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EXECUTIVE SUMMARY

Numerical simulation and experiments on the toughness and fatigue crack growth resistance of MEMS

relevant thin film structures are reported. Structures consisting of metal films (aluminum, 0.1 to 2.0 ptm

thickness) confined between elastic substrates (semiconductor wafers) are considered. The study is

concerned with the influence of the thickness of the metal film on the fatigue failure response. Numerical

simulations of fatigue crack growth are conducted by use of cohesive zone models. Both, a damage

mechanics based model as well as a model based on dislocation mechanics are employed. To enable these

computations, a strain gradient plasticity model is developed. It is demonstrated that cohesive zone

models of fatigue enable to analysis of fatigue failure in cases where the Paris Law is no longer

applicable. The influence of geometric constraint (thin film confinement, presence of interfaces),

mechanical constraint (T-stress), size, and strain gradients on fatigue crack growth are demonstrated.

Numerical studies predict that increased constraint and smaller size will accelerate fatigue failure due to

changes in plastic deformation. Strain gradients significantly affect the process. Measurements of

toughness and fatigue crack growth resistance for the model material system are reported. New test

protocols for the commonly used 4 point bend delamination test are developed such that both cracks can

be propagated and the number of test data obtained is doubled. The novel approach is also essential for

fatigue crack growth. While crack growth resistance was rather independent of the thickness of and

fatigue crack growth rates were found to be dependent of film thickness. The dependence of the failure

behavior on film thickness arises primarily due to enhanced crack path deflection for decreasing film

thickness. Material separation in fracture and fatigue is characterized through a cohesive zone law. The

model captures the Paris-law type response obtained in experiments, and also predicts that for thinner

films the tendency to crack. Damage tolerant design requires accurate data on residual strength and

fatigue crack growth resistance. Both quantities, however, depend on constraint and size of the structure

considered. While this has been accounted for in residual strength analysis in the past, the present work

provides enabling technologies to solve this problem for fatigue. With the conventional approach to

fatigue crack growth, the transferability of data from lab to field, or between specimens and structures is

not ensured. Thus, coefficients in the Paris law need to be determined experimentally for each level of

constraint or each size of interest. It is, however, not ensured that even a large set of experiments will be

able to capture all possible load scenarios. The cohesive zone model approach is provided here as

alternative. Once cohesive zone parameters are determined, the dependence of fatigue crack growth on

constraint and size emerges as the natural outcome of the analysis without the need to further model

modifications.
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1. INTRODUCTION

Under the cyclic loading and small-scale yielding condition, the Paris equation

based on the theory of Linear Elastic Fracture Mechanics (LEFM) is commonly used to

describe Fatigue Crack Growth (FCG). The Paris law provides the relationship between

the applied stress intensity factor range, AK = K. - K,, and FCG rate, da / dN (Paris et

al., 1961) as:

a = C (AK)- (1.1)dN

The parameters C and m are obtained by fitting the experimental data of regime B of

FCG data as schematically depicted in Figure 1.1. The Paris law assumes that FCG is

independent of planar specimen geometry such that exchange and comparison of data

obtained from a variety of specimen configurations and loading conditions should be

possible. This feature allows the transferability of FCG data from one specimen

dimension to another and is based on the concept of similitude implying that cracks of

different lengths subjected to the same nominal AK will advance by equal increments of

crack extension per cycle. However, there are situations where the concept of similitude

is violated. When FCG at small scales is considered the validity of equation (1.1) is lost

since the monotonic and cyclic plastic zones interact with geometric features. Consider a

geometry with an elastic plastic layer sandwiched between two elastic substrates. Then,

under monotonic loading, the plastic zone size at the crack tip based on Irwin's

estimation for plain strain provides one reference length

r" = 3=-(v2) (I-I)2 (1.2)
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Here, the relationship between the stress intensity factor K and strain energy release

rate G is K = [EG / (I - v2 )]2, and E and v are the elastic constants, and the yield

strength of metal thin film. In the case of cyclic loading, the cyclic plastic zone size Arp,

can be used as the second reference length. Based on the analysis of Rice (1967), the

cyclic plastic zone develops upon unloading and reloading. The solution for the size of

the cyclic plastic zone is obtained by replacing K or G by AK or AG and ry by 2- Yin

equation (1.2) as

3•I( J2  =3•-(1-V2) (AG) (1.3)
3;r~~~ 2oY3rlV

For example, an aluminum thin film of 1 ptm sandwiched between two elastic substrates is

considered here. For such thin aluminum films, the room temperature yield strength is in

the range of 75 to 200MPa, and the elastic constants are E =70GPa and v =0.3. Figure

1.2 indicates that both monotonic and cyclic plastic zone sizes can be the same magnitude

as or larger than the thickness of the aluminum film. Thus, the plastic deformation at the

crack tip can not be freely developed due to the considerable constraint effects. It is the

hypothesis of the present work that in cases of confinement of plastic zones, the FCG rate

is changed, and that then the Paris law and its transferability is no longer valid, the

constants C and m as determined on one specimen geometry can be no longer used to

predict FCG rates in other specimen with different dimensions. We further hypotheses

that a cohesive zone model approach can be used to overcome this problem and can

provide transferable solutions to FCG regardless of constraint and size. We further aim to

verify such theoretical assumptions through experiments on a relavant model material

system. in

Considering the limitation of the Paris equation, several alternative methods have

been proposed to describe FCG, including

1) The cyclic J-integral: Dowling and Begley (1976) and Dowling (1977) used the

cyclic J -integral, A. , to characterize the FCG under elastic-plastic conditions by

a similar power law as equation (1.1). This method is, however, not applicable
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under non-proportional and reverse loading conditions since the material

descriptions based on the deformation theory of plasticity do not hold. Moreover,

J-integral was questioned even when it was used to characterize the crack growth

resistance under monotonic loading (Siegmund & Brocks, 2000).

2) Another alternative approach for characterizing FCG under elastic-plastic

conditions is based on the geometric correlations between the critical cyclic crack

tip opening displacement, ACTODC and crack extension, Aa(Laird, 1967;

Pelloux, 1970; Neumann, 1974). Considering FCG at small scales, the application

of this approach will fail since the ACTODC is not a material parameter and will

depend on the mechanical constraint due to the metal thin film, the stiffness

mismatch across the interface or mod mixty.

3) Based on the concept of cumulative damage at the crack tip, the process zone

models use a volume element at the crack tip which endures constant cyclic strain

amplitude until a critical damage state is reached, then the crack advances. The

limitation for this approach is to assume the validity of the Manson-Coffin law

and Miner's linear damage rule and the process zone equals the cyclic plastic

zone (Davidson and Lankford, 1992). Also it is difficult to use this approach for

the FCG along interfaces.

4) Node release techniques in the context of the Finite Element Method (FEM) were

also used to study the FCG under cyclic loading by providing more detailed

information of the continuum deformation at the crack tip. The problems such as

crack closure and crack surface friction were investigated using FEM (Newman,

1981; Fleck, 1986; Sehitoglu, et al., 1996; Wu and Ellyin, 1996). Node release

models still assume an infinite strength, and do not contain any arguments

regarding the energy required to form new surface.

5) Several investigators (see e.g. Pippan and Riemelmoser (1998)) applied the

Dugdale model to calculate plastic zone sizes and crack tip opening

displacements. Based on these results FCG rates were then related to the cyclic

crack tip opening displacements. While this method was quite successful, the

Dugdale model requires several restrictive assumptions regarding the shape and
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stress distribution in the plastic zone. It also lumps bulk yielding and material

separation processes into a single process zone.

To overcome the limitations and disadvantages of the LFEM based Paris equation

and the limitations of the above listed alternative approaches for the characterization of

FCG, the Cohesive Zone Model (CZM) was employed. The basic concept of CZM was

proposed by Barenblatt (1962). In a CZM the material separation process is described by

a softening constitutive equation connecting the crack surface tractions and material

separation across the crack. Thus, in the CZM the softening traction-separation law

removes the complexity of stress singularity at the crack tip. The material separation

process can be viewed as a result of progressive material deterioration in the cohesive

zone and the interaction with the surrounding continuum. Two cohesive constitutive

parameters, cohesive strength and cohesive energy per unit area, are used to describe the

underlying material separation process. Another advantage of CZM is a broad range of

different physical processes of material separation can be incorporated within a single

numerical method. Moreover, the CZM can be easily employed in the numerical analysis

through FEM. To use the CZM approach in FEM, the cohesive elements surrounded by

continuum elements were implemented to introduce the cohesive surface for the material

model investigated. Since the CZM approach has many advantages to characterize the

physical material separation processes, it has been widely applied to a number of studies

on fracture and crack propagation under monotonic or dynamic loading conditions in

homogeneous materials, in composites and at interfaces (e.g., Camacho and Ortiz, 1996;

Carranza and Haber, 1998; Chaboche et al., 1997; Chandra et al., 2002; Geubelle and

Baylor, 1998; Hattiangadi and Siegmund, 2004; Hutchinson and Evans, 2000; Lane et al.,

2000a; Li and Chandra, 2003; Li and Siegmund, 2002, 2004; Lin et al., 1997;

Mohammed and Liechti, 2000; Needleman, 1987, 1990a, 1990b, 1997, 2000; Siegmund

and Needleman, 1997; Siegmund et al., 1997; Suo and Hutchinson, 1990; Tvergaard,

1990, 1997; Tvergaard and Hutchinson 1992, 1994, 1996a, 1996b; Varias et al., 1990;

Wei and Hutchinson, 1997, 1999; Xu and Needleman, 1994, 1996a, 1996b; Yang et al.,

2001; Zhang et al., 2002).
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Recently, several attempts to establish the CZM approach to fatigue have been

reported. For example, Foulk et al. (1998) simulated the interface failure under cyclic

loading by adding an unloading condition to a softening CZM. Unloading and subsequent

reloading follow the same path, and consequently the traction-separation behavior

stabilizes without further progress in material separation. de-Andrds et al. (1999) also

developed the CZM model by adding an unloading condition and a cycle dependent

damage variable. This model was successful to predict FCG under large scale yielding

conditions but would shake down for small scale yielding or elastic deformation. Nguyen

et al. (2001) investigated FCG rates under constant amplitude loading as well as

overloads by using a CZM based on irreversible unload-load relations. There, the

introduction of unloading-reloading hysteresis in the cohesive law avoids shakedown and

allows for steady crack growth. Similarly, Yang et al. (2001) developed a FCG model

based on a modified line spring model including the damage evolution for a brittle

polymer in combination with the maximum principal stress criterion for crack advance.

Yang et al. (2004) developed a fatigue CZM which can incorporate the damage into the

cohesive law to account for the gradual loss of stiffness and strength of solder materials

under cyclic loading. The damage evolution law was assumed to be a function of

accumulated plastic strain. Maiti and Geubelle (2005) proposed a cohesive failure model

to simulate fatigue crack propagation in polymeric materials subjected to mode I cyclic

loading. The fatigue evolution law has been combined into the cohesive zone model and

defined to describe the irreversible degradation process during each reloading cycle.

Although the CZM approach has been used to study the constraint effects in the multi-

layer structures (e.g., Tvergaard and Hutchinson, 1994; Lin et al., 1997; Lane et al.,

2000a), these studies were limited to fracture problems under the monotonic loading, and

FCG problems and constraint were not considered..

In this work the irreversible cohesive zone model originally proposed by Roe and

Siegmund (2001, 2003) and Siegmund (2004) is used. This model has successfully been

used by these authors to simulate FCG in elastic material systems based on an irreversible

cohesive zone law which includes a cyclic damage evolution rule for the cohesive

strength. The cohesive zone parameters will depend on the accumulated damage by

10



introduce a cyclic damage variable into the traction-separation law. This model can be

used to simulate the crack nucleation and subsequent fatigue crack propagation under

cyclic loads since it allows computations of the failure behavior simultaneously account

for sub-critical damage accumulation. Especially, this approach allows one to capture

constraint effects in fatigue because energy dissipation due to cyclic material separation

at the crack tip and due to the cyclic plastic deformation in the ductile layer is accounted

for independently. Subsequently, we develop a novel cohesive zone model in which

material separation cyclic

The work described in this report can be divided into two parts, numerical

simulation and experimental studies. Numerical simulations were conducted to study

complex fatigue problems as they relate to MEMS and integrated circuit multi-layer

structures. Specifically, following studies were performed: First we analyze constraint

effects in FCG (Wang and Siegmund, 2005a,b) as they relate to in-plane geometry and

T-stresses, then consider FCG at interfaces between two mismatched elastic-plastic solids

(see Wang and Siegmund, 2006a). Subsequently, we investigate structural size effects in

FCG (Wang and Siegmund, 2006b), and finally investigate the effects of strain gradients

in plasticity in their influence on FCG. Also, a novel CZM for FCG simulations is

presented. The experimental work includes the development of a modified 4-point bend

delamination test methodology, fracture toughness test and fatigue crack growth test on

MEMS relevant test structures.

The novel analysis methods will especially benefit the development of reliable

microdevices. Micro-Electro-Mechanical Systems (MEMS) and microelectronic devices

containing multi-layer structures are widely used in recent applications of modem

technologies such as inertial sensing, signal conditioning, switching and biomedicine. To

advance promising MEMS devices into field applications and to increase the yield and

reliability of integrated circuit interconnect structures, systematic studies of failure

mechanism are needed. The multi-layer structures of interest here correspond to

configurations where a metal film is sandwiched between two elastic substrates, see e.g.

the "bonding rim" of the MEMS device shown in Fig. 1.3. As the device length scales

and associated film thickness decrease, the crack growth behavior under monotonic and
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cyclic loading becomes more complex. Specifically, as the characteristic dimensions of

stress and strain fields become of size similar to the thickness of the thin film, the
processes at the crack tip start to be influenced by the interaction with the surrounding

elastic substrates and, consequently, it is to be expected that fatigue crack growth (FCG)

rates are influenced by the constraint and size effects.
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Figure 1.1 Schematic illustration of the different regimes of stable fatigue crack

propagation described by Paris law (Suresh, 1998)

13



5

rp,, at ay=75MPa

4 /Arp,, at ay=75MPa

r.1, at aO=2OOMPa

metal layer thickness

Sp' atay=2OOMPa

2 4 6 8 10 12

AG [Jim2]

Figure 1.2: Length scales associated with FCG in dependence on the applied energy

release rate range. Yield strength data are for aluminum films thickness, h = 1um.
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2. COHESIVE ZONE MODEL

2.1 Cohesive Zone Model Formulation

In the cohesive zone model approach potential crack surfaces are considered as

internal surfaces. In the finite element formulation, the mechanical equilibrium equations

include the contribution of the cohesive zone as integral over internal surfaces S1,, as

shown in Figure 2.1. The principle of virtual work is written as:

f s:35F dV- f Tcz . A dS= f T, u dS (2.1)

with the nominal stress tensor s=Fldet(F)or the Cauchy stress o- the deformation

gradient F and the displacement vector u. Traction vectors are related to o" by T=n

with n being the surface normal. T, is the traction vector on the external surface of the

body. On the internal surfaces S•,, , the cohesive zone tractions Tcz and the material

separation A characterize the state of the cohesive zone. The cohesive zone model

provides the constitutive relationship characterizing the contribution of the internal

surfaces. Cohesive tractions possess normal and tangential components Tcz = Tn + Tt.

Material separation A= An + At is computed from the displacements u' and u- on

corresponding locations on opposing internal surfaces, + and -.

Based on the cohesive surface model of Xu and Needleman (1994), the potential

is given by

= ,, exp ý-•[Il-r + A"1- -q - exp(-A ] (2.1)
rI r. -1t 87, -- 2
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where material parameters q and r govern the coupling between the normal and tangential

response. Abdul-Baqi and Van der Giessen (2001) give a detailed description and

investigation of these parameters.

Under monotonic loading the constitutive relationship for the cohesive zone is

derived from the above potential function by T = ao / aA and can be written in a form

such that tractions Tcz are given as explicit functions of separation A, e.g. Needleman

(1990):
T, = o'oeexpx----+ (1.0- q)i[1.0-exp

0 g g{ go 0 (2.2)

T, = 2a.,oe q-At (.O+-o exp(,---expl--

The cohesive zone parameters in equation (2.2) are the initial cohesive strength

ao.,.... and the cohesive length 80, and e = exp(1). The cohesive energy under monotonic

loading is

0b0 = Lrma0b0e (2.3)

For mode I material separation, equation (2.1) can be simplified to

t = 0. +0 exp( )(I +. A_ (2.4)

and equation (2.2) to

T. = mx0e. 6  expj- A (2.5)

2.2 Damage Evolution Law

In the case of simulation of cyclic loading and fatigue crack growth the model

describes the processes of material separation by a hysteretic constitutive relationship

between the cyclically varying tractions and displacement jumps across an interface.

Such a model then describes the work spent in the creation of a fatigue fracture surface.
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For cyclic loading, the irreversible CZM accounts for the progressive degradation of the

cohesive strength during cycling. A cyclic damage variable D, is introduced. The current

value of the damage variable is the ratio between the damaged cohesive zone surface

area AD and the initial undamaged cohesive zone surface area A4 so that D. = AD / 4,

e.g. Lemaitre (1996). The constitutive relation for the CZM accounting for D. is then

given by replacing the cohesive zone tractions by the effective cohesive tractions.

Consequently, the initial cohesive strength o-ao in equation (2.2) can then be substituted

by the current cohesive strength a.m.x defined as

O7m.x = '•x, 0 (1- D,) (2.6)

To obtain the current state of damage, a description of the evolution of damage is needed

in the form of A) = A) (TCZA, DC). An evolution equation for D, - in line with the

characteristics of continuum damage evolution laws - is based on the following

properties:

"* Damage accumulation starts if a deformation measure, accumulated or current, is

greater than a critical magnitude.

"* There exists an endurance limit which is a stress level below which cyclic loading

can proceed infinitely without failure.

"* The increment of damage is related to the increment of absolute value of

deformation as weighted by the ratio of current load level relative to strength.

Based on these three requirements the evolution for A , was introduced by Roe and

Siegmund (2001, 2003) as:

=6[A[. T_ H(;_-60 ) and f), >0 (2.7)

with H designating the Heaviside function and A an accumulated effective material

separation. The effective separation A and its increment, A are defined as

A '= ••+A, and A = (A' -A'-A)/At. The accumulated effective separation is

A= JA dt. The effective traction T is defined as T =VT,2 + TI'/(2eq 2) such that equal
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weight is given to both traction components. For mode I loading, equation (2.6) can be

described by:

S &J.[71 Tm ao1 H(Aa c_8o) if ) >0 Aac= ]A~dt (2.8)

Two cohesive zone material parameters are introduced to characterize the cyclic

degradation behavior. The cohesive zone endurance limit oaf is the highest traction or

range of traction that can be repeated indefinitely without failure of the cohesive zone.

As a consequence no damage accumulation occurs if the cohesive traction normalized by

the current cohesive strength is less than the ratio between the cohesive zone endurance

limit and the initial cohesive strength. The second parameter, the accumulated cohesive

length 8., normalizes the increment of material separation, and therefore determines the

magnitude of the damage increment that occurs at a given state of load. This value of this

parameter determines the number of cycles to failure at a load level just above the

endurance limit, i.e. it provides the location of the "knee" in an S-N diagram.

Furthermore, in equation (2.6) a threshold for damage accumulation is introduced below

which no damage accumulation occurs. Both theoretical considerations, Lemaitre (1996),

as well as experimental data from high resolution damage measurements, e.g. Gerberich

et al. (1998), indicate the necessity to account for this threshold. The threshold to

initiation of damage accumulation is overcome if the accumulated effective material

separation A is greater than a critical value of material separation. Here, the threshold

was chosen to be equal to the cohesive length.50. Once the threshold is overcome the

magnitude of the increment of damage is proportional to the normalized increment of

separation I A 11/8 weighted by a normalized measure of current traction reduced by the

normalized endurance limit.

A CZM based on equation 2.7 is used throughout the main part of this study,

however, in Chapter 8 a novel cohesive zone model is developed based on the mechanics

of dislocations. That CZM interestingly provides similar features as the CZM defined in

equation 2.7.
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2.3 Unloading/Reloading

Even with the introduction of the cohesive strength degradation unloading can

still occur along a path with increasing traction following equation (2.2). Such a load

path is unreasonable for a damageable solid, and thus separate unloading and reloading

paths are defined for both normal and tangential material separation. For normal

separation unloading is assumed to occur to the origin of the traction-separation function.

The unloading-reloading condition for normal separation is given by:

T= T... + J TI )(A. An, (2.9)

In equation (2.6), Am. is the maximum value of normal separation that has been

reached for a specific cohesive zone location. T,,,. is the normal traction corresponding

to Am. and is computed from equation (2.2) with 'mco replaced by cm. . Consequently,

the cohesive zone model by itself does not introduce a residual separation across a crack

after a load-unload cycle in mode I loading. Crack closure and crack surface contact only

arises as a result of the plastic deformation in the continuum surrounding the cohesive

zone. For crack growth along the interface between the two solids crack growth is mixed

mode, and the unloading-reloading behavior in the tangential direction is also of concern.

In mode II loading of a crack it is known that roughness induced crack closure can be

significant, Tong et al. (1995). Interaction of crack surfaces arising as a result of the

cohesive zone only needs thus be modeled. Residual material separation after a

completed load-unload cycle is introduced. Unloading in tangential direction occurs with

the current stiffness of the cohesive zone at A, = 0, i.e. T, /0 A, = [2er. /60. The

unloading-reloading condition for tangential separation is then given by:

T,~ = T +[2-e(-)(Al - A,,. (2.10)
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In equation (2.10), A,,.. is the maximum value of tangential separation that has been

reached for a specific cohesive zone location. T,,.m is the tangential traction

corresponding to A,,.m and is computed from equation (2.2) with UJ'maO replaced by ax.

A crack surface contact model is formulated in the context of the cohesive zone

model. The traction-overclosure relationship equation follows a modification of equation

(2.2) such that a high penalty stiffness is prescribed for the case of A, < 0:

T7, = K (-Ž!!exp( A-LJ (2.11)

Here, simulations were performed with K = 30•.'oe. In contact, the cohesive tractions

are less than zero and no damage accumulation occurs.

The irreversible CZM was implemented for the commercial finite element code

ABAQUS by use of the UEL subroutine feature. The damage variable was defined on

averaged variables per element (Roe and Siegmund, 2003). The location of the current

crack tip is defined by the condition D. = 1.0, and the crack growth is denoted by Aa.
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Figure 2.1: Schematic drawing of conceptual frame work of cohesive zone model,
(a) Undeformed configuration, (b) Deformed configuration.
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3. CONSTRAINT EFFECTS IN FATIGUE CRACK GROWTH

The analysis of constraint effects in FCG in multilayer structures is discussed.

The constraint effects due to the different metal layer thickness and T-stress are of

concern. A modified boundary layer model is used in simulations of FCG along the

centerline crack of the metal layer sandwiched between two elastic substrates. FCG is

computed for a series of values of metal layer thickness and T-stress under constant and

variable amplitude loading conditions. The results of the computations demonstrate that

certain combinations of load magnitude, layer thickness and material properties results in

significantly constraint effects in FCG. The influence of these constraint effects on FCG

rates and on crack closure processes is determined. The evolutions of the traction-

separation law, the accumulated and current plastic zones, as well as the stress fields

during the crack propagation are discussed. The FCG resistance and crack closure levels

are determined as the function of T-stress for the different metal layer thicknesses. The

results indicate that overloads under consideration of positive T-stresses tend to reduce

the amount of crack retardation while negative T-stresses of the same magnitude increase

crack retardation.

3.1. Introduction

Thin film multi-layer structures are widely used in many applications of

technological importance. The multi-layer structures of interest here are those where a

metallic layer is sandwiched between two elastic substrates. In the use of such structures
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crack growth along the metallic thin film and along the interfaces to the substrate is of

concern (Varias et al., 1991; Evans and Hutchinson, 1995; Dauskardt et al., 1998). As the

film thickness decreases, the crack growth behavior under monotonic and cyclic loading

becomes increasingly complex. One of the important issues to be considered in this

context is that of the influence of constraint. As the thickness of individual layers in the

structure is decreased, the monotonic and cyclic plastic zones present at a crack tip start

to interact with the surrounding elastic substrates. Then the conventional FCG analysis

methodologies based on the assumption of small-scale yielding loose their validity. From

a practical perspective, the constants in the Paris equation (Paris et al., 1961) will depend

on the film thickness such that the transferability of FCG data among specimens with the

different layer thicknesses is lost. Consequently, to enable the design of fatigue resistant

multi-layer structures at small scales, a new approach for FCG analysis is needed.

Only few experimental studies on FCG in metal-ceramic multilayer structures

have been reported. McNaney et al. (1996) studied FCG and fracture toughness behavior

of a metal/ceramic sandwich geometry based on the AI/A120 3 system. For the values of

metal layer thickness considered no effect of constraint on the FCG rate was observed,

while the energy absorption per loading cycles was observed to be dependent on the layer

thickness. Also, FCG was considerable faster in the multilayer specimens when

compared to pure Al samples. More recently, Kruzic, et al. (2004) carried out another

experimentally study using samples with smaller values of metal layer thickness. There,

for the near threshold regime a decrease in FCG rate was observed for decreasing values

of the metal layer thickness. For larger values of applied load, the crack growth

resistance again was observed as essentially independent of the metal layer thickness.

Past investigations of crack growth in multilayer material systems have

demonstrated that the constraint effects arising in fracture of such specimens can be

investigated well by use of the so-called Cohesive Zone Model (CZM) approach. The

CZM concept uses a constitutive equation connecting the crack surface tractions and

material separation across the crack, see Dugdale (1960), Barenblatt (1962), and

Needleman (1990). A review on the application of the CZM approach to studies of crack

growth under monotonic loading can be found in Hutchinson and Evans (2000).
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Specifically, applications of the CZM approach to studies of crack growth in multi-layer

structures under monotonic loading were presented in Tvergaard and Hutchinson (1994,

1996), Lin et al. (1997), Lane et al. (2000). There, the crack growth behavior of a crack

lying along one of the interfaces of a thin ductile layer joining two elastic solids was

computed. It was demonstrated that the interaction of the plastic zone with the elastic

substrates significantly alters the energy dissipation processes during crack growth.

These constraint effects on the ductile layer can significantly influence the apparent

fracture toughness of the material system.

For the numerical simulations of FCG under cyclic loading, irreversible cohesive

zone laws describing material separation under cyclic loading were recently developed.

These models are promising to studies of FCG in the range of loads where the Paris law

is traditionally applied. de-Andrds et al. (1999) added unloading conditions to a traction-

separation law used in monotonic loading in conjunction with a cycle dependent damage

variable to study FCG under large scale yielding. Similarly, Desphande et al. (2002) used

such a traction-separation law in combination with discrete dislocation plasticity and

determined both threshold values and powers in the Paris equation. Nguyen et al. (2001)

developed a CZM based on irreversible unload-load relations. The model was applied to

study FCG in macroscopic aluminum specimens. Constant amplitude loading as well as

the effects of overloads on FCG rates were investigated. A similar idea was applied in

Yang et al. (2001) together with a maximum principal stress criterion to study FCG in a

brittle polymer. Roe and Siegmund (2001, 2003) and Siegmund (2004) simulated FCG at

interfaces using an irreversible cohesive zone model which includes a cyclic damage

evolution rule for the cohesive strength.

In addition to the constraint effects imposed by the elastic substrate, the type of

loading imposes another type of constraint effects. This influence is discussed by the

concept of T-stress. Based on the asymptotic expansion solution of Williams (1957), the

stress field around the crack tip can be expressed as

K1 - K, (0)+ 11  (O)+T3,bi, +O(rII2) (3.1)
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where o-,. denotes the stress tensor, K, and K,, are the modes I and II stress intensity

factors, respectively. The parameter T is the nonsingular elastic stress contribution and

f~j (0) are angular functions. Several investigations were conducted in the past to

determine the dependence of crack closure, and thus the effective stress intensity factor,

on the specimen geometry or the applied stress state (Fleck, 1986; McClung, 1994;

Solanki, et al., 2004; Roychowdhury and Dodds, 2004). Thereby it is convenient to

characterize the applied load by a two-parameter description using a combination of

stress intensity factor, K and the T-stress. Specific levels of T-stress then describe the

influence of certain specimen geometries, or the biaxiality ratio of the loading condition.

Studies of the effect of the T-stress were almost exclusively related to constant amplitude

loading cases and overloads were rarely considered (Sadananda, et al., 1999). Here, we

are interested in a study that sheds light on the combined effects of T-stress and metal

layer thickness on constant and variable amplitude FCG.

The CZM approach allows one to capture constraint effects in fatigue because

energy dissipation due to cyclic material separation at the crack tip and due to the cyclic

plastic deformation in the metal layer is accounted for independently. Computations are

performed by using a modified boundary layer approach under the condition that the

plastic deformation is confined to a metal film of thickness considerably smaller than all

other dimensions of the structure. Results of FCG simulations along the centerline of the

constraint metal layer were performed.

3.2 Model Description

3.2.1 The Irreversible Cohesive Zone Model

The irreversible cohesive zone model introduced in Chapter 2 is used here to

characterize material separation under cyclic mode I loading. For the purpose of the

present simulations, the cohesive energy is assumed as 0 =20 J/m 2 except for the noted
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places. In all computations except the parametric study the initial cohesive strength, traxO,

is chosen to be E./100, with E.the Young's modulus of the surrounding solids. The

values of o" /m•ax.O = 0.25 and ,5 / 0 = 4 are selected for the computations.

3.2.2 Material Properties

The material properties of elastic substrate is described by Young's modulus, E,

and Poisson's ratio, v,. The~elastic properties of the elastic-plastic layer are designated

by E, and v,. In all of the calculations, the metal layer and the adjoining elastic substrates

are taken to have identical isotropic elastic properties, i.e.

E, = E, = 100 GPa and v, = v, = 0.34. The elastic-plastic layer is characterized by a linear

kinematic hardening model with constant hardening modulus, ET. The yield strength

used in the simulations was oay / E = 0.0025 and the hardening modulus is assumed

as E, / 20. Then, for all computations except for the parametric study and specific noted

places the ratio between initial cohesive strength and yield strength is COx/ Cy = 4.

The combination the cohesive zone properties with those of the adjacent solid can

be used to obtain a reference plastic zone size, rp1 .

I E0o (3.3)3;r. _ 3xlV2) oUr2

The ratio of the current active plastic zone size at t = 0.5 to the reference plastic zone

size is then obtained by substituting the cohesive energy in equation (3.3) with the load

range AG.
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3.2.3 Finite Element Model

The crack is assumed to propagate along the center of the metal layer of height,

2h1, sandwiched between two elastic substrates. Only mode I crack propagation is thus of

concern. The geometry of the problem addressed is shown in Figure 3.1.

In the simulations of FCG a modified boundary layer approach is used. Following

mode I asymptotic crack tip solutions for linear elastic materials, loading is provided by

describing time, t, varying displacements u, (t), uY (t) on the outer boundary as:

u, (t) =K,() cos (3-4v-cos0)+T(t) rcos0
E 2 E(3.4)

uY (t) = K, (t) r +sin0(3_4v-cosO)_T(t) rsinO

J2r" E 2 E

where r = + y+ and 0 =tan-' (y/x) are polar coordinates of points on the remote

outer boundary. K, (t) and T (t) represent the mode I stress intensity factor and T-stress,

respectively. Simulations are conducted for K, (t)=AK(O.5-0.5cos2wrt), i.e. a load

ratio of R=0.0 and an amplitude of AK. The range of the stress intensity factor AK is

related to the range of the energy release rate AG as
AK- EAG (3.5)

(1 v2)

The T-stress varies in phase with K as T (t) = T. (0.5-0.5 cos 21rt). Due to the nature of

symmetry for the model under mode-I loading, only half of the model is considered.

