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Attenuation of Persistent C,-Bounded Disturbances 
for Nonlinear Systems 

Wei-Min Lu* and  John C. Doylef 

Abstract 

A version of nonlinear generalization of the C1-control problem, which deals with the at- 
tenuation of persistent bounded disturbances in &-sense, is investigated in this paper. The 
methods used in this paper are motivated by [23]. The main idea in the C1-performance analysis 
and synthesis is to construct a certain invariant subset of the state-space such that achieving 
disturbance rejection is equivalent to restricting the state-dynamics to this set. The concepts 
from viability theory, nonsmooth analysis, and set-valued analysis play important roles. In ad- 
dition, the relation between the C1-control of a continuous-time system and the el-control of its 
Euler approximated discrete-time systems is established. 

K e y  Words: Controlled Invariance, Disturbance Rejection, C1 - Optimal Control, Nonlinear 
Systems, Robust Control. 

1 Introduction 

The problem of o p t i m a l  re ject ion of pers is tent  b o u n d e d  d i s t u r b a n c e  for a linear system 
was posed by Vidyasagar in [26]. It is a minimax optimization problem, i.e., the problem of 
minimization of the worst possible impact of a class of persistent bounded disturbances on the 
system. If the disturbance is denoted by w and the signal measuring the impact by z ,  and both 
signals are measured in C, (in continuous time case), then the performance t o  be minimized is 

This problem is known as C1-optimal con t ro l  problem [ l l ,  12, 101, because the minimization (1) 
amounts t o  the minimization of the C,-induced norm, i.e., the C1-norm, of the linear system. The 
linear C1(or &l in discrete-time case)-optimal control problem was extensively investigated in an 
input/output setting by using Youla-parameterization [11, 12, 101. The relation between the C1- 
control of a linear continuous-time system and the 1'-control of its Euler approximated discrete-time 
systems was established in [6]. Recently, for a linear discrete-time system, the corresponding 1'- 
optimal control problem was solved in a state space setting in terms of dynamical state-feedback [14, 
101, continuous nonlinear static state-feedback [22, 231, and piece-wise linear static state-feedback 
[7]. Furthermore, Shamma (231 showed that  if the linear 1'-optimal control has any kind of solution, 
then there must exist a continuous (nonlinear) static state-feedback &'-controller. It is possible 
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that by allowing the class of continuous nonlinear controllers, one can make the closed-loop C1- 
performance (1) strictly smaller than one can do using only linear controllers [13, 241. Therefore, 
i t  is natural to  consider such an optimal disturbance rejection problem in the nonlinear domain. 

In this paper, we will consider the problem of optimal rejection of ,&-bounded disturbance for 
continuous-time nonlinear systems. However, in the nonlinear setting, the minimax optimization 
problem (1) is not equivalent to the minimization of the &-induced gains of the corresponding 
nonlinear operators, while we will borrow the terminology nonlinear C1-control to  refer to the 
corresponding nonlinear minimax optimization problem for convenience. The methods used in 
this paper are greatly motivated by Shamma [22, 231, in which the el-control problem for a linear 
discrete-time system is constructively solved in terms of continuous nonlinear static state-feedback. 
The main idea in the C1(.el)-performance analysis and synthesis is to  construct a certain invariant 
subset of the state-space such that achieving disturbance rejection is equivalent to restricting the 
state dynamics to  this set. The techniques from viability theory, nonsmooth analysis, and set-valued 
analysis [3, 4, 9, 11 are extensively used; and the notion of (controlled) invariance [28, 1, 231 
plays a central role. This treatment provides some geometrical insights into the robust (C1) control 
problem. It is remarked that the invariance notion has also been employed in other nonlinear 
contexts, such as the control synthesis with state and control constraints (see [16, 19, 5, 151 and 
references therein) and the zero dynamics [18, 2, 211. 

The remainder of this paper is organized as follows. Some mathematical preliminaries are 
provided in Appendix A, in which some concepts from set-valued analysis and nonsmooth anal- 
ysis are reviewed, and the emphasis is on set-valued maps and contingent cones. In section 2, 
the C1-performance for a nonlinear system is analyzed. The C1-performance of a nonlinear sys- 
tem is characterized in terms of C1-performance domains. In section 3, the nonlinear C1-control 
synthesis problem is considered. The C1-control problem is characterized in terms of controlled C1- 
performance domains; a continuous static state-feedback C1-controller is constructed. In section 4, 
the (controlled) C1-performance domains are characterized in terms of the (controlled) invariance 
domains of some (controlled) differential inclusions. Some algorithms for computing the (controlled) 
invariance domains are provided. In section 5, the computation issues are considered, and some 
approximation methods are suggested. In particular, the relation between the C1-performance anal- 
ysis and synthesis of a continuous-time system and and the tl-performance analysis and synthesis 
of its Euler approximated discrete-time systems is established. Those proofs which are relatively 
technical and less related are put in Appendix B. 

Conventions 

The following conventions are made in this paper. Z+ is the set of non-negative integers. R +  := 
[0, m )  c R. Rn is n-dimensional real Euclidean space. For x E Rn, llxll := max{lxil : i = 
1,2, 0 ,  n}. llull rn := ess-sup{IIu(t)ll : t E R+} for vector-valued measurable function u : RS+Rp. 
C,[O, oo) is the space of vector-valued functions which are measurable and essentially bounded. 
The prefix B for a normed space denotes the closed unit ball in this space, e.g., BRn := {v E 

RnI llvll I 11 and BCrn[O, oo) := {w E &[O, mjl llwllrn I 1). 

2 L1-Performance Analysis of Nonlinear Systems 

In this section, we will give some characterizations of the C1-performance for a nonlinear system. 
In the next section the synthesis problem is considered based on the analysis results in this section. 



Consider a system with external disturbances as follows, 

where x E Rn is the state vector, w E BRP := {v E RPl llvll 5 1) and z E R4 are the external 
disturbance input and the regulated output, respectively. Suppose that if w(t) = 0 and x(0) = 0, 
then x(t) = 0 and z(t) = 0. The performance which measures the property of disturbance rejection 
in C, for system (2) was formulated by Vidyasagar in [26] as follows, 

Note that, in the linear case, this performance J is IIGII1, i.e., the &-induced norm of the 
input/output map G : w I+ z. We say that the system has a disturbance attenuation property 
if J 6 1. This motivates the following definition. 

Definition 2.1 Consider the given system (2) with x(0) = 0. It has C1-performance iffor all 
w(t) E BC,[O,oo), llx(t)llo, < 00 and IIz(t)ll, 6 1. 

Therefore, system (2) has C1-performance, if and only if it is bounded-input-bounded-state 
(BIBS) stable and J < 1. The above definition is a natural generalization of the C1-performance 
for a linear system. In the next few subsections, we will characterize the C1-performances. 

2.1 L1-Performances and Reachable Sets 

Consider system (2). We will assume f and h are continuous, and f (0,O) = 0, h(0,O) = 0. Therefore, 
0 E Rn is an equilibrium of the system with w = 0. Moreover, we assume the admissible disturbance 
set is 

W := {w : [0, co)-+BRP I w is measurable) = BC, [0, m) (4) 

We also define a subset W, c W as follows, 

Wc := {w E WI w is continuous) ( 5 )  

It is assumed that system (2) has the BIBS property. Therefore, all possible solutions with the 
admissible inputs are in the space C(R+, Rn).  We assume that system (2) is complete in the sense 
that for each w(t) E W and xo E Rn, the solution x(t) to  (2) starting at x(0) = xo is uniquely 
defined for almost every -t E [0, oo), and the solution continuously depends on the initial conditions 
with respect to the compact convergence topology in C(RS, Rn). The state transition function 
4 : RS x Rn x W -+ Rn is so defined that x(T) = 4(T, xo, w*) means that system (2) evolves from 
initial state xo to state x in time T under the input action w*. Note that 4 is well-defined and 
is continuous with respect to initial state because of completeness of system (2). We define the 
reachable state maps of system (2) with the admissible input set W and W, in (4) as set-valued 
maps R : Rn -? Rn and 72, : Rn -i Rn with 

Both R(x)  and R,(x) are bounded sets since system (2) is BIBS. 



Definition 2.2 A set K E Rn is a weak invariant set  for system (2) with respect to an admissible 
input set W if for all x E K ,  and w E W, +(t, x, w) E K for almost all t > 0. 

The sets R(0) and R,(O) have the weak invariance property. The case for R(0)  is stated as in the 
following proposition. 

Proposi t ion 2.3 For all x E R(O), and w E W, 4(t, x, w) E R(0) for all t > 0. The closure R(0)  
of R(0) has this weak invariance property. 

