall present a straight-forward, yet novel, method for reposing the problem on

a finite-dimensional subspace.

In this chapter we will apply the theoretical methods developed in the preceding

chapter to a physically meaningful problem. We will estimate the temperature along

a slender cylindrical rod modeled by the stochastic heat equation, a parabolic partial

differential equation (PDE), using noise-corrupted finite-dimensional measurements1.

This example is a special case of the general theory developed in Chapter III since

our state, the temperature, is a scalar, while the observations are recorded in a

finite-dimensional vector of scalars. Many textbooks on PDEs, such as Berg and

McGregor [20] written for mathematicians, Farlow [52] for scientists and engineers,

and Gockenbach [62] for numerical-computational scientists and engineers, contain

an exposition on the heat equation. However, all of these texts solve the deterministic

problem as if the model were exact. Phillipson [161] also solved the deterministic

1This example was inspired by Example 5.39 in Curtain and Pritchard [38].
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problem, but he employed a least squares approach that admitted that there was

some uncertainty in the temperature (or state of the system). He employed the

Galerkin method2 to find two approximate solutions for the state expressed as a

linear combination of the eigenfunctions of the system and another useful ad hoc

approach using a linear combination of cubic splines to speed up convergence [161].

In a recent paper, Leland [116] presented a method for treating parabolic PDEs

(such as the stochastic heat equation problem) using a maximum likelihood estimator

for the parameter of interest, such as the thermal diffusivity. He used an approximate

time-invariant one-step predictor to avoid solving state and covariance equations;

additionally, his system was presumed to be in steady state. This paper by Leland is

representative of the other papers reviewed during this research in that it does not

include a measurement model to take into account the measurement process.

In this research, we employ an evolution equation to model the time-varying

dynamics of the system in question and a measurement model in order to estimate

the state of the system optimally. As we shall soon demonstrate, the method that

we employ to create the essentially-equivalent finite-dimensional discrete-time model

from the infinite-dimensional continuous-time model allows us to use the infinite-

dimensional sampled-data Kalman filter (ISKF) without additional approximations.

The resulting algorithm looks and behaves like the finite-dimensional sampled-data

Kalman filter that was reported in Chapter II.

4.2 Mathematical System Model

Creation of the mathematical system model is the first step in model-based esti-

mation. We have used familiar models for the dynamics and measurement processes

for two primary reasons: (1) to emphasize the applicability of the theory devel-

oped in the previous chapter and (2) to illustrate the techniques developed in this

2Numerous texts contain a paragraph, section, or chapter devoted to the explication of the
Galerkin method used to solve PDEs [89, 30, 62].
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chapter to transform an infinite-dimensional problem into an essentially-equivalent

finite-dimensional problem that one can easily implement on a digital computer.

4.2.1 Preliminary Background: The Heat Equation. The purpose of this

extended example is to demonstrate an exact method for employing the ISKF to es-

timate the temperature profile along the length of a slender cylindrical rod over time.

Let’s begin by describing the deterministic heat equation with Neumann boundary

conditions in one dimension augmented by a variable heat source [52]:

d

dt
x(t, ρ) = κ

∂2

∂ρ2
x(t, ρ) + u(t, ρ), 0 < ρ < 1, 0 < t < ∞ (4.1)

∂

∂ρ
x(t, 0) = 0, 0 < t < ∞ (4.2)

∂

∂ρ
x(t, 1) = 0, 0 < t < ∞ (4.3)

x(0, ρ) = x0(ρ), 0 < ρ < 1 (4.4)

where x is the temperature in degrees Celsius (◦C), t is the time in seconds, κ> 0

is the thermal diffusivity constant of the material in square meters per second, the

heat source is at u ◦C, and the position along the rod is indicated by ρ. Additionally,

the rod has an initial temperature of x0(ρ) and is laterally-insulated with insulated

ends (boundaries). Now let’s add a random component to the heat source — this

also makes the temperature random — then Equations (4.1) through (4.4) become

d

dt
x(t, ρ) = κ

∂2

∂ρ2
x(t, ρ) + u(t, ρ) + w(t, ρ), 0 < ρ < 1, 0 < t < ∞ (4.5)

∂

∂ρ
x(t, 0) = 0, 0 < t < ∞ (4.6)

∂

∂ρ
x(t, 1) = 0, 0 < t < ∞ (4.7)

x(0, ρ) = x0(ρ), 0 < ρ < 1 (4.8)

where w is a zero-mean white Gaussian noise process with strength Q and x0 is a
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Gaussian random variable with mean x̂0 and covariance P0. Note that Equations

(4.5) through (4.8) only represent the stochastic heat equation in a formal sense since

the solution is not properly defined in this “white-noise” continuous-time notation.

A properly defined model was given in Section 3.4 and we will use those results

in our example to describe properly the mathematical system model used for esti-

mating the temperature (state) of the slender cylindrical rod with noise-corrupted

measurements.

4.2.2 Model Mapping. In Chapter I we introduced a concept for mapping

an infinite-dimensional continuous-time model, a projection of the real world onto a

linear systems mind-set, to the equivalent infinite-dimensional discrete-time model;

the infinite-dimensional sampled-data Kalman filter (ISKF) described in Section 3.5

was derived specifically for this case. We continued by projecting this equivalent

model onto a finite-dimensional subspace to produce an essentially-equivalent finite-

dimensional discrete-time model that we can use to design an optimal filter with

which to estimate the state — by means of the sampled-data Kalman filter. Figure

4.1, an important part of Figure 1.1, gives an overview of the process. In this

section, we map the infinite-dimensional continuous-time model to the equivalent

infinite-dimensional discrete-time model, i.e., we execute the optimal discretization

of the time variable, the conceptual Topt operation, using the technique and results

presented in Section 3.4. In the next two sections we prepare the model for the

Kalman filter by projecting our equivalent infinite-dimensional discrete-time model

onto a finite-dimensional subspace; with this conceptual Sopt operator we obtain the

essentially-equivalent finite-dimensional discrete-time model. Then we construct the

conceptual Fopt by determining the finite-dimensional components of the sampled-

data Kalman filter in Section 4.3. In Chapter V we use the results from this chapter

to simulate the flow of heat through the slender cylindrical rod and to estimate the

temperature using noisy measurements.
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Space

Figure 4.1 Mapping the Infinite-Dimensional Continuous-Time Model to an
Essentially-Equivalent Finite-Dimensional Discrete-Time Model.

4.2.3 Discrete-Time Measurement Model. Let the following integral repre-

sent the operation of a sensor collecting information about the temperature of the

rod at time ti

z(ti) =

∫ 1

0

x(ti, ρ) dρ + v(ti) (4.9)

where z, x, and v are (scalar) stochastic functions in Hilbert spaces of random vari-

ables. However, this model would only allow us calculate the average temperature of

the slender cylindrical rod. So we propose to partition the integral into M segments

to represent a set of M sensors positioned along M equi-length sections of the rod

∫ 1

0

x(ti, ρ) dρ =

∫ 1/M

0

x(ti, ρ) dρ + · · ·+
∫ 1

(M−1)/M

x(ti, ρ) dρ (4.10)

If we were to evaluate Equation (4.10) directly, then we would lose all of the spatial

information. So, in order to preserve the spatial information, we propose to stack the

M integrals in an observation vector to represent the contributions of M individual

sensors

z(ti) =




∫ 1/M

0
x(ti, ρ) dρ

...

∫ 1

(M−1)/M
x(ti, ρ) dρ




+ v(ti) = H x(ti) + v(ti) (4.11)
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where z(ti) is a random M -vector of observations at time ti of the temperature x(ti, ρ)

as a function of position ρ, H is a linear transformation defined by the vector of M

integrals acting on the state, and v(ti) is a random noise vector. More specifically,

the random vector z(ti) ∈ Z̃ = L2(Ω, P ;Z) is a Lebesgue L2 function3 (in a separable

Hilbert space of functions) that maps the sample space4 Ω, to the realization space

Z = RM , as shown in Figure 4.2, while the scalar random variable x(ti) ∈ X̃ =

L2(Ω, P ;X), which is also a Lebesgue L2 function, maps the sample space to another

separable Hilbert space of Lebesgue L2 functions on the interval 0 ≤ ρ ≤ 1 written

as: X = L2([0, 1],R). We sometimes substitute the shorthand L2
[0,1] for the more

explicit notation L2([0, 1],R). A realization of the observation at time ti is labeled

zi ∈ RM . The zero-mean Gaussian noise process v has covariance matrix R(ti) at

time ti and covariance kernel

E
[
v(ti) vT(tj)

]
=





R(ti), ti = tj

0, ti 6= tj

(4.12)

with R(ti),0 ∈ RM×M , thus v is also a white process.

4.2.4 Continuous-Time Dynamics Model. The temperature distribution

of a slender cylindrical rod is well modeled by a scalar heat equation with additive

noise. Thus, we begin by writing the scalar heat equation as a stochastic differential

equation in differential form (versus the familiar derivative form) to guarantee the

3Recall from Chapter III that the Lebesgue L2 functions form a Banach space with finite norm

||x(ti)|| =
[∫ 1

0
|x(ti, ρ)|2dρ

]1/2

as defined in an example on page 3-7. Furthermore, the L2 functions

are absolutely square integrable. When associated with an inner product, the L2 Lebesgue functions
form a Hilbert space [122]. We need the completeness of a Hilbert space to assure ourselves that
all of its Cauchy sequences converge to a limit in the space and thus any sequence of random
vectors will also converge to a limit within the space [154]. An example on page 3-27 gives the
interpretation of the norm for Lebesgue functions representing the mapping induced by the random
vectors.

4Definition 41, on page 3-24, defines the complete probability space, denoted by the triplet
(Ω,F , P ), that we employ in this research, where Ω is a non-empty set called the sample space, F
is a σ-field which consists of all of the subsets of Ω, called events, and P is the probability measure.
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(Ω,F , P )

•
ω

Probability Space

z : Ω → Z
-

Z̃ = L2(Ω, P ;Z)

•
z(ti)

Random Vector Space

(Z,B(Z), Pz)

•
zi

Realization Space

Figure 4.2 Boxology of the Random Measurement Vector.

existence and uniqueness of the solution [38], just as we did in Equation (3.223) on

page 3-72

dx(t, ρ) = [F (ρ) x(t, ρ) + B u(t, ρ)]dt + db(t)

x(0, ρ) = x0(ρ)

(4.13)

where x is the stochastic temperature, u is a heat source, b is a noise process described

at the end of this subsection, B = 1 is a constant input distributor5, and F is a time-

invariant second-order partial differential operator. F is defined for every x ∈ D(F )

as

F x ≡ κ
∂2x

∂ρ2
for κ ∈ (0,∞), ρ ∈ (0, 1) (4.14)

for a domain described by

D(F ) =
{

x ∈ X̃ : xρ, xρρ ∈ X̃; xρ(0) = 0 = xρ(1)
}

(4.15)

and κ is the material thermal diffusivity constant. Since the stochastic temperature

x(t, ρ), for 0 ≤ ρ ≤ 1 is a continuous function over [0, 1], it is a member of an

infinite-dimensional vector space6. The stochastic state process, x, is a collection of

5We have retained B to demonstrate how it flows through the development.
6An infinite-dimensional linear space requires an infinite number of basis vectors (in this case

functions) to span the space. For example, the set of functions y(ρ) defined on the interval [0, 1]
requires an infinite number of basis functions to span the space. Thus, the scalar function y(ρ) has
an infinite dimension.
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random variables {x(t) : t ∈ [t0, tf ]}. The random variable x(t) ∈ X̃, is the same as

defined in the previous section, thus, X̃ = L2(Ω, P ;L2([0, 1],R)). The noise process7

b is an X-valued Wiener process8, described in Definition 61, with a time-invariant

(constant) diffusion Q ∈ R. The initial state x0 is an X-valued Gaussian random

process, see Definitions 59 and 51, with covariance operator P0 ∈ BLO(X̃), where

BLO(X̃) denotes the linear space of bounded linear operators (BLOs) on X̃.

4.2.5 Equivalent Discrete-Time Dynamics Model. The equivalent discrete-

time dynamics model for our scalar heat equation given in Equation (4.13) follows

from Equation (3.224) given on page 3-73:

x(ti+1) = Φ(ti+1 − ti) x(ti) + Bd(ti) u(ti) + wd(ti) (4.16)

where Φ(ti+1 − ti) is the state transition operator that we will define after we first

discuss the equivalent discrete-time input distributor, Bd,

Bd(ti) =

∫ ti+1

ti

Φ(ti+1 − s) B ds (4.17)

provided u(t) is a piece-wise constant function that is constant over each sample

period, Gd(ti) is not shown explicitly since it is an identity operator, and the equiv-

alent discrete-time dynamics noise process wd is a zero-mean white Gaussian defined

at each time ti by

wd(ti) =

∫ ti+1

ti

Φ(ti+1 − s) db(s) (4.18)

7In general, this noise process would be both a function of time and space; however, to make
this example more tractable, it is assumed to be a time-varying, spatially-invariant function.

8The Wiener process is also known as Brownian motion (and thus the choice of notation b); see
Definition 61 on page 3-39. For an interesting discussion on the Brownian motion process, see for
example, the book by Wiener, et al. [209]. In the derivative form of Equation (4.13), the db/dt
would represent the additive white noise – this is not the same as a Wiener process. Heuristically,
we often treat the hypothetical time derivative of the Wiener process db/dt as white Gaussian noise.
In short, do not confuse this Brownian motion b with a white Gaussian noise process!
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with equivalent discrete-time dynamics noise covariance kernel operator,

Σ[wd(ti), wd(tk)] = 0, for ti 6= tk, and covariance operator whenever ti = tk:

Σ[wd(ti)] =

∫ ti+1

ti

Φ(ti+1 − s) Q Φ∗(ti+1 − s) ds = Qd(ti) (4.19)

The state transition operator Φ is, in general, a function of both time arguments,

but here it is a function of a single parameter (the time difference) since F is time-

invariant as can be seen in Equation (4.14), and is defined as9 [38]

[Φ(t− t0) x0](ρ) =
∞∑

n=−∞
e−κn2π2(t−t0) cos(nπρ)

∫ 1

0

x0(ρ
′) cos(nπρ′) dρ′ (4.20)

For a discrete set of times, T, the state transition operator Φ becomes

[Φ(ti+1−ti) x(ti)](ρ) =
∞∑

n=−∞
e−κn2π2(ti+1−ti) cos(nπρ)

∫ 1

0

x(ti, ρ
′) cos(nπρ′) dρ′ (4.21)

4.2.6 Equivalent Infinite-Dimensional Discrete-Time Model. To summa-

rize, we shall employ the results from Chapter III as a template for composing the

dynamics and measurement model equations for this stochastic heat equation exam-

ple. The results in Section 3.4 enable us to write down the important equations for

the dynamics model that we have formally written in the introduction to this chap-

ter. Since we want to use the ISKF to estimate the temperature optimally along the

slender cylindrical rod, we require that our measurement model match the form of

a generalized stochastic measurement model as given in Definition 76. We satisfied

this requirement with a vector measurement model described in Section 4.2.3. Note

that this vector measurement process, z, is finite-dimensional — a special case of

the general theory developed in Chapter III which will adequately serve to illustrate

9It is not a simple process to find the state transition (or evolution) operator for a time varying F ;
see, for example, Engel and Nagel [48] for more evolution operators or Maybeck [129] for assistance
in determining state transition matrices.
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this research. Therefore, we may use the ISKF to estimate the scalar state process,

x, at times T = {t0, t1, . . . , tfinal} using the dynamics equation

x(ti+1) = Φ(ti+1 − ti) x(ti) + Bd(ti) u(ti) + wd(ti) (4.16)

where Φ(ti+1 − ti), Bd(ti), and wd(ti) are as previously described, for known control

inputs u(ti), given noise-corrupted sampled-data vector measurements of the form

z(ti) = H x(ti) + v(ti) (4.22)

where the measurement transformation, H, creates a column vector of M integrals

over the state as previously given in Equation (4.11), and v is the zero-mean white

Gaussian noise process.

4.2.7 Essentially-Equivalent Finite-Dimensional Discrete-Time Model. In

accordance with our stated methodology expressed by Figure 4.1 on page 4-5, we

started with an infinite-dimensional continuous-time model, mapped it to the equiv-

alent infinite-dimensional, discrete-time model, and then created an essentially-

equivalent finite-dimensional, discrete-time model. We shall use the ISKF with a

finite-dimensional approximation of the state function to estimate the state of the

system optimally on a particular subspace described by an essentially-equivalent

finite-dimensional, discrete-time model; in essence, we will be using the finite-

dimensional sampled-data Kalman filter.

During the derivation of the ISKF we made no attempt to define the attributes

of the various transformations, operators, and functions10 beyond what was needed

to use the tools of functional analysis properly. However, in the example developed in

this chapter, we have defined these transformations fully. Generally, it is not feasible

10Transformations, operators, and functions are all mappings, hence, we will often use the term
transformations to refer to all of them when it is not important to distinguish between the various
types of mappings.
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to implement an infinite-dimensional transformation using a finite-dimensional com-

puter algorithm with limited computational capabilities. Thus, our next task is to

find appropriate matrix representations of the infinite-dimensional transformations

on a finite-dimensional basis11.

The following process is carried out for each of the transformations and oper-

ators present in the ISKF. Let T be a transformation acting on the state, x ∈ X
and let Tx ∈ Y. We shall approximate the state function by projecting the state

onto a finite-dimensional subspace of X, namely: PX = {x̃ = Px : ∀x ∈ X} ∈ RN ,

where P is a projection operator and RN is an N -dimensional Euclidean space. The

approximate state is written as x̃ = αTβ, where α is a vector of coefficients corre-

sponding to the vector of basis elements, β. For the approximate state, x̃, we have

T x̃ ∈ PY. Evaluation of T x̃ yields an expression containing a finite-dimensional ma-

trix representation of the transformation, denoted by T̃. (Note that the tilde above

T is used to denote the finite-dimensional approximation of the infinite-dimensional

function or transformation.) Hence, whenever the state function x is limited to

a finite-dimensional subspace of the infinite-dimensional space, it reduces the di-

mensionality of the infinite-dimensional transformation such that we are left with a

finite-dimensional matrix representation!

Admittedly, there are many ways to approximate the state function. Since the

aim of this research is more in line with “demonstrating the concept” rather than “op-

timizing the methodology”, we have chosen to approximate the state function with

the first N terms of a Fourier series expansion of the function — this will be discussed

in more depth in the next section. Note that the finite-dimensional matrix represen-

tation of an infinite-dimensional transformation depends on the finite-dimensional

approximation of the state function.

11This process is conceptually analogous to reduced order filtering; in reduced order filtering,
relatively unimportant states of the system “truth” model are removed or combined with other
states in order to reduce the complexity of the model used to design a filter such that it becomes
a more cost effective implementation [129, 175, 176, 71]
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Thus, instead of propagating and updating the actual infinite-dimensional

transformations and functions as defined in the previous sections, we will propagate

and update matrices and vectors that represent these infinite-dimensional transfor-

mations and functions on a finite-dimensional subspace. In the end, our implemented

algorithm will be nearly identical to the standard sampled-data Kalman filter.

For finite-dimensional approximations of the state, input, and noise functions,

the system dynamics described by Equation (4.16) becomes

x̃(ti+1) = Φ(ti+1 − ti) x̃(ti) + Bd(ti) ũ(ti) + w̃d(ti) (4.23)

and Equation (4.22) for a given noise-corrupted sampled-data vector of measure-

ments takes the form

z(ti) = H x̃(ti) + v(ti) (4.24)

Just as we often work calculus and algebra problems as far as possible before

evaluating them for a particular numerical solution, we usually develop ancillary

relationships prior to employing the characteristics of the finite-dimensional approx-

imations. If we were to make the approximations first, then we would have to repeat

many steps of the derivations each time the approximation changed. However, the

results are the same, only the workload changes.

4.2.8 Approximating the Infinite-Dimensional State Via Projection. It is

impractical to determine the exact (infinite-dimensional) temperature function x

along the slender cylindrical rod using a finite number of sensors. Therefore, we

desire a suitable approximation for x. Since we know that the function x is an

element in a separable Hilbert space, it can be expanded in a Fourier series [154]

without approximation for time ti as

x(ti, ρ) =
∞∑

n=0

〈x(ti, ρ), βn(ρ)〉 βn(ρ) =
∞∑

n=0

αn(ti) βn(ρ) (4.25)
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with coefficients αn defined as

αn(ti) = 〈x(ti, ρ), βn(ρ)〉 =

∫ 1

0

x(ti, ρ) βn(ρ) dρ (4.26)

and the orthonormal set B∞ = {β0(ρ), β1(ρ), . . .}, defined as

βn(ρ) ,





1, n = 0

√
2 cos(nπρ), n > 0

(4.27)

forms an orthonormal basis for this Hilbert space. Thus, in this formulation of x, we

may have to compute a countably infinite number of coefficients at each time ti in

order to estimate the temperature along the rod accurately. Each coefficient, αn, is

computed by taking the inner product of the state with the corresponding member

of the basis, say βn, then

〈x(ti, ρ), βn(ρ)〉 =

〈 ∞∑
m=0

αm(ti) βm(ρ), βn(ρ)

〉
=

∞∑
m=0

αm(ti) 〈βm(ρ), βn(ρ)〉 (4.28)

The orthogonality property of an orthogonal basis reduces the inner product to

〈βm, βn〉 =





1, m = n

0, m 6= n





= δmn (4.29)

where δmn is known as the Kronecker delta. Hence we can write Equation (4.28) as

〈x(ti, ρ), βn(ρ)〉 =
∞∑

m=0

αm(ti) δmn(ρ) (4.30)

The right-hand side is clearly αn(ti) since δmn is zero for every term except m = n.

Therefore, Equation (4.26) is true and Equation (4.25) has been completely justified.
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The infinite-dimensional scalar state function x can be well approximated by

projecting the infinite-dimensional function, x, onto a finite-dimensional subspace by

truncating the Fourier series expansion after N terms. This makes good sense from

an engineering point of view — the information in the high frequency terms is often

dominated by noise; hence we are effectively low-pass filtering the state with an ideal

lowpass filter. Thus, projecting x onto a finite N -dimensional space is accomplished

by

x̃(ti, ρ) = [Px](ti, ρ) = P
[ ∞∑

n=0

αn(ti) βn(ρ)

]
(4.31)

where P is the projection operator, the coefficients α0, α1, . . . are as defined as above

in Equation (4.26), and a basis for this subspace is given in Equation (4.27). Thus,

x̃(ti, ρ) =
N−1∑
n=0

αn(ti) βn(ρ) (4.32)

and the basis is denoted by

BN = {β0(ρ), β1(ρ), . . . βN−1(ρ)} (4.33)

A more convenient form for Equation (4.32), using vector multiplication, is

x̃(ti, ρ) = αT(ti) β(ρ) (4.34)

where α(t) and β(ρ) are defined as column vectors:

α(ti) ≡
[

α0(ti) α1(ti) · · · αN−1(ti)

]T

(4.35)

β(ρ) ≡
[

β0(ρ) β1(ρ) · · · βN−1(ρ)

]T

(4.36)
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Additionally, the coordinate vector of x̃ with respect to the basis BN is [85]

x̃(ti, ρ) = [α(ti)]BN
(4.37)

Furthermore, the state estimation error is defined by

e(t−i ) , x(ti)− x̂(t−i ) (4.38)

and the finite-dimensional approximation of the state estimation error is given by a

truncated Fourier series expansion as:

ẽ(t−i , ρ) = Pe(t−i , ρ) =
N−1∑
n=0

εn(t−i ) βn(ρ) (4.39)

where the coefficients are determined by

εn(t−i ) = 〈e(t−i ), βn〉 (4.40)

Remark: In most applications, researchers have discretized the state x in the

spatial domain. In contrast, we have discretized the state in the spatial-frequency

domain and truncated the higher frequencies that are often dominated by noise. If

truncation performed by this projection operator causes too much ringing or other

undesirable effects in the spatial domain representation of the state, then perhaps

additional filtering techniques (or an entirely different technique) may be needed

in order to achieve good performance. Finally, by choosing another subset of basis

elements or by using a different basis altogether, we will, in general, produce different

matrix representations. Hence, the basis and projection operator employed can affect

the speed, cost, and effectiveness of the calculation as well as the accuracy of the

estimation process.
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4.3 Kalman Filtering Algorithm

An inspection of the sampled-data Kalman filtering algorithm discussed in

Section 2.3.2 reveals the following list of transformations

Φ(ti, ti−1),Bd(ti),Gd(ti),Qd(ti),P(t−i ),H(ti),R(ti),P(t+i ),A(ti),K(ti)

used by the algorithm to perform its optimal estimation of the state; we will often

refer to these transformations as the components of a Kalman filter12. Before we

derive the matrix representations for the transformations using a finite-dimensional

approximation of the state function, we shall first find the state transition operator

adjoint and the measurement distributor transformation adjoint, and perform some

preliminary work regarding the residual covariance matrix and the Kalman filter

gain transformation.

4.3.1 The State Transition Operator Adjoint Φ∗. The state transition

operator maps both a random state function and its realizations. For ease of de-

velopment, we shall begin by determining the state transition adjoint operator Φ∗

applied to a realization of the stochastic (state) temperature function. The following

fundamental equation relates how Φ ∈ BLO(X) is related to its adjoint13 via the

inner product, 〈·, ·〉, at time ti [154]

〈Φ(∆ti) x(ti−1), y(ti−1)〉 = 〈x(ti−1), Φ
∗(∆ti) y(ti−1)〉 (4.41)

for every x, y ∈ X = L2
[0,1] taken over the Hilbert space of absolutely square integrable

real-valued functions. By definition,

〈Φ(∆ti) x(ti−1), y(ti−1)〉 =

∫ 1

0

[Φ(∆ti) x(ti−1)](ρ) y(ti−1, ρ) dρ (4.42)

12In this example, Gd(ti) is an identity operator. Without loss of generality, we could have let
Gd(ti) be an identity operator in previous discussions.

13Let X and Y be Hilbert spaces, then for every pair of elements x ∈ X and y ∈ Y, the linear
transformation Ψ ∈ L(X,Y) is related to its adjoint via the inner product 〈Ψx, y〉Y = 〈x, Ψ∗y〉X
[154].
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Substituting in for [Φ(∆ti) x(ti−1)](ρ) using Equation (4.21) yields

〈Φ(∆ti) x(ti−1), y(ti−1)〉

=

∫ 1

0

[ ∞∑
n=−∞

e−κn2π2∆ti cos(nπρ)

∫ 1

0

x(ti−1, ρ
′) cos(nπρ′) dρ′

]
y(ti−1, ρ) dρ (4.43)

=

∫ 1

0

∞∑
n=−∞

e−κn2π2∆tiy(ti−1, ρ) cos(nπρ)

∫ 1

0

x(ti−1, ρ
′) cos(nπρ′) dρ′ dρ (4.44)

This inner product is finite because it is defined on the space of absolutely square

integrable functions, thus, the infinite sum in the integrand converges. Therefore,

by the Weierstrauss M-Test [7] we can interchange the ordering and pull the infinite

sum outside of the integral to get

〈Φ(∆ti) x(ti−1), y(ti−1)〉

=
∞∑

n=−∞
e−κn2π2∆ti

∫ 1

0

y(ti−1, ρ) cos(nπρ) dρ

∫ 1

0

x(ti−1, ρ
′) cos(nπρ′) dρ′ (4.45)

Next, we interchange the order of integrations by invoking the Fubini-Tonelli theorem

[194, 141, 7, 66] since y(ti−1, ρ) cos(nπρ) x(ti−1, ρ
′) cos(nπρ′) is absolutely integrable.

