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Abstract 

 The gate current of Al27Ga73N/GaN heterogeneous field effect transistors 

(HFETs) is investigated using current-voltage (IV) and current-temperature (IT) 

measurement demonstrating that trap assisted tunneling (TAT) is the primary current 

mechanism.  Excellent fit to experimental data is achieved using a thermionic trap 

assisted tunneling (TTT) model.  A single value for each of the primary parameters 

(Schottky barrier height, trap energy, donor density and trap density) results in a sigma of 

1.38x10-8 A for IT data measured at five voltages between 85K and 290K and for IV data 

measured at three temperatures between 0.0 V and -4.0 V.   

 High energy (>0.5 MeV) neutron irradiation at fluences between 4.0x1010 and 

1.2x1012 n/cm2 confirms an increase of gate current with fluence.  A change in IV 

characteristics, interpreted as an increase in magnitude of threshold voltage, is also 

observed.  The TTT model suggests that increased trap density is responsible for 

increased gate current at a fluence of 1.2x1012.  An increase in trap density from the 

unirradiated fit value of 4.593x1021 to 5.737x1021 traps/m3 and an increase in the position 

of traps in the energy band from 0.896 to 0.9028 V results in a fit with σ of  1.77x10-9 A.   

A poorer fit (σ = 4.03x10-8 A) is achieved by reducing the Schottky barrier height 

parameter from 1.317 V to 1.238 V suggesting that Schottky barrier height reduction is 

not responsible for the increase in gate current.  Finally, an increase in donor defect 

density is modeled resulting in a sigma of 5.00x10-9 A and an increase in threshold 

voltage magnitude consistent with the observed change in measured IV behavior. 
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INVESTIGATION OF GATE CURRENT IN NEUTRON IRRADIATED  

AlxGa1-xN/GaN HETEROGENEOUS FIELD EFFECT TRANSISTORS USING 

VOLTAGE AND TEMPERATURE DEPENDENCE 

 
 

I.  Introduction 

 Heterogeneous field effect transistors (HFETs) built from aluminum gallium 

nitride and gallium nitride show great promise as high speed, high power transistors.  

However, these devices show an undesirably high gate current which is further increased 

by irradiation.  In this thesis theory, modeling and experiment are used to determine the 

mechanism responsible for this gate current in the as-manufactured state and the reason 

for the increase in gate current after irradiation.  The following sections will cover the 

importance of these devices to military and civilian systems, the physics behind their 

operation, and the objectives and methods used in this thesis effort. 

Background 

GaN technology has seen increased use over the last fifteen years and, although 

still much more expensive to manufacture than silicon and gallium arsenide, the cost to 

manufacture has decreased as more reliable methods have been found to grow the GaN 

lattice and improve lattice quality.   

The materials most commonly used in the production of semiconductors, silicon 

and gallium arsenide (GaAs) among others, have physical characteristics that make them 

poorly suited for high power, high frequency applications or optics applications that 

involve ultraviolet wavelengths [1].  Gallium nitride (GaN) based materials have 
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characteristics which make them much better suited for these applications. Devices such 

as visible and ultraviolet light emitting diodes and lasers have been developed and 

marketed based on GaN [1,2].  The wide bandgap of GaN (3.49 eV) and AlGaN (3.80 eV 

for 0.27 Al molar concentration) devices enable them to emit and absorb photons in the 

near ultraviolet spectrum whereas the narrower bandgap of silicon based devices (1.12 

eV) and GaAs devices (1.43 eV) limits their usefulness to the infrared.  The wider 

bandgap of GaN devices also enables them to operate at higher temperatures than silicon 

and GaAs devices without a change in performance due to the elevation of electrons from 

the valence band to the conduction band by thermal energy (phonons).  Furthermore, 

GaN has a higher thermal conductivity (up to 1.97 W/cm-K depending on lattice 

dislocation density) than silicon (1.30 to 1.45 W/cm-K) or GaAs (0.55 W/cm-K) which 

enables heat to be more rapidly removed to the device substrate. 

The Defense Advanced Research Projects Agency (DARPA) and the Office of 

Naval Research (ONR) have funded major research programs to develop GaN for use in 

military systems.  The high speed and high power capabilities of GaN make it well suited 

for military radar applications.  A GaN based high power microwave device has been 

demonstrated which produced 30.6 W/mm of gate width at an operating frequency of 8 

GHz [3].  In contrast, GaAs based devices have a limit of operation of 1 W/mm at 10 

GHz [4] and are more susceptible to damage by radiation.  Silicon based devices are even 

more limited.   

GaN devices have been shown to be more tolerant of radiation damage than Si 

and GaAs based devices.  GaN devices operate without significant degradation at a high 
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energy (300-1400 keV) electron fluence that is 2 to 3 orders of magnitude higher than for 

the equivalent GaAs device [21].  This may be due to fact that Ga-N bonds are stronger 

than the Ga-As bonds.  Stronger bonds resist displacement and reduce the number of 

defects created by radiation.  For example, it has been shown that GaN samples irradiated 

by 1.0 MeV electrons at a fluence of 1x1017 e/cm2 undergo a reduction of 50% in 

cathodoluminescence because of reduced carrier density.  GaAs material tested under the 

same conditions undergoes a carrier removal rate that is 2 times higher than GaN and that 

the luminescence intensity degrades to less than 1% of the original value [5].  Because of 

its inherent radiation hardness, an important proposed use for GaN devices is in satellite 

based radar systems, which operate at low temperatures and are subject to damage by the 

near earth orbit radiation environment.   

This brings us to the intent of this proposed work, which is to discover the cause 

of gate current in as-grown AlGaN/GaN HFETs and the mechanism responsible for the 

increase in gate current after neutron irradiation.  

Gallium Nitride Device Physics   

 The device under study is an HFET based on an AlGaN/GaN heterostructure.  

The architecture of the device is shown in Figure 1. The AlGaN layer grown on top of the 

GaN layer comprises the heterojunction.  Current flows from the drain to the source 

through a highly conductive 2 degree electron gas (2DEG) that is created at the 

heterojunction.  The transistor action of the device is controlled by the voltage on the 

gate, which acts to increase or decrease the density, and therefore the conductivity, of the 

2DEG.  The gate contact is a Schottky barrier created by the difference in electron 
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affinity between the gate metal and the AlGaN.  This difference in electron affinity 

results in a large (> 1eV) potential barrier.  The source and drain are ohmic contacts and 

do not have a significant barrier.   

 The 2DEG is spontaneously created at the heterojunction as a result of the GaN 

and AlGaN crystal structures.  GaN is a III-V material which forms a Wurtzite crystal 

structure in which the electrons are not shared equally in the covalent bonds resulting in a 

spontaneous polarization in the crystal.  By replacing a fraction of the gallium atoms with 

aluminum atoms, AlGaN is created, which also has a spontaneous polarization.  The 

heterojunction is created by growing a thin later of AlGaN on a base of GaN.  Because 

the AlGaN lattice constant is slightly smaller than the GaN lattice constant the AlGaN 

crystal stretches to match bonds with the GaN.  This changes the charge distribution in 

the AlGaN and gives rise to a piezoelectric polarization which points in the same 

direction as the spontaneous polarization.  The change in polarization between the AlGaN 

(spontaneous plus piezoelectric) and the GaN (spontaneous) at the heterojunction results 

in a layer of net positive charge.  The electric field created by this positive charge draws 

conduction electrons from the AlGaN and the GaN and forms the 2DEG.   

 The positive charge layer at the heterojunction is sometimes called a conduction 

band discontinuity.  This discontinuity results in a quantum well as shown in Figure 1.  

This quantum well is on the order of an electron deBroglie wavelength wide.  Electrons 

trapped in the well form a standing wave and move easily in the plane of the interface.   

For the HFETs under study, the 2DEG concentration is typically on the order of 

1013 electrons/cm2 and is 2 nm thick.  The 2DEG concentration depends on several 
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factors.  One factor is the Al concentration in the AlGaN layer, which determines the 

magnitude of polarization at the AlGaN/GaN interface.  The 2DEG concentration is also 

determined by the applied gate voltage which acts to change the depth of the quantum 

well.  Applying a negative gate voltage ( gV ) with respect to the drain and source ohmic 

contacts raises the energy of the bottom of the quantum well with respect to the Fermi 

level of the electrons.  This reduces the concentration of electrons in the 2DEG.   

Applying a sufficiently large negative gate voltage raises the quantum well above the 

Fermi level and eliminates the 2DEG, turning off the device.  thV  is defined as the value 

of gV  at which the 2DEG becomes too small to carry significant current. This can be 

done very rapidly and accounts for the excellent high speed performance of AlGaN/GaN 

HFETs.    
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Figure 1. AlGaN/GaN HFET physical structure and band diagram[8]. 

 Predictable effective gate voltage is essential to the reliable operation of the 

HFET.  In an ideal HFET the gate current is always zero.  In a real HFET gate currents 

are on the order of hundreds of microamps per mm of gate width [6,7].  The drop in 

voltage as the current moves through the gate and resistive AlGaN layer changes the 

effective gate voltage.  This results in an undesired change in source to drain current and 

higher power requirements.    
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 The gate current in the HFET devices under study has been observed to increase 

with neutron irradiation [6,7].  The primary effect of neutron irradiation is to create lattice 

defects.  Several mechanisms have been proposed [7,8,9,13,16,17] to explain the change 

in gate current after irradiation.  These will be discussed in the literature review section. 

 The focus of this research is to discover the dominant mechanism for gate leakage 

in AlGaN/GaN HFETs and to use the model describing that mechanism to determine the 

cause of increased gate leakage after neutron irradiation. 

Research Justification 

The mechanism responsible for the gate current in irradiated AlGaN/GaN HFETs 

has not been determined [6,7,8].  Determining the mechanism responsible will enable 

engineers to design HFETs without large gate currents.  Furthermore, determining the 

mechanism responsible for increased gate current after irradiation is necessary so that 

increased gate current can be prevented, enabling the use of AlGaN/GaN technology in 

harsh radiation environments such as satellites or nuclear reactors. 

Problem Statement 

 What is the mechanism responsible for gate current in AlGaN/GaN HFETs?  Can 

analysis of the voltage and temperature dependence of the gate current determine the 

mechanism responsible for producing gate current?   What is the cause of increased gate 

current after neutron irradiation? 

Hypotheses 

It can be demonstrated using voltage dependent gate current measurement (IV) 

and temperature dependent gate current measurement (IT) that the gate current is 
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consistent with trap assisted tunneling mechanism and is not consistent with other 

mechanisms (generation recombination, direct tunneling, field emission, surface leakage).  

Trap assisted tunneling through the gate Schottky barrier is the dominant gate current 

leakage mechanism for AlGaN/GaN HFETs.    

Neutron irradiation will increase the gate current.  Analysis of the change in gate 

current using a trap assisted tunneling model will reveal the mechanism responsible.   

Research Objectives 

1.  Determine the dominant current mechanism for neutron irradiated AlGaN/GaN 

HFETs. 

2.  Design, construct and test an experimental apparatus that enables neutron 

irradiation at liquid nitrogen temperatures over a period of hours in order to prevent 

neutron induced defects from annealing prior to current measurement. 

3.  Irradiate HFETs with neutrons to increase the trap density through knock-on 

damage and measure the change, if any, in gate current. 

4.  Use IV and IT measurement and modeling to determine the cause of increased 

gate current. 

Scope 

 This research is limited to the determination of the dominant current producing 

mechanism in heterogeneous junction Al27Ga73N/GaN HFETs at gate voltages between 

0.0 and -8.0V and temperatures between 77 and 300K.   Increased gate current after 

irradiation with >0.5 MeV neutrons is studied at fluences between 4.0x1010 and 1.2x1012 

n/cm2. 
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Methodology 

Theoretical development, modeling, and experimental measurements were used in 

this effort.  Current transport models for metal-semiconductor contacts were used in the 

development of the gate current model [10,11]. Trap assisted tunneling through the gate 

Schottky barrier was modeled as a statistical process [12, 15, 16].  The expected 

contribution of each transport process to the overall gate current model was determined 

using accepted physical constants, nominal values for gate dimensions, and order-of-

magnitude values for physical parameters of the devices which are not known with 

precision, such as doping and trap density.  The sensitivity of the gate current models to 

bias voltage, temperature, Schottky barrier height, and other variables was determined by 

direct calculation.  The gate currents before and after irradiation were measured as a 

function of gate voltage and device temperature and the results were compared with the 

models.  Model parameters were then varied to find the best fit to IV and IT data and to 

suggest causes of increased current after irradiation. 

