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Abstract

This paper describes a set of procedures that will enhance the analysis, synthesis, and exeaution
of courses of adion (COA). The paper presents a set of forma methods for extending the
cgpability of probabili stic models (influence nets) to produce rigorous mathematicd models that
reved the impad of the sequence and timing of adionable events on the outcome and effeds
desired in a situation. By incorporating timing information, such a model can be conwverted to a
Discrete Event System (DES) model in the form of a Colored Petri Net. The DES model, when
run as a simulation, can reved the danges in the likelihood d the desired effeds over time for
any timed sequence of adionable events that comprise aCOA. The paper presents DES analysis
techniques that can generate dl of the possble sequences of probability values of the outcome
given any COA withou simulation. Procedures are presented to seled desirable sequences from
the set of al sequences and determine the temporal relationship among the adionable events that
will generate aseleded sequence of probability values.

1. Introduction

In our modern world, complex situations arise that require the cordinated adions of many
resources to achieve desired oucomes or effeds. The first step in deding with these complex
situations is to develop and seled a Course of Action that will | eal to a desired oucome. A
Course of Action is compaosed of a timed sequence of actionalde evets. In current pradice
probabili stic models that relate caises to effeds are used to identify the set of adionable events
that yield the greaest likelihood d achieving the desired oucomes and effeds. Note that no
timing information is provided by these models. The sedleded set of adionable events is
provided to planners who wse experienceto seled, assgn, and schedule resources to perform task
that will cause the adionable events to occur. The schedule of tasks with the assgned resources
congtitutes a plan. Outcomes, in terms of effeds, are aiticdly dependent on the timing of the
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adionable events which is determined in the planning processwithou the use of the probabili stic
models.

In the military context, US Forces are undertaking a wide spedrum of operations ranging from
Major Theaer War (e.g., the Gulf War) to Humanitarian Operations / Disaster Relief. The US
Forces are epeded to operate with codlition partners and with damestic, foreign, and
international non governmental organizations (NGOs). In Military Operations other than
Conventional War, there is neal to develop multiple Courses of Action to respond quickly to
changing situations. The increase in tempo, the proliferation d sensors, the enhancement of
communicaions has pointed to the need to integrate planning and exeaution. The wide visibility
of operations is forcing nea red time dfeds assessnent with concomitant consideration o
dternative @urses of adion. Since Desert Storm, the concept of integrated Planning and
Exeaution is beaoming accepted and systems and procedures are being implemented to achieve it
(e.g., concepts are being tested in Advanced Warfighting Experiments by the Services).
Integrated Planning and Exeaution enables dynamic battle cntrol, (sometimes referred to as
dynamic re-planning). Bosnia and espedally operation Allied Force in Kosovo have focused
broad attention oneffeds-based panning and eff eds assessment (seeWashington Post, Sept. 20-
22, 1999. This leals to closer interadion d intelligence and danning: intelli gence is not only
an inpu to the process bu isa key comporent of the dfeds assessment feedbad loop. Given
the potential complexity of future situations and the many consequences of the resporses, an
approad is neeaded that (a) relates adions to events and events to effeds; (b) allows for the
criticd time phasing of adionable events for maximum effed, and (c) provides in a timely
manner the adility to cary out in nea red time trade-off analyses of aternative COAs. This
paper presents such an approach and ill ustrates how new techndogy can be gplied to assst in
effeds based operations.

2. Background

In the traditional command and control environment, developing, seleding, planning, and
implementing spedfic courses of adion to aciieve objedives and goals are acomplished by a
team of experts. Thetean, comprised of intelligence analysts, operational planners, logisticians,
and operationa controllers, collaborate in a series of at least four adivities. These adivities
include analysis of the situation, seledion d a spedfic course of adion, developing the
operational plans to implement the COA, and dreding, coordinating and controlling the
exeaution d the plan.

