
 1

Rapid Simulation Evaluation from Scenario Specifications for Command and
Control Systems

Raymond A. Paul, W. T. Tsai*, John S. Mikell

Department of Defense

Washington, DC
Telephone: 703-607-0649

raymond.paul@osd.mil

*Department of Computer Science and Engineering
Arizona State University
Tempe AZ, 85287 USA

wtsai@asu.edu

Abstract
This paper presents a technique to simulate and evaluate a system once the system scenarios

are available without any simulation programming. This is different from traditional simulation
where simulation code and the system specification are separately developed by human engineer
and potential gaps between them might be introduced. Another significant advantage of this
approach is that the scenarios specified do not need to be complete or consistent. Inconsistency
and incompleteness, as well as safety, performance, and behavior problems, can be detected by
the simulation via various dynamic analyses. This technique is a part of Scenario-Driven System
Engineering (SDSE) that is being developed for Command-and-Control systems.

Keywords: Scenarios, ACDATE, Simulation, Scenario-Driven System Engineering,
Completeness and Consistency Analysis, Safety Analysis.

1. Introduction

Future Command and Control (C2) systems need to operate within an integrated grid-based
network-centric environment that allows rapid decision development and evaluation to meet the
challenges of modern agile warfighting. This paper presents a Scenario-Driven System
Engineering (SDSE) approach to develop, evaluate, and test C2 systems. One key component is
that once system scenarios are specified, the system can be simulated without any programming
and thus saves significant effort and time.

SDSE is compatible with the modern Service-Oriented Architecture (SOA) approach to
develop trustworthy systems. DoD is embracing SOA in numerous projects such as the Defense
Information Systems Agency GIG Enterprise Services (GES) with its component core services.
The SDSE can be used to specify and analyze system behaviors in an SOA.

The core of SDSE is scenario specification and analyses. A scenario is specified using the

ACDATE model:

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Rapid Simulation Evaluation from Scenario Specifications for Command
and Control Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Arizona State University,Department of Computer Science and
Engineering,Tempe,AZ,85287

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

41

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

• Actors – An actor is either an external user, system or device, or an internal system,
device, component or object;

• Conditions – A condition is a predicate used to trigger an action;
• Data – Attributes of actor, and presenting the semantic of condition, event and action
• Actions – Specified by the trigger event, guard condition, the way to change the status

of actors, and sent event(s) to some actors
• Timing – A semantic statement about the relative or absolute value of time or duration
• Events – External/internal significant occurrences that may trigger action(s)

Once system behaviors are specified, various static and dynamic (via simulation) analyses can

be performed on the model:
• Completeness and consistency analysis: The model can be used to identify

incompleteness at compile time as well as during simulation.
• Performance evaluation: The model can be simulated to determine system performance

including throughput and delay.
• Safety analysis: The model can be used to generate the event-tree model and effect-

cause diagram commonly used in safety analysis;
• Behavior analysis: The model can be used to generate the state model of the system and

various behavior analyses such as reachability analysis, which can be performed on the
state model. Formal verification techniques such as temporal logic can be used to
analyze the state model.

The SDSE is to be integrated and supported by an automated tool E2E that is currently being

used in several experimental projects by US Navy.

2. ACDATE Model – An Example

This section presents an example of ACDATE modeling technique which usually contains two
steps:

• Decompose the requirements into ACDATE model elements; and
• Develop system scenarios using the ACDATE model elements.

Taking a battlefield as an example, each warfighting vehicle can be treated as an Actor. Each

actor (warfighting vehicle) may have its own Data such as “available fuel”, and its own
Conditions such as if there is enough fuel to continue moving for 20 miles. The given condition
example is constructed on the Data ‘available fuel’. An Event “not enough fuel” could be fired
when there is not enough fuel support subsequent operations. An Action would be “to refill the
vehicle”.

A system scenario would then be specified using the ACDATE model elements: if the event
“not enough fuel” occurs, the actor “warfighting vehicle” shall perform action “to refill” within
the time specified by the Timing Attribute “within 15 minutes”.