Assumptions/Limitations 

 It is assumed that the mechanism primarily responsible for the gate current 

dominates other proposed mechanisms and that the primary mechanism will have IV and 

IT behaviors characteristic to the primary mechanism alone. 

 It is assumed that the gamma irradiation that occurs during neutron irradiation 

will not contribute significantly to the creation of defects because of the low non-ionizing 

energy loss of gamma rays in AlGaN and GaN. 
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Sequence of Presentation 

This thesis is separated into six chapters.  This first chapter has provided 

background information on the research effort.  Chapter 2 presents the results of the 

literature search and details the HFET gate leakage models.  Chapter 3 presents the 

modeling and design of the experimental apparatus.  Chapter 4 describes the 

experimental setup and the experimental procedure before, during and after irradiation.  

The results of the experiments are presented in chapter 5.  Finally in chapter 6, 

conclusions and recommendations for future studies are given. 
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II. Research Review and Model Development 

Chapter Overview 

 A review of recent AlGaN/GaN HFET research identified three gate leakage 

models (by Svensson, et. al., Karmalkar and Sathaiya, and Hashizume et. al.) in addition 

to well established Schottky barrier charged particle transport models (field emission, 

etc.).  Possible leakage paths from the HFET gate to source/drain are considered and a set 

of plausible leakage models are selected for further study.  The plausible models 

(thermionic emission, thermionic field emission, Svensson trap assisted tunneling 

(STAT), and thermionic trap assisted tunneling (TTT)) are developed and analyzed for 

sensitivity to changes in their primary parameters.  Finally, a MATLAB based fitting 

routine is developed to aid in analysis of measured IV and IT data. 

Gate Current Models 

Several models have been proposed to explain gate leakage in AlGaN/GaN 

devices.  These include the well understood mechanisms of field emission, thermionic 

emission, surface leakage, and generation-recombination.  These will be considered in the 

model development section of this chapter, as will a leakage model developed by 

Svensson et. al. to describe trap assisted tunneling through a Schottky barrier at an 

interface consisting of Si/SiO2/Si3N4 [12].  Two models specifically developed to 

investigate gate leakage in AlGaN/GaN devices will be considered in this section.  The 

first was developed by Karmalkar and Sathaiya of the Indian Institute of Technology 

[15,16] and assumes trap assisted tunneling through the Schottky barrier.  The second 

model, developed by Hashizume, et. al. of Hokkaido University [17], assumes thermionic 
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emission through a Schottky barrier which has been made thinner by the presence of 

surface defect donors. 

Karmalkar and Sathaiya argue that the reverse bias gate current in AlGaN/GaN 

HFET devices is due to two parallel gate to substrate tunneling paths.  The first path is 

due to direct tunneling (field emission) across the gate Schottky barrier, and the second 

path is due to tunneling through the Schottky barrier via deep traps distributed throughout 

the AlGaN layer and spread over an energy band located within the Schottky barrier 

height [15,16].  The direct tunneling path makes a negligible contribution to the current at 

temperatures above 500K because of the width of the Schottky barrier.  The trap assisted 

tunneling path dominates transport through the Schottky barrier at temperatures below 

500K. 

Karmalker and Sathaiya developed a model to calculate the reverse bias gate 

current based on trap assisted tunneling and found that the model gave good fit to 

experimental data. This model assumes a continuum of trap energies within the band gap 

of the AlGaN.  Figure 2 shows the HFET structure and biasing arrangement used by 

Sathaiya (a) and modeled energy band diagram from gate to substrate (b).  The energy 

band diagram shows both the direct tunneling (DT) and the trap assisted tunneling (TT) 

processes.  The traps are spread over an energy band ( 2 1φ φ φ≤ ≤ ) within the barrier 

height.  The AlGaN/GaN conduction band discontinuity ( cφΔ ), gate Schottky barrier 

height ( Bφ ) and potential due to gate voltage ( Fφ ) are shown.  Also shown is the 

distribution of trap concentration tN  over energy. 
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Figure 2.  (a) Sathaiya AlGaN HFET device structure, (b) band diagram [15]. 

Karmalkar and Sathaiya applied this model to HFETs which had a high density of 

traps.  They found that the gate current was high (10-4 A) and almost insensitive to 

temperature between 100 and 300 K.  After plasma treatment, which reduced the density 

of traps by a factor of ~100, the gate current was reduced to 10-9 A at 300 K and showed 

a large dependence on temperature.  The gate current was observed to increase by a factor 

of ~30 from 100 to 300K.   They attribute the decreased gate current to a reduction in the 

density of traps.  They attribute the increased dependence on temperature to a decrease in 

the energy level of the lower limit of the trap energy band ( 1φ ).  A decrease in the 

parameter 1φ  reduces the width of the trap energy band and reduces the energies at which 

trap assisted tunneling can occur.  Reducing the width of the energy band trap also 

contributes to increased temperature dependence.  It is important to note that 1φ , the 

density of traps, and the energy level of the upper limit of the trap band ( 2φ ) are fitting 

parameters which were adjusted to make the model fit the observed IV and IT 
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measurements.  Sathaiya did not report that these values were confirmed by any other 

measurement technique.    

A simplified model for trap assisted tunneling, which assumes a single trap 

energy within the AlGaN band gap, has recently been developed by Karmalkar and 

Sathaiya [16].  This simplified model also provides an excellent fit to empirical data.  

This model will be discussed in the modeling section of this chapter and used to analyze 

the gate current of HFETs in this effort. 

Another gate leakage mechanism is proposed by Hashizume, et. al. [17].  They 

proposed Schottky barrier thinning as the cause of leakage current in as grown GaN and 

AlGaN Schottky diodes.  Their model was based on thermionic field emission and 

included the effects of barrier thinning caused by unintentional surface-defect donors.  

The donors are assumed to be deep donors with a high density near the surface of the 

semiconductor which decays exponentially with depth (Figure 3).  A nitrogen vacancy is 

identified as the deep donor.  The positive space charge created by the donors bends the 

conduction band and makes the Schottky barrier thinner.  The thin Schottky barrier 

enhances thermionic field emission tunneling.  Thee model was used to fit IV and IT 

measurements taken from AlGaN diodes achieving good fitting results at forward and 

reverse biases and varying temperatures.   
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Figure 3.  Thin surface barrier model [15]. 

Although Hashizume’s results appear very promising, as shown in Figure 4, there 

was insufficient detail in the paper to permit further investigation in this thesis effort. 

 

Figure 4.  I-V-T characteristics of the Ni/n-GaN diode.  The solid and the broken 
lines represent the calculated results by Hashizume's method and unmodified TFE 
model, respectively [15]. 

 

Irradiation Damage 

GaN device response to radiation damage has not been as thoroughly researched 

as radiation damage in silicon and gallium arsenide.  Most GaN radiation damage 
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research that has been conducted has focused on proton damage [9,13,14].  Some work, 

notably at the Air Force Institute of Technology, has investigated the effects of high 

energy electrons and neutrons [5,6,7,8].  These research efforts have resulted in 

conflicting conclusions as to the cause of increased gate current after irradiation. 

White, et. al. [9,13] used cathodoluminescent spectroscopy to study the effects of 

1.8 MeV protons on AlGaN/GaN HFETs and diodes as part of a multi university research 

initiative (MURI) for Radiation Physics supported by Air Force Office of Scientific 

Research under MURI grant F49620-99-1-0289.  Low energy, electron-excited 

nanoscale-luminescence enabled measurement of the change in electrical characteristics 

due to proton fluence at varying depths in the semiconductor.  They observed that the 

effective donor doping concentration, magnitude of the threshold voltage and Schottky 

barrier height reduced with increasing proton fluence.  The reduction in effective donor 

doping was attributed to an increased concentration of either Ga vacancies or complexes.  

The Ga vacancies are deep acceptor defects which would compensate the existing donors.  

The observed lowering of the Fermi level is consistent with an increased concentration of 

acceptors.   The decrease in magnitude of the threshold voltage (Figure 5) can also be 

explained by the lowered Fermi level.  The lowered Fermi level would reduce the amount 

by which the conduction band discontinuity between the AlGaN and GaN would be 

below the Fermi level.  Therefore a less negative threshold voltage would be sufficient to 

raise the conduction band discontinuity above the Fermi level and eliminate the 2DEG.  

The reduction in magnitude of threshold voltage due to removal of carriers by acceptor 
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defects, and resulting decrease in 2DEG carrier density and lowering of Fermi level, was 

also observed by Hu et. al. [14]. 

 

 

Figure 5.  Effect of 1.8 MeV proton fluence on AlGaN/GaN HFET [13]. 

The change in material properties responsible for the reduction in Schottky barrier 

height, shown in Figure 6, was not explained in the AFOSR Radiation Physics MURI. 
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Figure 6.  Schottky barrier height reduction with fluence [13]. 

The effect of irradiation on gate leakage was not reported in the MURI results, but 

it is reasonable to assume that the gate current would increase with the observed lowering 

of the Schottky barrier height.  Therefore a lowered barrier height will be considered as a 

potential cause for increased gate leakage current after irradiation. 

Previous work at the Air Force Institute of Technology has investigated the 

effects of high energy electrons and neutrons on the function of GaN devices [5,6,7,8,20].    

Uhlman [8] conducted low temperature IV measurements of the gate current and 

concluded that trap assisted tunneling (TAT) is the primary current mechanism.   He 

observed a substantial radiation-induced increase in gate current.  Uhlman hypothesized 

that the increase in gate current was due to an increase in trap assisted tunneling resulting 

from a radiation induced increase in the density of traps at the metal-semiconductor 

junction.  Roley [7] attempted to determine the cause of increased gate current using 
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temperature dependence but because of problems with his experimental apparatus was 

unable to gather sufficient data.  He did demonstrate that the voltage dependence of the 

gate current was consistent with TAT, but his results were not conclusive. 

 Uhlman and Roley used a model based on Svensson’s work [12] (called the 

STAT model in this thesis).  The STAT model and the simplified single trap energy trap 

assisted tunneling model developed by Sathaiya [15] (the thermionic trap assisted 

tunneling model, TTT) are discussed in the next section. 

Model Development 

In this section the architecture of the HFET is considered and possible current 

paths are proposed.  The expected contribution of each gate current leakage model to the 

gate current is considered and some current paths and leakage models are eliminated as 

candidates.  The remaining models are then further developed in order to support the 

experimental effort described in the next chapter. 

Gate current in a HFET can be modeled as shown in Figure 7.  Three possible 

current paths are proposed:  along the surface of the AlGaN from gate to source (1); 

through the AlGaN (2); through the AlGaN and along the 2DEG (3).  The source and 

drain are interchangeable in the HFET, so these current paths also apply to gate-to-drain 

current.  
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Figure 7.  Proposed current paths. 

Electrons may move along each of the paths depicted in the Thevenin equivalent 

circuit in Figure 8.  This Thevenin equivalent circuit represents each charged particle 

transport mechanism as an equivalent resistance.  The equivalent resistance for each 

mechanism would be inversely proportional to the probability of transport of an electron 

by that mechanism.  Where the equivalent resistances are in parallel, the mechanism with 

the lowest resistance will dominate the current.  For instance, if FE provides the lowest 

resistance current path through the Schottky barrier then FE will dominate the current 

through the barrier.  Where the equivalent resistances are in series, the greatest resistance 

dominates the current. The physical mechanisms supporting current along each path are 

discussed below. 

1 

2 3

1 

2 3
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Figure 8.  Thevenin equivalent circuit based on proposed current paths. 

For path (1) the current results from surface leakage, which could be caused by a 

thin film of conductive residue at the surface or by defect hopping.  Defect hopping is 

plausible because there is expected to be a high density of defects at the surface because 

of broken bonds.  These broken bonds are due to the absence of atoms to contribute to 

covalent bonding at the surface.   

