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Abstract

A ricochet model for long rods developed by the author has been revisited in search of solution efficiencies. By replacing

a moment-of-momentum governing equation in the original model with a simpler minimization constraint, a solution

technique has been developed that avoids the complexity of an iterative solution that characterized the original work. The

revised model retains key elements of the original model, including: ricochet by way of plastic hinge formation; rod

rebound from the target’s ricochet surface; and target gouging as a means to redirect the target force’s line of action.

Finally, the ricochet equations are analytically rendered so as to give a keen sense of how the critical obliquity for ricochet

varies as a function of the initial conditions of the ballistic engagement.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Ricochet; Plastic hinge; Analytical solution; Long rod
1. Introduction

Recently, Segletes posited a model for rod ricochet [1,2] based on the notion that, during the ricochet
event, a plastic hinge would form in the rod, remaining stationary with respect to the target, as rod
material flowed into the hinge and turned through an angle so as to be directed away from a penetrating
aspect. There is experimental evidence for this description of ricochet morphology, one example of which is
shown in Fig. 1, [3].

For the model [1,2], the momentum equations for rod ricochet were derived, based upon the forces and
moments acting upon and fluxes moving through a control volume that encompassed the plastic
hinge, as described in Fig. 2. By assuming that the incompressible rod’s cross-sectional area remains
unchanged through the course of the ricochet, continuity dictates that the rod’s velocity get redirected
but remain unchanged in magnitude (V) within and upon exiting the plastic hinge. By inferring velocities
directly from Fig. 1 measurements, this assumption of constant V can be shown as excellent for glancing
obliquity. However, its validity is expected to diminish as the striking obliquity becomes more normal.
Nonetheless, the assumption is retained for all impact conditions to facilitate analytical solution. Expres-
sing the equations for linear momentum perpendicular to the rod axis and target-force’s line of action,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Spark cinematography of a ricocheting rod projectile, [3].
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respectively, Segletes obtained

F sinðyþ ZÞ ¼ T þ V _m cosðy� aÞ, (1)

f sinðyþ ZÞ ¼ T cosðyþ ZÞ þ V _m½cosðaþ ZÞ � sinðyþ ZÞ�, (2)

where y is the impact obliquity as measured from the target normal, a is the angle of projectile rebound as
measured between the target surface and the trajectory of the ricocheting rod, Z is the angle between the target
normal and the line of action of the force exerted by the target (positive when the line of action moves away
from the rod’s initial trajectory), F is the force applied by the target to the plastic hinge, f is the net axial
compression force in the rod that is applied to the hinge, T is the shear traction applied by the cross-section of
the rod to the plastic hinge, and dm/dt is the rate of mass flow of rod material through the plastic hinge. By
assuming a frictionless interface between rod and target, Z=0 for those cases where the target remains elastic
during the ricochet. Only when the target is plastically gouged during ricochet will the resultant crater allow



ARTICLE IN PRESS

M

F

f V

θ

V

α

MT

T
O

Fig. 2. A macro-view of ricochet phenomenology, depicting forces and moments upon and fluxes through the plastic hinge contained

within the shaded control volume of the rod [1].
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the target force’s line of action to be directed at a nonzero angle Z with respect to the target normal. In essence,
the angle Z represents an angular declination of the effective rod/target bearing surface with respect to the
target plane.

The notion of a plastic hinge would seem to limit the model’s applicability to ductile rods. However, the
model assumes, as revealed in Fig. 2, that that ricocheting material exiting the hinge region provides a stress-
free boundary condition to the hinge’s governing momentum equations. In this sense, regardless of whether
the ricocheting material is intact rod (as in Fig. 1) or a spray of redirected fragments, the assumed stress-free
boundary at the hinge’s exit seems analytically defensible. And while the mechanics of ductile bending and
brittle fracture are quite different, the equations being solved here are momentum equations, not solid-
mechanics equations. There is thus reason to believe, as long as the material entering the hinge can support
bending stress and the material leaving the hinge is stress free, that the modeling approach may retain validity
even when the rod is brittle, where ricochet is accompanied by the fracture of the rod. In the case of a
ricocheting spray of fragments, the model variable a would necessarily refer to a single momentum-averaged
trajectory that characterizes the spray.

The magnitude of the momentum flux in any cross-section of the rod, is given as

V _m ¼ rV 2A0, (3)

where r is the density of the rod material, and A0 is the cross-sectional area of the rod. The maximum axial
force that the rod can sustain is

f max ¼ YA0, (4)

where Y is the strength of the rod. Segletes introduced an ‘‘interaction ellipse’’ between rod and target by
projecting the rod’s cross-section upon the target surface. By further introducing the artifice of a flat ‘‘bearing
surface’’ between rod and target, normal to the action of the target’s applied force (i.e., canted by angle Z with
respect to the interaction ellipse), the maximum allowable force that the target could bear upon the plastic
hinge of the rod was deduced as

Fmax ¼ HA0
cos Z
cos y

, (5)

where H is the target’s resistance to penetration.
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Without further constraint, there is the possibility of many solutions to the momentum equations, Eqs. (1)
and (2), through variation of the rod and target forces over the allowable domains. Segletes [1,2] adopted a
moment-of-momentum balance as an additional governing equation to help constrain the problem. However,
its introduction required a detailed specification of the stress fields acting upon the plastic hinge, and
complicated the solution method greatly. Solutions to the system of equations were obtained through a
computational approach involving significant iteration. In an effort to greatly simplify the approach, and
remove the need for iterative solution methods, we herein choose to dispense with the moment-of-momentum
balance, and replace it with a much simpler constraint requiring the minimization of the projectile’s rebound
angle a.

Such a minimization can be justified on two grounds: (1) the rate of plastic work in the deforming projectile
is minimized (since minimizing the rebound angle likewise minimizes the plastic turning angle of the rod); and
(2) the stress load upon the target and, by inference, the target’s stored elastic energy are minimized during the
ricochet.
2. Revised model development

Define the nondimensional parameters

A ¼
H

rV2
, (6)

B ¼
Y

rV 2
(7)

and

b ¼ 1þ B. (8)

The parameters A, B, and b are governed by the material properties of the rod (r, Y), the target (H),
and the speed of the impact (V). Note that, in light of Eqs. (3)–(5) and these definitions,
A ¼ ðFmax=V _mÞ � ðcos y= cos ZÞ and B ¼ f max=V _m. One may also define an effective value of A, call it a,
which can be employed to represent the actual target force during ricochet, F, relative to the maximum allowed
target force, as a=A ¼ F=Fmax. Correspondingly for the rod, one may define an effective value of B, call it b, in
terms of the actual net and maximum permissible rod forces, as b=B ¼ f =f max. Likewise, let beff ¼ 1þ b.

For cases where target gouging occurs during ricochet, the target force F is necessarily at its maximum
allowable (i.e., plastic) value, Fmax. Thus,

Target force constraint:

0oapA; Z ¼ 0 ðelastic targetÞ;

a ¼ A; Za0 ðplastic targetÞ:
(9)

The rod, however, will always be plastic in the bending hinge, while the net compressive force imparted by
the rod at the hinge will depend on the location of the neutral stress fiber in the plastic hinge. For example, if
the neutral fiber of the hinge exactly traverses the centroid of the rod’s cross-section, the rod will be in a state
of pure bending, and f will be zero (even as the rod is yielding, bending, and ricocheting), such that beff will
identically equal unity. Constraining the rod to a non-tensile state between pure bending and pure
compression gives:

Rod-hinge force constraint:

1pbeffpb. (10)

The original momentum equations, Eqs. (1)–(2), when shear stresses are ignored in the rod (i.e., when
T=0), may be expressed, via direct substitution, as
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Governing momentum equations:

a ¼
cosðy� aÞ
sinðyþ ZÞ

cos y
cos Z

(11)

and

beff ¼
cosðaþ ZÞ
sinðyþ ZÞ

. (12)

Failure to consider the possibility of shear stresses in the rod, in the development of Eqs. (11)–(12), is a
regrettable necessity to facilitate the solution pursued in this article. However, a mitigating factor in this
assumption is that the shear traction T must, from kinematic arguments, take on a positive magnitude, using
the convention of Fig. 2. A positive value of T works against the actions of both F in Eq. (1) and f in Eq. (2),
implying that target stresses and the axial rod force must increase to compensate for any non-trivial value of T.
While there exists one very limited circumstance in which this situation could be helpful (i.e., when a negative f

would otherwise be needed to facilitate a ricochet solution), the introduction of shear traction T, in general,
works against the viability of ricochet solution.