Thus, Equation (4.45) becomes

〈Φ(∆ti) x(ti−1), y(ti−1)〉

=

∫ 1

0

x(ti−1, ρ
′)

[ ∞∑
n=−∞

e−κn2π2∆ti cos(nπρ′)
∫ 1

0

y(ti−1, ρ) cos(nπρ) dρ

]
dρ′ (4.46)

Per Equation (4.21), the term inside the large square brackets in Equation (4.46) is

∞∑
n=−∞

e−κn2π2∆ti cos(nπρ′)
∫ 1

0

y(ti−1, ρ) cos(nπρ) dρ = [Φ(∆ti) y(ti−1)](ρ
′) (4.47)

Substituting this into Equation (4.46) gives

〈Φ(∆ti) x(ti−1), y(ti−1)〉 =

∫ 1

0

x(ti−1, ρ
′)[Φ(∆ti) y(ti−1)](ρ

′)dρ′ (4.48)
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A comparison of the right-hand sides of Equations (4.41) and (4.48) yields:

Φ∗ = Φ. When an operator is equal to its adjoint, the operator is termed self-

adjoint. For a matrix representation of the operator, the conjugate transpose of the

matrix yields the adjoint. Hence the matrix representation of a self-adjoint operator

is symmetric if the matrix is real, and Hermitian symmetric if complex.

4.3.2 The Measurement Distributor Transformation Adjoint H∗. In order

to find the filter-computed error covariance, A = HPH∗+R, we must first determine

H∗, the adjoint of H. For a given ω ∈ Ω, x(ω) = x ∈ X = L2
[0,1]. The transformation

H is defined for arbitrary x by

[Hx](ti) ,




∫ 1/M

0
x(ti, ρ) dρ

...

∫ 1

(M−1)/M
x(ti, ρ) dρ



∈ RM (4.49)

for some time ti ∈ {t1, . . . , tfinal}. Thus H is a vector of linear functionals. For any

ti ∈ {t1, . . . , tfinal}, x ∈ L2
[0,1], y ∈ RM , we can use the following definition of the

adjoint, an equality of inner products

〈Hx,y〉RM = 〈x,H∗y〉L2 (4.50)

to determine the adjoint H∗. The left-hand side of Equation (4.50) is given by

〈Hx,y〉RM =

[ ∫ 1/M

0

x(ti, ρ) dρ · · ·
∫ 1

(M−1)/M

x(ti, ρ) dρ

]
y(ti)

Performing the inner product yields

〈Hx,y〉RM

=

[∫ 1/M

0

x(ti, ρ) dρ

]
y1(ti) + · · ·+

[∫ 1

(M−1)/M

x(ti, ρ) dρ

]
yM(ti) (4.51)

=

∫ 1/M

0

x(ti, ρ) y1(ti) dρ + · · ·+
∫ 1

(M−1)/M

x(ti, ρ) yM(ti) dρ (4.52)
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Furthermore, the right-hand side of Equation (4.50) is

〈x,H∗y〉L2 =

∫ 1

0

x(ti, ρ) [H∗y](ti, ρ) dρ (4.53)

=
M∑

m=1

∫ m/M

(m−1)/M

x(ti, ρ) [H∗y](ti, ρ) dρ (4.54)

So,

M∑
m=1

∫ m/M

(m−1)/M

x(ti, ρ) ym(ti) dρ =
M∑

m=1

∫ m/M

(m−1)/M

x(ti, ρ) [H∗y](ti, ρ) dρ (4.55)

and for Equation (4.55) to be true, it follows that the summands must be equal for

each m so

∫ m/M

(m−1)/M

x(ti, ρ) ym(ti) dρ =

∫ m/M

(m−1)/M

x(ti, ρ) [H∗y](ti, ρ) dρ (4.56)

Thus, the integrands over each subinterval are equal almost everywhere in ρ

x(ti, ρ) ym(ti) = x(ti, ρ) [H∗y](ti, ρ) (4.57)

Therefore [H∗y](ti, ρ) = ym(ti) almost everywhere in ρ for every m = {1, . . . , M},
and any fixed ti. So, for fixed ti, the measurement distributor transformation adjoint

H∗ transforms a constant vector y(ti) ∈ RM into a piece-wise constant L2
[0,1] function

[H∗y](ti, ρ) = ym(ti), for
m− 1

M
≤ ρ ≤ m

M
(4.58)

4.3.3 The Residual Covariance Matrix A(ti). The residual covariance

operator A(ti) = HP (t−i )H∗ + R(ti), was previously defined in Equation (3.265).

We will show that HP (t−i )H∗ produces an M×M real-valued matrix; hence A is an

M×M real-valued matrix. For an arbitrary sample of z at time ti, the measurement

vector zi ∈ RM
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A(ti) zi = [HP (t−i )H∗ + R(ti)]zi (4.59)

= HP (t−i )H∗zi + R(ti) zi (4.60)

The second term is just matrix multiplication and requires no further discussion

at this time. On the other hand, the first term involves two transformations and

an operator and will require an extensive development. We shall begin by explicitly

calling out the form of error covariance operator P (t−i ) applied to the function H∗zi ∈
L2

[0,1] by

P (t−i )H∗ zi = E{[e(t−i ) ¦ e(t−i )]|Z(ti−1) = Zi−1}H∗ zi (4.61)

where E{·} is the conditional expectation operator14 and the outer product operator,

¦, is defined in Definition 14 in Chapter III. Next, we move H∗zi into the expectation

P (t−i )H∗zi = E{[e(t−i ) ¦ e(t−i )]H∗zi} (4.62)

and then use the definition of the outer product given in Equation (3.6) to obtain

P (t−i )H∗zi = E{e(t−i )〈e(t−i ),H∗zi〉L2} (4.63)

where the inner product is defined on the L2 space of functions for interval [0, 1]. The

inner product on the right-hand side can be equivalently expressed using the relation-

ship employed to define the adjoint of the measurement distributor transformation.

We get

〈e(t−i ),H∗zi〉L2 = 〈H e(t−i ), zi〉RM (4.64)

and since the inner product of two vectors in RM is

〈H e(t−i ), zi〉RM = [He(t−i )]Tzi (4.65)

14For ease of notation, we will suppress the explicit conditioning during the majority of the
development.
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thus

P (t−i )H∗zi = E{e(t−i ) [H e(t−i )]Tzi} (4.66)

Next we apply H to P (t−i )H∗zi to yield

HP (t−i )H∗zi =




∫ 1/M

0
E{e(t−i , ρ) [H e(t−i )]Tzi}dρ

...

∫ 1

(M−1)/M
E{e(t−i , ρ) [H e(t−i )]Tzi}dρ




(4.67)

where we now include the linear spatial variable ρ dependence when applicable.

Next, we pull the expectation operator out of the integrals

HP (t−i )H∗zi =




E
{∫ 1/M

0
e(t−i , ρ) [H e(t−i )]Tzi dρ

}

...

E
{∫ 1

(M−1)/M
e(t−i , ρ) [H e(t−i )]Tzi dρ

}




(4.68)

and then out of the array

HP (t−i )H∗zi = E




∫ 1/M

0
e(t−i , ρ) [H e(t−i )]Tzi dρ

...

∫ 1

(M−1)/M
e(t−i , ρ) [H e(t−i )]Tzi dρ




(4.69)

since a vector of expectations is equivalent to the expectation of the vector. For the

mth element, expanding H e(t−i ) yields

∫ m/M

(m−1)/M

e(t−i , ρ) [H e(t−i )]Tzi dρ

=

∫ m/M

(m−1)/M

e(t−i , ρ)

[ ∫ 1/M

0
e(t−i , ρ′)dρ′ · · · ∫ 1

(M−1)/M
e(t−i , ρ′) dρ′

]
zi dρ (4.70)

=

∫ m/M

(m−1)/M

e(t−i , ρ) dρ

[ ∫ 1/M

0
e(t−i , ρ′)dρ′ · · · ∫ 1

(M−1)/M
e(t−i , ρ′) dρ′

]
zi (4.71)
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where the second equality follows from the fact that the integrations are separable.

For notational convenience, we define the integrated error as

ηm(t−i ) ,
∫ m/M

(m−1)/M

e(t−i , ρ) dρ (4.72)

so that Equation (4.71) for the mth element becomes

∫ m/M

(m−1)/M

e(t−i , ρ) [H e(t−i )]Tzi dρ

= ηm(t−i )

[
η1(t

−
i ) · · · ηM(t−i )

]
zi (4.73)

=

[
ηm(t−i ) η1(t

−
i ) · · · ηm(t−i ) ηM(t−i )

]
zi (4.74)

Using Equation (4.74), HP (t−i )H∗zi becomes

HP (t−i )H∗zi = E




[
η1(t

−
i ) η1(t

−
i ) · · · η1(t

−
i ) ηM(t−i )

]
zi

...[
ηM(t−i ) η1(t

−
i ) · · · ηM(t−i ) ηM(t−i )

]
zi




(4.75)

= E




η1(t
−
i ) η1(t

−
i ) · · · η1(t

−
i ) ηM(t−i )

...
. . .

...

ηM(t−i ) η1(t
−
i ) · · · ηM(t−i ) ηM(t−i )




zi (4.76)

Applying the expectation to the individual elements of the matrix yields

HP (t−i )H∗zi =




E{η1(t
−
i ) η1(t

−
i )} · · · E{η1(t

−
i ) ηM(t−i )}

...
. . .

...

E{ηM(t−i ) η1(t
−
i )} · · · E{ηM(t−i ) ηM(t−i )}




zi (4.77)
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where the mnth element is

E{ηm(t−i ) ηn(t−i )} = E

{∫ m/M

(m−1)/M

e(t−i , ρ) dρ

∫ n/M

(n−1)/M

e(t−i , ρ′) dρ′
}

(4.78)

= E

{∫ m/M

(m−1)/M

∫ n/M

(n−1)/M

e(t−i , ρ) e(t−i , ρ′) dρ′ dρ

}
(4.79)

=

∫ m/M

(m−1)/M

∫ n/M

(n−1)/M

E
{
e(t−i , ρ) e(t−i , ρ′)

}
dρ′ dρ (4.80)

By the operator identity for arbitrary zi,

HP (t−i )H∗ =




E{η1(t
−
i ) η1(t

−
i )} · · · E{η1(t

−
i ) ηM(t−i )}

...
. . .

...

E{ηM(t−i ) η1(t
−
i )} · · · E{ηM(t−i ) ηM(t−i )}




(4.81)

and therefore the filter-computed error covariance operator is represented by a real

M ×M matrix

A(ti) =




E{η1(t
−
i ) η1(t

−
i )} · · · E{η1(t

−
i ) ηM(t−i )}

...
. . .

...

E{ηM(t−i ) η1(t
−
i )} · · · E{ηM(t−i ) ηM(t−i )}




+ R(ti) (4.82)

In this subsection we began with an M -vector of numbers, zi, and then trans-

formed it into a function using H∗. Application of the error covariance operator,

P (t−i ), to H∗zi returned a modified function. Finally, we transformed the function

P (t−i )H∗zi with H to create another M -vector of numbers. The composite operator:

HP (t−i )H∗ is thus a matrix of real numbers.
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4.3.4 The Kalman Gain Transformation K. The Kalman gain transfor-

mation K ∈ LT (Z,X), where Z = RM and X = L2
[0,1] for some time ti,

K(ti) = P (t−i )H∗A−1(ti) (4.83)

operates on the vector residual r at time ti

r(ti) = zi −Hx̂(t−i ) (4.84)

which for this problem is a vector of real scalars, i.e., r(ti) ∈ RM . Apply the gain to

the residual

[Kr](ti) = P (t−i )H∗A−1(ti) r(ti) (4.85)

= E{e(t−i ) ¦ e(t−i )}H∗A−1(ti) r(ti) (4.86)

= E{[e(t−i ) ¦ e(t−i )]H∗A−1(ti) r(ti)} (4.87)

where the expectation E{e(t−i ) ¦ e(t−i )} is actually a conditional expectation:

E{[e(t−i )¦e(t−i )]|Z(ti−1) = Zi−1}. Per the development in Section 4.3.2, which began

on page 4-18, note that H∗A−1(ti) r(ti) is an L2
[0,1] function. Using the definition of

the function outer product in Equation (3.6), we get

[Kr](ti) = E{e(t−i )〈e(t−i ),H∗A−1(ti) r(ti)〉L2} (4.88)

= E{e(t−i )〈H e(t−i ),A−1(ti) r(ti)〉RM} (4.89)

= E{e(t−i )[H e(t−i )]TA−1(ti) r(ti)} (4.90)

where the second line follows from the equivalence of inner products in the definition

of the adjoint and the third line is by definition of the inner product for vectors.
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Expanding [H e(t−i )]T into a vector yields

[Kr](ti) = E





e(t−i , ρ)




∫ 1/M

0
e(t−i , ρ′) dρ′

...

∫ 1

(M−1)/M
e(t−i , ρ′) dρ′




T

A−1(ti) r(ti)





(4.91)

= E








∫ 1/M

0
e(t−i , ρ) e(t−i , ρ′) dρ′

...

∫ 1

(M−1)/M
e(t−i , ρ) e(t−i , ρ′) dρ′




T

A−1(ti) r(ti)





(4.92)

and then moving the expectation operator into the row vector

[Kr](ti) =




E
{∫ 1/M

0
e(t−i , ρ) e(t−i , ρ′) dρ′

}

...

E
{∫ 1

(M−1)/M
e(t−i , ρ) e(t−i , ρ′) dρ′

}




T

A−1(ti) r(ti) (4.93)

=




∫ 1/M

0
E

{
e(t−i , ρ) e(t−i , ρ′)

}
dρ′

...

∫ 1

(M−1)/M
E

{
e(t−i , ρ) e(t−i , ρ′)

}
dρ′




T

A−1(ti) r(ti) (4.94)

where the expectation and integration operations commute and we note that the

integrand is related to the error covariance. Since Equation (4.94) applies for all

residuals r(ti), by operator identity, the Kalman gain transformation K(ti) is a row

vector of real numbers defined as

K(ti) =




∫ 1/M

0
E

{
e(t−i , ρ) e(t−i , ρ′)

}
dρ′

...

∫ 1

(M−1)/M
E

{
e(t−i , ρ) e(t−i , ρ′)

}
dρ′




T

A−1(ti) (4.95)
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While the gain is a finite-dimensional vector of numbers, we still must address the

integrals since they are, in general, infinite-dimensional operators. In Section 4.3.11,

we will show that, for the basis that we chose in Section 4.2.8, we can analytically

evaluate the integrals and store a vector of numbers to act as the approximate

measurement distributor matrix.

4.3.5 The State Transition Matrix Φ̃(∆ti+1). To find the matrix represen-

tation of our state transition operator, denoted as Φ̃(∆ti+1) because it requires a

finite-dimensional approximation of that operator (and thus the tilde over Φ versus

no tilde over Φ), we evaluate Φ(∆ti+1) x̃(ti), where ∆ti+1 = ti+1 − ti. Using the

defining relationship for the state transition operator, Equation (4.21), we obtain

[Φ(∆ti+1) x̃(ti)](ρ) =
∞∑

n=−∞
e−κn2π2∆ti+1 cos(nπρ)

∫ 1

0

cos(nπρ′) x̃(ti, ρ
′) dρ′ (4.96)

The evenness property of the summand allows us to double the sum over the positive

indices and separately compute the n = 0 term, thus:

[Φ(∆ti+1) x̃(ti)](ρ)

=
∞∑

n=1

2e−κn2π2∆ti+1 cos(nπρ)

∫ 1

0

cos(nπρ′) x̃(ti, ρ
′) dρ′ +

∫ 1

0

x̃(ti, ρ
′) dρ′ (4.97)

Simplifying the first term yields

∞∑
n=1

2e−κn2π2∆ti+1 cos(nπρ)

∫ 1

0

cos(nπρ′) x̃(ti, ρ
′) dρ′

=
∞∑

n=1

2e−κn2π2∆ti+1 cos(nπρ)

∫ 1

0

cos(nπρ′)
N−1∑
m=0

αm(ti) βm(ρ′) dρ′ (4.98)

=
∞∑

n=1

2e−κn2π2∆ti+1
βn(ρ)√

2

∫ 1

0

βn(ρ′)√
2

N−1∑
m=0

αm(ti) βm(ρ′) dρ′ (4.99)

=
∞∑

n=1

e−κn2π2∆ti+1βn(ρ)
N−1∑
m=0

αm(ti)

∫ 1

0

βn(ρ′) βm(ρ′) dρ′ (4.100)
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Recall that ∫ 1

0

βn(ρ′) βm(ρ′) dρ′ = 〈βn, βm〉 = δmn (4.101)

Thus the first term of Equation (4.97) becomes

∞∑
n=1

2e−κn2π2∆ti+1 cos(nπρ)

∫ 1

0

cos(nπρ′) x̃(ti, ρ
′) dρ′

=
∞∑

n=1

e−κn2π2∆ti+1βn(ρ)
N−1∑
m=0

αm(ti) δmn (4.102)

=
∞∑

n=1

N−1∑
m=0

e−κn2π2∆ti+1βn(ρ) αm(ti) δmn (4.103)

=
N−1∑
m=1

e−κm2π2∆ti+1αm(ti) βm(ρ) (4.104)

where we evaluated the Kronecker delta to obtain the last line. The second term in

Equation (4.97) is evaluated as

∫ 1

0

x̃(ti, ρ
′) dρ′ =

∫ 1

0

N−1∑
m=0

αm(ti) βm(ρ′) dρ′ (4.105)

=
N−1∑
m=0

αm(ti)

∫ 1

0

βm(ρ′) dρ′ (4.106)

= α0(ti) (4.107)

since the integral is zero for every index m > 0 and one when m = 0. Therefore,

Equation (4.97) becomes

[Φ(∆ti+1) x̃(ti)](ρ) = α0(ti) +
N−1∑
m=1

e−κm2π2∆ti+1αm(ti) βm(ρ) (4.108)

=
N−1∑
m=0

e−κm2π2∆ti+1αm(ti) βm(ρ) (4.109)
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where the base α0(ti) term rejoined the summation since both β0(ρ) and e0 are equal

to 1. Let φm(∆ti+1) = e−κm2π2∆ti+1 and then we may re-express the sum using matrix

multiplication as

[Φ(∆ti+1) x̃(ti)](ρ) = αT(ti) Φ̃(∆ti+1) β(ρ) (4.110)

where α and β are as previously defined in Equations (4.35) and (4.36), respectively,

and the N by N diagonal state transition matrix is defined as15

Φ̃(∆ti+1) ,




φ0(∆ti+1) 0 . . . 0

0 φ1(∆ti+1)
. . .

...

...
. . . . . . 0

0 . . . 0 φN−1(∆ti+1)




(4.111)

Φ̃ was set with bold type to emphasize that it is a matrix quantity and the tilde was

added above to indicate that it is a finite-dimensional representation (or approxima-

tion) of the state transition operator Φ. An equivalent way of expressing the state

transition matrix is by giving the diagonal entries

[
Φ̃

]
n
(ti+1 − ti) = e−κn2π2(ti+1−ti), n = 0, 1, . . . , N − 1 (4.112)

Additionally, we note that Equation (4.110) is a weighted inner product

[Φ(∆ti+1) x̃(ti)](ρ) = 〈α(ti), β(ρ)〉eΦ(∆ti+1)
(4.113)

15As a point of interest, we note that, per Theorem 6.4.4 of Naylor and Sell [154], there exists
a basis that will yield a diagonal matrix representation for self-adjoint linear operators that map
finite-dimensional Hilbert spaces to themselves...thus we can plainly see that our choice of bases
used to express our state function has an actual impact on our matrix representations.
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whereas x̃(ti) = [P x(ti)](ρ) = αT(ti) β(ρ) is the usual inner product in RN , which

can be thought of as an inner product with an identity for weighting. Note that,

for zero propagation time, ∆ti+1 = 0, Φ̃(∆ti+1) defined in Equation (4.111) is an

identity matrix as anticipated!

4.3.6 The Equivalent Discrete-Time Input Distributor Matrix B̃d(ti). We

have already determined the first term on the right-hand side of Equation (4.23),

Φ(ti+1 − ti) x̃(ti), now we shall address the second term: Bd(ti) ũ(ti), where

Bd(ti) =

∫ ti+1

ti

Φ(ti+1 − s) B ds (4.17)

Before we employ any approximations, we have

Bd(ti) u(ti) =

∫ ti+1

ti

Φ(ti+1 − s) B ds u(ti) (4.114)

which can be written as

Bd(ti) u(ti) = B

∫ ti+1

ti

Φ(ti+1 − s) u(ti) ds (4.115)

since B is a constant and u(ti), which is piece-wise constant, is not a function of the

integration variable s. Let

u(ti, ρ) =
∞∑

m=0

νm(ti) βm(ρ) (4.116)

and then

ũ(ti, ρ) = Pu(ti, ρ) =
N−1∑
m=0

νm(ti) βm(ρ) (4.117)

Hence by Equation (4.109)

Φ(ti+1 − s) ũ(ti) =
N−1∑
m=0

e−κm2π2(ti+1−s) νm(ti) βm(ρ) (4.118)
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Therefore, Equation (4.115) for ũ(ti) becomes

Bd(ti) ũ(ti) = B

∫ ti+1

ti

N−1∑
m=0

e−κm2π2(ti+1−s) νm(ti) βm(ρ) ds (4.119)

= B

N−1∑
m=0

νm(ti)

∫ ti+1

ti

e−κm2π2(ti+1−s) ds βm(ρ) (4.120)

For the m = 0 case, the integrand is one, and thus the integral yields [ti+1− ti], while

for m > 0, integrating yields

∫ ti+1

ti

e−κm2π2(ti+1−s) ds =
e−κm2π2ti+1

κm2π2

(
eκm2π2ti+1 − eκm2π2ti

)
(4.121)

=
1

κm2π2

(
1− e−κm2π2[ti+1−ti]

)
(4.122)

Thus,

Bd(ti) ũ(ti) = B

{
ν0(ti)[ti+1 − ti]β0(ρ)

+
N−1∑
m=1

νm(ti)
1

κm2π2

(
1− e−κm2π2[ti+1−ti]

)
βm(ρ)

}
(4.123)

Now let the equivalent discrete-time input distributor matrix, B̃d(ti) ∈ RN×N ,

be defined as a real diagonal matrix with diagonal entries of

[
B̃d

]
n
(ti) =





B[ti+1 − ti], n = 0

B
[
1− e−κn2π2(ti+1−ti)

]

κn2π2
, n = 1, 2, . . . , N − 1

(4.124)

As such, B̃d(ti) represents the operator Bd(ti) in finite dimensions. Therefore, we

can write Equation (4.123) as

Bd(ti) ũ(ti) = νT(ti) B̃d(ti) β(ρ) =
[
B̃d(ti) ν(ti)

]
BN

(4.125)
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where

ν(ti) ≡
[

ν0(ti) ν1(ti) · · · νN−1(ti)

]T

(4.126)

is a vector of the first N input function coefficients — see Equation (4.117).

4.3.7 Propagate the Finite-Dimensional State Estimate. The approx-

imate state propagation conditional moment is E[x̃(ti+1)|Z(ti) = Zi]. Since

E[x(ti+1)|Z(ti) = Zi] equals x̂(t−i+1); therefore E[x̃(ti+1)|Z(ti) = Zi] is ˜̂x(t−i+1). Thus,

˜̂x(t−i+1) = α̂T(t−i+1) β(ρ) =
[
α̂(t−i+1)

]
BN

(4.127)

using the previously updated state estimate ˜̂x(t+i )

[˜̂x(t−i+1)](ρ) = [Φ(ti+1 − ti) ˜̂x(t+i ) + Bd(ti) ũ(ti)](ρ) (4.128)

= α̂T(t+i ) Φ̃(∆ti+1) β(ρ) + νT(ti) B̃d(ti) β(ρ) (4.129)

=
[
Φ̃(∆ti+1) α̂(t+i ) + B̃d(ti) ν(ti)

]
BN

(4.130)

Since the basis vector β(ρ) is the same for all states, propagating the coefficients for

the approximate state function is the same as propagating the state itself, that is

α̂(t−i+1) = Φ̃(∆ti+1) α̂(t+i ) + B̃d(ti) ν(ti) (4.131)

where the state transition matrix, Φ̃(∆ti+1), is defined in Equation (4.111) and

the equivalent discrete-time input distributor matrix, B̃d(ti), is defined in Equation

(4.124).

4.3.8 The Equivalent Discrete-Time Dynamics Noise Covariance Matrix

Q̃d(ti). Per Equation (4.19), we know that the equivalent discrete-time dynamics

noise covariance operator is

Qd(ti) = E[wd(ti) ¦ wd(ti)] (4.132)
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Since the state transition operator is self-adjoint, i.e., Φ∗ = Φ, and Q is a real

number, we can rewrite Equation (4.19) as

Qd(ti) = Q

∫ ti+1

ti

Φ(ti+1 − s) Φ(ti+1 − s) ds (4.133)

where Qd is an infinite-dimensional bounded linear operator that acts on the state16.