Figure 3.2(a) displays the global finite element mesh. The element arrangement near the

crack tip is shown in Figure 3.2(b). The initial crack tip is located at point 0. At the crack

tip, there is a highly refined mesh region with length L. The length of one square element

in this uniformly meshed region is denoted by 1. Most of the computations were carried

out for dimensions r = 100001 andL = 1101. The smallest element size I is selected as

2.5 9.. The ratio of element size I to cohesive length J0 was used as a measure of mesh

refinement since all length parameters in the study are normalized with this quantity.

Aspects of the mesh refinement are further discussed in the next section.
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In the finite element model, four nodes plain strain elements are used. A row of

cohesive zone elements was placed along the symmetry line of the model from the initial

crack tip to the outer boundary. These elements use nodes on the line of symmetry as

two of their nodes. The second pair of nodes of the cohesive zone elements is those in

common with the adjacent solid elements. The typical finite element mesh consists of

3892 solid elements and 123 cohesive zone elements.

3.3 Results and Discussions

3.3.1 Geometry Constraint Effects in FCG

Firstly, constraint effects in FCG in dependence on different metal layer

thicknesses are considered. FCG is computed for a series of values of metal layer

thickness under constant and variable amplitude loading conditions (T=O).

3.3.1.1 Constant Amplitude Loading

The first set of results presented was obtained from cyclic loading under constant

amplitude loading with R = 0.0. The dependence of the crack growth rate on the load

magnitude, the metal layer thickness, and on the cohesive strength is investigated. Special

attention is paid to determine the presence of eventual crack closure events.

At first, the fatigue crack behavior in dependence of the applied load level is

predicted. Figure 3.3 shows a log-log plot of the predicted normalized FCG rates,

d(a / 60) / dN, in dependence of the normalized applied energy release rate range, AG / 00,

for two cases: (a) a system with a metal interlayer of size h, / 60 = 10 between two elastic

substrates, and (b) a system where the interface is located between two ductile substrates,

h, /150 -+ oo. Thus these two cases compare FCG in a geometry without constraint to that

with considerable constraint. In the given range of AG/ 0 a close to linear dependence of

log[d(a/6o)/dN] on log(AG/, 0) is predicted in both cases such that it would be
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reasonable to describe the outcome of the computation by use of the Paris-law,

d(a / ) / dN = C(AG)'. The present computations predict m Z 2. At low load levels

for both cases the same values of crack growth rate are predicted for both cases. However,

when AG / 0 is larger than about 0.1, different crack growth rates are obtained. The

constraint layer geometry exhibits higher FCG rate than the unconstraint layer system.

Figure 3.4 depicts the increase in FCG rate of the system h, /65 = 10 over that

for h,/1o -- oo , as {[d(alSo)ldNrh,/Io=1o -[d(alo0 )/dN]h, Igo,.)}l[d(al.o)/dN]h,/o_ in

dependence of the applied load range, AG/Io. Again, it is shown that for low levels of

load, AG / •0 < 0.1, the two systems show identical crack growth rates. For higher values

of AG! o the simulations produced a nearly linear dependence of the increase in FCG

rate for h, /go= 10 over that for hi/0 -+ oo. For AGI/5o =0.35, the increase in the FCG

rate for h, 1,50 = 10 over that for h, / 50 -> oo is around 42%.

Next, simulations were carried out to determine the dependence of the FCG rate

on the layer thickness, h, I/ o . The results were obtained from simulations with

AG/• =0.25, R=0 and m.•xI/y-=4. Figure 3.5(a) depicts the predicted increase in

steady state FCG rate for various values of hlt/o over that for hk/ .5 --*o as

{[d(a/So)/dN]h,,So-[d(a/8o)IdN]h, l }/I[d(a/o6)IdN]h,/,_. in dependence of the

layer height, h, / 50. For the material parameters and the loading considered, a metal layer

of height h, /50 > 120 is needed such that constraint effects vanish, and the predicted FCG

rate for the multi-layer geometry equals that of a model with elastic-plastic material

properties everywhere. As the height of the metal layer is decreased, the FCG rate then

increases. The maximum increase in FCG rate over that for h, /IJ -4 0 is found to be

0.2. This value is reached for metal layer thickness of h, < • 10. Beyond this value of

layer height a further decrease in h, IM has virtually no effects on the FCG rate. FCG

rates predicted for the system consisting of two elastic substrates joined by the cohesive

zone without the elastic-plastic layer, h,/ 50 = 0, show the same values as those of
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h1 / go = 10. Figure 3.5(b) depicts the peak values in normal tractions reached during

steady state FCG. As the cohesive zone formulation allows for the evolution of the

cohesive strength, constraint not only affects the amount of plastic deformation but also

the cohesive parameter evolution. If the layer thickness is small, high values of normal

tractions develop but diminish as the height of the metal layer increases.

The cyclic traction-separation response at the location Aa = 12580 for

h, /So = 10and h,/0 1 > oo are given in Figure 3.6(a) and 3.6(b), respectively. Damage

accumulation due to cyclic loading degrades the cohesive strength leading to a

continuous change in the traction-separation path, including a reduction in the stiffness of

the loading/unloading path. As the traction values as well as the unloading/reloading

stiffness decrease, the cohesive zone finally looses in load carrying capacity and material

failure occurs. Comparison of Figure 3.6(a) and Figure 3.6(b) shows the higher values of

traction and separation predicted for the case of h, / c% = 10. In view of equation (2.5),

these two effects are responsible for higher rates of damage accumulation and

subsequently for the higher FCG rate. Furthermore, we want to focus attention on the

traction values at A, = 0. For h, / 50 - oo, negative values of traction are predicted for

A, < 0. This behavior indicates contact of the opposing crack faces, i.e. crack closure.

For h, / 80 = 10, no negative values of traction are predicted indicating the absence of

crack closure.

A more conventional depiction of crack closure employs the predicted crack

opening profiles and opening stresses at the crack tip. Figure 3.7(a) depicts the predicted

crack opening profiles, A, / 8, obtained at the minimum load in the fatigue cycle for the

system h, / 50 = 10 and h, / -c- co. Data are presented for a growing fatigue crack at the

end of the 29th load cycle. The corresponding normalized crack extension, Aa/6 0 , is

equal to 82.5 for the case h,/5 0 = 10and 62.5 for the case h,/6 0 - oo, respectively. For

h 1/,0 - oo pronounced crack closure is present. The location of the closure zone with

respect to the distribution of the damage variable, D., can be assessed by comparing the
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crack opening profiles of Figure 3.7(a) to the corresponding distribution of D, shown in

Figure 3.7(b). Crack closure occurs at locations corresponding to values D, =1 and

D,=0.32. For the present choice of parameters, for D >0.32 the cohesive strength has

already dropped to a value less than 3,-Y. For such values of cohesive strength little or

no plastic deformation is present in the solid adjacent to the cohesive zone. The area of

crack closure is thus located in the wake of the location of maximum rate of plastic

deformation which occurs at locations with D, <0.25 with a cohesive strength larger

than 30y,. In a situation of high mechanical constraint, h, /16, = 10, the crack is predicted

to remain open even under minimum load. Figure 3.8 gives the crack opening stress, 0-22 ,

obtained at the several different time instances. The points 1 and 5 represent the

maximum load points, 2 and 4 represent intermediate load points at t=-0.25 and t=0.75,

respectively, and 3 represents the minimum load. For the maximum and intermediate load

points, the constraint layer system obtains a higher opening stress level which is

responsible for the higher FCG rate. For the minimum load point, the negative opening

stress values indicate the crack closure characteristic for the system with no constraint

effects. Contact pressures predicted will depend on the specifics of the contact law

employed.

The results on the damage distribution presented in Figure 3.7(b) provide an

indication of the resolution of the active cohesive zone relative to the element size, 1. In

general, the length of the active cohesive zone depends in on the cohesive energy, the

cohesive strength, the properties of the background continuum, and also on the

mechanical constraint. Furthermore, in the cyclic loading case the length of the active

cohesive zone depends on the load level and the load history. For the results of Figure

3.7(b) with AG/ 0o = 0.15 it can be seen that the active cohesive zone is of length

approximately 90 c5 or 36 1. Even for calculations with the lowest level of loading

considered in the present study, AG/ 0o = 0.05, the active cohesive zone is of length

approximately 40 6, or 161. The mesh density is therefore sufficiently refined such that

the active cohesive zone spans multiple elements.
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In Figure 3.9(a) the FCG resistance, dNId(a 16o) is depicted independence of the

normalized interface strength, Irmaxo oy, for several values of the different thickness of

the metal layer. The results are obtained under a constant ratio of load range to initial

cohesive energy, AG 1/6 = 0.25 . The results demonstrate that increased values of

interface strength, ma.0 /o-I , will increase the FCG resistance as will the increase in the

metal layer thickness, h, /60. The rate of increase of FCG resistance with rmax,0 lay

depends on h /S5. For all values of h,/1 5 the FCG resistance depends linearly on

Urmax,/O Iy ifamax,0/oIy < 3.5. For high values of ama,,O lay the dependence of the FCG

resistance on the cohesive strength is linear in the absence of plastic deformation, but

nonlinear of plastic deformation occurs in the background material. Forh, 1/ = 0, i.e. in

the absence of plasticity, the FCG resistance depends linearly on Ormax,o /cy even for

large values of the interface strength. For all other values of h,/ I a strong increase in

FCG resistance occurs once the normalized interface strength exceeds lom*0 I Uy = 4. For

such values of cohesive strength, plasticity starts to contribute significantly to the energy

dissipation at the crack tip. Figure 3.9(b) depicts the maximum normal traction values

computed for h, / 60 = 60. In general, the ratio between the maximum traction value

developing and the yield strength increases. In the range of Om-lax0oy < 4, i.e. when

plasticity plays no or only a minor role in the crack tip processes, the dependence of

max(T,)/o-r is stronger than for higher values of Oamax,/OIy.

Contour plots of the equivalent plastic strain obtained for constant amplitude

loading condition for three different values of metal layer thickness, h, /'50 -- co, 30 and

15, respectively, are given in Figure 3.10. Contour plots are obtained for Aa/6 0 =135

under the condition of AG/(10 = 0.125, tmax,O Iay = 4at t=0.5. The active plastic zone is

depicted by the white contour line. In Fig. 10a, in the absence of constraint the plastic

zone is fully developed. The accumulated plastic zone behind the current crack tip

possesses nearly constant height. The height of the active plastic zone, as defined by the
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contour of =1 x 10-4 , and the height of accumulated plastic zone, as defined by

P, = 0.005, is 0.125xrP1,0. The size of the constraint plastic zone scales with the

prediction of equation (3.3) of the cohesive energy is substituted by AG . For

h, /,0 = 30 or 15, Figure 3.10(b) and 3.10(c), the plastic zone is constraint such that the

value of most intense plastic deformation borders the interface between the metal layer

and the elastic substrate. As the layer thickness is decreased the shape of the active

plastic zone starts to spread slightly in the horizontal direction. The size of the active

plastic zone at the interface between substrate and metal film is approximately equal

to 2 x h,.

3.3.1.2 Variable Amplitude Loading

Results presented in this section describe simulations conducted under

consideration of a single overload. Initially, a constant amplitude loading of magnitude

AG1/ 0 =0.15 was applied. Then, in cycle N=25 an overload with magnitude

AG / 0 = 0.45 was applied. Subsequently, loading is continued with the original constant

amplitude. The remaining model and parameters used are identical to those for the

constant amplitude loading cases.

The results of predicted normalized crack extension, Aa / 45, vs. the cycle number, N

are plotted in Figure 3.11. The results of normalized FCG rate, d(a/,6o)/dN, vs. the

crack extension Aa/3 0 are plotted in Figure 3.12. In the absence of constraint, h,/50 --) oo,

the overload first results in an instantaneous crack extension at the application of the

overload, followed by a significant crack retardation. Such a response to an overload is

well-known in fatigue of metals, Suresh (1998). As the crack retardation after the

overload is considerably more significant than the crack jump at the overload a

permanent lag in the crack extension results.

The overload behavior changes significantly as the plastic deformation is constraint

and finally is absent. For all values of h, / c5, an instantaneous crack advance was found at
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the instance of the overload, with similar crack growth rates in the overload cycle, Figure

3.12. The constraint effects provided by decreasing values of h, /50, however, determine

the crack growth behavior following the overload cycle.

In the absence of plastic deformation, h, / 60 = 0, or for only small values of the

height of the metal layer, the overload causes an instantaneous crack advance and a

temporarily increased crack growth rate in the cycles following the overload, Figure 3.12.

For intermediate values of the height of the ductile layer, 20 < h, < 60, the crack growth

behavior is found to be a combination of the two limiting cases h, / --> oo and

h, /6J --> 0. The overloads result in a sequence of crack acceleration-deceleration-

acceleration segments with the final behavior depending on the metal layer height. For

the present simulations the crack acceleration events dominate over the deceleration

events such that for all simulations with a constraint metal layer an additional permanent

crack advance over the constant amplitude cases is predicted, see Figure 3.11.

The response to the overload is the result of two competing processes, the plastic

deformation and the evolution of damage in the cohesive zone. To document the

competition between these two processes during an overload event the evolution of the

plastic zones and of the traction separation response is needed. Figure 3.13 depicts size of

the active plastic zone size, rp, / rpto, present at a given value of crack extension, Aa /6;.

For h,1/6;-> oo the extension of the active plastic zone is measured as the maximum

diameter of the active plastic zone, i.e. along a line of angle 680 to the crack growth

direction. For h, / ,0 = 15 the maximum extension of the active plastic zone is present at

the metal layer-substrate interface. The definitions use to measure the plastic zone sizes

are depicted in Figure 3.10. For the four locations identified in Figs. 13, the normalized

traction-separation curves are plotted in Figure 3.14. The material element at location (1)

failed before the overload, at location (2) during the overload cycle and at locations (3)

and (4) after the overload.

Before the overload at N=25, the size of the active plastic zone scales with

AG/ o0 for h,/60 ---> oo. For h, /6 = 10the size of the active plastic zone is given by the
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geometry of the problem and equal twice the height of the metal layer. At the overload,

an increased amount of plastic deformation is induced. For h, / J0 --* oo the plastic zone

size nearly reaches the value of rP.0 , an increase in size by a factor of six. For

h, / 6o = 10 the increase in the plastic zone size at the overload is less. Here, rp, only

increased by a factor of 1.4.

For h,/,o -- oo the plastic deformation induced at the overload spreads for a

significant distance along the crack growth direction. Then, at locations where failure

occurs at N>25 (after the overload) no active plastic zone develops as the crack tip passes

through. Only as the crack has grown an additional distance of Aa/6 0 =75, equivalent to

37 load cycles after the overload, plastic deformation is again observed. Finally, after 65

cycles passed the overload or at an additional crack extension of Aa/1 0 =175 past the

overload, the size of the plastic zone returns to its initial size.

For h, t =10 the plastic deformation induced at the overload spreads a

comparatively short distance along the crack growth direction. Consequently, the

segment of crack growth without an active plastic zone developing is short. As the crack

has grown a distance of Aa/ 0o =33, equivalent to 10 load cycles after the overload,

plastic deformation is again observed at the same magnitude as before the overload.

The material separation process - including the development of crack closure - is

subsequently assessed by investigating the traction-separation curves depicted in Figure

3.14.

For h, /J0 -- oo, the traction-separation response at location (1), Figure 3.13(a), is

essentially the same as the one depicted in Figure 3.6(a), albeit the difference in load

magnitude. The peak traction value is T/ /rmo = 0.57, and thus only slightly larger than

2ory. At the material point failing during the overload, (2) in Figure 3.13(a), the

increased applied load magnitude at the overload manifests itself primary in a large

displacement jump excursion. For a material point located in front of the crack tip at

N=25, but located within the zone in which damage actually accumulates, the overload

affects the traction level significantly. At this location and at N=25 the peak traction
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value reached is approximately T,, / o-,, = 0.68. Such a large value of cohesive traction

allows for the development of a significant amount of plastic deformation to be induced,

Figure 3.13. Consequently, a significant amount of crack closure is induced. The level

of crack closure pressure at location (3) is significantly above that predicted for the

steady state crack growth regime, location (1) and (4). The enhanced crack closure is

responsible for the reduction in crack growth and supersedes all accelerating effects due

to the increased damage accumulation rate. The residual effects of this plastic zone at

overload are so significant that as the crack tip passes through location (3), no active

plastic zone is present then. Past the overload, the traction values at (3) are lower than

those for location (1) and (2) due to the additional damage induced in the overload cycle.

Material points remote from the crack tip at N=25, location (4) in Figure 3.14(a), are only

little affected by the overload.

For h,/5 0 = 10 the sequence of the traction-separation response at locations (1) to (4) is

similar to that described for h, /J- oo , except for the evolution at locations near the

crack tip at N=25. At that location, (3) in Figure 3.13(b), the increase in peak traction

during the overload cycle is considerably more significant with the peak traction reaching

T, / rm, =0.83. At this value of peak traction the material separation enters the softening

branch during the overload cycle. However, since plastic deformation is inhibited due to

the presence of the elastic substrates, these large traction values do not lead to a

significant amount of plastic deformation. Instead, the damage evolution is accelerated.

No crack closure is observed in the traction-separation response for h, / 10 = 10, not even

at location (3). Thus, a retardation of crack growth does not occur.

3.3.2 Constraint Effects in FCG due to T-stress

Constraint effects in FCG due to T-stress is considered. The combined effects of

T-stress and the different metal layer thicknesses on FCG are computed under constant

and variable amplitude loading conditions.
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3.3.2.1 Constant Amplitude Loading

For the case of constant amplitude loading the description of results focuses on

the steady state crack growth behavior in its dependence on the prescribed T-stress and

the metal layer thickness.

Figure 3.15 depicts a summary of the FCG resistance, dN/d(a/So), computed

for the normalized applied energy release rate range of AG/Io = 0.25. The parameter

FCG-resistance, dN/ d(a/1 0), is used in this study in place of the more common measure

of FCG-rate, d(a/Jo)/dN. This parameter provides for a better presentation of the

influence of plasticity on the crack growth behavior, and allows the present results to be

connected to previous studies of crack growth conducted with cohesive zone models

(Tvergaard and Hutchinson, 1992). For the case of a model where plastic deformation

occurs in the absence of elastic substrates (h/S50 -. oo ), the computations predict a

minimum value in FCG resistance at small positive values of the applied T-stress. For

negative T-stress values the FCG resistance rises significantly, while for positive values

of the T-stress a smaller increase in FCG resistance is observed. As the plastic

deformation becomes constrained due to the presence of elastic substrates adjacent to the

central metal layer the dependence of the FCG behavior on the T-stress is reduced. The

strongest reduction in FCG resistance is predicted forTIx/ ly = -1.0. Furthermore, the

minimum value of FCG resistance is no longer predicted for small values of positive T-

stress, but rather for small negative values of T-stress. As the metal layer height becomes

small compared to the cohesive zone length (h/So = 0 in the limit of two elastic

substrates bonded to each other) the T-stress effect on FCG resistance finally completely

vanishes and for h/ 1 0 = 0the FCG resistance dN/d(a/ 00) is virtually independent of

the T-stress.

Insight into the material separation process can be obtained from steady state

regime traction-separation curves obtained for several values of T-stress. Such results are

shown in Figure 3.16 for computations with h /1o -+oo and Tm. /o-r =-1.0, 0.0, +1.0,

respectively. The results clearly show that the T-stress influences the material separation
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response. In the present model, crack closure is present as over closure of the cohesive

surfaces and the related predicted negative normal tractions in the contact regime of the

cohesive constitutive relationship. Furthermore, the maximum value of tractions

predicted is no longer a predetermined value and develops in dependence of the applied

constraint (Wang and Siegmund, 2005). When comparing the traction-separation curves

in Figure 3.16(a) to (c), the traction separation curve computed for Tmax /C = -1.0

clearly shows the largest negative traction values, but also the lowest maximum traction

values. For T.x/crI = 0.0 and +1.0, respectively, the maximum traction values are

considerably larger, but levels of contact tractions are also reduced, with the computation

m•,a/yr = +1.0 resulting in a larger amount of crack closure than for T.x/try = 0.0.

To summarize the characteristics of the computed traction-separation curves we

define the cohesive opening traction Top and the amplitude of cohesive tractions T,,a

following the notation in Figure 3.16(c). While the ratio of the stress intensity factor at

opening relative to the maximum stress intensity factor Ko,,p I/K is used to describe

crack closure levels, here the crack closure level is described by the ratio of T,,op/ IT,.,

see Figure 3.17(a). In computations with unobstructed plastic zone, crack closure is

found to be maximum at negative and positive T-stress, and of minimum level at

around Tm•a/yr = 0.0. The level of crack closure is reduced with increase on the

constraint provided by the elastic substrates. Furthermore, for small metal layer heights,

a minimum in the ratio is found for negative T-stress values. Since the actual value of

Tnop is sensitive to the contact formulation, we also provide a characterization of the

cohesive zone response in terms of Top /trmaxo and T,, I /m,0,aO see Figure 3.17(b). In this

description the contact conditions relative to the cohesive strength parameters do not

skew the results. Again, for h150 --. oo the largest amount of contact tractions,

T,,op/orIq.xo, is present when compared to the models with constraint plastic deformation.

Negative T-stresses result in the larger contact tractions than positive T-stresses with a

minimum in the contact traction at T-stresses close to zero. The T-stress has a smaller
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effect on the maximum value of the opening tractions, T. m/,O. These values

depend more strongly on the value of h/65 than on Tm /oay. In both Figure 3.17(a) and

(b) it is shown that in the absence of plastic deformation, h/ 0o = 0, virtually no crack

closure occurs.

3.3.2.2 Variable Amplitude Loading

Results presented in this section describe simulations conducted under

consideration of a single overload. A constant amplitude loading of magnitude

AGbae /o = 0.15 was applied initially, an overload of magnitude AGOL / 0o = 0.45 is

considered in cycle N=25, with a subsequent return to the original constant amplitude.

For positive T-stresses, computations were conducted with Tm. / ay =0.5 during the

constant amplitude loading part and with Tmx I/ay = 0.5-3 = 0.5 AGoL iAGbe during the

overload cycle. For negative T-stresses computations used Tmax / oy = -0.5 during the

constant amplitude loading part and Tm ,/lay = -0.5-,3 in the overload cycle. The

predicted overload effect for cases of positive and negative T-stresses and h/S0 -> 0 and

60, respectively, are documented in Figure 3.18, and compared to results of the

corresponding zero T-stress cases. In the case of zero T-stress, Figure 3.18(a), the effect

of the constraint provided by the presence of the elastic substrates increases not only the

crack growth rate, but also reduces the retardation effect of the overload. If a positive T-

stress is considered, the overload cycle reduces the retardation effect of the overload,

both for the unconstrained, hi/ io -+ oo, as well as constrained geometry, h/5 0 = 60.

However, it appears that the number of cycles needed for a return to the steady state

crack growth is somewhat larger in the case of the positive imposed T-stress. If a

negative T-stress is considered, Figure 3.18(b), the overload cycle imposes a significantly

increased retardation for the unconstrained geometry, h/S 0 5- oo. For the constrained

geometry, h 1,o = 60, crack retardation was found to be similar to the computation in

which zero or the negative T-stress considered.

48



To further clarify the nonlinear effects of overloads a numerical study was

conducted in which overloads in K or T only were considered in comparison to the

combined overload in K and T as discussed above. Figure 3.19 depicts the results of this

investigation. Overloads in T only with constant amplitude loading in K did not result in

any significant change in the crack growth history compared to the constant amplitude

loading case. An overload in K, with T constant during the overload cycle, results in an

overload response that is initially similar to that of the combined K and T overload case,

but with a significantly smaller number of cycles needed to a return to the initial crack

growth rate.

3.4. Conclusions

Numerical simulations of constraint effects in FCG are investigated by used of the

irreversible cohesive zone model. Two types of constraint are considered. Incremental

computations of crack growth along a centerline crack of the metal layer sandwiched

between two elastic substrates were carried out under the constant and variable amplitude

loading conditions for different levels of T-stress. Based on the preceding computations

and discussions, the following conclusions can be drawn.

3.4.1 Constraint Effects in FCG

The results of predicted FCG rates under constant amplitude loading at different

load ranges indicated that, in an intermediate load range of0.05 < AG /0 < 0.3, a Paris

law can be used to describe the dependence of the predicted FCG rates on the applied

energy release rate range. The present irreversible cohesive zone model leads to a similar

prediction as the model proposed in Nyugen et al. (2001). For AG/ 0 < 0.1, the same

values of FCG rates were predicted for the geometries without constraint where the

plastic zone can freely develop and the geometries where a constraint is imposed due to

the presence of an elastic substrate. For AG/ 00 > 0.1, the geometry where the metal is
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constrained between the elastic substrates exhibits higher FCG rates than the unconstraint

layer system.

FCG rates in dependence of the layer thickness were calculated. When the layer

thickness satisfied h, /So >120, the predicted FCG rate was not affected by constraint

effects, and equal to that of a model with elastic-plastic material properties everywhere.

As the layer thickness decreased, the FCG rates increased and became the function of the

layer thickness until h/1 .0 <! 10. For such small layer thickness, the FCG rates were no

longer the function of the layer thickness, and equal to that of a model with elastic

material properties everywhere.

The evolution of the traction-separation law was investigated in dependence of

the layer thickness. Higher values of traction and separation are predicted for the thinnest

metal layer. These higher traction and separation values are responsible for higher rates

of damage accumulation and subsequently for the higher FCG rate.

Under constant amplitude loading, the predicted crack opening profiles and

opening stresses indicated that crack closure is present only in the absence the elastic

substrates. In a situation of high mechanical constraint, however, no crack closure was

observed and the crack remained fully open even at minimum load. A reduction of crack

closure with constraint was also observed by Roychowdhury and Dodds (2003) when

comparing FCG simulations under various T-stress levels.

The dependence of the FCG resistance on the cohesive strength was determined.

For O'max,/ory < 3.5 the dependence of the FCG resistance remains linear, while for

larger values of UmO,/oY a strong nonlinear increase of the FCG resistance was

predicted. The larger FCG resistance was due to the significant plasticity contribution for

high values of cohesive strength. Also, as the metal layer thickness was increased the

nonlinearity of the dependence of FCG rate on c. strongly increased. The maximum

values of cohesive tractions during material separation depend on the level of plasticity

and constraint present. When aO'mx,0/o'y <3.5 , the dependence of max(T,)/-ry on

O'mx,,o /o a is stronger than for higher values of O'l /oay which corresponds to the large

plasticity contributions to the FCG resistance. The predicted dependence of the FCG
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resistance on cohesive strength somewhat resembles the results on the steady state

fracture toughness in a ductile solid under monotonic loading, Tvergaard and Hutchinson

(1992). There too, the crack growth resistance increased dramatically as the ratio

max,0 / ay is increased. Under cyclic loading conditions FCG is present even at high

values cohesive strength, amao /o a up to six, while for such values of cohesive strength

crack growth under monotonic loading would not occur.

Under variable amplitude loading, single overload effects on FCG were captured.

In the absence of constraint, the overload resulted in a well known crack retardation

effect. On the other hand, in the absence of plastic deformation, the overload caused an

instantaneous crack advance and temporarily increased crack growth rates. A similar

response to overloads was observed in crack bridging ceramics, Gilbert and Ritchie (1998)

and recently analyzed in Siegmund (2004). For intermediate values of the metal layer

thickness, the crack growth behavior was found in a sequence of crack acceleration-

deceleration-acceleration. Whether a permanent lag or permanent retardation in crack

length developed due to the overload depends on the metal layer thickness.

Comparisons of the accumulated plastic zones among the systems with different

metal layer thickness indicated that the plastic zone was distorted in thin layers due to

impinging with the elastic substrates under constant amplitude loading. The application

of single overload caused the active plastic zone to grow in size significantly. The

increased active plastic zone size of constraint system was smaller than that of

unconstraint system. The response to the overload was the result of two competing

processes, the plastic deformation and the evolution of damage in the cohesive zone.

Generally, when the single overload was applied, it increased the traction level

significantly which resulted in the increased damage accumulation rate, i.e, the FCG rate

was increased. At the same time, the overload increased the amount of plastic

deformation. The overall overload response of either increased or decreased FCG rate

depends on the constraint level. For low constraint level such as h, /1% -> co , crack

closure and the large amount of plastic deformation was significant and superseded all

accelerating effects due to the increased damage accumulation rate and resulted in the
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overall response of decreased FCG rate. For high constraint level such as h, /I6= 10, the

level of plastic deformation is small due to the surrounding substrates. This results in the

small amount of crack closure such that the damage evolution was accelerated and

overall response was an increased FCG rate.

3.4.2 Constraint Effects in FCG due to T-stress

Past investigations have contributed the change in FCG resistance with T-stress to

the changes in crack closure e.g. Roychowdhury and Dodds (2004). A similar

dependence of crack closure on T I/o-y was found as the present study. In the present

approach, both crack closure levels and the plastic deformation changed as the level of T-

stress was changed. This is especially important since the interaction between the

constraint provided by the T-stress and the geometry of the sample is non-linear in nature.

Both effects were accounted for in the prediction of FCG in dependence of T-stress and

the metal layer thickness.

Under constant amplitude loading, the present results indicated that a negative T-

stress resulted in larger FCG resistance than a positive T-stress for the model with

h•/ 5 oo . The lowest FCG resistance was obtained for small positive T-stress values.

As the plastic deformation became constrained due to the decreasing metal layer

thickness and the adjacent elastic substrate, the dependence of the FCG resistance on T-

stress was reduced. The T-stress values which resulted in the smallest FCG resistance

changed from small positive values to small negative values. Whenh, I/ = 0, the FCG

resistance finally was independent on the T-stress values. For the model with h, / 50 - oo,

the higher FCG resistance can be explained by the largest negative traction values and the

lowest maximum traction values under Tm. /oIa =-1.0. For T I/oy = 0.0 and +1.0, the

negative contact traction values were reduced and the maximum traction values were

considerably larger.

Computations for the model with h, 1  -+ co indicate crack closure was found to

be higher at negative T-stress than one at positive T-stress. The minimum level of crack
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closure was obtained around T. /oua = 0.0. The crack closure level was reduced with

increasing in constraint due to decreasing layer thickness. It was shown that in the

absence of plastic deformation, h,/ o = 0, no crack closure occurred and the T-stress

effect disappears.

An approach in which FCG is the outcome of the simulation is especially useful

in the analysis of overload cases. The present study found that overloads under

consideration of positive T-stresses tend to reduce the amount of crack retardation both

for the unconstrained, h, /65 ---co, and constrained geometry, h, /Jo =60. For negative

T-stresses of the same magnitude, the overload resulted in a significantly increased

retardation for the unconstrained geometry, h, / 0 -- oo . For the constrained geometry,

h 15/0 = 60, crack retardation which was similar to one under zero or positive T-stress

was obtained. The numerical simulation scheme provides the opportunity to study the

effects of overloads in the K and T component of the applied loading independently.

Compared to the constant amplitude loading, overloads in T-stress only were shown not

to introduce any alteration to the computed FCG.
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Figure 3.1: Schematic of a model geometry considered: a metal layer constraint by two

elastic substrates.
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u(t) = K, (t) f (r, 0) + T (t) f (r, 0)

(a)

(b) 01 L

Figure 3.2: Finite element mesh for the modified boundary layer formulation approach.

(a) Global mesh. (b) Refined mesh near the crack tip.
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Figure 3.3 Predicted dependence of the normalized fatigue crack growth rate, da/dN

on the normalized applied energy release rate range, AG/ 0 under constant

amplitude loading: h, /o - oo (A) and h, /15 = 10 (=).
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geometry, {[d(a / io) / dN]h,_-=10 - [d(a / So) / dN]h,/, o_,}I[d(al 6o)IdN]h,5,o,, vs. the
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Figure 3.5 : (a) FCG rate for the constraint geometry relative to the unconstraint

geometry, { [d(a / 5o) / dN]h ,,o - [d(a / (5o) / dN]h ,I._,.} /[d(a / 5o) / dN]h,,, vs. the

metal layer height, h, / J0, and (b) maximum values of cohesive traction during steady

state growth vs. the metal layer height, h, / 60. Constant amplitude loading with

AG / •o =0.25.
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Figure 3.7 (a) Crack opening profiles and (b) damage distribution under constant

amplitude loading at AG = 0 for h, /IJo -* co (-) and h,1 50 = 10 (--.Constant amplitude

loading with AGI/ 00 = 0. 15.
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Figure 3.8: Traction distribution along the cohesive zone for several load levels for two

ductile substrates, h,/So - oo (-) and h /,5 = 10 (---). Constant amplitude loading with

AG/Io =0.15.