P roo f  If x E R(O), then by the definition of map R(O), there exist wl E W and T E RS such 
that x = d(T, 0, wl). Now take w2 E W, define w : Rf-+BRP as 

and w E W .  Therefore, 

+(t, 0, w) E R(O), Vt E Rt.  

In particular, if t 2 T ,  

+(t - T, x, wz) = 4(t - T, 4(T, 0, wl), ~ 2 )  = d(t, 0, W )  E R(O) 

To show R(0) is invariant, we need to show that given x E %(o) and w E W ,  4(t, x, w) E R(0) 
for all t E Rt. In fact, suppose there exists a sequence {x,} C R(O), such that x,+x as n-ioo. 
Therefore, 4( t ,xn,  w) E R(0)  c R(0) for all t E Rf .  %(o) is bounded since R(0) is bounded, 
therefore, by the completeness assumption, $(t, x, w) = lim,,, 4(t, x,, w) E R(0)  for all t E R f .  
C1 

Next, we will characterize the L1-performance for system (2) in terms of the reachable set. We 
first give a weaker definition as follows, 

Definition 2.4 Consider the given system (2) with x(0) = 0. It has weak L1-performance if 
for all w(t) E W,, Ilx(t)lloo < and II~(t)ll, I 1. 

Therefore, if system (2) has weak L1-performance, then 

As system (2) is BIBS, then there exists a compact set X c Rn, such that 4(t, 0, w) E X for all 
w(t) E W. Define a closed set as follows, 

R := {x E XI Ilh(x, w)II < 1,Vw E BRP} (9) 

Then R is bounded .  We immediately have the following assertion. 

T h e o r e m  2.5 The system (2) has L1-performance J 5 1 if and only if R(0) C 0. It has weak 
L1-performance Jw < 1 if and only if R,(O) c R .  

Furthermore, the optimal performance J is given by 

J = sup{llh(x, w)ll Ix E R(o), w E BRP}. 

It is noted that in general the reachable set R(0) and R,(O) are not easily computable by the 
definitions. In the next subsection, we will give some alternative characterizations in terms of the 
notion of invariance for differential inclusions. 



2.2 L1-Performance Domains 

The nonlinear systems with C1-performances can be described with the aid of a differential inclu- 
sions. Indeed, let's consider system (2), define a set-valued map F : Rn -i Rn as 

F (x )  := { f  ( x ,  w)lw E B R P )  

with the domain DoM(F) = R.  It is noted that all solutions to  the differential equation k = f (x, w) 
with w(t) E W are the solutions of the differential inclusion 

However, in general, not all solutions of differential inclusion 2 E F(x) are the admissible solutions 
for the system (2) for some w E W; therefore, these two descriptions are not equivalent. We first 
have the following definition. The contingent cone of a set is defined in Section 7.2. 

Definition 2.6 Consider system (2)!. the bounded set 0 is defined as i n  (9). A closed set K E R 
is an C1-performance domain  for system (2) if 0 E K and for all x E li' and w E BRp, 

f (x, w) E TK(x? .  

where T K ( x )  is the contingent cone of set K at x 

It will be seen that an C1-performance domain is a nonempty invariance domain of its corresponding 
differential inclusion (10)-(11) (see Section 4.1). 

We first have the following theorem about the weak C1-performance. 

T h e o r e m  2.7 Consider system (2). It has the weak C1-performance if and only if there exists an 
C1 -performance domain for system (2).  

The proof of this theorem is given in the next subsection. As for the C1-performance, we first 
have the following assertion for a class of nonlinear systems. 

T h e o r e m  2.8 Consider system (2). 

( i )  It has C1 -performance, then there exists an C1 -performance domain. 

(ii) If f(x, w) is locally Lipschitz in  x E Rn, then system (2) has the C1-performance i f  and only 
if there exists an C1 -performance domain. 

The proof of this theorem is given in the next subsection. In the following, we will mainly 
consider the case of interest in the sequel, where system (2) is affine in w. As a result, the Lipschitz 
property in Theorem 2.8 (ii) is not required. More concretely, we consider the following system, 

i.e., the function f ( x ,  w) in (2) is replaced by f (x) + g(x)w; the other assumptions on f (x, w) are 
also imposed on f (x) + g(x)w. 



Theorem 2.9 Consider system (13) which is aygine i n  w. The following statements are equivalent. 

( i )  There exists an C1-performance domain for system (13). 

(ii) System (1 3) has weak C1-performance. 

(iii) System (1 3) has C1 -performance. 

The proof will be given in the next subsection. Theorems 2.5 and 2.9 imply that if %(o) c 0, 
then it is an C1-performance domain for system (13). In fact, it is the smallest C1-performance 
domain (Section 4.1). We next give an algorithm to compute the optimal performance J in (3) by 
using the bisection method (which is used in computing 'I-I,-performance [8]). 

Given E > 0, one needs to find a y* > 0 such that y* - E < J < y* f E .  Let y > 0, define 

and let DINV(D,) be the largest invariance domain of the differential inclusion (10)-(11) in D, (see 
Section 4.1). 

Algorithm 2.10 Give y~ > y, 2 0 such that y, < J < yM. 

Step 1: If y~ - y, < 26, let y* = (yM + y,)/2, then stop; otherwise go to step 2. 

Step 2: Let y = ( y ~  t y,)/2 and compute Ii, := D I N V ( D ~ ) ,  

Step 3: If 0 E Ii,, then redefine yM := y; otherwise let y, := y.  Go to step 2.  

The above algorithm can be used to get an approximation of optimal C1-performance for system 

(13)- 

2.3 Proofs of the Main Theorems 

Next, we will prove Theorems 2.7, 2.8, and 2.9. The techniques used in the proofs are basically 
from [I, 25, 291. 

PROOF OF THEOREM 2.7 

The following lemma from [3, 291 will be used in the following discussion. 

Lemma 2.11 Consider a diflerential equation 2 = $(x, t )  with $ : Rn x Rf -+Rn being continuous. 
Suppose a set I< C R n  is closed. If $(x,t) E TK(x) for all x E K and t E R+, then for any 
xo E K ,  there exists a solution x ( t )  to the diflerential equation starting at xo which is viable in  K ,  
i.e. x(t) E K for almost all t E [0, ca). 



Proof [Theorem 2.71 

- 
[Necessity] Let Ii := R,(O) C a, we now show it is an C1-performance domain. We need to  
show that for all wo E BRP and xo E Ir', f (xO,  wO) E TK(x). In fact, given T > 0, one has 
x(t) = 4(t, xo, w(t)) E K for all t E [O,T] where w(t) E W ,  with w(0) = wo because of the weak 
invariance of the set Ec(0).  Therefore, 

Notice that f (x(s), w(s)) is bounded in [0, TI, then by Lebesgue's differentiation theorem, one has 

Therefore, one can find two sequences {t,) and {v,) with t , iOt  and v n i  f(xo, WO)  as n--+w, such 
that xo f tnvn E Ii for all n E Zt. Hence, f(xo, wo) E TK(xO), the conclusion then follows by 
Lemma 7.5. 

[Sufficiency] Suppose K c 0 is an C1-performance domain. Given w(t) E We, consider the 
time-varying differential equation 

Note that the function f w  : Rn x Rt-+Rn is continuous; and by assumption, fwjx , t )  E TK(x) for all 
x E K and t E Rt, then by Lemma 2.11, for all x E K ,  +(t, x, w) E K for all t 2 0. In particular, 
R,(O) c K c  SZ. 

PROOF OF THEOREM 2.8 

Theorem 2.8 basically follows from [29]. We first restate a result from [29] which is used in the 
proof. The weak invariance is defined in Definition 2.3. 

Lemma 2.12 ([29, Theorem 3.91) Consider system (2) 
(i) If Ir' is a closed weak invariant set with respect to W ,  then f (x ,  w) E TK(x) for all x E li 

and w E BRP. 
(ii) If function f(x,  w) is locally Lipschitz in x, K is a closed set, and f(x,  w) E TK(x) for all 

x E K and w E BRP, then both K and its interior are weak invariant sets. 

Proof [Theorem 2.81 (i) Suppose system (2) has C1-performance J < 1, by Theorem 2.5, one 
has that the closure f i  := R(0) of R(0) belongs to  R, since is closed. By Proposition 2.3 and 
Lemma 2.12 (i), one has that for all x E Ii, 

or F(x)  C TK(x). Thus, K is an invariance domain for F, which is closed, and 0 E K. Therefore 
0 E K c DINV(R). 

(ii) The necessity is proved in (i), only the sufficiency is proved here. Suppose K := D I N V ( ~ )  3 
0, then F (x )  C TK(x), or 



Then by Lemma 2.12 (ii), one has that for all x E K ,  and w E W ,  4(t, x, w*) E K for all t > 0; in 
particular, R(0)  c K c 0. Then the assertion follows from Theorem 2.5. 