From previous sections we have acquired the tools needed to find the matrix repre-

sentation for the covariance operator Qd when it is applied to a finite-dimensional

state. Thus,

Qd(ti) x̃(ti) = Q

∫ ti+1

ti

Φ(ti+1 − s) Φ(ti+1 − s) ds x̃(ti) (4.134)

= Q

∫ ti+1

ti

Φ(ti+1 − s) Φ(ti+1 − s) x̃(ti) ds (4.135)

where we have factored x̃(ti) = P x(ti) into the integral. We can simplify the inte-

grand by noting that {Φ(τ) : τ ≥ 0} forms a semi-group of operators and thus

[Φ(ti+1 − s) Φ(ti+1 − s) x̃(ti)](ρ) = [Φ(ti+1 − s + ti+1 − s) x̃(ti)](ρ) (4.136)

= αT(ti) Φ̃(ti+1 − s + ti+1 − s) β(ρ) (4.137)

= αT(ti) Φ̃(ti+1 − s) Φ̃(ti+1 − s) β(ρ) (4.138)

= αT(ti) Φ̃
2
(ti+1 − s) β(ρ) (4.139)

where the first equality is due to the semi-group property, the second line is analogous

to Equation (4.110), the third line follows from the definition of Φ̃, and the last line

16In the finite dimensional case, the equivalent discrete-time covariance was given in the form
of an n-by-n matrix Qd. According to matrix multiplication rules, an n-by-n matrix may only be
pre-multiplied by a matrix (or a vector) with n rows or post-multiplied by a matrix (or a vector)
with n columns; this corresponds to the same size as the state vector. Thus it should come as
no surprise that in our infinite-dimensional case, this equivalent discrete-time covariance operator
may, in fact, act on an infinite-dimensional state.
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is by convention. Thus, we can simplify Equation (4.135) to

Qd(ti) x̃(ti) = Q

∫ ti+1

ti

αT(ti) Φ̃
2
(ti+1 − s) β(ρ) ds (4.140)

= Q

∫ ti+1

ti

[
N−1∑
n=0

αn(ti) φ2
n(ti+1 − s) βn(ρ)

]
ds (4.141)

Furthermore, since the sum is finite, we can extract all non “s” terms out of the

integral to get:

Qd(ti) x̃(ti) = Q

N−1∑
n=0

αn(ti)

∫ ti+1

ti

φ2
n(ti+1 − s) ds βn(ρ) (4.142)

= Q

N−1∑
n=0

αn(ti)

∫ ti+1

ti

e−2κn2π2(ti+1−s) ds βn(ρ) (4.143)

Note that, for n = 0, the integrand becomes one, whereas for the n 6= 0 case, an

exponential remains. Integrating yields

Qd(ti) x̃(ti) = Q

{
α0(ti) [ti+1 − ti] β0(ρ)

+
N−1∑
n=1

αn(ti)
e−2κn2π2ti+1

2κn2π2

(
e2κn2π2ti+1 − e2κn2π2ti

)
βn(ρ)

}
(4.144)

and then multiplying out the exponential gives

Qd(ti) x̃(ti) = Q

{
α0(ti) [ti+1 − ti]β0(ρ)

+
N−1∑
n=1

αn(ti)
1

2κn2π2

[
1− e−2κn2π2(ti+1−ti)

]
βn(ρ)

}
(4.145)
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Now let the equivalent discrete-time dynamics noise covariance matrix,

Q̃d(ti) ∈ RN×N , be defined as a diagonal matrix with entries

[
Q̃d

]
n
(ti) =





Q [ti+1 − ti] , n = 0

Q
[
1− e−2κn2π2(ti+1−ti)

]

2κn2π2
, n = 1, 2, . . . , N − 1

(4.146)

As such, Q̃d(ti) is the finite-dimensional representation of the equivalent discrete-

time dynamics noise covariance operator Qd(ti). Therefore, we can write Equation

(4.145) as

Qd(ti) x̃(ti) = αT(ti) Q̃d(ti) β(ρ) (4.147)

4.3.9 First and Second Order Statistical Moments for the State Coefficients.

The discrete-time dynamics model for the approximate state function given by Equa-

tion (4.23) and rewritten here with decremented time indices as

x̃(ti) = Φ(ti − ti−1) x̃(ti−1) + Bd(ti−1) ũ(ti−1) + w̃d(ti−1) (4.148)

gives us a model for propagating the state on a finite-dimensional subspace from one

time sample to the next. Since we are, in effect, propagating a Gaussian conditional

probability density function (PDF), we need to have knowledge of the first two

statistical moments. The conditional state mean, corresponding to the propagation

cycle, is

E[x̃(t−i )|Z(ti−1) = Zi−1]

= E[Φ(ti − ti−1) x̃(ti−1) + Bd(ti−1) ũ(ti−1) + w̃d(ti−1)|Z(ti−1) = Zi−1] (4.149)
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The Kalman filter computes two different conditional17 error covariance op-

erators, P (t−i ) and P (t+i ), as defined in Definition 89, on page 3-83, by Equations

(3.251) and (3.253) respectively. Without loss in generality, we will treat the con-

ditional error covariance operator generically in the following development. Note

that all error covariances are assumed to be taken using a conditional expectation

operator; however, the conditioning will normally be suppressed to ease notation.

Next, we use the definition of the error covariance operator to obtain

P ỹ = E{ẽ ¦ ẽ}ỹ (4.150)

= E{[ẽ ¦ ẽ]ỹ} (4.151)

= E{ẽ〈ẽ, ỹ〉} (4.152)

where we have used the definition of the outer product for functions, as defined

in Equation (3.6) on page 3-10, to express the outer product in terms of an inner

product as shown. Now if the state estimation error18 e is approximated by ẽ = εTβ

and y is approximated with ỹ = γTβ, then expanding using summation notation

yields

P ỹ = E

{
N−1∑
n=0

εnβn

〈
N−1∑
m=0

εmβm,

N−1∑

l=0

γlβl

〉}
(4.153)

= E

{
N−1∑
n=0

εnβn

N−1∑
m=0

N−1∑

l=0

εmγl〈βm, βl〉
}

(4.154)

= E

{
N−1∑
n=0

εnβn

N−1∑
m=0

N−1∑

l=0

εmγlδml

}
(4.155)

17Recall that the expectation operator E is conditioned on the measurement history, Z(ti−1) =
Zi−1, for the propagate cycle from time ti−1 to time ti; while E is conditioned on the measurement
history, Z(ti) = Zi, for the state measurement update at time ti.

18For ease of notation, the conditional nature of the expectation operator, as well as the depen-
dencies on time t and space ρ for the state and error functions are suppressed in this development.
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Then evaluating the Kronecker delta gives

P ỹ = E

{
N−1∑
n=0

εnβn

N−1∑
m=0

εmγm

}
(4.156)

= E

{
N−1∑
m=0

γmεm

N−1∑
n=0

εnβn

}
(4.157)

= E
{
γTεεTβ

}
(4.158)

where the third line employs the compact vector notation.

Pulling the γ terms outside of the expectation operator gives

P ỹ = γTE
{
εεT

}
β (4.159)

= γTP̃β (4.160)

where the conditional error covariance operator P has a finite-dimensional matrix

representation of

P̃ , E
{
εεT

}
(4.161)

For completeness, we give the full notation for the propagation cycle

P̃(t−i ) , E
{
ε(t−i ) εT(t−i )|Z(ti−1) = Zi−1

}
(4.162)

and the update step

P̃(t+i ) , E
{
ε(t+i ) εT(t+i )|Z(ti) = Zi

}
(4.163)

4.3.10 The Propagation Error Covariance Matrix P̃(t−i+1). The propaga-

tion error covariance operator equation, given by Equation (3.271) of Theorem 91,
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at time ti+1 holds for all states x ∈ L2
[0,1]

P (t−i+1) x(ti) = [Φ(∆ti+1) P (t+i ) Φ∗(∆ti+1) + Qd(ti)]x(ti) (4.164)

= [Φ(∆ti+1) E{e(t+i ) ¦ e(t+i )}Φ∗(∆ti+1) + Qd(ti)]x(ti) (4.165)

where the update error covariance operator is P (t+i ) = E{e(t+i ) ¦ e(t+i )}. For a

finite-dimensional approximation of the state function, we have

P (t−i+1) x̃(ti) = [Φ(∆ti+1) E{ẽ(t+i ) ¦ ẽ(t+i )}Φ∗(∆ti+1) + Qd(ti)]x̃(ti) (4.166)

= Φ(∆ti+1) E{ẽ(t+i ) ¦ ẽ(t+i )}Φ∗(∆ti+1) x̃(ti) + Qd(ti) x̃(ti) (4.167)

Since we already know Qd(ti) x̃(ti) from Equation (4.147), we shall address the first

term in Equation (4.167)

Φ(∆ti+1) E{ẽ(t+i ) ¦ ẽ(t+i )}Φ∗(∆ti+1) x̃(ti)

= Φ(∆ti+1) E{[ẽ(t+i ) ¦ ẽ(t+i )]Φ∗(∆ti+1) x̃(ti)} (4.168)

Applying the definition of the outer product from Equation (3.6) yields

Φ(∆ti+1) E{ẽ(t+i ) ¦ ẽ(t+i )}Φ∗(∆ti+1) x̃(ti)

= Φ(∆ti+1) E{ẽ(t+i )〈ẽ(t+i ), Φ∗(∆ti+1) x̃(ti)〉} (4.169)

Expanding ẽ(t+i )〈ẽ(t+i ), Φ∗(∆ti+1) x̃(ti)〉 using summation notations yields

ẽ(t+i )〈ẽ(t+i ), Φ∗(∆ti+1) x̃(ti)〉

=
N−1∑
n=0

εn(t+i ) βn(ρ)

〈
N−1∑
m=0

εm(t+i ) βm(ρ),
N−1∑

l=0

φl(∆ti+1) αl(ti) βl(ρ)

〉
(4.170)
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and then moving the inner product inside (since all the other terms are independent

of ρ) produces

ẽ(t+i )〈ẽ(t+i ), Φ∗(∆ti+1) x̃(ti)〉

=
N−1∑
n=0

εn(t+i ) βn(ρ)
N−1∑
m=0

N−1∑

l=0

εm(t+i ) φl(∆ti+1) αl(ti)〈βm(ρ), βl(ρ)〉 (4.171)

=
N−1∑
n=0

εn(t+i ) βn(ρ)
N−1∑
m=0

N−1∑

l=0

εm(t+i ) φl(∆ti+1) αl(ti) δml(ρ) (4.172)

=
N−1∑
n=0

εn(t+i ) βn(ρ)
N−1∑

l=0

εl(t
+
i ) φl(∆ti+1) αl(ti) (4.173)

where we recognized and then evaluated the Kronecker delta δml = 〈βm, βl〉.

Reordering terms and then writing in terms of vector notation yields

ẽ(t+i )〈ẽ(t+i ), Φ∗(∆ti+1) x̃(ti)〉

=
N−1∑

l=0

φl(∆ti+1) αl(ti) εl(t
+
i )

N−1∑
n=0

εn(t+i ) βn(ρ) (4.174)

= αT(ti) Φ̃(∆ti+1) ε(t+i ) εT(t+i ) β(ρ) (4.175)

Now we re-apply the transition operator Φ(∆ti+1) and expectation operator19 E in

order to obtain the first term of Equation (4.167)

Φ(∆ti+1) E
{

αT(ti) Φ̃(∆ti+1) ε(t+i ) εT(t+i ) β(ρ)
}

= Φ(∆ti+1)
[
αT(ti) Φ̃(∆ti+1) E

{
ε(t+i ) εT(t+i )

}
β(ρ)

]
(4.176)

= αT(ti) Φ̃(∆ti+1) E
{
ε(t+i ) εT(t+i )

}
Φ̃(∆ti+1) β(ρ) (4.177)

= αT(ti) Φ̃(∆ti+1) P̃(t+i ) Φ̃(∆ti+1) β(ρ) (4.178)

where as before P̃(t+i ) = E
{
ε(t+i ) εT(t+i )

}
and we see that the state transition op-

erator Φ̃(∆ti+1) merely weights the inner product αT(ti) P̃(t+i ) Φ̃(∆ti+1) β(ρ) with

19This is still the appropriately conditioned expectation operator.

4-38



the diagonal matrix Φ̃(∆ti+1). Using Equations (4.147) and (4.178) we get

P (t−i+1) x̃(ti)

= αT(ti) Φ̃(∆ti+1) P̃(t+i ) Φ̃(∆ti+1) β(ρ) + αT(ti) Q̃d(ti) β(ρ) (4.179)

= αT(ti)
[
Φ̃(∆ti+1) P̃(t+i ) Φ̃(∆ti+1) + Q̃d(ti)

]
β(ρ) (4.180)

Since Equation (4.180) holds for any state, x(ti), the error covariance matrix for

propagation is

P̃(t−i+1) = Φ̃(∆ti+1) P̃(t+i ) Φ̃(∆ti+1) + Q̃d(ti) (4.181)

where the state transition matrix, Φ̃(∆ti+1), is defined in Equation (4.111) and

the equivalent discrete-time diffusion matrix, Q̃d(ti), is defined in Equation (4.146).

Thus, propagating the approximate finite-dimensional error covariance operator,

P̃(t−i+1), is achieved by a weighted inner product that depends on a diagonal matrix,

Φ̃(∆ti+1), related to the state transition operator Φ; a diagonal matrix Q̃d(ti), re-

lated to the equivalent discrete-time diffusion operator, Qd; and a symmetric matrix,

P̃(t+i ), due to the conditional error covariance following the measurement update.

4.3.11 The Measurement Distributor Matrix H̃. According to Theorem

3.11 of Hoffman and Kunze [85], there exists a unique matrix representation for

a finite-dimensional transformation relative to some particular ordered basis. So

our first task is to create a finite-dimensional transformation. The measurement

distributor transformation, H, as defined for an arbitrary realization of the state

function, x, is

Hx(ti) =




∫ 1/M

0
x(ti, ρ) dρ

...

∫ 1

(M−1)/M
x(ti, ρ) dρ




(4.182)
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Next, H applied to a finite-dimensional approximation of the state, x̃(ti), is

H x̃(ti) =




∫ 1/M

0
x̃(ti, ρ) dρ

...

∫ 1

(M−1)/M
x̃(ti, ρ) dρ




(4.183)

Using a truncated Fourier series expression, x̃(ti, ρ) = αT(ti) β(ρ) we get

H x̃(ti) =




∫ 1/M

0
αT(ti) β(ρ) dρ

...

∫ 1

(M−1)/M
αT(ti) β(ρ) dρ




(4.184)

The mth element of the vector can be simplified using the integrated basis µm,n for

m = {1, . . . , M} and n = {0, . . . , N − 1}

µm,n ,
∫ m/M

(m−1)/M

βn(ρ) dρ (4.185)

as

∫ m/M

(m−1)/M

αT(ti) β(ρ) dρ =

∫ m/M

(m−1)/M

N−1∑
n=0

αn(ti) βn(ρ) dρ (4.186)

=
N−1∑
n=0

αn(ti)

∫ m/M

(m−1)/M

βn(ρ) dρ (4.187)

=
N−1∑
n=0

αn(ti) µm,n (4.188)

= µT
m α(ti) (4.189)

where

µm ≡
[

µm,0 µm,1 · · · µm,N−1

]T

(4.190)
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Then we can write Equation (4.184) as

H x̃(ti) =




µT
1 α(ti)

...

µT
M α(ti)




=




µT
1

...

µT
M




α(ti) (4.191)

By placing the integrated basis elements {µm : 1 ≤ m ≤ M} in a matrix we get the

measurement distributor matrix defined by

H̃ ,




µT
1

...

µT
M




=




µ1,0 µ1,1 · · · µ1,N−1

...
...

...

µM,0 µM,1 · · · µM,N−1



∈ RM×N (4.192)

Note that H̃ is time-invariant and can be pre-computed analytically or with a nu-

merical technique. Hence Equation (4.191) can be written as

H x̃(ti) = H̃α(ti) (4.193)

For the problem at hand, Equation (4.185) can be written as

µm,n =





∫ m/M

(m−1)/M
dρ, n = 0

∫ m/M

(m−1)/M

√
2 cos(nπρ) dρ, n = 1, 2, . . . , N − 1

(4.194)

and then evaluated as

µm,n =





1
M

, n = 0
√

2
nπ

sin(nπρ)
∣∣m/M

(m−1)/M
, n = 1, 2, . . . , N − 1

(4.195)
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Note that while we may pre-compute and store this matrix since it is indepen-

dent of time, we could compute it at every step if desired. Now if the basis BN or the

measurement distributor transformation were a function of time, then the matrix H̃

would have to be computed at each time step since the matrix would no longer be

time-invariant. So, instead of propagating/updating the entire estimate of the state

function approximation, the estimated coefficients may be propagated as α̂(t−i ) and

updated to α̂(t+i ) using an online digital computer.

4.3.12 The Residual Covariance Matrix Ã(ti). In Section 4.3.3 we began

with A(ti) = HP (t−i )H∗ + R(ti) and ended with

A(ti) =




E{η1(t
−
i ) η1(t

−
i )} · · · E{η1(t

−
i ) ηM(t−i )}

...
. . .

...

E{ηM(t−i ) η1(t
−
i )} · · · E{ηM(t−i ) ηM(t−i )}




+ R(ti) (4.82)

where

E{ηm(t−i ) ηn(t−i )} =

∫ m/M

(m−1)/M

∫ n/M

(n−1)/M

E
{
e(t−i , ρ) e(t−i , ρ′)

}
dρ′ dρ (4.80)

In this section, we shall evaluate E{ηm(t−i ) ηn(t−i )} using the approximate error

ẽ(t−i , ρ) in order to calculate Ã(ti). Note that, for the first time, we have not reduced

the dimension, but rather, we have simply introduced an approximation so that we

could implement the operator using a digital algorithm.

Substituting the approximate error in Equation (4.39) in for the error in Equa-

tion (4.80) yields

E{η̃m(t−i ) η̃n(t−i )} =

∫ m/M

(m−1)/M

∫ n/M

(n−1)/M

E
{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
dρ′ dρ (4.196)
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Now use Equation (4.39) to obtain

E{η̃m(t−i ) η̃n(t−i )}

=

∫ m/M

(m−1)/M

∫ n/M

(n−1)/M

E

{
N−1∑
j=0

εj(t
−
i ) βj(ρ)

N−1∑

k=0

εk(t
−
i ) βk(ρ

′)

}
dρ′ dρ (4.197)

=

∫ m/M

(m−1)/M

∫ n/M

(n−1)/M

E

{
N−1∑
j=0

N−1∑

k=0

εj(t
−
i ) βj(ρ) εk(t

−
i ) βk(ρ

′)

}
dρ′ dρ (4.198)

Then, moving the expectation operator inside the double sum results in

E{η̃m(t−i ) η̃n(t−i )}

=

∫ m/M

(m−1)/M

∫ n/M

(n−1)/M

N−1∑
j=0

N−1∑

k=0

E
{
εj(t

−
i ) βj(ρ) εk(t

−
i ) βk(ρ

′)
}

dρ′ dρ (4.199)

=

∫ m/M

(m−1)/M

∫ n/M

(n−1)/M

N−1∑
j=0

N−1∑

k=0

E
{
εj(t

−
i ) εk(t

−
i )

}
βj(ρ) βk(ρ

′) dρ′ dρ (4.200)

Since the sums are finite, we can factor out the terms independent of ρ and ρ′

E{η̃m(t−i ) η̃n(t−i )}

=
N−1∑
j=0

N−1∑

k=0

E
{
εj(t

−
i ) εk(t

−
i )

}∫ m/M

(m−1)/M

∫ n/M

(n−1)/M

βj(ρ) βk(ρ
′) dρ′ dρ (4.201)

=
N−1∑
j=0

N−1∑

k=0

E
{
εj(t

−
i ) εk(t

−
i )

}∫ m/M

(m−1)/M

βj(ρ) dρ

∫ n/M

(n−1)/M

βk(ρ
′) dρ′ (4.202)

=
N−1∑
j=0

N−1∑

k=0

E
{
εj(t

−
i ) εk(t

−
i )

}
µm,j µn,k (4.203)

where the µm,j is the integrated basis that we defined in Equation (4.185). Using

matrix notation, we can rewrite the mnth element as

E{η̃m(t−i ) η̃n(t−i )} = µT
m E{ε(t−i ) εT(t−i )}µn = µT

m P̃(t−i ) µn (4.204)
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Hence our approximation of HP (t−i )H∗ is




E{η̃1(t
−
i ) η̃1(t

−
i )} · · · E{η̃1(t

−
i ) η̃M(t−i )}

...
. . .

...

E{η̃M(t−i ) η̃1(t
−
i )} · · · E{η̃M(t−i ) η̃M(t−i )}




=




µT
1 P̃(t−i ) µ1 · · · µT

1 P̃(t−i ) µM

...
. . .

...

µT
M P̃(t−i ) µ1 · · · µT

M P̃(t−i ) µM




(4.205)

=




µT
1

...

µT
M




P̃(t−i )

[
µ1 · · · µM

]
(4.206)

= H̃ P̃(t−i ) H̃T (4.207)

Therefore, the approximate filter-computed residual covariance matrix at time ti is

defined as

Ã(ti) = H̃ P̃(t−i ) H̃T + R(ti) ∈ RM×M (4.208)

4.3.13 The Kalman Gain Transformation Matrix K̃. In Section 4.3.4 we

found that the gain K(ti) = P (t−i ) H∗A−1(ti) can be written as

K(ti) =




∫ 1/M

0
E

{
e(t−i , ρ) e(t−i , ρ′)

}
dρ′

...

∫ 1

(M−1)/M
E

{
e(t−i , ρ) e(t−i , ρ′)

}
dρ′




T

A−1(ti) (4.95)

In order to evaluate the Kalman gain, we shall use the approximate error function,

ẽ(t−i , ρ) =
∑N−1

j=0 εj(t
−
i ) βj(ρ) and the approximate filter-computed error covariance,

A(ti) given in Equation (4.208).
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Substituting in for the approximate error function, we obtain the mth element

of the row vector in Equation (4.95)

∫ m/M

(m−1)/M

E
{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
dρ′

=

∫ m/M

(m−1)/M

E

{
N−1∑
j=0

εj(t
−
i ) βj(ρ)

N−1∑

k=0

εk(t
−
i ) βk(ρ

′)

}
dρ′ (4.209)

=

∫ m/M

(m−1)/M

E

{
N−1∑
j=0

N−1∑

k=0

εj(t
−
i ) βj(ρ) εk(t

−
i )βk(ρ

′)

}
dρ′ (4.210)

=

∫ m/M

(m−1)/M

N−1∑
j=0

N−1∑

k=0

E
{
εj(t

−
i ) βj(ρ) εk(t

−
i ) βk(ρ

′)
}

dρ′ (4.211)

=

∫ m/M

(m−1)/M

N−1∑
j=0

N−1∑

k=0

E
{
εj(t

−
i ) εk(t

−
i )

}
βj(ρ) βk(ρ

′) dρ′ (4.212)

Noting that the integral of a finite sum is a sum of integrals

∫ m/M

(m−1)/M

E
{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
dρ′

=
N−1∑
j=0

N−1∑

k=0

E
{
εj(t

−
i ) εk(t

−
i )

}
βj(ρ)

∫ m/M

(m−1)/M

βk(ρ
′) dρ′ (4.213)

=
N−1∑
j=0

N−1∑

k=0

E
{
εj(t

−
i ) εk(t

−
i )

}
βj(ρ) µm,k (4.214)

where the integrated basis elements µm,k was defined in Equation (4.185). Now using

vector notation, we can write Equation (4.214) as

∫ m/M

(m−1)/M

E
{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
dρ′ = βT(ρ) P̃(t−i ) µm (4.215)

Collecting the mth element from Equation (4.215) and the results from Equation

(4.208) for the projected filter-computed residual covariance, we have the represen-

tation of the Kalman gain transformation in the subspace chosen, also known as the
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Kalman gain matrix :

K̃(ti) =

[
βT(ρ) P̃(t−i ) µ1 · · · βT(ρ) P̃(t−i ) µM

] [
H̃ P̃(t−i ) H̃T + R(ti)

]−1

(4.216)

= βT(ρ) P̃(t−i )

[
µ1 · · · µM

] [
H̃ P̃(t−i ) H̃T + R(ti)

]−1

(4.217)

= βT(ρ) P̃(t−i ) H̃T
[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

(4.218)

Thus the Kalman gain matrix with respect to the basis BN is20

K̃(ti) =

[
P̃(t−i ) H̃T

[
H̃ P̃(t−i ) H̃T + R(ti)

]−1
]

BN

∈ RN×M (4.219)

4.3.14 The Updated State Estimate x̂(t+i ). The approximate updated state

estimate is ˜̂x(t+i )

˜̂x(t+i ) = ˜̂x(t−i ) + K̃(ti) r̃(ti) (4.220)

= α̂T(t−i ) β(ρ) + K̃(ti) r̃(ti) (4.221)

where the approximate measurement residual — approximate because the predicted

measurement is an approximation — is given by

r̃(ti) = zi −H ˜̂x(t−i ) = zi − H̃ α̂(t−i ) (4.222)

Substituting in for the Kalman gain matrix defined in Equation (4.218) yields

˜̂x(t+i ) = α̂T(t−i ) β(ρ) + βT(ρ) P̃(t−i ) H̃T
[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

r̃(ti) (4.223)

= α̂T(t−i ) β(ρ) +

{
P̃(t−i ) H̃T

[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

r̃(ti)

}T

β(ρ) (4.224)

=

[
α̂(t−i ) +

{
P̃(t−i ) H̃T

[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

r̃(ti)

}]T

β(ρ) (4.225)

20See the coordinate vector notation introduced in Equation (4.37) on page 4-15.
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where the second equality follows from the fact that the transpose of a scalar is a

scalar. Additionally, since the basis BN is the same for all functions, we can write

the approximate state update in terms of the basis

˜̂x(t+i ) =

[
α̂(t−i ) + P̃(t−i ) H̃T

[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

r̃(ti)

]

BN

(4.226)

Thus we can update the state by updating the approximate state function coefficients

α̂(t+i ) = α̂(t−i ) + P̃(t−i ) H̃T
[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

r̃(ti) (4.227)

where the propagated state coefficients, α̂(t−i ), are defined in Equation (4.131), the

propagated error covariance matrix, P̃(t−i ), is defined in Equation (4.162) and com-

puted in Equation (4.181), the measurement distributor matrix, H̃, is described in

Equation (4.192), and the measurement noise covariance, R(ti), is assumed known.

4.3.15 The Updated Error Covariance Operator P (t+i ). To generate a

matrix representation for the updated error covariance operator we begin by recasting

Equation (3.269) for this problem as

P (t+i ) = P (t−i )−K(ti)HP (t−i ) (4.228)

for an arbitrary state x at time ti

P (t+i ) x(ti) = [P (t−i )−K(ti)HP (t−i )]x(ti) (4.229)

= P (t−i ) x(ti)−K(ti)HP (t−i ) x(ti) (4.230)

By definition,

P (t−i ) x(ti) = E{[e(t−i ) ¦ e(t−i )]|Z(ti−1) = Zi−1}x(ti) (4.231)
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and (dropping the explicit conditioning on the measurement history) this can be

written as

P (t−i ) x(ti) = E{[e(t−i ) ¦ e(t−i )]x(ti)} (4.232)

= E{e(t−i )〈e(t−i ), x(ti)〉L2} (4.233)

where the second line follows from the definition of the outer product given in Equa-

tion (3.6) on page 3-10. Substituting this result into Equation (4.230) and then

expanding the measurement distributor transformation in the following line yields

P (t+i ) x(ti) = E{e(t−i )〈e(t−i ), x(ti)〉L2} −K(ti)HE{e(t−i )〈e(t−i ), x(ti)〉L2} (4.234)

Explicitly writing out the spatial dependence of the state and the error yields

P (t+i ) x(ti) = E{e(t−i , ρ)〈e(t−i , ρ), x(ti, ρ)〉L2}

−K(ti)




∫ 1/M

0
E{e(t−i , ρ)〈e(t−i , ρ), x(ti, ρ)〉L2}dρ

...