It is assumed that surface leakage current is a function of electric field, which 

increases with gate voltage.  The voltage drop between the gate and source continues to 

increase with increasing gV  even beyond thV .  The gate current ( gI ) has been 

demonstrated to saturate for gate voltage beyond the threshold voltage [14].  This 

indicates that surface leakage is not the dominant mechanism contributing to gI .  

Therefore path (1) is not the dominant current path. 

Paths (2) and (3) require the transport of electrons across the Schottky barrier at 

the gate/AlGaN interface.  In the absence of in-band traps, transport across Schottky 
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barrierers takes place by a combination of thermionic emission (TE), thermionic field 

emission (TFE), field emission (FE), and generation recombination (GR).  Electrons 

would move from the left (gate) to the right (AlGaN) in Figure 9.   

 

Figure 9.  Band model of Schottky barrier current transport (TE, TFE, FE). 

Conduction band electrons with sufficient kinetic energy are transported over the 

barrier under the influence of the electric field in TE.  The kinetic energy required for TE 

is provided by thermal energy.  The average kinetic energy of electrons at low 

temperatures (~.01 eV at 77K) is much less than the Schottky barrier height at the gate.   

The Schottky barrier height ( bφ ) at the gate interface for AlGaN/GaN devices can be 

calculated using an empirical formula [18] 

    0.7841 1.8559( )b Alxφ = +  eV,        

where Alx is the molar concentration of Al in the AlGaN.  With Alx = .27 for the HFETs 

under study, bφ is calculated as approximately 1.3 eV. 

The presence of higher energy electrons at the upper end of the Gaussian 

distribution of thermal energy and proposed lowering of barrier height [13] makes TE a 

possible contributor to gI . 
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TFE and FE occur by direct tunneling through the Schottky barrier.  In most FE 

models the barrier is assumed to be triangular.  This results in a dependence of gI  on 

temperature because at higher temperatures the electrons will be at higher energies when 

they encounter the barrier and will ‘see’ a smaller barrier width which increases the 

probability of tunneling.  The model for TFE includes FE as the lowest electron kinetic 

energy case, in which the electron tunnels through the base of the barrier.  TFE (including 

FE) is a possible contributor to gI . 

Another mechanism, generation-recombination (GR), is due to an electron being 

elevated from the valence band to the conduction band in the barrier region.  The energy 

required to elevate the electron to the conduction band could be provided by thermal 

energy or photons.  The electric field in the barrier region would then carry the electron 

through the barrier region into the AlGaN.  Because the barrier region is in the AlGaN, 

and the band gap between the conduction band and the valence band is large in AlGaN 

(~3.8 eV) [5], the probability of elevation of an electron from the conduction band by 

thermal energy is vanishingly small in the temperature range of interest.  Therefore GR is 

not a viable mechanism for producing gI . 

The final mechanism proposed to enable transport through the Schottky barrier is 

trap assisted tunneling (TAT).  TAT requires the presence of traps in the band gap of the 

semiconductor.  The TAT model also predicts that the gate current will have a small 

temperature dependence compared to the almost exponential dependence predicted by the 

TE and TFE models.  TAT, TE and TFE will be investigated as contributors to gate 

current. 
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Once through the Schottky barrier, path (2) assumes the drift of electrons through 

the AlGaN parallel to the gate.  This is extremely unlikely because the electric field is 

perpendicular to the gate.  Therefore path (2) is not a viable current path.   Eliminating 

path (2) simplifies the Thevenin equivalent circuit as shown in Figure 10.   

 

Figure 10.  Simplified Thevenin equivalent circuit. 

Path (3) requires the transport of electrons across the Schottky barrier, drift of 

electrons through the AlGaN into the 2DEG under the influence of the electric field, and 

diffusion along the 2DEG to the source contact.  Transport across the Schottky barrier 

has already been described.  Drift through the AlGaN and along the 2DEG is determined 

by the electric field and the resistivity of the AlGaN and 2DEG, respectively.   

TE, TFE and TAT (described by both the STAT and the TTT models), are 

proposed as mechanisms for gate current.  Each of these models has a ‘signature’ 

dependence on gate voltage and temperature, which will now be demonstrated.   

 Thermionic Emission.  The expression describing TE current in forward bias for 

a Schottky diode is Equation 2 [10] 
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      0

GqV
kT

TEI I e
−

=      (1)  

with  

      
( )

2
0 *

Bq
kTI AA T e
φ φ− −Δ

=      

and  

      A = area of device 

    *A = effective Richardson constant 

 

      q =magnitude of electronic charge 

 

      k =Boltzmann’s constant 

GV =bias on the gate relative to the source. 

In negative bias TEI  = 0I−  and is nearly constant with voltage until the electric field 

produced by gV  is large enough to produce avalanche breakdown.  Avalanche breakdown 

in AlGaN happens at electric fields greater than 2.5x106 V/cm [5].  thV  for the HFETs 

under study is approximately 4V and the width of the AlGaN is 25nm.  This gives a 

maximum electric field of 1.6x106 V/cm.   Because the HFET is not operated at a large 

enough gV  to produce avalanche breakdown, TEI  will be taken as constant in reverse 

bias.   
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 Using the constants given in the Appendix for these devices and Equation 1, 

current due to TE is expected to be on the order of 10-15 A at room temperature and have 

a high dependence on temperature, as shown in Figure 11.   

 

Figure 11.  Dependence of TE on temperature (Vg = -4.0 V). 

 Thermionic Field Emission.  The expression describing TFE is given for highly 

doped (~1017 donors/ cm3 ) Schottky junctions in Equation 3 [10].  The as-grown donor 

density for GaN, due to defects, is on the order of 1018 donors/cm3.  The density in 

AlGaN is assumed to be similar.   

       0
0 1

qV
E

TFE FEI I e
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

     (2) 

with 
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 As with TE, current due to FE is expected to be small (~ 10-20 A) at room 

temperature and be highly dependent on temperature (Figure 12). 

 

Figure 12.  Dependence of FE on temperature (Vg =  -4.0V). 

 Trap Assisted Tunneling.  Two separate models of trap assisted tunneling (TAT) 

are considered.  The first was developed by Svensson, et. al. [12] and will be referred to 

as the STAT model.  The STAT model was used by Uhlman and Roley in previous work 
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on AlGaN/GaN HFETs.  The STAT model assumes thermally excited electrons tunneling 

via traps distributed homogeneously throughout the AlGaN.  The STAT current is 

calculated by spatial integration. The second model considered was recently developed 

by Sathaiya and Karmalkar [15,16] and is referred to as the thermionic trap assisted 

tunneling (TTT) model.  TTT also assumes thermally excited electrons and a 

homogeneous trap distribution.  The TTT current is calculated by integration over easily 

determined energy limits compared to the spatial limits of the STAT model, which are 

difficult to determine.  A brief derivation of each model will now be presented in order to 

compare the models. 

The Svensson derivation is for MNOS devices and describes the transport of 

electrons under the influence of an electric field from a Si layer through a SiO2 layer to a 

Si3N4 layer.  The theory does not assume any material specific properties and can be 

applied generally.  Here the model will be applied to the Schottky barrier at the 

metal/AlGaN interface of the HFET.  In this case the SiO2 layer in the Svensson 

derivation corresponds to the metal gate layer in the HFET and the Si3N4 corresponds to 

the AlGaN.  The presence of the SiO2 term in the Svensson theory does not fit the HFET 

architecture and so the SiO2 term will be eliminated. A derivation of the STAT model 

tailored for HFET devices is presented here. 

 The band diagram used for this derivation is shown in Figure 13.  The value of 

gV is taken as thV .   
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Figure 13.  Trap assisted tunneling (TAT) band model. 

 This model assumes a uniform trap density throughout the AlGaN layer at a 

single potential tφ  below the AlGaN conduction band.  fbφ is equal to the amount of 

energy by which the bottom of the conduction band discontinuity cφΔ  is above the Fermi 

energy.   

 The rate of change of electron concentration in the traps is described by  

   ( ) ( )
1 2

1t t metal t AlGaNt N n f n fn
t τ τ

− −∂
= −

∂
    (3) 

with 

tn = concentration of electrons in traps, 

tN  = concentration of traps 
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metalf , AlGaNf = occupancy factor for electron states in the metal and AlGaN, 

1τ = time constant for transfer of an electron between gate metal and traps , 

2τ = time constant for transfer of an electron between the traps and the AlGaN. 

The first term to the right of the equals sign in Equation 4 describes the number of 

electrons leaving the metal and becoming trapped per second per unit volume.  The 

second term describes the number of electrons detrapping into the AlGaN per second per 

unit volume. 

 We assume that AlGaNf = 0, which is reasonable because there are many more 

empty electron energy states than full states in the conduction band of the AlGaN.  We 

also assume that tn ≈0, that there are many more empty traps than full traps.  Svensson 

argues that this is a reasonable assumption because the detrapping time is assumed to be 

very small.   In the steady state, 

tn
t

∂
=

∂
0 

so that the injected current per unit of gate area over a small interval dx at a distance x 

into the AlGaN is given by  

1

t metalqN fJ dx
τ

Δ = . 

The total current per unit of gate area is given by  

                    
10

mx
t metalqN fJ dx
τ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫    (4) 

with x and mx  as defined in Figure 13. 
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 The time constant for tunneling between a trap and the AlGaN conduction band 

1τ  is given by 

2
1 0

xe βτ τ=  

with 0τ  a time constant on the order of 10-12 to 10-14 seconds and 

2 AlGaN tm qφ
β ≈  

with  

   AlGaNm = the effective mass of an electron in the AlGaN 

                      =
2
h
π

. 

The Fermi factor in the metal is approximated by 

                                                                
tqV

kT
metalf e

−
≈ ,   (5) 

with tV  equal to the potential at the traps given by  

                                                        ( ) .t B t jV E xφ φ= − −     (6) 

Using equations (6,7), equation (5) becomes 

( ) 2

0 0

jmB t
qExq x
kTt kTqNJ e e dx

φ φ β

τ

⎛ ⎞− − − +⎜ ⎟⎜ ⎟
⎝ ⎠= ∫ . 

For low temperatures and high fields we obtain, if 

2 1jqE
kT

β
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 

then 
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with A = area of the gate. 

 Using the simplifying assumption that the potential at the gate is triangular 

(instead of parabolic), and that mx =d (the thickness of the AlGaN layer), then 

2
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d
c fb b

AlGaN
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qN d
V VgE

d d d

φ φ φ
ε
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Equation 8 can be simplified to  
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with the values of C1 through C4 given by  

1
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3 2 ( )b tC dβ φ φ= − −     ( )V  

4 C fb bC φ φ φ= Δ + −      ( )V . 

  

Note that TATI has a linear dependence on the density of traps in 1C , so that 

increasing the number of traps will cause a linear increase in TATI . 
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Expected values for 1 4 through C C  are given in the following table assuming 

reasonable values for the independent variables. 

Table 1.  Expected range of values of STAT parameters C1-C4. 

Parameter Range of Values Units 

 1C  -7x10-3 to -2.8x10-6 mA
K

 

2C  -6.9x10-5 to -1.7x10-4 1
K

 

3C  -50 to 70 V 

4C  .074 to -.926 V 
 

 

Table 2.  Values of STAT independent variables. 

Independent 
Variable Values (or range) Units 

A nominal gate area, 5.0x10-9 
2m  

tN  1018 to 1022 3

traps
m

 

0τ  10-12 to 10-14 s 

jE  -107 to -2.5x108  
(breakdown voltage) V/m 

β  108 to 109 m-1 

bφ  .5 to 1.5  V 

tφ  .1 to 1.5 V 

fbφ  0.2 V 

CφΔ  0.374 V 
 

The voltage dependence of TATI is shown in Figure 14 for three different 

temperatures.  The values for 1 4through C C  are taken from Roley’s results [7] obtained 

from IV measurement of neutron irradiated HFETs.  Although these values did result in a 
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good fit to his data, they are not within the expected range of values in Table 1.  Roley 

used a model fitting routine which was not constrained to reasonable values for 

1 4 through C C . 