PROOF OF THEOREM 2.9 

The following lemma is needed in the proof of Theorem 2.9. 

Lemma 2.13 Let continuous functions f(x) and g(x) be defined in (13). Given y > 0 and T > 0 
and w(t) E W ,  define 

for almost every t E [O,T]. Then map t t-+ S(x(t), w(t), y) is measurable on [O,T]. Moreover, let 
{y,) be a positive decreasing sequence converging to zero, and {T,) be a positive sequence converging 
to zero. Then 

almost everywhere in [0, TI. 

Proof It is obvious that the map t w S(x(t), w(t), y)  is measurable on [O, TI. It is noted that for 
almost t E [O, TI, and yl 2 y~ > 0 S(x(t), w(t), yl) 2 S(x(t), w(t), y2), and 

Now Let (7,) is a decreasing sequence converging to zero. We will show (16) holds almost every- 
where in [0, TI. In fact, by Lebesgue's differentiation theorem, one has 

almost everywhere in [O, TI for each n E Z f .  Therefore, (17) holds almost everywhere in [0, TI for 
all n E Zt ,  since Zf is countable. 

Now take t E [0, TI such that (17) holds for all n E Z+. Let t > 0 be given. Then we can find 
n l ,  n2 E Zt,  such that S(x(t), w(t),y,,) < €12, and 

t+', 

6("(~)7 w(s), yn,)ds < S(x(t), w(t), y,,) + t /2 
T, 

for n > n2. Therefore, if n 2 max{nl, n2), we have 



Proof [Theorem 2.91 

It is noted that the implication (iii)+(ii) is obvious, and (ii)+(i) follows from theorem 2.7. We 
only need to  show (i)+(iii). Suppose K c Q is a compact C1-performance domain. It is sufficient 
t o  show that if xo E I<, then for all w E W,  +(t, xo, w) E K for all t E [0, oo). The proof is divided 
into two steps. 

Claim 1: Given T > 0, for the given w E W,  4( t ,x ,  w) E Ir' for all t E [O,T]. 

Indeed, take r > 0, define a function f, : K x [0, T]+Rn as follows, 

where 
t+.r 

w , ( t ) : = L l  7- w(s)ds 

which is continuous on [0, TI. In fact, for all t l ,  t2 E [0, TI, 

since w(s) E BRP for almost all s E [0, TI. Therefore, f, is continuous on the compact set K x [0, TI. 
because of the continuity of f and g, we can assume ( 1  f (x)  + g(x)w(l 5 /3 with some /3 > 0 for all 
(a ,  w) E K x BRP.  Therefore, by (18), it follows that 1 1  f, (x, t)ll < P .  Note that 

for all t E [0, TI. Therefore, w, E W ,  c W. Then one has 

for all x E K t E Bf. By Lemma 2.11, the solution x,(t) to  iT = f,(x,,t) for t E [O,T] is viable in 
the compact set di, i.e., x,(t) E K for t E [O,T]. 

On the other hand, one has that 112, 1 1  = llf,(x, t)ll < P.  Take a sequence {xn(-)) := {xTn(.)}, 
where rn+O as n+oo, then the sequence is equicontinuous. Then by Ascoli's Theorem, the sequence 
remains in a compact subset of the Banach space C([O, T],Rn); therefore, there exists a subsequence, 
denoted as {x,} without loss of generality, which converges uniformly on [0,T] to an absolutely 
continuous function x which is viable in fi since K is closed. Furthermore, the sequence (2,) 
converges to  i because x, = f, (xn(t), t )  and f is uniformly continuous on the compact set K x [0, TI. 

A sequence (7,) is chosen as follows, 

such that (7,) is decreasingly converges to zero (otherwise, we can choose a decreasingly subse- 
quence instead), and for all s E [t, t + T,], 

Given E > 0, by Lemma 2.13, there exists an no E Z + ,  such that if n 2 no,  



By Lebesgue's differentiation theorem, one has 

since f (x(s)) + g(x(s))w(s) is bounded, is thus integrable on [O,T]. Therefore, 

almost everywhere in [O,T]. By the completeness of system (131, +(t,xo, w) = x(t) E K for all 
t E [O,T]. 

Claim 2: The viable solution x(t) in K can be extended to [0, m).  

In fact, by Zorn's Lemma, one can extend the viable solution x(t) in K to  the interval [0, T,,,) 
for some T,,, 2 T [29], i.e., 

and T,,, is such a maximal number. Now, we show T,,, = co. In fact, if not so, define 

as K is closed and bounded. Thence, Ilx(t) 1 1  < C + 1 for t E [Tmuz - r ,  Tmax]  with some r > 0. Since 
Ilw(t)ll < 1, then Ilj.(t)ll = 1 1  f (x(t))  + g(x(t))w(t)ll < P.  Therefore, for all tl,t2 E [Tmaz - r , T m u z ]  

with t l  < L a ,  

Therefore, the Cauchy criterion implies that limt+T,,, x(t) exists. Let x(T,,,) := limtiTmc= x(t) E 
K .  Since 

t 

x(t) = xo + 1 t(s)ds, 

let t+T;,,, one has 

Then the solution can be extended to [O,T,,,]. Now x(T,,,) E li, the same argument as in Step 
1 shows that there exists To > 0 such that x(t) can be extend to  [O,T,,, + To). This leads to  a 
contradiction about the maximality of T,,,. Therefore, T,,, = oo. 



3 L1-control of Nonlinear Systems 

In this section, we will consider the nonlinear ,C1-control synthesis problem based on the char- 
acterizations of ,C1-performance in the previous section. A static state-feedback C1-controller is 
constructed for a nonlinear system. 

Consider the following input-affine system. 

where x E Rn is the state vector, w E BRP := {v E RPI I I v I I  I I) ,  u E Rm, and z E Rq are 
the external disturbance input, the control input, and the regulated output, respectively. We will 
assume f,gl ,g2, h,kl, and k2 are continuous on Rn, R A N K ( ~ ~ ( X ) )  = n and R A N K ( ~ ~ ( X ) )  = m for 
all x E Rn, and f(0) = 0 and h(0) = 0. Therefore, 0 E Rn is an equilibrium of the system with 
w = 0 and u = 0. Moreover, we assume the admissible disturbance set for system (19) is 

The C1-control problem for system (19) is defined as follows, 

Definition 3.1 The state-feedback ,C1-control synthesis problem is to find a continuous state- 
feedback u = $(x) for system (19) such that the resulting closed-loop system has the C1-performance. 

Define a set-valued map U : Rn --i Rm as follows, 

with domain 

Therefore, if u = $(x) is an admissible C1-controller, then it necessarily satisfies $(x) E U(x) for 
all x E DoM(U). We thus define the set of admissible (state-feedback) controllers for the system 
G as follows, 

K := {$ : Rn-+Rml $ is continuous on DoM(U) and 

$(x) E U(x) for all x E DoM(U) with $(0) = 0) 

Let F : GRAPH(U) --i Rn be another set-valued map defined as follows, 

One immediately has the following observations. The upper semi-continuous (USC), lower 
semi-continuous (LSC), and Marchaud maps are defined in Appendix A. 

Lemma 3.2 (i) The set-valued map U : Rn y-i R m  defined in (21) is locally bounded, USC, as well 
as LSC with closed values; and DoM(U) is closed. 

(ii) The set-valued map F : GRAPH(U) --i Rn defined in (23) is USC; if in addition DoM(U) 
is bounded, then it is Marchaud. 



Define Fc : Rn -t Rn by 

then the differential inclusion x E F,(x), which is derived from system (19), is a controlled differ- 
ential inclusion (6 U) defined by (21) and (23). We first have the following definition. 

Definition 3.3 Consider system (19) and its corresponding controlled diflerential inclusion (F, U) 
defined by (21) and (23). Suppose K C: DoM(U) is closed, then Ii is a controlled L1-performance 
domain i f  0 E K and for each x E K there exists u E tT(x) such that 

It will be shown in the next section that a controlled C1-performance domain for system (19) 
is a closed controlled invariance domain of (F, U). Next, we will characterize the solvability of L1- 
control synthesis problem in terms of the controlled L1-performance domains. It is assumed that 
system (19) is complete in the sense that for each w(t) E W ,  u(t) E L,[O, oo) or u = $(x) E IC, 
and x0 E Rn, the solution x(t) to (19) starting at x(0) = xo is uniquely defined for almost every 
t E [O, m), and the solutions are continuously dependent on the initial states. We first have the 
following assertion. 

Theorem 3.4 (Necessary Conditions) Consider system (19). If the L1-control problem has a 
static state-feedback solution, then there exists a controlled L1-performance domain. 