Quite simply then, with the omission of the moment-of-momentum equation, the remainder of this report is
directed to the analytical solution of the system given by Eqs. (11)–(12). In addition to the force constraints,
Eqs. (9)–(10), a list of kinematic constraints currently employed is given below, including rebound
minimization and those developed previously [1,2] that still apply to the revised approach.

3. Kinematic ricochet constraints

(1) Ricochet definition criterion: ricochet is defined as when the trajectory of an impacting rod rebounds
away from (i.e., bounces off) the surface plane of the target or, in the limit, is redirected along a trajectory of
grazing incidence. Using the current nomenclature, aX0.

(2) Plastic-hinge turning-limit criterion: a tenet of the ricochet solution is that the rod may not, by way of
plastic hinge, turn through an angle greater than p/2. The argument for this criterion is that a penetrator-dwell
event would be kinematically more likely vis-à-vis an obtuse flow-turning, given that the stresses developed in
turning a rod through an angle greater than p/2 would exceed the stagnation stresses of the dwell alternative.
This criterion translates to the statement apy. Thus, in any valid ricochet solution, the maximum permissible
value of a is y.

(3) Reflection-angle limit criterion: given that Z represents the angular declination of the bearing surface
relative to the target plane, the criterion that limits the angle of reflection, (a+Z), to an angle less than or equal
the angle of incidence, (p/2�y�Z), follows as app/2�y�2Z. This criterion supersedes the one posited in the
prior model [1,2], which failed to account for the declination of the bearing surface in evaluating the angles of
incidence and reflection. By starting with Eq. (12) and substituting sin(p/2�a�Z) for cos(a+Z), this reflection-
angle limit criterion may be shown equivalent to a subset of Eq. (10), requiring that beffX1 (i.e., that the
impacting rod not be in a state of net tension).

(4) Gouge-geometry criterion: based on arguments [1,2] using Fig. 3, it was shown that, for any symmetric
ricochet gouge whose lip forms an angle x with respect to the target surface, the line of action of the target
force, defined by Z, and the rebound angle a, were constrained by the gouge geometry in such a way that |Z|pa
is a requirement (the argument concluded that aXx and xX|Z| simultaneously, leading to the constraint).
While solutions with negative Z are viable, an elastic solution (in which Z=0) may always be obtained in such
cases. Thus, for practical purposes, ZX0 always and the gouge-geometry criterion, in application, simplifies to
0pZpa.

(5) Rebound minimization criterion: the additional constraint which will serve to define a unique solution to
the momentum equations (and which replaces the moment-of-momentum constraint utilized in the earlier
model [1,2]) is that the rebound angle a is to be minimized (subject to the definition of ricochet that aX0). As
previously stated, this minimization constraint has the effect of minimizing both the rate of plastic work in the
ricocheting rod as well as the stored elastic energy in the target, during the event. However, and like the prior
methodology, the elastic target (Z=0) solution space is exhausted before considering gouging solutions
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Fig. 3. Geometrical underpinnings of the |Z|pa constraint [1].
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involving non-trivial values of Z, even though there may exist certain cases in which a gouging solution
produces a smaller rebound angle than the corresponding elastic-target solution. It will be shown, for a given
choice of A and y, that to choose an otherwise viable solution with the smallest a is equivalent to choosing the
viable solution with the largest beff.

4. Elastic ricochet

The case of elastic ricochet (i.e., for which the target remains elastic) presents a simplified form of the
general ricochet problem. While the target force, embodied in variable a, is known in advance only insofar as
the bounds 0oapA, the definitional knowledge that Z=0 for elastic ricochet greatly simplifies the governing
momentum equations. Derivations for the elastic- and other special-case solutions are outlined in Appendix A.
Here, only final results are presented. These results follow from Eqs. (9)–(12), subject to the various kinematic
constraints.

The basic morphology of elastic ricochet is that, if the striking obliquity angle y is large enough, the
trajectory of the incoming rod may be redirected with the minimum flow turning to a grazing incidence
parallel with the surface of the target (i.e., there is no rebound of the ricocheted rod from the target surface
and a=0 as a result). In these cases, the rod turns through an angle of p/2�y within the plastic hinge.
Eventually, as the striking incidence y is decreased towards the normal, there comes a point at which either the
target strength can no longer sustain the increasing load associated with the momentum flux of the incoming
rod, or else the rod’s strength can no longer sustain the large momentum flux associated with the ricocheted
rod. This limiting obliquity at which zero rebound, a, still persists is designated as ya=0.

Segletes [1,2], in an early attempt to simplify the calculation of ricochet, actually solved and presented this
very restrictive a=0 ricochet result as a ‘‘simplified model.’’ Using the nomenclature of the present article, the
simplified ricochet criterion was given as

sin ya¼0 ¼ max �A=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðA=2Þ2

q
; 1=b

� �
. (13)

For some cases, however, the elastic-ricochet event can be prolonged to lower y if the penetrator responds by
rebounding off the target surface. The rebound angle, a, increases as y is successively decreased until some
critical angle of elastic ricochet, yec, below which elastic ricochet is no longer possible. At this critical level of
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ricochet, the rebound has reached its maximum elastic value, yemax. For intermediate values of impact obliquity
yecpypya=0, the rebound falls in the range yemaxXaX0. Altogether, in the solution of the equations for elastic
ricochet, there are three branches of behavior that comprise the solution.

In what is called ‘‘branch I,’’ it is the target strength, embodied in A, that is the limiting factor which prevents
continued ricochet as the impact obliquity y is lowered. Furthermore, in this branch of ricochet behavior, the
problem cannot be remedied by way of an increased rebound angle a, since any increase in a comes at the cost
of an increased target stress. For branch I elastic ricochet, the obliquity limit for a=0 ricochet, is identical to
the critical angle for elastic ricochet, and there is no rebound in this branch of elastic ricochet:

Elastic ricochet branch I: Aob� 1=b

ya¼0 ¼ sin�1 �A=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðA=2Þ2

q� �
, (14)

yec ¼ ya¼0, (15)

aemax ¼ 0, (16)

At y ¼ yec : fof max and F ¼ Fmax.

At the other extreme, designated ‘‘branch III’’ elastic ricochet, it is the rod strength which limits the non-
rebounding elastic ricochet. However, in this solution branch, the critical ricochet angle may be lowered below
the a=0 non-rebounding limit, thereby inducing the rod to rebound from the target surface. As the rod
trajectory changes in the form of increasing rebound, in response to a lowering of the striking obliquity, an
increasing fraction of the rebounding rod’s momentum flux is borne as load by the elastic target. Assuming
that the target strength can elastically sustain this increase of load, this compensating process can continue
with decreasing striking obliquity y until the plastic-hinge turning-limit criterion is reached:

Elastic ricochet branch III: A4b

ya¼0 ¼ sin�1ð1=bÞ, (17)

yec ¼ tan�1ð1=bÞ, (18)

aemax ¼ yec, (19)

For ye
cpypya¼0 : a ¼ cos�1ðb sin yÞ; f ¼ f max and FFmax.

Between these two extreme branches of target-limited and rod-limited ricochet, ‘‘branch II’’ elastic ricochet
defines the region where, initially, it is the rod’s strength which limits the obliquity of non-rebounding ricochet.
However, as the striking obliquity is further lowered, accompanied by increasing rod rebound, the increased
target load associated with the rebound eventually pushes the target to its limit force, thereby limiting the
obliquity for elastic ricochet:

Elastic ricochet branch II: b� 1=bpApb

ya¼0 ¼ sin�1ð1=bÞ, (20)

yec ¼ cos�1 A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ab� b2

q� �
, (21)

aemax ¼ cos�1ðb sin yecÞ, (22)

For yecypya¼0 : a ¼ cos�1ðb sin yÞ; f ¼ f max; and FFmax.

At y ¼ ye
c : f ¼ f max and F ¼ Fmax.

The domain of engagement scenarios over which these three branches of elastic ricochet operate is depicted
in Fig. 4. Therefore, given a particular ballistic engagement scenario, one may ascertain which branch of
elastic ricochet is potentially operational. Once the elastic-ricochet branch has been determined, the particular
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values for ya=0 and yec may be calculated for that branch, and compared with the actual engagement obliquity
to determine whether the elastic-ricochet conditions are met. If so, all that is left is to determine the rebound
angle from Eqs. (16), (19), or (22), respectively. The calculation is complete and need go no further. Only if the
engagement obliquity falls below the critical value for elastic ricochet need further consideration be given. In
this case, ricochet involving target plasticity (in the form of target gouging) needs to be considered as a
possibility. The next section on plastic ricochet details how this is done.