61



1/7

C / i > 21- i 1> 1

' 1/5

1- 1/4

LO 1/3
a,

1/2

1 2 3 4 5 6 7 8 9
(a) Tn byl- Z

5

4/6

4

,.3/6

13I,-

S2/6

2 -

116 ,'

(bJ 1 2 3 4 5 6 7 8 9

C'n by-1 G1Z
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Figure 3.10: Contour plots of equivalent plastic strain under the constant amplitude

loading condition for the different layer thickness. (a) h, / c% -+ oo ; (b) h, / ,o = 30 ; (c)

h, / 50 =15. (Crack extension Aa / o = 135 ). The white contour line represents the active

plastic zone at the maximum loading point. Constant amplitude loading with

AGI/6o =0.125.
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Figure 3.11: Predicted crack extension, Aa/1o, vs. cycle number, N, for the load

sequence including an overload at N=25 for different values of the normalized layer

thickness, h, / 60. Constant amplitude loading with AG / = 0.15 and overload with

AG / 0o = 0.45.
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Figure 3.12: Predicted fatigue crack growth rates, da /dN, vs. normalized crack extension

Aa for the load sequence including an overload at N=25 for different values of the

normalized layer thickness, h, / go.
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Figure 3.19: Predicted crack extension, Aa/6., vs. cycle number, N, for a load sequence
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4. FATIGUE CRACK GROWTH AT PLASTICALLY MISMATCHED BI-MATERIAL

INTERFACES

A study of FCG in a system with an interface between two elastic-plastic solids of

different yield strength is conducted. The FCG analysis is emplored by the irreversible

cohesive zone model. FCG is considered to occur along the direction perpendicular to

the interface and along the interface. Crack growth rate acceleration, deceleration or

arrest, as well as crack bifurcation at the interface are predicted in dependence of the

plastic property mismatch of the two solids and the interface properties. The outcome of

the simulations is in very good agreement with trends of published experimental data.

4.1. Introduction

The computational analysis of FCG behavior for a crack growing perpendicular to

and potentially deflecting into a bi-material interface is studied. The interface separates

two materials or phases, one of low yield strength (soft) and one of high yield strength

(hard). Several experimental studies on FCG for such situations have been reported, e.g.

in Suresh et al. (1992), Sugimura et al. (1995a, b), Milan and Bowen (2003), Pippan et

al. (2000), Jiang et al. (2003) and Fu et al. (2003). In summary, from these studies the

following main observations can be deduced: (1) FCG rates are constant in each of the

phase except in a domain close to the interface with (2) a retardation of FCG as a crack

grows from a low yield strength material to a high yield strength material; or (3) an

acceleration of FCG as the crack grows from the high yield strength material into the low
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yield strength material; and (4) a potential for deflection into the interface exists. The

present type of FCG problem is of concern to both structural mechanics problems such as

in welds and multilayer structures (Yeh, 1995), as well as to micromechanics problems

such as in the analysis of FCG which are influenced by the microstructure of an alloy or

composite (Warrier and Majumdar, 1997). In either case it is of interest to understand the

interaction between plastic deformation and crack advance, including crack bifurcation at

the interface.

As the crack approaches the interface small scale yielding conditions are violated

and FCG cannot be described by use of the Paris law approach. In the past, several

alternative analysis approaches were proposed. Elastic-plastic fracture mechanics

concepts were applied to compute crack tip shielding and crack tip amplification factors

in Sugimura et al. (1995) and Kim et al. (1997). Based on these factors a discussion on

the crack tip driving force was then conducted. Alternatively, FCG behavior was

analyzed by applying superposition of the applied stress intensity factor and a position

dependent residual stress intensity factor, Milan and Bowen (2003). Crack growth rates

were then obtained from employing the resulting effective stress intensity factor in the

Paris law of the individual phases. Pippan and Riemelmoser (1998, 2000) applied the

Dugdale model to calculate plastic zone sizes and crack tip opening displacements. Based

on these results FCG rates were then related to the cyclic crack tip opening displacements.

A similar approach was undertaken by Wang and Hutchinson (2001) in a study of a

fatigue crack terminating at the interface between an elastic-plastic and an elastic solid.

While these previous investigations clarified the interaction of the monotonic and cyclic

plastic zone with the bi-material interface, they did not predict the details of the transient

acceleration/deceleration events in FCG in the region close to the interface. Furthermore,

only a limited analysis of conditions and the associated mechanics of crack bifurcation at

the interface were presented in the past. Knesl et al. (2003) studied the influence of

interface conditions in elastic systems only. The influence of plastic deformation on

fatigue crack bifurcation has not been analyzed yet in detail. Experimental results of

Pippan et al. (2000) indicate that interface properties alone cannot explain the bifurcation
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behavior and that the plastic deformation fields need to be accounted for in detail. The

present research aims to overcome these limitations.

4.2 Model Description

4.2.1 Material Model

The model investigated in the present study consists of two half spaces, a "soft",

low yield strength phase VS and a "hard", high yield strength phase Vh separated by a bi-

material interface. A crack is assumed to propagate from one phase to the other in the

direction perpendicular to the interface. Crack growth from the hard to the soft phase, as

well as for the crack growth from the soft to the hard phase is of interest. The volumetric

constitutive laws for the soft and the hard phase are those of an isotropic linear elasticity

and linear kinematic hardening plasticity. Then, the yield function is given as

V!(S- W)(S- cc)-0-, =0 (4.1)

with S = o - pI the deviatoric stress, p = -1 trace(u) the hydrostatic stress, and a'the

deviatoric part of the backstress tensor a. The evolution of the backstress for the linear

(Prager-Ziegler) kinematic hardening law is provided as

C P' (4.2)

OY

where C is the kinematic hardening modulus, and V -p = (gP1 :p Pl) is the equivalent

plastic strain rate. Finally, the flow rule is given by:

' -(Soa)-pl (4.3)
2 'Y9
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4.2.2 Finite Element Model

In the finite element simulations the same modified boundary layer approach as

one in chapter 3.2.3 is used. Since only mode I loading is considered, the loading is

provided by the equation (3.4) with zero T-stress values. For the cyclic loading, the load

ratio of R=0 and amplitude of AK = Km. which is related to the AG = Gmýx by equation

(3.5) are used in the calculations. Due to the nature of symmetry for the model under

mode-I loading, only half of the model is considered. Figure 4.1(a) displays the global

finite element mesh. The element arrangement near the crack tip is shown in Figure

4.1(b). The initial crack tip is located at point 0. At the crack tip, there is a highly refined

mesh region with length L. The length of one square element in this region is denoted by

1. The radius of the outer boundary is described by rb. The computations were carried

out for model dimensions rb /I = 10000 and L/l = 110. The smallest element size relates

to the cohesive length as 1/o= 2.5 . Simulations are conducted under plain strain

conditions. Four node solid elements with full integration are employed. A single row of

cohesive zone elements was placed along the symmetry line of the model from the initial

crack tip to the outer boundary. Another sequence of cohesive zone elements was placed

along the bi-material interface. The distance between the initial crack tip and the interface

is Lo /5 = 110. The cohesive zone elements possess four nodes with linear displacement

jump interpolation. Cohesive elements placed along the symmetry line use nodes on the

line of symmetry as two of their nodes. The second pair of nodes of the cohesive zone

elements is a pair of nodes in common with the adjacent solid elements.

The finite element mesh consists of 3892 solid elements, 123 cohesive zone

elements along the symmetry axis and 44 cohesive zone elements along the interface.
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4.2.3 Material Properties

Both half spaces, hard and soft, are assigned the same values of elastic properties,

E = 100 GPa and v = 0.34. The two half spaces differ in their yield strength by a factor

of trh / or-. = 2.0. This value is motivated by the properties of the material systems in the

experimental studies of Sugimura et al. (1995), Pippan et al. (2000), and Jiang et al.

(2003) where the ratios in yield strength between hard and soft phases were 1.5, 3.7 and

1.7, respectively. In the computations the values crr = 0.0025 x E = 250 MPa and

trh = 0.005x E = 500 MPa together with a tangent modulus of h = E/20 = 5000 MPa

were used.

For the purpose of the present simulations, the values of the cohesive length is

identical for the soft and hard phase, 60 = 40/(eo'raO) = const. and fixed to d% = 7.4 pm.

Figure 4.2 depicts predicted FCG rates in dependence of the ratio between initial

cohesive strength and yield strength, and compares the results to those obtained in

simulations with elastic material behavior only. For OmIx,0/try < 3.0 the presence of

plastic deformation has virtually no effect on the FCG rate. Only for Crmax,0 Uy > 3.0 do

the predicted FCG rates for the elastic-plastic analysis deviate from those obtained for the

elastic solution. In order to introduce a sufficient but not overwhelming level of plastic

deformation into the simulations the initial cohesive strength is taken as four times the

corresponding yield strength, o-.0 = 4 x o,' = 1000 MPa and h = 4 x ch = 2000 MPa,

respectively. The initial cohesive energies for the crack path through the soft and hard

phase are then 00 = 20 J/m 2 and 0oh = 40 J/m 2, respectively. For the cyclic cohesive zone

parameters the value of the ratio or /amx.,0 is taken to be 0.25 which is a lower bound on

typical experimental values of the fatigue ratio. The value of the ratio S/ is known to

scale the number of load cycles required to fail a cohesive element (Roe and Siegmund,

2003). In order to keep the computational cost within acceptable limits the value of

z / 60 = 4 was selected for both the soft and hard phase.
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For the bi-material interface, a range of cohesive zone parameters was considered.

First, several computations were performed with a perfectly bonded interface such that no

cohesive zone elements were introduced along the interface. Subsequently, the interface

was modeled with cohesive zone elements. For the interface the cohesive zone length

was identical to that for the crack paths through the adjacent solids, but the cohesive

strength was varied in the range of trio = 1000 MPa to 500 MPa. In order to keep the

variation of material parameters small, the cyclic cohesive zone parameters of the

interface were taken to be identical to those of the solids, or / 0-..'0 = 0.25 and

9x /50 =4.

In the presentation of the simulation results values of the energy release rate are

always normalized with o . Due to the differences in the cohesive zone properties

assigned to the soft and hard phase, relative load magnitudes need to be considered as

C AG /('AG ) =" (4.4)

with the present selection of the cohesive zone parameter values, 0o / 00h = 1/ 2, the hard

phase experiences a relative load level of half of the soft phase. Consequently, the steady

state crack growth rates in the soft phase will exceed those in the hard phase.

Three different levels of applied energy release rate range,

AG/ ' = 0.15, 0.225, 0.3 are considered. For these load levels one obtains rh1/50 = 19.6,

29.4, 39.1 and rlso= 78, 117, 156, as well as Ar/9/6o= 5, 7, 9 and with

Ar~s/ 8o = 19.6, 29.4, 39.1. It is to be noted here that Ar= rsince = 2rY .
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4.3 Results and Discussions

4.3.1 Crack growth in a bi-material with a perfect interface

First, the FCG behavior of cracks propagating perpendicular to a perfectly bonded

interface is investigated. Two cases are considered: (a) propagation from the hard to the

soft phase, and (b) propagation from the soft to the hard phase. Figure 4.3(a) depicts the

predicted normalized FCG rates, d(a/3o)/dN, in dependence of the normalized fatigue

crack extension, Aa / i%, for the hard to soft case. At first, after a short transient period at

crack growth initiation, FCG quickly enters a steady state growth stage in which a

constant crack growth rate is present. Analysis of the data shows that

d(a/6o)/dN = 15.4(AG/$oý)'72 correlates crack growth rate to loading in the hard phase.

Another steady state growth stage is observed for the soft phase once the crack tip is

again far from the interface. Then, the relationship

d(a/ 5o)/dN = 44.0(AG/ to)' 3correlates crack growth rate to loading in the steady state

regime in the soft phase. The more interesting results, however, are those obtained for the

transient behavior in the vicinity of the interface. Once the crack is at a critical distance

from the interface, a significant increase in growth rates is predicted. This type of

response is in agreement with experimental results of Pippan et al. (2000) and Jiang et al.

(2003). The distance between crack tip and interface for the onset of acceleration scales

well with the magnitude of h, the plastic zone size in the hard phase at G. equation

(4.6). A distinct maximum value in the predicted FCG rate is obtained in all cases at a

very small distance beyond the interface. The maximum values of crack growth rate are

significantly larger than the constant growth rates in either the hard or the soft phase, e.g.

for the case AG / 00' = 0.3 the peak crack growth rate is approximately 75 and 15 times

large than the steady state growth rate in the hard phase and soft phase, respectively. The

magnitude of the peak crack growth rate increases with increased load level. After the

crack has penetrated the interface the crack growth rate drops again. The crack extension
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magnitude to reach a steady state scales well with the magnitude of Ar, , the cyclic

plastic zone size in the soft phase.

Details of the process of crack - interface interaction can be discussed in view of

the predicted damage distributions and the time evolution of damage. Figure 4.3(b)

depicts predicted distributions of damage in the cohesive zone as the crack moves from

the hard to the soft phase for the case of AG / 00o = 0.15. During the steady state growth

regime in the hard phase the damage distribution remains self-similar as the damage front

moves towards the interface. In the steady state regime in the hard phase crack growth

initially occurs with a constant length of the active cohesive zone, cz/ 0 = 35. This

result is typical for all steady state crack growth cases in that the length of the active

cohesive zone is thus somewhat larger than the basic estimate for the monotonic plastic

zone size, rp1, but significantly larger than the cyclic plastic zone size, Arpm. However,

before the damage in the hard phase reaches the interface, damage already occurs in the

soft phase beyond the interface. A secondary damage zone is formed in which damage

increases rapidly. The process of link-up between the initial crack in the hard phase and

the secondary damage zone in the soft phase is the cause for the transient crack growth

rate increase in the vicinity of the interface. The process occurs as the distance between

the crack tip and the interface corresponds to approximately rh. During the link-up stage

the length of the active cohesive zone is temporarily increased to a length of

lcz /1 = 110. After the link-up between the primary crack and the secondary damage

zone, crack growth then progresses self-similar in the soft phase. The length of the active

cohesive zone now has increased and is approximately three times as long as in the hard

phase, lcz /g = 105.

The predicted crack growth behavior for the case of growth from the soft to the

hard phase is discussed next. Figure 4.4(a) depicts the predicted normalized crack

growth rates in dependence of the normalized crack extension. After the transient during

crack growth initiation period, the crack growth in the soft phase rate remains nearly

constant for some amount of crack extension. At Aa / 5- = 50 the relationship
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d(a / 90) / dN = 46(AG /, , )1-4 correlates crack growth rate to loading. These crack growth

rates are very similar to those obtained for'the soft phase in simulations of the hard to soft

case. The steady state crack growth regime in the soft phase is less pronounced in the

simulation of crack growth from soft to hard phase due to the fact that the length of the

active cohesive zone in the soft phase is rather large when compared to the distance

between interface and initial crack tip. Another steady state growth stage is observed for

the hard phase once the crack tip is again far from the interface. Then, the relationship

d(a/5 0)/dN = 9.7(AG/o)'-53 correlates crack growth rate to loading in the steady state

regime in the hard phase. These crack growth rates are very similar to those predicted for

the hard phase in the hard to soft case. Again, a significant transient deviation from the

two steady state crack growth regimes takes place once the crack tip is in the vicinity of

the interface.

As the crack tip approaches the interface the FCG rate drops strongly and reaches

the minimum value as the crack tip is located at the interface. The predicted magnitude of

crack retardation is dependent on the applied load level with the difference between the

minimum crack growth rate at the interface and steady state growth rate in the hard

material increasing with load level. The prediction of temporary crack retardation is in

agreement with experimentally observed FCG retardation effects in bi-material systems,

(Sugimura et al., 1995; Pippan et al., 2000 and Jiang et al., 2003). The distance at which

crack retardation sets in is well related to the magnitude of rp,, i.e. the plastic zone size in

the soft phase at Gm.x, equation (4.6). Subsequent to passing the interface the crack

growth rate increases again to reach the steady state growth rate in the hard phase. The

predicted distance from the interface to reach the steady state crack growth rate relates

well to the cyclic plastic zone size in the hard phase, equation (4.7).

The type of interaction between crack and interface for the soft to hard case is

quite different from that previously described for the hard to soft case. Figure 4.4(b)

depicts predicted distributions of damage in the cohesive zone as the crack moves from

the soft to the hard phase for the case of AG! / 0.15. As the crack approaches the

interface via the soft phase the tip of the active cohesive zone penetrates into the hard
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phase. Subsequently the speed of the cohesive zone tip is reduced considerably relative

to the speed of the crack tip leading to an intermediate crack growth rate below either of

the steady state growth rates.

4.3.2 Crack growth in a bi-material with imperfect interfaces

Results described in this section were obtained for computations in which crack

growth along the bi-material interface is included. A range of the interface cohesive

strength values was considered in order to study the crack - interface interaction in more

detail.

For an initial overview of the simulation results two contour plots are presented.

Figure 4.5 depicts contours of the equivalent stress for crack propagation for the hard to

soft case (at t/t, = 80.5) and the soft to hard case (at t/tý = 104.5) for the interface

strength o2-t0 = 600 MPa at a load level of AG / 00o = 0.15. For both cases, the crack is

deflected into the interface. However, the predicted deformation and the stress

distribution are significantly different. For crack propagation in the soft to hard case, the

initial crack has reached the interface and the ligament between the initial crack tip and

the interface is completely separated. The main stress concentration is found in the hard

phase and located at the interface crack tips and along the interface. For the hard to soft

case, a very different result is obtained. Even during interface crack growth, the initial

crack has not reached the interface and an intact ligament remains between the initial

crack tip and the interface. The main stress concentration is still present at the tip of the

arrested initial crack and not at the location of the crack tips at the interface. The

predicted "asymmetry" in the response for the two cases considered was observed

experimentally by Pippan et al. (2000).

The details of the fatigue crack growth behavior for crack growth from the hard to

soft case under consideration of the interface properties are discussed first.

Computational results shown are for an applied load of AG/ o = 0.15. Figure 4.6
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depicts predicted crack normalized extension in dependence of load cycles for values of

the interface cohesive strength, a.0,, ranging between 1000 MPa and 500 MPa. Both,

crack extension along the direction of the initial crack and along the interface are

included in the diagram. Corresponding plots of normalized crack growth rates vs. crack

extension are given in Figure 4.7(a) and 4.7(b). Figures 4.6 and 4.7 clearly demonstrate

that the interface strength significantly impacts the predicted crack growth behavior. For

strong interfaces, o-1 .0 =1000 MPa and 900 MPa, the predicted crack growth behavior is

only little different from that already discussed for the perfect interface. Again, two

steady state crack growth stages are predicted, with the crack growth rate in the soft

phase exceeding that for the hard phase, and transient crack acceleration in the region

close to the interface. A detailed comparison of the perfect interface case and the

computation with o-•t.o =1000 MPa and 900 MPa is included in Figure 4.7(a) and

demonstrates that the steady state crack growth rates are identical for these three cases,

and only a decrease in the predicted transient crack growth rate is predicted for the

imperfect interfaces. As the interface strength is further reduced this response is, however,

altered.

As the interface strength is reduced to x <800 MPa the computations predict

that the initial crack no longer penetrates the interface. Instead, the crack growth rate is

reduced as the crack tip approaches the interface, and finally the crack is virtually

arrested, Figure 4.6 and 4.7(a). The distance between the arrested crack tip and the

interface is larger than rp1 /.0 = 19.6 at AG/ o=0.15. These results are in agreement with

the observation of the intact ligament between initial crack and interface as shown in Fig.

4.5(a). Concurrently with the arrest process of the initial crack the initiation of crack

growth along the bi-material interface is observed, Figure 4.6 and 4.7(b). In Figure 4.7(b)

to indicate the correlation between the locations of arrest of the initial crack relative to

the interface crack growth, lines depicting the interface crack growth data are placed with

their origin at the location of crack arrest of the initial crack. The lower the interface

strength, the earlier this event occurs. Interface crack growth rates are initially large but

continuously drop as the crack length increases. Initial interface crack growth rates can
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exceed the steady state crack growth rates in the adjacent solid but steadily drops as the

interface crack length increases.

The simulation for x.O =800 MPa predicts a behavior that is different from

those discussed so far, Figure 4.6 and 4.7. For this case crack growth along the interface

and arrest of the initial crack again are observed. The distance between the onset of crack

arrest and the interface now well corresponds to rp, / tIo = 19.6 at AG / =0.15. However,

as loading processes, the ligament between the tip of the arrested crack and the interface

fails, and crack growth along x-axis is resumed through a rapid transient acceleration and

the subsequent steady state growth regime typical of crack growing from the hard to the

soft phase. Concurrently with the re-initiation of crack growth along the x-axis, the

interface crack is arrested.

Based on Figure 4.7(a) a comparison with the results of Pippan et al. (2000) and

Sugimura et al. (1995) are made. The computations with the imperfect interfaces but

penetrating cracks predict an increase in FCG rate of a factor of - 30 in good agreement

with the experimental observations ( - 50 ) while the computations with the perfect

interface significantly overestimate the increase in FCG rate. Furthermore, it is noted

that the experiments of Pippan et al. (2000) also showed a small transient reduction in

FCG rate just before the crack reaches the interface. The predicted transient acceleration

is however larger than those observed in Sugimura et al. (1995). In agreement with the

experimental studies the computations predict that the transient crack growth changes

occur in the close vicinity of the interface.

The mode mixity of the material separation for the interface crack is characterized

by determining V' = tan-'(u, /u,) at location y/ 50 = 50 for the load cycle in which

damage reached D. =0.5. At the maximum load of this load cycle, t/t, =105.5 the

computations predict V = 4.7*. As seem from Figure 4.5(a) during loading, tangential

separation at the interface is inhibited by the remaining intact ligament. At the following

minimum, t/t, = 106.0, it is found that V/ = -29.3' . During unloading a significant

amount of interaction between the upper and lower half of the model is possible again

due to the remaining ligament. During unloading, this leads to only little reduction of the
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material separation parallel to the interface while the material separation in the direction

perpendicular to the interface is reduced significantly, finally resulting in the observed

change in mode mixity.

The details of the fatigue crack growth behavior for crack growth from the soft to

hard case are discussed next. Computational results shown are for an applied load of

AG / 0J = 0.15. Figure 4.8 depicts predicted crack normalized extension in dependence

of load cycles for values of the interface cohesive strength, o-'t0, ranging between 1000

MPa and 500 MPa. Both crack extension along the direction of the initial crack and

along the interface are included in the diagram. The corresponding plots of normalized

crack growth rates vs. crack extension are given in Figure 4.9(a) and 4.9(b). Figure 4.8

and 4.9 clearly demonstrate that the interface strength again significantly impacts the

predicted crack growth behavior. For a strong interface, 0 =1000 MPa, the predicted

crack growth behavior is only little different than that already discussed for the perfect

interface. Again, two steady state crack growth stages are predicted, with the crack

growth rate in the soft phase exceeding that for the hard phase, and transient crack

retardation in the region close to the interface, Figure 4.8. A detailed comparison of the

perfect interface case and the computation with mx,0 =1000 MPa is included in Figure

4.9(a) demonstrating that the crack growth rates for the two cases are identical in the

steady state regions, but with a higher amount of crack retardation predicted for the case

of oU.ifl10=1000 MPa. As the interface strength is further reduced to 900 MPa and 800

MPa, the crack continues to penetrate the interface, and crack growth rates are not altered,

except for the presence of even stronger growth retardations at the interface, Figure 4.9(a).

For interface cohesive strength of 750 MPa and 700 MPa crack growth rates in the soft

phase are still the same as for the perfect interface but the crack finally does no longer

penetrate the interface. Arrest of the cracks at the interface is predicted, Figure 4.9(a).

Finally, for even weaker interfaces, "t, 0=650, 600, 500 MPa, crack deflection into the

interface, and crack growth along the interface is predicted, see results for these cases in

Figure 4.8 and 4.9(b). For the cases rnto0 =650 and 600 MPa, the predicted growth of the
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initial crack is only minimally altered and the cracks come to a halt at the interface or

shortly before the interface. Interface crack growth initiation is closely associated with

the crack arrest. In Figure 4.9(b) to indicate the correlation between the locations of arrest

of the initial crack relative to the interface crack growth, lines depicting the interface

crack growth data are placed with their origin at the location of crack arrest of the initial

crack. Interface crack growth proceeds at a constant rate.

For the case of Cra, t.0 =500 MPa, i.e. the weakest interface considered in this

study, the presence of the weak interface also is predicted to alter the growth of the

initial crack, i.e. to reduce the crack growth rate once the crack tip is a distance of

approximately 25J0 or approximately Ar, / 150 from the interface. The reduction in crack

growth rate occurs concurrently with the initiation and growth of the interface crack.

Now, the predicted crack growth rate for the interface crack shows a pronounced initial

transient behavior, i.e. the initial crack growth rate is considerably larger than the

subsequent steady state growth rate. Summarizing, the predicted interface crack growth

rates can be characterized by d(a/5 0 )/dN = 4.3(AG/I50)" 8 , i.e. again a Paris-type law

but of considerably smaller power as found for propagation through the bulk.

Based on Figure 4.9(a) a comparison with the results of Pippan et al. (2000) and

Sugimura et al. (1995) are made. The computations with the imperfect interfaces but

penetrating cracks predict a decrease in FCG rate of a factor of - 150 in good agreement

with the experimental observations while the computations with the perfect interface

underestimate the decrease in FCG rate. Again, the assumption of a perfectly bonded

interface leads to a less favorable agreement between simulation and experiment. In

agreement with the experimental studies the computations predict that the transient crack

growth changes for the soft to hard case start to occur when the crack tip is still quite

remote from the interface.

The mode mixity of the material separation is again characterized by determining

= tan-'(u, /u,) at location y/o0 = 50 and the load cycle in which damage

reachedD. = 0.5. At the maximum load of this load cycle, now t/t, = 76.5, V/ = -31.8%.

For the soft to hard case, Figure 4.5(b), tangential separation at the interface is not
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inhibited. At the following minimum, t/t, = 77.0, it is found that V = -8.3o. During

unloading, crack closure is again present along the initial crack. Crack closure of the

initial crack leads to a smaller reduction of the material separation parallel to the interface

as compared to the material separation in the direction perpendicular to the interface,

thereby decreasing the mode mixity.

The computational results are summarized with respect to the influence of the

interface toughness on the crack deflection behavior. In Figure 4.10, the distance of the

crack from the interface at crack bifurcation, A/ 5o, is plotted in dependence of the

interface cohesive energy, •nt, as normalized with the cohesive energy of the phase

beyond the interface, q0'. It should be noted here that since ama0 = 4o-r in both the soft

and hard phase and 50 = const. the values of ' nt •0' can be directly translated into

intnormalized cohesive strength parameters, O'mnt. /O'y.

Following the results of He and Hutchinson (1989) on crack deflection into the

interfaces under monotonic loading in elastic bi-materials, crack deflection should occur

only for o•t /Ob <0.2 in elastically homogeneous materials, but is possible for

significantly larger values of 00nt/I4f. Subsequently, e.g. in Siegmund et al. (1997) and

Arrata and Needleman (1998), it was demonstrated that plastic deformation in the phase

beyond the interface will enhance the tendency for crack deflection, and also lead to

interface crack growth for cases with 0nt / •00 > 0.2. The earlier finding that plastic

deformation enhances the tendency to crack deflection is confirmed in the present fatigue

crack growth study. For the soft to hard case crack penetration into the hard phase,

A/50=0, occurred for ' nt / 0 <0.4. For interface strength 0.33< ont /4' <0.4,

crack arrest without interface crack growth is predicted. For lower values of the interface

strength, €•nt /#o <0.33, interface crack growth will occur with A1,0 strongly

increasing as 00" / 0o decreases further. For cracks initially growing from the hard to the

soft phase crack deflection is predicted to occur at significantly increased values of

91



interface cohesive energy, "n* / o < 0.95. As the interface strength is decreased below

this threshold, crack bifurcation at the interface occurs, with A/ 80 increasing linearly as

int /0oP decreases. For interfaces with 0.8 < 0int/ 00P <0.9 interface crack growth

occurred but as the remaining ligament between the initial crack tip and interface fails,

interface crack growth will cease and crack growth into the soft phase will take place.

For weaker interfaces,0int 0/ P < 0.8, interface crack growth and arrest of the initial crack

is predicted here. However, it is possible that after a large number of cycles the crack

might still penetrate the interface in the same way as demonstrated for the cases with

0.8 < 0Aint/ •' <0.9.

A detailed direct comparison with experimental data on crack bifurcation is not

yet possible as experimental records do not contain detailed information on the

bifurcation behavior, the asymmetric response in the bifurcation response was however

also observed in the experimental study of Pippan et aL. (2000).

4.4. Conclusions

The present study demonstrated the capability of an irreversible cohesive zone

model approach to analyze FCG in a bi-material system. The model parameters were

tuned such that crack growth rates in the lower yield strength material exceeded those of

the higher yield strength material. This was accomplished by setting cohesive strength

proportional to the yield strength. The FCG for the bi-material systems with a perfect

interface and imperfect interfaces were calculated and compared. The predicted crack

growth behavior was found to be in good agreement with experimental observations.

At first, FCG perpendicular to a perfectly bonded interface was investigated. The

interaction between the crack and the interface was found to be strongly dependent on the

position of the interfaces relative to the initial crack. Strong interaction of the crack with

the interface started as the distance between crack tip and interface was approximately
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equal to the monotonic plastic zone size at the maximum load level prescribed.

Interaction between crack and interface ended as the crack moved beyond the interface a

distance equal to the cyclic plastic zone.

When the crack propagated from the hard to the soft phase, two steady-state crack

growth stages were predicted with the crack growth rate in the soft phase exceeding that

for the hard phase. Crack growth was temporarily accelerated in the region close to the

interface. This type of response is in agreement with experimental results of Pippan et al.

(2000) and Jiang et al. (2003). The magnitude of increased crack growth rate increased

with the load level. The predicted damage distribution showed that, before the crack in

the hard phase reached the interface, damage already occurred in the soft phase. The

process of link-up between the damage zone at the initial crack in the hard phase and the

secondary damage zone in the soft case leads to the transient crack growth rate increase

in the vicinity of the interface.

When the crack propagated from the soft to hard phase, two steady-state crack

growth stages were also predicted with the crack growth rate in the soft phase exceeding

that for the hard phase. When the crack tip approached the interface the FCG rate

dropped strongly and reached the minimum value when the crack tip is located at the

interface. The prediction of temporary crack retardation is in agreement with

experimentally observed FCG retardation effects in bi-material systems, (Sugimura et al.,

1995; Pippan et al., 2000 and Jiang et al., 2003). The predicted level of crack growth

retardation at the interface increased with the load level. The predicted damage

distribution showed that, as the crack approached the interface via the soft phase, the tip

of the active cohesive zone penetrated into the hard phase. Without a secondary damage

zone forming beyond the interface, the speed of the active cohesive zone tip was reduced

considerably as accumulation in the hard phase is shown.