 

Figure 14.  Dependence of TATI  on gate voltage gV  and temperature for STAT 
model. 
 

 The dependence of TATI  on temperature increases with increasing magnitude of 

gV  because of the presence of the jE  term in 1C  and 2C .  At low bias (up to -3 V) there 

is almost no dependence on temperature, while at higher values (-3V to thV ) the 

magnitude of TATI  increases almost linearly with temperature. 
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Two methods are presented to solve for the parameters 1 4through C C .  The first 

method is to use measured IV and IT data and solve for the parameters directly.  A value 

is selected for 4C and 3C , 2C , and 1C  are solved for in order. With four fitting parameters 

it is not possible to find a unique solution.   The method is: 

(1)  Select a value for 4C .  With CφΔ ≈ 0.4V and fbφ ≈ 0.2V from the Appendix, 

and Bφ  approximately 1.0 V, 4C ≈ -0.4V. 

(2) Solving equation (9) for 3C  at two different values of Vg at the same 

temperature T yields, 

2 1
3

2 4 1 4

ln( ) ln( )
1 1
Ig Ig

C

V C V C

−
=

−
+ +

. (10) 

(3)  Using 3C and 4C  and measured gI  for two different temperatures at the same 

gV  yields, 

2 1

2 1
2

2 1

Ig Ig
T TC
Ig Ig

−
=

−
.  (11) 

(4)  Using 4C , 3C  and 2C  and a single measurement of gI  at temperature T and  

gV yields, 

3

4
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1

g

C
V C

Ig C
TC

e +

⎛ ⎞−⎜ ⎟
⎝ ⎠= .            (12) 
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Taking the model further, it is possible to predict the value of 1C and 2C for a 

given gV  if the values of 1C and 2C  are known for two other values of gV .  As previously 

discussed, 1C  and 2C  have voltage dependence because of the electric field term.  The 

derivation of a method to determine the voltage dependence follows. 

 With 

1
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t

j

AN kC
Eτ

= , 

2

( )
2

d
c fb b

AlGaN
j

qN d
V VgE

d d d
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−Δ −
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let 

2
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qN d

x
d

φ φ φ
ε

−Δ − + +
= . 

Then 

0
1

t

g

AN kd

C
V x
τ

−

=
−

, 

so if ( )1 1C Vg  and ( )1 2C Vg  are known, it is possible to solve for x in the following 

manner: 

1 1 2

1 2 1

( )
( )

C Vg Vg x
C Vg Vg x

−
=

−
 

( ) ( )
( )

1 1 1 2 1 2

1 1 1 2( )
Vg C Vg Vg C Vg

x
C Vg C Vg

−
=

−
. 

With x  known, it is possible to solve for tAN kd− ; 
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Now it is possible to predict 1C  at other values of Vg . 

 Similarly, the voltage dependence of 2C  can be solve for: 
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solving for x , 

( ) ( )2 1 1 2 2 2

2 1 2 2( ) ( )
C Vg Vg C Vg Vg

x
C Vg C Vg

−
=

−
. 

Then  

         ( )2
2 kd C Vg x

q
β

= − + .           (14) 

Now 2C can be predicted for other values of gV . 

The second method used to solve for the parameters 1 4C C−  is to build a least 

squares fitting routine in MATLAB to find values of 1 4C C−  that minimize the least 

squares fit of the model to the empirical data.   
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 The final method used to fit the STAT model to the data is to do a least squares fit 

to the data using boφ , tφ , dN  and tN  as the parameters.  As discussed in the next section, 

this will allow direct comparison between the STAT model and the Sathaiya TTT model. 

The second TAT theory considered was developed by Sathaiya and Karmalkar 

specifically to describe trap assisted tunneling currents through AlGaN/GaN 

heterojunctions [15,16].  They call their theory thermionic trap assisted tunneling (TTT), 

with ‘thermionic’ indicating the inclusion of thermally activated gate metal electrons in 

the model.  As with the STAT model, TTT also assumes traps at a single energy tφ  below 

the AlGaN conduction band uniformly distributed through the AlGaN layer and a 

triangular potential at the gate. They find that by including thermally activated electrons 

at low electric fields, there is a factor of ten increase in the predicted gI  over the current 

predicted by Houng et al. which did not include thermionic electrons.  This results in a 

better fit to empirical data. 

 The derivation of TTT is well presented in the Sathaiya paper.  A description of 

the derivation is presented here in order to compare it with the STAT model. 

 Sathaiya develops the TTT model based on tunneling probabilities 1P  and 

2_ triangleP  as shown in Figure 15. 
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Figure 15.  TTT tunneling diagram [18]. 

As in the STAT theory, tφ  is the difference in potential between the AlGaN conduction 

band and the traps and Bφ is the barrier height.  Fφ  is the amount by which the Schottky 

barrier is raised by the gate voltage (in this case, F thVφ = − ). 

 The TTT current is given by  

1

1 2_

1 1B F

t

t t
TTT

j FD triangle

AqC NI d
E f P P

φ φ

φ

φ
−+ ⎛ ⎞
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⎝ ⎠

∫ . 

Note that the integral is taken over energy instead of distance as it was in the STAT 

model.  These limits are equivalent to the STAT treatment because at the gate junction 

(x=0), tφ φ= , and at mx (where the metal Fermi level crosses the trap potential) 

B Fφ φ φ= + .  As noted in the discussion of the STAT model we assume that mx = d.  Also 

note that, as with the STAT model, the gate current predicted by the TTT model has a 

linear dependence on the density of traps ( tN ). 

 FDf  is the Fermi Dirac function for probability of electron occupation of an 

energy state at a given potential φ in the metal given by  
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 The tunneling probabilities at energy φ  are given by  
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 tC  is a trap energy dependent rate constant given by  
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With the device biased at the threshold voltage ( thV ), the electric field and band diagram 

are modeled as in Figure 16.  

 jE  is assumed to be constant due to the triangular approximation of the Schottky 

barrier and given by  

    

2

2
d

P

j

qN dV
E

d
ε

+
=  for g thV V≤ ,  

with 

    P g B C fbV V φ φ φ= − + −Δ −  

    dN =donor density in the AlGaN 

     ε  = permissivity of AlGaN. 
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Figure 16.  TTT model geometry and energy band diagram at thV [14]. 

  For negative gate voltages greater in magnitude than thV  the electric field 

does not increase beneath the gate because the excess voltage ( g thV V− ) drops laterally 

from the gate to the drain/source. 

 The effects of image force barrier lowering and AlGaN band gap reduction with 

temperature are incorporated in the model using 

0 1B B j T
q E Tφ φ γ γ
πε

= − −   

with   
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   1γ = image force barrier lowering constant, 

   Tγ =band gap reduction constant. 

 A fitted TTTI  is calculated by assuming values for the secondary parameters as 

given in the Appendix and extracting values for the primary parameters ( 0 , , ,B t t dN Nφ φ ).  

This is done by incrementally changing the values of the primary parameters until the 

lowest least squares fit to measured data is obtained.   

 A MATLAB based numerical integration routine was developed for this 

experiment based on the TTT model.  The TTT numerical integration routine was 

verified by reproducing a curve published in the Sathaiya paper using values for the 

primary parameters extracted by Sathaiya.  Sathaiya extracted these values for the 

primary parameters by fitting the TTT model to empirical data [16].   

Figure 17 presents an IV curve from the Sathaiya paper (calculated by him using 

primary parameters fitted to empirical data) and the IV curve produced by the numerical 

integration routine developed for this experiment.  Both IV curves are for ‘Device #1’ 

from the Sathaiya paper at 100K and 300K before (1) and after (2) plasma treatment. 
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Figure 17.  TTT model validation against empirical data [16] and  MATLAB 
algorithm calculation. (1) is measured before plasma treatment, and (2) is 
afterward. 

  

 The current predicted by the STAT model was compared with the current 

predicted by the TTT model.  The results are presented in Figure 18, with the temperature 

in the IV diagram set at 300K and the gate voltage in the lower diagram set at -4V.  The 
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values of the primary parameters used in the calculations for both models are listed in 

Table 3. 

 

Figure 18.  Comparison of TTT calculation with STAT calculation. 

 

Table 3.  Primary parameter values used for TTT and STAT model comparison. 

Primary 
parameter Values Units 

bφ  1.44 V 

tφ  .85 V 

dN  4.8x1024 3

donors
m  

tN  2x1022 3

traps
m
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 Both models produce results which are of the same order of magnitude.  The TTT 

model has a more exponential dependence on voltage and a smaller dependence on 

temperature.   

It was found that the value for 0τ in the STAT model which produced results 

which were most similar to the TTT model was 2.7x10-14 seconds.   

 Threshold Voltage.  For both the STAT and the TTT model the threshold voltage 

is given by 

2

2
d

th b c
AlGaN AlGaN

qN d dV σφ φ
ε ε

= − − −                (15) 

with 

           σ = sheet charge density at the heterojunction [8]. 

 This expression indicates that a change in Schottky barrier height or donor density 

will cause a change in thV .  This relation will used in the attempt to determining the cause 

of the increase in gI  after neutron irradiation. 

 Using the values in  

 allows us to quantify the expression for thV  for the HFETs used in this study.  The value 

for σ was incorrectly reported by Uhlman [8, p. 45] as 0.019 C/m2.  Uhlman used an 

interpolating formula based on the Al mole fraction in the AlGaN to calculate the sheet 

charge density.  Repeating his calculation identified the error that gave his result.  The 

correct calculated value, using Equation 4 in Uhlman’s thesis, is 0.00485 C/m2.  The 

sheet electron charge density for a .27 mole fraction AlGaN/GaN wafer from the same 

manufacturer (Cree) as the HEMT devices in this study was measured by Hogsed using 
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hall effect measurement.  Hogsed measured a value of  1.1x1013 electrons/cm2, which 

when divided by 1.6x10-19 C/electron gives the value of σ reported in Uhlman’s work.  

Hogsed’s measured value of σ  is assumed to be the best available value and is used for 

calculation. 

Table 4.  Values used for calculation of  thV . 

Variable Values  Units 

cφ  0.4 V 

AlGaNε  (9.365)(8.854x10-12) 
F
m

  

d 25x10-9 m 

σ  0.006875 2

C
m

 

 

Using these values results in the following expression for thV , 

    thV = bφ - (6.03x10-25)( dN )-2.5 V .     (16) 

 TTT dependence on bφ and tN .   In order to predict the change in IV and IT 

curves we should expect after neutron irradiation it is useful to observe the change in the 

TTT model IV and IT curve characteristics with changes in bφ and tN .  The baseline 

curves in Figure 19  are based on the values in Table 4 above.  Figure 19 indicates that 

either a decrease in  bφ (from 1.44 V to 1.34 V) or an increase in tN  (from 2.0x1022 to 

2.5x1022 3

traps
m

) will have the same qualitative result.  The IV curve bends more sharply 

and the IT curve is translated further down the graph without a noticeable change in 
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shape or tilt.  The lack of qualitative change in the IV or IT curves suggests that they may 

be of limited use in determining the cause of increased gI after irradiation.   

 

Figure 19.  Change in IV and IT due to change in bφ or tN . 

Sensitivity Analysis 

The sensitivity, S, of current to changes in the variables in each of the models was 

analyzed using the method developed by Petrosky [19], 

( )G

G

I y yS
I y

Δ Δ
= . 

The value of S indicates the relative importance of each of the variables in 

determining the current.  In addition, a high sensitivity of current to a given variable 

determines how precisely that variable must be measured during experiment in order to 
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provide useful results.  S is found by incrementally changing the value of one variable 

while holding the other variables constant.  The ranges of values used for each variable 

are indicated in the following discussion of my analysis of each model. 

TE Model.  The sensitivity of TEI  is given in Table 5. 

Table 5.  Sensitivity of TE model. 

Variable Range Considered S 

A 0.25 x 10-9  to 0.75 x 10-9 m2 1 

A* 
6 x 104 to 6 x 105 2 2

Amps
m K

 
1 

bφ  0.02 to 1.58 Volts 
(For T =77 to 300 K) 

-6 to -12,000 

T 77 to 300 K 
(For bφ =0.02 to 1.58 Volts) 

15 to 32 

 

The sensitivity of bφ  and T show a great deal of interdependence.  In the low 

temperature regime, with an expected bφ of approximately 1.33 V, the current will have 

the greatest dependence on bφ . 