3. Scenario-Based Rapid Simulation

The key feature of the rapid simulation is automatic simulation code generation once the
system scenarios are available. The simulation code has an embedded scheduler, an event queue,

 3

a monitor, and a policy checker to track and verify the alternative system behaviors under
different environments, as well as the impact from and to the environment. The simulation is
discrete event simulation [1][3].

3.1 Simulation Engine Architecture
The simulation engine has two main parts: system simulator and the environment simulator.

The environment simulator simulates the behavior of the environment. It can also simulate the
impact of the system to its environment. Separating the system simulation and environment
simulation has several significant advantages: It offers the opportunity to observe the behavior of
the system under testing (SUT) under different loads by varying the environment simulator.
Specifically, robustness, reliability and scalability of the system can be determined by generating
various inputs to drive the system, e.g., generating an incorrect input can evaluate the system’s
robustness, and generating the input according to the operational profile will determine the
system’s reliability, and generating inputs of various sizes to determine the system scalability.

The simulation engine architecture is illustrated by Figure 1. The ACDATE model elements

form an entity pool. The execution of each scenario, which is scheduled by the scheduler, will
access the entity pool to read or update their internal status. Events may be emitted during the
execution of a scenario, which may in turn invoke the execution of other scenarios. An event
queue is maintained to process all the events emitted by scenarios or the environment. The
scheduler will drive the monitor or the policy checker properly to track all the activities or do
runtime policy verification respectively.

Figure 1: Scenario Based Simulation Architecture

The core of the scheduler is a virtual machine (VM) that enables fine-grained debugging

capability. The execution of any scenario can be slow-played and the internal status of each
entity can be set-up to any desired value to offer the opportunity to manipulate the simulation
and observe rare occurrence or exceptional behaviors.

The monitor will track all the activities and the information will be used to generate the event-

tree, the state diagram for each actor or the entire system. For any potential or real malfunction,
the monitor or the policy checker will report warnings to indicate either there is a completeness
and consistency breach or concurrency or security policy violation. The monitor will also record

 4

the time elapsed that can be used to form the performance evaluation of each actor or the entire
system.

The simulation works as follows. An event residing in the event queue, which might be

emitted by the environment or the system, is picked up by the scheduler and processed. The
event may trigger the execution of a scenario, which will be either concurrent with the execution
of other scenarios, or occupy the VM before it finishes, due to the different scheduling policy.
The execution course of the scenario may be determined by the internal status of some entities.
The scheduler will read or update the corresponding internal status upon the request of the
scenario. New events will be emitted on behalf of the scenario during execution, which will be
appended to the end of the event queue. The new events might be communication among
components inside the system or an outgoing event to the environment. Details of the execution,
such as time information, action sequence, and event sequences will be recorded through the
monitor, which is available to postmortem analyses. If a policy is registered into the scheduler,
corresponding policy checking will be invoked by the policy checker at runtime.

3.2 Simulation Code Generation
The simulation code is generated based on the scenario specification, which includes the

ACDATE definition and scenario description. Each ACDATE model element will be translated
to an object with the attributes defined in the specification. Instrumentation code will be inserted
to the objects to interface with the monitor and policy checker. Each scenario will be translated
to a procedure that is basically a sequence of operations on the ACDATE objects or emitting
events. Similarly, instrumentation code will be inserted to the procedure to interface with the
scheduler, for scheduling the concurrent execution, and event queue for emitting new events.
Table 1 shows a sample simulation code that is automatically generated with instrumentation
code that interfaces with the scheduler, event queue, monitor, or policy checker.

scenario_5 = function(co_routine_name, platform) // a scenario
 coroutine.yield(); // interface to scheduler
 ...

 event_4:AddDestination(1); // interface to monitor
 event_4:emit(); // interface to event queue
 ...
 data_3.value = 1000; // data_3:set() will be invoked and
 // interface to monitor embedded there
 action_10:before_do(co_routine_name, platform); // interface to policy checker embedded here
 action_10_dummy_func(co_routine_name, platform);
 action_10:after_do(co_routine_name, platform);

 timer[platform] = timer[platform] + unit; // advance and record system time
 ...