Secondly, the FCG behavior for crack growth in bi-material system with an

imperfect interface was investigated. Crack growth perpendicular to and along the

interface was allowed. The results showed that crack acceleration, crack arrest and

bifurcation were strongly dependent on the position of the phases relative to the initial

crack and the interface cohesive properties.
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For a crack approaching the interface from the hard phase, it was found that, for

weak interface, e.g. with -.mt 0  600 MPa, crack bifurcation occurred and the initial

crack arrested at least temporarily away from the interface such that an intact ligament

remained between crack tip and interface. The main stress concentration was still present

at the initial crack tip. The mode mixity was increased due to the remaining ligament. For

strong interfaces with the strength of 1000, 900MPa, the predicted crack growth behavior

was similar to that for the perfect interface except for a decrease in the predicted transient

crack growth rate. As the interface strength decreased to 800MPa, crack growth along the

interface and arrest of the initial crack were observed. As the loading processed, the

ligament between the arrested crack tip and interface failed and the initial crack growth

was resumed and penetrated into the soft phase. With the restart of the initial crack, the

bifurcated interface crack was arrested. For the interface with the strength smaller than

800MPa, the initial crack was arrested. Concurrently with the arrested initial crack, the

crack was bifurcated into the interface. The lower the interface strength, the earlier the

bifurcation occurred. The computations with imperfect interfaces but penetrating cracks

predicted an increase in FCG rate of a factor of -30 in good agreement with the

experimental observations (- 50, Pippan et al., 2000 and Sugimura et al., 1995) while

the computations with the perfect interface significantly overestimated the increase in

FCG rate.

If the crack approached the interface from the soft phase, it was observed that for

weak interface with o0 = 600 MPa, the initial crack was deflected into the interface

and there was no ligament between the initial crack tip and interface left and the crack

reached the interface completely. The main stress concentration was found at the crack

tip along the interface in the hard phase. And the mod mixity was decreased due to the

crack close during unloading. For strong interfaces with the strength of 1000, 900and

800MPa, the predicted crack growth behavior was similar to the case with the perfect

interface except for a higher amount of crack retardation. Crack penetrated the interface

and no crack bifurcation occurred. As the interface strength decreased to 750 or 700MPa,

initial crack finally did no longer penetrate the interface and arrest at the interface. The

crack bifurcation did not occur either. For weaker interfaces with the strength of 650, 600
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and 50OMPa, the initial crack arrested at the interface or a small distance before the

interface. The reduction in growth rate for initial crack occurred concurrently with the

initiation and growth of the interface crack. Especially, for the interface with the smallest

strength of 50OMPa, the growth rate of initial crack was reduced once the crack tip was a

distance of approximately Arp', / 5, from the interface. And the interface crack growth

rate showed a larger initial value than the subsequent steady-state growth rate. The

computations with imperfect interfaces but penetrating cracks predicted a decrease in

FCG rate of a factor of (- 150, Pippan et al., 2000 and Sugimura et al., 1995) in good

agreement with the experimental observations while the computations with the perfect

interface underestimated the decrease in FCG rate.
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Figure 4. 1: (a) A bimaterial in the modified boundary model; (b) Detail of crack tip mesh.
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Figure 4.2: Predicted crack growth rates in homogeneous elastic-plastic solids in
dependence of the ratio between initial cohesive strength and yield strength, comparison
to solutions with elastic material behavior only.
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Figure 4.3: Predicted model response for crack growth across a perfectly bonded
interface for the hard-soft case: (a) Crack rates in dependence of crack extension for three
applied load levels; (b) Damage distribution at series of different cycles.
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Figure 4.4: Predicted model response for crack growth across a perfectly bonded
interface for the soft-hard case: (a) Crack rates in dependence of crack extension for three
applied load levels; (b) Damage distribution at series of different cycles.
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Figure 4.5: Contour plots of equivalent stress, in, 0 ~ ta odlvlo

AG/ 0 = 0.15: (a) Hard to soft case, t/t, = 104.5 ; (b) Soft to hard case, t/tý = 80.5.

Deformation magnified x 10, symmetry conditions were employed to obtain the contour
plots.
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Figure 4.6: Predicted model response for the hard-soft case for several values of the
initial interface cohesive strength.
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5. SIZE EFFECTS IN FATIGUE FAILURE

The study described in this chapter is concerned with non-statistical size effects

on fatigue failure. Past studies have discussed this issue in the context of crack size

dependent Paris law but retain a crack propagation type failure. In the present study, it is

demonstrated that as structural size is reduced or as a crack extends, fatigue failure of

cracked structures no longer occurs by crack propagation but transitions to uniform

debonding. The consequences of this finding on fatigue failure and threshold conditions

are studied. A fatigue cohesive zone model is applied to demonstrate this finding. It is

demonstrated that in fatigue loading the evolution of the internal cohesive length scale

needs to be accounted for.

5.1 Introduction

It is common practice to describe the failure of crack containing structures

subjected to cyclic loads through the application of the Paris law (Paris, et al., 1961).

Thereby, crack advance Aa per cycle N is described by a power law of the range of the

cyclic stress intensity factor AK. In the case of quasi-brittle materials and fatigue crack

growth in specimens of different sizes h it has been proposed to introduce a size-

dependent Paris law. Based on scaling theory the following size-dependent Paris law has

been proposed (Baiant, 2002):

(h)d =CAK,]=c(AKJ( I+L]J (5.1)

dNh" Kc(h) K ), h11
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where k is a reference length and Kjf is the fracture toughness of an infinitely large

structure. Alternatively, size-dependent Paris laws based on fractal dimensions were

suggested in (Spagnoli and Carpinteri, 2003 ; Spagnoli, 2005). In both approaches, the

power m remains constant. Furthermore, for ductile materials a recent study (Ritchie,

2005) confirmed the prediction of size dependent power m (Barenblatt and Botvina,

1980). All these approaches retain the underlying assumption that fatigue failure occurs

through the extension and propagation of a crack.

Yet, another set of studies on size effects of failure under monotonic loading has

demonstrated that if the characteristic size of the structure under consideration becomes

smaller than a critical, material characteristic, length scale the failure behavior will

change. Failure will no longer occur through the propagation of a crack but rather

through a uniform debonding of the remaining ligament. For a review of such size

effects on a range of materials see (Balant, 2004). Several studies have demonstrated that

the cohesive zone failure model provides a convenient approach to study such size effects

(Needleman, 1990a, b; Li and Siegmund, 2003; Gao and Ji, 2003; Elices, et al., 2002).

For structures of size similar to or smaller than a characteristic length scale, the stress

distribution in the ligament is no longer that expected for a cracked structure, but exhibits

a rather constant distribution of the crack opening stress (Needleman, 1990a, b). Then,

failure is predicted to become independent of crack length or structural size, and strength

becomes equal to theoretical strength (Gao and Ji, 2003). Only for structures larger than

the material characteristic length does the stress distribution in the ligament remain crack

tip field like, and failure depends on crack length.

In the present computational study it is explored how crack-containing structures

of varying size respond to cyclic loading. An irreversible cohesive zone model is applied

to conduct the numerical simulations (Roe and Siegmund, 2003). In contrast to past

applications of cohesive zone models to studies of size effects, it is demonstrate that in

the case of fatigue loading the material characteristic length scale is no longer constant.

111



where k is a reference length and Kjf is the fracture toughness of an infinitely large

structure. Alternatively, size-dependent Paris laws based on fractal dimensions were

suggested in (Spagnoli and Carpinteri, 2003 ; Spagnoli, 2005). In both approaches, the

power m remains constant. Furthermore, for ductile materials a recent study (Ritchie,

2005) confirmed the prediction of size dependent power m (Barenblatt and Botvina,

1980). All these approaches retain the underlying assumption that fatigue failure occurs

through the extension and propagation of a crack.

Yet, another set of studies on size effects of failure under monotonic loading has

demonstrated that if the characteristic size of the structure under consideration becomes

smaller than a critical, material characteristic, length scale the failure behavior will

change. Failure will no longer occur through the propagation of a crack but rather

through a uniform debonding of the remaining ligament. For a review of such size

effects on a range of materials see (Balant, 2004). Several studies have demonstrated that

the cohesive zone failure model provides a convenient approach to study such size effects

(Needleman, 1990a, b; Li and Siegmund, 2003; Gao and Ji, 2003; Elices, et al., 2002).

For structures of size similar to or smaller than a characteristic length scale, the stress

distribution in the ligament is no longer that expected for a cracked structure, but exhibits

a rather constant distribution of the crack opening stress (Needleman, 1990a, b). Then,

failure is predicted to become independent of crack length or structural size, and strength

becomes equal to theoretical strength (Gao and Ji, 2003). Only for structures larger than

the material characteristic length does the stress distribution in the ligament remain crack

tip field like, and failure depends on crack length.

In the present computational study it is explored how crack-containing structures

of varying size respond to cyclic loading. An irreversible cohesive zone model is applied

to conduct the numerical simulations (Roe and Siegmund, 2003). In contrast to past

applications of cohesive zone models to studies of size effects, it is demonstrate that in

the case of fatigue loading the material characteristic length scale is no longer constant.

il1



5.2 Model Description

Fatigue failure is investigated for plane strain strip specimens depicted in Figure

5.1 (Gao and Ji, 2003). The strip possesses a height of 2h/, and is assumed to possess a

length L much larger than its height. A crack of length a0 = L / 3 is positioned at the

centerline of the strip. A reference coordinate system (xl,x 2 ) is placed at the crack tip.

The specimen is loaded in cyclically varying tension by applying cyclically varying

displacements U2 (t) of amplitude Au2 and time period t, at the locations x2 = ±h_ :

u2 (t) = Au 2 [0.5 - 0.5- cos 2,r(t /tý)] (5.2)

For an infinite strip with a long crack, the cyclically varying energy release rate is related

to the displacement through:

G(t) = 2h 0 2 E(1-v) [U2 (t)]2 (5.3)

22 22) (1 +v)(l - 2v) h,

The validity of equation (5.2) for the case of the present finite size geometry with

a0 = L / 3 was verified by comparing computed values of the J-integral to predictions of

equation (5.3). These results match within less than 1%. The finite element mesh used in

the analysis is characterized by a constant element size in front of the crack tip along the

specimen midline with elements of size 560. The length of the strip is L >> h with

L = 37408O chosen for the simulation. The model was constructed using four node plain

strain elements. The symmetry of the strip specimen with respect to x2 = 0 was

considered and only a half-model with appropriate symmetry boundary conditions was

analyzed numerically.

From the definition of the relationship between toughness expressed by the

measure of energy release rate and stress intensity factor Gc = = (Kc )2 (1 -V 2)/ E and

considering Kc = ,. -•, a material characteristic length scale 1o is introduced as

combination of the cohesive zone properties with the elastic modulus E and Poisson's

ratio v of the solid surrounding the cohesive zone:
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" •°E e,5E (5.4)
10 = C..2a0 7r(l _ V 2

) -max.,0O(_V 2
) (

Under the cyclic loading, the irreversible CZM accounts for the evolution of the

cohesive properties by use of a cyclic damage variable D.. In the present model under the

consideration of cyclic loading, in addition to the cohesive strength which is the function

of the damage, the material characteristic length scale calculated by equation (5.4) is also

no longer a constant but dependent on damage:

e3°E = 10
o¥•,xr(1 -V2) = (1- D,)(5 )

As damage progresses the material characteristic length scale will increase. The

implications of this consideration are demonstrated with the simulation results of the

present study.

Simulation results discussed here were obtained for the following set of

parameters. The solid is characterized as an isotropic linear elastic solid with E=100 GPa,

and v =0.34. All computations, except in the parametric study, were conducted with the

following material parameters for the cohesive zone: Omax.0=E1lOO ,

oa /amx0 = 0.25, 8 z/80 = 4.0. The endurance limit is given as o' I/O•x,0 = 0.25 which

is a lower bound on typical experimental values of the fatigue ratio. The value of the

ratio 4, / 5, is known to scale the number of load cycles required to fail a cohesive

element (Roe and Siegmund, 2003). In order to keep the computational cost within

acceptable limits the value of i5z /50 = 4 was selected. Combining these parameters the

material characteristic length emerges is l0 = 100e8 0 /[n'(1-v 2)] = 97.880 . Several

different specimen dimensions were considered: (i) specimens much larger than the

characteristic length scale h/6 0=(900, 750) >> lo0I6, (ii) specimen of size slightly larger

than the characteristic length scale hk/8 0=(400, 240, 200, 150,100)> lo/0 , and (iii)

specimen smaller than the characteristic length scale h1Jo=(80,50,20,10) <lo/8.

Cyclic loading was conducted under the conditions that AG / %0 = 0.2 and R = 0.
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5.3 Results and Discussions

First, the predicted model behavior under monotonic loading is discussed in order

to provide a reference point for the further discussion. Figure 5.2 depicts the predicted

normalized strength or / aTmaxý in dependence of the normalized specimen size. In line

with well-known relationships between strength and size, the present model predicts

strength independent of size and equal to the cohesive strength for small specimens. For

larger specimens strength is predicted as dependent on size. From equation (5.3) and

equation (2.3) one obtains:

o_=__ I (i-v) E~0 0 (1-v)e E (5
(12 v (5.6)

Omax,O (1+v)(1-2v)o'oh I (1 + v)(1- 2v) tmax,O h,

For the present model parameters the transition size (ta. = C.0 ) is predicted to be

h/ý io =420.25. The computational results are found to approach the theoretical

predictions well.

All following results refer to computations under cyclic loading. Figure 5.3

depicts the predicted normalized crack extension Aa/8 0 in dependence of the number of

applied load cycles N. For all specimen sizes considered an initial number of cycles Nm,,

is required such that crack extension is predicted. For large specimens with size

exceeding the material characteristic length h,/Mo=750 and 900, the incubation period is

followed by a crack extension stage with a nearly constant crack growth rate. For the

largest specimen h,1, 05=900 a maximum crack extension of Aa/8o0 =650 was computed

to occur after N =100 load cycles. Smaller specimens (100< h1/So<750) initially behave

identical to the larger specimens with an incubation period to crack growth initiation

followed by a crack growth stage. However, for these specimen sizes the crack growth

rate subsequently increases substantially at a critical cycle sudden failure of the entire

specimen occurs. For the third group of even smaller specimens hk/I <100 a longer

initial incubation period is predicted. Subsequently, these specimens fail without any real

crack growth stage developing. The number of load cycles to crack growth initiation is
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summarized in Figure 5.4(a). The number of cycles to initiation is largest for the smallest

specimens and decreases with specimen size to an asymptotic and size independent value.

Figure 5.4(b) summarizes the predicted initial crack growth rates, i.e. crack growth rates

for a state in which the internal length scale l° is still close to its initial value l0. The crack

growth rate was calculated for crack propagation close to the initial crack (from the 5th to

the 6 th cohesive element). No crack growth rates could be determined for specimens

(delete "smaller") with h /i8 < 50 as no crack growth type failure occurs. Even if these

specimens contain a crack, a Paris law cannot be used here. For specimens

50< hk /5 < 200 crack growth rates are predicted to be decreasing with specimen size.

Such a result is in qualitative agreement with findings in experimental studies (Ba~ant

and Xu, 1991; Ba~ant and Schell, 1993). For these specimens a size-dependent Paris law,

e.g. equation (5.1), can be used to characterize the crack growth rate. For larger

specimens hk /8 > 200 the computations predict the initial crack growth rates to be

independent of size. It is in this range that the classical Paris law is valid and crack

growth rates determined on one specimen can be transferred to another specimen. Final

failure of the specimens is characterized as the number of cycles required for given

values of crack extension (Aa / ,0 = 20, 100, 200, 700), Figure 5.4(c). For small values of

crack extension (Aa /80 = 20) the number of cycles to failure is dominated by the number

of cycles to initiation, and small specimens possess the longest life-time under this

criterion. For large values of crack extension (Aa/I 6 = 100, 200, 700) the life time no

longer only depends on crack growth initiation but also on crack propagation. As a result,

large specimens then allow for a larger number of cycles to failure while for small

specimens (no crack growth stage) the number of cycles to failure remains unchanged.

The interaction of these two mechanisms leads to the result that for intermediate size

specimens the lowest number of cycles to failure is predicted. Specimens of size similar

to the material characteristic length scale l0 are predicted to be most critical to fatigue

failure.
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For more details of the computations, results on specimens of size hs / =20,

240, 750 are discussed in the following. While previous studies have commonly used the

ligament stress distribution (Gao and Ji, 2003) or the spatial traction distributions

(Needleman, 1990a, b) to further investigate the size dependent failure response, here it is

useful to investigate the spatial distribution of the damage variable and the crack opening

displacement. Figure 5.5(a) depicts the distribution of D, along the cohesive zone at

N=15.5. For the large specimen, the condition D, =1 is fulfilled for x, /6O<75, and

subsequently drops sharply to negligible values. The damage distribution represents a

crack-type response. For the intermediate size specimen, the damage distribution at the

current crack tip is similar to that of the larger specimen, but D, is reduced less and does

not reach zero for the remainder of the ligament. The damage distribution for the

smallest specimen is significantly different. Damage depends little on location and for the

cycle considered remains less than one. The simulations thus predict that a crack growth

type failure only occurs for large structures, but small structures fail in a uniform

debonding mode despite the presence of a crack. A similar response can be seen from the

predicted crack opening profiles at N=15.5, Figure 5.5(b). For the large specimens

hI/go =240 and 750 the crack opening profiles are crack like, while for h, /I0 =20 a

uniform debonding mode is clearly present. To visualize the specimen response in more

detail, Figure 5.6 depicts the contours of the normalized stress component 0c22 /qx.0 on

the deformed shape of the specimen. For the largest specimen, a pronounced stress

concentration is present at the crack tip both initially as well as during crack propagation.

The deformed shape of the specimen clearly depicts the presence of a crack. For the

smallest specimen no stress concentration is present and stresses are uniform throughout

the ligament. The stress level degrades with the number of cycles essentially identically

for all points in front of the initial crack tip. At final failure the specimen separates

uniformly into two halves. A more complex response is found for intermediate size

specimen, Figure 5.6(b). Initially, a stress concentration is present at the crack tip and the

deformed shape of the specimen is crack-type. However, the strength of the stress
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concentration diminishes as the number of load cycles increases. Final failure is predicted

through uniform debonding.

The change in failure modes can be explained through the evolution of the

material characteristic length scale, equation (5.3). Figure 5.7 depicts the ratio between

the current material characteristic length scale l° and its initial value 10 in dependence of

the number of load cycles. For the numerical evaluation of equation (5.3) the values of

D. are averages over the domain x, > 0. For the largest specimen (hs/4 0 = 750) the ratio

l /l, hardly changes throughout the computation, max( l/0Io) = 1.5 x lo/3o, such that the

specimen size remains always much larger than the current internal length scale

hk/5o >> l/Jo. For the smallest specimen (h,/i 0 =20), the ratio 1* /l1 increases quite

rapidly right from the onset of cyclic loading. Again the change in the characteristic

length scale does not affect the failure mode since the specimen is already initially

smaller than the characteristic length scale, i.e. h,/1o << lo/6o << l*/6o. For intermediate

size specimens (hk5/6, = 240, 400) the change in characteristic length scale is responsible

for a change in the failure mode. While these specimens are initially larger than the

characteristic length scale (h k/ 5o > lo/ o) this is no longer the case as cyclic loading

progresses, and finally h, /,0 < l"/80. The conditions hk = lP are marked in Figure 5.7,

and correspond well to the number of cycles at which the specimens of size h 5/80 = 240,

400 fail by uniform debonding of their remaining ligament, see Figure 5.3.

To provide an understanding of the influence of the cohesive zone parameters on

the computational results, a limited parametric study was conducted. Results for

computations on specimens of size hk / 5o = 240 are presented in Figure 5.8. It is

demonstrated that changes in the accumulated cohesive length 61 influence the predicted

crack growth rate through changes in the incremental values of damage. Changes in the

value of the accumulated cohesive length (5, however do not influence the shape of the

damage distribution. As a consequence the crack length at which the transition from

crack propagation-type failure to uniform debond-type failure occurs remains unchanged.
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Changes in the value of the cohesive zone endurance limit o01 on the other hand change

both the rate of damage accumulation and the shape of the damage distribution.

Consequently, this value of this parameter affects both the predicted crack growth rate as

well as the transition in the failure mode. For small values of oa- the transition between

failure modes will occur early, while for large values of 0-0a crack propagation type

failure mode dominates.

In addition, to the determination of the failure characteristics of the specimens

under cyclic loading, it is of interest to determine conditions of load for which failure is

excluded, i.e. the threshold or fatigue limit conditions. In order to summarize such

information for the present model a Kitagawa-type diagram is developed in which the

dependence of the threshold stress a-22 = t-,h on specimen size is depicted, Figure 5.9. In

the context of the present model threshold conditions are reached if the maximum

traction value in the cohesive zone remains below the fatigue limit ca-. At small values

of hk a bound for the threshold stress is therefore given by o-,h = Cf1 . For larger size

specimens and considering the definition of the stress intensity factor (Suresh, 1998), the

criterion

-,=h = (5.7)

describes the size dependent threshold stress. A transition size between the two criteria

(a-'h =a-1 ) is then obtained as k = lo. The computational results approach these

predictions well.

5.4 Conclusions

The present computational study demonstrated that the type of the process of

fatigue failure depended on the ratio between the size of the cracked structure under

consideration and a material characteristic length scale. The fatigue cohesive zone model
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employed in this study predicted such effects as the outcome of the analysis without the

need to introduce any size dependent failure criteria. The model introduced the material

characteristic length scale as an evolving internal variable. The absolute values of the

terms "large" and "small" are dependent on the microstructure and/or the failure

mechanism of the material under investigation as expressed by the material characteristic

length scale.

For larger specimens with size exceeding the material characteristic length, the

fatigue failure occurred through crack growth and the crack growth rate was size-

independent. A Paris law approach was an appropriate approach to describe this response.

For the intermediate size specimens, the failure mode changed from the crack type failure

to uniform debonding. The predicted FCG rate was dependent on the specimen size and

is in qualitative agreement with findings in experimental studies (Ba~ant and Xu, 1991;

BaMant and Schell, 1993). A size-dependent Paris law can be use to characterize the crack

growth rate. For the smaller specimens with size less than the material characteristic

length, the failure occurred through the uniform debonding without any real crack growth.

For those structures an S-N approach was appropriate. The calculation results for those

specimens showed that the number of cycles to initiation was the largest for the smallest

specimens and decreased with specimen size to an asymptotic and size-independent value.

Fatigue life was considered to mainly include both crack initiation and crack

propagation. The fatigue life time which corresponded to a specific crack extension was

predicted to be dependent on the specimen size. The results showed the small specimens

possessed the longest life time due to the longer crack initiation time under the small

crack extension. For larger values of crack extension, the large specimens possessed the

longest life time since the crack propagation time was longer. For intermediate size

specimens the lowest number of cycles to failure was predicted. It means that structures

of intermediate size were most prone to fatigue failure due to the interaction between

crack growth initiation and early transition to the debonding mode.

Fatigue failure under the different specimen size was studied based on the damage

distribution, crack opening profiles and crack opening stresses. The comparison results

showed that, for large specimens, the damage distribution and crack opening profile
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represented a typical crack-type response. A pronounced stress concentration was present

at the crack tip both initially and during crack growth. For the intermediate size specimen,

the damage distribution at the current crack tip was similar to that of the large specimen

and the damage was reduced less and remains some values for the remainder of the

ligament. The corresponding crack opening stress showed that the strength of the stress

concentration diminishes as the number of load cycles increased. For small size

specimens, the damage had a constant value through the whole ligament. No stress

concentration was present and stresses were uniform throughout the ligament. It resulted

in the uniform debonding.

In the context of the fatigue cohesive zone model the material characteristic

length scale was no longer a constant but increased with the accumulation of damage.

For the largest size specimen, the current material characteristic length scale hardly

changed throughout the computation such that the specimen size remained larger than the

current internal length scale. For the smallest size specimen, the current material

characteristic length scale increased quite rapidly which resulted in no effects on the

failure mode since the specimen was already initially smaller than the characteristic

length scale. For intermediate size specimens, the change in characteristic length scale

was responsible for a change in the failure mode. In that case the initiation of failure was

through crack growth but later the failure mode transition to that of uniform debonding of

the ligament occurred.

A Kitagawa-type diagram was developed to determine the fatigue limit conditions

under the different specimen sizes. The results indicated that, for very small size

specimens, the threshold stress was close to the fatigue limit. The threshold stress

decreased with increasing the specimen size. It was in good agreement with the published

experimental results.
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Figure 5.2: Predicted normalized strength o-m,/Ir.o in dependence of the specimen size

h, /15,o and comparison to theoretical prediction.
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Figure 5.3: Predicted normalized crack extension in dependence of the number of applied
load cycles for specimens of size h. / 50 = 10 to h. / 50 = 900.
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6. A DISLOCATION DENSITY BASED STRAIN GRADIENT MODEL

Strain gradients play a vital role in the prediction of size-effects in the

deformation behavior of metals at the micrometer scale. At this scale the behavior of

metals strongly depends on the dislocation distribution. In this paper, a dislocation

density based strain gradient model is developed aiming at predictions of size-effects

for structural components at this scale. For this model, the characteristic length is

identified as the average distance of dislocation motion, which is deformation

dependant and can be determined experimentally. The response of the model is

compared to the strain gradient plasticity model of Huang et al. (2004). It is shown

that the present strain gradient model, which only requires a physically measurable

length-scale, can successfully predict size effects for a bar with an applied body force

and for void growth.

6.1 Introduction

Recent experiments indicate that strong size effects are present in the

deformation response of metals at the micro-scale. For example, [14] found an

increase in plastic work hardening of copper wires during micro-torsion experiments

while decreasing the diameter from 170 to 12pm. Micro-indentation experiments

showed an increase in hardness with a decrease in indentation depth to the micron-

level, as presented by [30]. Furthermore, micro-bending experiments of [33] yield an

increased hardness for thinner foils (- 1prm ) compared to thicker once. [22] give a

comprehensive review of size effects in different metallic materials and loading

conditions. All these studies lead to the conclusion that there is strong experimental
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evidence for a size effect "smaller is stronger".

Classical continuum plasticity models predict identical stress-strain responses

for different geometrical dimensions, i.e. classical continuum answers are size

independent. These self-similar predictions are consistent with experiments for large

dimensions (>1mm). However, as the dimensions of the sample decrease

experimental results do not agree with classical predictions. Strain gradient models

predict size effects and are therefore appropriate for problems involving small

dimensions. The reason for the size dependence of the strain gradient models at small

dimensions is the length-scale introduced in all these models. [18] and [29] give a

detailed overview of strain gradient models.

Strain gradient models can be separated into two groups. On the one hand, in

first-order models (e.g. [13], [1], [22], [25], [23], [31] and [37]) the strain gradient

enters only the incremental material stiffness. Therefore, no additional boundary

conditions are needed for this class of models ([2]). The second group is constituted

of higher-order models (e.g. [10], [14], [32], [15], [19], [20], [21], [26], [16], [38] and

[9]), which include higher-order stresses as work-conjugate of the strain gradient.

This increases the order of the equilibrium equations and requires additional,

i.e. higher-order, boundary conditions. [18] gives a unified approach to these higher-

order strain gradient models. In the present paper we introduce a first-order strain

gradient model, since a first-order model is more attractive in respect to numerical

efficiency and ease of implementation. [29] have pointed out that first-order strain

gradient models show numerical instabilities in simulations that lack strain gradients.

These instabilities were not observed in the present model.

Dislocation motion has long been known to be the reason for plasticity.

Furthermore, the occurrence of specific dislocation structures is an indication of

structural failure, e.g. persistent slip bands in fatigue. The new model, called

dislocation density based strain gradient (DDSG) model, is based on physical

materials properties only, e.g. dislocation density and their characteristics.

Strain gradient plasticity models, as discussed here, are continuum models that do not

differentiate between specific slip directions. Therefore, the interaction between two

dislocations is identical regardless of the orientation of the slip systems. To overcome

this restriction, crystal plasticity models ([4]) or discrete dislocation models ([35]) are

necessary, which describe the underlying physical mechanisms in more detail and are
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therefore more costly.

In the next section, we will derive the model by providing relations for the

total dislocation density, the density of statistically stored and geometrically necessary

dislocations, and the incorporation of the dislocation densities into a continuum

theory. The density of statistically stored dislocations is a function of the

characteristic length l, which is compared to the other proposed length-scales in

strain gradient plasticity. Thereafter, the application of the model is shown by three

examples, which range from an analytical derivation for simple tension to a numerical

simulation of void growth. The numerical implementation of the model is follows that

of the conventional mechanism-based strain gradient model of [22]. We will close this

paper with some conclusions.

6.2 Dislocation Density Based Strain Gradient (DDSG) Model

6.2.1. Taylor hardening and total dislocation density

The shear flow-stress of a metal depends on the dislocation density ([5]). To

include this effect into a flow-rule, the shear flow-stress has to be related to the

macroscopic tensile flow-stress. Here we employ

cYTaylor =,[3z (6.1)

Within a two-dimensional framework of continuum theory, the ratio of uniaxial flow

stress to shear flow stress is two for the direction of maximum resolved shear stress.

However, in crystalline materials the system of discrete slip planes is often not

oriented such to maximize the shear stress in a particular slip direction, but is

randomly oriented. Therefore, the ratio is larger than two. [22] employ the Taylor

factor M = 3.06 ([7], [24]) in their conventional theory of mechanism based strain

gradient plasticity (CMSG). However, the elastic and plastic mismatch between grains

increases the local, i.e. microscopic, resolved shear stress in poly-crystalline

materials. This additional stress'decreases the macroscopic external stress required for

plastic slip. Therefore, we choose the von Mises factor r/i here. [2] gives the shear

flow-stress r for a dislocation hardened material as
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r = autbjt7•J (6.2)

where a is the shear modulus, b the magnitude of the Burgers vector, p,0 . is the

total dislocation density and a a scalar coefficient between 0.2 -0.4 ([28]).

Dislocations can be divided into statistically stored dislocations (SSDs) and

geometrically necessary dislocations (GNDs). The former accommodate

homogeneous plastic strain (e.g. [28]). The latter are related to plastic strain gradients

which arise from compatible deformation in an inhomogeneous, e.g. multi-granular,

material ([5]). Generally, the composition of the total dislocation density can be

written as ([28])

S= PsSD + (6.3)

where PSSD and pON is the statistically stored and geometrically necessary

dislocation density, respectively. The exponent q is larger than zero. For q less than

one, the total dislocation density is larger than the sum of SSDs and GNDs. For values

of q larger than one, the total density is smaller than the sum. Therefore, q either

increases (q <1) the effect of both kinds of dislocation or decreases (q > 1) such

effect. [14] suggest a value of q = 2 to match their strain gradient model to the

dislocation theory. However, [11] employ a value of q < I for their model. Both

values of q cannot be correct at the same time. By geometrical considerations we

reason for q = 1. The average dislocation distance of both classes, i.e. SSD and GND,

is the square root of the sum of statistically stored and geometrically necessary

dislocation density. This average dislocation separation is the average distance of

dislocation motion before the dislocation encounters another dislocation and before

the first dislocation is hindered by the second. This is expressed by the Taylor law

equation (6.2), in which the hardness is proportional to the inverse average dislocation

spacing, i.e. inverse of the square root of the total dislocation density. Therefore,

q = 1, which leads to

Ptotal = PSSD + PGND" (6.4)

In addition to distinguish SSDs and GNDs, [36] suggested to assign different

magnitudes of Burgers vectors and different a -coefficients to both classes. However,

SSDs and GNDs populate the same crystalline structure of the same material.

Different Burgers vectors, i.e. different atomic spacings in the crystal, are therefore
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unphysical. Moreover, different a -coefficients weight the SSDs and GNDs

differently although their atomic structures and interactions are identical. Here we

avoid any additional factors emphasizing one dislocation density over the other in

order not to introduce any fitting parameters.

6.2.2. Statistically stored dislocation density

Statistically stored dislocations (SSDs) develop during homogeneous plastic

deformation. As a dislocation loop expands on its glide plane, it plastically displaces

the crystal structure in the interior of the loop. Within the continuum framework, we

average locally over the discrete dislocations. Infinitely long and parallel SSDs

distributed uniformly in a crystal are shown schematically in Figure 6.1.

The light shaded area denotes the crystal area displaced by the array of dislocations.

The dark shaded area is the one swept by one dislocation segment. The density of the

SSDs is
1

PSSD l1d (6.5)

where d the average spacing of the slip planes as shown in Figure 6.1. l° denotes the

average travel distance of a dislocation segment, i.e. the radius of the dislocation loop.