5. Plastic ricochet

Below are given the solutions to various special-case conditions, which will be used to ascertain the more general
solution for plastic ricochet. For all special cases, one may assume that the following material and initial conditions
are known (i.e., fixed): A, B (i.e., b ), and y. The unknowns, one or more of which are defined by each particular
special case being considered, are Z, a, and beff (i.e., b). Because the target is known to be plastic, it is known in
advance that a=A. These special case solutions are not, in and of themselves, guaranteed to satisfy all the
necessary constraints of ricochet. However, a judicious examination of the constraints in concert with the various
special-case solutions will permit, if it exists, a general solution to be established that satisfies all the constraints. To
assist the reader in deriving the final results given below, derivation strategies for these special-case solutions are
given in Appendix A. These results follow from Eqs. (9)–(12), subject to the various kinematic constraints.

5.1. Solution for a specified beff

When a value for beff is directly specified, a solution for the governing momentum equations may be
obtained as

Zbeff ¼
1

2
sin�1

�pq� r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ p2 � q2

p
r2 þ p2

, (23)

where

q ¼ A2
�
2� beffAþ 1� b2eff

	 

cos2 y, (24)

r ¼ A2
�
2� beffA cos2 y (25)
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and

p ¼ beffA sin y cos y. (26)

Note that, while negative Z solutions are valid, they will never prevail, because there is always an elastic (Z=0)
ricochet solution at equal or lesser value of beff. The associated value of a is given as

abeff ¼ y� sin�1½beff � A cosðyþ Zbeff Þ cos Zbeff= cos y�. (27)

5.2. Solution for which a=0

It may be shown that an a=0 solution to the governing momentum equations exists if

2� A

2 sin y
p1 ðif a ¼ 0 solution existsÞ (28)

is satisfied by the material properties and initial conditions of impact. The value of Z when Eq. (28) is satisfied
is given by

Za¼0 ¼
1

2
sin�1

2 cos3 y
A
�

sin 2y
2

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4 sin y
A
�

4 cos2 y

A2

s0
@

1
A

2
4

3
5. (29)

The value of beff that satisfies this condition is

ba¼0 ¼
cos Za¼0

sinðyþ Za¼0Þ
. (30)

Should Eq. (28) remain unsatisfied, no ricochet is possible, as it can be shown that, for such a condition,
there will exist no solutions for which 0papy.

5.3. Solution that maximizes a

Based on the plastic-hinge turning-limit criterion, the maximum permissible value for a is y. An a=y
solution, which represents amax, is obtainable if

4� A2

4A tan y
p1 ðfor a ¼ y solution to existÞ (31)

is satisfied by the initial conditions of the problem. The value of Z when Eq. (31) can be satisfied is given by

Za¼y ¼
1

2
sin�1

2 cos2 y
A
�

sin 2y
2

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4 tan y
A
�

4

A2

r !" #
. (32)

The value of beff that satisfies this condition is

ba¼y ¼
1

tanðyþ Za¼yÞ
. (33)

Should Eq. (31) remain unsatisfied, however, there will be no solution for which a=y . Nonetheless, a
solution may be obtained which maximizes a (while keeping aoy) by minimizing y�a. In such cases, it may be
shown that

Zðy�aÞmin ¼ p=4� y=2. (34)

It is useful to define a quantity k as the cosine of this minimized (y�a) angle. From this definition, it follows
that

amax ¼ y� cos�1 k, (35)

where it can be shown that

k ¼ cosðy� aÞmin ¼
A

2

ð1þ sin yÞ
cos y

. (36)



ARTICLE IN PRESS
S.B. Segletes / International Journal of Impact Engineering 34 (2007) 899–925908
The value of beff satisfying this condition is

bðy�aÞmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
þ A=2. (37)

5.4. Solution for which a=Z

Based on the gouge-geometry criterion, Zpa, it is useful to know the conditions that provide a solution to
Eqs. (11)–(12) for the limiting case of Z=a. The solution for this case may be reduced to a fourth-order
polynomial in tan Z, as

0 ¼ tan4 Za¼Z þ
2

tan y
tan3 Za¼Z þ

1� A2

sin2 y
tan2 Za¼Z þ

4ðcos2 y� A2Þ

sin 2y
tan Za¼Z þ

1

tan2 y
�

A2

cos2 y

� �
. (38)

Standard analytical methods [4] may be applied to Eq. (38), so as to obtain the roots to this quartic
polynomial in a direct fashion. Of the four solutions obtained, the smallest, positive, real solution for tan Za=Z

is the one desired, if it exists. Thus,

Za¼Z ¼ tan�1½smallest; positive; real solution to Eq: ð38Þ�.

While solving Eq. (38) for the case of very large A values (e.g., very slow impacts which, nonetheless, deform
the target plastically while forming a plastic hinge in the rod) is not of particular ballistic interest, it should be
noted for completeness that experience reveals that, even in double-precision arithmetic, errors of precision in
the analytical solution can produce unacceptable results in which valid ricochet scenarios are not evaluated as
such. It may be tempting simply to address the issue by realizing that valid plastic-ricochet scenarios for large
A can only occur at very small values of y (large y situations are elastic) and that, for very small y, the value of
cos y�1. In such cases, from Eq. (11), it is deduced that Z is nearly independent of beff (and a), with a limiting
value of

ZAb1! sin�1ð1=AÞ � y. (39)

However, a slightly more accurate approximate solution to the a=Z problem may be obtained, solving Eq.
(11) for large A, by first assuming that a may be approximated by Z�, where Z� is a known value of Z is the
vicinity of the a=Z solution being sought. Because the behavior of Z is nearly constant with beff for large A,
this approximation is very good. Eliminating a thus from Eq. (11) permits the solution to be reduced from a
quartic to a quadratic equation, the result being

Za¼Z ¼
1

2
sin�1 tan y cos2 y E � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð2� EÞtan2 yþ 1

q� �� �
ðfor large AÞ, (40)

where

E ¼
2 cosðy� Z�Þ

A tan y
. (41)

In the actual implementation of the general solution algorithm, when this large-A difficulty is detected, it is
convenient to use the value Z� ¼ Za max, though this is by no means the only possibility. Once Za=Z is obtained
thus, a is reset to this value from its earlier Z� approximation.

Finally, regardless of the method by which Za=Z is obtained, the associated b is given as

ba¼Z ¼
cosð2Za¼ZÞ

sinðyþ Za¼ZÞ
. (42)
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5.5. Solution for which Z=0

In a like manner, the momentum equations may be solved for the special condition of Z=0, to yield

bZ¼0 ¼ Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðA tan yÞ2

q
, (43)

aZ¼0 ¼ y� cos�1ðA tan yÞ. (44)

Of course, it follows that the solution for this condition exists only when A tan yp1.

6. General-solution strategy

The special-case plastic-ricochet solutions, Eqs. (23)–(44), show that there are many solutions which satisfy
Eqs. (11)–(12). And so, while the elastic-ricochet solution is direct and straightforward to employ, the question
naturally arises, in connection with the constraint to minimize a, how to select the proper ricochet solution
when the target is no longer elastic.

To answer this question, two derivatives need to be established (keeping in mind that A and y are fixed for
this analysis). First, take Eq. (11) (which, for the plastic case, a=A) and differentiate with respect to Z to
obtain

da
dZ
¼

A cosðyþ 2ZÞ
cos y sinðy� aÞ

. (45)

Over the ‘‘domain of viable solutions,’’ defined here as the solution space to Eqs. (11)–(12) in which the initial
four kinematic constraints, embodied in the relation

0pZpapmin ½y;p=2� y� 2Z�, (46)

hold, it is clear from Eq. (45), in light of Eq. (46), that da/dZ40. This means, within this domain of viable
plastic solutions, that for any change in conditions that decreases Z, a will likewise decrease, and vice versa.
Next, take Eq. (12) and differentiate with respect to beff to obtain

dZ
dbeff

¼ �
sinðyþ ZÞ

beff cosðyþ ZÞ þ sinðaþ ZÞð1þ da=dZÞ
. (47)

Likewise, with all the individual terms on the right side being identifiable as positive, within the viable solution
domain, it is clear that dZ/dbeffo0.

What can be drawn from Eqs. (45) and (47) is that, when the viable solution domain (for fixed A and y) is
examined as a function of beff, both Z and a must decrease with increasing beff. Therefore, the constraint of
minimizing a translates into one of selecting the maximum value of beff within the domain of viable gouging-
ricochet solutions.