Table 1 Sample Simulation Code

4. Simulation for Dynamic Analyses

Various dynamic analyses are enabled by simulation, e.g., completeness and consistency
(C&C) analysis, performance analysis, safety analysis, and behavior analysis.

The dynamic C&C analysis complement static C&C checking [6] because some

incompleteness or inconsistency can only be observed during runtime when concurrency comes

 5

into play. The simulation will record all the potential inconsistency and incompleteness such as
the simulation encounters a situation where there is no related instruction in the specification; or
an action did not change the state of any actors, which may imply that the system is at an
abnormal state that responses to no input. In a recent experiment with a C2 system that has
around 1000 entities and 120 scenarios, it takes 3 minutes to generate and execute the simulation
and it detected around 200 bugs related to incompleteness or inconsistency.

During the simulation, system time will be recorded for each action when it starts or ends,

event when it is emitted or handled, and data when the value changes. The recorded time
information can be used for performance analysis such as the throughput and average delay of
the system.

Event sequence can be useful for safety analysis. Figure 2 shows a sample event sequence tree

which is automatically generated by simulation. The effect-cause diagram [7] can be also
automatically generated by examining all the event trees related to a system to link from an
effect to its possible causes. Effect-cause diagram is similar to fault tree [5] except that the
elements on the diagram are analytic entries. By combining event sequence tree and effect-cause
diagram, one can pinpoint which system components that failed during failure analysis.

Figure 2 Sample Event Sequence Tree

 6

Behavior analysis, such as reachability [8] analysis, is usually performed on state model.
There is a natural mapping from the state model generated from the simulation (SMM) [7] to
UML’s Statechart [2], which can then be fed into various UML tools for further analyses. It is
also possible to perform Linear Temporal Logic (LTL) analysis and model checking using SPIN
[7] on the state model to detect deadlock or other malfunctions.

5. Conclusion

This paper proposes a systematic process to perform variety kinds of dynamic analyses based
on scenario specification. Once system scenarios are specified, the simulation code can be
automatically generated, and the system can be simulated without any additional programming.
The simulation can be used to perform various dynamic analyses including C&C checking,
safety analysis, and performance analysis. The SDSE is being integrated into an automated tool
E2E.

References

[1] Jerry Banks, Discrete-Event System Simulation, Prentice Hall, 2001.
[2] B.P. Douglass, Doing Hard Time: Develop Real-Time Systems with UML Objects,

Frameworks, and Patterns, Addison-Wesley, 1999.
[3] D. Luckham, The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems, Addison-Wesley, 2002.
[4] SPIN: at http://spinroot.com/spin/whatispin.html.
[5] N. Storey, Safety-Critical Computer Systems, Addison Wesley, Reading, MA, 1996.
[6] W. T. Tsai, R. Paul, L. Yu, X. Wei, and F. Zhu, “Rapid Pattern-Oriented Scenario-Based

Testing for Embedded Systems” to appear in Software Evolution with UML and XML,
edited by H. Yang, 2004.

[7] W. T. Tsai, L. Yu, R. Paul, C. Fan, and X. Liu, “Rapid Scenario-Based Simulation and
Model Checking for Embedded Systems”, in Proc. of SEA, 2003, pp. 568-573.

[8] W. T. Tsai, L. Yu, A. Saimi, and R. Paul, “Scenario-based Object-Oriented Test
Frameworks for Testing Distributed Systems”, in Proc. of IEEE Future Trends of
Distributed Computing Systems, 2003, pp.288-294.

2004-5-22 1

Rapid Simulation Evaluation from
Scenario Specifications for

Command and Control Systems
Ray Paul

DoD OSD NII

2004-5-22 2

Real-Time Distributed Network-
Centric Warfare

• System modeling and simulation from the system
requirement important for network-centric warfare

• System modeling and simulation are usually expensive
for real-time distributed network-centric warfare

• Many specification and simulation packages are
available such as SDL that can model and simulate the
target system from requirements. But they are often
design-oriented.

• Our scenario-driven system engineering approach
provides a way to perform system modeling and
simulation rapidly based on system requirements.