In the first adivity, intelligence analysts, by observing the environment and assessng the
situation, develop models that attempt to assess potential events and oucomes based on
incomplete and urcertain understanding of both physics-based and perception-based processes.
The intelligence analysts may have to rely on incomplete and sometimes inacairate information
colleded via surveill ance and reconraissance adivities that are sorted and stored in a variety of
databases. Often they crede probabili stic models based on the stored information to suggest
what outcomes might occur given sets of controllable adions and urcertain exogenous events.
These models are used in the second adivity, where the intelligence aalysts review sets of
controll able adions that will comprise the COA and seled the ones that they believe provide the



best chance of adieving the desired oljedives. The seleded COA is an inpu to the third type
adivity, planning. The planning adivity uses detail ed models and algorithms for planning when
and haw to use avail able asststo implement the COA. This adivity is performed by operational
planners who have expertise in the enployment of the resources. The output of the planning
function is diredives to the asts so they can prepare for and exeaute the COA. During
exeaution, the fourth adivity, operational controll ers monitor and control the COA making red
time aljustments to the adions as neaded. A commander (or supervisor in a business context)
oversees al adivities, providing guidance and approvals as appropriate.

Effects Based Operations

In the traditional approach to military operations, tasks are proposed by spedalists and are
sorted, seleded, and prioritized so military assts can be seleded to acomplish those tasks.
Presumably these tasks are nominated based on a strategy that will result in acemplishing the
overal objedives of the military operation. During the process of seleding and scheduling
military resources to perform the tasks, and duing the exeaution d the plan, the metric for
measuring success has been the number or percentage of tasks that have been succesdully
completed. In the Air Force the phrase “bombs on target” represents this concept of
effediveness Recantly, it has been recognized that this type of metric can become de-couped
from the overal objedive or effeds that the milit ary adion is designed to achieve. The nation d
"effeds based" operations has arisen that will provide adired relationship between planned
military adions and the objedives or effeds that are desired. This paper addresses this nation,
spedficaly defining the types of models that can be used for effeds based operations and
describing how to use these models to suppat collaboration ketween situation analysts,
operational planners, and the operational controll ers who develop and exeaute these plans.

Situation Modeling

In the arrent pradice complex pdliticd, ecmnamic, and military situations are analyzed and
evauated using a combination d models and simulations. Many of the models ded with well
known, physics based systems, where dassc discrete or continuows dynamicd models can be
creaed to evauate the behavior or performance of systems over a range of stimuli. Detailed
models of integrated air defense systems that can be used to determine the expeded attrition o
air strikes, or define the best suppresson techniques, are realily available. But many aspeds of
situations involve phenomena that are difficult or impossble to model by predse, classc,
physics-based models. Dedsion and pdicy making and command and control processes of
nations or organizations, and intelli gent systems are examples of such phenomenon.

Recantly, the use of probabili stic models has been incorporated in the analysis of such processes
and their role in pditicd, emnamic, and military situations. In particular, Bayesian networks
and variants cdled influence nets have been incorporated in the analysis of situations. In a
Bayesian net or influence net, the nodes of the network represent hypaotheses or propasitions and
the acs represent dired dependency relationships between the hypotheses. Condtiond
probabilities are as<ciated with the nodes of the net that encode the strengths of the
dependencies. Algorithms have been developed that efficiently compute new values of al the
variables whenever any variable valueis pedfied.



I nfluence Nets

One of the dhalenges in credaing a Bayesian net is that a large number condtional probability
values must be asdgned. To extend their use to subjed matter experts who are unfamiliar with
probability theory or are unable to spend resources and time to fully spedfy a Bayesian net,
Rosen and Smith [1999 incorporated Causal Strength Logic [Changet al., 1994 into a Unix
based applicaion cdled the Situation Influence Asessnent Modue [SIAM, 199§. When a
Situation requiring positive adion arises, a tean of SMEs can creae an influence net model to
identify the set of adionable events that coll edively have the maximum positi ve influence on the
objedives modeled in the network. Analysts crede the influence net model of a situation wsing
threetypes of nodes (hypotheses). The first are nodes that represent the dfeds or objedives that
are desired as the result of adions to be taken. Eadh o the second type of node models the
adion a adionable event that may diredly or indiredly influence or cause the objedives to
occaur. The third type of noce is the intermediate node. These nodes model propasitions that
provide influencing links between the adionable events and the objedives. The SMEs gedfy
the caise dfed relationships between the nodes of the influence net and spedfy the strength of
eat relationship using qualitative measures. SIAM converts these qualitative inpus into
condtional probability values that can be used to updite the marginal probabiliti es of the net
including the objedive nodes given probability values of the input adions. Once the model is
constructed, presaure point analysis is performed which identifies the adions that colledively
have the most desired impad on the objedives. This st of adions represents the un-sequenced
and untimed elements of a COA.