Proof If the C1-control problem has a state-feedback solution, then there exists a state feedback 
$ E K: such that the following closed-loop system 

has the C1-performance. Define a set 

Let D I N V ( ~ , )  be the largest C1-performance domain of the closed-loop system (26) contained in 
R. By Theorem 2.8, 0 E D I N V ( ~ , )  # 0; and moreover, D I N V ( ~ , )  is a controlled C1-performance 
domain for the original system by Definition 3.3. 

It is noted that, the above theorem holds for more general class of nonlinear systems in addition 
to  the class of input-affine systems. Next, we will give a sufficient condition for a modified L1-control 
problem to have a solution. Consider system (19). For c E [0, I ) ,  define the following performance. 

We will construct a state-feedback u(.) E K: such that the closed-loop system satisfies J" 1 for 
any E E (0, l ) .  We have the following theorem. The sleek sets are defined in Section 7.2. 

Theorem 3.5 (Sufficient Conditions) If there exists a sleek compact controlled L1-performance 
domain for system (19), then for all E E (0, I ) ,  there exists a continuous static state feedback such 
that the closed-loop system satisfies J E  5 1. 



Proof Suppose K # 0 is a sleek compact controlled L1-performance domain for system (19). It 
is sufficient to  construct a state-feedback C1-controller u = 4 E IC such that the following modified 
system 

with the constructed controller achieves L1-performance. 
As K E DoM(U) is sleek, TK : K . ~ - i  Rn is LSC with closed convex values. Define a set valued 

map T E  : K -, Rn as 

It is easy to see that set-valued map T t  is LSC with closed convex values on K.  Define the (allowable 
control) set-valued map C' : K -i Rn as 

It can also be seen that the set-valued map C t  has closed convex values on K. 
On the other hand, we claim that there exists an a > 0 such that for all x E K ,  there exists a 

u E CE(x) such that 

for all r E Rn such that llrll 5 a. In fact, since TO(x) C T y x )  for 0 < 6 ,  we have CO(x) C Cyx) .  
Also K # 0 implies CO(x) # @ for all z E K ,  Therefore, there exists u E CO(x) C Ct(x),  such that 

Then the claim is justified since gl(x) has rank n on the compact set K. 
By employing Theorem 7.3, we can immediately deduce that the set-valued map C E  is LSC. 

Furthermore, it can be verified that 0 E Ct(0). We now use Michael's selection theorem (Propo- 
sition 7.4) to  conclude that there exists a continuous selection $ : K+Rm of set-valued map 
CV IIr' --i Rn with $ ( O )  = 0, then $ E K .  

Now we claim that the state feedback u = $(x) is the desired controller. Indeed, the closed-loop 
system is 

From the construction, we know that for all x E Ir' and w E BRp, 

Thus the sleek set K # 0 is an C1-performance domain for the above closed-loop system (30). Thus, 
Theorem 2.9 shows that the closed-loop system (30) has L1-performance. Therefore, the resulting 
controller for system (19) yields Jt 5 1. 



4 L1-Control and (Controlled) Invariance 

In this section, we will characterize the (controlled) C1-performance domains in terms of corre- 
sponding (controlled) differential inclusions. The notions of (controlled) invariance play a central 
role. 

4.1 Differential Inclusions and Invariance Domains 

Given a set-valued map F : X -i X ,  we mainly consider, in this subsection, the following differential 
inclusion 

5 ( t )  E F(x(t)) ,  for almost all t E [0, CQ) (31) 

A function x : Rf-+X is said to be viable in a subset K C X if x(t) E I< for all t E RS [I]. 
We have the following definition. 

Definition 4.1 Consider diflerential inclusion (31). The subset Ir' c X is said to be invariant 
under F i f  for all xo E K ,  any solution to (31) starting at x, is viable in  K .  Given any closed subset 
R C DoM(F). The largest closed subset of R which is invariant under F, denoted by INvF(R)~ ,  
is called the invariance kernel ( IK)  of R. The smallest closed subset of X invariant under F 
containing R is called invariant envelope (IE) of R, denoted as E N V ~ ( S ~ ) ~ .  

We first have the following lemma. 

Lemma 4.2 The class of invariance subsets under F is closed under the operation of subset union. 

The above lemma implies that the invariance kernel, if exists, is unique; The invariant envelope, 
which always exists by Zorn's lemma, is also unique. It is known that if F is Lipschitz, then 
there exists an invariance kernel for closed subset R c DoM(F) [I, Theorem 5.4.21. The following 
theorem gives another class of such nonlinear systems of interest in this paper. 

Theorem 4.3 Suppose the set-valued map F : DoM(F) -i X is Marchaud. Then, for any closed 
subset R C DoM(F), there exists an IK (possibly empty) of R. A is the subset of initial points such 
that all solutions starting from them are viable in  R. 

The proof of this theorem is given in Appendix B. Definition 4.1 can hardly be conveniently im- 
plemented for checking the invariance sets and computing the invariance kernels. We next give an 
alternative notion. 

Definition 4.4 Let F : X -i X be given. Ir' c DoM(F) is an invariance domain ( ID)  of F i f  
for all x E K ,  F(x)  C TK(x). Given any closed subset R c DoM(F). W e  denote by D I N V ~ ( R )  the 
largest closed invariance domain under F i n  R, and by DENvF(R) the smallest closed invariance 
domain of F containing R.  

Recall the definition of the C1-performance domains in Section 2, it is known from the above 
definition that any C1-performance domain is an invariance domain of the corresponding differential 
inclusion (10) and (11). Therefore, D I N V ~ ( R )  exists for a class of parameterized set-valued maps 
F : Rn -i Rn. From Theorem 2.9, we immediately have the following theorem which characterizes 
the C1-performance of system (2) in terms of the invariance domains. 

'If clear from context, the subscription F will be dropped. 



Theorem 4.5  Consider system (2) and its corresponding diflerential inclusion (10) and (11); sup- 
pose the system is afine in w; the compact set R is defined in  (9). Then the following statements 
are equivalent. 

(i) The system has weak C1-performance. 

(ii) 0 E DINvF(R). 

(iii) DENvF({O)) C 0 .  

Furthermore, if any of the above statements holds, then for any C1-performance domain K ,  
which is well-defined, one has 

Therefore, if the system has the C1-performance, then D E N V ~ ( { ~ ) )  and DINvF(R) are the 
smallest and the largest C1-performance domains, respectively. In the following, we will give some 
algorithms for computing the (closed) invariance domains in a given closed subset R C DoM(F). 
By modifying viability kernel algorithms in [1, pp.147-1531, one has the following algorithms. 

Algorithm 4.6 Let F : X --? X and a closed subset R c DoM(F) be given. Define recursively the 
subsets I(,, by 

where i f  ICn is empty in some step n stop there; otherwise define 

It is observed that if ICn = 0 for some n E ZS, then DINvF(R) = 0; otherwise, D I N V ~ ( ~ )  C 
if exists, since DINvF(R) C I<n for all n. However, in general, the inclusion can not be replaced by 
equality, i.e., the above algorithm does not yield the maximal invariance domain contained in R. 
Because the algorithm does not guarantee the subsets I<, to  be closed; also in general the upper 
limit of the contingent cones TKn(x) is not necessarily contained in the contingent cone to  the upper 
limit of the subsets I i ,  [I]. In the following, an alternative algorithm yielding a closed invariance 
domain which is a subset of D I N V ~ ( R )  is provided. This algorithm is a modification of viability 
domain algorithm [I ,  p.1511; the set-valued map 7'; : X --? X defined in Definition 7.8 is used. 

Algorithm 4.7 Let F : X -, X and a compact subset R c DoM(F) be given. Given a constant 
c > 0, define recursively the subsets I<: by 

If is empty in some step n ,  then stop there; otherwise define 
00 

K; := n I(; 
n = O  

(33) 

Theorem 4.8 Let F : X --? X be LSC and S1 C DoM(F) be a compact subset. In the above 
algorithm, if I<: $ 0 for all n E: ZS, then K& is a nonempty closed invariance domain of F. 

The proof is given in Appendix B. 



4.2 Controlled Differential Inclusions and Controlled Invariance 

Let X ,  Y, and Z be metric spaces. Given two set-valued maps, U : X --i Z and F : GRAPH(U) --i Y,  
Define a parameterized set-valued map F, : X --i Y as follows, 

with DoM(F,) = DoM(U). Then the differential inclusion 2 E F,(x) is called a controlled 
differential inclusion (CDI), denoted as (F, U). 