∫ 1

(M−1)/M
E{e(t−i , ρ)〈e(t−i , ρ), x(ti, ρ)〉L2}dρ




(4.235)

The first term in Equation (4.235) and the repeated integrand are the same; evalu-

ating yields

E{e(t−i , ρ)〈e(t−i , ρ), x(ti, ρ)〉L2} = E

{
e(t−i , ρ)

∫ 1

0

e(t−i , ρ′) x(ti, ρ
′) dρ′

}
(4.236)

= E

{∫ 1

0

e(t−i , ρ) e(t−i , ρ′) x(ti, ρ
′) dρ′

}
(4.237)

=

∫ 1

0

E
{
e(t−i , ρ) e(t−i , ρ′) x(ti, ρ

′)
}

dρ′ (4.238)

=

∫ 1

0

E
{
e(t−i , ρ) e(t−i , ρ′)

}
x(ti, ρ

′) dρ′ (4.239)
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Substituting the results of Equation (4.239) back into Equation (4.235) gives

P (t+i ) x(ti) = P (t−i ) x(ti)−K(ti)HP (t−i ) x(ti) (4.240)

=

∫ 1

0

E
{
e(t−i , ρ) e(t−i , ρ′)

}
x(ti, ρ

′) dρ′

−K(ti)




∫ 1/M

0

∫ 1

0
E

{
e(t−i , ρ) e(t−i , ρ′)

}
x(ti, ρ

′) dρ′ dρ

...

∫ 1

(M−1)/M

∫ 1

0
E

{
e(t−i , ρ) e(t−i , ρ′)

}
x(ti, ρ

′) dρ′ dρ



(4.241)

where the Kalman gain is as defined in Equation (4.95).

Now that we have written out P (t+i ) x(ti), we can substitute in the finite-

dimensional approximations to determine the matrix representation for P (t+i ). As

before, we replace the infinite-dimensional error and state functions with functions

via the truncated Fourier series as and the Kalman gain approximation was given

by Equation (4.219), thus

P (t+i ) x̃(ti) = P (t−i ) x̃(ti)− K̃(ti)HP (t−i ) x̃(ti) (4.242)

=

∫ 1

0

E
{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
x̃(ti, ρ

′) dρ′

− K̃(ti)




∫ 1/M

0

∫ 1

0
E

{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
x̃(ti, ρ

′) dρ′ dρ

...

∫ 1

(M−1)/M

∫ 1

0
E

{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
x̃(ti, ρ

′) dρ′ dρ



(4.243)

Evaluating the first term, P (t−i ) x̃(ti), we get

∫ 1

0

E
{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
x̃(ti, ρ

′) dρ′

=

∫ 1

0

E

{
N−1∑
j=0

εj(t
−
i ) βj(ρ)

N−1∑

k=0

εk(t
−
i ) βk(ρ

′)

}
N−1∑

l=0

αl(ti) βl(ρ
′) dρ′ (4.244)
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Extending the expectation operator to include the deterministic quantities yields

∫ 1

0

E
{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
x̃(ti, ρ

′) dρ′

=

∫ 1

0

E

{
N−1∑
j=0

εj(t
−
i ) βj(ρ)

N−1∑

k=0

εk(t
−
i ) βk(ρ

′)
N−1∑

l=0

αl(ti) βl(ρ
′)

}
dρ′ (4.245)

=

∫ 1

0

E

{
N−1∑
j=0

N−1∑

k=0

N−1∑

l=0

εj(t
−
i ) βj(ρ) εk(t

−
i ) βk(ρ

′) αl(ti) βl(ρ
′)

}
dρ′ (4.246)

and then we move the expectation operator inside the summations

∫ 1

0

E
{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
x̃(ti, ρ

′) dρ′

=

∫ 1

0

N−1∑
j=0

N−1∑

k=0

N−1∑

l=0

E
{
εj(t

−
i ) βj(ρ) εk(t

−
i ) βk(ρ

′) αl(ti) βl(ρ
′)
}

dρ′ (4.247)

=

∫ 1

0

N−1∑
j=0

N−1∑

k=0

N−1∑

l=0

E
{
εj(t

−
i ) εk(t

−
i )

}
βj(ρ) βk(ρ

′) αl(ti) βl(ρ
′) dρ′ (4.248)

=
N−1∑
j=0

N−1∑

k=0

N−1∑

l=0

E
{
εj(t

−
i ) εk(t

−
i )

}
βj(ρ) αl(ti)

∫ 1

0

βk(ρ
′) βl(ρ

′) dρ′ (4.249)

where in the last line we move all the terms independent of ρ′ out in front of the

integral. Note that the integral
∫ 1

0
βk(ρ

′) βl(ρ
′) dρ′ is simply the Kronecker delta,

thus

∫ 1

0

E
{
ẽ(t−i , ρ) ẽ(t−i , ρ′)

}
x̃(ti, ρ

′) dρ′

=
N−1∑
j=0

N−1∑

k=0

N−1∑

l=0

E
{
εj(t

−
i ) εk(t

−
i )

}
βj(ρ) αl(ti) δkl (4.250)

=
N−1∑
j=0

N−1∑

k=0

αk(ti) E
{
εj(t

−
i ) εk(t

−
i )

}
βj(ρ) (4.251)

= αT(ti) E
{
ε(t−i ) εT(t−i )

}
β(ρ) (4.252)

= αT(ti) P̃(t−i ) β(ρ) (4.253)
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and therefore the mth element of the vector on the right-hand side of Equation

(4.241) is
∫ m/M

(m−1)/M

αT(ti) E
{
ε(t−i ) εT(t−i )

}
β(ρ) dρ

=

∫ m/M

(m−1)/M

N−1∑
j=0

N−1∑

k=0

αk(ti) E
{
εj(t

−
i ) εk(t

−
i )

}
βj(ρ) dρ (4.254)

=
N−1∑
j=0

N−1∑

k=0

αk(ti) E
{
εj(t

−
i ) εk(t

−
i )

}∫ m/M

(m−1)/M

βj(ρ) dρ (4.255)

=
N−1∑
j=0

N−1∑

k=0

αk(ti) E
{
εj(t

−
i ) εk(t

−
i )

}
µm,j (4.256)

where the integrated basis, µm,j =
∫ m/M

(m−1)/M
βj(ρ) dρ, was defined in Equation (4.185).

Rearranging gives

∫ m/M

(m−1)/M

αT(ti) E
{
ε(t−i ) εT(t−i )

}
β(ρ) dρ

=
N−1∑
j=0

N−1∑

k=0

µm,jE
{
εj(t

−
i ) εk(t

−
i )

}
αk(ti) (4.257)

= µT
m E

{
ε(t−i ) εT(t−i )

}
α(ti) (4.258)

= µT
m P̃(t−i ) α(ti) (4.259)

Thus,

HP (t−i ) x̃(ti) =




µT
1 P̃(t−i ) α(ti)

...

µT
M P̃(t−i ) α(ti)




(4.260)

=




µT
1

...

µT
M




P̃(t−i ) α(ti) (4.261)

= H̃ P̃(t−i ) α(ti) (4.262)
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It then follows that the first term of Equation (4.241) becomes

P (t+i ) x̃(ti)

= αT(ti) P̃(t−i ) β(ρ)

−βT(ρ) P̃(t−i ) H̃T
[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

H̃ P̃(t−i ) α(ti) (4.263)

= αT(ti) P̃(t−i ) β(ρ)

−αT(ti) P̃(t−i ) H̃T
[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

H̃ P̃(t−i ) β(ρ) (4.264)

= αT(ti)

{
P̃(t−i )− P̃(t−i ) H̃T

[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

H̃ P̃(t−i )

}
β(ρ) (4.265)

Since Equation (4.265) applies to every state, by operator equality, the error covari-

ance matrix following the measurement update is

P̃(t+i ) = P̃(t−i )− P̃(t−i ) H̃T
[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

H̃ P̃(t−i ) (4.266)

where the propagated error covariance matrix, P̃(t−i ), is defined in Equation (4.162)

and computed in Equation (4.181), the measurement distributor matrix, H̃, is de-

scribed in Equation (4.192), and the measurement noise covariance, R(ti), is assumed

known.

4.3.16 Summary. The previous section began by describing the deter-

ministic heat equation. Then we proceeded to develop the infinite-dimensional,

continuous-time dynamics model of the heat equation and a sampled-data measure-

ment model, which led to the creation of the equivalent infinite-dimensional, discrete-

time dynamics model. At the end of the section we described how we could derive

an essentially-equivalent finite-dimensional discrete-time model from the equivalent

infinite-dimensional, discrete-time model. In this section we have systematically de-

termined the finite-dimensional matrix approximations and representations of the

multitude of components that comprise the ISKF in such a fashion that we have
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synthesized a sampled-data Kalman filter to estimate optimally a finite number of

the coefficients associated with a Fourier series expansion of the true state tempera-

ture function of the slender cylindrical rod. In preparation for simulating an MMAE

to estimate the temperature of the rod adaptively, we summarize the important

equations for this sampled-data Kalman filter.

The state coefficients are propagated by

α̂(t−i+1) = Φ̃(∆ti+1) α̂(t+i ) + B̃d(ti) ν(ti) (4.131)

with error covariance

P̃(t−i+1) = Φ̃(∆ti+1) P̃(t+i ) Φ̃(∆ti+1) + Q̃d(ti) (4.181)

where the state transition matrix, Φ̃(∆ti+1), for ∆ti+1 = ti+1 − ti, is N by N with

diagonal elements

[
Φ̃

]
n
(ti+1 − ti) = e−κn2π2(ti+1−ti), n = 0, 1, . . . , N − 1 (4.112)

the equivalent discrete-time input distributor is an N by N diagonal matrix with

elements

[
B̃d

]
n
(ti) =





B[ti+1 − ti], n = 0

B
[
1− e−κn2π2(ti+1−ti)

]

κn2π2
, n = 1, 2, . . . , N − 1

(4.124)

and the equivalent discrete-time system dynamics noise covariance is an N by N

diagonal matrix with elements

[
Q̃d

]
n
(ti) =





Q [ti+1 − ti] , n = 0

Q
[
1− e−2κn2π2(ti+1−ti)

]

2κn2π2
, n = 1, 2, . . . , N − 1

(4.146)
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Since Φ̃ and B̃d are diagonal matrices, the approximate state function coefficient

estimates, α̂0, . . . , α̂N−1, are independently propagated; using Equation (4.131) we

can write the propagation of the nth coefficient as

α̂n(t−i ) =
[
Φ̃

]
n
(ti − ti−1) α̂n(t+i−1) +

[
B̃d

]
n
(ti) νn(ti) (4.267)

The measurement update of the approximate state function coefficient estimates is

performed by

α̂(t+i ) = α̂(t−i )− P̃(t−i ) H̃T
[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

r̃(ti) (4.227)

where the approximate residual is given by

r̃(ti) = zi − H̃ α̂(t−i ) (4.222)

with error covariance given as

P̃(t+i ) = P̃(t−i )− P̃(t−i ) H̃T
[
H̃ P̃(t−i ) H̃T + R(ti)

]−1

H̃ P̃(t−i ) (4.266)

where

H̃ =




µ1,0 µ1,1 · · · µ1,N−1

...
...

...

µM,0 µM,1 · · · µM,N−1



∈ RM×N (4.192)

and the elements of H̃ are

µm,n =





1
M

, n = 0
√

2
nπ

sin(nπρ)
∣∣m/M

(m−1)/M
, n = 1, 2, . . . , N − 1

(4.195)
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4.4 Multiple Model Adaptive Estimation

Now that we have determined the finite-dimensional matrix representations

needed to implement the ISKF using a digital computer algorithm, next we shall

modify the MMAE framework, that was reviewed in Chapter II and extended in

Chapter III, in order to implement the MMAE in a simulation of this example in

Chapter V.

The formation of the elemental filters was discussed in Section 2.3.3.3. Recall

that each elemental filter in the bank (shown in Figure 2.1 on page 2-8) is based upon

a different hypothesis for a parameter value used to model the real world system,

i.e., the kth elemental filter is constructed assuming that a(ti) = ak, where ak is

a member of discrete set A which is a subset of RJ , the J-dimensional real vector

space; J specifies the number of parameters that are adaptively estimated.

In this research, we assume that the prior probability is pk(t0) = 1/K for

k = 1, . . . , K and that the hypothesis conditional probability for all K hypotheses

[125, 107, 11, 108, 130, 132] is computed recursively by

pk(ti) =
fz(ti)|a(ti),Z(ti−1)(zi|ak,Zi−1) pk(ti−1)∑K
j=1 fz(ti)|a(ti),Z(ti−1)(zi|aj,Zi−1) pj(ti−1)

(4.268)

where the conditional PDF,

fz(ti)|a(ti),Z(ti−1)(zi|ak,Zi−1) = βk(ti) exp
{−1

2
Lk(ti)

}
(4.269)

is a zero-mean Gaussian with covariance Ãk(ti). The PDF scale factor is given by

βk(ti) =
1

(2π)M/2|Ãk(ti)|1/2
(4.270)

with measurement dimension M , and the likelihood quotient, which is a measure of

the “correctness” of the parameter values for this particular model [130], being

Lk(ti) = r̃T
k(ti) Ã

−1
k (ti) r̃k(ti) (4.271)
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where r̃k(ti) and Ãk(ti) are the approximate measurement residual and approximate

measurement residual covariance calculated by the kth elemental filter. Note that

the primary purpose of βk(ti) is to scale the PDF so that it integrates to one and

that the important information to be retrieved from this PDF is contained in Lk(ti).

The blended state function coefficient estimate is

α̂MMAE(t+i ) =
K∑

k=1

α̂k(t
+
i ) pk(ti) (4.272)

where α̂k(t
+
i ) is the state function coefficient estimate generated by the kth elemental

filter based on the assumption that the parameter vector a(ti) = ak. The conditional

covariance of the state function coefficients is

P̃MMAE(t+i )

=
K∑

k=1

{
P̃k(t

+
i ) + [α̂k(t

+
i )− α̂MMAE(t+i )][α̂k(t

+
i )− α̂MMAE(t+i )]T

}
pk(ti)(4.273)

where P̃k(t
+
i ) is the state coefficient error covariance computed by the kth elemental

filter. Since we are really interested in the temperature state function (versus a

vector of coefficients), use Equation (4.34) to recreate the state:

ˆ̃x(ti, ρ) = α̂T(ti) β(ρ) (4.274)

The parameter estimate is given by

âMMAE(t+i ) =
K∑

k=1

ak pk(ti) (4.275)

with conditional covariance of a(ti) [129]:

Pa,MMAE(t+i ) =
K∑

k=1

[ak − âMMAE(t+i )][ak − âMMAE(t+i )]T pk(ti) (4.276)

4-56



4.5 Summary

The purpose of this chapter was to demonstrate, using a practical straight-

forward example, the filtering theory developed in Chapter III. The temperature

along a slender cylindrical rod was observed using a sampled-data measurement

model and an essentially-equivalent finite-dimensional discrete-time model (derived

from an infinite-dimensional, continuous-time model for the flow of heat — a scalar

stochastic heat equation) was employed to characterize the system dynamics for

this practical problem. In the bulk of this chapter, we systematically found the

finite-dimensional matrix approximations and representations for the multitude of

components that comprise the ISKF in such a fashion that we have synthesized a

sampled-data Kalman filter to estimate optimally a finite number of the coefficients

associated with a Fourier series expansion of the true state temperature function of

the slender cylindrical rod. Finally, we crafted a fixed-bank MMAE composed of

these finite-dimensional filters to estimate the temperature along the rod. In the

sequel to this chapter, we shall use a Monte Carlo simulation to investigate this

example further.
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V. Simulation and Results

5.1 Introduction

This chapter discusses the results of six computer-based Monte Carlo simula-

tions1 in detail. The first five simulations feature state and/or parameter estimation

in the presence of an uncertain noise environment. Specifically, the first two simula-

tions involve estimating the covariance of the dynamics driving noise; this can be a

rather difficult task if the measurements are of relatively poor quality as compared to

the quality of the dynamics model. The quality (or precision) of the dynamics model

is expressed in terms of the noise covariance, Qd, while the quality of the observa-

tion model is related by the measurement-corruption noise covariance, R. In the first

two simulations, we indirectly estimate the dynamics noise covariance using noise-

corrupted measurements. In the next three simulations the measurement-corruption

noise covariance is found. The fourth simulation demonstrates the MMAE’s capa-

bility to adjust to a linearly changing measurement-corruption noise covariance —

both increasing and decreasing over time. In the fifth simulation, the elemental

filters in the MMAE demonstrate their ability to change their status from poorly

modeling the real-world environment to correctly modeling it in just a few short

propagate/update cycles as the truth model measurement noise covariance abruptly

changes (twice) during the course of the simulation. The capability to identify an

unknown system parameter, often called system identification [9], is addressed in the

final simulation discussed in this chapter. The MMAE demonstrates its ability to

identify a system parameter (in this case, a material property of the slender cylin-

1Maybeck’s [134] MATLAB-based MMAE software was modified for use in this dissertation to
create an approximate infinite-dimensional MMAE (AIMMAE). A technical report containing all
of the code necessary to duplicate the results reported herein is available upon request from either
Dr. Peter Maybeck at Peter.Maybeck@AFIT.edu or Dr. Scott Sallberg at Sallberg@IEEE.org.
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drical rod), and from that we can ascertain the most likely rod material from a short

list of fairly distinct materials.

All six simulations decomposed the temperature function into (at least) thirty

“states” for both the truth model and elemental filter models. Recall that these

states are actually the coefficients, {α0(ti), α1(ti), . . . , α29(ti)}, that correspond to

the basis elements, {1,√2 cos(πρ), . . . ,
√

2 cos(29πρ)}, used to decompose the (pos-

sibly) infinite-dimensional state function; see the discussion in Section 4.2.8 on page

4-12. With thirty basis elements, the mean-squared error (MSE) between the ac-

tual temperature along the rod (for a ramp) and the Gibbs effect resulting from

the finite number of basis elements used to represent the signal are both small

relative to the other choices investigated; ten, fifteen, twenty, thirty, forty, fifty,

sixty, seventy, eighty, and one hundred basis elements were initially used in this

preliminary study. Along another line of reasoning employing the state transi-

tion matrix, given in Equation (4.112) on page 4-28, we may reasonably expect

that only a small number of state coefficients are needed to model the state func-

tion adequately. For instance, given that the diagonal state transition matrix

has elements:
[
Φ̃

]
n
(ti+1 − ti) = e−κn2π2(ti+1−ti) and choosing κ = 1 m2/sec and

ti+1−ti = 0.01 sec, we get:
[
Φ̃

]
10

(ti+1−ti) = 5.2×10−5,
[
Φ̃

]
15

(ti+1−ti) = 2.3×10−10,[
Φ̃

]
20

(ti+1 − ti) = 7.2 × 10−18, and
[
Φ̃

]
30

(ti+1 − ti) = 2.6 × 10−39. Thus, N = 15

might be all that we need, since coefficients past the fifteenth are reduced by a fac-

tor of a billion or more during each propagation cycle. Depending on the computer

resources available, computational loading may also limit the number of states (co-

efficients) employed in the model. Finally, since the real truth model would be an

infinite-dimensional model, we have, in a sense, a reduced-order model.

All of the simulations feature a slender cylindrical rod partitioned into five seg-

ments; a separate measurement is taken over each segment. The five measurements

are recorded together at each time instant in the measurement vector. Preliminary

studies indicated that five segments was a nice balance between too few and too
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Parameter Symbol Value

Thermal diffusivity constant κ 1 m2/sec

Number of measurements (sensors) M 5

Number of states (basis elements) N 30

System dynamics noise strength Q 5 (◦C)2/sec

Measurement-corruption noise covariance R 5 (◦C)2

Initial state (temperature along rod) x̂0 20 ◦C

Initial state covariance P0 25 (◦C)2

Table 5.1 Truth Parameters

many segments. Fewer segments would have resulted in a coarser spatial discretiza-

tion, which would have made it more difficult to detect the onset of excitation (heat)

in simulation six and thus degrade system identification capabilities. However, we

did not want to describe the temperature perfectly at every point along the rod with

too many segments either.

Fifty Monte Carlo runs were used in each simulation to generate the hundreds

of plots seen on the dozens of figures on the following pages. Once again, we note

that all of these plots were created from a set of fifty Monte Carlo runs that utilized a

clock-based seeding of the random number generator. Several of the pertinent truth

model parameters are stated in Table 5.1.

Notes pertaining to Table 5.1:

1. We have chosen to work directly with the dynamics noise strength, Q, since

it is part of the original continuous-time model description, see Section 4.2.1,

versus the equivalent discrete-time diffusion, Qd, which is calculated by the

software as needed.

2. Maybeck [129] discusses at length the tuning of elemental filters by adjusting

the Q/R ratio. When these noise parameters are matrices, then the talk shifts

to a ratio of their largest eigenvalues — the same trends still apply although it

is somewhat more complicated if the matrices are not diagonal matrices. With
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that in mind, we note that the truth measurement-corruption noise covariance

is a diagonal matrix R = 5I, where I is an M -by-M identity matrix. The

eigenvalues of R are all equal to five. Hence, when we say R, we are referring

to the largest (and only) eigenvalue of R; however, we will call both of them the

measurement-corruption noise covariance and the context will dictate whether

we are referring to the matrix or the largest eigenvalue.

3. The eigenvalues of the initial state covariance P0 are all equal to twenty-five.

Hence, when we say P0, we are referring to the largest (and only) eigenvalue

of P0; however, we will call both of them the initial state covariance and

the context will dictate whether we are referring to the matrix or the largest

eigenvalue.

4. In the fourth simulation, the truth R is varied linearly, both increasing and

decreasing.

5. In the fifth simulation, we change the truth measurement-corruption noise

covariance twice in an abrupt fashion.

6. For the first five simulations, the thermal diffusivity constant is set to κ = 1,

which for comparison purposes places it halfway between aluminum (κ = 0.86)

and copper (κ = 1.14). In the sixth simulation, we set the thermal diffusivity

constant to κ = 0.86 to perform system identification.

For each of the simulations, a short description sets up the goals and explains

a few pertinent facts about the truth model, some of which are tabulated if they

differ from Table 5.1. Additionally, we include a graphical description of the pa-

rameter set to help assess how the elemental filters in the filter bank differ; see, for

example, Figure 5.12 on page 5-29. The simulation results feature a large collection

of figures. For the last five simulations, 2 through 6, a figure for initial results for

each simulation, such as Figure 5.13 on page 5-30 for an investigation into initial

state covariance settings, displays the overall probability flow among the elemen-

tal filters. This plot is intended to emphasize the MMAE’s indication of the filter
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(a) Temp at ‘left’ end (b) Error temp at ‘left’

of rod (ρ = 0) end of rod (ρ = 0)

(c) Temp at ‘center’ (d) Error temp at ‘center’

of rod (ρ = 0.5) of rod (ρ = 0.5)

(e) Temp at ‘right’ end (f) Error temp at ‘right’

of rod (ρ = 1) end of rod (ρ = 1)

(g) Likelihood quotient: (h) Hypothesis conditional

rT
k (ti)A

−1
k (ti) r

T
k (ti) probability: pk(ti)

Table 5.2 Arrangement for Plots (a) through (h) for the kth Elemental Filter

based on the best hypothesis2, and thus the elemental filter(s) most responsible for

the overall MMAE performance. In this dissertation, the best hypothesis is defined

as the hypothesis that gives rise to the elemental filter with the largest hypothesis

conditional probability; hence, the best elemental filter is the filter which receives

the highest hypothesis conditional probability. Following the introduction to the

simulation and a brief discussion of expected filter performance, there are two pages

of plots for each of the (three or five) elemental filters3 in the MMAE filter bank,

followed by a two-page set of plots for the blended filter. The first set of plots for

an elemental filter contains a full accounting of the filter’s progression through time

at three strategic points along the rod in plots (a) through (f); a plot of the likeli-

hood quotient appears in plot (g), and plot (h) contains the hypothesis conditional

probability — see Table 5.2 for the placement of these plots in the figure. Plot (h)

contains a comparison of the mean plus and minus one standard deviation of the

hypothesis conditional probability for each of the elemental filters in the bank for

each simulation; this plot enables a quick analysis of the probability flow among the

elemental filters.

2Equation (4.268), on page 4-55, is used to calculate these probabilities.
3For the first simulation, we do not give an individual accounting of the elemental filters since the

focus of the first simulation was to discover/identify trends regarding the filter bank composition.
With that in mind, the figures for simulation one are composite summaries of the hypothesis
conditional probability histories for all five elemental filters in the filter bank.
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For plots (a), (c), and (e), the solid line represents the mean elemental fil-

ter estimate (a mean taken over the 50 Monte Carlo runs) while the dashed line

represents the truth state. In plots (b), (d), and (f), the solid line represents the

mean elemental filter error, the dash-dot lines are at plus and minus one truth stan-

dard deviation from the elemental filter mean error (solid line), and dashed lines

are zero (the filter-assumed mean error) plus and minus filter-computed standard

deviation. Plot (g) has a solid line for the mean value of the likelihood quotient:

Lk(ti) = rT
k (ti)A

−1
k (ti) rk(ti), a measure of the “correctness” of the parameter values

for the kth elemental filter [130, 132]; the dash-dot lines are at plus and minus one

truth standard deviation. In plot (h), the solid line traces out the mean hypothesis

conditional probability, pk(ti), the probability that the assumed parameter value is

correct conditioned on the observed measurement history through time ti [130, 132];

the dash-dot lines are at plus and minus one standard deviation.

In practice, it is useful to inspect plot (h) for each of the elemental filters first;

that is why we have included a summary of the (h) plots for the entire filter bank

early in the discussion (namely, in the “initial results” figure discussed on page 5-

4). The “initial results” summary tells us which filter is most responsible for the

overall MMAE performance and it directs our attention to the performance of the

elemental filter with the best hypothesis. [For simulation one, only initial results

are reported; they are given in figures containing sixteen such “initial results” plots

arranged in a four by four array; see, for example Figure 5.1 on page 5-15.] This

initial results summary does not replace the (h) plots — we still need plot (h) because

it contains more information about the performance; plot (h) tells us how much the

mean hypothesis conditional probability varies over the 50 Monte Carlo runs by

stating the mean plus and minus one standard deviation. After considering plot (h),

we usually look at the likelihood quotient in plot (g). It is highly likely that the

best filter model (the one with the largest mean hypothesis conditional probability)

will also display a sequence of likelihood quotients equal to the number of sensor
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segments, while the filters with the lowest mean hypothesis conditional probability

will often have a sequence of likelihood quotients much larger than the number of

sensor segments. Next, the state estimate in plots (a), (c), and (e) are assessed more

fully by the estimation error in plots (b), (d), and (f). Among other attributes of

the elemental filter, the adequacy of the initial state covariance can be checked by

inspecting plots (b), (d), and (f); the initial error should be within the 1σ (i.e., one

standard deviation) bounds created by the initial state covariance. If this is not

true, then convergence is greatly hampered since the filter has been told that its

initial condition errors are much smaller than they really are. Finally, we repeat this

inspection process for the other “less probable” elemental filters.