In principle, this length is not a materials constant but evolves during deformation or a

heat treatment. As the material deforms an increasing number of dislocations

populates the crystal thereby hindering the motion of other dislocations. This forest

hardening decreases lC. During annealing the dislocation structure relaxes and grains

grow. Such heat treatment increases the average travel distance of dislocations. The

magnitude of the length l" in different environments and after different loading

histories can be determined experimentally, as demonstrated by [27] for fatigue

loading.

The plastic shear of the crystal shown in Figure 6.1 is

)IP = b (6.6)d

where b is the magnitude of the Burgers vector. According to continuum theory the

elements of the plastic strain tensor are =2 = -=LyP while all other components are

138



zero. The equivalent plastic strain g-P is defined as -P = . This leads to

g-p =-1 (6.7)

The combination of equations (6.5) and (6.7) leads to a relationship between

statistically stored dislocation density the plastic deformation and two physical

material lengths b and l'.

PSSD-- bl" (6.8)

6.2.3 Geometrically necessary dislocations density

Geometrically necessary dislocations accommodate strain gradients. As they

consist of an arbitrary array of dislocations of one sign, their presence leads to local

lattice curvature. Figure 6.2 shows such an array of dislocations. This geometry is

also commonly used as model for low-angle grain boundaries. The density of

dislocations in such an array is approximated by

I
POND 2 (6.9)

For small angles of rotation between both sides of the lattice /3 = 8. Furthermore, the

strain gradient is defined as 77= -. Combining these equations we derive the density

of geometrically necessary dislocations, which depend only on the strain gradient and

the magnitude of the Burgers vector, as also given by [22] and [28].

PGND = r (6.10)b

6.2.4 Magnitude of SSD, GND and critical dislocation density

[17] and [12] have experimentally determined the dislocation density in

copper during fatigue. They found dislocation densities ranging from 1011/m 2 for the

initial undeformed material to 1O' 5/m2 in highly deformed material preceding failure.

By theoretical considerations we want to establish an upper boundary for the

dislocation density. Based on equations (6.1) and (6.2) the maximal admissible
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dislocation density p,,ri corresponding to the initial flow-stress o-, is calculated as

PC 1_jýy o o 2 (6.11)

where the shear modulus E = 77GPa, the initial yield stress ay0 = 250MPa. The

empirical scalar of the Taylor hardening is taken to be a = 0.3 and the magnitude of

the Burgers vector is b = 0.25nm. This equation leads to a critical dislocation density

of 0.5 x 1015/M 2 . In this approximation grain boundaries and precipitates are

neglected. These contribute substantially to the initial flow-stress. Their strength

against impinging dislocations is greater than that of a forest dislocation. Therefore,

the physical critical dislocation density is much lower than the value calculated here

which only serves as an upper boundary for the initial dislocation density.

In the next step we estimate the density of SSDs and GNDs with equation (6.8) and

(6.10). Assuming an effective plastic strain --P=0.05, the statistically stored

dislocation density is approximately PSSD = 1014 /m 2 . Furthermore, we assume strain

gradients act over dimensions on the order of l/pm. Therefore, assuming a linear

plastic strain gradient )P = cPl/Ium. This leads to a density of GNDs of

PGND = 2imesl014/m 2. Both densities have an order of magnitude which agrees to the

experiments by [17] and [12]. Furthermore, both densities have the same order of

magnitude. These results lead us to the conclusion that SSD and GND are capable of

equal contributions to the hardening due to homogeneous strain and strain gradients.

6.2.5 Flow-stress and continuum theory

In a continuation of the derivations of the previous section, the flow-stress due

to dislocation hardening, i.e. Taylor hardening, can be written as

'Tayyor =F31apb jPssD + PGp (6.12)

where the dislocation densities of SSDs and GNDs is given in equation (6.8) and

(6.10), respectively. The superposition of this dislocation density dependent flow-

stress OT.Yo, and the initial flow-stress o leads to the current flow-stress -y :

Cy = Y0 + 0
7Taylor (6.13)
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= . ( 'yo+ OTaYIo

=a FO1+ PSSD+ PGND]

a __ ___ 1+
a b1* b

where the critical dislocation density is given by equation (6.11). The flow model of

equation (6.13) is incorporated into a framework similar to that of the CMSG theory,

as described by [22]. There, the flow-stress is determined by a contribution from the

statistically stored and geometrical necessary dislocations. The contribution from the

geometrically necessary dislocations is identical to the present model while the

contribution from the statistical stored dislocations differ between the CMSG and the

present DDSG model. Huang et al. give a comprehensive overview of the equations

and the implementation. Here, only a brief summary is given.

The total response is given by a decomposition of elastic and plastic strain:

6=e + 'Vp (6.14)

where the strains are given by

S=C-o. (6.15)

P= A- (6.16)

where 5F and m is the effective von Mises stress and the rate-sensitivity exponent,

respectively. The current plastic strain YP is given by the time integration of the

plastic strain rate EP. The effective plastic strain gradient is derived by [15] as

r7P = j-ir/jk)q7r/k (6.17)

where
qk =-jkj + -jkj - - (6.18)

Finally, equilibrium is enforced by
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divo-f =0 and t =an (6.19)

6.2.6 Length-scales

Recall, classical plasticity, which inherently includes no material length-scale,

cannot predict size effects. Strain gradient models extend classical plasticity models

by including a length-scale and are therefore appropriate for problems involving small

dimensions.

Some length-scales employed in strain gradient model are listed in descending

order in the following table and compared to those relevant in the present model.

However, this list does not intent to summarize all possible length-scales due to the

abundance of strain gradient models at present. [3] presents an analytical and

experimental determination of some length-scales employed in strain gradient models.

To differentiate the types of length-scales, different keywords are used in the list

above. Items starting with 'Dimension' are physically measurable dimensions and

constant during deformation. Items starting with 'Size' are also physically measurable

but evolve during deformation. Items starting with 'Length' are length-scales

introduced into strain gradient models.

The length-scales associated with the conventional theory of mechanism-based

strain gradient plasticity ([22]) 1 =- 30,um and mechanism-based strain gradient

plasticity ([15]) 1 =- 6pm are constant during deformation. Furthermore, they are a

manifolds of the Burgers vector, i.e. scaled by the square of the ratio of shear modulus

and yield stress (- ( 2b) and not directly measurable by experiments. On the other

hand, the length introduced in the DDSG model is in principle deformation

dependent. As deformation increases the density of forest hardening dislocations

increase which in turn decreases the average travel distance of the dislocations. The

upper boundary of this length is the dimension of the grain and the lower boundary is

the size of the dislocation core. However recall, continuum models are designed for

areas where one can average over discrete dislocations.
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6.3 Examples

In the following three examples are given to demonstrate the capabilities of

the DDSG model and to compare its predictions to the previously established CMSG

model. We assume a material with Young's modulus E = 200GPa, Poisson's ratio

v = 0.3 and initial yield stress oryo = 250MPa. The empirical scalar of the Taylor

hardening is taken to be a = 0.3 and the magnitude of the Burgers vector is

b = 0.25nm. The average distance of dislocation motion l" is on the order of

magnitude of a typical thin film thickness or the grain size in an ultra-fine granular

material. Here, the value of the length is taken as l = 2.5man = 104b and therefore

constant in these examples. As already stated, in general l" is deformation dependent

and should therefore evolve. This evolution equation, however, would introduce

additional materials parameters and complicate the assessment of the capabilities of

the DDSG model. Thus, in order to keep the presentation of the model concise

predictions of constant values of 1* are given. The rate-sensitivity exponent m = 100

is used for numerical accuracy.

6.3.1 Uniaxial Tension

In the first example, the response to homogeneous uniaxial tension is

calculated in order to compare the results obtained by the dislocation density based

strain gradient model (DDSG) to those of classical plasticity. A conventional power

hardening law is defined as

•Ep

ry = Ory0 1+ E S(6.20)
L 7YO )

where n is the hardening exponent. Recall, that no macroscopic hardening law is

introduced in this strain gradient model, but that the microscopic Taylor hardening

rule is used instead. However, as a component approaches a uniform stress

distribution, i.e. as the influence of the strain gradient disappears, the solution derived

by the DDSG should be close to that of classical isotropic-plasticity. To this end, we

set the density of GNDs to zero. Therefore, according to equation (6.13) the yield

stress is given by
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I= of+ 1 3J•7,,13 . (6.21)

Employing the material properties given above, the uniaxial hardening of the DDSG

model is shown in Figure 6.3. The predicted behavior is close to that of a power-law

hardening with n=0. 1. The hardening is significantly altered by a change in

thematerials length 1P. For a small length, corresponding to a dislocation hardened

material and a short distance of dislocation motion, the model predicts a harder

materials response than for a longer length I*. During the deformation of the

materialthe materials length decreases due to dislocation hardening. This decrease in

l" would increase the hardening and lead to stage three hardening ([6]).

6.3.2 One dimensional strain gradient example

One of the simplest examples of a deformation state with a strain gradient is

that of a column experiencing a body force. The gradient in stress, due to the uniform

body force, leads to a strain gradient. This example is one-dimensional and it is

possible to find an analytical solution. [22] give the expressions for strain gradients,

hardening and displacements for the column under gravitational force. Since only the

expression for the flow-stress differs between the CMSG and DDSG model, we do

not repeat the equations here but direct the reader to [22]. We solved the differential

equations for the flow stress numerically.

Figure 6.4 shows the results for the DDSG model for several values of g2/g1 .

g2 and g, is the volume integral of the body force and the applied force the end of

the bar, respectively. As evident in the previous example, in the absence of a stress

gradient the DDSG predicts a hardening which is close to that of power-law

hardening. For larger strain gradients, i.e. as g 2 increases, the DDSG model predicts

a stronger hardening.

For increasing stress gradients the hardening predicted by the DDSG model

increases much stronger than with the CMSG model, as evident in Figure 6.5. There,

the flow-stress at gP = 0.04 is depicted as a function of the ratio of the spacial integral

of the stress gradient to the homogeneous stress. For small strain gradients both

models predict a similar flow stress. However, thereafter the flow-stress increases
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linearly for increasing stress gradients according to the DDSG model, while the

CMSG model predicts a smaller increase in the flow-stress.

Both models have an identical contribution to the flow-stress due to the strain

gradient. However, the contribution due to the uniform strain differs. Due to this

difference, the material hardens stronger for the DDSG model. This process leads to a

higher strain gradient for the DDSG model and therefore to an increased hardening

due to the strain gradient.

6.3.3 Numerical example

The final example is that of a void growth problem. As a metal containing

voids is deformed, strain gradients near the void surface develop and influence void

growth, coalescence and the final failure of the material. Here, a void growth problem

is modeled under plane strain conditions. Initially, voids have a circular shape, and a

volume fraction of 12.6% is assumed. During the simulation the unit cell of the void

is subjected to uniaxial tension as shown in Figure 6.6.

Values of macroscopic stress oryy are plotted against the macroscopic strain

eyy for different material models in Figure 6.6. Common to all results is the general

character of the stress-strain curve. The stress initially increases rapidly and reaches

the strength of the material. Afterwards, the stress decreases as the void grows and

reaches zero asymptotically. The DDSG model predicts a substantial increase in

strength with decreasing void size. For a void radius r = 0. 1pm it predicts a strength

which is more than twice that of classical plasticity.

The strength of the material normalized by the strength predicted by classical

plasticity depending on the void radius is shown in Figure 6.7. The classical material

model predicts a constant strength, i.e. independent of void size. The CMSG model

and the DDSG model predict a size effect: smaller voids result in stronger materials.

This size effect is significantly stronger for the DDSG model.
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6.4 Conclusion

In this paper we have proposed a first-order strain gradient model. As such it

does not require higher-order boundary conditions and computationally efficient. This

mesoscopic model is merely based on mechanisms at the micro-scale and therefore

presents a bottom-up approach.

The dislocation density based strain gradient (DDSG) model predicts size-

effects under deformation for geometrical dimensions on the order of a micrometer.

Moreover, the model predicts stronger size-effects than the CMSG model. This is due

to the fact that the flow-stress in CMSG model is derived with the help of classical

plasticity, which inherently does not predict size effects.

Unlike many strain gradient theories, the present model only assumes

physically measurable materials properties like dislocation densities. The length-scale,

introduced into this model, is the average distance of dislocation motion, i.e. the

average radius of dislocation loops, and it can be determined experimentally.

Furthermore, this length-scale is not a constant materials property but evolves during

deformation, which is not employed in the present paper. Continuum models are

designed for areas where one can average over discrete dislocations. Therefore, the

DDSG model will not lead to satisfactory results at small length-scales. In these

regions local dislocation interactions, which are not captured by DDSG, play a

significant role and discrete dislocation dynamics should be used (e.g. [8]).

Dislocation densities are state variables determining the material response.

These dislocations can be divided into two groups, dislocations arising from

homogeneous plastic deformation, i.e. statistically stored dislocations or first-order

dislocations, and dislocations arising from strain gradients, i.e. geometrically

necessary dislocations or second-order dislocations. Both contribute to the hardening

of the material while only the latter are the reason for the size effect predicted by the

DDSG model.
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Magnitude of Length Description

"> 1mm Dimension of component.

"> l/am Dimension of substructure, e.g. thin film thickness.

1Urn - 100/Umrn Size of grain in poly-granular crystalline material.

-1/Um Size of dislocation structures, e.g. channels in persistent slip

bands in fatigue.

- lI/m Length of average dislocation motion, used in the present strain

gradient model.

- 0. lmm Dimension of interatomic spacing, e.g. Burgers vector.

Table 6.1: Different keywords used to differentiate the types of length-scales.
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Figure 6.1: Crystal strained by statistically stored dislocations.
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Figure 6.2: Crystal distorted by geometrically necessary dislocations.
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Figure 6.3: Hardening due to homogeneous tension predicted by the DDSG model for

three materials length l" compared to power-law hardening.
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Figure 6.4: Hardening of the DDSG model with a stress gradient.
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voids under tension (b).
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7. STRAIN GRADIENTS AND FATIGUE CRACK PROPAGATION

Strain gradients play an important role in many engineering problems of

small dimension. We investigate strain gradients in the area surrounding a

growing fatigue crack tip and investigate how strain gradients and strains

influence the failure behavior of an elastic-plastic material. To that end, we

compare different elastic-plastic continuum models including recent length scale

dependent material laws, i.e. strain gradient models, and find that the fatigue crack

growth rate depends significantly on the description of the material surrounding

the crack. A dislocation density based strain gradient model predicts dislocation

density distributions that are similar in value and distribution to those obtained by

discrete dislocation simulations. It is found that there is no straight-forward

relation between strain gradient contribution to plastic hardening and crack growth

rate: taking strain gradients into account leads to faster fatigue crack growth;

strong strain induced hardening in the absence of strain gradients however may

lead to faster crack growth than weak strain hardening while accounting for strain

gradients. Moreover, we vary the thickness of a plastic layer surrounding the crack

tip and constrain it by an elastic substrate. We find that an increase in the

thickness of the layer non-linearly reduces the fatigue crack growth rate in layered

systems.

7.1 Introduction

In metals, experiments for micro-torsion by [3], micro-bending by [4] and

micro-indentation by [5] and [6] demonstrated that strain gradients play a vital

role in small-sized components and in the vicinity of stress concentrations. These
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observations are frequently summarized as a - so called - size effect: smaller

components are harder than larger ones. In the present study we investigate the

influence of two effects on fatigue crack propagation:

* Strain gradient effects as they occur at the tip of a fatigue crack.

* Constraint effects due to structural constraints,

For monotonic loading, [7], [8], [32], [30] and [33] have shown that crack tip

stress fields are significantly elevated at distances on the order of the material

length scale when strain gradients are taken into account. [30] reported that taking

strain gradients into account in the crack growth simulation of monotonic loading

lowers the steady state toughness significantly. In the present paper we investigate

the influence of strain gradients on fatigue crack growth predictions. We evaluate

how changes in the stress field, in crack closure and the cyclic loading influence

crack growth rates.

Macroscale constitutive models, i.e. classical elasticity and classical

plasticity, are not able to capture the observed gradient effects in metals, since

these theories do not include an intrinsic material length scale. Therefore, we pose

the hypothesis that these theories deliver poor results in fatigue crack predictions.

On the micro-scale, the dislocation dynamic method give physically sound

predictions for fatigue crack propagation as recently shown by [1] and [2].

However, analysis domains being modeled by this method are restricted to a few

micrometers and few load cycles due to computational expense. Here, an

alternative model is introduced with focus on the meso-scale. Such meso-scale

plasticity models bridge the gap between classical macro-scale models and

expensive micro-scale models.

Strain gradient models, i.e. meso-scale models, for elastic-plastic materials

can capture gradient effects since their formulation includes strain gradients and a

length scale. Most strain gradient models (e.g. [9-19]) are of second order and

therefore are still computationally expensive. In second order strain gradient

models, strain gradients are included as independent kinematic variables, which

are work-conjugate to second order stresses. Recently, [31] established a multi-

scale model for fracture with incorporates dislocation considerations in the

immediate crack process zone and a strain gradient formulation outside this zone.

They find that the choice of the boundary between both models plays the
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dominating role in their approach.

The present study employs the dislocation density based strain gradient

model of Chapter 6 [21] and the conventional mechanism-based strain gradient

theory of [20]. In these models, strain gradients depend on strains and therefore do

not require work-conjugate terms. The gradient terms are included into the model

as contribution to the incremental material stiffness, as proposed by [22]. First

order strain gradient models include only first order boundary conditions, which

makes these models attractive for inclusion into finite element programs.

The fatigue crack growth simulation approach employed in this study

includes two parts: a description of the material surrounding the crack, and a

model which describes the subcritical separation of material at the crack tip under

cyclic deformation. The latter part is modeled by cohesive surfaces, which [28]

and [26] have recently extended incorporate fatigue. Fatigue is understood as a

process in which material is deformed due to the applied boundary conditions and

thus deformation accumulates. This deformation leads to damage which decreases

the local load carrying area, leading to higher stresses in the remaining area.

Finally, damage progresses such that the material fails. We reduce the cohesive

strength of the material as damage accumulates. To that end, a damage evolution

law is included in the cohesive surface description. Both parts of the simulation,

i.e. material deformation and material separation, are coupled by their

displacement and stress fields.

7.2 Problem Formulation

The dislocation density based strain gradient model (DDSG) by [21]

employs considerations of statistically stored (SSD) and geometrically necessary

dislocation (GND) densities. Figure 7.1 summaries the mechanics of the two

classes of dislocations

In the present fatigue crack simulations, the creation of fracture surfaces is

described by the cohesive surface model as described in Chapter 2. The only

difference between the cohesive zone model as employed in the previous chapters

and in the present chapter refers to the unloading and reloading conditions. We
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neglect changes in the potential of the cohesive surface besides those arising due

to damage accumulation. Specifically, if no damage accumulates the material

follows the same traction-separation curve during unloading as during loading,

i.e. no specific unloading behavior has been specified. We neglect changes in the

cohesive potential that occur due to a change in loading direction because it is not

settled which type of unloading behavior, i.e. elastic unloading (e.g. [26]) or

unloading to origin (e.g. [27], [28]), is more physical.

We study the propagation of fatigue cracks in an infinitely large elastic-

plastic solid, and in solids where an elastic-plastic layer is embedded in an

infinitely large elastic substrate. We approximate this configuration by a

symmetric plane-strain modified boundary layer models shown in Figure 7.2. We

focus on two parameters which influence the fatigue crack growth prediction.

Firstly, we concentrate on the influence of the material description for the elastic-

plastic material. Secondly, we vary the thickness of the elastic-plastic layer. The

outside model radius is 100,um .The elastic-plastic material layer has a thickness

of 2h ranging from 0.14 to 0.72/jim. The maximum amount crack extension,

i.e. the length of the row of cohesive surfaces in front of the initial crack tip, is

2. 1pmn. This length is much smaller than the radius of the outer perimeter of the

material.

We execute an incremental forward Euler time integration with the initial

dislocation densities being zero. The Young's modulus is E = 200GPa, the shear

modulus p = 77GPa and the initial yield strength cy0o = 250MPa with isotropic

hardening. The Burgers vector is b = 0.25nm and the Taylor coefficient a = 0.3.

For the dislocation density based strain gradient (DDSG) model we neglect an

evolution of the material length scale and assume/. = 2.5/pm = 10000b, which is

motivated by the experimental findings of [23]. For comparison, also 1. = 1000b

and 1. = 100b are used. In absence of a strain gradient the DDSG model with

1. = 10000b predict similar hardening as the J2-Plasticity with n = 0.1 (see [21]

for details). The length scale 4. is stain hardening related and has to be smaller

than the largest dimension of the film structure, i.e. the ligament length of the

plastic layer. Otherwise, dislocation loops of l" radius are not physical. Here,

SSDs are assumed to glide parallel to the layer.
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The cohesive surface has an initial strength of .m.,, = IGPa, a

characteristic separation 5, = 3.6nm, a characteristic fatigue separation 9, = 59"

and an endurance limit of o-f = 0.25crmx,,, therefore, the characteristic separation

is one order of magnitude larger than the Burgers vector and three orders of

magnitude smaller than the continuum material length scale. These material

properties are motivated by previous studies of [1] and [26].

The maximum prescribed energy release rate is G. = 0.3cI,,0 . The

energy release rate enters the simulation through the displacement boundary

conditions. These displacements are given by the singular solution for an infinitely

sharp mode I crack and the magnitude of the displacements is scaled by a

sinusoidal function with R = umjju/U,, = 0.1.

The monotonic and cyclic ([29]) plastic zone size, respectively, is

estimated according to classical J2-plasticity and employing the values given

above, as:

r = EG.ý, = 1.08,ta, (7.1)r 3;r (c,0)

A 3p, =I(2EG-,0 _- 0.27flm; (7.2)

Therefore both, the cyclic and monotonic plastic zone size, are much

smaller than the radius of the outer perimeter of the material. This leads to the

applied energy release rate being independent of the crack extension in this

configuration.

All length scales employed in this study are summarized in Figure 7.3.

7.3 Results and Discussion

Initially, we describe results of simulations of fatigue crack growth for the

case of the homogeneous elastic-plastic solid and investigate the influence of

strain gradients. Later in this section we focus on the influence of the layer

thickness h on fatigue crack growth predictions.
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7.3.1 Influence of strain gradients on fatigue crack growth in an elastic-plastic

solid

The crack advance according to several material models, i.e. the

dislocation density based strain gradient plasticity, classical J2-Plasticity and

classical plasticity are shown in Figure 7.4. For comparison results for a

simulation with an isotropic elasticity (ay = oo) are also included. All material

models predict an initial phase of loading without crack advance since the

simulations starts from a virgin-state material without preexisting dislocations or

plastic strain and without initial damage in the cohesive zone. After few cycles

sufficient damage has accumulated such that D = 1 in the first cohesive surface

element. The crack now advances. After the initial cycles, the material

surrounding the crack tip is deformed and damage has accumulated in the

cohesive zone elements ahead of the crack tip. Therefore, these cohesive elements

are already weakened and the crack can propagate faster through them than

through the first few cohesive elements.

The simulations using the classical J2-Plasticity model predict the slowest

crack growth. The dislocation density based strain gradient model without

geometrically necessary dislocations, i.e. DDSG*, neglects strain gradients.

Results for this model are nearly identical to those for the classical J2-Plasticity

model, emphasizing the similarity between the DDSG* and J2-Plasticity model.

The DDSG model, which includes strain gradients, predicts a significant faster

crack growth rate. Similarly, the conventional mechanism based strain gradient

model (CMSG) of [20] predicts higher crack growth rates when including strain

gradient effects, as shown in the appendix. Both models predict similar crack

growth rates, although the CMSG model, unlike the DDSG model, employs the

Nye and the Taylor factor.

Summarizing, the simulations demonstrate that simulations accounting for strain

gradients predict higher fatigue crack growth rates than computations neglecting

strain gradients. The explanation for these central observations can be given in

different ways:

There are two dissipative mechanisms related to material

deformation and material separation. Materials with a large plastic

hardening due to strain gradients dissipate less energy. As the amount of
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applied external energy is constant, more energy is available to create the

free surfaces on either crack flank in harder materials. This in turn leads to

a higher crack growth rate for models which take strain gradients into

account. [30] had previously reported lower crack growth resistance for

monotonic loading when strain gradients are accounted for.

* [7] and [8] report that the strain gradient model of [10] leads to

higher stresses in the area ahead of the crack tip. Similarly, [30] and [32]

report higher stresses ahead of the crack tip when employing the

mechanism-based strain gradient plasticity theory of [12] and conventional

theory of mechanism-based strain gradient model of [20), respectively. For

the cyclic load case presented here, we find a similar elevation of stresses

due to the additional hardening caused by the strain gradients, i.e. the

attained tractions are higher if the material experiences significant plastic

hardening, as shown in Figure 7.5(a). Higher tractions lead to increased

damage accumulation in the cohesive surface and consequently higher

fatigue crack growth rate.

0 Materials with an enhanced plastic hardening due to elevated

strains or strain gradients deform less in the bulk. The applied

displacement is equal in the simulations for all material models. The

separation of the cohesive surface, Figure 7.5(b), i.e. the difference of

applied deformation and the deformation of the bulk material, is thus

larger for materials which harden more. This increase in cohesive surface

separation leads to enhanced damage accumulation and consequently to a

higher fatigue crack growth rate. This finding is compatible with the

classical understanding of fatigue crack growth, where da/dN - ACTOD:

the elevation in cohesive surface separation for strain gradient models

leads to an increased crack opening, or blunting, as show in Figure 7.5(b).

The difference between the crack profiles at minimal (Figure 7.6)

and maximal (Figure 7.5) applied load at x = 0.5/um is 3.Onm and 2.6nm

for the DDSG model and DDSG*, respectively. Therefore, cyclic

blunting, i.e. difference between the crack profile at minimal and

maximal applied load, is larger for the strain gradient model than

for the model neglecting strain gradients, leading to faster fatigue crack
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growth for the DDSG model.

0 It is widely acknowledged that crack closure plays an important

role in fatigue crack growth ([34]). Figure 7.6 depicts the crack profiles for

crack extension of 0.55 um at the minimum applied

displacement uapplied = Umin. At the current crack tip, i.e. D = 1, as denoted

by point '*' neither model predicts crack closure. Ahead of this location,

simulations with J2-Plasticity and the DDSG* model predict crack surface

contact with J2-Plasticity predicting the largest closure zone. The DDSG

model (1. =I 0000b), however, did only lead to minor crack surface

contact in the area ahead of the location D = 1. The crack surface contact

area decreases as the influence of the strain gradient is incorporated.

While, the DDSG* model predicts 0.1392pm of crack length under

contact, the DDSG model predicts that 0.0078,um of crack surface

experience closure. A similar decrease in contact length is found for the

CMSG model, as shown in the appendix. Crack closure shields the crack

tip and leads to a reduction in crack growth rate. In summary, as the

influence of strain gradients are accounted for, the amount of closure

decreases leading to an increase in fatigue crack growth rate.

These findings show that materials with an increased plastic hardening due to

strain gradients exhibit an increased fatigue crack growth rate, if the material

separation process itself is not altered by the strain gradients, as assumed in this

study.

[8] found singular compressive stresses in close proximity ahead of the

crack tip when employing the material model of [10]. They conclude that strain

gradient theories loose their validity in this range. We find less compressive,

i.e. more tensile, stresses if strain gradients are included in the simulation (Figure

7.5(a)). Similarly, [30] has found tensile stresses in their study employing a strain

gradient model and cohesive surfaces. Therefore, the results reported by [8]

appear to be specific to the approach taken by those authors, and not a general

property of strain gradient models.
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7.3.2 Influence of DDSG material length on fatigue crack growth rate

Fatigue crack growth rates for the DDSG and DDSG* model are given for

three values of 4. in Figure 7.7. Both models predict that for decreasing material

length scale, i.e. decreasing average distance of SSD motion, fatigue crack growth

rates increase. These findings with respect to changes in length scales are

consistent with the model definition. In the DDSG model the material length is

associated with the strain. In the DDSG model the material length describes the

average distance of SSD motion. As this distance decreases, i.e. the material

hardens plastically, the crack accelerates.

The decrease in fatigue crack growth rate with increasing material length

4. is logarithmic when neglecting strain gradients. Taking strain gradients into

account, i.e. in the DDSG model, leads to higher crack growth rates and a less

then logarithmic decay. This difference between the DDSG and DDSG* model is

stronger for larger material lengths 4o, i.e. in weakly strain hardening materials.

This regime of weakly strain hardening material is more relevant than the regime

of low material length scale because the corresponding J2-hardening exponents n

for the latter regime are significantly higher than normally observed in

experiments.

If the cohesive surface strength is uncoupled from the yield strength,

simulations predict that plastic hardening leads to an increase in fatigue crack

growth rate, as also reported by [27]. Experimentally determined Paris-law graphs

([34]) show that a decrease in yield strength leads to an increase in fatigue crack

growth rate. Lower hardening leads to an increase in plastic deformation and in an

increased fatigue crack growth rate. The results reported here cannot be directly

compared to this specific experimental finding since the cohesive strength is

constant in our simulation. To simulate the reported experiments, the cohesive

strength would have to be coupled to the current yield strength of the material,

which evolves as the solid is plastically deformed. This deformation would lead to

an evolution of the cohesive strength. While such models can in principle be

envisioned, they are not in the scope of the current study.
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7.3.3 Dislocation density

Dislocation motion results in plastic deformation. The dislocation density

determines the plastic hardening: as dislocations populate the material it becomes

increasingly difficult for other dislocations to move as the former dislocations

obstruct the motion of the latter. The area of dislocation motion is called (cyclic)

plastic zone size and is a characteristic size of boundary value problem. If this size

is restricted by geometric features such as elastic layers, the plastic zone cannot

fully develop and constraint effects will be observed. Because dislocations play

such an important role in the present boundary value problem we now look into

the distribution of dislocations.

Figure 7.8 shows the distribution of statistically stored (SSD) and

geometrically necessary dislocations (GND) according to the DDSG model

(I. =10000b) after 25 cycles. The statistically stored dislocation density is

maximum at the initial crack tip. As observed in Figure 7.4, initially the crack tip

is immobile for a period, leading to several load cycles during which strains are

maximum in the area of the initial crack tip. Therefore, many dislocations

accumulate in this region. A similar distribution is observed for the geometrically

necessary dislocations in the area of the initial crack tip. However, the GND

density is one order of magnitude larger than that of SSDs.

In the simulations, Figure 7.4, the cracks advanced into a steady state

growth regime after some initial cycles. This difference in crack growth rate is

also observed in the dislocation density distribution. In Figure 7.8, both

dislocation densities exhibit a almost steady state distribution once the crack

leaves the area surrounding the initial crack tip disturbance. The maximum of the

GND density is closer to the crack surface than that of the SSD. The GND density

is one order of magnitude larger than that of SSDs. In the area in proximity of the

crack the total dislocation density, i.e. sum of SSDs and GNDs, is on the same

order of magnitude as 2.4e8mm- 2 which was determined by [1] in discrete

dislocation simulations.

Figure 7.9 depicts the change in dislocation density in the half-cycle from

15.0 to 15.5, i.e. during loading. The increase in the GND density is significantly

larger than in the SSD density. Additionally, the maximum of the GND density is

trailing the maximum of the SSD density. The area of maximum dislocation
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density is inclined by 57 degrees to the crack. Discrete dislocation simulations of

[1] predicted an angle of 60 degrees.

Figure 7.10 depicts the changes in dislocation densities in the half-cycle

from 14.5 to 15, i.e. during unloading. Compared to the dislocation densities

during loading, the area of dislocation activity is larger during unloading than

during the loading half-cycle. However, the increase in SSD and GND densities

are significantly smaller (roughly 40 times) during unloading than during loading.

As during loading, the increase in the geometrical necessary dislocation density is

significantly larger than in the statistically stored dislocation density and the

domain of GND activity surrounds that of SSD activity.