Definition 4.9 Consider a CDI defined by (F, U). A subset I i  E DoM(U) is controlled in- 
variant under (F, U )  if there exists a measurable function u : Rf+Rm such that for all x, € K ,  
the diflerential inclusion 2 E F(x ,  u(t)) has all solutions starting at x ,  and viable in  K ,  and 
u(t) E: U(x(t)) for all t E Rf.  Given any closed subset R c DoM(U), The largest closed subset 
of R which is controlled invariant under (F, U), denoted by CINV(R), is called the controlled in- 
variance kernel (CIK)  of S1, and the controlled invariance envelope (CIE)  CENV(R) of Q is  
defined as the smallest closed controlled invariant subset containing R under (F, U). 

The notion of controlled invariance (or (A, B)-invariance for linear systems) was defined for 
linear systems to  deal with disturbance decoupling in 1281, and for nonlinear systems in the context 
of zero dynamics 118, 21. The controlled invariance envelope exists and is unique. The controlled 
invariance kernel, if exists, is also unique, because of the following observation. 

Lemma 4.10 The class of controlled invariance subsets under (F, U) is closed under the operation 
of subset union. 

The following theorem characterizes the existence of CIK in a given closed set. 

Theorem 4.11 Consider the CDI defined by (F, U). Suppose R C DoM(U) C X is compact, the 
set-valued maps U : DoM(U) -i Z is LSC with closed convex values, and F : GRAPH(U) --i X is 
Marchaud. Then there exists a CIK (possibly empty) of R. 

Proof Since U : DoM(U) -i Z is LSC, by Michael's selection theorem (Proposition 7.4) there 
exists a continuous selection u(x) E U(x). Define a new set-valued map Fu : R -i X as F,(x) := 
F(x,  u(x)). Since F : GRAPH(U) --i X is Marchaud, then there exists C > 0 such that 

with C ,  > 0 being such that 11u(x)11 5 Cu as u is continuous on the compact set Q, so Fu is also 
Marchaud. Therefore, by Theorem 4.3, there exists a maximal invariance kernel INV,~(R), and it 
is controlled invariant under (F, U) by the definition. Zorn's Lemma implies that there exists a 
maximal controlled invariance subset, which is the CIK, of 0. 

From the above theorem and Lemma 3.2, the controlled differential inclusion (F, U) defined by 
(21) and (23) has the CIK in DoM(U) if DoM(U) is compact. 

Definition 4.12 Consider the CDI defined by (F, U). A subset I< E DoM(U) is a controlled 
invariance domain (CID) of (F, U) i f  for all x E I i ,  there exists a U(X) E U(x) such that 
F(x,  u(x)) c TK(x). Given any closed subset R c DoM(U), DcI(R) is the largest closed controlled 
invariance domain in  R under (F, U), and DcE(R) is the smallest closed controlled invariance 
domain containing R for (F, U). 



Recall the definition of the controlled C1-performance domains in the last section, it is known 
from the above definition that any controlled C1-performance domain of system (19) is a controlled 
invariance domain of the controlled differential inclusion (F, U) defined by (21) and (23). Therefore, 
DcI(R) exists for a class of parameterized controlled differential inclusions. We immediately have 
the following theorem which characterizes the controlled C1-performance of system (19) in terms 
of the controlled invariance domains. 

Theorem 4.13 Consider system (19) and its corresponding controlled diflerential inclusion ( F ,  U )  
defined by (21) and (23). Suppose DoM(U) is compact, and I< E DoM(U) is a controlled C1- 
performance domain. Then 0 E D c ~ ( ( 0 ) )  c K c D I N V ~ ( D O M ( U ) )  c DoM(U). 

Therefore, if the system has controlled C1-performance, then DcE({O)) and DcI(DoM(U)) are 
the smallest and the largest controlled C1-performance domains, respectively. In the following, 
we give some algorithms to  compute the controlled invariance domains in some given closed set. 
Those algorithms are modifications of the (A, B)-invariance algorithm for linear systems [28], the 
controlled invariance kernel algorithm for controlled difference inclusions [23], and the zero 
dynamics algorithm [18, 211. 

Algorithm 4.14 Let F : X -i X and a closed subset R c DoM(F) be given. Define recursively 
the subsets Ii', by 

K,+I := {X E Iinl F(x ,  u) E TK,(x), for some u E U(X).} 

Define 
00 

Is-, := I<n 
n=O 

It is observed that DcI(R) c Is-, for all n, then DcI(R) C I<,. However, in general, the 
inclusion can not be replaced by equality. In the following, we give a remedy to this problem as 
in Algorithm 4.7, however, instead of DcI(R) itself, only a closed invariance domain, which is a 
subset of DcI(R), is obtained. 

Algorithm 4.15 Let F : X x Z -i X and a compact subset R C DoM(F) be given. Given a 
constant c > 0, define recursively the subsets I<: by 

I<:+, := {x E I<:lF(x,u) E T ~ , ( x ) ,  for some u E U(x)). 

Then either Ii'; is empty in some step n ,  or 

is not empty. 

Theorem 4.16 Suppose R is compact and F : X x Z -i X is LSC, U : Z -i X is locally bounded 
USC with closed values. In the above algorithm, either Is-: is empty in  some step n, or I<& is a 
nonempty closed controlled invariance domain of F .  

The proof is given in the Appendix B. 



5 Approximation Methods for L1-performance Analysis and Syn- 
thesis 

The C1-performance analysis and synthesis for nonlinear systems are reduced to  the computations 
of (controlled) invariance domains for some (controlled) differential inclusions. However, unlike the 
discrete time systems, the algorithms given in the last section are not easy to  implemented. In 
this section, we will try to  give some alternatives characterization for the (controlled) invariance 
domains and approximate them in terms of the (controlled) invariance domains of the corresponding 
Euler approximated discrete-time systems. To this end, we give the following definition [4, p.171. 

Definition 5.1 Let {Kn)lnEZ+ be a sequence of subsets of a metric space X .  The upper limit of 
the sequence is a closed subset of X defined as 

lim sup 
n-cu 

lim n--+OO inf d(x , K,) = 0) 

Therefore, lim sup,,, K, is the set of cluster points of sequence xn E Kn, i.e., of limits of 
subsequence x,, E I{,, .  

5.1 &'-Performance of Iliscrete-Time Nonlinear Systems 

The material in this subsection is just the reformulation of some results from [23]. 

Consider the following discrete-time nonlinear system 

where fd and hd are continuous. The !'-performance for system (36) is defined similarly to that in 
the continuous times case (see Definition 2.1). Let a set-valued map Fd : Rn h î Rn be defined as 

Fd(x) := {fd(x, w)Iw E BRp} 

with the domain D o M ( F ~ )  = LR, where 

LR := {x E Rnl llhd(x, w)II 5 1,Vw E BRP) 

is assumed bounded. We can also similarly define the invariance and the invariance kernel of a 
closed set for the corresponding difference inclusion. We have the following result [23, Proposition 
4.11. 

Proposition 5.2 The invariant kernel I N V ~ , ( R )  in  LR for difference inclusion x(k + 1) E Fd(x(k)) 
exists, and 

where KO = R,  I$+' = {x E lij. : Fd(x) c Kj). Moreover, system (36) has !'-performance 

J := SUP I I z I I c u  - < 1 
~ E ~ m i l l ~ l l ~ l l  

if and only if 0 E INVF,(Q) 0. 



CONTROLLED I N V A R I A N C E  A N D  &'-CONTROL 

Let X and Y be metric spaces. Given two set-valued map Ud : X -+ Y, Fd : GRAPH(U~)  -+ X ,  
then the difference inclusion 

defines a controlled difference inclusion, denoted as (Fd, Ud), we can similarly define such concepts as 
controlled invariance and controlled invariance kernel of a closed set under (Fd, Ud) [23, Definitions 
4.3 and 4.41. The following result is due to Shamma [23, Proposition 4.21. 

Proposition 5.3 Consider a 
DoM(U~)  is compact, Ud : X Y: 

X is LSC. Then the controlled 

controlled diflerence inclusion defined by (Fd, Ud). Suppose R C 
Y is locally bounded USC with closed-values, and Fd : G R A P H ( U ~ )  -+ 

invariance kernel CINV(Q) of R for (Fd, Ud) exists (possibly empty). 
And 

where lr i j  is recursively defined: Ko := R and I$+' = {x E KjIFd(x, U)  c Kj. for some u E U d ( x ) ) .  

Next, consider the following discrete-time control system 

with f d ,  gdl, gd2, hd, kdl, and kd2 being continuous, and R A N K ( ~ ~ ( X ) )  = n for all x E Rn. Similarly, 
the 11-control problem for system (37) can be defined as did for the continuous time case (see 
Definition 3.1). Define Ud : Rn -+ Rm 

Suppose R := DoM(U~)  is bounded. Note that Ud is locally bounded USC with closed values. Let 
a set-valued map Fd : Rn x Rm -+ Rn be defined as 

with domain D o M ( F ~ )  = 0. We have the following results about &'-control problem slightly 
generalizing Shamma's theorems [23, Theorem 5.11 and [22, Theorem 3.11. 