2004-5-22 3

Comparisons Between SDL and
Scenario ACDATE Model

Comparison ACDATE SDL/TTCN
Essence High-level system description Equivalence
Approach Requirement engineering
Fundamental
Technique

Scenario oriented Object oriented

Intuitive
Feature

More intuitive Less intuitive

Code
Generation

Partial code Complete code

Components Actor, Condition, Data,
Action, Timing, Event

Structure,
Communication,
Behavior, Data,
Inheritance

Simulation Non-real code based
simulation

Real code based
simulation

Testing Test cases generation Test script generation
UML
Relation

Class diagram, Sequence
diagram

UML compatible

MDA
Support

Unavailable Available

Goal Ensure no errors in
requirements

Generate real time
applications

Difference

V&V
Support

Convenient to support
V&V

Not focus on this

2004-5-22 4

SDSE and Command & Control
Systems

• Future Command and Control (C2) systems
need to operate within an integrated grid-based
network-centric environment (GIG) that allows
rapid decision development and evaluation to
meet the challenges of modern agile warfighting.

• A Scenario-Driven System Engineering (SDSE)
approach is proposed to develop, evaluate, and
test C2 systems

• Once system scenarios are specified, the
system can be simulated without any
programming and thus saves significant effort
and time.

2004-5-22 5

SDSE Features

• Compatible with the Service-Oriented
Architecture (SOA) to develop trustworthy
systems

• Can be used to specify and analyze
system behaviors in an SOA.

• Core: scenario specification and analyses
based on ACDATE model.

2004-5-22 6

ACDATE Model
• Actors – An actor is either an external user, system or

device, or an internal system, device, component or
object;

• Conditions – A condition is a predicate used to trigger an
action;

• Data – Attributes of actor, and presenting the semantic
of condition, event and action

• Actions – Specified by the trigger event, guard condition,
the way to change the status of actors, and sent event(s)
to some actors

• Timing – A semantic statement about the relative or
absolute value of time or duration

• Events – External/internal significant occurrences that
may trigger action(s)

2004-5-22 7

A Sample Scenario

A scenario “when driver door is locked and passenger door is locked, if remote
controlled is pressed unlock, then the driver door is open” can be specified using
Scenario Specification Language as above

2004-5-22 8

Analyses based on
ACDATE/Scenario Model

• Based on the ACDATE/Scenario model, a
variety of static and dynamic (via simulation)
analyses can be performed:
– Completeness and consistency analysis
– Performance evaluation
– Safety analysis
– Behavior analysis
– Policy specification and enforcement

• The SDSE is to be integrated and supported by
an automated tool E2E that is currently being
used in several experimental projects by US
Navy

2004-5-22 9

Scenario Tool Input Interface

2004-5-22 10

Static C&C Analysis

• Once the system ACDATE/Scenario
model is ready, one can easily using our
automated tool to perform completeness
and consistency analysis to see if there is
any problem in system modeling

• Static C&C analysis can discover a large
amount of incompleteness and
inconsistency problems that are hard for
engineers to detect

2004-5-22 11

Static C&C Analysis Tool

2004-5-22 12

Experiment Results of Static C&C
Results

2004-5-22 13

Scenario-Based Simulation
Architecture

• Scenario-based simulation is divided into
two major parts
– Environment Simulator

• The behavior of the environment
• Impact of the system to
its environment

– System Simulator
• Target system
behavior

Agent Agent Agent Agent·····

Environment Simulation

Agent

Agent

System Simulation

Agent

Agent

Agent·····

·····
Stimuli from
Environment ·····

Feedbacks to
Environment

2004-5-22 14

Rationale for Separating Environment
And System Simulation

• It offers the opportunity to observe the behavior of the
system under testing (SUT) under different loads by
varying the environment simulator

• Robustness, reliability and scalability of the system can
be determined by generating various inputs to drive the
system
– Generating an incorrect input can evaluate the system’s

robustness
– Generating the input according to the operational profile will

determine the system’s reliability
– Generating inputs of various sizes to determine the system

scalability

Simulation Engine Architecture

Entity Pool

Event QueueS
cenario

S
cenario

S
cenario

S
cenario

Scheduler (VM)