 FE Model.  The sensitivity of FEI  is given in Table 6.  FEI  has the greatest 

dependence on bφ . The dependence of S( bφ ) on temperature and S(T) on bφ  are similar 

to the TE model. 
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Table 6.  Sensitivity of FE model. 

Variable Range Considered S 

A 0.25 x10-9  to 0.75x10-9 m2 1 

A* 
6 x 104 to 6 x 105 2 2

Amps
m K

 
1 

m* 0.2 to 0.35 me -0.06 (T=77K) 

0.07 (T=150 to 300 K)

Nd 1011 to 1021 donors/cm3 0.45 to 1.1 

sε  8.27 to 8.31 x 10-11 C
mV

,  

corresponding to an Al mole fraction between
0.22 and 0.32. 

0.07 to .1 

bφ  0.2 to 1.2 Volts -125 to -4x107 

T 77 to 300 K 10 to 27 
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STAT and TTT Models.  The sensitivity of TATI  is given in  

 under the conditions given in Table 7. 

Table 7.  Sensitivity of STAT and TTT models. 

Variable STAT TTT

bφ  -53.0 -10.4

tφ  10.0 -6.0 

dN  1.9 2.2 

Nt 1.0 1.0 

T 3.0 1.0 

Vg 2.5 2.9 

 

The greater dependence on T in the STAT model is apparent in Figure 18, as is 

the smaller dependence on gV compared with the TTT model.  gI increases with 

increasing tφ  in the STAT model and decreases with increasing tφ  in the TTT model.  

This is an unexpected result and may be due to the simplifying assumption that mx  is 

equal to the thickness of the AlGaN in the STAT model.  Both models show a linear 

dependence on trap density, as expected. 
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III. Equipment and Procedure 

Equipment 

The neutron irradiation experiments took place at the Ohio State University 

Research Reactor (OSURR).  The OSURR is an enriched U235 reactor surrounded by a 20 

foot deep pool of water.  The pool provides cooling, neutron moderation, and gamma 

shielding.  Roley’s results were obtained at the same reactor but he had great difficulty 

controlling temperature and achieving safe reactor operation because he was working 

with the reactor’s horizontal ‘rabbit tube’ and horizontal beam port.  In order to avoid this 

problem a vertical irradiation chamber was built and installed for this experiment.  The 

basic configuration is shown in Figure 20. 

 

Figure 20.  Configuration of OSURR reactor and irradiation chamber. 
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Irradiation Chamber.  The irradiation chamber consisted of a 20.5’ long, 7” 

outside diameter 6061 T6 aluminum tube with walls .125” thick.  Approximately 350 

pounds of soft steel weights were machined to provide negative buoyancy. 

 

 

Figure 21.  Irradiation tube and buoyancy weights. 

Irradiation 
chamber 

Buoyancy 
weights 

Wire holder 
for flux 

intensity test 
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The irradiation chamber was lowered into the reactor pool using an overhead 

crane (Figure 22).  Weights were added until the chamber had a negative buoyancy of 

approximately 15 pounds.  The chamber was moved into contact with the reactor with the 

top of the chamber tube against a bracket during each experiment.  This ensured that the 

fluence through the chamber was the same for each irradiation.  Between experiments the 

chamber tube was moved to the end of the pool furthest from the reactor for storage. 

 

 

Figure 22.  Installing irradiation chamber. 

Irradiation 
chamber 

being 
lowered
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Figure 23.  Irradiation tube positioning bracket. 

 

Figure 24.  Irradiation tube placement against reactor. 

Safety cap 

Positioning 
bracket 

Irradiation 
chamber 

Rabbit 
tube 
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The top cap was designed to reduce the streaming radiation coming up through 

the irradiation chamber.  It consists of, from bottom to top, 5 one-inch layers of high 

density polyethylene, 0.025” of cadmium, and approximately 0.75” CerroBend Aim 70 

(Figure 26).  The polyethylene has a high hydrogen content and moderates neutrons.  The 

cadmium absorbs the moderated neutrons.  The CerroBend contains high atomic mass 

material (mostly bismuth with some lead, cadmium and tin) and absorbs gamma and x-

rays.  The holes in the cap and shielding materials shown in Figure 25 and Figure 26 were 

intended to allow the cryostat to be refilled with liquid nitrogen and to allow data to be 

taken without removing the cryostat from the irradiation tube.  This feature was not used 

in this research but is available for future work. 

 

Figure 25.  Safety cap without moderators or absorbers. 

Safety cap 
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Figure 26.  Safety cap moderators and absorbers. 

 Cryostat.  A cryostat was designed for this experiment.  A previous cryostat, used 

by Roley, consisted of a glass dewar enclosed in an aluminum housing.  The cryostat laid 

on its side in the rabbit tube during the experiment.  The dewar broke during irradiation, 

perhaps because of the difference in thermal expansion between the glass and the 

aluminum housing, and liquid nitrogen was released in the rabbit tube.  In order to avoid 

this danger an all aluminum cryostat was designed. 

The cryostat consists of outer and inner cylinders between which a vacuum was 

maintained in order to prolong the life of the liquid nitrogen coolant (Figure 27).   

The outer cylinder was covered in Cd to absorb thermal neutrons.  The inner 

cylinder acts as an aluminum dewar containing liquid nitrogen at the bottom of which 

was attached a fin to which are attached the HFETs and temperature sensor.  In the end of 

the fin a hole was bored to accept a resistive heater as a press fit.  A sheet of lead was 

placed next to the fin to shield the HFETs from gammas in order to reduce photocurrent.  

High density 
polyethelene 

neutron 
moderators 

CerroBend 
gamma 

absorbers 
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The top of the outer cylinder contains pass-throughs for coaxial cable connectors and fill 

and vent ports for the dewar.  The cylinders and as much of the hardware as possible 

were made of 6061-T6 aluminum which is low in elements with large activation cross 

sections (Cr, Cu, Fe, Mn, Zn). 

 

Figure 27.  Cryostat assembly drawing.  Measurements in inches. 
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Figure 28.  Cryostat body and top cap, showing ports. 

A rough thermodynamic calculation predicted that the HFETs would be 

maintained close to liquid nitrogen temperature for over two hours if a vacuum could be 

maintained in the cryostat.  However, vacuum could not be maintained because of 

imprecision in the placement of the liquid nitrogen fill and vent ports.  The ports were 

Coaxial 
connections

Vacuum 
port 

LiN fill 
port 
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placed at a slight angle to each other which made it impossible to maintain a vacuum 

tight seal when liquid nitrogen was added.  The lifetime of the liquid nitrogen was limited 

to one hour and some data was taken using the device.  Most data was taken using a 

simpler apparatus which will be described next. 

 When the aluminum cryostat proved to be ineffective, a simpler method was 

developed.  The devices were affixed to aluminum fins which were held upright in a glass 

dewar filled with liquid nitrogen.  Thermocouple temperature sensors were attached to 

the fins through the end of which resistive heaters had been inserted (Figure 29).  A 

portion of the fin below the devices was milled to approximately 0.03” to reduce the rate 

at which heat was conducted away from the devices and enable the 5 watt heaters to 

provide a greater temperature range.  The devices, sensors, and heaters were surrounded 

in Styrofoam and wrapped in fabric tape to reduce temperature change due to convection.  

The fins were placed upright in a glass dewar of liquid nitrogen, with the devices at the 

top.  The dewar and devices were then wrapped in cadmium and lowered into the 

irradiation chamber. 
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Figure 29.  Aluminum fin, heater and temperature sensor. 

 Data was taken using a laptop computer running LabView 7.0 which controlled 

two Keithly 237 source measurement units (SMUs) and a LakeShore 331 autotuning 

temperature controller (ATC) through a general purpose interface bus (GPIB) (Figure 

30). 

 

Figure 30.  Laptop and measurement equipment. 
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Equipment Issues 

After all data was taken it was discovered that SMU #17 had a defect that caused 

it to source voltage incorrectly.  This defect was not identified during the equipment 

calibration conducted before the experiment because the SMU performance was not 

tested at a high enough current.  The SMUs have three separate circuits for sourcing 

voltage and reading current. Each circuit is designed to give the best possible precision in 

their respective current ranges.  These are identified as the 0.1, 1 and 10 mA ranges in the 

users manual.  The SMUs were operated in ‘autoranging’ mode which caused them to 

automatically switch from one range circuit to another when the measured current 

crossed the range threshold.  Using the 1 mA range in SMU #17 sources a voltage which 

is higher by a factor of approximately 1.60 compared to the voltage specified on the front 

panel.  An example of the resulting IV curve, for a 767 ohm resistor, is shown in Figure 

31. 

 

Figure 31.  Resistor IV curves from SMU #16 and SMU #17 . 
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Both SMUs produced R2 values of over 9.99999 for the transistor data shown in 

the figures. The slope of the lines in the 0.1 mA and 10 mA ranges indicate that SMU #17 

agrees with SMU #16 to within less than 0.2%.  The slope of the 1.0 mA range of SMU 

#17 indicates a resistance of 473.5 Ohms instead of the 767.2 Ohms indicated by SMU 

#16 and the 0.1mA and 10mA ranges of SMU #17.  For simple devices like transistors 

this IV data could be corrected.  However, the IV response of HFETs is much more 

complex than that for a resistor and in most cases data was invalidated because the 

voltage desired (i.e. -4.0 V, before thV ) was not the voltage sourced (-4.0 x 1.60 = -6.40 

V, beyond thV ).  The use of data taken with SMU #17 is addressed in the results section. 

Procedure 

 The procedure used was to pre-characterize the HFET devices, irradiate them with 

neutrons at varying fluence levels, and measure the temperature dependent gate current at 

various negative gate voltages.  The voltage and temperature dependence of the gate 

current was then analyzed to discover the mechanism responsible for producing the gate 

current. 

 HFET preparation.  The HFETs were grown by Cree, Inc using metal-organic 

vapor-phase epitaxy [8].  The HFETs were cut from the wafer and affixed to open faced 

mounts by the Air Force Research Lab (AFRL/SNDD) at Wright Patterson Air Force 

Base, Ohio.   

 Some devices (A15, A16, A21, A23 A1, A14) had their surfaces cleaned using 

acetone.  The procedure used was to place several drops of acetone on the open face of 

the HFET using a syringe.  The acetone was allowed to remain on the HFET for 20 
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minutes, during which time additional acetone was added to keep the surface covered.  

After 20 minutes the excess acetone was removed and the HFET was dried by fanning air 

against it.   Many of the devices were damaged by the acetone.  Further investigation 

revealed that the procedure used by AFRL/SNDD called for an 8 second cleaning.  As a 

result of the long contact with acetone the transistor action of the HFETs was destroyed, 

although the IV and IT characteristics of the gate current was only slightly changed.  

Only HFET A16 produced usable data. 

 It was discovered that the HFETs were very sensitive to current surges produced 

by static electricity.  Several devices were destroyed because they were stored in a plastic 

bag with their leads exposed.  Storing them separately in plastic bottles with screw on lids 

eliminated the problem. 

Pre-characterization.  The voltage and temperature dependent gate currents of 

each device were measured using the same equipment, cables, and configuration used for 

the irradiation experiments.  The intent of pre-characterization was to ensure that the 

equipment was able to take data with the required degree of precision and to record pre- 

irradiation IV and IT curves for analysis and comparison after irradiation. 

The voltage dependence of the gate current was measured using an SMU.  The 

gate was connected to the ‘output high’ terminal and the source and drain were tied 

together and connected to ground.  The LabView program then took an IV curve between 

0 and -6 V using the SMU sweep function.  The current recorded at each voltage was the 

average of 32 measurements.  IV curves were taken for all HFETs at room temperature 
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and at various temperatures between 77K and 300K as controlled and measured by the 

Lakeshore ATC. 