Plot (g), of for example Figure 5.14, on page 5-36, features the likelihood

quotient. For a properly matched elemental filter, we expect a likelihood quotient of

around M = 5. This is not a guarantee that the filter is properly matched because

the filter-computed residual covariance could be masking poor residuals; however, a

likelihood quotient significantly greater than M = 5 is a strong indication that the

filter is mismodeled. The best indication of a filter based on the correct model for the

situation is given by the hypothesis conditional probability in plot (h). When pk = 1,

the MMAE is indicating that the model completely matches reality with probability

one; here, the completeness is relative to the other elemental filters which are based

on relatively inaccurate models as compared to the elemental filter receiving pk = 1.

When pk is small, the filter is either mismatched or poorly tuned.

Improved state estimation is usually the end goal of our adaptive estimation

process, i.e., we seek to produce a better state estimate using an MMAE structure,

rather than a precise estimate of the uncertain parameter itself. However, in Section

5.7, we use the MMAE to estimate the parameter of interest — also known as system

identification. The MMAE state estimator usually outperforms a similar estimator

based on a single elemental filter (based on a single assumed value for the uncertain

parameter). The second set of plots, (i) through (p), for each elemental filter displays
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the temperature along the entire length of the rod at selected instances of time from

time zero to the end of the simulation. The state at time zero reflects the initial con-

ditions, while the state at the end of the simulation includes the final measurement

update. With the exception of the first time instant, all of the times show results

for just after the measurement update, i.e., at time t+i . Additionally, the root mean

square (RMS) error of the temperature estimate is displayed on each subplot to help

quantify the performance over the entire rod4. The solid line represents the filter’s

mean temperature estimate while the dashed line is the true temperature.

The first set of plots for the blended filter5 is similar to plots (a) through (f)

for an elemental filter, including the dashed lines in (b), (d), and (f) that reflect the

blended filter-indicated zero plus and minus one sigma values. Plot (g) shows the

RMS error, as a function of time, for the MMAE blended state estimate. The second

set of plots, (h) through (o), for the blended filter, are nearly the same as the second

set for the elemental filters. While the elemental filter time line begins with the

initial conditions, the blended filter time line begins after the MMAE has produced

its first estimate of the temperature, i.e., after the first measurement update — the

blended filter represents the state estimate computed using Equation (4.272) on page

4-56 and its conditional covariance in Equation (4.273). Thus, a careful inspection

of plots (i) for each of the elemental filters and plot (h) for the blended filter will

show that they do in fact, not reflect the exact same instant of time at ti = 0 sec.

However, the remaining temperature snapshots are for the same time instances.

It should not be surprising to the reader to find on the following pages, better

adaptation to uncertainty in the measurement-corruption noise covariance versus

system-dynamics noise strength. Consider the fact that, first of all, models for

4The RMS error on these plots is an “instantaneous” value and should not be treated as an
absolute indicator that can be compared exactly from plot to plot, and especially not between
different experiments, nor between cases within a particular simulation, since the results are based
on different sets of Monte Carlo runs. The trends, however, are certainly valid.

5The blended filter is not really a filter, but a blending of the data/results from the elemental
filters.
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dynamic system processes are often less precise or less well understood as compared

to our measurement models for a particular problem or application. Additionally,

while we can calibrate and inspect our measurement apparatus, we often cannot

do likewise for the system itself. Furthermore, knowledge of the dynamics is only

available to us through the measurement process; a process which adds yet another

layer of uncertainty to our state estimation. More specifically, the uncertainties

in the measurement-corruption noise v, as in its covariance R, directly impact the

measurement residuals since z = Hx+v. On the other hand, the effects of dynamics

driving noise parameters, such as Q, first impact the system dynamics and (after

the inherent delays and other effects of the system itself) are then reflected in the

state values as expressed by Hx in the measurement equation z = Hx + v. Thus,

the effects of uncertain dynamics model parameters are not as directly viewable as

those in the measurement model.

Before delving into the results of the simulations, we shall investigate the ex-

pected behavior for the likelihood quotient: Lk(ti) = rT
k (ti)A

−1
k (ti) rk(ti), where the

filter-computed residual covariance, Ak(ti) = Hk(ti)Pk(t
−
i )HT

k (ti)+Rk(ti), depends

on the elemental filter design model. In the third, fourth, and fifth simulations, we

have five elemental filters, all with different measurement-corruption noise covari-

ances. Thus, we have five different Ak matrices. We can use this knowledge to help

us predict what the likelihood quotient will be for all of the elemental filters before

we run any simulation. Recall that when an elemental filter matches the true sce-

nario, the history of residuals form a zero-mean white Gaussian noise sequence with

known covariance — the filter-computed residual covariance A — and the expected

likelihood quotient is equal to the number of measurements, M , and in practice, this

is generally the case. When the filter is mismatched, however, Lk will usually differ

considerably (and often becomes several orders of magnitude larger than the number

of measurements).
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From Maybeck [129] we know that the zero-mean residual sequence for a

Kalman filter based upon the true parameter value has covariance

E{r(ti) rT(ti)|Z(ti−1) = Zi−1} = Atrue(ti) (5.1)

which we note is independent of the measurement history Zi−1. Now we find the

expected value of the random likelihood quotient, Lk(ti), at time ti for the kth

elemental filter

E{Lk(ti)} = E{rT
k (ti)A

−1
k (ti) rk(ti)} = tr{E[rT

k (ti)A
−1
k (ti) rk(ti)]} (5.2)

where rk(ti) is the random measurement residual; additionally, we note that the

trace of a scalar function is equal to that scalar function. Moving the trace inside

the expectation yields

E{Lk(ti)} = E{tr[rT
k (ti)A

−1
k (ti) rk(ti)]} (5.3)

and this formulation allows the terms to commute, thus we obtain

E{Lk(ti)} = E{tr[A−1
k (ti) rk(ti) rT

k (ti)]} (5.4)

Next we move the expectation back in and get

E{Lk(ti)} = tr{A−1
k (ti) E[rk(ti) rT

k (ti)]} (5.5)

Using Equation (5.1)

E{Lk(ti)} = tr{A−1
k (ti)Atrue(ti)} (5.6)

If for all time ti, Ak(ti) = Atrue(ti), then the right-hand side of Equation (5.6)

becomes the trace of the identity matrix which is equal to the dimension of the
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matrix, in this case M . Thus, in the simulations considered here, we expect the

likelihood quotient to be five, the number of sensor segments, when the filter hy-

pothesis is correct. However, most of the filters are created using an incorrect

hypothesis and thus we usually have Ak(ti) 6= Atrue(ti), where we recall that

A(ti) = H(ti)P(t−i )HT(ti) + R(ti). In steady state operation, which usually oc-

curs after just a few propagate/update cycles, we have Ass
k ≈ Rk and Ass

true ≈ Rtrue

for the particular example simulated herein. Thus,

E{Lk(ti)|ti=tss} = tr{R−1
k Rtrue} (5.7)

= tr{[RkI]
−1RtrueI}, where Rk = RkI and Rtrue = RtrueI (5.8)

=
Rtrue

Rk

tr{I} (5.9)

=
Rtrue

Rk

M (5.10)

where we assume that (1) all M of the eigenvalues of Rk are equal to Rk, (2) all M of

the eigenvalues of Rtrue are equal to Rtrue, and (3) M is the dimension of the square

covariance matrices Rk and Rtrue and the identity matrix I. The first equality in

the above development is due to the steady state assumption; the fourth equal sign

is by the definition of the trace of a matrix — it is the sum of the diagonal elements.

Therefore, we can use Equation (5.10) to predict the steady state likelihood quotient

for an elemental filter created using a model that differs from the true value of R;

this will be very valuable for our analysis in Simulations 3, 4, and 5.

In the first five simulations, we initially investigate state estimation in the

presence of an unknown noise environment and then (in the sixth simulation) we

perform system identification. We find that, even when we “poorly” identify the

system-dynamics noise strength, the state estimation task fairs well. We treat filter

bank composition and filter initialization issues for improving adaptation to unknown

noise statistics.
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5.2 Simulation 1

When a Kalman filter is designed using mismatched noise statistics, the filter is

no longer optimal [78, 143, 129, 169]. Thus we are motivated in this first simulation

to demonstrate how a bank of filters can be used to estimate the value of an unknown

parameter — the system dynamics driving noise strength Q. While we are specifically

calling attention to this one parameter, we are really interested in improving our state

estimation and identifying trends useful for filter bank composition. Initial work on

this simulation showed that it was difficult to create a bank of elemental filters that

both spanned the entire range of expected values and appeared distinct from one

another. Thus, before we can concentrate on state estimation, we must first create

a good bank of filters.

As a precursor to using the MMAE to estimate the dynamics noise strength,

Q, we conduct a study to find the best discrete set of values to represent the con-

tinuum of possible values for Q. The objective of this experiment is not to estimate

the parameter, but to illustrate the parameter space discretization as indicated by

the hypothesis conditional probability time histories. For optimal state and/or pa-

rameter estimation performance, the elemental filters in the filter bank must be

distinguishable from one another. In addition to being distinct, the elemental filters

must be based on a set of parameter values that covers the entire range of expected

values for the parameter of interest.

Tables 5.3 and 5.4 contain key truth and filter parameter values6 for the 16-

case runs displayed in Figures 5.1 to 5.11. The elemental filter quintet for each

case displayed in Figures 5.1 to 5.11 is determined using the data in Table 5.4. As

an example, the Q values used to construct the elemental filter quintets for the

Qtrue = 10, Rtrue = 0.1 case are reported in Table 5.5; this corresponds to results

6In Table 5.4, as in the rest of the tables in this chapter, important values that are constant
across the elemental filters in the bank are only listed once. For example, all three elemental filters
in Table 5.4 are designed using the same R, x̂0, and P0 values, whereas the Q is different for each
elemental filter.
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Figure N Qtrue Rtrue Rfilter

5.1 30 10 (◦C)2/sec 0.1 (◦C)2 0.1 (◦C)2

5.2 30 100 (◦C)2/sec 1 (◦C)2 1 (◦C)2

5.3 30 50 (◦C)2/sec 1 (◦C)2 1 (◦C)2

5.4 30 20 (◦C)2/sec 1 (◦C)2 1 (◦C)2

5.5 30 10 (◦C)2/sec 1 (◦C)2 1 (◦C)2

5.6 40 10 (◦C)2/sec 1 (◦C)2 1 (◦C)2

5.7 50 10 (◦C)2/sec 1 (◦C)2 1 (◦C)2

5.8 60 10 (◦C)2/sec 1 (◦C)2 1 (◦C)2

5.9 70 10 (◦C)2/sec 1 (◦C)2 1 (◦C)2

5.10 30 100 (◦C)2/sec 1 (◦C)2 10 (◦C)2

5.11 30 100 (◦C)2/sec 10 (◦C)2 1 (◦C)2

Table 5.3 Simulation 1: Four key parameters for the filter bank composition ex-
periment. N represents the order of the system model.

shown in Figure 5.1. Thus, the far left column of plots contain filter banks centered

on the true value of Q, while the second column (from the left) contains filter banks

centered on twice the true value of Q. The top row contains filter banks with Q

values spaced a decade apart, while the bottom row of filter banks are spaced by two

orders of magnitude. Each of the subplots for each case represents the average results

for fifty Monte Carlo runs; thus, each of the figures from Figure 5.1 to 5.11 contains

the probability flow results for 800 Monte Carlo runs. Finally, the discretization

method chosen for this experiment is reminiscent of the simple logarithmic spacing

of the elemental filters proposed in Section 2.3.3.

Before we begin our analysis, we shall take a tour of Figure 5.1, the first of

eleven such figures. In each column of plots, going down a column corresponds

to increasing the coarseness of the discretization; thus we expect that the proper

distinguishability of the elemental filters will increase, as demonstrated by an increase

in the share of the probability received by the elemental filter designed with the

most appropriate value for the dynamics noise strength. The trend observed by

looking across a row of plots is not always as straightforward since it is somewhat
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Filter Qfilter Rfilter x̂0 P0

1 (c/d2)Qtrue

2 (c/d)Qtrue

3 cQtrue Rtrue 20 10

4 cdQtrue

5 cd2Qtrue

Table 5.4 Simulation 1: Elemental filter parameters for the filter bank composition
experiment. c represents the centering of parameter values used as a “basis” for the
elemental filters in the bank. d pertains to the discretization of the parameter set.
Note that Rfilter for the cases in Figures 5.10 and 5.11 were over- and underestimated
by a factor of ten, respectively.

c = 1 c = 2 c = 5 c = 10

d = 10 1
10 , 1, 10, 100, 1000 1

5 , 2, 20, 200, 2000 1
2 , 5, 50, 500, 5000 1, 10, 100, 1000, 10000

d = 20 1
40 , 1

2 , 10, 200, 4000 1
20 , 1, 20, 400, 8000 1

8 , 2 1
2 , 50, 1000, 20000 1

4 , 5, 100, 2000, 40000

d = 50 1
250 , 1

5 , 10, 500, 25000 1
125 , 2

5 , 20, 1000, 50000 1
50 , 1, 50, 2500, 125000 1

25 , 2, 100, 5000, 250000

d = 100 1
1000 , 1

10 , 10, 1000, 100000 1
500 , 1

5 , 20, 2000, 200000 1
200 , 1

2 , 50, 5000, 500000 1
100 , 1, 100, 10000, 1000000

Table 5.5 Dynamics noise strengths for each of the elemental filters shown in the
16 plots of Figure 5.1, where Qtrue = 10 and Rtrue = 0.1. Note that only the first
column (and the top right case) have the true value for Q included in the bank of
elemental filters. Additionally, the last four elemental filters shown in the top left
plot are constructed using the same model as the first four elemental filters of the
top right case.

dependent on the discretization level. In the first column of plots, the third (or

central) elemental filter in the bank of five filters is designed with artificial knowledge

of the true dynamics noise strength; in the second, third, and fourth columns, the

central filter is designed for 2Qtrue, 5Qtrue, and 10Qtrue, respectively. Thus, for the

case of (c, d) = (10, 10), the second elemental filter assumes (correctly) that the

noise strength is Qtrue, while the central filter is no longer the best filter since it was

designed for 10Qtrue. However, in general, the central filter becomes less probable as

the multiplicative offset (dictated by c) increases, while the second elemental filter

becomes more probable since its underestimate of the noise strength becomes small

relative to the overestimate assumed by the central filter.
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Figure 5.1 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 30, Qtrue = 10,
Rtrue = 0.1. Filter 1 (©): Q1 = 10c/d2, Filter 2 (×): Q2 = 10c/d, Filter 3 (M):
Q3 = 10c, Filter 4 (¤): Q4 = 10cd, Filter 5 (F): Q5 = 10cd2. To make these
small plots more legible, the mean hypothesis conditional probabilities are presented
for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

Furthermore, it may be helpful to consider the following simple mnemonic for

associating the markers on the hypothesis conditional probability history plots to its

respective elemental filter: The first filter symbol is a single curved line in the shape

of a circle ©. Next, we employ two crossed line segments, ×, to represent the second

elemental filter. The three angles in a triangle M marks the graph for elemental filter

three. Elemental filter four uses the four -sided square ¤. Finally, elemental filter

five employs the five-pointed star F to annotate its probability history.
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Figure 5.2 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 30, Qtrue = 100,
Rtrue = 1. Filter 1 (©): Q1 = 100c/d2, Filter 2 (×): Q2 = 100c/d, Filter 3 (M):
Q3 = 100c, Filter 4 (¤): Q4 = 100cd, Filter 5 (F): Q5 = 100cd2. To make these
small plots more legible, the mean hypothesis conditional probabilities are presented
for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

There are several trends regarding filter bank composition that can be readily

seen by inspecting the plots in Figures 5.1 through 5.11. Using the plots in these

eleven figures, we shall graphically exhibit three trends which feature increased prob-

ability for the elemental filter based on the most correct model: increasing d (i.e.,

increasing the coarseness of the parameter discretization), increasing the Q/R ra-

tio, where Q is the dynamics noise strength and R is the measurement-corruption

noise covariance, and/or increasing the order of the model, N . Our first choice may
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Figure 5.3 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 30, Qtrue = 50,
Rtrue = 1. Filter 1 (©): Q1 = 50c/d2, Filter 2 (×): Q2 = 50c/d, Filter 3 (M):
Q3 = 50c, Filter 4 (¤): Q4 = 50cd, Filter 5 (F): Q5 = 50cd2. To make these
small plots more legible, the mean hypothesis conditional probabilities are presented
for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

be to increase the coarseness of the discretization, but, this is a tradeoff that ex-

changes quality of the state estimate for improved parameter estimation; a moving

bank structure, see the discussion in Section 2.6, may help ease these trade-off costs.

When increasing N is not affordable computationally, perhaps we can tune the fil-

ters and achieve a more favorable probability flow to what we believe may be the

most appropriate elemental filter. As we might expect, these results are dependent

on correct assumptions for the other model parameters. In the filter-bank results
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Figure 5.4 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 30, Qtrue = 20,
Rtrue = 1. Filter 1 (©): Q1 = 20c/d2, Filter 2 (×): Q2 = 20c/d, Filter 3 (M):
Q3 = 20c, Filter 4 (¤): Q4 = 20cd, Filter 5 (F): Q5 = 20cd2. To make these
small plots more legible, the mean hypothesis conditional probabilities are presented
for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

shown in Figures 5.1 through 5.9, we have taken for granted that we have accurately

accounted for all of the non-Q model parameter values, while in Figures 5.10 and

5.11, we have intentionally based the bank of filters on an incorrect value for the

true R. Finally, by choosing a higher-order model, we can regain some of the fidelity

that we traded off earlier.

In general, as the discretization of the parameter space becomes coarser (i.e., as

d increases), the elemental filter based upon the most correct model receives a larger
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Figure 5.5 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 30, Qtrue = 10,
Rtrue = 1. Filter 1 (©): Q1 = 10c/d2, Filter 2 (×): Q2 = 10c/d, Filter 3 (M):
Q3 = 10c, Filter 4 (¤): Q4 = 10cd, Filter 5 (F): Q5 = 10cd2. To make these
small plots more legible, the mean hypothesis conditional probabilities are presented
for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

share of the probability, this trend can be seen repeatedly in nearly all of the plots in

Figures 5.1 through 5.11. A particularly good example of this trend can be seen in

the far left (or first) column of plots in Figure 5.4 on page 5-18; the third filter (rep-

resented by the triangles) is based on the true values of the parameters and, as we

can see, it gets a larger probability as we increase the coarseness of the discretization

down the column from d = 10 to 20 to 50, and finally d = 100. In the (c, d) = (1, 20)

plot, the third and fourth (represented by the squares) elemental filters are virtually
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Figure 5.6 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 40, Qtrue = 10,
Rtrue = 1. Filter 1 (©): Q1 = 10c/d2, Filter 2 (×): Q2 = 10c/d, Filter 3 (M):
Q3 = 10c, Filter 4 (¤): Q4 = 10cd, Filter 5 (F): Q5 = 10cd2. To make these
small plots more legible, the mean hypothesis conditional probabilities are presented
for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

indistinguishable. Increasing the discretization to the d = 50 level, the third filter

gains the clear majority of the probability. So, while the distinguishability of the el-

emental filters appears to degrade before it eventually improves, the probability flow

to the elemental filter based on the most correct model clearly increases with an in-

creasingly coarse level of discretization. Hence, as the discretization of the parameter

space becomes coarser, the elemental filters become more properly distinguishable

as the most appropriately modeled filter gains a larger share of the probability.
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Figure 5.7 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 50, Qtrue = 10,
Rtrue = 1. Filter 1 (©): Q1 = 10c/d2, Filter 2 (×): Q2 = 10c/d, Filter 3 (M):
Q3 = 10c, Filter 4 (¤): Q4 = 10cd, Filter 5 (F): Q5 = 10cd2. To make these
small plots more legible, the mean hypothesis conditional probabilities are presented
for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

The relative ratio of Q/R can be seen to influence the behavior of the bank

of filters directly, as seen in these probability plots. When the ratio Q/R is very

high, see Figures 5.1 and 5.2, the elemental filter based on the most correct model

routinely gets the bulk of the probability. As we can see, the arrays of plots in

these two figures are nearly identical; this is because they have the same Q/R ratio.

On the other hand, halving the ratio Q/R from 100 to 50 for the cases shown in

Figures 5.2 and 5.3 shows quite a different result for the “finely” discretized d = 10
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Figure 5.8 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 60, Qtrue = 10,
Rtrue = 1. Filter 1 (©): Q1 = 10c/d2, Filter 2 (×): Q2 = 10c/d, Filter 3 (M):
Q3 = 10c, Filter 4 (¤): Q4 = 10cd, Filter 5 (F): Q5 = 10cd2. To make these
small plots more legible, the mean hypothesis conditional probabilities are presented
for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

top row of plots. Specifically, the third (second) and fourth (third) elemental filters

are approaching indistinguishability in the centered c = 1 (c = 10 far right column)

case. Thus, in terms of probability flow, the relative ratio of Q/R matters more than

the particular values for Q and R. The ratio is important since Q/R dictates the

steady state Kalman gain for each elemental filter — the steady state Kalman gain

is directly proportional to the noise strength Q and inversely related to the noise

covariance R.
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Figure 5.9 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 70, Qtrue = 10,
Rtrue = 1. Filter 1 (©): Q1 = 10c/d2, Filter 2 (×): Q2 = 10c/d, Filter 3 (M):
Q3 = 10c, Filter 4 (¤): Q4 = 10cd, Filter 5 (F): Q5 = 10cd2. To make these
small plots more legible, the mean hypothesis conditional probabilities are presented
for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

Assuming we have chosen R wisely, then it follows that when Q/R is low, we

have chosen a value too low for our assumed Q. Hence, “overestimating Q” at this

point may well lead us to a value for Q that is about right and thus this elemental

filter receives the majority of the probability for a filter bank constructed with a

relatively fine discretization level; see for example, the fourth elemental filter (rep-

resented by the squares) in the top left plot in Figure 5.4. Scrolling down the first

column of plots shows that, as the discretization becomes coarser, the “correct” filter
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Figure 5.10 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 30, Qtrue = 100,
Rtrue = 1, Rfilter = 10. Filter 1 (©): Q1 = 100c/d2, Filter 2 (×): Q2 = 100c/d,
Filter 3 (M): Q3 = 100c, Filter 4 (¤): Q4 = 100cd, Filter 5 (F): Q5 = 100cd2. To
make these small plots more legible, the mean hypothesis conditional probabilities
are presented for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

(the elemental filter based on the most correct hypothesis which is here indicated

by the triangles since it is the third filter in the filter bank) receives an increas-

ingly larger share of the probability, while the filter featuring an overestimate for

Q (squares) receives a correspondingly smaller share of the probability. Looking at

the second plot (c, d) = (1, 20), we see that the third and fourth elemental filters

are virtually indistinguishable as has been previously noted. As the discretization

coarsens further to d = 50 in the third plot of the first column, the filters are once
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Figure 5.11 Simulation 1: Filter bank composition experiment. Hypothesis con-
ditional probability histories for 16 cases of interest for N = 30, Qtrue = 100,
Rtrue = 10, Rfilter = 1. Filter 1 (©): Q1 = 100c/d2, Filter 2 (×): Q2 = 100c/d,
Filter 3 (M): Q3 = 100c, Filter 4 (¤): Q4 = 100cd, Filter 5 (F): Q5 = 100cd2. To
make these small plots more legible, the mean hypothesis conditional probabilities
are presented for only times {t0, t3, t6, . . . t99} versus all of T = {t0, t1, t2, . . . , t100}.

again distinguishable; the third filter, constructed using the true value for Q, gathers

the majority of the probability. This sequence of events occurs several times, as seen

in Figures 5.4 and 5.5.

In the second column of plots, the “best” elemental filter is still the third filter

(triangles); it was designed using a dynamics noise strength of twice Qtrue. For the

cases displayed in Figures 5.1 to 5.3, the ratio Q/R is relatively large and the best

filter is chosen every time. As Q/R is reduced further, as in Figures 5.4 and 5.5, we
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see that the d = 10 discretization level is too fine and results in probability being

shared with an elemental filter featuring an even larger assumed value for Q in both

figures, while in Figure 5.5, the fourth filter appears to be the best match. For both

cases, as the discretization is made coarser by increasing d, the hypothesis put forth

by the third filter gathers the highest probability in the filter bank.

We have seen in Figures 5.1 to 5.5 how the Q/R ratio and the discretization of

the dynamics noise strength, Q, have generally affected the probability flow to the

elemental filters. Now, let’s see how the distinguishability and probability flow is af-

fected by the order of the model, N . In Figures 5.5 to 5.9, we have gradually increased

the order of the model to the point where the third (most-correctly modeled) filter is

once again clearly dominant — nearly as good as it was for the case when Q/R = 100

as seen in Figures 5.1 and 5.2. If you recall our discussion early in this chapter on

the state transition matrix, it is quite remarkable to see the accumulation of effects

contributed by the 31st to 70th “states”. Recall that
[
Φ̃

]
30

(ti+1− ti) = 2.6× 10−39,

while another computation gives
[
Φ̃

]
70

(ti+1 − ti) = 9.3 × 10−211. Thus, the states

corresponding to large N values, i.e., N > 30, which are nearly driven to zero during

each propagation cycle, are still quite important!

In the previous comments, we have implicitly assumed that our models were

based on the true measurement noise covariance. While overestimation of the true

measurement noise covariance, as seen in Figure 5.10, slows the probability flow to

the elemental filter based on the correct model, underestimating the covariance, as

seen in Figure 5.11 “causes” the filters to attribute the increased (and unexpected)

errors to the dynamics noise strength. The real problem is that the state estimation

suffers in both cases, devastatingly for the underestimation case.

Now that we have graphically seen how the discretization level, d, the relative

quality of the dynamics and measurement models, Q/R ratio, and the order of the

model, N , affect the distinguishability of the elemental filters, we shall investigate
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the effects of filter initialization of the state estimate, x̂, and the state covariance,

P , in the next simulation.

5.3 Simulation 2

The first five simulations feature adaptation to an uncertain noise environment

and have an initial state estimate x̂0 of 25 ◦C. However, Table 5.1 on page 5-3 gives

the true value as 20 ◦C; hence there is a 5 ◦C bias in our initial state estimate. In

a real-world scenario, we might not know that our initial state estimate was off by

5 ◦C; thus, it is entirely possible that we would set the initial state covariance, P0,

too low. In Table 5.4, we have set the initial state covariance estimate, P0, equal to

25 (◦C)2 to account for the fact that we know that there is a bias on the order of

5 ◦C in our initial state estimate.