For the case where an a=0 solution exists, via Eq. (28), for a given A, y combination (since ricochet is
otherwise precluded), Fig. 5 describes the four modes of behavior for a and Z over the viable solution domain.
The figure also includes a very rare variant of Mode IV behavior (deemed Mode IV-x) in which a double a=Z
crossover occurs. In each case, different logic must be applied in order to obtain the largest value of beff in the
viable solution domain, and then guarantee that the solution simultaneously satisfies the rod-hinge force
constraint, Eq. (10).

The algorithmic train of logic that will accomplish this task is described in Table 1. To summarize the logic
in brief:

If no elastic solution is viable, restrict the beff domain to the intersection of the material domain [1, b] with
the kinematic domain [bamax, ba=0]; If the resultant beff domain is not the null set, pick the maximum beff in
this domain for which Zpa, if such a value of beff exists.

Note, in the algorithm (and Fig. 5), that if the value of b, associated with amax, would otherwise fall
in the invalid [tensile] domain less than unity, the parameter amax is reset to the value associated with
beff=1. Furthermore, in the actual implementation of the algorithm, the Z=0 special solution is not
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Fig. 5. Solution to the plastic ricochet equations, depicting four modes (and variant) of a, Z behavior as a function of beff (note: Z1=Za=0).

Viable solution domain arises in regions where the kinematic constraints 0papy, beffX1, and 0pZpa, simultaneously hold. Because it is

desired to minimize a, the chosen solution will be the largest beff in the viable domain, subject to the rod-hinge force constraint, beffpb.
Elastic solutions (shown in dotted lines) are always chosen in preference to plastic ones.
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explicitly used to limit the viable solution domain for beff, because it is implicitly satisfied. For Modes I
and II behavior, solutions that would otherwise satisfy the Zo0 condition would already have been
discerned as elastic solutions, thus precluding the plastic algorithm’s invocation. For Modes III
and IV behavior, any Zo0 solution would have been otherwise ruled out by the bmax limiter associated
with the a=0 criterion which, for these modes, is more stringent than the Z=0 criterion. Thus, while no coding
is included to restrict the viable solution domain to positive Z for plastic ricochet, the algorithm nonetheless
assures it.

Upon ascertaining the values of a and Z that satisfy the particular ricochet solution, the force quantities
contributing to the ricochet are also of interest. Valid for situations involving either elastic or plastic ricochet,
they reduce directly from the momentum equations, given the definitions of a and b, as

F

Fmax
¼

a

A
¼

1

A
�
cosðy� aÞ
sinðyþ ZÞ

cos y
cos Z

(48)

and

f

f max

¼
b

B
¼

1

B
�

cosðaþ ZÞ
sinðyþ ZÞ

� 1

� �
. (49)
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Table 1

Ricochet algorithm logic

Generate elastic ricochet criteria, as a function of given A and b.
IF y greater than the critical angle of elastic ricochet (i.e., if elastic solution viable), THEN

Obtain elastic ricochet solution for a (keeping Z=0)a.

ELSE

Check for PLASTIC ricochet solution as follows:

IF A, y combination does not permit a=0 solutions, THEN

No ricochet. Without a=0 solution, all solutions are ao0 (not valid).

ELSE

Initially set tentative viable solution domain, [bmin,bmax], to [1,b].
Obtain a=0 solution (including ba=0 and Za=0). Set Z1=Za=0.

Reduce bmax, if necessary, from b to ba=0.

Obtain maximized a solution [a=y or (y�a)min].

IF ba=y (or b(y�a)min) larger than bmin, THEN

Raise bmin from 1 to ba=y (or b(y�a)min), accordingly.

Set Z 2 to value of Za=y (or Z(y�a)min).

ELSE

Obtain solution for specified beff equal to bmin=1.

Set Z2 to value of Zbmin. Reset amax to value of abmin.

END IF

IF there still exists a nontrivial domain of viable beff, [bmin,bmax], THEN

Obtain largest beff in domain [bmin,bmax] for which Zeffpaeff, as follows:

IF Z1 p 0 (Modes I or II), THEN

Obtain tentative ricochet solution, by specifying beff as bmax.

IF Zeff4aeff (i.e., b outside viable Mode II domain), THEN

No ricochet. Max allowed b on wrong side of a,Z crossover.

END IF

ELSE IF Z2pamax (Mode III), THEN

Obtain tentative ricochet solution at a=Z crossover.

IF ba=Z4b (i.e., b in middle of viable domain), THEN

Specify beff=b ricochet solution, to restrain beffpb.
END IF

ELSE

IF a=Z crossover nonetheless exists, THEN

IF ba=Zpb, THEN

Mode IV-x solution at beff=ba=Z.

ELSE

IF Zbpab, THEN

Mode IV-x solution at beff=b.
ELSE

No ricochet. Mode IV-x value of b too low.

END IF

END IF

END IF

No ricochet. Mode IV: Z everywhere greater than a over domain of viable b.
END IF

ELSE

No ricochet. Effective domain of viable b nonexistent.

END IF

END IF

END IF

aCritical ricochet-decision points are given in underlined text.

S.B. Segletes / International Journal of Impact Engineering 34 (2007) 899–925 911
While it is not shown here, the same technique employed by Segletes [1,2] may be used to relate the relative
rod force f/fmax to the location of the neutral fiber in the plastic hinge and hence to the strain field in the rod.
Such knowledge, along with the rod’s material characteristics, may inform an estimate of whether the
ricocheting rod retains its integrity or breaks into a spray of ricocheting fragments.
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7. Comparison with prior model formulation

It has been noted that the difference between the model derived herein and its predecessor [1,2] is in the
replacement of a moment-of-momentum relation with a rebound-minimization constraint, adopted here so as
to simplify the model and afford analytical solution to the governing equations.

Despite what might seem a significant change to the model, the reality is that the identical momentum
equations, solved in both models, serve as the primary determining factor of ricochet behavior. One might
expect, since the moment-of-momentum relation is a more limiting ‘‘equality constraint’’ than the
‘‘minimization constraint’’ that replaced it, that the current model permits a slightly larger solution space
for ricochet. We see in Fig. 6, which depicts a model comparison by way of a ricochet phase diagram, that this
is true. The engagement scenario depicted in this figure was a test case presented in the original report, in
which a rod of density 2700 kg/m3 and strength Y=1.2GPa was impacted against a target of resistance
H=1.25GPa. Since the propensity to ricochet, as measured experimentally for other scenarios and reported in
the prior work, was at least as great as any of the ricochet models (and frequently greater), the expanded
ricochet domain of the current model is a further step in the right direction.

Additionally, since the current model employs a constraint that expressly adopts the solution which
minimizes projectile rebound, one might anticipate that the current model will tend to produce ricochets with
smaller values of a than the original model [1,2]. This too has been verified. For the simulation of Fig. 6, when
the striking velocity is selected as V=700m/s, the prior work reported modeled rebound angles approaching
281, with the corresponding Z values between 01 and 111. In contrast, the current model for the same
simulation parameters places both a and Z between 01 and 141 over the domain of ricochet solutions.

For the two cases that were compared against experimental results in the original reports [1,2], the revised
formulation of the current model predicts ricochet characteristics identical to the simple model of ARL-TR-
3257 [1], for the case of the short L/D, brittle penetrator (B32), over the range of experimental data (Fig. 7).
For the longer, L/D=15, 93% tungsten rod results, critical ricochet obliquities from the currently revised
formulation are 2–61 lower than even the simplified form of the earlier model over the striking velocity range
of 600–1200m/s (where ricochet was experimentally observed), but still not quite to the critical obliquity level
noted in the experiments (Fig. 8). The original work [1,2] may be consulted for specific details of the geometry
and material characteristics of the engagements. In any event, the revised model presented here produces the
most accurate prediction of ricochet of the several models studied, including those by Tate [5] and Rosenberg
et al. [6].
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Fig. 6. Comparison of ricochet phase diagrams for engagement characterized by: r=2700 kg/m3, Y=1.2GPa, H=1.25GPa.
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8. Results of interest

In addition to comparing the revised formulation to the earlier model, it is interesting to explore the new
formulation for its own sake. One point that should be noted is that, while most of the equations have been
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devoted to solving the general problem of gouging ricochet, only a small portion of the V,y engagement
envelope is characterized by it. Fig. 9 shows this point clearly for a typical steel-on-steel engagement, where
much of the diagram is either elastic a=0 ricochet or, alternately, no-ricochet.