Four observations can be made.

1. The arrent probabili stic eguilibrium models (Influence nets) used for situation assessnent
contain a grea ded of information in the form of beliefs abou the relationships between events
and the ultimate outcome or effed. They have an underlying rigorous mathematicd model that
suppats analysis.

2. They provide only a single probability value for a given set of adionable events. They do nd
capture the dfea of the sequence or timing of the adionable events.

3. Given the information that they contain and the method d construction, it seems that it is
possble to enhance these model so that the impad of timing of the inpus on the
outcomes/effeds can be determined.

4. Thisimpad could be represented by the timed sequence of changes in the likelihood d the
outcomes/effeds determined by the timing of the adionable events The sequence of changesin
probability is cdled the probahlity profile.

Indeed, this concept was tested and poven when a @wnwersion agorithm was developed that
takes the information contained in an influence net and converts it to a discrete event system
(DES) model [Wagenhals et a., 199§. Once timing information is added, the DES model will
generate atimed sequence of probability values for the overal effed given a timed inpu of
adionable events. The successof this conversion agorithm set the stage for a research effort to



crede a omprehensive techniques for COA development and evaluation that diredly addresses
the adionable event timing issues.

2. Problem Statement

The problem that was addressed in the reseach can be summarized in the following manner.
Current methods for deding with complex situations require the development and evaluation o
course of adion defined as atimed sequence of adionable events. The probabili stic models used
do nd provide information abou the impad of sequencing or timing of adionable events on the
outcome/effed. The determination d timing is based onthe experience of the planners and the
avail ability of resources nealed to cause the adionable eventsto occur. There is no analyticd
way to determine the impad of the timing of the adionable events on the outcomes. What is
needed is a rigorous method for determining the impaad of the timing of adionable events on the
outcomes plus a methodfor determining the timing of the adionable events that will produce ay
particular probability profile.

The following hypaotheses were establi shed to guide the reseach.

A method can be developed that uses the information contained in the influence nets to
produce rigorous mathematicd models that reved the impaa of the sequence and timing of
adionable events on the outcome and effeds desired in the situation.

e If timing information is incorporated with an influence net, a formal method can be
developed to conwvert it to a Discrete Event System (DES) model in the form of a Colored
Petri net (CP net).

» Such a DES model, when run as a simulation, can reved the changes in the likelihood d the
desired effeds over time for any timed sequence of adionable events (COA).

» Using standard anaysis techniques, the DES model can generate dl of the possble sequence
of probability values of the outcome given any COA.

* Procedures can be established to discriminate and seled desirable sequences from the set of
all sequences.

e A procedure can be devised that will determine the tempora relationship among the
adionable eventsthat will generate aseleded sequenceof probability values.

The remained of this paper highli ghts the procedure that was developed that satisfies the problem
statement and evaluates the hypotheses. The next sedion kriefly describes influence nets and
how timing information can be asciated with them. The resultant Discrete Event System view
is described in Sedion 4 aong with a high level description d the @nwversion technique in
Sedion 5. The @wnclusions from State SpaceAnalysis of the DES model is presented in Sedion
6 followed by a description d an approach to generating al of the possble probability profil es
given a set of adionable events. Sedion 7 describes the technique for determining the temporal
relationships between the adionable events that will generate a spedfic probability profile.
Sedion 8 dscusses the process of seleding “good’ probability profiles. Sedion 9ill ustrates



how the techniques can be used in the ollaborative process of developing seleding and
implementing a COA. Sedions10and 11 povide mnclusions and areas for further reseach.

3. Definition of Influence Nets

An Influence net is a direded acgyclic graph with M nodes and E a set of direded arcs. Figure 1
provides an example.