Entity

Entity Entity

Entity

Monitor

Policy Checker

Execute

Track Activity

Check Policy

Emit Event

Event Tirggers Scenario

Access

Environment

2004-5-22 15

2004-5-22 16

Simulation Code Generation
• The simulation code is generated based on the scenario

specification, which includes the ACDATE definition and
scenario description

• Each ACDATE model element will be translated to an
object with the attributes defined in the specification

• Instrumentation code will be inserted to the objects to
interface with the monitor and policy checker

• Each scenario will be translated to a procedure that is
basically a sequence of operations on the ACDATE
objects or emitting events.

• With these automated simulation code generation,
previously Excel-spreadsheet based real-time distributed
network-centric C2 systems can be simulated without
any additional programming effort saving significant
effort.

2004-5-22 17

Simulation Code Generation –
Sample Scenario

A scenario “when driver door is locked and passenger door is locked, if remote
controlled is pressed unlock, then the driver door is open” can be specified using
Scenario Specification Language as above

2004-5-22 18

Simulation Code Generation
Example – Generated Code

scenario_5 = function(co_routine_name, platform) // a scenario
coroutine.yield(); // interface to scheduler ...
if (condition_11.Eval() || condition_17.Eval()) //condition evaluation
then

action_10:before_do(co_routine_name, platform); // interface to policy
//checker embedded here

action_10_dummy_func(co_routine_name, platform); // turn on alarm
action_10:after_do(co_routine_name, platform);
timer[platform] = timer[platform] + unit; // advance and record system

// time ...
action_17: action_10:before_do(co_routine_name, platform);
action_17_dummy_func(co_routine_name, platform); // beep once
action_17:after_do(co_routine_name, platform);
timer[platform] = timer[platform] + unit;

else
action_20: action_10:before_do(co_routine_name, platform);
action_20_dummy_func(co_routine_name, platform); // beep three times
action_20:after_do(co_routine_name, platform);
timer[platform] = timer[platform] + unit;

end

2004-5-22 19

…

[30] Event E1_ReceiveFireOrder is Generated.

[31] Event E13_ReceiveFireOrder with Event Instance ID of 12
Arriving at 30

[31] Begin Doing Action Action13_ReceiveFireOrder
[32] Condition Vig3_ChancellorsvilleCanShoot is Evaluated to Be False

[33] Begin Doing Action Action3_MakeDecision
[34] Condition Conditon27_DecideRejectMission is Evaluated to Be

True

…

Event Generated

Event Being Processed
Event Handlers Invoked

Condition Evaluated Action Performed

Sample Simulation Result
Execution Sequence

Timing Information

2004-5-22 20

Dynamic Analyses Performed
Based on Simulation

• Once simulation is performed, variety
kinds of analyses can be carried out based
on simulation, both runtime and off-line:
– Policy specification and enforcement
– Dynamic C&C analysis
– Performance analysis
– Safety analysis
– Behavior analysis

2004-5-22 21

Policy Specification and
Enforcement

• One can specify kinds of policies in the
system ACDATE/Scenario model using
our automated scenario tool

• Once policies are specified, simulation can
dynamically check and enforce the
specified policies at runtime.

• Any policy violation will be reported and
recorded in a log file.

2004-5-22 22

Policy Specification
• Policy 2: Supporting Arms Coordinator (SAC) must NOT issue a Fire

Order if SOF Team has not laid down
• Specification

2004-5-22 23

Acceptable Scenario
SOF Team lies down
before Fire Order
is issued

No policy violation
detected

2004-5-22 24

Scenario Violating Policy
SOF Team doesn’t
lie down before Fire
Order is issued

Policy violation
detected

2004-5-22 25

Dynamic C&C analysis

• Some incompleteness or inconsistency can only
be observed during runtime when concurrency
comes into play

• In a recent experiment with a real time network-
centric C2 system that has around 1000 entities
and 120 scenarios, it takes 3 minutes to
generate and execute the simulation and it
detected around 200 bugs related to
incompleteness or inconsistency.