Also added on the graph is the reevaluated ricochet dividing line for a hypothetical case of a much
stronger rod, which is shown to make several instructive points. First, the kink in the Y=1GPa
result at around 350m/s impact velocity is clearly related to a limitation of the rod’s strength to sustain
ricochet, as this kink is absent for the ‘‘large Y case’’ curve. In fact, when ricochet occurs at low striking
obliquities, the rod must necessarily turn approximately 901 during the ricochet, and travel with a
correspondingly small rebound from the target surface. This means that the portion of rod momentum coming
in to the plastic hinge can contribute virtually no force to balance the momentum flux leaving the hinge.
Likewise, the target’s force is nearly perpendicular to the flow of the ricocheted rod and can also contribute
only a small component of its force to balance the ricocheted momentum flux. Therefore, a primary
contributor to that flux balance (and what therefore is a limiting factor) must necessarily be the strength of the
rod applied to the hinge.

While this explanation is supported by the equations, the predictions of ricochet at very low striking
obliquities must be taken with some reservations, since they predict that a strengthened rod will be more likely
to ricochet. Consider first, that the alternative to ricochet is not solely penetration, but might also include
dwell (when the target resistance H exceeds the dynamic stress of the impacting rod, Y+1/2rV2). In the
example of Fig. 9, dwell would occur to a point beyond 500m/s impact speed and so hypothetically
strengthening the rod does not change the scenario from penetration to ricochet, but from dwell to ricochet,
which is much more believable. Also, the whole basis of the present model is one that evaluates whether the
rod and target strengths can sustain ricochet, not whether they can initiate it. Because it is known that ricochet
is very nose-shape dependent, and that ricochet can not be sustained if it fails to initiate in the first place, the
current model’s underlying premise makes it ill suited to predict whether a strengthened rod would have
initiated ricochet in the first place.

Another interesting behavior was observed that, at first glance, might seem counterintuitive. Recall from
Fig. 5 and the associated discussion that a and Z were determined to vary monotonically with increasing beff.
Such monotonicity in beff, however, implies no such comparable behavior as a function of y. Using the same
material parameters of Fig. 9 and considering a specific impact speed of V=400m/s, the variation of a and Z
are presented as a function of y in Fig. 10. Recall that these curves do not represent purported behavior during
a single impact, but that each chosen obliquity y represents a unique ballistic engagement.
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While the fluctuation of a may seem erratic, each segment of behavior is understandable in terms of the
constraints. As the striking obliquity is lowered to 33.91, the rod strength becomes unable to sustain a=0
ricochet and starts to compensate with rod rebound off the elastic target. However, not only does lowering y
add load directly upon the target from the impacting portion of the rod, but the increasing rebound of the
ricocheting rod further increases the target’s load. When the target strength can longer sustain this load
elastically (at a striking obliquity of 31.61), it begins to gouge at impact.

The gouging allows the target to redirect its line of action by a few degrees in the direction of the ricocheting
rod. This redirection of target force (an increasing Z) provides a force component parallel with the target
surface that allows the momentum flux of the ricocheting rod to be sustained at a lower value of rebound angle
a. This mode of compensation (increasing Z in exchange for decreasing a) proceeds as the striking obliquity is
lowered, until the point at 25.71 striking obliquity where the value of Z rises to meet that of the lowering a. At
this point, the gouge lip has formed a 71 angle x with respect to the target surface (see Fig. 3). The target-force
redirection Z must be at an angle no greater than this gouge angle, while the rod rebound angle a must
kinematically be at least as large as x. Thus, as the striking obliquity is further lowered, the target gouge
deepens, which allows for an increasing Z but only at the kinematic cost of increasing the rebound angle such
that Zpa is maintained.

Finally, as the obliquity is lowered to 19.451, the rebound a, being forced upward by the deepening gouge,
reaches this same level of 19.451. At this point, the rod is making a 901 turn in direction from its striking
orientation. The only way in which ricochet could be sustained at lower striking obliquity would be for the rod
to continue turning in excess of 901. However, such an adjustment is considered untenable, since the forces
required to achieve this would exceed the forces required to dwell the penetrator. Thus, for impact obliquities
below 19.451, the more plausible scenario is that the rod would simply flatten and dwell upon the surface of the
target, in the mode of a Taylor impact cylinder.

9. Critical ricochet obliquity relationships

To this point, all calculations, including those that portrayed a critical obliquity curve in one form or
another, as in Figs. 6–9, were done by systematically applying the aforementioned general-solution strategy
over the range of initial conditions considered. Such a method is necessary, if detailed ricochet response, such
as that portrayed in Fig. 10, is sought. However, when all that is required is the minimum obliquity at which
ricochet can possibly occur (i.e., the critical ricochet obliquity) for a specified combination of rod and target
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material descriptions and impact velocity, it is desirable to have simpler relationships for making a quick
assessment of ricochet likelihood. The development of such relationships would also serve to provide a
heightened understanding of the ricochet phenomenon.

When the rod strength is large, it has been observed in the model that the critical angle of ricochet for low
striking obliquity occurs when y=a=Z. Since the kinematic constraints require that Zpa and apy, this
y=a=Z condition represents a clear limiting case for the critical ricochet angle. Based on the kinematic
constraint that app/2�y�2Z, however, this condition can only occur at striking obliquities below yp22.51.
Thus,

ac ¼ Zc ¼ yc ðwhen bX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p
; 0pycp22:5�Þ, (50)

where the b specification quantifies the rod-strength requirement. The critical obliquity for these conditions,
from the momentum equations, may be derived as

yc ¼
1

2
sin�1ð1=AÞ ðwhen bX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p
; AX

ffiffiffi
2
p
Þ (51)

or, conversely,

A ¼
1

sin 2yc
ðwhen bX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p
; 0p0p22:5�Þ. (52)

It is the simultaneous solution of Eq. (12), in light of Eq. (50) (i.e., bX1/tan 2yc), with Eq. (52) that provides
the constraint between A and b. The

ffiffiffi
2
p

limit on A corresponds to that value which will bring yc to 22.51. It is
exactly this curve which corresponds to the large-Y curve extension presented in Fig. 9. Correspondingly, it
has been noted in the model that if the b constraint can not be satisfied for a given A in the range A4

ffiffiffi
2
p

, then
there are no plastic ricochet solutions, since all would-be plastic solutions violate the plastic-hinge turning-
limit criterion. There will, however, be branch III (i.e., A4b) elastic solutions for A4

ffiffiffi
2
p

, should the b
requirement not be met for providing a plastic solution. However, these elastic solutions occur at higher values
of striking obliquity, resulting in a jump in the yc curve.

In an adjacent range of critical plastic-ricochet obliquities, immediately above 22.51 for which Ao
ffiffiffi
2
p

, the
limiting ricochet is governed by the gouge-geometry constraint and the reflection-angle-limit constraint which,
taken at their limiting values, give ac=Zc and ac=p/2�yc�2Zc. The latter relation, in light of the former,
reduces to

ac ¼ Zc ¼ 30� � yc=3. (53)

Furthermore, the reflection-angle limit constraint indicates that this condition must occur at a value of
beff=1. These values of ac, Zc and yc are then substituted into Eq. (11) in order to get the A value associated
with that critical obliquity:

A ¼
cos ð4yc=3Þ � 30�
	 


cos yc
sin ð2yc=3Þ þ 30�
	 


cos ðyc=3Þ � 30�
	 
 . (54)

But through what obliquity beyond 22.51 will this condition prevail? From the aforementioned general-
solution strategy, it is known that, when the solution departs from this condition, beff will increase beyond a
value of unity, and ac will diminish in comparison to the [beff=1] value given by Eq. (53). Therefore, we
conduct a perturbation analysis, in which we hypothesize a departure from this solution by allowing ac to
diminish by an infinitesimal amount e:

ac ¼ Zc ¼ 30� � yc=3� �, (55)

leading to

A ¼
cos ð4yc=3Þ � 30� þ �
	 


cos yc

sin ð2yc=3Þ þ 30� � �
	 


cos ðyc=3� 30� þ �
	 
 . (56)

In order for this perturbation from the baseline solution to feasibly establish a lower critical ricochet angle
(and thus an alternative to the baseline), qyc/qeo0 is required. Expressing this as (qA/qe)/(qA/qyc)o0, we note
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that qA/qyc will be negative for all yc in the range 22.51oycp901, and so the feasibility of a departure from the
beff=1 solution hinges on the sign of qA/qe as e-0. It may be shown that qA/qe changes sign in the limit
(e-0) when the condition

tan
4yc
3
� 30�

� �
¼ tan

yc
3
� 30�

� �
þ cot

2yc
3
þ 30�

� �
(57)

is met. This condition is met when yc=38.061. Thus, the range on this beff=1 solution spans
22.51oycp38.061, through which ac=Zc=301�yc/3. From Eq. (54), it may be observed that the range on
A for this region is 0.9373pAo

ffiffiffi
2
p

.
At larger yc, all the way to 901, there continues to be a solution governed by the constraint ac=Zc=301�yc/

3, for beff=1, though this particular solution is no longer that which minimizes a for cases of larger b.
Nonetheless, for this very special beff=1 case, Eq. (54) applies for relating A to yc. Further, it allows
generalization over the range 38.061oycp42.4971, corresponding to the range 0.8047pAo0.9373. In this
narrow range, for the A, yc pair given by the Eq. (54), there are two positive-Z solutions for the a=Z
constrained momentum equations, i.e., for Eq. (38): the one given at beff=1, and the other with beff in the
range between 1 and 1.4803. For this second solution, the resulting value of ac=Zc is smaller than the value for
the beff=1 solution, and is thus the preferable solution for ricochet.