The temperature dependence of the gate current was measured using the same 

configuration as for voltage dependence.  In addition, the HFETs were affixed to the end 

of an aluminum fin (Figure 29) for either the aluminum cryostat or the glass dewar 

method.  Once the temperature sensor indicated that the temperature had stabilized at the 

lowest achievable temperature, which was normally around 85K, the LabView program 

was used to control the Lakeshore temperature control unit and raise the temperature.  

The Lakeshore was directed to raise the temperature by increments of 1K.  The LabView 

program caused the SMU to set voltages between -1.0 and -4.0 V (with 0.5 V increments) 

and measure gate current when the temperature sensor indicated a temperature within 

0.25K of the goal temperature.   The temperature control unit frequently maintained the 

temperature to within a few hundredths of a degree K of the goal temperature.  LabView 

then wrote the data to an Excel file and directed the temperature control unit to raise the 

temperature to the next setting.  For some HFETs IV curves were taken at intervals of 

30K in order to examine the temperature dependence of the ‘tail’ beyond the threshold 

voltage cutoff. 

Transistor curves were taken on all HFETs at room temperature to ensure that 

they were working correctly.  The gate of each HFET was connected to the ‘output high’ 

of the top SMU in Figure 30.  The source of the HFET was connected to the ‘output high’ 

of the bottom SMU.   The ground of both the top and bottom SMUs were connected to 

the HFET drain.  The Labview program caused the top SMU to set the gate voltage (0.0 
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to 4.0 V with 1.0 V increments) while the bottom SMU swept a voltage between 0.0 and 

4.0 V (0.1 V increments) and measured source to drain current. 

Irradiation.  HFETs were held at approximately 85K in the cryostat (or dewar) 

and irradiated to varying fluence levels in the irradiation chamber.  Within 15 minutes of 

irradiation the HFETs were removed from the chamber.  HFETs tested using the cryostat 

were measured by connecting coaxial cables to the cryostat.  HFETs connected to 

aluminum fins and tested using the glass dewar were measured by removing the fins from 

the dewar and immediately placing them in another dewar of liquid nitrogen.  This was 

done in order to reduce the operator’s exposure to the gammas produced by activation of 

the dewar (primarily the silver).  Connections were made to the HFETs using coaxial-to-

alligator-clip connections.  IV and IT data was then taken using the same method used for 

pre-characterization. 

Dosimetry 

The flux profile at the bottom of the irradiation chamber was measured by 

irradiating a copper wire, held vertically in the bottom of the chamber by the device in 

Figure 21, and measuring the activity of segments of the wire at one inch intervals.  The 

flux profile is given in Figure 32. 
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Figure 32.  Irradiation chamber neutron flux profile. 

A distance of 13 inches from the bottom of the tube was selected in order to 

maximize the neutron flux.  All irradiations were made with devices at this position. 

The neutron spectrum was measured by activation analysis.  Gold, copper and 

cobalt wires were irradiated at the position where the devices were to be attached on the 

fin in the cryostat.  The cryostat was wrapped in cadmium and placed at the same 

position in the irradiation chamber that would be used for the experiment.  One set of 

wires was bare and the other set was enclosed in cadmium.  The reactor was run for one 

hour at 50kW.  The wires were removed and their activities were counted using a high 

purity germanium gamma detector. 
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Figure 33.  Neutron spectrum inside the cryostat. 

 At 450kW power, a neutron flux of 3.07x1010 n/cm2-s  of  >0.5 MeV neutrons 

was measured.  Neutron flux is linearly proportional to reactor power.  The fluence used 

in this experiment is given in Figure 33.  Because of uncertainty in the measurement of 

the spectrum the fluence has an error of greater than 25%.   For the purpose of this 

experiment, however, what is important is the reproducibility of the neutron damage 

effect on the HFETs for each irradiation, which is estimated to have an error less than 

10%, primarily due to uncertainty in the orientation of the HFETs in the irradiation 

chamber. 

 The fluence used in this experiment, based on times of irradiation and reactor 

power, are at Table 8. 
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Table 8.  Calculated fluence of >0.5 MeV neutrons. 
Power 

(kW) 

Time 

(minutes)

Fluence (n/cm2) 

(+/- 25%) 

1 10 4.1x1010 

10 10 4.1x1011 

40 10 1.6x1012 
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V.  Analysis and Results 

Chapter Overview 

 The uncertainty in measurement is quantified and the pre-irradiation IV and IT 

data is presented.  The TE, TFE and surface leakage models are considered and the STAT 

and TTT models are shown to give the best fit to data.  The TTT model is used to 

investigate the increase in current after neutron irradiation. 

Uncertainty 

 The Keithly Source Measure Units 237 (SMUs) specifications state that they have 

less than a  0.04% error in both sourced voltage and measured current.  The 

reproducibility of measurements on the HFET devices was tested by measuring IV curves 

of gate current.  Ten IV curves were taken by sourcing voltages between 0.0 and -8.0 V at 

0.1V intervals and measuring current at each voltage, for a total of 800 data points.  The 

SMUs were powered down between measurements and the connections between the 

SMUs and the HFETs were disconnected and reconnected.  The maximum uncertainty 

was ± 3%, which is taken to be the uncertainty in current measurement for the following 

data. 

 The Lakeshore 331 Autotuning Temperature Controller specifications using a 

thermocouple vary between ± 406mK at 4.2K and ± 110mK at 300K.  For measurements 

in which the temperature was held static, such as IV measurements, the Lakeshore unit 

indicated that the temperature varied by less than 0.1K.  During IT measurement the 

LabView program directed the SMUs to take data when the temperature was within 
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0.25K of the target temperature.  Therefore the known uncertainty in temperature is 

± 0.1K for IV measurements and ± 0.25K for IT measurements.  There is a further 

unknown uncertainty in temperature measurement because of temperature gradients 

across the thickness of the aluminum fin, and the possibility that the HFETs were 

receiving thermal loading from the outside environment through the insulating package.  

An attempt was made to minimize these effects by varying temperature slowly and by 

maintaining a low temperature environment around the insulating package by using a 

large glass dewar during measurement.  The large dewar permitted the insulating package 

to remain below the top of the dewar in a cold nitrogen atmosphere. 

Precharacterization IV and IT curves 

 Two sets of HFETs were used in this study.  The first set, from which only the 

data from device A16 is presented, was fabricated from the section of the Cree wafer 

identified as JS01A by Uhlman [6], at the same time as Uhlman and Roley’s HFETs were 

fabricated.  The second set of HFETs, identified as G1, G2, G3 and G4, were cut from the 

section of the Cree wafer identified as JS01B approximately three weeks before this work 

took place.  The G1-G4 set was mounted in the same type of package and the gate, source 

and drain were connected to the package in the same manner as the HFETs used by 

Uhlman and Roley.   

 The first set of HFETs , which originally included five HFETs, had an almost 

linear gate current dependence on temperature (IT curves).  The second set showed much 

more complex behavior in the IT curves.  Both sets showed similar behavior in the IV 

curves.  The cause for the differing characteristics between the sets is unknown, but it is 
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suspected that the portion of the wafer from which the second set was taken had 

undergone a passivation process.  Because of the simpler behavior of the first set of 

HFETs, device A16 will be used to investigate the mechanism responsible for gate 

current and the mechanism responsible for increased gate current after irradiation. 

Figure 34 shows pre irradiation IV and IT curves for device A16, which are 

typical of the first set of devices.  The voltage dependence and temperature dependence 

clearly resemble the predictions of the STAT and TTT models. 

 

Figure 34.  HFET A16 pre irradiation IV and IT data. 

 Attempts to fit the TE and TFE models reveal that no realistic combination of 

variables results in curves that resemble the data, which is consistent with the results 

demonstrated by Uhlman [6].  Furthermore, IV data taken beyond the assumed threshold 

voltage shows a distinctive change in character at what appears to be the threshold 
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voltage.  This is identified in Figure 35 as approximately 4.3 V for HFET A16.  The 

definition of threshold voltage in the TTT and STAT models requires that the gate current 

saturate.  It is evident from Figure 35 that the gate current does not saturate, but instead 

continues to rise as though a resistive mechanism were added to the expected saturation 

current (1.5x10-4 A at 87K, 2.5x10-4  A at 270K).   There is insufficient data to determine 

whether the point where the gate current stops following the trap assisted tunneling 

model and takes on a resistive character is truly the threshold voltage. Furthermore, 

assuming the break in the curve is thV ,  the break is not sharp enough to indicate the value 

of thV  unambiguously.   Measuring  thV  by setting a source to drain voltage and 

increasing the magnitude of the gate voltage to cut off the source to drain current also 

produces a curve which gives an ambiguous value for thV .  When measured in this 

manner, the cutoff voltage is identified as the voltage ‘where the source to drain current 

becomes negligible’.   This is ambiguous in that the amount of current is not defined.  

The question could be settled by specifying an ad hoc value for the source to drain 

current.  However, as no further data is available in this research effort, the break in the 

gate current IV curves will be assumed to represent thV , and the value of  thV  will be 

estimated by eye. 

The presence of the (assumed) saturation of the gate current is predicted by the 

architecture of the HFETs.  The unexpected appearance of a resistive ‘tail’ beyond the 

threshold voltage suggests surface leakage.  However, if the mechanism responsible for 

the increased current beyond thV  is due to a resistive term (such as surface leakage), then 

we would expect that it would also contribute current at lower values of gV .  The data 
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indicates that this is not the case, because the resistive term would contribute much more 

current that the data indicates at low values of gV .  

 

Figure 35.  HFET A16 pre irradiation IV curve. 

 The temperature dependence of the ‘tail’ is also an interesting feature (Figure 36).  

In the case of HFET A16, the slope remained almost constant from 87K to 270K, and 

then decreased with increasing temperature indicating that the unknown mechanism 

became more resistive as temperature increased.   
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Figure 36.  HFET beyond threshold resistive mechanism temperature dependence. 

Fitting STAT model to A16 pre irradiation data. 

 Using the STAT fitting methods discussed in the theory section results in a good 

qualitative fit to the measured data.  The values of C1-C4 in Table 9 are calculated using 

formulas (10), (11) and (12) and the data from device A16. 

 

Fit  -4V  -3.5V  -3V 

C1 -0.00002225 -0.00001469 -0.00000989 

C2 -0.01243422 -0.00849719 -0.00596698 

C3 8.82918543 8.82918543 8.82918543 

C4 -0.40000000 -0.40000000 -0.40000000 

Table 9.  Extracted STAT model parameters (C1-C4). 
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 Using 1C and 2C  at gV  = -4V and -3.5V enables prediction of the value of C1 and 

C2 at gV  = -3V using formula (13) and (14).  

1C   variation with gV  2C variation with gV  

x  4.973 x  5.079 

0

tAN kd
τ

−
 

-2.164E-05 

2 kd
q
β

 
-1.342E-02 

( )1 3C Vg V= −  -1.097E-05 ( )1 3C Vg V= − -6.454E-3 

Table 10.  Predicted STAT C1 and C2 values at Vg = -3.0V. 

Using the predicted values of C1and C2 at  Vg = -3.0V results in good fit to empirical 

data, as shown in Table 10 and Figure 37. 
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Figure 37.  STAT model fit to HFET A16 using both fitted and predicted C1-C4. 

The second method used to fit the STAT model to data is a least squares routine 

in MATLAB.  The routine was only able to fit at one value of gV on the IT plot because 

the fitting routine treats C1-C4 as constants and does not account for the C1 and C2 

dependence on field (and on Vg).  The result is shown in Figure 38. 



 

77 

 

Figure 38.  STAT model fit to HFET A16 using least squares. 

Fitting TTT model to A16 pre irradiation data. 

 Fitting with the TTT model results in a greatly improved fit to both the IV curves 

at multiple temperatures and to IT curves at multiple values of Vg (Figure 39).  Note that 

the values of the primary TTT model parameters bφ , tφ , dN  and tN  presented on the TTT 

model figures are not intended as accurate measurements of the physical values of those 

variables.  Instead, these values demonstrate that one combination (possibly out of many 

combinations) of physically reasonable values of those four primary parameters provides 

a good fit to the measured data.  If it becomes possible to measure a given parameter, 

such as bφ , independently, then the possible values of the other parameters will be 

constrained.  The ability of the TTT model to predict gI with more constraint on the 
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values of the primary parameters will indicate how completely the TTT model describes 

the physics of gI .  One such constraint, discussed earlier, is the relation between thV , bφ  

and dN  (Equation 16). 