Let M be the set of nodes representing Boolean variables
* m isaparent of node m; if there existsan arc from mtom,
* 1, isthe set of parents of m,

» For eath m; with parents, thereis acondtional probability Pim;| ;]

Input Nodes
Actionable
Events

«—Terminal Node
(effect)

v¥Intermediate Node

Figure 1 Example of an Influence Net

The acs in the Influence net represent causal relationships between nodes. To use the influence
net to determine the dfed of adionable events, a forward propagation d probability is used to
determine the likelihood d effeds (usually nodes with no children) based onthe occurrence of
controllable caises (nodes with no mrents). To implement this propagation, the margina
probability of eaty node m; is caculated using the foll owing equation:

2" [J C
Plm] = gg[m | 1], % |_| P[nj]E

T art,

I ncorporating Timing I nformation

A fundamental premise of this reseach that in creding an influence net of a situation, the caisal
influencing mecdhanisms are redized by ared world phenomenonto which a time delay may be
asociated. In many cases, influence nets model the dfeds of command and control or
distributed dedsion making processs. In these models, the nodes are ather adionable events or
propasitions abou the results of a C2 process The adionable erents, the source nodes in the
influence net, can be assciated with a time stamp. The nodes representing propasitions abou
the results of a C2 processcan be grouped into three caegories. The first are propasitions abou



sensors; they are ather sensor events (a radar deteds an aircraft) or the state of a sensor (the
radar is operating). The semnd category contains propasitions abou dedsions, (the leader
deddes to negotiate or isaues the launch command). The probability of a propasition abou a
dedsion changes when the probability abou propasitions that influence that dedsion change.
The third category of propasitions concerns adions (a missle is launched, an aircraft is ot
down, etc.). In the C2 system, the evidence of the truth or nontruth of a propasition is
transferred from one processto ancther over some transfer mecdhanism such as a ommunicaions
channel or courier system.

The strategy is to incorporate knowledge dou the time delays of the medhanisms into the model
based onthe structure of the influence net that will refled the cmncurrent and dstributed nature
of the underlying process The resultant model will generate atimed sequence of probability
changes of ead propasition for a given set of timed initial causal events. a probability profil e of
the dhange in the likelihood d a propasition as a function d time. Thus a probability profileis
composed of a set of time windows. In ead time window, there is a probability that the
propasition abou an event or state istrue. The probability is based onthe state of the evidence
in the model during the time window, spedficdly the state of the probabiliti es of the set of
parents of the propasition.

Because influence nets assume the independence of causal influences, it is possble to asociate
time with the acs of the influence net. These times represent the anount of time it takes for
knowledge @ou a dange in the status of any variable to be propagated by some red world
phenomenon to the nock that is affeded by that change. Thus, we aciated time delays with
the acs representing the influencein the influencenet. The update in the margina probability of
a noce ocaurs immediately after the time delay. Figure 2 ill ustrates the wncept. This is the
influence net shown in Figure 1 with time delays associated with the acs. A timelineis sown
in the figure that indicaes when various updates occur. Assume bath events E and B (both
adionable events) occur simultaneously at time zero. When Events E and B ocaur, bah nodes
A and D receve the updates in ore time unit and noce D recaves an updite dou noce A one
time unit later. Node A gets a seoond updite dter five time units and noa D receves the
resultant upcete dou node A onetime unit after that.

D
E Uale
B Ui  Upja Uae  Upja
! | | | i ! ! i i
0 1 2 3 4 5 6

Figure 2 Asciating Time with an Influence Net



4 Discrete Event System View

Oncetime has been added to the influence net, it represents a dynamic system composed of a set
of distributed processes. This new model can generate aprobability profile for ead nocke in the
net including nodes that represent to prime objedives in the situation. Eacdh probability profile
consists of atimed sequence of probability values for the node. Both the probability values and
the timed sequence ae dependent on nd only the cetainty of the adionable events, bu also on
the temporal relationships between those events. The final values in the sequences are the same
values provided by the standard urtimed influence net. The intermediate values in the
probability profile ae interpreted as the probability of the propasition keing true during the time
interval of that value in the profile. This concept is $rown nationaly in Figure 3 and can be
described formally as foll ows.