Our goal in this simulation is to improve state estimation performance by

adapting to an unknown system dynamics noise strength; we assume (however imper-

fectly) that the other system parameters and noise statistics are completely known,

with the exception that we consider what happens when we fail to set the initial

state covariance, P0, properly. If the filter-assumed initial state covariance is too

small for the assumed x̂0 in the true scenario versus the filter, then the filter will

not properly adjust the gain and will weight the initial measurements too lightly.

On the other hand, when P0 is too large, the filter becomes too responsive to initial

measurements and disregards the system dynamics which allow us to propagate the

state estimate since the last measurement update. So, when Q is accurately esti-

mated by the MMAE (and we have properly set the initial state covariance), then

we obtain state estimation performance approaching that of a single Kalman filter

with artificial knowledge of the correct parameter values.

The truth model parameters are given in Table 5.1. Some of the design param-

eters for the three elemental filters of the MMAE are included in Table 5.6. Note

that Qtrue is the true value of the dynamics noise strength as listed in Table 5.1.
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Case Filter Q R x̂0 P0

1 1
100

Qtrue = 1
20

1 2 Qtrue = 5 Rtrue 25 P poor
0 = 1

3 100Qtrue = 500

1 1
100

Qtrue = 1
20

2 2 Qtrue = 5 Rtrue 25 P good
0 = 25

3 100Qtrue = 500

1 1
10

Qtrue = 1
2

3 2 10Qtrue = 50 Rtrue 25 P poor
0 = 1

3 1000Qtrue = 5000

1 1
10

Qtrue = 1
2

4 2 10Qtrue = 50 Rtrue 25 P good
0 = 25

3 1000Qtrue = 5000

Table 5.6 Simulation 2: Elemental filter parameters for the initial state error co-
variance experiment. Cases 1 and 2 feature a filter bank centered on the true value
of Q, while Cases 3 and 4 are for an arrangement that overestimates the true value
of Q (centered on 10Qtrue rather than Qtrue itself). Note that the assumed x̂0 value
is 5 ◦C greater than the true x0 of 20 ◦C.

Since the true value for x̂0 is 20 ◦C versus the 25 ◦C assumed for the filters in this

simulation, a poor choice for the initial state covariance P0 would be P poor
0 = 1,

while a good choice would be P good
0 = 25. The poor choice, P poor

0 = 1, reflects a poor

assessment of the initial state estimate bias: the actual value of x0 is at a 5σ point

according to the filter-assumed P0. An undersized initial state covariance degrades

the filter’s ability to converge on a good estimate because it essentially directs the

filter to underweight the measurement updates by keeping the gain low. Thus, the

responsiveness of the elemental filter is inhibited by a poor choice for the initial state

covariance. The filter can generally recover from this error, however, it takes several

propagate/update cycles for this state error to settle out. A good choice for the

initial state covariance (P good
0 = 25) accurately portrays the size of the initial state

estimate bias.
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Figure 5.12 Simulation 2: System dynamics noise strength. Legend: © elemental
filters for Cases 1 and 2; ¤ elemental filters for Cases 3 and 4; F true parameter
within the filter bank. (The filter spacing is nonlinear for illustration purposes.)

The relative spacing (on a log scale) for the assumed dynamics noise strength

for the two sets (four cases) of three elemental filters is displayed in Figure 5.12.

Additionally, successive members of the list of three filters are separated by two

orders of magnitude in Q, have the same R, and the same initial temperature bias and

state covariance for each case. The large separation is due to the indistinguishability

of filters for closely spaced values of Q as shown in the previous experiment. Since

the effects of the dynamics noise strength are ascertained using measurements, level

of the measurement-corruption noise covariance has an impact on how well we can

estimate Q. Consequently, for better measurements (“smaller” R), we can get a

better fix on Q.

As expected, the elemental filter designed for a model that “slightly” overesti-

mates the true noise strength, Qtrue, matches the real world the best, as indicated by

its high mean hypothesis conditional probability, p2, relative to the other elemental

filters in the filter bank (p1 and p3); compare Figure 5.13(a) to (c) for the poor P0

models and Figure 5.13(b) to (d) for the good P0 models when the Q/R ratio is

near unity as seen previously in simulation one. Recall that the hypothesis condi-

tional probability, pk, increases as the sequence of residuals have a filter-computed

covariance that is most in consonance with the actual covariance of the measure-

ment residuals7. In this example, elemental filter 2 is the most properly modeled

filter and its probability tends towards one the strongest in Case 3, as seen in Figure

7It has been shown [94, 129] that the sequence of residuals {rk(ti)} resulting from linear filtering
in additive noise forms a zero-mean white Gaussian sequence with known residual covariance Ak(ti).
Thus, if a filter model matches the “true” system, then the residual rk(ti) will be a zero-mean white
Gaussian process with known residual covariance Ak(ti).
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Figure 5.13 Simulation 2: Initial state covariance experiment — hypothesis con-
ditional probability flow. (a) Case 1: P poor

0 , { 1
100

Qtrue, Qtrue, 100Qtrue}. (b) Case

2: P good
0 , { 1

100
Qtrue, Qtrue, 100Qtrue}. (c) Case 3: P poor

0 , { 1
10

Qtrue, 10Qtrue, 1000Qtrue}.
(d) Case 4: P good

0 , { 1
10

Qtrue, 10Qtrue, 1000Qtrue}. To make these plots clearer, only the
mean hypothesis conditional probabilities for times {t0, t2, . . . , t100} are displayed.

5.13(c), while, at the same time, the other elemental filter hypothesis conditional

probabilities tend toward zero. The good probability flow for Case 3 is due to a

combination of circumstances. An elemental filter that has “slightly” overestimated

the dynamics noise strength can oftentimes compensate for an inadequate initializa-

tion of the state covariance. On the other hand, an elemental filter with too low of an

assumed Q is quickly recognized by the MMAE as a mismodeled filter since its rate

of convergence is not increased by a large assumption for Q. While a poor setting

for P0 degrades state estimation performance, this may have a beneficial impact on
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parameter estimation when the best elemental filter design is one that assumes a

slightly too large value for the parameter of interest, i.e., for the case when we do

not have an elemental filter based on the true parameter value — this research did

not address this possible “enhancement” any further.

The relatively poor distinguishability of the trio of filters in plots (a) and (b)

of Figure 5.13 is due, in part, to the low Q/R ratio — this effect was seen previously

in the far left column of plots in Figure 5.5. The probability flow in Case 2 is better

than for Case 1 because of a better assumption for P0. The poor P0 in Case 1 serves

to obscure the best elemental filter initially because the too large assumption for

Q combined with the too small P0 for elemental filter 3 yields what appears to the

MMAE as a good assessment of the error covariance; however, elemental filter 2

eventually absorbs the probability initially given to elemental filter 3 as it “flushes”

out the poor initialization of the error covariance given by P0.

On the other hand, the elemental filters shown in plots (c) and (d) of Figure

5.13, are more distinguishable because the best match is a filter based on an overes-

timate for the dynamics noise strength; the far right column of plots in Figure 5.5 is

a good example of how the overestimate of the noise strength can lead to increased

distinguishability between filters.

Now let’s look a little closer at general trends evident for elemental filter

1. When the (simulated) real-world noise strength exceeds the hypothesized noise

strength, the filter’s residuals look bad and consequently, the likelihood quotient

rT
1 (ti)A

−1
1 (ti) r1(ti) grows larger; Equation (5.6) informs us that we should expect

the likelihood quotient, E{L1(ti)} = tr{A−1
1 (ti)Atrue(ti)}, to grow larger as the true

residual covariance “increases” relative to the assumed filter-computed residual co-

variance. Therefore, the probability that the elemental filter is based on a good

model which accurately reflects the real-world, decreases. In all four plots of Figure

5.13, elemental filter 1 is clearly not based on the best model; this is most evident
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in plots (a) and (c), while in plots (b) and (d), the higher quality, “good”, estimate

for P0 somewhat masks the much too low value for Q.

When the filter bank is centered on the true dynamics noise strength, see plots

(a) and (b) in Figure 5.13, the low Q/R ratio generally produces marginally distin-

guishable filters. Additionally, the quality of the initial state covariance estimate,

P0, strongly influences the initial performance of the filters. The quality of the initial

estimate determines how long it takes the filter to recover from a poor estimate. As

the state covariance converges to its true value, the second elemental filter absorbs

the majority of the probability. At the 1-second mark, elemental filter 2 for both

cases, shown in plots (a) and (b), gain roughly three fifths of the probably. In plot

(a), the third elemental filter initially dominates because the poor (underestimate

of) P0 nicely balances the overestimate of the dynamics noise strength. This unfor-

tunate effect can be seen clearly by rewriting the filter-computed residual covariance:

Ak(ti) = Hk(ti)Pk(t
−
i )HT

k (ti)+Rk(ti) using the expression for the propagated state

covariance to give (without the k subscripts)

A(ti) = H(ti)[Φ(ti, ti−1)P(t+i−1)Φ
T(ti, ti−1) + Qd(ti−1)]H

T(ti) + R(ti) (5.11)

In plot (b), the low Q/R ratio combined with a good P0 estimate create marginally

distinguishable filters, which eventually become more distinguishable and the prop-

erly modeled second elemental filter gains the majority of the probability.

In plots (c) and (d) of Figure 5.13, we show the results for the case when

the filter bank does not contain an elemental filter that matches the true values

assumed by the simulation. In this case, the elemental filter which looks the best,

i.e., the elemental filter with filter-computed residual covariance that is most in

consonance with the true residual covariance, is the one which slightly overestimates

the dynamics noise strength. To illustrate, consider three elemental filters, numbered

1, 2, and 3, based on higher Q values as the index number increases. For elemental
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filter 1 based on a too low Q value, the likelihood quotient rT
1 (ti)A

−1
1 (ti) r1(ti) will

grow much larger than m (because the measurement residuals, r1(ti), are much larger

than anticipated). On the other hand, for elemental filter 3 based on too large a Q

value, rT
3 (ti)A

−1
3 (ti) r3(ti) won’t be as large because the filter-computed covariance

A3(ti) is so much larger. If the true value Atrue(ti) increases over time (in a ramp

fashion, for example), then when Atrue(ti) = A2(ti), elemental filter 2 should absorb

most of the probability. However, when Atrue(ti) gets larger than A2(ti) (even by

a small amount), rT
k (ti)A

−1
k (ti) rk(ti) can become significantly larger than m, with

the result that the probability flows to the elemental filter 3, even if A3(ti) is much

larger than Atrue(ti).

If a chosen discretization is so coarse, that this phenomenon causes estima-

tion problems, then use a finer discretization — for a finer discretization, the “next

higher” elemental filter that absorbs the probability will not be based on a much-

too-high value of Q or R. Furthermore, specifically consider a moving-bank MMAE

(discussed in Section 2.6) to allow for a fine discretization without the burden of

populating the filter bank with an excessively large number of elemental filters that

results from the requirement to cover the entire range of possible Q or R values.

While elemental filter 3 is initially favored in Case 1, as shown in plot (a),

it is rejected the quickest in Case 4, see plot (d), as compared to the other cases,

because (1) the too large assumption of the dynamics noise strength is not obscured

by a poor initial state covariance estimate as in Case 3 and, (2) compared to Case 2,

elemental filter 3 assumes a much too large value for Q. The key to good performance

is to have an elemental filter based on a model that only slightly overestimates the

noise strength; when the assumed Q value is significantly too high, the filter becomes

overly responsive to the measurements and then the subset of filters which feature

overestimated noise strengths become less distinguishable.

When comparing the probability gathered by elemental filter 1 in plots (c)

and (d), we see that elemental filter 1 is rejected more quickly in Case 3. The poor

5-33



initialization of the error covariance, P0, artificially helps us to see that the too low

assumption for Q is completely inadequate to model the error covariance given the

measurements taken. On the other hand, the more appropriate P0 assigned in Case 4

does not give the too low Q assumption that extra boost to enhance the probability

flow away from elemental filter 1.

Now that we have compared and contrasted many aspects of these four cases,

we shall look at the individual cases more closely. The remainder of this section is

comprised of alternating discussions and compilations of figures which apply to the

specific cases.

Case 1: A poor initial state covariance and a set of parameter values for the

bank of elemental filters that is centered on the true dynamics noise strength. A

close inspection of Figure 5.14(a - f) for elemental filter 1 shows that the state

estimate is slowly converging towards the true state — slowly because we have told

the filter that the dynamics model is very good (much better than it truly is) and

thus not to put too much trust in the measurements. Additionally, this slowness

is exacerbated by the poor choice for the initial state covariance, as can be easily

demonstrated by comparison to the Case 2 results, i.e., see Figure 5.18(a - f). In

particular, look at time zero in Figure 5.14(d, f) to observe that the state estimate

mean error (solid line) and the mean plus and minus one sigma (dash-dot line) values

are outside the zero plus and minus one filter-computed sigma bounds (gray dashed

line) initially created by the initial state covariance. For proper operation, the filter

must operate inside of these bounds. To see how the estimate progresses along the

entire rod, see Figure 5.14(i - p) on the continuation page of the figure; these plots

also list the RMS error for each displayed time instant. By comparison, for elemental

filter 2 in Figure 5.15(a - f), we see that the state estimate converges more quickly

because we have a larger and more realistic assumed value of the noise strength.

Continuing this theme for elemental filter 3, we see in Figure 5.16(a - f) that it

converges very rapidly and then overshoots and continually overreacts to the noise
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entering through the measurements. This can be quantified by examining the Q/R

ratio, which determines the filter gain, K. As Q/R increases, so does the Kalman

gain, which results in a wider filter bandwidth — faster responsiveness. On the other

hand, lower Q/R produces a smaller Kalman gain and thus the system must wait for

measurements to make substantial changes in its estimates. Additionally, elemental

filter 3 absorbs the bulk of the probability early on because its higher assumed Q

allows it to compensate for the poor choice for P0.
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Figure 5.14 Simulation 2, Case 1 (P poor
0 ): Elemental Filter 1. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.

5-36



0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 5 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (i)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 3.1 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (j)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 2.1 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (k)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 2 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (l)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 1.6 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (m)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 1.5 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (n)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 1.2 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (o)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 1.2 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (p)    

Figure 5.14 Simulation 2, Case 1 (P poor
0 ): Elemental Filter 1 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.15 Simulation 2, Case 1 (P poor
0 ): Elemental Filter 2. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.15 Simulation 2, Case 1 (P poor
0 ): Elemental Filter 2 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.16 Simulation 2, Case 1 (P poor
0 ): Elemental Filter 3. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.16 Simulation 2, Case 1 (P poor
0 ): Elemental Filter 3 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.17 Simulation 2, Case 1 (P poor
0 ): Blended Filter. (a) Rod temperature at

ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Rod RMS
temperature error.
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Figure 5.17 Simulation 2, Case 1 (P poor
0 ): Blended Filter (cont’d). (h) Rod tem-

perature at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod temperature at
ti = 0.29 sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temperature at ti = 0.57
sec. (m) Rod temperature at ti = 0.71 sec. (n) Rod temperature at ti = 0.86 sec.
(o) Rod temperature at ti = 1.00 sec.
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Case 2: A good initial state covariance and a set of parameter values for the

bank of elemental filters that is centered on the true dynamics noise strength. The

trends from Case 1 generally hold here, except now that we have an honest appraisal

of the initial state covariance, the filter can properly respond to the initial state

estimate bias that it finds. We note in particular that the filters are now operating

within the zero plus and minus one sigma bounds (gray dashed line) created by

the initial state covariance as viewed in Figure 5.18(d, f). For proper operation, the

filter must operate inside of these bounds. The results are dramatically different from

those of Case 1. In Figure 5.18(a - f), we see that the state estimate converges very

rapidly, even though the elemental filter (number 1) overestimates the quality of the

dynamics model. In fact, the convergence is so swift, that all three elemental filters

for this case compute an acceptable state estimate in just a portion of the simulated

time period. The RMS error is reduced by about 90% for the first two elemental

filters by the second time slice, as seen in Figures 5.18(j) and 5.20(j). As in Case 1,

elemental filter 3, [Figure 5.20(a - f)] converges very rapidly and then overshoots and

continually overreacts to the noise entering through the measurements — the initial

covariance estimate appears to have little bearing on a filter based on a model with

“high” Q. A high assumed value for Q “flushes” the initial conditions out of the

system because the gain is high when Q is high, i.e., low confidence in the dynamics

model or simply a large amount of process noise.
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Figure 5.18 Simulation 2, Case 2 (P good
0 ): Elemental Filter 1. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.18 Simulation 2, Case 2 (P good
0 ): Elemental Filter 1 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.19 Simulation 2, Case 2 (P good
0 ): Elemental Filter 2. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.19 Simulation 2, Case 2 (P good
0 ): Elemental Filter 2 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.20 Simulation 2, Case 2 (P good
0 ): Elemental Filter 3. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.20 Simulation 2, Case 2 (P good
0 ): Elemental Filter 3 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.21 Simulation 2, Case 2 (P good
0 ): Blended Filter. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Rod RMS
temperature error.
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Figure 5.21 Simulation 2, Case 2 (P good
0 ): Blended Filter (cont’d). (h) Rod tem-

perature at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod temperature at
ti = 0.29 sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temperature at ti = 0.57
sec. (m) Rod temperature at ti = 0.71 sec. (n) Rod temperature at ti = 0.86 sec.
(o) Rod temperature at ti = 1.00 sec.
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Case 3: A poor initial state covariance and a set of parameter values for the

bank of elemental filters that is centered at ten times the true dynamics noise strength.

A close inspection of Figure 5.22(a - f) for elemental filter 1 shows that the state

estimate is slowly converging to the true state just as it did in Case 1, Figure 5.14.

Again, we observe at time zero in Figure 5.22(d, f) that the state estimate mean

error (solid line) and mean plus and minus one sigma (dash-dot line) are outside the

zero plus and minus one filter-computed sigma bounds (gray dashed line) created by

the initial state covariance. The estimate progresses along the entire rod as shown

in Figure 5.22(i - p). By comparison, for elemental filter 2 in Figure 5.23(a - f),

we see that the state estimate converges more quickly than for elemental filter 2 in

Figure 5.15(a - f) because we have a larger assumed value for the dynamics noise

strength. As we have previously noted, a larger filter-assumed Q, for a given R,

gives rise to a larger gain and is thus more responsive to the measurements. The

model for elemental filter 3 greatly overstates the true dynamics noise strength, see

Figure 5.24(a - f)], and it converges very rapidly and then overshoots and continually

overreacts to the noise entering through the measurements; as before, the initial

covariance estimate appears to have little bearing on the performance of a filter

based on this model, compared to the ill match provided by overstating Qtrue. When

the filter’s Q is much too high, the transient caused by the initial conditions is very

short and then filter performance relies heavily on the measurements. All of these

attributes contribute to driving the elemental filter 2 mean hypothesis conditional

probability towards one.
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Figure 5.22 Simulation 2, Case 3 (P poor
0 ): Elemental Filter 1. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.22 Simulation 2, Case 3 (P poor
0 ): Elemental Filter 1 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.23 Simulation 2, Case 3 (P poor
0 ): Elemental Filter 2. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.

5-56



0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 5 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (i)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 1.3 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (j)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 0.18 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (k)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 0.26 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (l)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 0.32 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (m)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 0.19 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (n)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 0.09 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (o)    

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

RMS error = 0.2 deg C

te
m

p 
(d

eg
 C

)

position (m)
     (p)    

Figure 5.23 Simulation 2, Case 3 (P poor
0 ): Elemental Filter 2 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.24 Simulation 2, Case 3 (P poor
0 ): Elemental Filter 3. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.24 Simulation 2, Case 3 (P poor
0 ): Elemental Filter 3 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.25 Simulation 2, Case 3 (P poor
0 ): Blended Filter. (a) Rod temperature at

ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Rod RMS
temperature error.
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Figure 5.25 Simulation 2, Case 3 (P poor
0 ): Blended Filter (cont’d). (h) Rod tem-

perature at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod temperature at
ti = 0.29 sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temperature at ti = 0.57
sec. (m) Rod temperature at ti = 0.71 sec. (n) Rod temperature at ti = 0.86 sec.
(o) Rod temperature at ti = 1.00 sec.
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Case 4: A good initial state covariance and a set of parameter values for the

bank of elemental filters that is centered at ten times the true dynamics noise strength.

Now that we have a good initial state covariance, elemental filter 1 appears to be

a better match relative to the second elemental filter because its filter-assumed low

(optimistic) assessment of the dynamics noise strength is tempered by a good as-

sumed value for the initial state covariance as contrasted by Case 3 where we had

a poor choice for P0. The poor (too small) choice for P0 in Case 3 made it easier

for the MMAE to recognize the first elemental filter with a too-low value for Q (and

thus slow dynamic response for the corresponding elemental filter) was based on the

wrong model; hence the low hypothesis conditional probability. To see the interplay

of the initial state covariance and the assumed dynamics noise strength more clearly,

we turn to Equation (5.11), which shows us that the updated state covariance, seeded

by P0, is “scaled” by the (“square” of the) state transition matrix and then added

to the discrete-time version of the dynamics noise strength, Qd to accomplish time

propagation. Thus, the strength of the noise for the first filter appears higher and

thus it often accounts for the variance in the system and thus is an attractive choice

for the MMAE. However, state estimation performance would be degraded if the

initial state covariance were purposefully set lower than the true value.

When an elemental filter is based on an exceedingly high assumed value for Q

(e.g., three orders of magnitude greater than Qtrue), the MMAE quickly recognizes

the mismodeled filter. This behavior can be seen readily by comparing Cases 3 and

4 to Cases 1 and 2 in which the third elemental filter is more conservatively set at

just two orders of magnitude greater than the true value. Since the measurement

covariance, R, is assumed known and is used to create all of the filters in the bank,

the corresponding gain in these filters is relatively high and thus the filters attempt

to follow the measurements. This situation creates a mismatch between the filter-

assumed error covariance and the covariance of the residuals, as can be observed in

the likelihood quotient histories for the third elemental filter in all four cases (but
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more substantially for Cases 3 and 4) in Figures 5.16(g), 5.20(g), 5.24(g), and 5.28(g).

When a poor choice is made for P0, we have seen that the MMAE can more quickly

flow probability away from elemental filters with underestimated Q. Conversely, a

poor choice for P0 compounds the difficulty of identifying an elemental filter based on

an assumed Q that is too high — compare the elemental filter 3 probability histories

for Cases 1 and 3 versus Cases 2 and 4.
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Figure 5.26 Simulation 2, Case 4 (P good
0 ): Elemental Filter 1. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.26 Simulation 2, Case 4 (P good
0 ): Elemental Filter 1 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.27 Simulation 2, Case 4 (P good
0 ): Elemental Filter 2. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.27 Simulation 2, Case 4 (P good
0 ): Elemental Filter 2 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.28 Simulation 2, Case 4 (P good
0 ): Elemental Filter 3. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.28 Simulation 2, Case 4 (P good
0 ): Elemental Filter 3 (cont’d). (i) Rod

temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature
at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature
at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at
ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.29 Simulation 2, Case 4 (P good
0 ): Blended Filter. (a) Rod temperature

at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Rod RMS
temperature error.
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Figure 5.29 Simulation 2, Case 4 (P good
0 ): Blended Filter (cont’d). (h) Rod tem-

perature at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod temperature at
ti = 0.29 sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temperature at ti = 0.57
sec. (m) Rod temperature at ti = 0.71 sec. (n) Rod temperature at ti = 0.86 sec.
(o) Rod temperature at ti = 1.00 sec.
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Blended estimates for all four cases. Since we have designed these experiments

with full knowledge of what the truth is, the blended filter results are often inferior

to the filter designed to match the simulated truth model fully. That is true here,

as can be seen by comparing the figures for the second elemental filters to those of

the blended filters. For example, compare Figures 5.19 and 5.21 or Figures 5.27 and

5.29. The blended result is biased because every elemental filter contributes to the

blended solution. This bias is attributed to the fact that we have set a minimum

threshold for the hypothesis conditional probabilities8 and thus, even filters based

on completely mismatched models receive a nonzero weighting. We could of course

choose to blend only those elemental filter estimates which exceed this threshold;

that adjustment was not pursued in this research.

Finally, we draw your attention to another consequence of improperly setting

the initial state covariance. Compare blended plots (h) for the Case 1 in Figure 5.17

and Case 2 in Figure 5.21, or for an even better visual, compare blended plots (h) for

the Case 3 in Figure 5.25 and Case 4 in Figure 5.29. Note that for P good
0 = 25, the

RMS error has been reduced from 5 to only 2.5 after just one measurement update;

whereas for P poor
0 = 1, the RMS error has only been marginally reduced by about

5%. This is completely attributable to the choices for the initial state covariance.

(As a side note, we can also determine the number of sensor segments used to gather

the temperature data from the rod by noting the four transitions in Figures 5.21(h)

and 5.29(h).)

5.4 Simulation 3

While the first simulation demonstrated how we could obtain an order-of-

magnitude estimate of Q using an MMAE filter bank populated with five ele-

mental filters, this simulation shows how we can get an accurate estimate of the

measurement-corruption noise covariance, R, using another bank of five elemental

8See Section 2.4.6 for a discussion on lower bounding the hypothesis conditional probabilities.
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Case Filter Q R x̂0 P0

1 1
25

Rtrue = 0.2

2 1
5
Rtrue = 1

1 3 Qtrue Rtrue = 5 25 25

4 5Rtrue = 25

5 25Rtrue = 125

1 2
25

Rtrue = 0.4

2 2
5
Rtrue = 2

2 3 Qtrue 2Rtrue = 10 25 25

4 10Rtrue = 50

5 50Rtrue = 250

Table 5.7 Simulation 3: Elemental Filter Parameters

¾ -

R
©
0.2
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1
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25

¤
50

©
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¤
250

Figure 5.30 Simulation 3: Measurement-corruption noise covariance. Legend: ©
elemental filters for Case 1; ¤ elemental filters for Case 2; F true parameter within
the filter bank. (The filter spacing is nonlinear, but appears linear for illustration
purposes.)

filters. The first simulation demonstrated that the MMAE had trouble distinguish-

ing among “closely” spaced filters in terms of the Q parameter — the best results

were obtained for a discretization level of 100. Discretization of the R parameter

does not suffer from this malady and hence the focus shifts to having enough filters

to cover the range of possibilities. Table 5.7 presents the pertinent elemental filter

design parameters for two cases of interest. In the first case, we place the “center”

filter at what we know is the value for Rtrue and in the second case, we allow for a

slight upward offset from this position. Figure 5.30 gives a graphical display of the

separation between the elemental filters for both cases together on a single axis.