Proposition 5.4 Consider system (37). Then the following statements are true. 

( i )  CINV(R) exists. 

(ii) If the system has tl-control solution such that J 5 1, then 0 E CINV(R) + 0. 

(iii) If 0 E CINV(R) + 0 and C I N V ( ~ )  is convex, then for all t E (0, I), there exists a continuous 
static state feedback such that the closed-loop system satisfies: 



It is remarked that the results about 11-performance analysis and synthesis can also be charac- 
terized in terms of (controlled) invariance envelope. For example, we have the following version of 
Proposition 5.4. 

Proposition 5.5 Consider system (37). Then the following statements are true. 

(i) If the system has 1'-control solution, then CENV({O)) C R. 

(iii) If CENV({O}) C R and CENV({O)) is convex, then for all t E (0, I), there exists a continuous 
static state feedback such that the closed-loop system satisfies (38). 

5.2 Approximation of L1-Performance Domains 

Consider system (13) which is rewritten as follows, 

where w E W .  Given T > 0, define a corresponding difference equation as 

where w,(k) := w(rk),  and 

It is noted that the discrete-time system (39) is a Euler approximation of system (13). Let a 
set-valued map F, : Rn --i Rn be defined as 

with the domain DoM(F,) = R, where 

is assumed bounded. Note that the map F, is LSC because of the continuity assumption on f for 
system (13). Consider the difference inclusion x,(k + 1) E F,(x,(k)). Then by Proposition 5.2, we 
know that invariant kernel I N V ~ , ( R )  in R for difference inclusion x,(k + 1) E F,(x,(k)) exists; and 
the discrete-time system (39) has 11-performance if and only if I N V ~ ,  (R) # I?. 

We have the following result about the approximations of the L1-performance domains for 
system (13). 

Theorem 5.6 Consider system (13). Let {r,) be a decreasing sequence such that T,+O as n-ica, 
and V,, C R be closed and invariant under FTn for each r, with 0 E V,, . Then V, := lim sup,,, V,, 
is a L1-performance domain for system (1 3). 

It is noted that in Theorem 5.6, for each T,, the corresponding Euler approximated discrete-time 
system has L1-performance J 5 1. Possible choices for If,, are I N V ~ , ,  ( 0 )  and E N V ~ , ,  ((0)). 



Proof Choose w E Mi, and xo E V,, then the solution 4(t ,xo, w) to  the differential equation 
k = f (x ,  w(t)) with x(0) = xo is bounded. We first show that,  for all T > 0, +(t,xo, w) E V, for 
all t E [0, T). 

Consider the function f,(x, t) := f (x ,  w(t)), which is continuous on compact set R x [0, TI; 
therefore, 1 1  f (x, w(t))ll < /3 for some /3 > 0, and it is uniformly continuous on R x [0, TI. Given 
t > 0, there thus exists S > 0 such that for all r E (O,S], 

llf (XI,  w(t1)) - f (52, w(t2))II < 6 (41) 

for all (xi , t i)  E $2 x 10,T] ( i  = 1,2) with llxl - x211 5 S and Itl - t2J  < 6. 
Since xo E V,, there exists x: E Vrn such that so is a cluster point of the sequence {x:}; we 

assume x:--+xO as n+oo without loss of generality. On the other hand, rn+O as n-im, there exists 
N > 0 such that r, E [0, min{S, SIP}) for all n > N .  Take n 2 N ,  we consider a solution xrn (k) 
for the difference equation defined in (39): 

with xTn(0) = x:. Then xTn(k) E VTn for all k E ZS by the definition of VTn. Now we associate with 
the solution a function x, E C([O, T), Rn) as 

for all k 2 0 and t E [kr,,(k + l)r,) such that t E [O,T). Note that xTn(k t 1) - xrn(k) = 

r n f  (x%'(k), wr,(k); thus, 

and k,(t) = f ( x , ~  (k), wrn(k)) for t E [ST,, (k + l)r,) (hence Ilkn(t)ll < P) .  From (41), we thus have 

for all t [O,T). On the other hand, kn(t)  is bounded, then x,(t) is equicontinuous. Similar 
argument in terms of Ascoli's Theorem in the proof of Theorem 2.9 (i) yields that a subsequence of 
{x,(t)}, still denoted as {x,(t)} without loss of generality, converges to  an absolutely continuous 
function x(t), and their derivatives x,(t)+k(t) as n i m .  (42) implies that 

Since xn(0) = X , ~ ( O ) + X ~  as n + w ;  and each t > 0 is the limit of nodes ktr,, so z( t )  is the limit 
of xTn(kt) E KT,. Then x(t) E V, for all t E [0, T). By the completeness of the given system, 
+(t, xo, w) = x(t) E V, for all t E [0, T).  

Finally, from similar argument in Theorem 2.7, one can conclude that for all x E V,, f (x, w) E 
Tv,(x) for all w E BRP. Therefore, V, is an C1-performance domain for system (13). 

The following theorem, which generalizes [ti, Theorem 21, characterizes the C1-performance 
domains for a class of special systems which include the linear systems. 

Theorem 5.7 Consider system (13). Suppose there exists r > 0 such that V, C Cl is closed, 
convex, and invariant under F, with 0 E V,. Then V, is an C1-performance domain for system 

(13). 



Proof Since V, c R is invariant under F,, one has that for all x E V,, F,(x) E V,, or given 
w E BRp,  

By the assumption V, is convex, then 

for all h E [0, TI. Now by Lemma 7.5, it follows that 

f (x, w) E Tv,(x> 

for all w E E3RP. Therefore, V, is an L1-performance domain for system (13). 

5.3 Approximation of Controlled L1-Performance Domains 

Consider system (19), which is rewritten as follows, 

where w E: W,. Given T > 0, define a corresponding difference equation, which is a Euler approxi- 
mation of system (19), as follows, 

where w,(k) := w(rk), and 

f,(x, w, U)  := + 7(f (5) + g1(x)w t g2(5)u). 

Define U : R n  -i Rm as 

Let R := DoM(U) be bounded. Since U is locally bounded USC with closed values by Lemma 3.2. 
Then there exists a compact set U c Rm, such that 

u U(5) C u 
m e n  

Let a set-valued map F, : Rn x Rm -? Rn be defined as 

FT(x7 U )  := {f,(x, w, u)lw E BRp)  

with the domain DoM(F,) = R. Consider the controlled difference inclusion defined by (F,, U ) .  By 
Proposition 5.3, the controlled invariance kernel CINV(R) of (F, , U) exists in R; and under some 
mild conditions, the discrete-time system (43) has 4'-control solution if and only CINV(R) # 0 (see 
Theorem 5.4). 

We have the following result on the approximations of controlled C1-performance domains. 

Theorem 5.8 Consider system (19). Let {r,) be a decreasing sequence such that rn+O as n-ioo, 
VTn C f2 be controlled invariant under (F,, , U) for each T, with 0 E VTn. Then V, := lim  SUP^+^ V,, 
is a controlled L1-performance domain for system (19). 

It is noted that,  in Theorem 5.8, for each T,, the corresponding Euler approximated discrete-time 
system has a nonempty controlled el-performance domain. Possible choices for V,, are CINV(R) 
and CENV({O}). 



Proof One needs to  show that there exists u E U(x) such that f (x ,  w, u) E Tvoj(x) for all x E V, 
and w E BRn.  

Suppose w E Wc and xo E V,. We first show that, given T > 0, there exists a measurable 
function u(t) such that the solution [(t) to  the differential equation j: = f(x,w(t),u(t)) with 
x(0) = xo is in V, for all t E [O,T) and u(t) E U([(t)). 

Consider the function f, (x, t, u) := f (x, w(t), u), which is continuous on compact set R x [0, TI x 
U; therefore, 1 1  f (x, w(t), u) 1 1  < /3 for some P > 0, and it is uniformly continuous on R x [0, TI. Now 
given t > 0, there exists S > 0 such that for all T E (O,S], 

llf ( X I ,  w(td,  u) - f (52, w(t21, u)ll < E (45) 

for all (xi , t i ,u)  E R x [O,T] x U with llxl - x211 < S and Itl - t21 < 6. 
Since xo E V,, therefore there exists x i  E VTn such that xo is a cluster point of the sequence 

(2:); we assume x:+xo as n+m without loss of generality. On the other hand, T,+O as n-co, 
there exists N > 0 such that T, E [0,min{6, SIP}) for all n 2 N .  We consider a solution xTn(k) for 
the difference equation defined in (39) for some n 2 N ,  

with xTn(0) = x:. Then by the definition of VTn, there exists u,,(Ic) E U(xTn(k)) such that 
xTn(k) E IfTn for all k E Z+.  We define a function x, E C([O,T), Rn) as 

xn(t) := xT,(k) f xT,(k + 1) - xTn(k) (t - kT,) 
7, 

for all Ic >_ 0 and t E ikr,,(k f l)~,) such that t E [O,T). Note that xT,(k + 1) - xTn(k) = 
.nf(.Tn(k), w T , ( ~ ) ,  uTn(k)); thus, 

and i,(t) = f(xTn(k),  wTn(k),uTn(k)) for t E [kr,, (k + l ) ~ , ) .  Let the function u, : [O,T)+Rm be 
defined as 

for t E [LT,, (k + l)r,) c [0, T). Therefore, from (45), we have 

for all t E [0, T) .  