 

Figure 39.  TTT model fit to HFET A16 pre irradiation data. 

Change in Vth with irradiation. 

 The magnitude of the voltage at which the trap assisted tunneling behavior of the 

IV curve changed to a resistive behavior appeared to increase after irradiation in all cases.  

For purposes of this study this is assumed to indicate an increase in thV , although that is 

certainly not the only interpretation.  The change in behavior for device A16 is shown in 

Figure 40. 
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Figure 40.  HFET A16 0.0, 4x1011 and 1.2x1012 fluence IV curves. 

Increased gI  with irradiation. 

 Irradiating the HFETs with high energy (>0.5 MeV) neutrons resulted in 

increased gate current, consistent with the effect previously reported [7,8].  The increase 

in gI saturates after a fluence of approximately 1012 n/cm2 with an approximately 30% 

increase in magnitude of current, which is also consistent with previous results [8]. 

 HFET A16 was irradiated twice, first with a fluence of 4x1011 n/cm2 and second 

with 1.2x1012 n/cm2 (Figure 41).  The gate current increased by approximately 30% after 

the first irradiation and showed less temperature dependence than the pre irradiation 

curve.  The gate current was reduced after the second irradiation and shows a slightly 

greater temperature dependence than the pre irradiation curve until 260K.  After 260K the 

current becomes constant with temperature, which may indicate an annealing process. 
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Figure 41.  HFET A16 pre and post irradiation IT curves. 

 The TTT model was used to fit the post irradiation data in an attempt to determine 

whether an irradiation induced increase in tN  or decrease in bφ , or combination of the 

two, was responsible for the increase in gate current.  The TTT model was fit beginning 

with pre irradiation values for the primary parameters ( bφ , tφ , dN , tN ) and attempting to 

achieve the best least squares fit by varying single parameters, combinations of 

parameters, or constraining the values of bφ and dN  using Equation 16. 

 The pre irradiation data was fit by constraining the values of bφ and dN  using 

Equation 16 and using -4.3V as the value of thV .  This resulting in the fit presented in 

Figure 42.  These pre-irradiation values of the primary parameters were used as a 

baseline in the investigation that follows. 

Vg = -4.0 V 
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Figure 42.  TTT model fit of A16 pre irradiation data with constraints. 

Fitting TTT to HFET A16 4x1011 fluence data. 

Fitting the TTT model to 4x1011 fluence data by beginning with the baseline 

parameters values and allowing all parameters to vary resulted in the fit shown in Figure 

43.  Although this is a good fit to the data in the figure as shown by a low sigma 

(6.03x10-9 A), the fit would be very poor at higher temperatures because gI is expected to 

increase at a rate similar to the pre irradiation data while the model predicts an almost 

constant current at temperatures above 125K. 
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Figure 43.  TTT model fit to A16 4x1011 data, all parameters allowed to vary. 

Varying tN  only, in an attempt to model the increase in gate current as being due 

to an increase in trap density only, results in the fit shown in Figure 44.  The TTT model 

predicts a greater temperature dependence than was observed.   
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Figure 44.  TTT model fit to A16 4x1011 data, Nt allowed to vary. 

 

Varying bφ  gives the result in Figure 45.  The model predicts much less 

temperature dependence that observed, and these parameters would result in a very poor 

fit at higher temperatures. 
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Figure 45.  TTT model fit to A16 4x1011 data, bφ allowed to vary. 

 It does not appear likely that trap assisted tunneling is the primary mechanism 

responsible for the increase in gI after the initial, 4x1011 n/cm2 irradiation of HFET A16.  

It seems unlikely that all four of the parameters in the TTT model changed from the pre-

irradiation fitting values after the first irradiation but, as we shall see, an increase in tN  

only is sufficient to explain the change after the second (1.2x1012) irradiation.  One 

explanation proposed to account for the decreased dependence on temperature after the  

4x1011 fluence is that a resistive mechanism based on complexes was created.   

Fitting TTT to HFET A16 1.2x1012 fluence data. 

Allowing all parameters in the TTT model to vary, starting with the baseline 

values, resulted in a fit of 9.33x10-9 A shown in Figure 46.  This is not a reasonable 
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explanation for the increase in current because it is unlikely that all of the parameters 

would have been changed by irradiation. 

 

Figure 46.  TTT model fit to A16 1.2x1012 data, all parameters allowed to vary. 

Starting with baseline parameters and varying tN  only resulted in a very good fit 

to the data, shown in Figure 47, with a sigma of 5.63x10-9 A.  This is a better fit than was 

obtained by allowing all parameters to vary in Figure 46.  The fit in Figure 46 is at a 

‘local minima’ and is consistent with how the MatLab fitting routine functions. 

The improved fit in Figure 47 supports the hypothesis that the increase in current 

after irradiation is due to an increase in trap density.  It is assumed that the traps created 

are at approximately the same energy as those responsible for the pre irradiation TAT 

current. 
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Figure 47.  TTT model fit to A16 1.2x1012 data, tN  allowed to vary. 

The traps created during irradiation would not necessarily be at the same energy 

as the traps responsible for the pre irradiation TAT current.  To test the hypothesis that 

both the trap density and the trap energy changed during irradiation the model was fitted 

by varying tN  and tφ .  The result, shown in Figure 48, supports this hypothesis and 

suggests that both tN  and tφ  increased.  The sigma is reduced from 5.63x10-9 A for 

varying tN  to 1.77x10-9 A for varying both tN  and tφ .  Research by Hogsed with 1MeV 

electrons and deep level transient spectroscopy showed that traps were created at 0.15, 

0.21, 0.26 and 0.33 eV below the conduction band in AlGaN.  The 0.15, 0.21 and 0.26 eV 

traps were found both in AlGaN and in GaN.  The 0.33 eV trap was the most prominent 

radiation induced defect and was found only in the AlGaN.  These traps are at too low an 
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energy to explain the increase in the effective trap energy in the TTT model (from 

0.89631 pre-irradiation to 0.90282 V) after neutron irradiation.  Other researchers, such 

as McCluskey, et. al., have demonstrated the presence of deep traps which could explain 

this proposed increase in trap energy.  McClusky et. al. found a trap at 1.3 eV below the 

conduction band which they contribute to an oxygen DX center [22]. 

 

Figure 48. TTT model fit to A16 1.2x1012 data, tN  and tφ  allowed to vary. 

A second hypothesis, that a change in bφ and dN  is responsible for the change in 

current, is tested by varying bφ and dN with thV =  -4.7V under the constraint of equation 

16.  This gives the result in Figure 49 with a sigma of 2.74x10-8 A.  This fit was only 

possible if bφ increased, which is not consistent with the hypothesis that a decrease in 

bφ due to increased donor density was responsible for the increase in gate current. 
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Figure 49.  TTT model fit to A16 1.2x1012 data, bφ and dN  constrained. 

We could speculate that a mechanism caused a reduction in Schottky barrier 

height at the gate without requiring a change in dN .  Reducing bφ without a change in dN  

results in a poorer fit to the data (a sigma of 4.03x10-8 A), as shown in Figure 50.  

Furthermore, there is a large change in the voltage dependence at higher temperatures.  

This is a poor fit to the data and suggests that a change in bφ only is not responsible for 

the increase in gate current. 
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Figure 50. TTT model fit to A16 1.2x1012 data, bφ unconstrained. 

 Finally, a change in dN  without a change in the other parameters is modeled to 

explain the increase in gate current.  The fit (5.00x10-9 A) is better than the fit obtained 

by allowing only tN to vary (5.63x10-9 A, Figure 47) but not as good a fit as when both 

tN and tφ  were allowed to vary (1.77x10-9, Figure 48).  Using Equation 16, an increase in 

dN  from 5.169x1024 to 5.472x1024 donors/m3 would increase the magnitude of thV  from  

-4.30 V to -4.48 V.  This is consistent with the apparent measured increase in the 

magnitude of thV  shown in Figure 40. 



 

90 

 

Figure 51.  TTT model fit to A16 1.2x1012 data, dN allowed to vary. 

G1, G2, G3 and G4 data. 

As discussed previously, HFETs G1-G4 were cut from a different section of the 

Cree wafer than the HFETs studied by Uhlman and Roley.  Although they were mounted 

to the transistor package by the same lab and connected in the same way, they exhibit 

much more complex behavior than HFET A16 and the HFETs studied by Uhlman and 

Roley.  While we can make qualitative comparisons among HFETs G1-G4 and between 

G1-G4 and A16, it is not valid to model them using the TTT model because there are 

clearly other mechanisms at work than trap assisted tunneling.  These HFETs cannot be 

modeled using TTT unless these other mechanisms are identified and their contributions 

are eliminated. 
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IV and IT curves for each HFET were taken before irradiation and then at 

fluences of 4x1010, 8x1010, 4.8x1011 and 8.8x1011 n/cm2.  The procedure at each fluence 

was to measure gate current using the LabView program between approximately 85K and 

120K and then measure gate current again while cooling the HFETs by 5K increments to 

verify the results. 

HFETs G1 and G2 were mounted together on an aluminum fin, as were HFETs 

G3 and G4.  The data for HFETs G1 and G3 was taken using SMU #16.  The data for 

HFETs G2 and G4 was taken with SMU #17.  As discussed in the procedures section, 

SMU#17 had a defect which was not discovered until after the experiment.  The data 

below has been corrected except where noted. 

 

Figure 52.  HFET G1 pre irradiation IV data. 

The IV behavior of HFET G1 is qualitatively the same as A16, including the 

presence of a resistive contribution to current beyond thV  which becomes more resistive 
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(contributes less current per volt) at higher temperatures.  An unexpected feature is that 

less, instead of more, current is observed at higher temperatures.  This feature will also be 

observed in the IT data. 

 

Figure 53.  HFET G1 8.8x1011 fluence IV data. 

 As was the case with A16, HFET G1 shows an apparent increase in thV  after 

irradiation (Figure 53). 
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Figure 54.  HFET G1 pre and post irradiation IT data. 

The complex pre- and post-irradiation IT behavior of HFET G1 is apparent in 

Figure 54.  The curve appears linear between 100K and 140K and between170K and 

260K.  The mechanism responsible for the decrease in current between 140K and 160K, 

and between 260K and 300K, is unknown. 

 After the first irradiation (4x1010 n/cm2) the gate current increased nearly 10% 

and appears almost constant with temperature.  The second irradiation (to a total of 

8x1010 n/cm2) increased the current to approximately 15% above the pre irradiation 

values between 80K and 95K.  At 95K there appears to be an annealing mechanism that 

reduces the current.  Between 95K and 120K the curve has approximately the same slope 

as the pre irradiation IT curve and could be explained using the TTT model.  The third 

irradiation (to a total of 4.8x1011 n/cm2) increased the current to 20% over the pre 

irradiation values.  At 105K the current is suddenly reduced, after which it follows a 



 

94 

similar slope to the pre irradiation IT curve.  The final irradiation (to a total of 8.8x1011 

n/cm2) produced an IT curve that was nearly linear with temperature between 90K and 

120K.  When the device had cooled to 115K another set of data was taken to 300K.  The 

curve had the same shape as the pre irradiation curve until 170K when annealing appears 

to have taken place and the current showed less than a 5% increase over pre irradiation 

values.  Beyond 250K no increase in current is observed. 

 

Figure 55.  HFET G2 pre irradiation IV data. 

 The IV character of HFET G2 is qualitatively the same as for G1, including the 

unexpected reduction in current with temperature which will also be observed on the IT 

curve.  The absolute magnitude of the current in Figure 55, and the shape of the curve, is 

not correct because of the defect in SMU #17.  Therefore the data should be viewed only 

qualitatively.   
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Figure 56.  HFET G2 pre irradiation IV data extracted from IT data. 

 

Figure 57.  HFET G2 pre irradiation and 8.8x1011 IV data. 
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The change in thV , if any, is indeterminate from the pre and post irradiation data.  