Note that the assumed R values for the five filters are separated from their

nearest neighbors by just a factor of five (versus one to two orders of magnitude for

Q in the previous simulation). Even though we saw in Simulation 2 that the best
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filter tends to overestimate the true dynamics noise strength for “fine” discretization

levels or for low Q/R ratio, in this simulation, discrimination of the five elemental

filters did not depend strongly on the Q used. We obtained essentially the same

results for 2Q and 5Q, while at 10Q the state estimation performance started to

degrade. However, measurement noise covariance estimation was still good. Only

the results for truth Q are shown in the following figures for the filter bank centered

on true R and the filter bank offset from Rtrue.

As we saw in the previous simulation, a poor choice for P0 can have disastrous

effects on the initial response of the system to new measurements. When P0 is too

small, the response of the filter to new measurements is slowed. This effect is much

the same as overestimating the true R. Thus, only the results for an adequate initial

state covariance is given.

As expected, the hypothesis conditional probability for elemental filter 3 tends

towards one in both filter banks, as shown in Figure 5.31 while the probability for the

other elemental filters tends towards zero, but at a faster rate than seen in Simulation

1. The centered filter bank is perhaps unrealistic for a real world situation, but as we

can see here, the results for Case 2 in which the true measurement-corruption noise

covariance occurs between the assumed values of two filters in the bank is still quite

good as shown in Figure 5.31(b). These trends were very similar for the other three

values of Q tested; thus we primarily discuss the case in which we know what the

true value of Q is. Additionally, simulation 1 showed us that we need only a good

guess to achieve good results since varying Q slightly had no appreciable effects on

performance.

The results for Case 1 shown in plot (a) of Figure 5.31 are to be expected

since the third filter was designed using the foreknowledge of the truth model. Sim-

ilarly, we anticipate that the two elemental filters closest to the true value of the

noise covariance (an underestimate and an overestimate) would receive “all” of the

probability flow for Case 2, as shown in plot (b). As we saw in simulation 1, a
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Figure 5.31 Simulation 3: Hypothesis conditional probability flow. (a) Case
1 filter bank: { 1

25
Rtrue,

1
5
Rtrue, Rtrue, 5Rtrue, 25Rtrue}. (b) Case 2 filter bank:

{ 2
25

Rtrue,
2
5
Rtrue, 2Rtrue, 10Rtrue, 50Rtrue}. To make these plots more legible, only the

mean hypothesis conditional probabilities for times {t0, t2, t4 . . . , t100} are displayed.

filter that slightly overestimates the expected covariance is favored over one that un-

derestimates the covariance. A filter based on an underestimate for the covariance

has its assumptions violated on a regular basis since the real world noise covariance

exceeds that which was programmed into the elemental filter. Thus, the third el-

emental filter receives the bulk of the probability while the second elemental filter

often underestimates the true covariance, it is correct often enough so that it receives

a small (but noteworthy) share of the probability. Note that if we try to use an even

larger overestimate for the measurement-corruption noise covariance, then we end

up with an elemental filter that “thinks” that the measurements are so sloppy as

to be relatively worthless as compared to the quality of the dynamics model. This

effect can be seen clearly in the probability calculation (given in Section 2.3.3.3) —

that is, the probability that the hypothesis is correct is inversely proportional to the

square-root of the determinant of the measurement-corruption noise covariance, i.e.,

an excessively large covariance can yield a very small probability due to this scaling

term. For a reasonable overestimate, this scaling is balanced by the exponential

portion of the probability density function.
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Case 1: Adapting to an unknown Rtrue using a filter bank centered on Rtrue.

It comes as no surprise that, when we match an elemental-filter-assumed parameter

value to the real-world parameter value, the MMAE performs very well. We begin

our analysis by observing the probability flow in Figure 5.31(a). Then, we investigate

the (h) plots for the individual elemental filters for this case in Figures 5.32 through

5.36 to see how much the hypothesis conditional probabilities varied over the course

of the simulation. For this case, only elemental filter 3 seems to have been based

on a good hypothesis of the true R; this is not surprising. If we look at plot (g) in

conjunction with plot (h), we can see that the likelihood quotient gives a reliable

account of which filter matches the simulated world the best. When Rfilter is smaller

than Rtrue, the likelihood quotient is greater than the expected M = 5 that is

exhibited by a filter for the best hypothesis. As the assumed value for R increases,

the likelihood quotient decreases. As shown in the development presented in the

introduction section for this chapter, the likelihood quotient is roughly equal to a

ratio of the true R to the assumed R for the elemental filter. Hence, the results we

have just seen in plots (g) are fairly predictable. As mentioned above, convergence

is dictated by the Q/R ratio (which gives rise to the steady state gain K); hence

the elemental filters with the smallest assumed R converged the quickest to the rod

temperature.

Continuing our analysis for this case, we see that when the assumed R is sig-

nificantly smaller than the true noise covariance, the dynamics model is essentially

cast aside, i.e., the Kalman gain is very high. To support this assertion empirically,

we inspect the behavior displayed in plots (a) through (f) in Figure 5.32 and to a

lesser degree in Figure 5.33 since the assumed R is closer to the true R in the latter.

Elemental filter 3 represents a balance between the dynamics and measurement mod-

els and is also the best elemental filter in the bank. The fourth and fifth elemental

filters behave in the opposite manner, they “trust” the dynamics model more than

they should and place less emphasis on the new measurements, which can be seen
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by the slowly converging state estimates on Figure 5.35 and to a greater degree on

Figure 5.36.
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Figure 5.32 Simulation 3, Case 1: Elemental Filter 1. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.32 Simulation 3, Case 1: Elemental Filter 1 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.33 Simulation 3, Case 1: Elemental Filter 2. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.33 Simulation 3, Case 1: Elemental Filter 2 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.34 Simulation 3, Case 1: Elemental Filter 3. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.34 Simulation 3, Case 1: Elemental Filter 3 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.35 Simulation 3, Case 1: Elemental Filter 4. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.35 Simulation 3, Case 1: Elemental Filter 4 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.36 Simulation 3, Case 1: Elemental Filter 5. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.36 Simulation 3, Case 1: Elemental Filter 5 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.37 Simulation 3, Case 1: Blended Filter. (a) Rod temperature at ρ = 0
m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at ρ = 0.5 m.
(e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Rod RMS temperature
error.
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Figure 5.37 Simulation 3, Case 1: Blended Filter (cont’d). (h) Rod temperature
at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod temperature at ti = 0.29
sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temperature at ti = 0.57 sec.
(m) Rod temperature at ti = 0.71 sec. (n) Rod temperature at ti = 0.86 sec. (o) Rod
temperature at ti = 1.00 sec.
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Case 2: Adapting to an unknown Rtrue using a filter bank purposefully offset

from Rtrue. As expected, the second and third elemental filters were deemed the most

likely as seen in Figure 5.31(b). The hypotheses conditional probability histories in

plot (h) of Figures 5.38 through 5.42, show that the probabilities for elemental filters

1, 4, and 5 are nearly zero in every Monte Carlo run, while the relative share of the

probability varied considerably between elemental filters 2 and 3 as indicated by

the rather large standard deviation evident in the mean plus and minus one sigma

(dashed) lines on plots (h). Recall that, for each Monte Carlo run, a sample of the

measurement-corruption noise process v is drawn. (Over the course of the fifty runs,

these samples are representative of a white Gaussian noise processes with covariance

R.) So, for a particular simulation run, if R is high — where R is the repeated

eigenvalue of the matrix R — then the MMAE would more heavily favor elemental

filter 3, and if R is low, it more closely matched elemental filter 2. As anticipated,

the mean probability flow to elemental filter 3 is greater than to elemental filter 2.

An examination of plot (g) reveals that these two elemental filters are in consonance

with the real-world conditions since their likelihood quotients are near M = 5; the

likelihood quotient for elemental filter 3 (R3 = 2Rtrue) is less than five (about two and

a half), while the one for elemental filter 2 (R2 = 0.4Rtrue) was too large (around

12). The rest of the elemental filters were poorly matched to the simulated real

world and thus received essentially zero probability for the entire simulation, and

their likelihood quotients in plot (g) were either too large (for filter 1), or too small

(for filters 4 and 5). Note that the RMS error at time ti = 1 sec is lowest for blended

filter output [Figure 5.43)(o)], versus any of the elemental filters alone, even though

none of the elemental filters were based on a correct value for R. The blended filter

output is due almost entirely to an effective blending of elemental filters 2 and 3.

Hence, in a real-world environment, where we might have only incomplete and/or

low quality information on the true noise environment, the blended estimates may

prove to be the most useful.
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A final comment. While it was entirely anticipated that elemental filter 3

would absorb all of the probability in Case 1, it is useful to note that even when

the assumed value is slightly increased (in this case it was doubled), the elemental

filter still matches quite well, as demonstrated in Case 2. Additionally, the elemental

filter that “resides on the other side” of the true R gathered the remainder of the

probability, as previously noted.
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Figure 5.38 Simulation 3, Case 2: Elemental Filter 1. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.38 Simulation 3, Case 2: Elemental Filter 1 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.39 Simulation 3, Case 2: Elemental Filter 2. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.39 Simulation 3, Case 2: Elemental Filter 2 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.

5-95



0 0.2 0.4 0.6 0.8 1
19

20

21

22

23

24

25

te
m

p 
(d

eg
 C

)

time (s)
   (a)  

0 0.2 0.4 0.6 0.8 1
19

20

21

22

23

24

25

te
m

p 
(d

eg
 C

)

time (s)
   (c)  

0 0.2 0.4 0.6 0.8 1
19

20

21

22

23

24

25

te
m

p 
(d

eg
 C

)

time (s)
   (e)  

0 0.2 0.4 0.6 0.8 1
−300

−200

−100

0

100

200

300

te
m

p 
(d

eg
 C

)

time (s)
   (b)  

0 0.2 0.4 0.6 0.8 1
−5

0

5

te
m

p 
(d

eg
 C

)

time (s)
   (d)  

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

te
m

p 
(d

eg
 C

)

time (s)
   (f)  

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

rT  A
−1

 r

time (s)
   (g)  

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

pr
ob

time (s)
   (h)  

Figure 5.40 Simulation 3, Case 2: Elemental Filter 3. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.40 Simulation 3, Case 2: Elemental Filter 3 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.41 Simulation 3, Case 2: Elemental Filter 4. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.41 Simulation 3, Case 2: Elemental Filter 4 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.42 Simulation 3, Case 2: Elemental Filter 5. (a) Rod temperature at
ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at
ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood
quotient. (h) Hypothesis conditional probability.
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Figure 5.42 Simulation 3, Case 2: Elemental Filter 5 (cont’d). (i) Rod temperature
at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.43 Simulation 3, Case 2: Blended Filter. (a) Rod temperature at ρ = 0
m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at ρ = 0.5 m.
(e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Rod RMS temperature
error.
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Figure 5.43 Simulation 3, Case 2: Blended Filter (cont’d). (h) Rod temperature
at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod temperature at ti = 0.29
sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temperature at ti = 0.57 sec.
(m) Rod temperature at ti = 0.71 sec. (n) Rod temperature at ti = 0.86 sec. (o) Rod
temperature at ti = 1.00 sec.
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Filter Q R x̂0 P0

1 0.04Rmedian = 0.4

2 0.2Rmedian = 2

3 Qtrue Rmedian = 10 25 25

4 5Rmedian = 50

5 25Rmedian = 250

Table 5.8 Simulation 4: Elemental Filter Parameters

5.5 Simulation 4

The preceding simulation showed how we could obtain a good estimate of an

unknown constant Rtrue. This simulation demonstrates the capability of the MMAE

to adapt to a time-varying Rtrue which varies over the interval [Rmin, Rmax] = [1, 101].

Specifically, we seek an accurate estimate of Rtrue as it either linearly increases

or decreases during the one-second interval of interest. We shall use a bank of

five elemental filters similar to those used in Simulation 3 — the difference lies in

the R value used to center the filter bank. In the previous simulation, the center

elemental filter was built using R = 5, whereas in this simulation, the median filter

is “located” at R = 10 so that it coincides with the geometric mean of the minimum

and maximum values for Rtrue. Thus, Rmedian =
√

RminRmax =
√

101 ≈ 10. The

relative spacing of the elemental filters is the same factor of five spacing, as are the

rest of the elemental filter parameters. The elemental filter design parameters are

tabulated in Table 5.8 for convenience.

We shall consider two distinct cases of linearly changing Rtrue: increasing and

decreasing. The initial results for these cases are shown in Figures 5.44 and 5.52,

respectively. The MMAE state estimate is quite good for both cases; the MMAE

state estimate is off by less than 1 ◦C(RMS), as seen in Figures 5.51(o) and 5.59(o).

Additionally, by inspecting Figures 5.44 and 5.52, we see that the probability flow

among the elemental filters is slightly different, i.e., the figures are not mirror images

of each other as we would expect if the MMAE handled Rtrue increases the same as
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decreases. An increase in Rtrue creates a harsher noise environment for MMAE adap-

tation, versus a decreasing Rtrue, which presents a more benign noise environment.

“Harsh” is in the sense that the measurements are less precise; “benign” is in the

sense that the measurements are more precise.

Since the MMAE “prefers” a filter which overestimates the true measurement-

corruption noise covariance to one which underestimates the true covariance, we

should anticipate that the MMAE “switches” filters more quickly for the increasing

true covariance case. Said another way, increases in the true covariance result in a

more aggressive flow of probability to an elemental filter based on a larger covariance.

For the decreasing true covariance case, an elemental filter based on a too-large value

is not so quickly cast aside for a filter based on a more realistic model.

5.5.1 Simulation 4, Case 1 (Increasing Rtrue). For this first case, the

true measurement-corruption noise covariance, Rtrue, varies linearly for times ti =

{0, 0.01, 0.02, . . . , 1} according to

Rtrue(ti) = 100(ti + 0.01) (5.12)

Thus Rtrue begins at 1 and ends at 101; this is shown graphically by the dashed line

in Figure 5.44, as seen by noting the scale on the right-hand side of the plot. Note

that the elemental filters in the bank completely cover this range of values for Rtrue

and that no attempt has been made to optimize the placement of these filters.

At the beginning of this simulation, Rtrue(t1 = 0) = 1 and elemental filters 1

and 2 represent the best hypotheses since they have R values of 0.4 and 2, respec-

tively; see Figure 5.44. As the true R increases to 2 at the next time step, elemental

filter 1 does not match quite as well and elemental filter 2 matches perfectly, how-

ever, it takes a few more update cycles for the change to be completely “noticed”

and during that time, the true value has continued to increase and thus the next

elemental filter (number 3) begins to become a better fit. Soon after elemental fil-
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Figure 5.44 Simulation 4, Case 1 (increasing Rtrue): Hypothesis conditional prob-
ability.

ter 3 absorbs all of the probability, it too becomes less likely as the true R starts

to “look” like the next filter in the bank, R4 = 50. Note that only two elemental

filters register an appreciable amount of probability at any one time, thus the usual

situation is one in which an elemental filter either has a very good hypothesis, or the

true value falls between the hypothesized values for neighboring filters.

The hypothesis conditional probability curves for each elemental filter resemble

trapezoids which begin when the truth R is about one half of the filter-hypothesized

R and that elemental filter remains the most likely elemental filter until the halfway

point for the next elemental filter in the bank, as can be seen clearly in Figure 5.44.

Therefore, we can predict that elemental filter 5 would become the most likely filter

at time 1.25 seconds if we were to run the simulation for that length of time.

The second column in Table 5.9 gives the range of Rtrue values for the best

filter. Note that the ranges are mutually exclusive. In the fourth column, note that
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Filter R Rtrue when pk > 0.5 Rtrue when pk > 0.1

1 0.4 1 1, 2

2 2 2, . . . , 6 1, . . . , 9

3 10 7, . . . , 26 5, . . . , 32

4 50 27, . . . , 101 19, . . . , 101

5 250 − 88, . . . , 101

Table 5.9 Simulation 4, Case 1 (increasing Rtrue): Best hypothesis. Filter 5 was
never the best filter at any time during this simulation; hence the bar.

only two filters are “in force” at any one time with 10% or more likelihood. We

could add yet another column corresponding to the Rtrue values when the standard

deviation in the mean hypothesis conditional probability history is about zero; see

plot (h) of Figures 5.46 through 5.50 at the end of this section. This represents

the times when an elemental filter matched the true value without regard to the

particular realization of measurement pseudonoise added. For example, elemental

filter 3 is the best when Rtrue = 10, which is to be expected, up until Rtrue = 14,

which is a fairly small window given the neighboring filter is at R = 50. Elemental

filter 4 has a much wider “perfect” match zone, from Rtrue = 40 until Rtrue = 64.

Furthermore, the first few sample periods embody the usual initial transient in each

of the elemental filters and thus these first few time instants are not particularly

indicative of the true capabilities of the MMAE. For instance, in this research, all of

the elemental filters in the bank are assumed to be equally likely when the simulation

begins; thus, even the most mismatched filter gets 1/Kth of the probability at the

start.

An interesting trend that we can easily see in the plot (g) likelihood quotient

histories is readily explained using the formula developed in Section 5.1 for the steady

state likelihood quotient for the kth elemental filter at time ti (repeated here for our

convenience)

E{Lk(ti)|ti=tss} ∼=
Rtrue

Rk

M (5.10)
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Figure 5.45 Simulation 4, Case 1 (increasing Rtrue): Likelihood quotient. This plot
has been clipped at L = 20 since only the elemental filters operating near L = 5
absorb an appreciable amount of probability.

As the truth value for R increases, so do the likelihood quotients (which of course

never really make it to steady state) since we see that Rtrue is in the numerator, while

M/Rk remains unchanged. Thus, the Rtrue “ramp” is apparent in the likelihood

quotient “ramps” as seen in Figure 5.45.

In general, we note that the filters with smaller assumed values for R gave

better state estimates, because in the beginning when Rtrue was also small, we had the

case of precise measurements; hence estimation is very good. Specifically, elemental

filter 1 converged rapidly because it accurately reflected the high quality of the

measurements; see Figure 5.46. Recall that when R is small, the (Q/R) ratio is

large; therefore the gain is large and that gives us the rapid convergence. However,

as the measurement quality waned, the state estimate started to “wander” and its

RMS error increased as shown in Figures 5.46 (i) through (p). At the other end of
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the filter bank, elemental filter 5 showed a relatively large RMS error [Figure 5.50

(i) through (p)] because it initially assumed that the measurements were “rough”,

and then as time progressed, the measurements truly did fall in quality.

Overall, the MMAE state estimate is quite good given the fact that we rarely

have an elemental filter based on the perfect model. Because the elemental filters

are more closely spaced at small values of R, the RMS state error is smaller at the

beginning (after the initial transient) of the simulation as seen in Figure 5.51(g) for all

time and then in plots (h) through (o) (on the following page) along the length of the

rod. Of course, the fact that a small truth R simply means that the measurements are

more precise contributes to our excellent performance for small Rtrue. Since we knew

a priori that R was going to change linearly, perhaps we could have improved the state

estimation performance by spacing the elemental filters linearly. An inspection of

Figure 5.45 shows that the likelihood quotient histories are all roughly linear. Thus,

the quadratic nature of the likelihood quotient, Lk(ti) = rT
k (ti)A

−1
k (ti) rk(ti), with

respect to the residuals matches up well with a linear change in the measurement-

corruption noise covariance and thus a strictly linear spacing of the elemental filters

would have given an unnecessary concentration of filters at larger values of R.
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Figure 5.46 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 1. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.46 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 1 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.47 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 2. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.47 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 2 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.48 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 3. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.48 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 3 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.49 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 4. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.49 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 4 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.50 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 5. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.50 Simulation 4, Case 1 (increasing Rtrue): Elemental Filter 5 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.51 Simulation 4, Case 1 (increasing Rtrue): Blended Filter. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Rod RMS temperature error.
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Figure 5.51 Simulation 4, Case 1 (increasing Rtrue): Blended Filter (cont’d).
(h) Rod temperature at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod
temperature at ti = 0.29 sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temper-
ature at ti = 0.57 sec. (m) Rod temperature at ti = 0.71 sec. (n) Rod temperature
at ti = 0.86 sec. (o) Rod temperature at ti = 1.00 sec.
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Figure 5.52 Simulation 4, Case 2 (decreasing Rtrue): Hypothesis conditional prob-
ability.

5.5.2 Simulation 4, Case 2 (Decreasing Rtrue). In this linearly decreasing

case, the true measurement-corruption noise covariance eigenvalues were varied for

ti = {0, 0.01, 0.02, . . . , 1} according to

Rtrue(ti) = 100(1.01− ti) (5.13)

Thus Rtrue begins at 101 and decreases to 1. Figure 5.52 shows the probability flow

between the elemental filters as Rtrue changes.

The second column in Table 5.10 gives the range of Rtrue values for the best

filter. Note that the ranges are mutually exclusive. In the fourth column, note that

only two filters are “in force” at any one time with 10% or more likelihood. As

we mentioned in Case 1, we could also note that, by looking at the (h) plots for

the elemental filters, we could assess the times when the filter is almost perfect as
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Filter R Rtrue when pk > 0.5 Rtrue when pk > 0.1

1 0.4 − −
2 2 1 1, 2, 3

3 10 2, . . . , 17 1, . . . , 23

4 50 18, . . . , 101 10, . . . , 101

5 250 − 85, . . . , 101

Table 5.10 Simulation 4, Case 2 (decreasing Rtrue): Best hypothesis. Filters 1 and
5 were never the best filters during this simulation; hence the bars.

indicated by the lack of variation in the hypothesis conditional probability curves.

For example, elemental filter 4 shows very little variation from time 0.45 seconds until

0.65 seconds when Rtrue decreased from about 55 to 35. This is slightly different

from the range encountered when Rtrue is increasing: that range is roughly 40 to

65. Thus for Case 2, we can see that the MMAE does not want to give up on the

elemental filter that has overestimated the severity of the noise (elemental filter 5) so

readily for the filter that is more conservatively modeled (elemental filter 4) while the

true measurement-corruption noise covariance is decreasing. This phenomenon can

be readily explained by using the likelihood quotient, Lk(ti) = rT
k (ti)A

−1
k (ti) rk(ti),

values given for the two elemental filters of concern. In this decreasing Rtrue case, the

MMAE seems to “hold” onto an elemental filter based on a too high assumption for

the measurement-corruption noise covariance R. See Figure 5.53 for the likelihood

quotient histories for all five elemental filters; note that they are all linear (with

a negative slope) in response to the decreasing linear change in the measurement-

corruption noise covariance — the filter in force is the filter with an Lk closest in

value to M = 5. This tendency to hold on to an elemental filter based on a too

high assumption for R can be explained by noting that the slope of the likelihood

quotient history for the fourth elemental filter is greater than the slope for the fifth

elemental filter; thus, while elemental filter 5 simply attempts to maintain its share

of the probability by slowly diverging from a likelihood, L5, near five, elemental filter
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Figure 5.53 Simulation 4, Case 1 (decreasing Rtrue): Likelihood quotient. This
plot has been clipped at L = 20 since only the elemental filters operating near L = 5
absorb an appreciable amount of probability.

4 works harder to gather all of the probability flow unto itself by rapidly approaching

L4 = 5.

Overall, the MMAE state estimate was better for the increasing measurement-

corruption noise covariance case, although the final estimate at 1.0 seconds was better

for this decreasing covariance case because we had nearly perfect measurements

during the last 0.3 seconds of this simulation as seen in Figure 5.59 in plots (m)

through (o). As stated earlier, we could have anticipated this overall result by

noting that, as Rtrue decreases, the elemental filter in force with the bulk of the

probability is still correct to a large degree, but gradually, the true error covariance

of the measurements tightens up and an elemental filter with a smaller covariance

is slowly promoted. By not adapting more quickly, the state estimate suffers some.

However, while the initial state estimate bias was partially masked by the high Rtrue,
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the steadily improving measurements resulted in a steady convergence to the true

temperature profile along the rod as seen in Figure 5.59 (g) for all time and then in

plots (h) through (o) (on the following page) along the length of the rod.
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Figure 5.54 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 1. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.54 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 1 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.55 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 2. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.55 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 2 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.56 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 3. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.56 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 3 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.57 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 4. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.57 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 4 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.58 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 5. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.58 Simulation 4, Case 2 (decreasing Rtrue): Elemental Filter 5 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod
temperature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod
temperature at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.59 Simulation 4, Case 2 (decreasing Rtrue): Blended Filter. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Rod RMS temperature error.
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Figure 5.59 Simulation 4, Case 2 (decreasing Rtrue): Blended Filter (cont’d).
(h) Rod temperature at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod
temperature at ti = 0.29 sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temper-
ature at ti = 0.57 sec. (m) Rod temperature at ti = 0.71 sec. (n) Rod temperature
at ti = 0.86 sec. (o) Rod temperature at ti = 1.00 sec.
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Filter Q R x̂0 P0

1 0.04Rtrue0 = 0.2

2 0.2Rtrue0 = 1

3 Qtrue Rtrue0 = 5 25 25

4 5Rtrue0 = 25

5 25Rtrue0 = 125

Table 5.11 Simulation 5: Elemental Filter Parameters. Rtrue0 represents the initial
value for Rtrue.

5.6 Simulation 5

In this simulation we investigate the MMAE’s ability to respond to an abrupt

change of the true measurement-corruption noise covariance, whereas in the last

simulation the MMAE adjusted to a smooth linear change. We shall assume that

we know the discrete set of the most likely Rtrue values that apply at any given time

of interest. This known set is used to build a bank of five elemental filters paired

to the five possible Rtrue values. The elemental filter design parameters are shown

in Table 5.11. Once again we have used the truth value for Q. To be thorough, we

conducted this simulation with a dynamics noise strength two, five, and ten times

as large, with no significant change in the parameter estimation performance, just

minor slowing of the response to the change, which is somewhat masked when Q is

overestimated. Given the focus of this simulation, only the plots for the elemental

filters for the truth level of dynamics noise strength are shown.

The true measurement-corruption noise covariance was abruptly changed dur-

ing the simulation as follows: in the first third of the scenario, filter 3 presents

the best model as can be seen in Figure 5.60. In the second third, filter 4 is

the best hypothesized value, and finally, filter 2 matches the best during the final

third. As expected, only one elemental filter achieved the ideal likelihood quotient,

Lk(ti) = rT
k (ti)A

−1
k (ti) rk(ti), of 5 during each period. For the first, second, and

third periods, the average likelihood quotient was 5 for elemental filters 3, 4, and 2,
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Figure 5.60 Simulation 5: Hypothesis conditional probability.
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Figure 5.61 Simulation 5: Abruptly changing measurement-corruption noise co-
variance. Legend: © elemental filter; F true parameter within the filter bank. (The
filter spacing is nonlinear for illustration purposes.)

as shown in Figures 5.64(g), 5.65(g), and 5.63(g), respectively. This progression is

further illustrated in Figure 5.61.