2004-5-22 26

Performance Analysis

• During the simulation, system time will be
recorded for each action when it starts or
ends, event when it is emitted or handled,
and data when the value changes.

• The recorded time information can be
used for performance analysis such as the
throughput and delay of the system
processes.

2004-5-22 27

Safety Analysis

• Event sequence can be useful for safety
analysis.

• By using event sequence tree and
traditional event tree, one can pinpoint
which system components that failed
during failure analysis.

2004-5-22 28

Sample Event Sequence Tree
E02_info_received E04_Get_Info_from

_P3
E09_Info_is_sent_by_Acto

r1

E08_Info_is_sent_by_Actor3

E10_Info_is_sent_by_Actor5

E05_Get_msg_from
_P3

E12_Msg_is_sent_by_Acto
r7

E11_Msg_is_sent_by_Actor
9

E13_Msg_is_sent_by_Actor5

E03_Attack_info_r
eceived

E04_Get_Info_from_
P3

E09_Info_is_sent_by_Actor
2

E08_Info_is_sent_by_Actor
1

E10_Info_is_sent_by_Actor8
E05_Get_msg_from_

P3

E12_Msg_is_sent_by_Actor
6

E11_Msg_is_sent_by_Actor
7

E13_Msg_is_sent_by_Actor
9

E01_Unknow_track_
investigated

2004-5-22 29

Behavior analysis

• Reachability analysis
• State model generation
• Linear Temporal Logic (LTL) analysis
• Model checking using SPIN
• Sequence diagram generation

2004-5-22 30

State Model Generation

• We can generate the state model from the
result of simulation

• Information contained in one entry of the
simulation result
– Time stamp
– Starting and ending system state
– Action performed
– Event that triggers the action

2004-5-22 31

State Model Generation
• From information provided in the result of simulation, we

can get the global state transitions and single actor state
transitions

• But there is something more for the single actor state
transition generation – guard condition, i.e. some state
transition can happen when some other actors are in
certain conditions. For example, alarm can not be turned
on when the driver’s door is open.

• State transition for global system:
– (starting global state) – external event/triggered actions

(ending global state)
• State transition for single actor

– (starting actor state) – external event[guard condition]/triggered
actions (ending actor state)

2004-5-22 32

Model Checking with SPIN

• One can generate the single actor state
models automatically from simulation

• One can also generate the single actor
state models from requirements or design
manually

• Two sets of state models can put into
SPIN to perform cross checking

2004-5-22 33

Sample State Model

This is a sample state model for the Driver’s Door

2004-5-22 34

Generated Sequence Diagram
Sample

2004-5-22 35

Conclusion
• A systematic process to perform variety kinds of

static and dynamic analyses based on scenario
specification

• Once system scenarios are specified, the
simulation code can be automatically generated,
and the system can be simulated without any
additional programming

• The simulation can be used to perform various
dynamic analyses including C&C checking,
safety analysis, and performance analysis. The
SDSE is being integrated into an automated tool
E2E.

	A222.pdf
	Rapid Simulation Evaluation from Scenario Specifications for Command and Control Systems
	Real-Time Distributed Network-Centric Warfare
	Comparisons Between SDL and Scenario ACDATE Model
	SDSE and Command & Control Systems
	SDSE Features
	ACDATE Model
	A Sample Scenario
	Analyses based on ACDATE/Scenario Model
	Scenario Tool Input Interface
	Static C&C Analysis
	Static C&C Analysis Tool
	Experiment Results of Static C&C Results
	Scenario-Based Simulation Architecture
	Rationale for Separating Environment And System Simulation
	Simulation Engine Architecture
	Simulation Code Generation
	Simulation Code Generation – Sample Scenario
	Simulation Code Generation Example – Generated Code
	Dynamic Analyses Performed Based on Simulation
	Policy Specification and Enforcement
	Policy Specification
	Acceptable Scenario
	Scenario Violating Policy
	Dynamic C&C analysis
	Performance Analysis
	Safety Analysis
	Sample Event Sequence Tree
	Behavior analysis
	State Model Generation
	State Model Generation
	Model Checking with SPIN
	Sample State Model
	Generated Sequence Diagram Sample
	Conclusion