* Let M be the total number of nodes in the influence net partitioned into inpu, ouput, and
intermediate nodes.

Let the State of the system be the set of marginal probabiliti es of the nodes, P[m].

Let an event, e [1 E, bethe updating of aP[mj].

Consider input, U, and ouput, Y, spaces compaosed of the set of probabiliti es of the input and
output nodes.

Initial state: Same & the equili brium model with U = 0.

Admissble inpus. During an inpu episode, ead adionable event occurs at some time,
therefore, eat element of U changes oncefrom zero to ore.

Thereisasinglefina state, regardlessof the sequencing of the adionable events, that isthe set
of probability values computed by the static equili brium model with al inpu nodes <t to ore.

Input Sequence 1
;‘3 Input 1)
Sequence 2
4
I
A szq I312 1
g — | L1y, ° 0
[0 P, L \I::ls Y1
00 Pll oF
1 1
Up Input Space Y2

Output Space

Figure 3 Discrete Event System View of Influence Net with Timing



5 Conversion of Influence Net to a Discrete Event System M odel

As mentioned is Sedion 1, a procedure has been developed to convert an influence net with
timing information into a Discrete Event System model. Colored Petri Nets (CP nets) [Jensen,
1997 were used as the DES system modd using the software gplicaion, Design/CPN™
[http://www.daimi.au.dk/designCPN]. Figure 4 illustrates the nwversion d a three node
influence net to the CP net. Eadh nock in the influence net is converted to amodue that isa CP
net and the modues are interconneded. The CP net is a bipartite direded multi-graph. This
means it is a direded graph with two types of nodes, places (ovals) and transitions (redangles).

Arcs go between nodes of different types. Tokens can reside in the places. In CP nets, the
tokens can have dtributes with values.

-
Input Node A

Terminal Node C

Figure 4 Conversion of Influence Net to a CP Net

A DES is a discrete state, event driven system whose evolution depends on the occurrence of
asynchronots discrete events [Cassandras, 1993. From a given initial state, al of the passble
future states can be represented as areadability treg sometimes caled an occurrence graph.

In a CP net, the state of the system is defined as the distribution d tokensin the CP net. On o
the strengths of CP nets is that analysis can be performed with them. One type of analysis is
cdled State Space Analysis. In this analysis, important properties of the CP net can be
determined and the occurrence graph can be generated. The Design/CPN tod automates this



process [Kristensen et a., 1998.The behavior of the DES mode of the influence net was
investigated using the State Space Analysis techniques. By concentrating of the values of the
tokens generated in the Terminal or Objedive node of the CP net, the following observations
were made.

1. The set of output states can be aranged in a partial order (it is alattice) with a single initial
state and single final state.

2. The basis for the ordering is the combination d inpus to the objedive node that is used in
cdculating the marginal probability value asciated with the state.

3. Becauseit is apartia order, the states can be aranged in levels. There is a finite number of
levels.

4. The transitions aways go from one level to a lower level. Maximum and minimum values
are eat level can beidentified (Locd Extrema).

5. Every path from theinitial state to the final state represents a potential sequence of probability
values contained in any timed probability profile that will be generated by a set of timed
inputs.

6. The number of steps of any sequence is lessthan o equal to the number of levels in the
partial order.

These observations mean that it is possble to generate amodel of al of the probability profiles
of a set of adionable events in a situation using state space aaysis of the CP net model of the
influence net. Unfortunately, the state spaceof these models grows combinatoriall y with the size
of the influence net and state space &plosion may make the use of state space aalysis of the CP
net intradable.

6. Generating the Output State Space

To addressthe state space &plosion poblem, it was noted that the state space aaysis of the CP
net includes a very large number of variables that are not of interest. Indeed, we ae only
interested in determining the probability profiles of the objedive node of the influence net
represented by a single placein the CP net. An approad was formulated to generate the state
gpaceof this sngle node in the CP net.

The behavior of the objedive node can be represented by a state transition dagram (STD). To
crede this representation, three steps were developed. (1) generate the states with probability
values, (2) determine the events that cause the transitions between states and (3) determine
restrictions on the readability and the sequence of transitions due to the time delays of the
influence net structure.