It is noted that, i ,( t)  is bounded, hence x,(t) is equicontinuous. Then the similar argument in 
terms of Ascoli's Theorem in the proof of Theorem 2.9 (i) yields that a subsequence of {x,(t)), still 
denoted as {x,(t)} without loss of generality, converges to an absolute continuous function x(t), 
and their derivatives i,(t)-i(t) as n+m. 

On the other hand, given t E [0, T),  then x(t) is a limit point of some x,, (k); since for t E 
[kr,, (k + l ) ~ , ) ,  u,(t) = u,, (k) E U(xT, (k)) E U, there exists a subsequence of {u,(t))}, still 
denoted it as {u,(t)), converges to  some u(t) E U(x(t)) since U is USC with closed values. Note 
that u : [0, T ) i R m  can be chosen to be measurable by the construction2. 

" T ;  u(t) is measurable 2For example, u(t) = (lirnsup,,, u i ( t ) ,  . . . , lim sup,,, u ~ ( t ) ) ~  where U, := (uk, . . . , u, ) 
since its components are upper limits of simple functions. 
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Therefore, (46) implies that 

Since xn(0) = X , ~  (0)+xo as n+m;  for each t > 0 is the limit of nodes ktrn, x(t) is the limit of 
xTn (kt) E KT%. Then x(t) E V, for all t E [O, T).  The completeness of the given system implies 
((t) = x(t) E V, for all t E [O,T). 

Finally, we will show that V, is a controlled C1-performance domain for system (19). Take 
xo E V,. For given w E U,, there exists a essentially bounded function u : RS+Rm, such that 
the unique solution x(t) for j: = f (x )  f gl(x)w(t) f g2(x)u(t) with x(0) = xo is viable in V, and 
u(t) E U(x(t)). One only needs to  check that 2(O) = f (xo)  f g1(x0)w(O) + g2(xO)u(0) E TV,(xO). 
In fact, for all t E [0, TI, x(t) E V, 

Notice that f (x(s)) ~ ~ ~ ( x ( s ) ) w ( s ) ~ ~ ~ ( x ( s ) ) u ( s )  is essentially bounded in [0, TI, then by Lebesgue's 
differentiation theorem, one has 

lim t+o t L t ( f  (x(s)) + QI(X(S))W(S) t S ? ( X ( S ) ) ~ ( S ) ) ~ S  = f (50) + 91(xo)w(O) + gz(xo)u(O) 

Therefore, one can find two sequences {t,} and {v,} with t n i O S  and v n - +  f (xo) t gl(xo)w(O) t 
g2(xo)u(0) as n i m ,  such that xo + t,v, E V, for all n E ZS. Hence, f (xo)  f g,(xo)w(O) t 
g2(xo)u(0) E Tv, (xo), the conclusion then follows by Lemma 7.5. 

The following theorem characterizes the controlled C1-performance domains for a class of special 
systems which include the linear systems. 

Theorem 5.9 Consider system (19). Suppose there exists T > 0 such that V, C R is closed, convex, 
and controlled invariant under (F,, U )  with 0 E V,. Then V, is a controlled L1 -performance domain 
for system (19). 

Proof The argument is similar to that in the proof of Theorem 5.7. 

6 Conclusions 

In this paper, the L1-control problems for nonlinear systems were investigated. The L1-performance 
analysis and the G1-control synthesis problems were characterized in terms of the L1-performance 
domains and the controlled C1-performance domains, which are the invariance domains and the con- 
trolled invariance domains of the corresponding differential inclusions, respectively. This treatment 
therefore provided some geometrical insights into the robust (L1) control problem. In addition, 
the relation between the L1-control of a continuous-time system and the 11-control of its Euler 
approximated discrete-time systems was established. Nonetheless, the computational implications 
of the results for general nonlinear systems in this paper are not clear. The results in this paper 
can serve for didactic purpose, and can be used to guide the design of nonlinear control systems 
with disturbance attenuation properties. 

Another issue that was not explicitly addressed in this paper is the asymptotic property of the 
nonlinear Ls-control systems, i.e., when the initial states are not in any of the C1-performance 
domains, in which case the systems do not have C1-performance initially, do the systems eventually 
have C1-performance as they evolve? This issue can be investigated in the framework reported in 

[201. 
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7 Appendix A: Set-Valued Maps 

In this section, we will review some basic notions from set-valued analysis. We refer to  the books 
[3, 4, 11 for detailed account about the related issues. 

7.1 S e t - V a l u e d  M a p s  a n d  T h e i r  S e l e c t i o n s  

Let X and Y be two normed spaces. A set  valued m a p  F from X to Y is a map that associates 
with any x E X a subset F ( x )  of Y .  We denote it as 

The subset F ( x )  is called the value of F at x E X. The d o m a i n  and graph  of F are defined as 

D o M ( F )  := { x  E X : F ( x )  f: 0). 

G R A P H ( F )  := {(x, y)  E X x Y l y  E F ( x ) }  

Def ini t ion 7.1 Consider a set-valued map F : X -i Y .  

(i) It is said to be lower  semi-cont inuous  (LSC) if for all xo E X ,  yo E F ( x o ) ,  and any 
sequence of elements x ,  E D o M ( F )  converging to xo,  there exists a sequence of elements y, E F(x, )  
converging to yo. 

(ii) It is said to be u p p e r  semi-continuous (USC) i f  for all xo E X ,  y E F ( x o ) ,  and for 
any open subset N of Y containing F ( x o ) ,  there exists a neighborhood N ( x o )  of xo such that 
F ( N ( x 0 ) )  C N. 

Note that if F is USC with closed domain and closed values, then G R A P H ( F )  is closed. Two special 
classes of continuous set-valued maps are defined as follows, 

Def in i t ion  7.2 Consider a set-valued map F : X -i Y .  

(i) It is said to be Marchaud ,  if it is USC, has compact convex images, and has l inear g r o w t h  
proper ty ,  i.e., there exists C > 0 such that for all x E D o M ( F ) ,  

where IIF(x>II := S U P y ~ ~ ( z ,  Ilvll. 
(ii) It is said to be Lipschi tz  around x E X if there exist a positive constant L and a neighbor- 

hood W c D o M ( F )  of x such that for all X I ,  x2 E W 

Note that, if F : _X -i Y is bounded on D o M ( F ) ,  then it has the linear growth property (47). 

The following technical result will be used [3, p.491. 



Proposition 7.3 Let X be a metric space and Y and Z be Banach spaces. Let f : X x Z+Y be a 
continuous map such that for all x E X ,  u t+ f ( x ,  u )  is afine. Let set-valued maps T : X -i Y and 
U : X -+ Z be LSC, and let U be locally bounded. Suppose there exists an a > 0 such that for all 
x E X ,  there exists a u E U ( x )  such that f ( x ,  u )  f r E T ( x )  for all r E Y with llrll < a. Then the 
set-valued map C : X -i U defined by 

is LSC. 

Given a set-valued map F : X -i Y ,  there is map f : X+Y which is a selection of F ,  i.e. 
f ( x )  E F ( x )  for each x E X .  For a class of set-valued maps, we have the following lemma which is 
known as Michael's selection theorem (cf [4, p.355]). 

Proposition 7.4 Let X be a metric space, Y a Banach space, F : X -i Y which has the closed 
convex subsets as its values be LSC. Then there exists a continuous selection f : X+Y from F .  In 
addition, if yo E F ( x o ) ,  then the continuous selection f of F can be chosen such that f ( x o )  = yo. 

7.2 Contingent Cones 

Let X be a finite dimensional normed space, K be a nonempty subset of X ,  for each x E X ,  define 
the distance of x to K as 

d K ( x )  := d ( x ,  K )  := inf llx - yll . 
Y EK 

(49) 

Define a set-valued map T K  : X -i X ,  

T K  ( x )  := { v )  lim inf 
d~ ( x  + h v )  - d~ ( 2 )  

h-+O+ 7- 
< 0 )  

For all x E X ,  the value T K ( x )  is a closed cone, and is called the contingent cone to  K 
at x.  Note that if denotes the closure of K ,  then TF = T K ;  if x E r, then T K ( x )  = 
{vl lirninfhAo+ d K ( x  + h v ) / ~  = 0 ) )  and if x E INT(K) f 0, then T K ( x )  = X .  Also if K is a 
manifold in X ,  then for any x E K ,  T K ( x )  defines the tangent space of K at x.  The following 
following lemma characterizes contingent cones in terms of sequences [4, p.1221. 