It would be convenient to hope, for a given value of A, that when yc is lowered to the point where the b=1
solution disappears, that all the beff41 solutions would simultaneously disappear. Were that the case, then the
b=1 solution, while not the preferable solution for ricochet, would still be indicative of the critical ricochet
angle, yc. However, there is a slight imperfection with such a hypothesis, and that is the phenomenon of Mode
IV-x ricochet depicted in Fig. 5e, in which the b=1 solution is no longer active, despite a range of intermediate
b for which a ricochet solution does exist. This mode of solution can exist for striking obliquities greater than
38.061, and will be discussed in more detail later. Suffice it to say, at this point, that the region where Mode IV-
x ricochet can operate is a miniscule triangular region of the A,yc plane. Therefore, while not exact, Eq. (54),
relating A to yc for the b=1 solution, provides an excellent approximation to the critical obliquity for
0.8047pAo0.9373, for all bX1.

A further difference between this solution and that for 22.51oycp38.061 is in the relationship for Zc and ac.
When b=1, the solution given by ac=Zc=301�yc/3 still applies. However, when b is large enough, the
preferable secondary solution applies, producing a lower magnitude of ac=Zc. When the value of b is in a
range between these two solutions, the value for Zc will be less than that for ac, yet both will fall in a range
between the two ac=Zc solutions. In either case, ac is diminished with respect to the value associated with the
b=1 solution.

The upper end of this range, associated with the A, yc pair of (0.8047, 42.4971), corresponds to that
condition for which the secondary ac=Zc solution is exactly ac=Zc=0, traditionally associated with an elastic
Branch I solution. In fact, the upper end of the range was ascertained by equating the value of A for the beff=1
plastic solution, Eq. (54), to that from the limiting (a-A) elastic Branch I solution, given by Eq. (11) with
a=Z=0 and a-A, such that

cos2 yc
sin yc

¼
cos ð4yc=3Þ � 30�
	 


cos yc
sin ð2yc=3Þ þ 30�
	 


cos ðyc=3Þ � 30�
	 
 . (58)

It is the solution of this equation which yields yc=42.4971, corresponding to A=0.8047. Thus, it is not
surprising to suspect that, at obliquities in excess of 42.4971, elastic solutions may influence the critical
obliquity.

Indeed, when ignoring the Mode IV-x solutions in the range of critical obliquities ycX42.4971, the elastic
Branch I criterion may govern the ricochet. When b exceeds the limit needed to force branch I elastic ricochet
(a=0) in this range, by satisfying the relation 0.8047ob�1/b to yield b41.4803, Eq. (11) becomes

A ¼
cos2 ye

c

sin ye
c

ðwhen b41:4803; yc442:497� ½i:e:; when 0pAo0:8047�Þ. (59)
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Table 2

Relations for critical ricochet obliquity

A, yc Range Relationa Restriction Z, a Behavior at yc

AX21/2

ycp22.51 plastic,

ycp451 elastic

A ¼
1

sin 2yc
b4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1
p

ac=Zc=yc

Elastic: b ¼
1

tan yec
1pbp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1
p

Z=0, a=yc

0.9373pAo21/2

22.51oycp38.061 A ¼
cos ð4yc=3Þ � 30�
	 


cos yc
sin ð2yc=3Þ þ 30�
	 


cos ðyc=3Þ � 30�
	 
 all bX1 ac=Zc=301�yc/3

0.8047pAo0.9373

38.061oycp42.4971 A �
cos ð4yc=3Þ � 30�
	 


cos yc

sin ð2yc=3Þ þ 30�
	 


cos ðyc=3Þ � 30�
	 
 all bX1 0pZcpacp301�yc/3

0oAo0.8047

ycX42.4971 A1 ¼
cos ð4yc=3Þ � 30�
	 


cos yc

sin ð2yc=3Þ þ 30�
	 


cos ðyc=3Þ � 30�
	 
 b=1 ac=Zc=301�yc/3

A2pApA1 1pbp1.4803 0pZcpacp301�yc/3

Elastic: A2 �
cos2 yec
sin yec

(relation is exact for ycX451)
b41.4803 ac=ZcE0

aRelation specified is for plastic ricochet, unless otherwise noted. Also, the presence of Mode IV-x ricochet solutions makes some of the

specified relations only approximate, denoted by the symbol E, instead of =.
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Eq. (59), of course, can be inverted to yield the associated elastic-ricochet solution of Eq. (14):

yec ¼ sin�1 �A=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðA=2Þ2

q� �
ðwhen b41:4803; yc442:497� ½i:e:; when 0pAo0:8047�Þ. (60)

Once again ignoring the influence of Mode IV-x solutions, all solutions in this range will be bounded, as a
function of b, between this elastic b41.4803 solution and the b=1 plastic solution of Eqs. (53)–(54). Likewise,
for this range of yc, the values of ac and Zc will range between the values associated with the elastic and the
b=1 plastic solution. These elastic and plastic critical-obliquity functions are actually quite narrowly banded,
producing critical obliquities within 31 of each other, for all Ao0.8047.

All of these relations described for critical ricochet are collated in Table 2, for convenience.
We return briefly to the situation of the Mode IV-x ricochet solutions which, when ignored,

makes the described critical obliquity description an inexact one. The question to be answered is
one of ‘‘how inexact?’’ Because the solution to the a=Z condition, on which the Mode IV-x solutions
depend, is a fourth-order equation, no simple description has yet been developed for the precise range over
which this mode of solution may apply. However, through a systematic approach, the range of Mode IV-x
solutions were obtained, in order to show the small degree to which they depart from the analytical
descriptions otherwise put forth.

Fig. 11 documents the result. In the figure, solid lines of the graph denote the analytical functions presented
here, while all dotted and/or dashed lines represent calculated quantities obtained through a systematic
solution to the ricochet equations for specified values of y, A, and b. It is easy to see how good a job the
analytical description of critical ricochet obliquity angle does, even allowing for the Mode IV-x solutions. In
all cases, the error in the predicted value of A for a given yc is always under 1.2%, and generally well under
1%. Mode IV-x ricochet plays a role in the critical obliquity only within the small triangular (A,yc) region
delimited by the vertices (1=

ffiffiffi
2
p

, 451), (0.9373, 38.061), and (0.8047, 42.4971). Further discussion on the
intricacies of Mode IV-x ricochet is offered in Appendix B.

Fig. 12 summarizes the discussion of critical ricochet obliquity as a function of target parameter A. Note
that the inclusion of plastic and elastic ricochet curves in this figure is not meant to denote a transition from
one ricochet mode to another with increasing obliquity (though such transitions indeed happen). Rather, the
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Fig. 11. The influence of Mode IV-x solutions on the calculation of critical ricochet obliquity. Solid lines represent the analytical functions

given for plastic and elastic ricochet. Actual general-model behavior is depicted with dashed lines.
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=

Fig. 12. Critical ricochet obliquity as a function of parameter A, showing the interplay of plastic and elastic solutions, based on value of b.
Results are shown (a) for small values of A, and (b) as function of 1/A1/2.
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multiplicity of curves is meant to show how the critical obliquity for ricochet can change as a function of the
parameter b. In all cases, the curves are meant to denote the minimum obliquity at which ricochet can possibly
occur as a function of A. In Fig. 12b, the graph is presented as a function of 1/A1/2, which is a parameter
proportional to the striking velocity. The abrupt step between the b4(A2

�1)1/2 plastic curve and the elastic
b=(A2

�1)1/2 curve is predicted by the model. According to the model, there can exist a ‘‘dead zone’’ of
intermediary obliquities for which the conditions of neither elastic nor plastic ricochet is satisfied, resulting in
the stepwise appearance seen, for example, in Fig. 9.
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10. Conclusions

The long-rod ricochet algorithm posited by Segletes [1,2] has been revisited in search of efficiency
improvements. The original method required an iterative approach to solving the equations of ricochet. One
key step in accomplishing this improvement is the replacement of a moment-of-momentum governing
equation in the original model with a simpler minimization constraint on the rebound angle of the ricocheting
projectile.