The clean, fast convergence displayed during the first change from elemental

filter 3 to filter 4 can be explained by noting that, as the true R experienced a positive

step increase, the assumptions upon which filter 3 was constructed were now being
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Period: First Second Third

Truth: Rtrue0 5Rtrue0 Rtrue0/5

Filter 1 (R1 = Rtrue0/25) 125 625 25

Filter 2 (R2 = Rtrue0/5) 25 125 5

Filter 3 (R3 = Rtrue0) 5 25 1

Filter 4 (R4 = 5Rtrue0) 1 5 1/5

Filter 5 (R5 = 25Rtrue0) 1/5 1 1/25

Table 5.12 Simulation 5: Expected likelihood quotients. Rtrue0 is the initial value
for Rtrue. The correctly modeled elemental filter will have a likelihood quotient of
about five.

violated and thus the probability flow to filter 4 was rapid. The second probability

flow transition, which was prompted by a large decrease in the true noise covariance,

was less crisp than the first transition. While the probability for filter 4 dropped off

rapidly, filter 3 initially earned a small share of the probability during this second

transition since it was not immediately clear that the measurement quality change

was real versus spurious. These observations match up well with the analysis based

on the likelihood quotients given in Simulation 4; there we noted that the MMAE

responds more quickly and adroitly to a positive change in Rtrue than it does for a

negative change in Rtrue. Thus, we would expect the same general performance to a

step change in R.

Note that the shape of the likelihood quotient plot is the same for all of the

elemental filters — only the magnitude has changed in plots (g) of Figures 5.62

through 5.66. The expected magnitudes for each of the elemental filters in Table

5.12 can be found by using the steady state likelihood quotient for the kth elemental

filter at time ti derived in Section 5.1 and repeated here for our convenience

E{Lk(ti)|ti=tss} ∼=
Rtrue

Rk

M (5.10)
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When the hypothesis is correct, Rk = Rtrue, and then the right-hand side of Equation

(5.10) becomes M . The interesting cases occur when Rj 6= Rtrue. For example, when

Rtrue is “under”-modeled by a factor of five, then the likelihood quotient is five times

bigger than for a properly modeled filter. The likelihood quotient of 25 occurs during

the three times of the simulation when the truth R is fives times the assumed value

in the elemental filter. Just the opposite occurs when the truth R is one fifth of the

assumed value in the filter. This also happens three times during the simulation as

noted in the table.

While the likelihood quotient is a good barometer for how well an elemental

filter matches the real environment, a quick review on how the hypothesis conditional

probability is calculated, see Equations (2.43) through (2.46) on pages 2-29 and 2-30,

reveals that there is another term that we should consider. The leading coefficient of

the Gaussian density, the β-term shown in Equation (2.45), plays an important role

when the residuals for multiple filters are approximately equal. Consider the scalar

measurement case: for approximately equal residuals, the elemental filter with the

smaller filter-computed residual covariance is “preferred” by the MMAE.

In the end, we anticipate that the innate capability of the MMAE to adapt to an

unknown noise environment will result in an improved state estimate. As we inspect

the blended filter plots in Figure 5.67 on page 5-153, we note that the majority of the

plots appear to have three distinct regions — this is due to the abruptly changing

truth R. In each of the time periods in which a different Rtrue was in force, the MMAE

quickly identified the best elemental filter; this leads to a quality state estimate

for that elemental filter for that time period and consequently, it predominantly

determined the blended filter results given that it gathered approximately all of the

probability during that particular time slot. The initial Rtrue gave reasonably good

measurements and thus the MMAE was able to handle the initial state estimate

bias with ease. When the truth measurement-corruption noise covariance increased

by a factor of five in the second period, the MMAE quickly “decided” that the
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measurement noise covariance had increased somewhat and filter 4 soon received the

bulk of the probability. At the end of the first period (from 0 to 0.33 sec), the RMS

error in plot (g) of Figure 5.67 was quite small, owing to the fact that Rtrue was

small. In the second period (from 0.33 to 0.67 sec), Rtrue was five times as large,

hence it should not come as a surprise that the mean-squared error would increase by

a factor of five initially. The improved measurement quality during the third period

brought the RMS error back down to its lowest levels. The two transitions can be

seen clearly in plots (g) and (h) of Figures 5.63, 5.64, and 5.65 for elemental filters

2, 3, and 4 respectively.

For the two elemental filters designed to model poor quality measurements,

elemental filters 4 and 5, poor initial transients create the unusual circumstance

seen in Figures 5.65 and 5.66, plots (d) and (f). As noted earlier, the adequacy of

the initial state covariance can be checked by inspecting plots (b), (d), and (f); the

initial error should be within the 1σ (i.e., one standard deviation) bounds created by

the initial state covariance. If this is not true, then convergence is greatly hampered

since the filter has been told that its initial condition errors are much smaller than

they really are.
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Figure 5.62 Simulation 5: Elemental Filter 1. (a) Rod temperature at ρ = 0 m.
(b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at ρ = 0.5 m.
(e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood quotient.
(h) Hypothesis conditional probability.
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Figure 5.62 Simulation 5: Elemental Filter 1 (cont’d). (i) Rod temperature at
ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.63 Simulation 5: Elemental Filter 2. (a) Rod temperature at ρ = 0 m.
(b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at ρ = 0.5 m.
(e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood quotient.
(h) Hypothesis conditional probability.
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Figure 5.63 Simulation 5: Elemental Filter 2 (cont’d). (i) Rod temperature at
ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.64 Simulation 5: Elemental Filter 3. (a) Rod temperature at ρ = 0 m.
(b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at ρ = 0.5 m.
(e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood quotient.
(h) Hypothesis conditional probability.
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Figure 5.64 Simulation 5: Elemental Filter 3 (cont’d). (i) Rod temperature at
ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.65 Simulation 5: Elemental Filter 4. (a) Rod temperature at ρ = 0 m.
(b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at ρ = 0.5 m.
(e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood quotient.
(h) Hypothesis conditional probability.
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Figure 5.65 Simulation 5: Elemental Filter 4 (cont’d). (i) Rod temperature at
ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.66 Simulation 5: Elemental Filter 5. (a) Rod temperature at ρ = 0 m.
(b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at ρ = 0.5 m.
(e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Likelihood quotient.
(h) Hypothesis conditional probability.
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Figure 5.66 Simulation 5: Elemental Filter 5 (cont’d). (i) Rod temperature at
ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod temperature at ti = 0.29
sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temperature at ti = 0.57 sec.
(n) Rod temperature at ti = 0.71 sec. (o) Rod temperature at ti = 0.86 sec. (p) Rod
temperature at ti = 1.00 sec.
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Figure 5.67 Simulation 5: Blended Filter. (a) Rod temperature at ρ = 0 m.
(b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error at ρ = 0.5 m.
(e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Rod RMS temperature
error.
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Figure 5.67 Simulation 5: Blended Filter (cont’d). (h) Rod temperature at ti = 0
sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod temperature at ti = 0.29 sec.
(k) Rod temperature at ti = 0.43 sec. (l) Rod temperature at ti = 0.57 sec. (m) Rod
temperature at ti = 0.71 sec. (n) Rod temperature at ti = 0.86 sec. (o) Rod
temperature at ti = 1.00 sec.
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Q R x̂0 κ

5 5 20 0.86 (aluminum)

Table 5.13 Simulation 6: Truth Parameters

Filter Q R x̂0 P0 κ

1 0.011 (granite)

2 0.12 (cast iron)

3 Qtrue Rtrue 25 25 0.86 (aluminum)

4 1.14 (copper)

5 1.71 (silver)

Table 5.14 Simulation 6: Elemental Filter Parameters. The diffusivity constants
are taken from Boyce and DiPrima [26].

5.7 Simulation 6

In this final simulation we examine the system identification capabilities of

the MMAE. Some of the important truth system parameters are given in Table

5.13; take note that the thermal diffusivity constant is no longer 1, but has been

programmed to represent an aluminum rod. We created five elemental filters as-

suming that we know the true noise environment statistics, i.e., zero-mean Gaussian

stochastic process with known covariance matrices and a 5 ◦C bias in our initial

state (temperature) estimate. Each of the five elemental filters is programmed with

a distinct choice for the thermal diffusivity constant, κ, corresponding to a known

thermal diffusivity for a specific material as shown in Table 5.14. Physically, as dif-

fusivity increases, resistance to heat flow decreases. A lower diffusivity means that

heat flows (or diffuses) more slowly through the material. In other words, materials

with “high” diffusivity constants achieve thermal equilibrium faster than materials

such as granite. Notice how closely spaced the diffusivity constants (the parameters

in this case) are for aluminum, copper, and silver.

By introducing a purposeful excitation signal into the system (in this case, heat

applied to the left end of the rod), we increased the identifiability of the unknown
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parameter dramatically and we were able to perform system identification at a very

fine level. Since we were introducing this excitation to the system, we also gave the

elemental filters a very good (but not exact) approximation of the heating profile.

The true heating profile at the left end of the rod is9

utrue(ti) =





0.01+ti
0.1

η υ, 0 ≤ ti ≤ 0.09

η υ, 0.1 ≤ ti ≤ 0.75

0, 0.76 ≤ ti ≤ 1

(5.14)

where η is the percentage (expressed as a fraction) of the maximum excitation used

and υ is the maximum heat added to the system. The approximate control signal fed

to the elemental filters was a Gaussian process with a mean of utrue(ti) and a standard

deviation of 0.1utrue(ti); see Figure 5.68 for a graphical depiction of the true heating

profile (solid black line) plus two realizations of the approximate profile (given by

the dashed and dash-dot lines). Additionally, the relatively low melting point of

aluminum (660 ◦C, see [1]) compared to the other materials limits the amount of

(excitation) heat that we can safely apply to the system since we did not know what

the material was beforehand.

We shall report the findings for four experiments that differ only in the level of

system excitation used to aid the system identification process. The first experiment

under the Simulation 6 heading sought to identify the thermal diffusivity constant

(the unknown system parameter) using a “finely” discretized bank of elemental filters

in the presence of abundant system excitation (limited so that we don’t melt the rod

if it happens to be made of aluminum) to ascertain how quickly the system parameter

could be identified. We excited the system by heating the left end (ρ = 0) of the rod

for the first 0.75 seconds of the one-second duration run. [The accumulative effects

9We have assumed that our heating element is ideal and thus the temperature at the interface,
i.e., at the left end of the rod, is perfectly regulated so that it matches the program given in
Equation (5.14).
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Figure 5.68 Simulation 6: The true rod heating profile (solid black line) applied
to the left end of the rod, plus two realizations (dashed and dash-dot lines) supplied
to the elemental filters for the maximum excitation case (η = 1) and temperature
υ = 1000 ◦C.

of the heating profile can be seen quite clearly in Figure 5.72(a) which shows the true

and estimated temperature for the left end of the rod for the best modeled elemental

filter; for 0.09 seconds the heat is steadily increased and is then held constant until

0.75 seconds.] Note that heating the rod is akin to dithering the actuator [57, 147,

186, 73] discussed in Section 2.4.11. By adding a known persistent excitation into

the system, the identifiability of specific parameter of interest is increased. For the

maximum level of persistent system excitation, the MMAE quickly identifies the

thermal diffusivity constant as seen in Figure 5.69(a) [and Figure 5.72(h)]. Figure

5.69(a) shows clearly that elemental filter 3 is most likely correct, hence the material

in question is aluminum with a probability of nearly one.

In a second experiment, we determined that even one fifth of the system excita-

tion level used in the first experiment could achieve very good system identification

results, i.e., we could still tell that the material in question is aluminum with about

90% certainty, as shown in Figure 5.69(b). At one tenth of the excitation, the prob-
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Figure 5.69 Simulation 6: Hypothesis conditional probability. (a) Maximum exci-
tation, (b) Moderate excitation, (c) Low excitation, (d) Minimum excitation.

ability that the rod is aluminum drops to about 65%, with elemental filter 4 rising

to almost one third probability that the material is copper; see Figure 5.69(c). At

this low level of excitation, the three elemental filters with large diffusivity constant

“look” and perform equally well in the beginning, the two filters with small κ’s over-

estimate how hot the rod is and consequently have terrible residuals, and eventually

the relatively high diffusivity constant filters received all of the probability. In the

fourth case for one twentieth the original excitation magnitude, Figure 5.69(d) shows

us that the elemental filter tuned for aluminum was still the most likely of the fil-

ters in the bank, with almost 0.5 probability, while the elemental filters featuring

larger diffusivity constants (copper and silver) received about one half of the total

probability. The full workup of plots are shown for this minimum level of excitation
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in Figures 5.76 on page 5-174 through 5.81. The individual elemental filter plots

associated with the moderate and low levels of excitation are not included in this

report since the trends are all the same (as can be seen by comparing corresponding

figures for the maximum and minimum system excitation cases).

When a filter is based on a model with a thermal diffusivity constant that

is well below the true value, the filter “sees” a large increase in temperature as a

tremendous increase in temperature since a “small” diffusivity constant means that

the heat slowly diffuses through the material. Thus the huge errors indicated in

Figure 5.70 are quite clearly seen in plots (a) through (f) and the RMS error values

given in plots (i) through (p). While the absolute errors are much smaller when the

system excitation is much lower, the same trends can be seen in Figure 5.76 for the

elemental filter that is set up to identify granite.

At the other end of the spectrum, when the assumed κ is bigger than the true

diffusivity constant, the filter underestimates the true level of heat flow because it

“thinks” that the flow moves more swiftly than it truly can in the truth system with

the smaller κ. Once again, the maximum excitation experiment provides the best

example of this in Figure 5.74, and the minimum excitation plots exhibit a similar

trend; however, the MMAE does not correct itself as quickly, as can be seen in Figure

5.80.

As expected, all of the elemental filters (whether properly modeled or not)

saw their state estimation errors decrease after the excitation was removed. This is

precisely why we apply persistent system excitation, to enable the MMAE to tell the

difference between the elemental filters. Without persistent excitation, the system

is able to dampen out heat flow such that most any model will match the heat flow

characteristics encoded in the system dynamics model.

Thus, at substantially lower levels of persistent excitation, we must more

coarsely discretize the set of values used to represent the diffusivity constant so

that the individual filters appear more distinct. Preliminary simulations indicate
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that if we forego persistent system excitation that (1) the discretization level needs

to be such that two (or even three) orders of magnitude separate the parameter val-

ues used to specify the elemental filters, and (2) the MMAE takes longer to make a

“decision”, therefore, the simulation time must be increased to observe the behavior

of the filters.

There are of course an endless number of simulated experiments that we could

perform in order to characterize the performance of the MMAE more fully for this

problem. However, without actually running another simulation, we could hypoth-

esize the following: how can we improve the simulation results for this minimal

excitation experiment without coarsening the discretization? Recall that in the first

simulation we demonstrated how the Q/R ratio influenced the distinguishability of

the elemental filters. Since the diffusivity constant is part of the dynamics model,

if we had conducted an experiment with a smaller Q/R ratio, i.e., the propagated

estimates are to be favored over the measurement-updated estimates, then we could

expect to enhance the results for the minimal excitation experiment because the

differences between the filters would be accentuated.

Throughout this chapter, the likelihood quotient has proved to be an excellent

guide to elemental filter performance since it considers both the residuals and the

filter-computed residual covariance in concert with one another — see, for example,

plots (g) of Figures 5.70 through 5.74 for one more set of illustrations. On the other

hand, in this experiment, plots (b), (d), and (f) of Figures 5.70 through 5.74 also

demonstrate clearly which elemental filter best represents the true system. A quick

review of these plots shows that only the third elemental filter has a mean estimation

error (given by the solid line) consistently bounded by the pair of dashed lines which

are used to represent how well the filter “thinks” that it is performing. When the

solid line (actual performance) radically differs from the expected performance given

by the dashed lines, then we can be fairly certain that the model is not well matched

to the real world that we are simulating. This same trend is fairly evident for the
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minimal excitation case too, see plots (b), (d), and (f) of Figures 5.76 through 5.80,

with the exception of filter 4 which looks nearly as well matched as filter 3 (to the

untrained eye).
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Figure 5.70 Simulation 6 (maximum excitation): Elemental Filter 1. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.70 Simulation 6 (maximum excitation): Elemental Filter 1 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.71 Simulation 6 (maximum excitation): Elemental Filter 2. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.71 Simulation 6 (maximum excitation): Elemental Filter 2 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.72 Simulation 6 (maximum excitation): Elemental Filter 3. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.72 Simulation 6 (maximum excitation): Elemental Filter 3 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.73 Simulation 6 (maximum excitation): Elemental Filter 4. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.73 Simulation 6 (maximum excitation): Elemental Filter 4 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.74 Simulation 6 (maximum excitation): Elemental Filter 5. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.74 Simulation 6 (maximum excitation): Elemental Filter 5 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.75 Simulation 6 (maximum excitation): Blended Filter. (a) Rod tem-
perature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Rod RMS temperature error.
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Figure 5.75 Simulation 6 (maximum excitation): Blended Filter (cont’d). (h) Rod
temperature at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod temperature
at ti = 0.29 sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temperature at
ti = 0.57 sec. (m) Rod temperature at ti = 0.71 sec. (n) Rod temperature at
ti = 0.86 sec. (o) Rod temperature at ti = 1.00 sec.
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Figure 5.76 Simulation 6 (minimum excitation): Elemental Filter 1. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.76 Simulation 6 (minimum excitation): Elemental Filter 1 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.77 Simulation 6 (minimum excitation): Elemental Filter 2. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.77 Simulation 6 (minimum excitation): Elemental Filter 2 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.78 Simulation 6 (minimum excitation): Elemental Filter 3. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.78 Simulation 6 (minimum excitation): Elemental Filter 3 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.79 Simulation 6 (minimum excitation): Elemental Filter 4. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.79 Simulation 6 (minimum excitation): Elemental Filter 4 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.80 Simulation 6 (minimum excitation): Elemental Filter 5. (a) Rod
temperature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m.
(d) Error at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m.
(g) Likelihood quotient. (h) Hypothesis conditional probability.
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Figure 5.80 Simulation 6 (minimum excitation): Elemental Filter 5 (cont’d).
(i) Rod temperature at ti = 0 sec. (j) Rod temperature at ti = 0.14 sec. (k) Rod
temperature at ti = 0.29 sec. (l) Rod temperature at ti = 0.43 sec. (m) Rod temper-
ature at ti = 0.57 sec. (n) Rod temperature at ti = 0.71 sec. (o) Rod temperature
at ti = 0.86 sec. (p) Rod temperature at ti = 1.00 sec.
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Figure 5.81 Simulation 6 (minimum excitation): Blended Filter. (a) Rod temper-
ature at ρ = 0 m. (b) Error at ρ = 0 m. (c) Rod temperature at ρ = 0.5 m. (d) Error
at ρ = 0.5 m. (e) Rod temperature at ρ = 1 m. (f) Error at ρ = 1 m. (g) Rod RMS
temperature error.
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Figure 5.81 Simulation 6 (minimum excitation): Blended Filter (cont’d). (h) Rod
temperature at ti = 0 sec. (i) Rod temperature at ti = 0.14 sec. (j) Rod temperature
at ti = 0.29 sec. (k) Rod temperature at ti = 0.43 sec. (l) Rod temperature at
ti = 0.57 sec. (m) Rod temperature at ti = 0.71 sec. (n) Rod temperature at
ti = 0.86 sec. (o) Rod temperature at ti = 1.00 sec.
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5.8 Summary

In the first five Monte Carlo simulations, we concentrated on adapting to an

uncertain noise environment. Specifically, in the first simulation we concentrated

on uncertain dynamics noise strength and showing how the Q/R ratio and dis-

cretization level, d, affected the distinguishability of the elemental filters in the filter

bank as characterized by the hypothesis conditional probability histories. In the

second simulation, we illustrated the importance of properly initializing the elemen-

tal filters. Simulations three through five featured the identification and adaptation

of the MMAE to an unknown (constant, linearly varying, and abruptly changing)

measurement-corruption noise covariance. Finally, in simulation six, we demon-

strated perhaps the most powerful aspect of the MMAE, that of accurately identi-

fying a structural aspect (or parameter) of the dynamical system, in this case, the

thermal diffusivity constant.
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VI. Conclusions

6.1 Introduction

The goal of this chapter is twofold: firstly, to summarize the contributions,

both large and small, resulting from the research documented in this dissertation,

and secondly, to suggest some recommendations for future research. The focal point

of this dissertation is the infinite-dimensional sampled-data Kalman filter (ISKF)

given by Theorem 91, on page 3-85. In general, the other contributions discussed

below serve to motivate or support the development of the ISKF and the generalized

infinite-dimensional multiple model adaptive estimation (GIMMAE) framework, or

to illustrate their use in a practical problem. The recommendations for future work

represent just a few of the interesting paths that should be investigated to develop

this area of research more fully.

As illustrated in Table 3.1 on page 3-83, the Kalman filtering quartet, that

began with the (discrete-time dynamics, sampled-data measurements) Kalman filter

[95], the (continuous-time dynamics, continuous-time measurements) Kalman-Bucy

filter [96], and the infinite-dimensional (continuous-time dynamics, continuous-time

measurements) Kalman-Bucy filter by Falb [51] is now complete with the addition

of the infinite-dimensional (discrete-time dynamics, sampled-data measurements)

Kalman filter (ISKF). More importantly, the ISKF provides the proper foundation

for crafting an exact and easily implemented algorithm for a digital computer, as

demonstrated in Chapter IV.

6.2 Contributions

Our first contribution, which can be found in Section 1.3, is a simplified pre-

sentation of multiple model adaptive estimation (MMAE) and its application to

navigation. This introductory development of the MMAE is intended to be a source
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of motivation for new researchers — it was inspired by the illustrative “lost at sea”

example given in Section 1.5 of Maybeck [129].

The focus of this dissertation is on the development of an abstract mathemati-

cal algorithm and then demonstrating how one might implement this algorithm for a

practical problem. The background material given in Chapter II, while not normally

considered a contribution, contains a large collection of previous contributions from

the stochastic estimation literature; thus, it serves to not only prepare and moti-

vate the reader for understanding this research, but to “prime the pump” for future

research directions.

With an eye towards future research, the ISKF was built incrementally upon a

sequence of stochastic estimators and increasingly specialized measurement models.

While the derivations in this research were certainly inspired by the published works

contained in the literature (to include the advanced topics discussed in Section 1.4,

the extensive background leading to the present day MMAE in Chapter II, and linear

estimation theory given in Section 3.3), only the first five definitions of Section 3.3

were borrowed (and cited) from the literature. The remainder of the development

contained in Sections 3.3 through 3.6 represents an original contribution.

The development of the ISKF is underpinned by conditional expectation1; thus,

the conditional mean estimator posed on a separable Hilbert space, see Theorem 65,

represents the core of the ISKF — our development of a conditional mean estima-

tor parallels the finite-dimensional case given by Scharf [170]. Following the initial

development, we showed that the conditional mean estimator solves the minimum

mean-squared error estimation problem posed in Definition 68. After defining a

measurement model for correlated states and observations (CSO) in Definition 70,

a linear infinite-dimensional minimum variance unbiased estimator (LIMVUE) for

CSO is given in Theorem 71; this theorem takes the first big step towards the ISKF.

Next, a generalized linear measurement model is proposed in Definition 72 and then

1See Definition 55 and the references therein for a general treatment of conditional expectation.
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another LIMVUE is given based on this measurement model in Theorem 75. Now

that the basic estimation theory for a state stochastic process is in place, we pose

a generalized linear stochastic measurement model in Definition 76 and develop the

corresponding LIMVUE for stochastic processes in Theorem 78. Finally, the ISKF

is given by Theorem 91 and the GIMMAE framework is developed in Section 3.6.

While many (if not most) of the physical problems motivating this line of

research mathematically model the system dynamics using an infinite-dimensional

continuous-time description, such as a stochastic partial differential equation, our

goal is to craft a digital computer algorithm, hence there is an intermediate need to

transform the infinite-dimensional continuous-time model into an equivalent infinite-

dimensional discrete-time model, e.g., an infinite-dimensional difference equation.

Thus, the next step entails mapping of the equivalent infinite-dimensional discrete-

time model to an essentially-equivalent infinite-dimensional discrete-time model; this

is performed in Chapter IV. The work in Section 3.4 parallels that of Maybeck [129]

for finite-dimensional systems, and hence the idea is not original, but the transfor-

mation process for infinite-dimensional systems is a contribution resulting from this

research. That is, the linkage between the continuous-time dynamics model given

in Definition 79 and the discrete-time dynamics model of Definition 80 is new even

though it “looks” nearly identical to the finite-dimensional work as exemplified in

Maybeck [129] — see Theorems 86 and 88 in particular.

The purpose of the extended example problem given in Chapter IV is to de-

velop a method for using the ISKF in an MMAE to estimate the temperature profile

along a slender cylindrical rod; the resulting structure realized by the MATLAB

programming environment is the approximate infinite-dimensional MMAE (AIM-

MAE). By approximating the temperature (state) function, we are able to use the

infinite-dimensional structural and statistical components of the ISKF without fur-

ther approximations. Using the results of Section 3.4, we transformed the infinite-

dimensional continuous-time system model into an equivalent infinite-dimensional
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discrete-time model. Next, an essentially-equivalent finite-dimensional discrete-time

model was derived by approximating the state temperature function using a finite

number of terms from a Fourier series expansion and then determining the resulting

form of the ISKF components. This approximation technique gives rise to a sampled-

data Kalman filter used to generate an optimal estimate of a predetermined finite

number of the coefficients associated with the Fourier series expansion of the true

state temperature function.

In Chapter V we found that the AIMMAE was quite capable of estimating the

state in a variety of uncertain noise environments as well as performing the task of

system identification. It was not an original goal of this work to perform the system

identification task, however, it accomplishes the task quite well.

6.3 Recommendations

There are several main threads of inquiry that warrant considerable more at-

tention than given in this dissertation. Characterizing the ISKF, expanding the class

of problems that the ISKF can be filter, improving the state function approximation,

and the employment of moving-bank MMAE structures represent interesting areas

for further research.

While the ISKF was fully developed, we have made no attempt to character-

ize the controllability (the property of being able to steer the system between two

arbitrary points in the state space) or observability (the property of being able to

determine the initial state uniquely using only the knowledge of the output) of the

infinite-dimensional dynamics and measurement models upon which estimator was

based or the stability of the ISKF itself. See texts by Curtain on infinite-dimensional

system theory for a good discussion regarding these topics [38, 39].

Another area for exploration would be to expand the class of infinite-

dimensional problems to include two-parameter semigroups of bounded linear op-

erators; see, for example, Pazy [160].
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In transforming the infinite-dimensional continuous-time system model into an

equivalent infinite-dimensional discrete-time model, we experienced no loss of infor-

mation. In contrast, the quality of essentially-equivalent finite-dimensional discrete-

time model is wholly dependent on the method and subspace used to model the state

function, since the structural and statistical components of the ISKF were developed

in concert with the approximation chosen for the state function. Thus, the perfor-

mance of the ISKF could be enhanced by optimizing the manner in which the state

function is approximated.

In Chapter II we introduced several moving-bank structures. Depending on

the application, one of these might improve state and/or parameter estimation per-

formance relative to the fixed-bank MMAE used in this research.
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