One the prime enablers of this approad is the fad that the “branchless’ version d an influence
net has the same behavior as the original (as long as the replicaed inpus are the same)
[Wagenhals and Levis, 1999. An influence net can be mnverted to a “branchless’ source-to-



sink path graph wing a variant of the “find path” algorithm of Jin [1984. The result is a net of
concaenated joins as siown in Figure 5.

The inpu to the objedive join can be refleded badk to the inpu nodes of the source-to-sink path
graph. The net in Figure 5 is compased of two concaenated joins, Node B and Node C, and there
are three distinct paths from the two sources to the sink noce. In an urtimed CP net, Node C
could be updated by any combination d the four marginal probabiliti es of Node B and the two
probabiliti es of Node A1l. There ae aght possble mmbinations. P[C|P[B|-D, -A2], -Al],
P[CIP[B|-D, A2], -Al], P[C|P[BID, =A2], =A1l], F[C|P[B|D, A2], -A1l], P[C|P[B|-D, ~AZ2],
Al], PICIP[B|-D, A2], Al], P[C|P[BID, =AZ2], Al], and P[C|P[BID, A2], Al]. Each o these
values is based on ore of the possble cmbinations of the binary values correspondng to the
occurrence or nonroccurrence of ead o the threeinpu nodes of the source-to-sink path graph.
We define the correspondng states by an encoding scheme based onthe set of updates from the
inpu or source nodes that were used to cdculate the marginal probability of the state. In this
case there ae threg and the encoding scheme is a triple. Letting the first, second and third
elements represent nodes, D, Al and A2, respedively, the aght states are [0, O, Q, [O, O, 1, [1,
0,0,[2,0,1,[0,1,0Q,[0,1,1,[1,1,Q,and[1, 1, ]. Table 1 tabulates the states and the
correspondng marginal probability values. A STD of Node C can be aeded by defining the
transitions between states using the encoding scheme previously described. The transitions are
caused by the arival and wse of updates from the source nodes in the mmputation d a new
marginal probability value. These events are denoted in lower case. The STD of node C is
shown in Figure 5.9. The concaenation d joins can be caried ou as many times as necessary to
creae the complete sourceto-sink path graph d an influence net. The main result is that the
state of the objedive node can aways be represented by the vedor s that refleds bad to the

decompaosed source nocks.
Path 3

A
|NodeA2 |'[>| Node B |

Path 2
A\
Node A1 —"2""—>{ NodeC |
Influence Net Equivalent Source to Sink Path Graph

Figure 5 Creding Sourceto Sink Path Graph

Table 5.2 States of Node C

State [P[D], P[A1], P[A2] Margina Probability of Node C
[0, 0, O] PICIP[B|-D, ~A2], =A1]

[0,0, 1] P[CIP[B|-D, =A2], Al]
[0,1,0] P[CIP[B|-D, A2], =A1]
[1,0,0] P[C|P[BI|D, = A2], =Al]
[1,0,1] P[C|P[B|D, —~A2], Al]

[1,1,0] P[C|P[B|D, A2], - A1]

[0,1,1] P[CIP[B|-D, A2], Al]

[1,1,1] P[CIP[BI|D, A2], Al]
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Figure 6 Full State Transition Diagram of the Influence Net of Figure 5.

Because of the time delays associated with the acs, na all states in the untimed STD are
reahable. In addition, nd al paths from the initial state to the fina state ae feasible. A
procedure, based on Timed Point Graphs [Zaidi, 1999, is used to determine the reatable states
and feasible paths.

As an example, assume the four-node net of Figure 5 had path lengths of 1, 3,and 4,for paths 1,
2, and 3,respedively. The number of readable states would be reduced from eight to six. The
resultant STD is hownin Figure 7.

The set of feasible states can be aranged in a partia order (alattice) that is based onthe number
of paths that have arived at the sink noce. This can be identified by the number of onesin ead
state. Sincethere ae threepathsin the example, there ae four levelsin the partia order, starting
with al zeros and ending with all ones.