With this change, the ricochet equations are now solved in analytical, non-iterative, form. For the case of
elastic ricochet, there are three branches of ricochet behavior depending upon the relative magnitude of the
target and projectile strengths, projectile density and striking velocity. The critical angle of elastic ricochet is
quantifiable as a function of the elastic ricochet branch, so that a rapid assessment may be made of whether an
elastic-ricochet solution presents itself. In the absence of an elastic ricochet solution, a non-iterative algorithm
is employed to examine particular special-case plastic solutions so as to ascertain that solution which satisfies
all the kinematic and force-limit constraints, including that for rebound minimization.

In the new algorithm, no iterative steps are required to obtain the ricochet determination/solution. As such,
the current algorithm detailed in Table 1 offers a much more streamlined solution than that embodied in the
original efforts [1,2]. Minor differences in results between the two methods are attributable to the replacement
of the moment-of-momentum governing equation in the original work with the minimized-projectile-rebound-
angle constraint in the current effort. Nonetheless, the revised model retains key elements of the original
model, including: ricochet by way of plastic hinge formation; rod rebound from the target’s ricochet surface;
target gouging as a means to redirect the target force’s line of action during the ricochet event; and, of course,
linear-momentum conservation.

Analytical expressions are also offered for the critical ricochet obliquity as a function of the rod and target
material descriptions and the striking velocity. These expressions are summarized in Table 2. In some
engagement domains, the equations are exact solutions to the ricochet equations, while in other domains, the
analytical expressions are very close approximations to the actual solution, acquired through the use of
simplifying assumptions.
Appendix A. Derivation aid

The math presented in the article is solely based on solving the following system of equations:
Equation in A:

a ¼
cosðy� aÞ
sinðyþ ZÞ

cos y
cos Z

, (A.1)

Equation in b:

beff ¼
cosðaþ ZÞ
sinðyþ ZÞ

(A.2)

subject to the material constraints

0oapA; Z ¼ 0 ðelastic targetÞ

a ¼ A; Za0 ðplastic targetÞ

1pbeffpb,

the kinematic constraints embodied in the relation

0pZpapmin½y;p=2� y� 2Z�,

as well as the a-minimization constraint. The a-minimization constraint can be shown, for a given A and y, to
be equivalent to the solution that maximizes beff.

Derivation of key equations appearing in the article is herein described. One solution technique frequently
used in this appendix involves the conversion of trigonometric terms to double angles, to eliminate sine–cosine
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products. The identities

cos2 Z ¼ ð1þ cos 2ZÞ=2 (A.3)

and

sin Z cos Z ¼ sin 2Z=2 (A.4)

are employed to produce equations of the form r cos 2Z+p sin 2Z+q=0. Isolating the cosine, squaring the
equation, and converting the resulting cos2 Z term to 1�sin2 Z produces a quadratic form in sin Z, allowing
solution as

sin 2Z ¼
�pq� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ p2 � q2

p
r2 þ p2

. (A.5)

Note that only the minus root is retained, so as to keep Zoy for the range of Z values to which this equation is
applied in this article. The value of Z is then obtained by way of an inverse sine. Specific special-case solutions
are now addressed.

A.1. Elastic ricochet (Z=0)

A.1.1. Branch I

In branch I, it is the value of A which limits elastic ricochet. Eq. (A.1), as a-A with Z=0, gives
A=cos(y�a)/tan y. One may observe that positive a values raise the value of A for a given y. Thus, for a given
A, a minimum y is obtained only when a=0. When a=0, the governing relation becomes A=cos2 y/sin y.
Converting the cosine-squared term to an equivalent sine squared term and solving the resulting quadratic
provides the branch I solution, Eq. (14).

A.1.2. Branch III

In branch III, it is the value of b which limits elastic ricochet. Eq. (A.2), as beff-b with Z=0, gives b=cos a/
sin y. For the a=0 limit, this becomes b=1/siny and produces Eq. (17). If a is permitted to be positive and
non-zero, the elastic yc may be reduced further for a given b. However, the upper limit on a is y. And so, if a is
permitted to take on this upper limit, the governing equation becomes b=1/tan y, and Eq. (18) follows
directly.

A.1.3. Branch II

In branch II, the initial limiting factor is the value of b, and thus the a=0 solution, Eq. (20), is identical to
that for branch III. However, as a is allowed to increase, the value of A becomes the limiting factor, prior
to the point where a increases to a value equal to y. Thus, for the elastic yc, both a-A must be satisfied,
as well as beff-b. Eq. (A.2), with these limits and Z=0, gives cos a ¼ b sin y, which leads to

sin a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2 sin2 y

q
. By expanding cos(y�a) in Eq. (A.1), one obtains

A ¼ cos a cos2 y= sin yþ sin a cos y. (A.6)

Substitute the expressions for cos a and sina into Eq. (A.6). Isolate the square root, and square the expression.

Reduce the b2ðsin2 yþ cos2 yÞ expression to b2, leaving just an expression for cos2 y, which can be solved

directly for Eq. (21) (since y ¼ yec when a=A and beff=b). The limiting a value, Eq. (22), is obtained from the

earlier expression, cos a ¼ b sin y.

A.2. Plastic ricochet (a=A)

A.2.1. Solution for a specified beff

Take Eq. (A.1), solve for cos(y�a), and set aside. In Eq. (A.2), express (a+Z) as [(y+Z)�(y�a)],
and expand as a cosine of the sum of angles. Eliminate cos(y�a) from the resulting expression by
substituting Eq. (A.1), and solve for sin(y�a). Take these two resulting equations [one for cos(y�a)
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and the other for sin(y�a)], square each of them and add together. The result should be an equation in
which a is eliminated:

b2eff � 1þ A2 cos
2 Z

cos2 y
� 2b2effA

cos Z
cos y

cos ðyþ ZÞ ¼ 0.

Expand cos(y+Z). Clear the denominator. Employ the technique of Eqs. (A.3)–(A.5), so as to obtain sin 2Z
and hence Z. Eq. (23) is analogous to Eq. (A.5), with the terms of Eqs. (24)–(26) corresponding to the
coefficients that comprise Eq. (A.5).

Many expressions can be used to obtain a expressions, given beff and Zbeff, for example solving either
Eq. (A.1) or Eq. (A.2) directly for a. However, these expressions solve in terms of an inverse cosine, which
cannot, unaided, detect the presence of negative values of a (which are not validly permitted). Instead, start
with the expression which was earlier in this section derived for sin(y�a) and take the inverse sine to isolate
and obtain Eq. (27).

A.2.2. Solution for which a=0

Start with Eq. (A.1). Set a=0. Expand sin(y+Z). Isolate cos2 y/A on one side of the equation. Employ the
technique of Eqs. (A.3)–(A.5) to obtain sin 2Z as

sin 2Z ¼
2

A
cos3 y� sin y cos y� 2 sin y cos y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ

sin y
A
�

cos2 y

A2

s
. (A.7)

A solution to Eq. (A.7) will exist only if the radicand is nonnegative. Consider this radicand inequality to
resolve this question and solve for the allowable values of A (only positive A solutions are relevant). The
resulting inequality may be expressed in the form of Eq. (28).

Return to Eq. (A.7) to solve for Z. In two places, use an Eq. (A.4) substitution. Eq. (29) for Z follows.
Eq. (30) follows directly from Eq. (A.2), when a is set to zero.
To prove the assertion that no ricochet solutions exist if Eq. (28) is not satisfied, a similar derivation to

Eq. (28) may be obtained, except that, instead of setting a to 0 at the outset, it should be set to a positive
constant a0, for which an alternate solution is sought. The derivable inequality for this condition proves to be

2� A
cos y

cosðy� a0Þ

� �
p2 sin y ðif 0oa ¼ a0py solution existsÞ.

But if Eq. (28) is not satisfied, then 2 sin yp(2�A) is implied, leading to the requirement that

2� A
cos y

cosðy� a0Þ

� �
p2� A (A.8)

be satisfied for an 0oa=a0py solution to exist simultaneously when there is no a=0 solution. Because A is
positive, Eq. (A.8) leads to

cos yX cosðy� a0Þ.

However, for 0oa0pyop/2, this equation can never be satisfied. One may conclude therefore, if Eq. (28)
cannot be satisfied, that no ricochet solution in the range 0oapy can exist.