The active fracture process zone, i.e. the distance between D = I and

D = 0.1, is 0.44,um for the specified loading and was found to be the same during

unloading (see Figure 7.10) and reloading (see Figure 7.9). The crack process

zone has roughly the same size as the plastic zone, see equation (7.2).

7.3.4 Confined plasticity

Now we confine the plastic zone by placing the elastic-plastic solid within

an elastic substrate, i.e. we introduce a constraint effect. We concentrate on the

influence of the thickness 2h of the plastic layer on fatigue crack growth

predictions. In Figure 7.11 the steady state crack growth rate according to the

DDSG model (1.=10000b) and J2-Plasticity is shown for different layer

thicknesses.

An increase in the thickness of the plastic layer, i.e. a reduction in the

geometric constraint on plastic deformation, leads to a slower the crack advance.

The evaluation of the fatigue crack growth rate for different layer thicknesses

leads to scattered points. The parameter c of the exponential function

da _da da
d d (-) exp(_c'h 2) + (d) (7.3)
dN dN dN

is fitted to the calculated points. The parameter (--)0. is determined by the crack

growth rate for a layer of zero thickness and (-), is the fatigue crack growth rate

in an infinite thick plastic layer (see Figure 7.4). Both models predict a similar

dependence of the fatigue crack growth rate on the thickness of the plastic layer.
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Classical J2-Plasticity for all values of h predicts a lower crack growth rate than

the strain gradient plasticity model.

As the thickness of the elastic-plastic layer is decreased the plastic zone is

geometrically restricted. For h = 0 the fatigue crack growth rate approaches that

of an elastic bulk material. The size-constraint is lifted for layers with thicknesses

2h larger than the plastic zone size - 2pm, which we calculated from DDSG

simulations and equation (7.2). The simulations show that a higher relieve of

constraint is necessary when strain gradients are accounted for, since the strain

gradients act over a larger area.

7.4 Conclusion

The fatigue crack simulations described in the present study incorporate a

continuum material model and a cohesive surface model. The latter is included to

describe the behavior of the crack surfaces. It was shown that the choice of the

material model significantly determines the fatigue crack growth predictions:

* Classical plasticity predicts the lowest crack growth rates. Strain

gradient models predict faster crack growth rates because the strain

gradient induced hardening leads to faster crack advance. This observation

can be explained by either the maximum attained tractions in the material,

the deformation of the material compared to the crack opening and the

plastic energy dissipation in the material. q-f, which were not in focus of

this study.

* Accumulation of plastic strain leads to an increase in the statistical

stored dislocation density, which leads to strain induced hardening. In the

DDSG and DDSG* model hardening is incorporated via material length

scale 1.. A decrease in the material length scale leads to an increase in

fatigue crack growth rate for strain hardened material. Therefore, if the

strain induced hardening increases at constant contribution from the strain

gradients, i.e. the contribution of strain gradients decreases, accelerated

fatigue crack growth will be observed. Concluding, hardening
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irrespectively whether originating of strains or strain gradients leads to

increased fatigue crack growth.

* Classical plasticity predicts significant crack closure. Strain

gradient models predict less crack closure depending on the contribution to

hardening due to strain gradients. The more strain gradients contribute, the

less closure is observed. This enhances the classical view of closure:

reduced closure reduces shielding of the crack tip and leads to an increase

in fatigue crack growth rate.

* The dislocation density based strain gradient model (DDSG)

predicts that the geometrically necessary dislocation (GND) density is

significantly larger than the statistically stored density (SSD) in the area

surrounding the crack. The maximum GND density is in close proximity to

the crack while the maximum of the SSD is more distant. The total

dislocation density calculated in the present study ( - 108mm ) is on the

same order of magnitude as in the dislocation dynamics simulations.

* Thinner plastic layers surrounded by elastic substrate exhibit a

faster crack growth than thicker layers, since the plastic zone size is

restricted in thin layers. Computations predict that constraint effects in thin

film-structures persist to larger values of thickness if strain gradients are

accounted for.

Our observations lead to the conclusion: strain gradients significantly influence

fatigue crack predictions. Classical plasticity underestimates the fatigue crack

growth rate and therefore leads to potentially unsafe fatigue life predictions.
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Appendix

Previously, in Chapter 6, following [20], we defined the flow stress for the

conventional mechanism-based strain gradient plasticity theory (CMSG).

Thereby, the material length scale 4k is interpreted as a scale parameter for the

influence of strain gradients. [20] and [12] give the length 4k as a multiple of the

Burgers vector -(/adyo)b. [12] calculates the length as 1 = 2.3pam. [201

employs two additional factors, i.e. Nye factor and Taylor factor, which leads to

an increase in the material length 4k by the factor of 17.1 (12 = 38/mn) compared

to the length as defined by [12]. For comparison, we rewrite the DDSG model into

as form similar to that of the CMSG model:

0ry = 'y. 01 + --•---• PSSD + P.ND (7.4)

'oY'OtI Vk+. P (7.5)

where a is the Taylor coefficient and 4 = 3a 2 _4-b is a length scale, which is

identical to the definition of [12]. Recall, the DDSG model introduces a physically

measurable material length scale 1. which is associated with the strain. For the

CMSG theory a hardening exponent of n = 0.1 is employed in the following

simulations.

We conduct computations along the model outlined in the main part of this

chapter. In absence of a strain gradient the CMSG theory is identical J2-Plasticity.

The CMSG1 model, which employs a material length scale of l = 2.3,um,

predicts a similar crack growth behavior as J2-Plasticity and DDSG* (see Figure

7.4). The material length scale l = 2.3/um is not large enough to provide equal

contributions from strain gradients and strain to plastic hardening equation (7.4),

i.e. the contributions from the plastic strain dominate. As the material length scale

4k is increased in the CMSG model the crack growth rate increases. Employing a

material length scale 12 = 38/um the predicted crack growth is significantly faster

than the predictions from classical plasticity. The DDSG model does not include

the Nye or Taylor factor, but predicts a similar crack growth rate as the CMSG2
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model which includes additional factors. The crack opening, shown in Figure

7.13, supports the finding of the DDSG model, the contact decreases when

increasing the material length scale from 2.3,um to 3 8,um, i.e. when increasing

the absolute contribution of the strain gradients. The CMSG model with a material

length scale of l1 = 2.3,um and 2 =38/um predict 0.1559pm and 0.1496pum of

closed surface, respectively
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(a) (b)

Figure 7. 1: Schematic representation of statistically stored (a) and geometrically
necessary dislocations (b).
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crack 2h

Figure 7.2: Definition of boundary value problem and definition of the plastic
layer.
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Figure 7.3: Compilation of length scales: perimeter of computational model R,

monotonic plastic zone size rp, material length scale 1. of the DDSG model,

average elastic-plastic layer thickness 2h in layered model, cyclic plastic zone

size Arml, characteristic cohesive surface opening Sn, magnitude of Burgers

vector b.
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Figure 7.4: Predicted fatigue crack extension in an elastic-plastic solid: dislocation

density based strain gradient plasticity (DDSG) with 1. = 1 0000b, I mechanism-

based strain gradient model with l1 = 2.3prm (CMSG, ), dislocation density based

strain gradient plasticity neglecting GNDs (DDSG*), classical J2-Plasticity, and

isotropic elasticity.
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Figure 7.5: Predicted tractions (a) and predicted crack opening (b) along crack

direction at maximal (after 14.5 cycles) and minimal applied load (after 15 cycles)

according to the dislocation density based strain gradient plasticity (DDSG) and

dislocation density based strain gradient model neglecting strain gradients

(DDSG*).
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Figure 7.6: Crack closure profiles for an infinitely large material according to
dislocation density based strain gradient plasticity (DDSG), dislocation density
based strain gradient model neglecting strain gradients (DDSG*) rain gradient
model with 12 = 38,um (CMSG 2 ), conventional mechanism-based strain gradient

model with l = 2.3num (CMSG,) and classical J2-Plasticity. The profiles

correspond to the minimum applied displacement Uappli•, = Umin = 0.1Um.
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Figure 7.7: Predicted fatigue crack growth rate as a function of the material length

1. for the dislocation density based strain gradient plasticity (DDSG) and

dislocation density based strain gradient plasticity neglecting GNDs (DDSG*).
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Figure 7.8:The distribution of the accumulated statistically stored (a) and

geometrically necessary dislocation density after 25 cycles in the area

surrounding the crack tip. The deformation is magnified by 10.
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Figure 7.9:Distribution of the increase in statistically stored (a) and geometrically

necessary dislocation densities (b) between cycle 15.0 and 15.5 (loading). The

deformation is magnified by 10 .
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Figure 7.10: Distribution of the increase in statistically stored (a) and

geometrically necessary dislocation densities (b) between cycle 14.5 and 15

(unloading). The deformation is magnified by 10.
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Figure 7.11: Rate of steady fatigue crack growth depending on the thickness of the

plastic layer surrounded by an elastic substrate. The results are shown for the

dislocation density based strain gradient model and classical J2-Plasticity.
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Figure 7.12: Predicted fatigue crack extension in an infinitely large material:

dislocation density based strain gradient plasticity (DDSG) with 1. = I 0000b,

conventional mechanism-based strain gradient model with 12 = 38#m (CMSG 2),

conventional mechanism-based strain gradient model with l = 2.3#m (CMSG,),

and classical J2-Plasticity.
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Figure 7.13: Crack closure profiles for an infinitely large material according to

classical J2-Plasticity, conventional mechanism-based strain gradient model with

12 = 3 8pm (CMSG 2), conventional mechanism-based strain gradient model with

l1 = 2.3/um (CMSG 1 ) and classical J2-Plasticity. The profiles correspond to the

minimum applied displacement Uapplied = umin = 0. lum.

186



LIST OF REFERENCE

[1] Cleveringa, H.H.M., Van der Giessen, E., Needleman, A., 2000. A discrete

dislocation analysis of mode I crack growth. J. Mech. Phys. Solids 48, 1133-1157.

[2] Deshpande, V.S., Needleman, A., Van der Giessen, E., 2002. Discrete

dislocation modelling of fatigue crack propagation. Acta Mater. 50, 831-846.

[3] Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain

gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475-487.

[4] Stolken, J.S., Evans A.G., 1998. A microbend test method for measuring the

plasticity length scale. Acta Mater. 46, 5109-5115.

[5] Ma, Q., Clarke, D.R., 1994. Size dependent hardness of silver single crystals.

J. Mat. Research 10, 853-863.

[6] Poole, W.J., Ashby, M.F., Fleck, N.A., 1996. Micro-hardness tests on

annealed and work-hardened copper polycrystals. Scr. Metal. Mater. 34, 559-564

[7] Huang, Y., Chen, J.Y., Guo, T.F., Zhang, L., Hwang, K.C., 1999. Analytic

and numerical studies on mode I and mode II fracture in elastic-plastic materials

with strain gradient effects. Int. J. Fracture 100, 127.

[8] Chen, J.Y., Wei, Y., Huang, Y., Hutchinson, J.W., Hwang, K.C., 1999. The

crack tip fields in strain gradient plasticity: the asymptotic and numerial analyes.

Eng. Fract. Mech. 64, 625-648.

[9] Dillon, O.W., Kratochvil, J., 1970. A strain gradient theory of plasticity. Int.

J. Solid Struct. 6, 1513-1533.

[10] Fleck, N.A., Hutchinson, J.W., 1993. A phenomenological theory for strain

gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825-1857.

[11] Shu, J.Y., Fleck, N.A., 1999. Strain gradient crystal plasticity: size-

187



dependent deformation of bicrystals. J. Mech. Phys. Solids 47, 297-324.

[12] Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W., 1999. Mechanism-based

strain gradient plasticity- I. Theory. J. Mech. Phys. Solids 47, 1239-1263.

[13] Gurtin, M.E., 2000. On the plasticity of single crystals: free energy,

microforces, plastic strain gradients. J. Mech. Phys. Solids 48, 989-1036.

[14] Gurtin, M.E., 2002. A gradient theory of single-crystal viscoplasticity that

accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5-32.

[15] Gurtin, M.E., 2004. On a framework for small-deformation viscoplasticity:

free energy, microforces, strain gradients. Int. J. Plasticity 19, 47-90.

[16] Menzel, A., Steinmann, P., 2000. On the continuum formulation of higher

gradient plasticity for single and polycrystals. J. Mech. Phys. Solids 48, 1777-

1796.

[17] Garikipati, K., 2003. Couple stresses in crystalline solids: origins from

plastic slip gradients, dislocation core distortions, and three-body interatomic

potentials. J. Mech. Phys. Solids 51, 1189-1214.

[18] Wen, J., Huang, Y., Hwang, K.C., Liu, C., Li, M., 2005. The modified

Gurson model accounting for the void size effect. Int. J. Plasticity 21, 381-395.

[19] Clayton, J.D., McDowell, D.L., Bammann, D.J., 2004. A multiscale gradient

theory for elastovisco-plasticity of single crystals. Int. J. Eng. Sci. 42, 427-457.

[20] Huang, Y., Qu, S., Hwang, K.C., Li, M., Gao, H., 2004. A conventional

theory of mechanism-based strain gradient plasticity. Int. J. Plasticity 20, 753-

782.

[21] Brinckmann, S., Siegmund, T., Huang, Y., 2006. A Dislocation Density

based Strain Gradient Model. Int. J. Plasticity 22, 1784-1797.

188



[22] Acharya, A., Bassani, J.L., 2000. Lattice incompability and a gradient theory

of crystal plasticity. J. Mech. Phys. Solids 48, 1565-1595.

[23] Mughrabi, H., 1983. Dislocation wall and cell structures and long-range

internal stresses in deformed metal crystals. Acta Metall. 31, 1367-1379.

[24] Mughrabi, H., 2004. On the current understanding of strain gradient

plasticity. Mater. Sci. Eng. A 387-389, 209-213.

[25] Xu, X.P. and Needleman, A., 1994. Numerical simulations of fast crack

growth in brittle solids. J. Mech. Phys. Solids 42, 1397-1434.

[26] Roe, K.L., Siegmund, T., 2003. An irreversible cohesive zone model for

interface fatigue crack growth simulation. Eng. Frac. Mech. 70, 209-232.

[27] Wang, B., Siegmund, T., 2005. A numerical analysis of constraint effects in

fatigue crack growth by use of an irreversible cohesive zone model. Int. J. Fract.

132, 175-196.

[28] Nguyen, 0., Repetto, E.A., Ortiz, M., Radovitzky, R.A., 2001. A cohesive

model of fatigue crack growth. Int. J. Fract. 110, 351-369.

[29] Rice, J.R., 1967. The Mechanics of Crack Tip Deformation and Extension by

Fatigue. in Fatigue Crack Propagation, Special Technical Publication 415, ASTM

247-311.

[30] Wei, Y., Qiu, X., Hwang, K.C., 2004. Steady-state crack growth and fracture

work based on the theory of mechanism-based strain gradient plasticity. Eng.

Frac. Mech. 71,107-125.

[31] Wei, Y., Xu, G., 2005. A multiscale model for the ductile fracture of

crystalline materials. Int. J. Plasticity 21, 2123-2149.

[32] Qu, S., Huang, Y., Jiang, H., Liu, C., Wu, P.D., Hwang, K.C., 2004. Fracture

analysis in the conventional theory of mechanism-based strain gradient (CMSG)

189



plasticity. Int. J. Fract. 129, 199-220.

[33] Radi, E., Gei, M., 2004. Mode III crack growth in linear hardening materials

with strain gradient effects. Int. J. Fract. 130, 765-785.

[34] Suresh, S., 1998. Fatigue of Materials. Cambridge UK: Cambridge

University Press, 2nd edition.

190



8. A COHESIVE SURFACE MODEL BASED ON THE STRESS CAUSED

BY DISLOCATIONS

Strains and strain gradients in the proximity of a crack tip lead to an increase

in dislocation density, which plays a vital role in the fatigue crack resistance of

metallic materials. We introduce an enhancement to conventional cohesive zones,

which are frequently used to simulate fracture and fatigue. This enhancement is

derived from the analytical stress fields of individual dislocations. The

micromechanical fatigue simulations predict an accelerated crack growth during the

final stages of each loading phase. Additionally, significant crack closure is observed.

The predicted dislocation densities are similar to those predicted by discrete

dislocation simulations. The fatigue crack growth threshold and Paris-law are studied

and compared to experimental findings. An overload prediction is discussed with

respect to the production of different kinds of dislocations and fatigue crack growth

retardation.

8.1 Introduction

Fatigue simulations often employ cohesive surface laws, which where initially

introduced for fracture problems. Fatigue occurs at lower applied loads than

monotonic fracture. To employ cohesive zone laws in fatigue we have described a

damage mechanics approach in Chapter 2 (based on Roe and Siegmund, 2003) such

that the crack propagates under the reduced applied loads.

It is understood that in metals dislocations play an essential role in fatigue.

Discrete dislocation simulations (Cleveringa et al., 2000; Deshpande et al., 2001,

2002) revealed that dislocations play a dual role in crack propagation. On the one
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hand, they shield the crack tip by their motion, reducing the stress and thereby

increasing the crack growth resistance. This effect is captured by continuum models

which include plasticity to limit the elastic regime. On the other hand, dislocations

form clusters which trap the constituting dislocations in the proximity of the crack tip.

These cluster dislocations, as any dislocation, carry a stress singularity. If sufficient

dislocations are trapped, the stress at the crack tip is elevated, leading to a reduced

crack resistance. The effect of cluster dislocations on crack propagation is not

included in conventional models. Therefore, we introduce this effect into a cohesive

surface model. The stress enhancement is based only on smaller length scale results

and does not include any phenomenological laws.

Strain gradients play a vital role in fatigue crack predictions (Brinckmann and

Siegmund, 2006) as they do in conventional fracture (Huang et al., 1999; Chen et al.,

1999). These strain gradients together with conventional strains give rise to an

accumulation of dislocations in the proximity of the crack tip.

Discrete dislocation simulations of fatigue crack propagation (Cleveringa et

al., 2000; Deshpande et al., 2001, 2002) capture the physical behavior at the crack tip

but are computationally costly, limiting the dimension of the analyzed structure to a

few micrometers and the number of load cycles to a few tenths. However, real

engineering structures are significantly larger. Therefore, we choose a continuum

model to simulate fatigue crack growth. There are a number of strain gradient models

(e.g. Dillon and Kratochvil, 1970; Fleck and Hutchinson, 1993; Shu and Fleck, 1999;

Gao et al., 1999; Gurtin, 2000, 2002, 2004; Menzel and Steinmann, 2000; Garikipati,

2003; Wen et al., 2005; Clayton et al., 2004; Huang et al., 2004 and Brinckmann et

al., 2006) which captured the effects that strain gradients play in the vicinity of a

propagating fatigue crack.

Since the dislocation density based strain gradient model (Brinckmann et al.,

2006) yields the density of statistically stored and geometrically necessary

dislocations, we employ that model to determine crack propagation. In the present

model both dislocation types, i.e. geometrically necessary and statistically stored,

contribute equally to the stress enhancement.

In this chapter we present a novel approach to the simulation of fatigue crack

growth in metals by the use of a cohesive zone model. This cohesive zone model

accounts for the action of dislocation in material separation. Fatigue simulations are

192



carried out and crack growth, closure, dislocation density and overload are discussed.

The study is closed by a summary and conclusions.

8.2 Material Model

To simulate fatigue crack propagation, we employ the dislocation density

based strain gradient model (DDSG) by Brinckmann et al. (2006) as outlined in

Chapter 6. Figure 8.1 depicts the main ideas on the dislocation model.

8.3 Cohesive Surface Model

We couple material separation and tractions across the evolving crack front,

using the cohesive surface model of Xu and Needleman (1994), which is based on the

Universal Binding Law of Rose et al. (1981).

Each dislocation shields the crack tip by its motion, thereby preventing elastic

stress singularities due to the geometric singularity at an infinitely sharp crack tip.

This dislocation motion restricts the maximal attainable stress by the plastic yield

stress. However, each dislocation carries its individual stress singularity which leads

to a local stress increase in the proximity of the individual dislocation. Depending on

the distance of a dislocation from the crack tip, either function can dominate: if the

dislocation is close, it leads to a stress increase and vice versa.

During deformation dislocations evolve; some of whom get trapped in the

proximity of the crack tip. These dislocations then form clusters. We extend the

cohesive surface model to include traction contributions from dislocation clusters.

The total traction T across the cohesive zone is the sum of the elastic contribution

which is bound by the yield stress due to dislocation shielding T,,,• and a contribution

arising from dislocation clustering Tdc, as shown in Figure 8.2. The former part is

calculated as the tractions across a surface using conventional continuum mechanics

equations.
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The stress arising from the dislocation clusters is derived from the equations

for a single dislocation (Hirth and Lothe, 1968) which are superposed to account for

the dislocation distribution:

cd = ET = , =__) f() f(®) pd,,,t dA (8.1)
disl disl r r

where fc = G G is the shear modulus, b is the Burger's vector and v Poisson's

ratio. ® is the angle between the Burger's vector of the discrete dislocation and the

point of interest. Since this continuum model, i.e. strain gradient model, does not

include dislocation orientations, we find ® = const -+ f(O) = const. r is the distance

of the dislocation to the point of interest.

We express the traction in the continuum material To,.t as function of the

distribution of the accumulated dislocation density. To this end, at failure the

following equation is given:

T= Td7 + Td,: am.,,o Zo = Tds = (1-- Eg)O-a, 0  (8.2)

where Td. is expressed as Td = E~ron.o. E, is a stress enhancement factor and it is

calculated, following equation (8.1), as

ffcf(e) Aid. dA JiPdo d4
r ~ 1~

o fr - _ (8.3)

DD,disl r DD,dis, r

where the denominator is calculated from the discrete dislocation (DD) results3of

Cleveringa et al. (2000) for monotonic fracture. (Monotonic fracture and fatigue

require the same stress at the crack tip because the strength of the atomic-bond is a

material property which does not depend on the loading condition, i.e. monotonic

loading or cyclic loading.) The stress enhancement factor E, will take values in the

interval[0-1]. With these equations the boundary value problems in fatigue

simulations can be evaluated.
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8.4 Problem Formulation

In the present work we study the propagation of fatigue cracks in an infinitely

large elastic-plastic solid. We approximate this configuration by a symmetric plane-

strain modified boundary layer model shown in Figure 8.3. The elastic-plastic

material has a radius ofl00,um. The maximum crack extension, i.e. the length of the

row of cohesive surface elements in front of the initial crack tip, is6.66,um. This

length is much smaller than the radius of the outer perimeter of the material.

We execute an incremental forward Euler time integration. The Young's

modulus is E = 200GPa, the shear modulus p = 77GPa. We employ isotropic

hardening and the initial yield strength is uy.0 = 250MPa. The Burgers vector

isb =0.25nm and the Taylor coefficienta= 0.3. We assume1. = 2.5Pm = 10000b,

which is motivated by the experimental findings of (Mughrabi, 1983) and a study by

Brinckmann and Siegmund (2006). -DDdisl r = 583 1/um was determined from the

discrete dislocation distribution for monotonic loading (Cleveringa, et al., 2000). The

cohesive surface has an initial strength of o,o =I OGPa and a characteristic

separation 5, = lnm. (See Brinckmann and Siegmund (2006) for a discussion of

length scales).

In this study we employ a quasi-static numerical framework because we focus

on slow moving cracks. Therefore, we will concentrate on applied energy release rates

which are at or slightly above the threshold for fatigue crack propagation. At higher

applied energy release rates, the crack velocity is of such magnitude that the crack tip

is not slow moving and that inertia terms should be included. The maximum

prescribed energy release rate is Gm,. = 0,250,o, where Do is the initial cohesive

energy, as defined above. The energy release rate enters the simulation through the

displacement boundary conditions at the outer perimeter. These displacements are

given by the singular solution for an infinitely sharp mode I crack and the magnitude

of these displacements is scaled by a sinusoidal function with R = Umin/Um.x = 0. 1.

The plastic zone size in a solid with the given material parameters and under

given loading conditions is identical to the plastic zone size in a previous study by

Brinckmann and Siegmund (2006). This size is much smaller than the radius of the
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outer perimeter of the elastic-plastic solid. This leads to the applied energy release

rate being constant, i.e. independent of the crack extension, in this configuration.

Under the specified loading condition the maximum tractions across the

cohesive surfaces are below the strength of the material oa,,,m,o in the first load cycle.

Without stress enhancement due to dislocation clusters, the tractions would never

exceed the cohesive surface strength and the model would shakedown, i.e. predict an

infinite fatigue life.

8.5 Results and Discussion

Firstly, we concentrate on the dislocation densities for an applied stress

intensity factor range AK = 0.904MPa-Ii . The dislocation density distribution,

shown in Figure 8.4, reveals that the density of geometrically necessary dislocations is

orders of magnitude larger than that of statistically stored dislocations. Brinckmann

and Siegmund (2006) reported higher densities of geometrically necessary dislocation

compared to statistically stored dislocations in fatigue simulations using the Roe and

Siegmund (2003) cohesive surface evolution rule. However, this study predicts

significantly more localized dislocation densities. Atomic lattice curvature, i.e. crack

tip blunting, leads to strain gradients and therefore geometrically necessary

dislocations. The blunting at the initial crack tip leads to a high density of

geometrically necessary dislocations. The crack tip blunting in the steady state regime

is much lower than the blunting at the initial crack tip leading to a lower

geometrically necessary dislocation density in the steady state regime.

The maximum of the statistically stored dislocations is found at some distance

from the crack surface, while the maximum of geometrically necessary dislocations is

at the crack surface.

Brinckmann and Siegmund (2006) reported distinct patterns for the rate in

dislocation density during loading and unloading using the Roe and Siegmund (2003)

cohesive surface evolution rule. No patterns were observed using the present model.

The rate of statistically stored dislocation density has its maximum at a distance from

the crack tip during loading and unloading and decays from that point in all
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directions. The rate of geometrical necessary dislocation density is maximal at the

crack tip and decays asymptotically.

The asymptotic decay of the accumulated total dislocation density, i.e. sum of

statistically stored and geometrically necessary dislocations, for the fatigue simulation

presented here is compared to discrete dislocation simulations for monotonic crack

growth of Cleveringa, et al. (2000) in Figure 8.5.

The discrete dislocation simulation predicts significantly lower dislocation

densities in the immediate proximity of the crack. In discrete dislocation simulations,

dislocations experience a so-called image force which pulls the dislocations out of the

solid at the crack surface. This leads to a lower dislocation density. This image force

is not taken into account in the present model, which therefore predicts a higher

density.

In the first cycle the crack advances significantly, as shown in Figure 8.6. In

later cycles, the crack advance is slower, reaching its steady state value after 11

cycles. In the insert of Figure 8.6 two regimes of crack growth are distinguishable.

During the initial duration of the loading phase (14.00-14.35 cycles) the crack

extension remains constant. The crack advances only during the final duration of the

loading phase (14.35-14.50 cycles). This advance is very rapidly. Once the applied

energy has reached its maximum (14.50 cycles) the crack growth stops. During the

last duration of the compressive phase (14.75-15.00 cycles) the crack advances

again, as the crack surfaces get into contact. This advance however is smaller than the

advance during the loading phase. When increasing the applied energy release rate the

general behavior of alternating periods of crack growth and crack arrest remains the

same; only the amount of crack growth during the final duration of the loading phase

increases. Using discrete dislocation simulations (Deshpande, et al., 2001) report a

similar accelerated crack growth during the final stage of loading while during most

of the cycle the crack arrests.

After - 50 cycles the crack growth rate changes into a second state and the

crack accelerates by a factor of two. As shown above, in the wake of the propagating

crack tip a plastically hardened boundary layer remains. Brinckmann and Siegmund

(2006) have shown that a strong plastically hardened material leads to faster fatigue

crack growth than a material with a low plastic hardening. In the present problem, this
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boundary layer stiffens the material leading to an accelerated crack growth if the

effect of the boundary layer comes into effect, as observed in above figure. However,

free surface forces which act on dislocations, i.e. image forces, would prevent the

retention of the high number of dislocations and the plastically hardened material

close to the crack surface. These free surface forces are not included in the present

model. To that end, we neglect in the remainder of the discussion the domain of

increased fatigue crack growth rate which occurs for long crack extensions.

The profile of the crack surfaces is shown in Figure 8.7 for the 19th cycle.

During this period the crack tip had, on average, advanced 0.54pum from its initial

crack tip (see Figure 8.6). The crack surfaces in the wake of the crack tip and in the

proximity of the crack tip are in contact at minimum applied stress intensity factor.

However, ahead of the crack tip the crack surfaces are separated. The opening

increases during the first half of the cycle and subsequently decreases during the

compressive phase of the applied energy release rate (AERR).

Notice the profiles at median AERR are significantly different during loading

and unloading. The separation during the loading stage is smaller than at the

corresponding time during unloading phase. During loading phase, even at the median

AERR the crack is still closed in the wake of the crack tip. Subsequent increase in

AERR leads to a significant increase in the opening. During this final phase of

loading also the increase in dislocation density and the crack advance are maximal.

The steady state crack growth rates of different stress intensity factor ranges

are given in a double-logarithmic plot in Figure 8.8. The simulations predict that the

threshold of the stress intensity factor range is 0.89MPa-imi. Below that value crack

propagation is essentially zero. Stress intensity factor ranges above the threshold lead

to a gradual increase in crack growth rate. The simulations predict a Paris-law

exponent of 4, which agrees to the values determined for metals (Elber, 1971).

Quasi-static approach. (Tvergaard and Hutchinson, 1996) employ a special

method to control nodal displacements to stabilize the simulation. Viscous damping

would be another means to reach more stability. However, these methods alter the

results and are therefore not used in the present study. However, this model predicts a

threshold which is 5 times lower than the values determined by those experiments.

Better agreement with experimental results can possibly be achieved if IDD,dis r is
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based on experimental in-situ observations and not discrete dislocation simulations as

in the present study. However, the predicted fatigue crack growth rate at the threshold

is identical to the experimental findings.

Tvergaard and Hutchinson (1996) reported that their results are mesh-size

depended. Similarly, in this study the mesh-size, i.e. the distance between the

integration point and the cohesive surface, has been introduced as material-length.

The singular dislocation density, shown in Figure 8.5, leads to increasing stress

enhancement factors if the mesh-size is refined. An identical approach would be the

introduction of a cut-off length for r in equation 8.3 on the lower end. Such a cut-off

length is also employed in the discrete dislocation approach of Cleveringa, et al.

(2000) and Deshpande, et al. (2001, 2002). The introduction of a length scale, either

cut-off length or mesh-size, is acceptable since the proposed continuum model breaks

down in areas with strong-discontinuities in the atomic structure such as the crack-tip

area. ich influences significantly the crack tip zone through the geometrically

necessary dislocations. Therefore, in this case the Paris-law exponent decreases. Vice

versa, if the length-scale decreases, the Paris-law exponent increases. Therefore, the

mesh-size can be considered a material parameter which determines the Paris-law

exponent m at a distant away from the crack surface.

Figure 8.9 shows a simulation with overload. The initial part of the curve is

identical to a simulation without overload. During the overload in cycle 18 the crack

advances significantly. Subsequently, the crack velocity decreases substantially to a

tenth of its initial velocity. Finally, the crack growth rate increases again and reaches

the same final fatigue crack growth rate as without the overload. The discrete

dislocation analysis for fatigue of Deshpande, et al. (2001) finds that an 8% overload

leads to significant crack retardation, which supports the present findings.

Furthermore, Elber (1971) reports that the retarded fatigue crack growth rates are

observed for more than 200 post-overload cycles. The present study predicts this

value,as the post-overload retardation is observed from the - 25th to the - 300th

cycle.

The evolution of the traction - separation behavior of a cohesive surface in the

steady state regime of the fatigue crack propagation is shown in Figure 8.10(a).

Initially the behavior follows the prescribed traction - separation curve, i.e. initial

stiffness, of the virgin material. The stiffhess of the cohesive behavior decreases as

199



dislocations accumulate throughout the following cycles. Afterwards, the reduced

strength of the cohesive surface is reached and the tractions decrease. Finally the

stress enhancement factor reaches 1 and the traction - separation curve is constant at

zero. This evolution of the traction separation curve has previously reported by Wang

and Siegmund (2005) for conventional plasticity and the cohesive surface law of (Roe

and Siegmund, 2003).