7 Determining Temporal Relationships Between Actionable Events

Oncethe final STD is creaed along with the set of feasible paths from initia to final state, it is
possble to determine dl posgble sequences of the probability values that can be generated by
the timed sequence of adionable events. Given that a particular sequenceis desired, a procedure
has been developed to determine the tempora relationship between the adionable events that
will generate the seleded profile. Figure 8 shows a set of Timed Point Graphs from a
hypotheticd influence net that has four adionable events, a, b, ¢, and d. The Timed Point Graph
on the left shows independent chains of updetes to the objedive node. Asaume that a path
through the STD has been seleded. The sequence of transitions for the path through the STD



speafies relationships that must exist between the dhains of the timed pant graph. For example,
if the desired sequence is {al, a2, bl,cl, a3, d1,c2, a4, b2, b3, d2}this trandates to the
tempora spedficaion {al< @ <bl<cl<a3<dl<c2< a<b2<b3<d2}andthe resultant
Timed Point Graphis srown onthe right side of Figure 8.

:
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[1,0,0]:d

[1, 1, 0]: d&al
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[1, 0, 1]: d&a2
[0, 1,1] [1,1,0]

[0, 0, 1]: a2
[1,0,0%:d

[1, 1, 1]

Figure 7 STD of Influence Net with Time Delays

Figure 8 Timed Point Graphs

The relationship between the unconstrained chains on the left side of Figure 8 are sufficient to
determine the temporal relationships between the ationable events. In the example of Figure 8,
the pair wise relationships between the dhains are {a2 < b1},{b1 < cl}, [cl< &3}, [a3 < d]],
{d1 <2}, {c2< a4}, {ad <b2}, and {b3<d2}.

Eadh of these relationships can be nwerted to relationships between the input nodes of eah
chain by substituting the equivalent time point referenced to the inpu node. For example, the
length of the interval between noce a &ad noc & in the point graphis 1 + 5= 6. This means
that the time point represented by a + 6 is at the same time point as a2, and therefore, a +6 can



be substituted for a2 in the expresson. Similar substitutions can be made for al of the time
points. Table 6.1 tabulates the result of these substitutions.

Table 6.1 Conversion of Inter-Chain Relationshipsto Input Relationships

Original Relationship Substitution Input Relationships
{a2 <b1} a+6<b+4 a<bh-2
{bl<cl} b+4<c+1 b<c-3
{cl<a3} c+tl<a+11l c<a+10
{a3<dy} a+11<d+10 a<d-1
{d1l<c2} d+10<c+5 d<c-5
{c2 < a4} c+5<a+16 c<a+11
{a4 <b2} a+16<b+11 a<b-5
{b3<d2} b+12<d+15 b<d+3

To complete the determination d the tempora relationships, nondominant relationships are
identified and eliminated. In the example, the final set of temporal relationships is {b < ¢ -3},
{c<a+10},{a<d-1},{d <c-5}, {a<b-5}, and {b<d+ 3}. Anytiming of theset of inpu
adionable events that simultaneously meds these six relationships will generate the original
probability profil e.

8. Selection of COAS Using A Common Planning Problem

We have now described a procedure for creding a model of a situation in which urcertainty
plays an important role, that can be used to develop, analyze, and seled a @murse of adion,
defined as atimed set of adionable events designed to achieve an owerall effed or objedive. We
presented a set of todls and tedhniques that suppat this COA evaluation and seledion process
This «t, cdled the ommon danning problem (CPP), is comprised of five dements:

— Influencenet with timing information,

— CPnet mode of influencenet,

— STD of objedive node with list of infeasible sequences,

— Timed pant graph (TPGs) of the events,

— Procedure of determining COA given a sequencethrough the STD

As was discussd in Sedion 1,it is envisioned that this st of models can be the basis of a
methoddogy used by atean composed o analysts and danners charged with the resporsibility
of anayzing a situation, developing an effedive @urse of adion, and developing and
implementing plans for the scheduled use of resources to implement the COA.