A.2.3. Solution that maximizes a
Solve Eq. (A.1) for cos(y�a), and call this term k. Expand sin(y+Z). Employ the technique of Eqs.

(A.3)–(A.5) to solve for sin 2Z:

sin 2Z ¼
ð2k=AÞ � tan y� tan y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4k tan y=AÞ � ð4k2=A2Þ

q
tan2 yþ 1

.

A solution is possible if the radicand is nonnegative. The maximum allowable a is y, and so the maximum
value for k is unity. When k=1, enforcing a nonnegative radicand gives Eq. (31). For the case where the k=1
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solution exists, substitute k=1 and make use of trigonometric identities like tan2 y+1=sec2 y to obtain the Z
solution of Eq. (32). Eq. (33) is obtained directly from Eq. (A.2) for the case where a=y.

For cases where the k=1 solution is not viable, solve Eq. (A.1) for cos(y�a). Take d/dZ of the equation and
set equal to zero, so as to find the value of Z for which cos(y�a) is maximized [i.e., where (y�a) is minimized].
The solution to this case is Z ¼ 1=2 sin�1ðcos yÞ ¼ p=4� y=2, given as Eq. (34).

Define as k the cosine of this minimized angle, so that k=cos(y�a)min, and substitute into Eq. (A.1); solve
for k. Substitute Z ¼ p=4� y=2 so as to eliminate Z, that k may be expressed solely in terms of A and y. Note
that cos Z sin(y+Z) may thus be reduced to 1/2 � (1+sin y), to obtain Eq. (36).

To obtain Eq. (37), first note that (a+Z)=�(y�a)+(y+Z). Using this and the definition of k, upon
substitution into Eq. (A.2), gives

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
þ

k

tanðyþ ZÞ
. (A.9)

Conversely, the definition of k into Eq. (A.1) gives, with some regrouping,

k

tanðyþ ZÞ
¼

A

cos y
cos Z cosðyþ ZÞ (A.10)

Substituting Eq. (A.10) into Eq. (A.9), to eliminate k/tan(y+Z), gives

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
þ

A

cos y
cos Z cosðyþ ZÞ. (A.11)

Knowing Z ¼ p=4� y=2 allows one to determine that cos Z cosðyþ ZÞ ¼ ðcos yÞ=2. This result reduces
Eq. (A.11) to Eq. (37).
A.2.4. Solution for which a=Z
Start with Eq. (A.1), and isolate cos(y�a). Expand sine and cosine terms for the angle sums. Multiply the

equation by sec2 Z, so that all Z terms appear as tangents and secants. Square the equation, substitute
(1+tan2 Z) for sec2 Z, and expand the terms so that all Z terms appear as powers of tan Z terms. Move all
the terms to one side of the equation, and group by powers of tan Z. Divide the equation by sin2 y, which is
the multiplier on the tan4 Z term, in order to obtain a fourth order equation with tan4 Z as the leading term.
Finally, factor out a cos y from the denominator of the tan Zmultiplier, and use a double angle formula in y, to
obtain Eq. (38).

To obtain the simple, large-A limit to Z, Eq. (39), start with Eq. (A.1) and approximate all cosine terms as
having a value of 1. Solve for Z.

To obtain the accurate approximation, Eq. (40), start with Eq. (A.1) and substitute Z� for a. Put all terms
involving Z on one side of the equation. Expand the sin(y+Z) term. Use the technique of Eqs. (A.3)–(A.5) to
solve for sin 2Z, where r=1, p=1/tan y, and q=1�E, using the term grouping for E in Eq. (41).
A straightforward (sec2 y=1+tan2 y) trigonometric substitution is needed in the denominator in order to
obtain Eq. (40).

Eq. (42) is obtained from Eq. (A.2), by setting a to Z.
A.2.5. Solution for which Z=0

From Eq. (A.1), substituting Z=0, one may directly obtain the manuscript’s expression for Eq. (44),
by noting that cos(y�a)=A tan y. To obtain the expression for Eq. (43), combine Eqs. (A.1) and (A.2)
(with Z=0) to obtain

b ¼
A cos a

cosðy� aÞ cos y
. (A.12)

By evaluating cos a as cos[y�(y�a)], expanding it, and utilizing the fact that cos(y�a)=A tan y, the expression
for Eq. (43) may be directly obtained from Eq. (A.12).
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Appendix B. Mode IV-x discussion

Mode IV-x ricochet, as depicted in Fig. 5e, plays a role in the critical obliquity only within the small
triangular (A,yc) region delimited by the vertices (1=

ffiffiffi
2
p

, 451), (0.9373, 38.061), and (0.8047, 42.4971). To show
a vertex of the Mode IV-x region at (1=

ffiffiffi
2
p

, 451), insert this (A,yc) point into Eq. (38) to obtain the four roots
of tan Za=Z as (0,0,�1,�1). The double roots at Z=0 indicate a terminus of the Mode IV-x region. Similarly,
when the (A,yc) values associated with the vertex (0.9373, 38.061) are entered into Eq. (38), a double root at
Z=17.311 (beff=1) is produced, indicating the other Mode IV-x terminus for large-b ricochet. At the third
vertex of the region, (0.8047, 42.4971), there is one root at a=Z=0 and one at Z=15.831 (beff=1).

If one were to attempt an empirical characterization of the Mode IV-x solutions, it proves convenient to
note (from Fig. 5e for example) that the a=Z solution associated with the Mode IV-x limit condition (where A

is lowered to the point where the a and Z curves are tangent at a single point) is diminished in magnitude with
respect to the a=Z solution associated with the b=1 condition. We therefore employ a form for the finitely
diminished ac that mirrors the form of the perturbation analysis used in Eqs. (55)–(56), which lends itself to
ready characterization of the Mode IV-x solution curve for large b, as

ac ¼ Zc ¼ 30� � yc=3� Da ðwhen 38:06�pycpya¼0Þ (B.1)

leading to

A ¼
cos ð4yc=3Þ � 30� þ Da
	 


cos yc
sin ð2yc=3Þ þ 30� � Da
	 


cos ðyc=3Þ � 30� þ Da
	 
 ðwhen 38:06�pycpya¼0Þ, (B.2)

where ya=0 is the angle where this fitted form for Mode IV-x solutions merges with the elastic solution, in this
case at ya=0=451. The near linearity of the diminishment of a that is noted in Fig. 5e suggests that the Da
function may be empirically characterized with the linear approximation

Da � 2:161ðyc � 38:06�Þ ðwhen 38:06�pycp45�Þ. (B.3)

Eq. (B.3) guarantees that ac take on the proper value at yc=38.061, associated with the b=1 solution, and that
it takes on a value of ac=0 at yc=451.
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While the result was not shown in Fig. 11, it lays virtually atop the Mode IV-x solution curve for large b. In
this case, large b are defined as being in excess of

ffiffiffi
2
p

, since the upper limit of this fit, at yc=451, A ¼ 1=
ffiffiffi
2
p

,
which blends into the a=0 elastic solution, has a value of beff equal to

ffiffiffi
2
p

at that point.
In fact, one may use this same technique to empirically approximate, not only the Mode IV-x solutions, but

all the limiting (ac=Zc) plastic solutions that lie between the b=1 solution and the branch I elastic solution
(b4

ffiffiffi
2
p

), for which no analytical function is otherwise offered. One adopts the form of Eqs. (B.1)–(B.2),
utilizing the Da diminishment term, except that ya=0 is no longer fixed at a value of 451. Rather, the upper
limit of the fit, at ya=0, defining the point where the fit merges with the elastic solution, varies with b according
to elastic ricochet relation,

ya¼0 ¼ sin�1ð1=beff Þ. (B.4)

The Da function must be empirically characterized to force ac to a value of zero at the point where yc=ya=0.
Linearly fit to this constraint, the value of Da is generalized to

Da ¼
yc � 38:06�

ya¼0 � 38:06�
ð30� � ya¼0=3Þ.

By setting beff=min [b,
ffiffiffi
2
p

], the Mode IV-x fit is recovered for b4
ffiffiffi
2
p

. At the lower limit of b=1, Eq. (B.4)
indicates that ya=0=901; and so Da	0, which allows the exact b=1 solution to be recovered, as well.

Fig. B1 shows the quality of this fit for predicting the critical ricochet obliquity for intermediate values of b.
In the figure, the fitted predictions are drawn with solid lines, while the model’s true behavior, acquired
through a systematic application of the general solution, is shown with dashed lines. One may observe that this
empirical fit for the critical ricochet angle does an excellent job of matching the general model results, over
the complete range of b. Because this fit is empirical, however, it was not incorporated into the contents of
Table 2.
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