During the overload cycle the traction - separation follows the same envelope

as during the steady state regime, as shown in Figure 8.10. However, the decrease in

stiffness, i.e. the accumulation of dislocations, is significantly increased during the

overload cycle. Wang and Siegmund (2005) had reported a significantly different

envelope of the curve during the overload. In their model, damage accumulation is not

as significantly elevated during the overload as the stress enhancement in the present

model. When compared to the present study, the decreased damage accumulation in

the model used by Wang and Siegmund (2005) leads to a higher stiffness and

therefore higher tractions. These higher tractions lead to a larger envelope during the

overload cycle. In the present model this change in envelope is not present.

Figure 8.11 shows the dislocation density distribution for the simulation with

an overload cycle. The initial crack tip is at the position marked by 'A'. The current

crack tip is defined as that position for which all cohesive surface elements to the left-

hand side have failed, i.e. E, = 1. During the initial cycle the dislocation density

increases locally and the crack extends. The crack reaches its steady state growth

regime as the crack tip approaches 'B'. From this point the dislocation density is

evenly distributed along the crack until the crack tip reaches point 'C', i.e. the end of

the steady state growth regime,. As the crack tip reaches point 'D', the maximum load

of the overload cycle is reached. This overload leads to an increase in the local

dislocation density. The density elevation of geometrically necessary dislocations is

similar to the elevation at the initial crack tip. However, the elevation of statistically

stored dislocations is less than the initial elevation. It can be concluded that the

overload as a stronger effect on strain gradients and therefore geometrically necessary

dislocations than it has on strains and statistically stored dislocations.

The fatigue crack growth rate decreases once the crack tip has reached the

point 'E' and has left the area of elevated dislocation density due to the overload.
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However, the long-range interaction forces of the dislocations in the area of elevated

dislocation density continue to influence the crack propagation behavior. These long-

range interaction forces have decreased the strength, and therefore the stiffness

according to K- o-ine, during the overload at cohesive surfaces far ahead into the

material. This reduced stiffness in the cohesive surfaces leads to reduced strain

gradients and therefore a reduced 'production' of new geometrically necessary

dislocations along the crack. The reduced dislocation accumulation leads to the slower

fatigue crack growth rate after the overload cycle.

The cohesive surfaces to the right-hand side of point 'F' were not sufficiently

influenced by the overload, since they are very distant from point 'D'. Therefore they

retained their initial stiffness and ability to lead to high strain gradients. These high

strain gradients lead to the observed acceleration of the fatigue crack after cycles of

retarded crack growth.

8.6 Conclusion

In the present study a cohesive zone evolution model for metallic materials

was developed, which is based on the stress fields of dislocations. The stress caused

by dislocations is combined with the stress of the continuum model to reach the

theoretical strength of the material. The continuum description employs a first order

strain gradient model which directly yields the statistically stored and geometrically

necessary dislocation density. The characteristic material parameter due to

dislocations at fracture is determined from the discrete dislocation simulations of

monotonic crack propagation by Cleveringa et al. (2000).

In the present fatigue simulations, the strength of the material is assumed to be

E120, which is the theoretical strength of the material. Most fatigue simulations

studies employ far lower material strengths (e.g. Tvergaard and Hutchinson, 1996,

Deshpande, et al., 2001, 2002 and Brinckmann and Siegmund, 2006 employ

- El100). This high but physically reasonable material strength leads to small time-

steps for large applied stress intensity factor ranges. Numerical stability could be

achieved by the use of a dynamic approach or by under-relaxation.
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The present model predicts a significant crack growth during the last period of

the loading and unloading stage while during most of the cycle the crack propagation

is zero. The crack advance during the loading stage is larger than that during the

unloading stage. A similar crack growth behavior was reported by Deshpande, et al.

(2001).

At the initial crack tip significant crack tip blunting is observed. The crack

closes during the compressive stage in the wake and in the immediate proximity of the

crack tip with an R = 0.1. Far ahead the crack tip, this study predicts no closure.

If the crack has advance for a distant longer than lUm the model introduces

an artifact. This artifact is due to the lack of including image forces of dislocations

into the model. These image forces would lead to a reduction of the dislocation

density. However, the present study predicts a high dislocation density which leads to

accelerated crack growth if the crack extension is sufficiently long.

The statistically stored dislocation density is two orders of magnitude lower

than that of geometrically necessary dislocations. The geometrically necessary

dislocations reach its maximum density at the crack surface while the statistically

stored dislocations reach the maximum in the proximity to the crack surface. In this

study no distinct patterns in the rate of statistically stored and geometrically necessary

dislocations during the loading or unloading stage were found. (The previous study of

Brinckmann and Siegmund (2006) has revealed such patterns.)

The predicted crack growth rates reveal a threshold in the applied stress

intensity factor range, below which no crack growth occurs. Above that threshold the

model predicts a power-law crack growth rate. The power-law exponent was

predicted to be 4.

Furthermore, the model predicts a significant crack advance during an

overload cycle. After the overload cycle the crack is retarded and advances much

slower than before the overload for roughly 280 cycles. Afterwards the crack

accelerates and reaches same crack growth rate as without the overload. Experimental

findings (Elber, 1971) and discrete dislocation simulations (Deshpande, et al., 2001))

support these findings. However, the discrete dislocation simulations cannot predict

the post-overload behavior because the number of cycles is computationally not

feasible.

Strain gradients play a far more dominant role in overload cases than strains.
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During the overload the geometrically necessary dislocations, which occur due to

strain gradients, increase more than the statistically stored dislocations, which occur

due to strains. During the stage of retarded crack growth after the overload cycle, the

reduced production of geometrically necessary dislocations leads to the slow growing

fatigue crack. Finally, the fatigue crack growth rate increases again once the local

GND density increases.

Concluding, it is possible to simulate fatigue crack growth using the

micromechanical based cohesive surface model without phenomenological material

laws or parameters. This computationally efficient model predicts local dislocation

densities, power-law fatigue crack growth and overload behavior.
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Figure 8.1: Schematic representation of statistically stored (a) and geometrically
necessary dislocations (b).

204



U
Gn

Ted

Tet

Figure 8.2: Traction across the cohesive surface as sum of the elastic contribution
which is bound by the yield stress due to dislocation shielding (ds) and the
contribution due to dislocation clustering (dc).
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Figure 8.3: Computational system.
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Figure 8.4: Dislocation density distribution of statistically stored dislocations (a) and

geometrically necessary dislocations (b) after 18.5 cycles at an applied stress intensity

factor range AK -= 0.904MPam . On the right-hand side the dislocation distribution

along x = 0.5/wm is shown in the undeformned configuration.
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Figure 8.5: Dislocation density perpendicular to crack growth direction predicted by
the present model for fatigue loading compared to discrete dislocation dynamic results
for monotonic loading.
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Figure 8.6: Crack extension as a function of load cycle for an applied stress intensity

factor range AK = 0.904MPa,/'m. The insert depicts a zoom of the crack propagation
during the 14th and 15th cycle.
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Figure 8.7: Profiles of crack surface at five instances (minimum AERR (t=-I 8.00
cycle), median AERR during loading (t-=l 8.25 cycle), maximum AERR (t=- 8.50
cycle), median AERR during unloading (t=-I 8.75 cycle), minimum AERR (t=-I 9.00
cycle)). The average crack extension from the initial crack tip is 0.54/Am during the

19th cycle. The stress intensity factor range is AK = 0.904MPam-i and R = 0.1.
[AERR = applied energy release rate.]
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Figure 8.8: Steady state crack growth rate depending on the applied stress intensity
factor range in a double-logarithmic plot. The data point at AK = 1.01MPa•im was
obtained from an unstable simulation.
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Figure 8.9: Simulation with AK = 0.904MPa.J-m applied stress intensity factor range
and a 5% overload during the 18th cycle. The crack extension for the case without
overload is shown with dashed lines.
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Figure 8. 10: Evolution of traction - separation curve as the stress enhancement
accumulates for cohesive surface in the steady state regime (a) and with the influence
of the overload (b).
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Figure 8.11: Dislocation density distribution of statistically stored dislocations (a) and
geometrically necessary dislocations (b) after 359 cycles at an applied stress intensity
factor range AK = 0.904MPav 4m with an overload at 18 cycles. The current crack tip
in the initial position A, at the beginning of the steady state regime B, the end of the
steady state regime C, at the overload D, at the beginning of the slow growth regime E
and end of the slow growth regime F.
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9. A MODIFIED 4-POINT BEND DELAMINATION TEST

The 4-point bend delamination test has been used as the preferred method to

measure interface properties of semiconductor devices. Since Charalambides et al. (1989,

1990) initially proposed the 4-point bend delamination test, it has been widely used to

determine the mixed mode fracture resistance of bimaterial interfaces (e.g.,

Charalambides 1989, 1990; Ma et al., 1995, 1997; Klingbeil and Beuth, 1997; Zou et al.,

2004). It was also used to investigate the time dependent subcritical debonding of multi-

layer interconnect structures (Ma et al., 1997). Recently, the 4-point bend delamination

test was used to quantitatively measure the interfacial fracture resistance and crack

velocity of interfaces in thin film structures under the consideration of different metal

layer thickness values (Phillipps et al., 1993; Ma, 1997; Dauskardt et al., 1998; Lane et

al., 2000a, 2000b; Hugh et al., 2004).

In a conventional 4-point bend delamination test, interface cracks are assumed to

propagate along both sides symmetrically, or only the first growing crack is considered.

The steady-state strain energy release rate is then calculated based on the assumptions of

symmetrical crack propagation. Experimental results indicate, however, that cracks rarely

grow symmetrically along the interface, due to slight asymmetry in specimen or loading

condition. In most of the cases, this asymmetry is inevitable. While this is acceptable for

fracture toughness testing - with the information of the second crack lost - such a

situation is no longer acceptable for fatigue testing.

In order to use the second crack information for fracture toughness testing and to

obtain symmetrical crack growth for fatigue testing, a modified 4-point bend

delamination test is reported. The goal of this chapter is to provide a methodology for

fracture toughness and fatigue testing by using a modified 4-point bend delamination test.
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At first, equations for the steady-state strain energy release rate for asymmetrical crack

configuration are derived based on classical beam theory. Then, designs for an articulated

4-point bend fixture are provided. Fracture toughness and fatigue tests conducted with the

articulated fixture are described and analyzed.

9.1 Theory

Generally, the equation used to calculate the strain energy release rate in the

conventional 4-point bend delamination test are based on assumption of a symmetrical

crack configuration. Experimental results, see e.g. (Ma, 1997) and also the experiments

presented in this work, however, indicate that crack rarely grow symmetrically along the

interface. One of the possible reasons is that, at least for very stiff specimens, even very

small shape distortions (-100tm) can cause significant loading asymmetries, which in

turn affect the load at which crack propagation occurs (Phillipps et al., 1993). The

presence of imperfect precracks can also result in the asymmetrical crack propagation. In

fracture toughness test conducted by use of the conventional 4-point bend delamination

test, one crack will propagate first and arrest at the inner roller. In a rigid fixture, due to

the subsequent unbalanced load condition, the other crack will not propagate even after a

further load increase. In an articulated fixture that compensates the unbalanced load

makes it possible to propagate the second crack along the interface. To be able to use this

approach equations for the calculation of the strain energy release rate under the

asymmetrical crack configuration need to be derived.

Figure 9.1(a) shows loading conditions and dimensions of the 4-point bend

delamination sample with crack lengths of a, and a2. In general a, # a2 with the left and

right crack tip located at point G and F, respectively. Following Euler-Bemoulli beam

analysis of this 4-point bend sample, the energy release rate under this asymmetrical

crack configuration can be calculated by using the equation given by Hutchinson and Suo

(1992). There, in section III. B. 4, an interfacial crack in a bilayer was analyzed. The
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energy release rate for both side cracks need to be calculated. Here, as an example, the

loading situation for the right hand side crack was enlarged and shown in Figure 9.1(b).

When the crack length exceeds the thickness of the top layer by a factor of two, it can be

considered as semi-infinite beam. The strain energy release rate is calculated in close

form:

G=21(2 M12 - M2(9.1)

where M1 and M2 are the internal bending moments per unit width. The dimensionless

moment of inertia I is given by the following equation.

I=z A-1 -(A-- + +AA-1+ (9.2)

w ere2E E7 (1-v_) l+ _ 7+_ 2
w h e re / = E 2 ( IV= A - = i 7( + y 7qh' E2 (1-vt)' 2r/(1±+ Xr)

The following beam analysis is carried out to calculate the internal moments M1

and M2. At first, the beam is divided into 6 regions which are indicated in Figure 9.1 (a).

For each region, the functions for internal shear force and bending moment are derived

by free body diagram analysis. Then, the deflection curve equations are derived for each

region as follows:

EIv, (x)=-Fx (O<x<_L)*cv(x)=(FI-F x-FLZ (L.:_x:_.2/2-a,)
E2 Iv;(x)=(F,-F)x-FL (L212-a 1_x•_L 212)E2I23 3)(9.3)

E2I 2 v (x)=(F3-F)x-FJL (L2 /2•< x<-L212+a2)
EJIv;(x)=(Fl-F,)x-FIL (L 2/2+a 2 <x<L2 -L)

EcIv-(x)=(F l+F2-F)x-FlL-F2(L+Ll) (L 2 -L x-L 2 )

where E, and I, are the Young's modulus and moment of inertia of composite beam. E2

and 12 are the Young's modulus and moment of inertia of the bottom layer. v, (x)

represents the deflection of the ih region. The boundary conditions and continuity

conditions are:
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At point A: v,(L)=v(L),v,(L)=v 2 (L).v,(L)=v 2 (L)=O

Atpoint G: v2(L 2 12-a,)=v (L2 12-al),v2 (L2 12-ao)=v3 (L 2 /2-a 1 )

At point E: v3(L 2 /2)=v'(L 2 /2),v 3 (L2 /2)=v 4 (L2 /2),v;'(L 2 /2)=v'(L 2 /2)=O

At point F: v4 (2 (+2a2)=v (L2/2+a 2),v4 (L2 /2+a 2 )=v v(L2 /2+a 2)

At point B: v'(L 2 -L)=v'(L 2 -L),v 5 (L2 -L)=v 6 (L2 -L),v 5 (L2 -L)=v 6(L2 -L)=O

Also, based on the free body diagram of the whole beam, we have

F, + F2 = F3 + F4

FL + FL= F (L2 -L)

Based on the above beam deflection curve equations and boundary conditions,

totally, we have 16 unknowns and 16 equations. By solving these equations, the internal

bending moments for the calculation of strain energy release rate can be determined as

function of crack lengths a, and a2. The internal bending moments for right side crack

(tip at F) can be derived as

MR= PL
2b

MR 2bpL(512+24(1-4ý)a2 +192(ý-1)(a2 -al)+(ý-l)(a +a2)) (9.4)

while for left side crack (tip at G), the internal bending moments are given as
M1L PL

2b
mL pL [512ý + 24 (1- ý)a2 +192( -1)(a,- a2) + (1)(a +a2)1 (9.5)

M•-2b 512•x+12(1-•x)(a,2+a22)+(•x-1)(a +a2)

where b is the sample width and 4 = (E2 I2)I(EJI) . Substituting calculated moments into

equation (9.1), the strain energy release rate for two crack tips G and F can be calculated.

If the crack propagated along both sides symmetrically, the crack lengths are

identical. Substituting a, = a2 into the equation (9.4) and (9.5), the sample is subjected to

constant moment conditions between the inner roller lines. The strain energy release rate

is independent on the crack length. By using equation (9.1), the strain energy release rate

can be calculated by using the following equation:
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Gs-= p2V- ( _ 1 (9.6)

here, Gs represent the strain energy release rate for the symmetrical crack configuration.

Under the asymmetrical crack configuration, i.e., the general case ofaI # a2 , the

following equations can be used to calculate the strain energy release rate for two crack

tips at point of F and G, GF and GG.

G_' P2L2 [3 4I (512 +24(1-ý)a,+192(ý-l)(a2- )+(ý-l)(a3+a•))21 (9.7)

2E2b
2 [h/ 4Ih1

3  5124+12(1-•)(a,2 +a2)+(4'-1)(a, +a,)

For fracture toughness testing, the following situations are considered: (a) Initial

cracks are symmetrical (a, = a2 ) and both cracks propagated at the same situation. Then,

equation (9.6) provides the fracture toughness, provided that the load P is substituted

with the critical load PI; (b) Initial cracks are symmetrical. One crack propagates and

arrests at the roller and a first critical load P,,, is recorded. Subsequently, as the load is

increased the second crack propagates and a second critical load P,,2 is recorded. Two

values of the critical strain energy release rate are obtained. One is calculated from

equation (9.6) with the load P replaced by the first critical load PJ. The second one is

obtained from equation (9.7) with the simplification by use ofaI = L, / 2; (c) If

precracking results in two initial crack of different length then the load P,'i inserted into

equation (9.8) yields the first value of the critical strain energy release rate and the second

one is obtained as described in situation (b).

In Charalambides et al., (1989) the symmetrical crack configuration was assumed

and the critical strain energy release rate was expressed in terms of the applied moment

M as

G=-(lV2 1(9.9)
= 2E2 ,12 I,
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where E(-~
SA, M = PL / 2b .The moment of inertia I, and 12 can be calculated

by
Ihlc + A14 +•h•t A•hlh2(hl + h2)2

12 12 4(h + Ah2 ) (9.10)

12-

Simplifing equations (9.9) and (9.6) by using the same dimensions as shown in Figure

9.1, the same results for the critical strain energy release rate under symmetrical crack

configuration are obtained. The solution provided by Charalambides et al., (1989) is the

special case of the general solution of our analysis.

9.2 Experimental Method

9.2.1 Articulated Fixture Design

In a fully articulated 4-point bend fixture both the top and bottom support

structures for the rollers are to be free to pivot. This allows the fixture to compensate for

any unevenness on the specimen surface. This "floating platen" approach can also correct

the unsymmetrical crack propagation by maintaining the symmetrical loading situation.

In this study, one such articulated structure is designed. Figure 9.2(a) shows the

schematic picture of the assembled articulated 4-point bend fixture. Figure 9.2(b) shows

the fixture in use.

Considering the small dimensions of samples of interest in microelectronics and

MEMS, a 4-point bending fixture with relatively small dimensions was manufactured.

The four steel rollers with diameter of 3mm sit in the slot of bottom and top fixture to

support and load the sample. In order to make the rollers to contact the surfaces of the

slot without gap, springs were used to hold the rollers in position. The nominal span

between the inner and outer roller lines, L2 and L1, is equal to 22mm and 16mm,
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respectively. It provides longer distance between the inner rollers for the crack

propagation under the constant moment. Figure 9.3 show the detail design for this rigid 4-

point bending fixture. The corresponding design for articulated structures is shown in

Figure 9.4. The designed structure can be called semi-articulated 4-point bend fixtures

since only the bottom rollers attached to the rotating pin are free to articulate. It

compensates the unevenness on the specimen surface and unbalanced load under

asymmetrical crack configuration. The semi-articulated fixture is convenient in the test

set-up. Generally, the center of the top and bottom rollers should be aligned. However, in

actual situation there is a very small distance (-200tm) between them. This design can

minimize such misalignment by adjusting the left and right position screws attached to

the bottom fixture. Moreover, the flange is designed on the articulated structure to fix the

bottom fixture in position and reduce the misalignment.

9.2.2 Test Set-up and Samples

Experiments were performed using a low-force electrodynamically actuated test-

frame (ELF 3200, EnduraTec Inc., Minnetonka, MN, USA). A load cell (Model F717-01,

SenSoTec) with the capacity of 450 N was used for the toughness test. A high resolution

displacement gauge (Model 3540, Epsilon Technology Corp.) was used to monitor the

displacement. Function generation and data acquisition were accomplished by using the

WinTest Software (Version 2.50, EnduraTec Inc., Minnetonka, MN, USA). A traveling

microscope was used to observe the interface at the location of the initial crack tip during

monotonic mechanical loading. A Mitutoyo infinity-corrected long working distance

objective with 50x magnification (M plan Apo SL 50x) was used. It provides the

resolution power of 0.71am and the field of view of 1801am x 1301im. An InfinitubeTM in-

line assembly connects this objective to a CCD camera. By utilizing an in-path beam

splitter and side-port illumination tube with collimating optics, the InfinitubeTM in-line

assembly provides incident illumination parallel to the optical axis (coaxial). The higher

magnification and coaxial illumination allow the visual observation of the crack length.

The imaging system is fixed on top of a micro-stage which can provide the movement

along X and Y direction with the resolution of Iltm (see Figure 9.5). The light is

225



provided by the fiber optic illuminator (Stocker & Yale Model 20) and fiber optic light

guide (1/4"OD x 72", Edmund Industrial Optics, Barrington, NJ, USA).

The samples used in this study are MEMS relevant multi-layer structure

manufactured by standard integrated circuit fabrication processes. Multi-layer thin films

were deposited on top of 3 inch <100> silicon wafers. Silicon wafers are1000±25ýtm

thick, single-side polished, n-type silicon with native Si0 2 of 6000 A ±5%. The Young's

modulus of the <100> Si wafer was measured as 112GPa. The Poisson's ratio is 0.28.

Figure 9.6 shows a schematic picture of the sample with multi-layer structures. A thin

gold layer was deposited as a patch of width 1 mm onto Si0 2. Subsequently TiN is

deposited onto the entire wafer, followed by an aluminum layer (0.5 [Lm or 1.0 pLm) and a

Si0 2 layer. The Au patch at the center of the sample serves as a weak interface to ensure

the deflection of a vertical precrack into the interface. After thin film deposition onto the

silicon wafer, a glass wafer was anodically bonded to the silicon wafer. Pyrex #7740

glass wafer of diameter 3 inch and thickness 1000;.m was used for the anodic bonding.

This borosilicate glass possesses a Young's modulus of 60GPa and Poisson's ratio of

0.20. After bonding, specimens were obtained by wafer dicing (nominal dimension of

25.0mm x 2mm x 2mm). A vertical prenotch of 200ptm width and 940pam depth was

carefully machined in glass layer.

Three-point bend loading was used to precrack the samples under a concentrated

load at the center of the sample. The sample was loaded monotonically under

displacement control (0.31.rn/s) until a vertical precrack occurred starting from the tip of

the machined notch. Once the vertical precrack occurred and kinked into the interface,

the test was aborted and the sample anloaded to avoid the sample breakage.

After the precracking procedures, the specimens were placed into the articulated

4-point bend fixture to conduct the fracture toughness test. Such test were conducted

under displacement control (0.05 plm/s), with displacement controlled by the internal

displacement transducer of the test system. The reading of the displacement from the

actuator was verified using the high resolution displacement gauge and was then taken as

the measurement.
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For fatigue testing, the same set up as the fracture toughness test was used. Due to

the small displacement applied during the cyclic loading, typically, the maximum

displacement is less than 20 jim, the high resolution displacement gauge was used as the

feedback signal. Cyclic loading was conducted under a frequency of 2.0 Hz.

9.3 Results and Analysis

9.3.1 Fracture Toughness

During the fracture toughness test, the applied displacement and the

corresponding load values were recorded. Figure 9.7 shows a typical relationship

between the load P and displacement u. Figure 9.8 shows images taken at the left and

right initial crack tip and the center of the specimen Several regimes are indicated in

Figure 9.7 and described as follows: (a) The load increased proportionally to

displacement. Figure 9.8 (a) shows that there is no crack propagation in this stage and

that the crack opening at the center is very small; (b) Interface delamination occurred

along one side and a load plateau is obtained. The crack arrests at the inner roller line. In

Figure 9.8 (b), the right side crack propagated while the left side crack did not propagate.

This asymmetrical crack growth situation was clearly visible at the specimen center with

the right side crack showing a larger opening than the left side; (c) The load again

increases proportional to the displacement. Compared to region (a), the compliance of the

sample increased due to the previous crack growth event. (d) A second load plateau

occurred with corresponds to crack growth along the left side. Figure 9.8 (c) indicates

that now the opening of both crack is similar. Both cracks have reached the

corresponding inner roller; (e) Under further loading the crack tips either remain stable at

the inner roller line or passed the inner roller lines under increasing load. The sample

compliance has increased further due to the additional crack growth along the left side. In

comparison to the common results from 4-point bend delamination test, Figure 9.7 clearly

shows two load plateaus which can be used to calculated two corresponding values of the
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fracture toughness values. Two test results can be obtained by using this modified 4-point

bend delamination test instead of one test result due to one side interface delamination.

With the articulated fixture, it is also possible to observe symmetric crack growth.

This, however, remained a rare event. Among sixteen samples tested, only two samples

provided such a scenario. Figure 9.9 shows the recorded the load and displacement for

one of such samples (aluminum layer thickness I ptm). Figure 9.10 shows the interface

delamination at the initial crack tip for left, right and center of the prenotch. In Figure 9.9,

three data regions are identified as follows: (a) The load increased proportionally to

displacement with no crack propagation in this region as indicated by Figure 9.10 (a). (b)

Plateau region indicated the steady-state crack growth of the interface. This is also

verified by Figure 9. 10 (b) where the left and right side crack propagated with the same

crack opening. At the center, symmetrical crack opening was clearly shown.

9.3.2 Fatigue Crack Growth

Samples were also tested under cyclic loading to verify there the articulated

fixture allows one to obtain symmetrical crack propagation. Transparency of the glass

allowed direct observation of the interface through the top of glass. Interface

delamination was observed using an optical microscope (Labphot-2, Nikon, Inc.) and a

Moticam 2000 digital camera with Advance 3.2 Imaging Software (Motic Instruments,

Inc). Before the fatigue test, the initial crack front was observed and the initial crack

length was measured. Cyclic loading was conducted with P , = 3.5 N, P. = 10.9 N for

N = 5.1 x 105 cycles, and with P.. = 2.9 N, P. = 9.2 N for N = 5.1 x 105 cycles. These

loads ensure a load ratio of R = 0.1 such that AG = (1 - R)Gmax. Crack lengths were

measured at N=5.1x10' and N=1.2x106 cycles. A sample with aluminum film

thickness 0.5 jim was considered. An optical micrograph of the fatigue loaded sample

shown in Figure 9.11. The dash lines represented the crack front after N = 5.1x 10,

cycles.

Figure 9.11 (a) shows that the crack front developed during fatigue was not

straight. The crack length was thus measured at seven equally separated positions along
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the sample width. The average value was taken as the measured crack length. The center

of the prenotch was selected as the original point for the crack length measurement.

Figure 9.11 (a) provides evidence that there is crack propagation along both sides. Crack

length vs. cyclic numbers is shown in Figure 9.11 (b). Although the initial crack length

for both sides is not the same al,0 =1.343mm and a2,0 =1.0 both cracks grew and

Aa1 =921 ýtm, Aa2 =895 ptm in the first stage of the experiment. Assuming a

symmetrical configuration the loads P•. = 3.5 N, Px. = 10.9 N lead to the following

energy release rate range value, equation 9.6, G~S = 2.85 J/m 2. Considering these loads

and the actual asymmetric initial crack lengths, the energy release rate ranges at the two

crack tips are calculated from equations 9.7 and 9.8 as GmG = 2.93 j/m2and GF. = 2.77

J/m 2, i.e. relative to G.Sx a difference of ±3%. Considering the actual crack lengths at

the end of the first loading stage Gmax = 2.92 j/m2and G.F = 2.78 J/m 2, i.e. relative to

GS a difference of ±2%. At the end of the experiment Aa = 953 ýtm, Aa2 = 925 tm

Considering the actual crack lengths at the end of the experiment and the loads

Pn = 2.9 N, Pna. = 9.2 N, GG, = 2.08 J/m 2 and GmF, = 1.98 J/m 2, i.e. relative to

GS.x 2.03 J/m2 a difference of ±2%.

The fatigue crack growth rate were similar for both cracks. In the first stage

daI / dN = 1.79 x 10-9 m/cycle and da2 / dN = 1.74 x 10-9 m/cycle, and for the second stage

da, /dN = 6.24x10-"n m/cycle and da2 /dN = 5.85x10-" m/cycle, indicating that the two

cracks indeed propagated symmetrically under fatigue loading.

9.4 Conclusions

A modified 4-point bend delamination test methodology was provided in this

study. This methodology was used and verified by fracture toughness tests and fatigue
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loading tests on samples with a weak interface sandwiched between a glass and a silicon

wafer.

Instead of considering one crack as it is commonly the case in 4-point bend

delamination test, our modified 4-point bend delamination can produce symmetric crack

propagation. The equation used to calculate the steady-state strain energy release rate

based on two load plateaus under an asymmetrical crack growth situation was derived.

Thus two test results for the fracture toughness can be obtained from a single test.

Also, by using the articulated 4-point bend fixture, symmetrical crack propagation was

obtained for fracture toughness tests. Albeit a rare event, such findings are uncommon in

regular 4-point bend delamination test (Ma, 1997).

This methodology also provided the capability to conduct the fatigue test. Test

results indicated that there was symmetrical fatigue crack growth despite a difference in

the initial crack length. It solved the problem that crack only propagated along one side of

prenotch under cyclic loading.

In summary, this methodology established here provides a capability to conduct

the fracture toughness and fatigue loading test on the sample with multi-layer structure.

Incorporating the articulated 4-point bend fixture and theory for the asymmetrical crack

propagation, more reasonable and precise results were obtained by generating the double

crack and symmetrical crack propagation in fracture toughness and fatigue loading test,

respectively.
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Figure 9.1: (a) Schematic picture for the loading conditions and dimensions of the 4-point

bend delamination specimen with interface crack length of a, * a2 . (b) Enlarged picture

to show the loading situation of right side crack.
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Figure 9.2: The semi-articulated 4-point bend fixture, (a) Schematic drawing; (b) Fixture

in use. Unit is in mm.

232



A-A

30..

19.
16, 7 -'

3.0 .- . .. . . .

2X #4-40xl/2 inch 910

2.4

-36.01.

2X *0-32ONC- -0 -4.318 (00.170') TTHRU

/TAP #I0-32UNF-2B TTHRU

A A

(a)

2.0.

119.-4X #4-40xi/2 inch • 11.081 3

.4 25.4 -2.0"-

0 - P,

2X 2B--F -438 - •.7" TR

1 .

(b)

Figure 9.3: Design of rigid 4-point bend fixture, (a) Top fixture (b) Bottom fixture. Unit

is in mam.
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Figure 9.4: Design of articulated structure used as carrier for the 4-point bend fixture. (a)

Structure 1. (b) Structure 2. Unit is in mm.
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Infinity-corrected long working Infinitube in-line
distance objective (5Ox) assembly CCD camera

Micro-stage

Figure 9.5: Optically imaging system used in the 4-point bend delamination test.
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Au: 2mm

Glass: 1000gm

SiO 2: 0.6pam

Au/TiN: 0.025jim/0.02jim

. .... Al: 0.05-2jim

SiO 2: 0.6pm
Si: 1000lum

Figure 9.6: Schematic drawing of the multi-layer structure.
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10. FATIGUE CRACK GROWTH IN A MEMS MULTILAYER STRUCTURE

With the widespread use of multi-layer structures in MEMS and microelectronic

devices, experimental studies which focus on the reliability in multi-layer structures have

been performed. Although there was considerable experimental work to characterize the

fracture toughness of a variety of ceramic-metal systems under the different loading-

mode configurations (e.g., Reimanis et al., 1990, 1991; Ritchie et al., 1993; Phillipps et

al., 1993; Ma et al., 1995, 1997; Klingbeil and Beuth, 1997; Dauskardt, et al., 1998;

Lane, et al., 2000a, 2000b; Hasegawa, et al., 2003; Hughey, et al., 2004; Shaviv, et al.,

2005), corresponding investigations and experimental results on subcritical crack growth

properties are extremely limited (Oh et al., 1988; Cannon et al., 1991; Shaw et al., 1994;

McNaney et al., 1996; Hasegawa and Kagawa, 2006; Hirakata, et al., 2006). In this

chapter, the dependence of FCG on metal layer thickness in a multi-layer thin film stack

is studied. In the case of a metal layer sandwiched between two elastic substrates,

constraint of the monotonic and cyclic plastic zone may occur when plasticity extends

across the metal layer and impinges on the elastic substrates. These constraint effects are

significantly determined by the metal layer thickness. Consequently, FCG may be

influenced by the metal layer thickness. Few experimental studies have been reported on

how FCG properties in multi-layer structures are affected by the constraint effects

through variations in the metal layer thickness. McNaney et al. (1996) experimentally

studied the fatigue and fracture toughness behavior of a metal/ceramic sandwich

geometry based on the Al/A120 3 system. The monotonic test and cyclic loading test under

nominal mode I conditions were conducted to investigate the effect of the metal layer

thickness on the fracture toughness and FCG by loading the sample in 4-point bend test.