In general, there will be avery large set of feasible sequences through the STD. Ead represents
an urtimed probability profile. To effedively use the CPP, we nead an approac for seleding
good candidate untimed profiles using the STD and the TPGs 9 that they can be eraluated as
timed probability profiles using the CP net. While this may sean to be straight forward, i.e.
seled the profile with the best probability values at every step, the processis more mmplex.
This is because there is a nonfixed, nonlinea mapping from ead urtimed probability profile
the timed probability profile. Thisisill ustrated in Figure 9.
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Figure 9 Non-Linea Mapping Between Un-timed and Timed Probabil ity Profiles

The left side of Figure 9 shows arepresentation d the STD of an DES model of an influence net.
Presented in a plot format, it shows the probability values for ead state aranged in layers or
steps. Severa parameters that charaderize the profiles are shown onthe figure. There is a
single initial probability value and a single final value. Highlighted is a probability profil e that
traverse the locd maximum probability values at ead step. A second pobability profile is
shown that traverses the middle of the plot. The timed versions of the two profilesis sown on
the right side of the figure. While the profil e that traverses the locd maxima is aways higher in
the untimed case, this is not the cae in the timed profile. Indeed, ane @uld argue that the
second pofileis preferred over the gparent best seledionin the untimed profil e.

Some dharaderistics of the set of untimed probability profiles (initial and final states and global
extrema) map to the timed probability profiles while others only apply to the untimed profil es.
For example the locd extrema gply only to the untimed profile while the initial, final values and
the global extrema gply to bah types of profiles. Needed are parameters whaose values can be
determined using CPP that discriminate the timed probability profiles. Time parameters are
candidates, e.g. time to final state, time to global extrema, as well as the minimum time to final
state and global state. Indeed, second pofil e of Figure 9 was obtained by using a wmbination o
the minimum time to global maximum and the locd extrema.



9. Collaboration Using the Common Planning Problem

A tean of dtuation analysts, operational planners, and operations controllers can use the
common danning problem models and analysis techniques to develop and evaluate COAs and
suppat effeds based dynamic control of resultant plans. The cncept is siown using the IDEFO
formalism [IDEFO, 1994 in Figure 10.
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Figure 10 Usingthe CPPin a Collaborative Manner

The four adivities described in Sedion 1are shown with the members of the Commanders Staff
that perform those adivities indicaed as mechanisms. The output of the first adivity is the set of
Common Planning Problem models that have been described in this paper. Aninitial COA is
seleded using the goproadh described in Sedion 8. The seleded COA is provided to the team of
planners who attempt to buld a plan that will im plement the COA. It may turn ou that resource
constraints prohibit the timing required by the COA. If thisisthe cae the CPPtods can be used
to refine the seledion given those cnstrains. Oncethe plan has been creaed and approved, it is
provided to the field and to the @ntrollers for exeaution. During exeaution, the antrollers can
use the CPPto determine the impad that changes in scheduled adions may have on the expeded
probability profile. If schedule changes adversely affed the probability profile, the CPPcan be
used to determine the best adjustments to the COA.

10. Conclusions

We have presented a method that addresses the problem presented in Sedion 2. A method was
developed that uses the information contained in the influence nets to produce rigorous
mathematica models that reved the impad of the sequence and timing of adionable events (a
COA) on the outcome and effeds desired in the situation. It has been demonstrated that by
adding timing information to an influence net model it can be transformed into a discrete event
system model that can be used to generate dl timed sequences of probability values for any
timing of the set of inpus. State space aaysis techniques have been used creae aset of models
that comprise a ommon danning problem. A STD, sequence rule mode, and timed pant



graphs, creded using the timed influence net and the CP net, can generate dl probability
sequences of an oljedive node. A method hes been developed to determine the temporal
relationships among inpus that will generate any feasible untimed probability profil e using a set
of models that comprise the common danning problem. Together, these procedures sippat a
vison d collaborative COA development and evaluation for effeds based planning and
exeaution.

11. Future Directions

Three aeas of current research are: (a) extending the fixed time delays to stochastic time delays,
(b) expanding the evaluation d untimed and timed probability profiles, and (c) incorporating
feedbadk during plan exeaution for determining when to change COAs. We plan to incorporate a
portion of the CPP processin upcoming demonstrations and exercises to assessthe pradicdity of
the oollaborative processpropaosed in this paper. The first demonstration will be in Global 2000
at the Naval War Coll ege.
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