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Abstract. Third-order nonlinear susceptibility of single wall carbon nanotubes thin film was 
measured to be ~1.4 10-16 m2/V2. The nonlinear transmission limiting threshold of carbon 
SWNT was ~20 MW/cm2 with visible and nanosecond laser excitation.

1.  Introduction 
Carbon singlewall nanotubes (SWNTs) are of great interest for possible nonlinear optical applications 
in battlefield enhancement and homeland security from various types of laser threats. The 
development of nonlinear transmission limiters for photonic device protection in visible spectra region 
and the nanosecond time scale is of current interest.  

The carbon nanotube is a very promising material for new nonlinear optical devices since it has 
very large electronic optical nonlinearity with a fast response time due to the delocalized -electron 
cloud along the tube axis. In addition, carbon nanotubes also show striking stability under high light 
flux. Ultrafast nonlinear optical responses [1,2], resonant saturable absorption [3,4], and off-resonant 
nonlinear optical response [2,5] of carbon SWNTs in suspensions and in films have been investigated 
extensively recently. The nonlinear transmission limiting properties of carbon SWNTS in water-
surfactant suspensions were also demonstrated by excitation with 532 and 1064 nm lasers in seven 
nanoseconds temporal pulse width [6]. The dominant mechanisms of optical power limiting by the 
carbon SWNT in water-surfactant suspensions were nonlinear scattering and nonlinear refraction. In 
this work, we investigated the third-order nonlinearity and the mechanism of nonlinear transmission 
limiting properties of a carbon SWNT thin film using both Z-scan and degenerate four-wave mixing 
techniques by 532 nm laser in eight nanosecond temporal pulse width. 

2.  Linear Optical Properties 
The SWNT thin film was prepared with HIPCO SWNTs (Carbon Nanotechnologies Inc.). The median 
diameter of HIPCO SWNTs was ~ 1 nm. The tube lengths were largely distributed between ~300 nm 
and ~1 m. The as-produced SWNTs contained ~30 – 35 wt. % Fe and ~5% of non-SWNTs. For all 
optical characterization, the SWNTs were stacked on a glass plate with 10- m thickness.  
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The linear transmittance spectrum of the SWNT thin film was recorded in the visible and near 
infrared range using a Cary 5E spectrophotometer. The linear transmittance has colorless and 
broadband transparency with multiple weak absorption bands (~0.84, 0.93, and 1.03 eV) at the near-
infrared region as shown in figure 1. The transparency at the visible spectral region is almost that of a 
sunglass polarizer level.
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Fig. 1. Linear transmittance of SWNT thin film. 
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Fig. 2. Normalized transmittance of closed (top of (a)) and open (bottom of (a)) z-
scan, and nonlinear transmission limiting properties of SWNT thin film in 
visible and nanosecond time scale (b). 

3.  Nonlinear Optical Properties 
The nonlinear refraction and absorption of the carbon SWNT in random orientations were measured 
using both a single beam Z-scan and degenerate four-wave mixing (DFWM) techniques. The sample 
thickness of the carbon SWNT thin film was ~ 10 m. The excitation source used was a spatially 
gaussian shaped, ~8 ns pulsed laser (continuum, powerlite) operating at a wavelength of ~532 nm with 
a repetition rate of 10 Hz. The laser beam was focused to a waist radius of ~12 m by a lens with focal 
length of ~8.83 cm.  
   Normalized nonlinear transmittances of the carbon SWNT thin film by closed and open z-scan are 
shown in figure 2 (a). A typical peak power density at the focal point of the Z-scan was ~1.6 MW/cm2.
Fitting with the nonlinear transmittance equations in our previous article to the closed and open Z-scan 
measurements [7], the nonlinear refraction ( ) and nonlinear absorption ( ) coefficients of the carbon 
SWNT thin film were revealed to be ~ -1.2 10-13 m2/W and ~7.1 10-7 m/W, respectively. The third 
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order susceptibility of carbon SWNT from Z-scan spectroscopy was estimated to be ~1.8 10-15 m2/V2

(~6.7 10-7 esu) using the following equation: 
2)3(2)3()3( ImRe ,    (1) 

where, cn
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)3(  is the imaginary part of (3).

The values of real and imaginary (3) of the carbon SWNT thin film were ~-1.4 10-15 m2/V2 (~-1.0 10-

7 esu) and ~4.3 10-16 m2/V2 (~3.0 10-8 esu). 
   Figure 3 (a) shows logarithmic plots of the DFWM signal in carbon SWNTs with excitation of 532 
nm and 8-ns temporal pulse width as a function of total pump intensity at around zero delay. The 
DFWM signal near the zero delay was observed to be I2.96, which indicates the dominance of the third-
order nonlinearity at the irradiances near and less than 10 MW/cm2.
   The third-order nonlinear susceptibility of carbon SWNTs were estimated to be ~1.4 10-16 m2/V2

(~1 10-8 esu) using the following equation by comparison of the FWM signal beams of carbon 
SWNTs with that of CS2 measured under identical conditions [8]: 
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where I is the intensity of the FWM signal beam, n is the refractive index (ns=n(SWNT)~2.0 [9],
nR=n(CS2)~1.63 [10]), L is the sample path length (Ls(SWNT)~10 m, LR(CS2)~1 mm), is the linear 
absorption coefficient (~8.4 104 m-1) of the sample at 532 nm, and S and R indicates sample and 
reference. The excellent and stable third-order optical response solvent, carbon disulfide (CS2, 99+ %, 
spectrophotometric grade, Aldrich), was selected as reference. It has been assumed that the reference 
has no linear absorption at the excitation wavelength at 532 nm. The third order nonlinear 
susceptibility of CS2 was reported to be ~9.5 10-21 m2/V2 (~6.8 10-13 esu) in the nanosecond time-
scale [11]. The discrepancy of third-order optical susceptibilities between Z-scan and FWM were due 
to the scattering effect on the  measurement with Z-scan. However, the scattering in FWM by the 
SWNT solid film was revealed to be a linear dependence to the pump intensity as shown in figure 3 
(b), instead of nonlinear scattering by the SWNT or MWNT suspensions as reported in the previous 
articles [12-14].   
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Fig. 3. DFWM signals of the carbon SWNT film (a), and scattering by the 
carbon SWNT film (b) as a function of input intensity. 

Since the peak of the normalized transmittance precedes the valley in the Z-scan measurement, the 
sign of the refractive nonlinearity of the SWNTs is negative (negative lens effect, or self-defocusing). 
For self-defocusing materials, the optimum position of materials in the limiter is approximately a 
Rayleigh range after the focus. For nonlinear transmission limiting experiments, the normalized 
transmission after the pinhole was measured as a function of input power intensity as shown in Fig. 2 
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(b). The nonlinear transmission limiting threshold, which is the half of linear transmittance, of carbon 
SWNT is ~20 MW/cm2. The carbon SWNT thin film around the valley of z-scan setup is almost 
opaque for visible and nanosecond laser intensity at ~50 MW/cm2. The possible mechanism of  and 
nonlinear transmission limiting of solid thin film SWNT is suggested to be nonlinear absorption [12], 
nonlinear refraction [12], and linear scattering rather than nonlinear scattering [12-14]. 

This work at Hampton University was supported by Army Research Office (DAAD19-03-1-0011, 
W911NF-04-1-0393), National Science Foundation (EEC-0532472, HRD-0400041, PHY0139048), 
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