Lemma 7.5 Given a set K C X and x E K .  v E T K ( x )  if and only if there exist a nonincreasing 
sequence h,+O and a sequence v,+v, such that x + hnun E K for all n. 

A subset K of X is said to  be sleek if the set-valued map T K  : K -i X is LSC. The following 
result is from [I, p.1611. 

Proposition 7.6 I f K  is sleek, then for all x E E, 

T K ( x )  = {vl lim d K ( y  + h v ) / h  = 0 )  
h-+O+,y-KX 

and % ( x )  is a closed convex cone for all x E Ir'. 

Convex sets are sleek. We next state a result about the computing the contingent cone of a set 
which is defined by some inequalities [4, p.1231. 



Propos i t ion  7.7 Given a C1 vector-valued function g = ( g l ,  g2, .  . . , g,) : Xi-RP. Define a set 

Given x E K ,  define I (x)  := { i  = 1,2, - -,plgi(x) = 0} ,  then under the regularity condition that 
there exists vo E X such that for all i E I(x),  < gL(x), v0 >> 0. Then one has that for all x E K 
such that i f  I (x)  = d7), TK(x) = X, otherwise 

Some alternatives to  TK : X -i X have some nice properties, one is the Clarke cone which has 
convex closed values [9]. In the following, we give another set-valued map T i  : X -i X ,  whose 
values belong to  the values of TK [I, p.1481. 

Def in i t ion  7.8 Let li C X be closed, c > 0, and x E K .  The global con t ingen t  s e t ,  denoted by 
Tg(x),  is the subset of all v E TK(x) such that there exists a measurable function y(.) bounded by 
c and satisfying 

It is noted that if cl 2 c2 > 0, then T g  > T z .  And if v E TK(x), then there exists c > 0 such that 
v E Tk(x). One of the nice properties about the global contingent set is that its graph is closed 
(see Lemma 8.2). 

8 Appendix B: Proofs 

PROOF OF THEOREM 4.3 

Given F : X -, X ,  consider the following differential inclusion 

k ( t )  E F(x(t)), for almost all t E [0,  oo) (51) 

Define a set-valued map 

such that SF(x) is the set of all solutions to  the differential inclusion (51) starting at x(0) = x E 
DoM(F). S F  is called the so lu t ion  m a p  of differential inclusion (31) (see [I]). We have the 
following result about the solution map which follows from [I, Theorem 3.5.21. 

L e m m a  8.1 Suppose F : X -i X is Marchaud, then the set valued map SF defined in  (52,) is USC 
with compact values supplied with the compact convergence topology. Moreover, the graph of the 
restriction S F  l I C  of SF to any compact subset Ii of DoM(F) is compact i n  X x C([O, oo); X) .  

The proof of Theorem 4.3 follows the similar ideas in the proof of existence of viability kernel 
[l, Theorem 4.1.21. 



Proof [Theorem 4.31 Let V(R) c C([O, w); X )  denote the subset of functions viable in R C 
DoM(F). Define 

We first show the set INvF(R) is closed. In fact, given x E I N V ~ ( R ) ,  and let {x,} c INvF(R) be 
a sequence such that 2,--+x as n i o o .  Therefore, there exists a compact set K c X such that x and 
x, E IS. Take a sequence { E n }  C SF(xn), then the sequence {(x,,[,)} belongs to  G R A P H ( S ~ ) I ~ ,  
which is compact by Lemma 8.1. Therefore, there exists a subsequence of {(x,, [,)} converging to  
some (x, [) E GRAPH(SF) I~ .  Therefore, [ E SF(x) c V(R). Hence, x E INVF(R). 

Next, we show I N V ~ ( R )  is invariant under F. Indeed, take x E INvF(R), we need to show that 
any [ E SF(x) is viable in INvF(R), i.e., [(T) E INV,(R) for all T > 0. In fact, let [T E SF([(T)), 
define a function as follows, 

if t E [0, TI 
to(t) := (:,a,, i f , > ,  

Then to is a solution to  the differential inclusion starting at  x at time 0, and thus, is viable in R 
by the definition of I N V ~ ( R ) .  Hence for all t > T ,  &(t - T )  E 0 ,  therefore SF([(T) c V(R), i.e., 
[ ( T )  E INVF(R). 

Finally, we show INvF(R) is the largest invariance set contained in R. Indeed, let K c R is a 
closed invariance set of F, then for all x E K, there exists a solution [ to  the differential inclusion 
starting at x which is viable in K ,  thus in R. Therefore, x E I N V ~ ( R ) .  

PROOFS OF THEOREMS 4.8 AND 4.16 

The set-valued map, T i  : X -i X, is defined in Definition 7.8. The proofs of the two theorems 
make use of the following properties of T i  [l, Proposition 4.4.21. The upper limit of a set sequence 
is defined in Definition 5.1. 

Lemma 8.2 The graph of the set-valued map T i  : I( -i X is closed. In addition, let I<, := 
lim sup,,, ICn denote the upper limit of a sequence of closed subsets IS,. Then 

lim sup GRAPH(T$~)  c GRAPH(T$-) 
n i m  

Proof [Theorem 4.81 We first show that I<; defined in the Algorithm 4.7 is closed for each 
n E Zf.  In fact, KO is closed by definition. Suppose K i  is closed, it is sufficient to show Iir;+, is 
closed. To this end, take a sequence {xi} c IS;+,, such that xi--1x E as n i m .  Note that 

We need to  show F(x)  c Ti;(x). 
In fact, take any y E F(x),  since F is LSC, then there exists a sequence yi E F(xi),  such that 

y i i y  as i i o o .  Note that from (53), 

(xi, yi) E GRAPH(T$,) 

And G R A P H ( T ~ ~ )  is closed by Lemma 8.2, therefore 



Therefore y E Tk;(x) as required. Therefore xi+x E I<;I+,. 

To show K& is invariant under F ,  take x E I{&, we need to  verify F(x)  c Ti&(x) .  
Note that x E Kg for n E Zf ,  then we have F(x)  c Ti;(x). Now for all y E F(x) ,  then 

y E T i ,  (2). Therefore, (x, y) C GRAPH(T~; ) ,  or 

00 

(x,  Y) C n GRAPH(T~:)  c GRAPH(T&,) 
n = l  

where the last inclusion is from Lemma 8.2. Thus, y E T i&(x) .  

Next, we prove Theorem 4.16. 

Proof [Theorem 4.161 We first show that K; defined in the Algorithm 4.15 is closed for each 
n E Zf .  In fact, KO is closed by definition. Suppose K i  is closed, it is sufficient to show I<:+, is 
closed. To this end, take a sequence {xi} c K;+,, such that xi+x E K i  as n+w.  Note that there 
exists ui E U(xi) such that 

F(xi,  ~ i )  C Tkc (xi) (54) 

for each i E ZS. Note that U is locally bounded and USC with closed value. Then there exists a 
subsequence, still denoted as {ui} without loss of generality, converging to  some u E U(x). Now 
we show that F(x ,  u) c Tf;:(z). 

In fact, take any y E F(x ,  u), since F is LSC, then there exists a sequence yi E $'(xi, ui), such 
that y i i  y as i-iw. Note that from (54), 

(xi, yi) E GRAPH(?';,) n 

Since GRAPH(T&) is closed by Lemma 8.2, therefore 

Therefore y E Ti;(%) as required. Therefore x i i x  E Ki t ,  

We next show I{& is controlled invariant under (F, U). To this end, take x E I<&, then x E I{; 
for n E Z f ,  therefore there exists u, E U(x) for each n E Z f ,  F (x ,  11,) c Te ( 

K :  x). Since U is locally 
bounded and USC with closed value, there exists a subsequence, {u,,) c {u,), converging to  some 
u E U(x). We now show F(x,  u) c T&&(X). 

In fact, for all y E ~ ( x ,  u), there exists a sequence {y,%}, such that y," E F(x,  u,,) c Ti: (x), 

and y,%-+y E F ( x , u )  as i-iw. On the other hand, 

Then y E Ti, (3). Note that 
n, 

Then, 

(x, y) C n GRAPH(T;. ) C G R A P H ( T ~ & )  
n 2  

i=l  

where the last inclusion is from Lemma 8.2. Therefore, y E TkJx). 
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