The post irradiation IV curve shows an increased current at low voltages that is greater 

than would be expected from trap assisted tunneling alone.  This feature was not present 

in the pre irradiation data. 

 

 

Figure 58.  HFET G2 pre and post irradiation IT data. 

 The pre irradiation IT curve (Figure 58) is much less complex than that of HFET 

G1.  IT appears qualitatively similar to the IT curve of A16 from 90K to 200K.  Beyond 

200K the current decreases in a way that is not compatible with the trap assisted 

tunneling model.  Because of the defect in SMU #17, the voltage sourced when the 

measured gate current went beyond 0.1mA (at approximately 120K) was high by a factor 

of 1.60.  This put gV  at approximately -6.4V instead of the desired -4.0V. To correct for 
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this the data was moved ‘by eye’ until it appeared to be in line with the data taken below 

0.1 mA.  The data below 0.1 mA was taken using the 0.1 mA circuit in SMU #17, which 

was working correctly.  Therefore the only conclusion that can be drawn from HFET G2 

is that the magnitude of the current increased after irradiation and that the IT curve 

roughly followed the shape of the pre irradiation curve. 

 

 

Figure 59.  HFET G3 pre irradiation IV data. 

 HFET G3 (Figure 59) does not show the temperature dependent resistive 

contribution beyond thV  that was observed in A16, G1 and G2.  The temperature 

dependence of the current is qualitatively similar to A16 with higher current at higher 

temperatures. 
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Figure 60.   HFET G3 pre irradiation and 8.8x1011 IV data. 

The inflection in the IV curve in Figure 60, assumed to represent thV , increases 

after irradiation as with A16 and G1.  Note that a resistive mechanism beyond thV  has 

appeared after irradiation. 
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Figure 61.  HFET G3 pre and post irradiation IT data. 

The pre irradiation IT curve of HFET G3 is roughly linear with temperature, 

particularly beyond 180K (Figure 61).  It also shows a much greater (factor of 6) 

temperature dependence than A16.   

The irradiation curves show the unexpected result that the greatest increase in 

current occurred at the lowest fluence.  The discontinuities with temperature that 

appeared in the HFET G1 IT curves are also evident here, with the 4x1010, 8x1010, and 

4.8x1011 curves showing sudden increases or decreases with temperature.  The 8.8x1011 

post irradiation IT curve roughly parallels the pre irradiation curve until approximately 

260K when the gate current returns to pre irradiation values.  This is suggestive of an 

annealing process. 
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Figure 62.  HFET G4 pre irradiation IV data. 

The data for HFET G4  was taken with SMU #17 and should be viewed as 

qualitative only.  From Figure 62 the gate current increases with temperature and the 

resistive mechanism beyond thV  becomes more resistive with temperature.   
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Figure 63.  HFET G4 pre and 8.8x1011 IV data. 

 

 

Figure 64.  HFET G4 pre and post irradiation IT data. 
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The inflection of the IV curve, assumed to indicate thV , increases after irradiation 

for HFET G4 (Figure 63). 

 HFET G4 shows roughly linear temperature dependence with some complex 

behavior around 100K, 200K and 280K (Figure 64).  Both pre and post irradiation data at 

currents above 0.1 mA was adjusted ‘by eye’ to correct for the defect in SMU #17.  The 

only conclusion that can be drawn is that the current increased with fluence and roughly 

paralleled the pre irradiation IT curve. 

 The IT curves for HFETs G1, G2 and G4 suggest a decreased dependence on 

temperature from 90K to 120K after the first irradiation (4x1010 n/cm2) which resembles 

the temperature dependence observed in HFET A16 after the first irradiation (4x1011 

n/cm2).  The IT curve HFET G3 showed little dependence on temperature both before 

and after the first irradiation between 90K and 120K.  

Summary 

 HFET A16 showed gate current IV and IT behavior that was consistent with trap 

assisted tunneling and was fit with great success using the TTT model.  The TTT model 

produced a least squares fit to pre-irradiation gate current within 1.38x10-8 A at all 

measured values of gate voltage and temperature using a single set of primary parameters 

bφ , tφ , dN  and tN .   The gate current was clearly not consistent with thermionic 

emission or thermionic field emission.  Surface leakage was also eliminated as a 

significant contributor to because of the observation that the gate current saturated for all 

devices at approximately -4.5 V.  An apparently resistive current mechanism produced an 

increase in current beyond the threshold voltage.  This resistive current mechanism 



 

103 

showed little temperature dependence at low temperatures and rapidly became more 

resistive between 270K and 300K.  The nature of this mechanism is unknown. 

 The inflection in the IV curve for A16, assumed to indicate thV , shifted from -4.3 

V to -4.7 volts after a fluence of 8.8x1011 n/cm2.  The relation between thV and the gate 

Schottky barrier height, bφ , in Equation 16 suggests that this may support the hypothesis 

that decreased bφ is responsible for the increase in current after irradiation. 

 The pre and post irradiation IT curve data taken for A16 were parallel at 

temperatures up to approximately 260K.  Above 260K the post irradiation current 

decreased apparently due to some annealing mechanism.  This could be consistent with 

either the increased tN  or the decreased bφ hypothesis. 

 The IT curve data at a fluence of 4x1011 n/cm2 showed less dependence on 

temperature than the pre irradiation data and could not be fit by either tN  alone or bφ and 

dN constrained by the apparent thV  using equation 16.  The TTT model gave a very good 

fit by varying all parameters.  It seems highly unlikely that all parameters were changed 

by the irradiation, so the cause for this behavior is unknown. 

 The IT curve taken at 1.2x1012 n/cm2 shows the same temperature dependence the 

pre irradiation IT curve and was fit very well (5.63x10-9 A) by increasing tN  and holding 

the other parameters fixed at the values that fit the pre irradiation data.  An even better fit 

(1.77x10-9 A) was obtained by allowing tN  and tφ  to vary.  This supports the hypothesis 

that an increase in trap density is responsible for the post irradiation increase in current.  

The data was not fit as well (2.74x10-8 A) when bφ and dN were varied under the 
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constraint of the apparent post-irradiation thV  (-4.7 V) using equation 14 or when bφ  was 

allowed to vary independently of the other parameters (4.03x10-8).  A sigma of 5.00x10-9 

A was obtained by increasing the donor density by approximately 5.8% from 5.169x1024 

donors/m3 to 5.472x1024 donors/m3.  Equation 16 indicates that this increase in dN  would 

increase thV  from -4.3 to -4.48.  This increase in the magnitude of thV  is consistent with 

the apparent increase in thV  observed in Figure 40.  This suggests that an increase in 

donor defects, caused by neutron irradiation, could be responsible for both the increase in 

gate current and the apparent change in threshold voltage. 

 HFETs G1-G4 showed much more complex IT behavior than device A16, 

indicating that mechanisms other than trap assisted tunneling are providing a significant 

contribution to the gate current.  This is probably due to either a defect in the section of 

the wafer from which G1-G4 were made or some difference in the way the devices were 

cut from the wafer and mounted in their housings.  Furthermore, the defect in SMU #17 

invalidated much of the data from HFETs G2 and G4.  Therefore only qualitative 

conclusions can be drawn from these HFETs.  G1-G4 showed increased gate current after 

irradiation.  As with A16 the increase in current was not proportional to fluence.  The 

gate current of HFET G1 annealed to nearly pre irradiation values at approximately 

180K.  The gate current of HFETs G2 and G3 annealed beginning at 260K, consistent 

with the results observed for A16.  HFET G4 did not show any significant annealing. 

 The IT curves for HFETs A16, G1, G2 and G4 showed less temperature 

dependence between 90K and 120K after their initial irradiation.  HFET G3 showed a 

small dependence on temperature between 90K and 120K both before and after 
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irradiation.  The mechanism responsible for this would have to produce a current that 

decreased with temperature at approximately the same rate as the trap assisted tunneling 

mechanism current increased with temperature.  The responsible mechanism is unknown. 
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VI. Conclusions and Recommendations 

Conclusions of Research 

 Pre irradiation IV and IT data are consistent with the trap assisted tunneling 

model.  The STAT and TTT models give very good fit to the measured pre irradiation 

gate current.  It has been demonstrated that the thermionic emission, field emission, and 

surface leakage models do not fit the measured data.  Therefore it is concluded that trap 

assisted tunneling is the primary mechanism responsible for gate leakage in the 

AlGaN/GaN HFET. 

 The observed increase in current and decrease in temperature dependence for 

HFET A16 after the first neutron irradiation (4x1011 n/cm2) cannot be fit with the TTT 

model by varying either bφ  or tN  alone.  Either a different mechanism is responsible for 

the increased gate current after that irradiation or all of the primary parameters were 

changed, which seems highly unlikely.  The IV and IT data after the second irradiation 

(to a total of 1.2x1012 n/cm2) was consistent with an increase in tN .  Increasing both tN  

and tφ  resulted in the best possible fit to the data with a sigma of 1.77x10-9 A.  

Decreasing bφ resulted in a very poor fit to the IT curve at higher temperatures.  Varying 

bφ and dN  under the constraint of Equation 16 resulted in a better fit, but only if 

bφ increased and dN  decreased.  Increasing bφ is not consistent with the observations of 

White, et. al. [9,13] after proton irradiation, although a decreasing effective dN  is 

consistent with their observations.  Finally, increasing dN  resulted in a good fit  
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(5.00x10-9 A) and, using Equation 16, resulted in an increase in magnitude of thV  from -

4.30 V to -4.48 V.  This is consistent with the apparent increase in thV  observed in Figure 

40.  This suggests that an increase in dN  may be responsible for the increase in gate 

current after irradiation. 

 There was not enough data generated in this research to conclude that either an 

increase in density of traps or an increase in density of donor defects was responsible for 

increased current after neutron irradiation.  Further evidence is required which could be 

obtained by using a different technique, such as Hall effect or electroluminescence.  

Furthermore, the unexpected IT results for HFET A16 after a fluence of 4x1011 n/cm2 

need to be explained.  

Recommendation for Future Research 

 The use of IV and IT measurement shows promise as a method to determine the 

cause of increased gate current in AlGaN/GaN HFETs after irradiation.  In order for this 

technique to be effective the contribution of other mechanisms than trap assisted 

tunneling must be eliminated.  HFETs G1-G4 have large contributions to gate current 

from mechanisms other than trap assisted tunneling.  HFETs with more predictable 

behavior, such as HFET A16, are required if this research is to continue.   

 The apparent reduction in magnitude of the threshold voltage with fluence should 

be studied.  The constraint imposed on bφ and dN  by the relation in Equation 16 provides 

a useful tool in the investigation. 
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 The two mechanisms proposed for increase in gate current after irradiation, 

increased trap density and increased donor defect density, should be studied by 

irradiating HFETs and measuring trap and donor defect densities using other techniques. 

 The possible effect of Schottky barrier thinning due to an increase in donor 

defects near the AlGaN surface, as modeled by Hashizume [15] , was not explored in this 

research.  The good fit to empirical data that Hashizume achieved warrants further 

research.  More detail on Hashizume’s method than was available in published papers 

must be obtained before this can be done. 
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Appendix 

Physical Constants 

Constant Expression Value Units 

k Boltzmann’s constant 1.38x10-23 
J/K 

q electronic charge 1.609x10-19 
Coulombs 

em  free electron mass 9.1x10-31 
kg 

εo permittivity of free space 8.854x10-12 
F/m 

h Planck’s constant 6.625x10-34 
J*s 

A* Effective Richardson’s 
Constant 

1.2x106 
A/m2K2 

 

Material Parameters 

Parameter Expression x=.27 Units Reference 

( )xε  ( ) 120.5 9.5 8.854 10x x −− +  
9.365εo C-m-1-V-1 [8] 

( )
c xφΔ  ( )21.197 0.7x x+  

0.374 eV [8] 

AlGaNm  effective mass of electron in 
AlGaN 

.28 em  
kg [8] 

( )
m xφ  ( )1.3 0.84x +  

1.19 eV [8] 

 

HFET parameters 

Parameter Description Value Units 

A Gate area 5.0x10-9 
m2 

d AlGaN depth 25x10-9 
m 
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