For the values of metal layer thickness considered (100 jm, 2001arm and 500 tm) no effect
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of constraint on FCG rate was observed. Interfacial crack-advance mechanisms under

cyclic loading were found to be similar to that in ductile metals. Hasegawa, et al. (2003)

and Hasegawa and Kagawa (2006) investigated the effects of metal layer thickness on the

fracture toughness and FCG rates of the Cu/AI20 3 interface by using double cleavage

drilled compressive specimens. Hasegawa, et al. (2003) studied the effect of metal layer

thickness (from 10 to 100ýtm) on the fracture resistance of the sapphire-Cu-sapphire

interface. Their results showed that the initiation and steady-state toughness were

substantially larger for systems with the thicker Cu layer. The difference in fracture

toughness between the thin and thicker layers was mainly attributable to the constraint

effects in the metal layer. Hasegawa and Kagawa (2006) studied the effects of the metal

layer thickness (60pm and 100tm) on FCG rates. The measured FCG rates were

independent on the thickness of the Cu layer. Kruzic, et al. (2004) carried out another

experimental study using a ceramic-metal A120 3/AI/AI20 3 system with the metal layer

thickness of 5-100ltm. FCG restuls for interfacial cracks showed an increase in crack-

growth resistance with decreasing layer thickness in the near-threshold regime. For larger

values of applied load, the crack growth resistance was observed as essentially

independent of the metal layer thickness.

Under constant amplitude cyclic loading condition, the retardation of the FCG

may be caused by the effects such as (i) periodic deflections in the path of the crack due

to microstructural impediments to fracture or changes in local stress state and mode

mixity, (ii) the bridging of the faces of the crack by fibers, particles, intact grains or

corrosion products (Suresh, 1998). These extrinsic mechanisms of fatigue fracture can

lead to an apparent retardation of the fatigue crack growth in brittle and ductile solids

(Ritchie, 1999). Hence, FCG rates may also be influenced by the crack deflection and

bridging. For example, Suresh (1983, 1985) indicated that methods by which the path of

a crack can be periodically deflected from its nominal growth plane offered one possible

way of enhancing the fatigue crack growth resistance. Cannon et al., (1991) investigated

the fatigue crack growth in Cu/SiO 2 material system using double-cantilever-beam

sandwich test specimens. Cyclic crack growth rates along glass-copper interfaces were

reduced by many orders of magnitude due to crack tip shielding induced by crack
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bridging. Experimental results of Kruzic et al. (2004) also revealed a crack path

deflection during fatigue crack growth in a ceramic-metal A120 3/Al/A 20 3 system with

hAl=5 Jm. This crack path deflection contributed to higher fatigue threshold and lower

crack growth rates at comparable driving forces in the near-threshold regime.

FCG studies so far are in range of metal film thickness larger than 5am. However,

in many microelectronic devices much lower values of film thickness are of concern. For

example, Dauskardt et al. (1998) have studied fracture toughness of such thin films. No

previous studies of FCG for such small values of film thickness have been reported.

In this chapter, experimental studies and analysis of FCG were performed on a

MEMS relevant material system where an aluminum thin film was sandwiched between

two elastic substrates. The aluminum layer thickness varies from 0.051am to 2jtm.

Monotonic and cyclic tests were conducted to investigate the constraint or size effects

determined by the different metal layer thickness on the fracture toughness and FCG.

This chapter is organized as follows. At first, the experimental methods which include

preparations of samples, 4-point bend delamination testing and procedures used in

fracture toughness and FCG test are discussed. The experiment results of fracture

toughness and FCG test are reported in the second part. In the third part, the analysis of

calibration of cohesive zone model under monotonic and cyclic loading is performed.

Then, the experimental results are discussed. Finally, some conclusions are drawn.

10.1 Experimental Methods

10.1.1 Sample Manufacturing Process

Figure 10.1 shows SEM micrographs of a MEMS relevant sample with multi-

layer thin film structure. The multi-layer structure was manufactured by using the

standard integrated circuit fabrication processes. Using the E-beam evaporation, an

aluminum layer (Al, thickness: 0.05Jtm-2pm) was deposited on a silicon wafer (Si,

thickness: 1000plm, 3 inch <100>) with native layer of silicon dioxide (Si0 2, thickness:
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0.6jtm). Then, a layer of titanium nitride (TiN, thickness: 0.021am) was reactively

sputtered on top of aluminum layer. A thin gold layer was deposited on the TiN film by

E-beam evaporation. The mask used for the Au deposition is shown in Figure 10.2(a).

The mask was made by using the stainless steel shim disc (3" in diameter and 0.01"

thick). The slots with the different width were carefully machined on the shim disc. Gold

strips of 2.0 mm, 3.0 mm and 4.0 mm width are deposited (Figure 10.2(b)) on the wafer.

Finally, one layer of silicon dioxide (SiO 2, thickness: 0.61am) was formed on the TiN film

by Plasma Enhanced Chemical Vapor Deposition (PECVD). After the thin film

deposition, silicon wafers were diced into 25mm in square for the subsequent bonding

process. Another glass wafer (Pyrex, thickness: 10001tm) was also diced into 25mm in

square and anodically bonded to the top of the silicon wafer with the multi-layer

structure. After bonding, squares are diced into strips with nominal dimension of 25mm x

2mm x 2mm (length x width x thickness). A prenotch of width 200tm and depth 9401am

was carefully machined into the glass wafer by a diamond saw. Figure 10.3 (a) shows the

process flow used to manufacture samples and Figure 10.3 (b) shows an anodically

bonded square sample which was partially diced into 4-point bend samples.

For the 4-point bend delamination sample used here, a thin gold layer was

deposited between SiO 2 and TiN films at the center of the diced strip sample to serve as a

weak interface to ensure the deflection of the vertical precrack to the direction parallel to

the interface. At the end of the gold layer, the crack seeks out a new weak path for further

growth. Following (Ma et al., 1995), the interface between SiO 2 and TiN was to be

expected as the weak link in the system and crack propagation is expected to be confined

to the weak TiN/SiO2 interface.

The Young's modulus of the <100> Si wafer was measured as I 12GPa. The

Poisson's ratio is 0.28. The Young's modulus of Pyrex #7740 glass wafer was measured

as 60GPa and Poisson's ratio is 0.20.
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10.1.2 Anodic Bonding Process

A second load carrying substrate needs to be bonded onto the top of the silicon

wafer with multi-layer structure. Generally, it can be achieved by diffusion bonding a

metal layer such as copper. In this study, two wafer bonding processes were explored.

One is the silicon-to-glass anodic bonding process. This technology was widely used for

the hermetic sealing and encapsulation in various areas of MEMS and microelectronics

devices (Huang and Yang, 2002; Wei et al., 2003). The second bonding process

considered was microwave bonding. Microwave bonding is a novel technology for

bonding two metallized dielectric or semiconductor wafers to each other (Lei et al., 2004;

Yussuf et al., 2005). However, in this study, the bonding results demonstrated that the

microwave bonding was not reliable for the present material system and the sample

bonded by microwave bonding had weak bond strength. Therefore, microwave bonding

was not further considered.

The anodic bonding process was initially developed by Wallis and Pomerantz

(1969). It has been extensively used in the vacuum packaging, hermetic sealing and

encapsulation of the areas of MEMS and microelectronics. The main mechanism of this

bonding process is to utilize the application of an electric filed to join a silicon and glass

wafer (Figure 10.4(a)). The glass wafer must possess mobile ions such as sodium. Pyrex

#7740 glass wafer is the most popular glass used for anodic bonding due to its rich

sodium content, and its coefficient of thermal expansion (CTE) which is similar to

silicon. During the anodic bonding process, the stack of silicon and glass wafers is placed

on a hot plate and a high DC voltage is applied to the wafer pair with the negative

electrode contacting the Pyrex. The presence of the resulting electric filed causes the Na÷

ions in the Pyrex to migrate to the negative electrode. A sodium depletion layer is created

at the silicon-glass interface. The high electric field at the interface pulls the wafers

together, and the 02 ions from the glass can oxidize the silicon, forming a SiO 2 layer,

creating a strong, permanent bond between the glass and the silicon (Palensky, et al.,

2002). In addition to silicon, other materials are possible such as SiO 2, polysilicon,

Silicon nitride (Si 3N 4) and metals of Al, Ti, Ta, Cr, etc. For the samples in this study, the
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anodic bonding process was used to bond the SiO 2 layer of 0.6 rtm thick and Pyrex #7740

glass. Instead of bonding entire wafer, the bonding process was applied to the 25mm

square samples. The set-up' is shown in Figure 10.4(b).

Generally, the key parameters for the anodic bonding include the DC voltage

values, temperature and bonding time. A typical temperature and voltage for anodic

bonding is 400-5000 C and 400-1200V (Wei, et al., 2003). Factors such as bonding area

and bonding environment can also play some roles. A lot of research work has been done

to investigate the effects of bonding parameters on the final strength (Nese and

Hanneborg, 1993; Rogers and Kowal, 1995; Cozma and Puers, 1995; Cozma et al., 1998;

Go and Cho, 1999; Lee et al., 2000; Dunn et al., 2000; Huang and Yang, 2002; Wei et al.,

2003). The bond strength generally increases with the increase in applied voltage and

temperature. It is found that bonding was performed easily and the number of non-

bonded regions is smaller under high temperature compared to a low bonding

temperature. However, the induced residual thermal stresses are larger with increasing

bonding temperature due to the CTE mismatch. The applied voltage must be high enough

to provide strong electrostatic forces able to bring the two surfaces into intimate contact.

Also the higher voltages allow successful bonding with lower temperature. Several

parametric studies were conducted to determine a set of reasonable bonding parameters.

The temperature and voltage were selected as 540'C and 1200V, respectively. It took 50

minutes for an anodic bond to be achieved in the environment of N2 gas without the use

of bonding pressure or load. After bonding, it was found that contact area between the

electrode and glass surface was damaged. When observing it under the microscope,

needle-like material was observed in this small area. Based on Terazaki (2005), this is

sodium spread on the glass surface due to the high bonding temperature and voltage.

Placing a dummy glass between the cathode electrode and the Pyrex glass can reduce the

amount of sodium found on the surface. One piece of dummy glass wafer was placed

between the electrode and Pyrex glass. The bonding cannot be totally achieved by using

the previous parameters due to this dummy glass wafer. To achieve the bonding, the

SThe anodic bonding experiments were conducted in Prof. Bashir's laboratory in School of Electrical and
Computer Engineering, Purdue University.
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voltage was increased. After several tries, the bonding parameters were determined as

1800V for the bonding voltage, 540TC for the temperature, and 50 minutes for bonding

time. Bonding was completely achieved by using these bonding parameters and the small

area with the needle-like material on top of glass wafer disappeared.

In summary, based on the anodic bonding process developed, it shows that the

reliable anodic bonding has been achieved between the Pyrex #7740 glass and SiO 2 thin

film deposited by PECVD. A set of the bonding parameters with 540'C, 1800V, 50

minutes, no bonding load and N2 gas environment are determined and used as the suitable

bonding parameters for the samples developed in this study.

10.1.3 Initial Crack Preparation

The 3-point bend fixture was used to precrack the samples due to the concentrate

critical load at the center of the sample. The sample was loaded monotonically under the

displacement control with the displacement rate of 0.31tm/s until the vertical precrack

occurred. The precrack was monitored using the optically imaging system. Once the

vertical precrack occurred and kinked into the interface, the sample was unloaded to

avoid the sample breakage. The photomicrograph of the interface delamination after the

pre-cracking process is shown in Figure 10.5. It clearly shows that the vertical precrack

deflected in the direction parallel to the interfaces due to the weak bonding of gold layer.

10.1.4 The Modified 4-point Bend Delamination Test

A modified 4-point bend delamination test developed in Chapter 6 was used here

to conduct the fracture toughness test and FCG test on the samples with the different

aluminum layer thickness. The 4-point bend delamination sample with symmetrical crack

growth was schematically shown in Figure 10.6. Equation (9.6) is used to calculate the

strain energy release rate under this symmetrical crack configuration.
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10.1.5 Fracture Toughness Test and FCG Test

In fracture toughness test, the sample was loaded in the modified 4-point bend

fixture under the monotonic loading condition. The displacement control with slow

displacement rate of 0.05ptm was used. The displacement applied and the corresponding

load values were recorded during the test. The monotonic loading test was repeated for

the samples with different aluminum layer thicknesses.

Fatigue crack growth rates were determined in the modified 4-point bend

delamination test using a computer-controlled, low-force electrodynamically actuated

testing frame. Experiments were conducted in room air (25°C, 40% relative humidity) at

a test frequency of 2Hz and a load ratio (G, I/ G.. )of R =0.1. Based on the ASTM

standard (ASTM E647-91, 1991) for conducting the fatigue crack growth test, specific

information about the test procedures was considered.

When determining the FCG rates under the load control by 4-point bend test, it is

preferred that each specimen be tested at a constant load range and a fixed set of loading

variables (stress ratio and frequency). However, this may not be feasible when it is

necessary to generate a wide range of information with a limited number of specimens.

When the loading ranges or variables are changed during the test, potential problems

arise from several types of transient phenomenon. In order to minimize or eliminate such

effects, the following procedures were used.

"* When changing the load range applied on one sample to get the FCG rates under

the different load levels, the resulting Pn. is increased rather than decreased to

preclude retardation of crack growth rates caused by overload effects.

"* Sufficient crack extension is needed following changes in load ranges to enable

the growth rate to establish a steady-state value.

"* If the crack growth rates following an interruption are less than those before

interruption under the same load range, the crack growth rate data should be

discarded.
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After fracture toughness test and fatigue crack growth test, samples were put into

the Field Emission Scan Electron Microscope (FESEM) and side surfaces of samples

were observed to identify the thin film stack up and crack path.

10.2 Experimental Results

10.2.1 Fracture Toughness

Measured fracture toughness values represented by critical strain energy release

rates G. and critical stress intensity factors KC were plotted with respect to the aluminum

layer thickness hA, in Figure 10.7 (a) and (b), respectively. The results indicate that the

range of the average critical strain energy release rate measured is 2-4J/m2. The

corresponding stress intensity factor is in range of 0.4-0.6 MPa(m)1/ 2. The measured

fracture toughness valves were found to show a weak trend of increasing toughness with

the increase of aluminum layer thickness over the range of 0.05-1 [im. Samples with

aluminum layer thickness of 2ltm do not follow this trend. Low fracture toughness values

were obtained for this sample.

Figure 10.8 shows the interface crack path at a distance away from the crack tip

and near the crack tip for the sample with hA,=0.05ptm, 0.5itm, Ittm and 21am. For the

0.05ttm thick sample, the thinnest aluminum layer thickness considered, there are two

crack paths observed at the crack tip. One is along the interface of Glass/SiO2 and the

other is inside the glass. For the sample with hA=0.5ptm, the crack path deflection was

observed at a distance away from the crack tip. Crack deflected from the interface of

Si0 2/TiN to Glass/Si0 2. For the sample with hA=lltm, Crack path deflection is also

observed near the crack tip as shown in Figure 10.8 (e). One crack path is along the

Glass/SiO 2 and the other is inside the glass. For the sample with hA,=2[tm, there was a

single crack path along the interface of Glass/Si0 2 and no crack deflection was observed.
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10.2.2 Fatigue Crack Growth

Figure 10.9 shows the measured crack extension vs. the cyclic numbers for the

sample with hA, =1 tm under G.~ / G, =31%. A linear relationship was found between the

crack length and cyclic numbers. Based on this curve, the corresponding FCG rates can

be determined. Calculated FCG rates da/dN for the samples with hA, =0.05pm, 0.5gm and

I ptm are plotted in Figure 10.10 as a function of both the range of applied strain energy

release rate AG and the stress-intensity factor range AK. The measured FCG rates were

mainly characterized over a range between 10-9 and 10-6 m/cycle. In this range, the

measured FCG rates increase with an increase in AG or AK and show the linear

relationship. In terms of the Paris law formulation (Paris, et al., 1961), the relationship

can be described by da/dN=3.69x10 4(AK) 5 6 for hA,=ltm and da/dN=4.56x10 7(AK) 3.2

for hA,=0.5ptm, respectively. Over the range of applied AKorAG, a trend of increasing

crack-growth rate with increasing aluminum layer thickness is obtained (Figure 10.11).

Under the same load level of Gm. / G, =90%, the FCG rates of the sample with

hA,=0.051am and 0.5jm are equal to 2E-08m/cycle and 2.5E-08m/cycle, respectively.

The FCG rate of the sample with thicker aluminum layer of hA, =1 gm is around 2 orders

of magnitude faster than that of the sample with hA,=0.05p.m. In Figure 10.12, the

measured FCG rates da/dN as the function of the stress intensity factor range AK was

plotted with the test results of FCG rates for metals, intermetallics and ceramics provided

by Ritchie (1999). Compared to the FCG rates of other structural materials, the measured

FCG rates for the sample with hA,=lIpm are more like the brittle material whose crack

growth rate behavior displays a higher sensitivity to the applied stress intensity factor

range than is observed in most metals. Also Figure 10.12 indicates that multi-layer

structures considered here possess the lower FCG resistance.

Figure 10.13 compares the crack path of the samples with hA=0.05ýtm, 0.5gm,

1gm after fracture toughness test and FCG test. Based on Figure 10.13, material

separation process in fracture is not equal to that in FCG. Examination of the crack path
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of sample with hA, =0.051im after fracture and fatigue test revealed multiple cracks and

crack bridging near the crack tip. However, the crack path is not exactly the same in

fracture and fatigue. In fatigue test, crack bridging occurred when crack deflected from

Glass/SiO 2 to SiO 2/TiN interface. In fracture test, crack propagated along the interface of

Glass/SiO 2 or inside the glass. For the sample with hA, =0.511m, Figure 10.13 (b) indicates

that crack path deflection during crack growth. At first, the crack propagated along the

interface of Glass/SiO 2. Then, the crack kinked into the interface between Al and SiO 2

layer. After a small crack propagation, the crack kinked back into the interface of

Glass/SiO2. In fracture test, one flat path along the interface of Glass/SiO2 was observed

near the crack tip. For the sample with hA,=l um, no crack deflection was observed

during crack growth and crack propagated along Glass/SiO2 interface. In fracture test,

Figure 10.13 (c) shows a flat path along the interface of Glass/SiO 2 at a location away

from the crack tip. Figure 10.8 (e) shows a crack deflection near the crack tip.

10.3 Analysis

10.3.1 CZM - Under Monotonic Loading

The cohesive zone model is used to simulate the interface delamination and crack

propagation in this study. The traction-separation law for the cohesive surface is taken to

describe the relationship between the traction and displacement jump across the surface.

The traction-separation law is very important for the cohesive zone model to well capture

and simulate the material separation behaviors. Here, the traction-separation law is

determined by measuring the crack opening displacement at the initial crack tip under the

monotonic loading condition. When monotonically loading the sample, the images at the

initial crack tip were captured. Figure 10.14 shows the captured images for the

calculations of the crack tip opening displacement. Based on coordinates of the points on

the images, the crack opening displacement at the initial crack tip was determined as the
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crack propagated. The strain energy release rate G was calculated based on the recoded

load values and equation (9.6). After the test, the curve of G vs. An was plotted and curve

fitting was used to get the function of G(A,) by use of equation (2.5) with 0, = G,. Figure

10.15 (a) depicts the strain energy release rate vs. the crack tip opening displacement at

the initial crack tip based on the test results and curve fitting. In Figure 10.15 (a), G

values increase as the crack propagates until the steady state is reached. After the

function of G(A,) was determined by curve fitting, the cohesive traction-separation law

can be derived byT77 =aG(A,)/1A,,. Following the above process the cohesive zone

parameters were calibrated ason=3.59J/m 2, Jn=0.236jim and tT.'0=5.6MPa. The

determined traction-separation law under monotonic loading is shown in Figure 10.15(b).

After the calibration of CZM under monotonic loading, it was then used to

simulate the crack bridging observed during the fracture toughness test. For monotonic

loading we simulate crack bridging behavior, i.e. the crack arrives on a given plane and

continues to a neighboring weaker interface. In this study we employ the cohesive surface

law of Xu and Needleman (1994) but do not take the fatigue damage evolution rule of

Roe and Siegmund (2003) into account.

When introducing multiple planes of cohesive surfaces into a solid special

attention has to be paid to the points at which these planes end. Under normal

circumstances, these points lead to stress singularities since they are geometric

singularities. These stress singularities then lead to strong, unphysical mesh distortions in

the proximity of these singular points, which are amplified by neighboring planes of

cohesive surfaces. To eliminate these problems, starting ten cohesive surfaces from the

singular points, the cohesive strength increases exponentially to the singular points. This

increase leads to an exponential increase in the stiffness and thereby a considerable

reduction of the stress singularity.

The material system of a bi-material of silicon and glass is studied. The crack

arrives on the glass-silicon interface and the probability of crack bridging across different

widths of glass layer is studied. The material properties of glass and silicon are those as

specified before. Also, the initial crack plane has the material properties as specified
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before. The weaker plane, i.e. the plane to which the crack bridges, has a 100 times

reduced strength than the initial plane, for example, due to some manufacturing error.

The thick and thin layer have a thickness of 120 and 60 jtm, respectively. The opening of

both layers is shown in Figure 10.16(a) and (b). Both show no mesh distortions at the

endpoints of the cohesive planes, proving our method of stress singularity elimination

successful. Secondly, the crack bridging is more significant for the thin layer than for the

thick layer at the same applied stress intensity factor. Therefore, the probability of crack

bridging across a thin layer is greater than across a thick layer. This generic study proves

the concept of simulation of crack bridging using CZM. In the future extended research

has to be carried out to determine the fracture properties of the weak interface.

10.3.2 CZM - Under Fatigue Loading

Roe and Siegmund (2003) introduces fatigue failure into cohesive surfaces. The

model includes three material parameters, which we fit to the experiments discussed

earlier.

"* The characteristic fatigue separation 15 scales the amount of damage

accumulation.

"* The fatigue threshold ar/defines that stress below which no damage

accumulates.

"* The Heaviside function could be included or excluded.

These three parameters were used to non-linearly fit the model to the Paris-type

plot obtained in the FCG test as shown in Figure 10.10 (a).

The Heaviside function shifts the onset of damage accumulation for all cohesive

surfaces identically. It thereby leads to the same crack growth rate as without the

Heaviside function. Therefore, the Heaviside function has no influence on the Paris-type

plot. The fatigue threshold and the characteristic fatigue separation shift the curve in the

vertical direction, i.e. they increase/decrease the crack growth rate, while maintaining the

same slope. The results of the fit are shown in Figure 10.17 for the characteristic fatigue

separation .5 =1080 and the fatigue threshold af =0.25 oay. Figure 10.17 shows that the
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crack growth rates are comparable to those measured in experiments. The slope of the

Paris-law curve, however, is smaller than that found in experiments. Additionally, the

simulations do not predict a Paris-type power-law behavior as evident from the kink in

the graph. The simulations for the mixed mode failure fit much better the experimental

values than those for mode I failure. Therefore it has to be concluded that mode mixity

plays an important role in the Paris-type behavior.

10.4 Discussions

The measured fracture toughness values are in the range of 2-4J/m 2 which are

smaller than the interface toughness of TiN/SiO2, I0J/m2, measured by Lane, et al.

(2000a). But they are in the range of 0.03-6.12J/m 2 measured for the interface of

anodically bonded Glass/SiO 2 by Go and Cho (1999). Based on Figure 10.8, the crack

path is not always confined to the interface of SiO 2ITiN. Indeed, most of the crack path is

along the bonding interface of Glass/SiO 2. It results in the measured values fall into the

range of the fracture toughness measured for the anodically bonded Glass/SiO 2 interface.

According to the lower cohesive strength obtained in the calibration of CZM

under monotonic loading, little plasticity was generated and the constraint plasticity

effects on fracture toughness should be small. Besides constraint plasticity effects, other

mechanisms such as crack deflection also affect fracture toughness. Actually, crack

deflection from one interface to the other has often been observed for ceramic/metal

sandwich geometries (Oh, et al., 1988; Cannon, et al., 1991; Reimanis, 1991; Howard and

Clyne, 1993; McNaney, et al., 1996). By introducing crack bridging due to crack

deflection at particles or interfaces, factors of 3 increases in toughness can be obtained

(Ritchie, 1999). Many methods by which the crack path can be periodically deflected

from its nominal growth plane have been used to develop high toughness interfaces. For

example, significant toughing was achieved for the glass/Cu interfaces through crack

bridging by use of photolithography to implant microdefects near the interface (Oh, et al.,

1988). In the present study, crack deflection was also commonly observed in the fracture

257



toughness test for the sample with hA=0.05jtm, 0.5[trm and ilim. For the sample with

hA/=2:2tm, no crack deflection occurred along the entire interface. The crack bridging

resulted from these crack deflection may explain why the fracture toughness of the

sample with hAl =2jim is smaller than those of the samples with thinner aluminum layer.

The effect of crack deflection on fracture toughness can be assessed using estimates for

an idealized two-dimensional crack with repeated kinked segments (Figure 10.18(a)). In

this segment, 0 is the kink angle, D is a deflected length, and S is an undeflected length.

Based on Suresh (1983), the decrease in energy release rate due solely to deflection is

estimated as

G*=Go[ D+S ) _ -1 (10.1)D*G cos2 (012)+S

whereas,

G* = Go (cos' (0/2)-1) (10.2)

provides an estimate neglecting stress relaxation for extension between obstacles. Here,

Go is the energy release rate for a straight crack. As an example, the effect of crack

deflection on the fracture toughness is analyzed for the sample with hA,=0.5Pjm. Figure

10.18 (b) shows SEM image of crack deflection observed in fracture toughness test.

Based on the measured values of 0,& 600, D;- 1.46jtm, and S,& 6.46p m, the toughness

increases from equation (10.1) and (10.2) are 10% and 78% ofG0 , respectively.

Figure 10.8 also indicates that the probability of crack bridging across a thin layer

is greater than across a thick layer. When the thickness of metal layer sandwiched

between two elastic substrates was decreased, the local stress would increase

substantially due to the constraint effects (Varias, et al., 1991; Wang and Siegmund,

2005). Thus, at the same applied driving force, samples with thinner and more

constrained layers experience higher local stresses ahead of the crack tip (Kruzic, 2004).

This higher local stress ahead of the crack tip greatly enhance tendency to crack bridging

across the thinner layer. The simulation of crack bridging under monotonic loading
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conducted in this study also indicated that the crack bridging was more significant for the

thin layer than for the thick layer at the same applied stress intensity factor.

Generally, deflections in the crack path are ignored in the characterization of

fatigue behavior because of the difficulties in estimating the effective crack-tip driving

force. However, it is found that even small deflections in the path of a fatigue crack can

lead to a reduction in crack growth rates by several orders of magnitude (Suresh, 1998).

In the present study, crack deflections were also observed for the sample with

hAt 0.051tm and 0.5 jm during crack growth. The corresponding FCG rates were retarded

due to crack path deflection compared to the FCG rate of the sample with hA,=l im. To

study effects of crack path deflection on the fatigue crack growth, a case of periodic two-

dimensional deflections in the path of a fatigue crack is examined. The same segment of a

deflected crack depicted in Figure 10.18 (a) is used. When the crack tip is deflected from

its nominal growth direction, the overall fatigue crack growth rate is determined by the

effective stress intensity factor range AKff which is defined as AKeff = AKa - AKb. Here,

AK is the applied stress intensity factor range and AKb is the reduction due to the

bridging tractions (Cox and Rose, 1994). Based on the analysis of Suresh (1998), the

effective stress intensity factor range AKeff for the periodically deflected crack is written

as

AKeff D cos' (0 /2)+ S] AK 1  (10.3)

whereas,

AK!f. = COS2 (0 / 2)AK, (10.4)

provides an estimate of effective stress intensity factor range with neglecting stress

relaxation for extension between obstacles. Here, AK1 is the nominal far-field stress

intensity factor range. Based on measurements of crack deflection for the sample with

hA1=0.5jim (Figure 10.19), a set of values with 0,&45', D =0.82tim, and dz7.53[tm is

substituted into equation (10.3) and (10.4). The calculated results of the effective stress

intensity factor range are equal to 98% and 85% ofAK,. Hence, the effective stress
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intensity factor range for crack growth of a deflected crack is typically smaller than that

of a straight crack which is subjected to the same far-field AKa. The corresponding FCG

rates for a deflected crack are slower than a straight crack.

10.5 Conclusions

Based on the experimental studies and analysis to investigate the effects of

changing aluminum layer thickness (over the range from 0.05[tm to 2p.m) on the fracture

toughness and FCG of a MEMS relevant multi-layer structure, the following conclusions

can be made:

The measured fracture toughness valves were found to show a weak trend of

increasing toughness with the increase of aluminum layer thickness over the range of

0.05-1.m. Samples with hA1=2 p.m do not follow this trend. Low fracture toughness

values were obtained. Based on the SEM images of crack path, multiple crack path and

crack deflections were observed for the sample with hAl=0.05-1pIm and no crack

deflection was found for the sample with hA,=2[tm. With considering the lower values of

fracture toughness of the sample with hA, =2pm, the source of interface toughing for the

thinner aluminum layer samples may arise from the crack bridging generated by crack

deflection. The toughing contribution from crack deflection was estimated to be in the

range of 10% -78% of the fracture toughness of the straight crack. Both experimental and

simulation results indicate that the probability of crack bridging across a thin layer is

greater than across a thick layer under the same load levels.

Fatigue crack growth rates, measured over the range between 10-9 and 10-6

m/cycle, were found to increase with increasing aluminum layer thickness. The samples

with thinner aluminum layer showed pronounced crack bridging which results in the

lower FCG rates. It is concluded that the sample with thinner films is shown to be more

reliable due to crack bridging effects. Constraint plasticity effects on FCG in thin films

are small due to the small plasticity under cyclic loading.
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Based on SEM observations, material separation process in fracture toughness test

is not equal to FCG test. Crack paths are highly constraint dependent. For the sample

with thinner aluminum layer of hAt=0.05ptm and 0.5pm, multiple crack paths and crack

defections occurred in the fracture and fatigue test. But the crack paths are not the same.

For the sample with hA,=1p m, crack deflection was observed in fracture toughness test.

But in fracture test, no crack deflection occurred along the interface and a straight crack

was observed.

The Cohesive Zone Model for the characterization of fracture and fatigue

response was calibrated under the monotonic and cyclic loading conditions. A set of

cohesive zone parameters were determined for both monotonic and fatigue loading. The

simulations for the mixed mode failure fit much better the measured FCG rates than those

for mode I failure.
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Figure 10.1 : SEM micrographs of a MEMS relevant sample with multi-layer structure.
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Figure 10.3: (a) Process flow (Drawing is not to scale.) (b) An anodically bonded square

sample, partially diced into 4-point bend specimens.
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Figure 10.4: Anodically bonding process (a) Bonding mechanism (Palensky, et al., 2002);

(b) Test set-up.
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Figure 10.5: Photomicrograph of the interface delamination after the pre-cracking
process.
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Figure 10.6: Schematic illustration of the specimen used in the modified 4-point bend
delamination test.
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Figure 10.7: The dependence of (a) the critical strain energy release rate; (b) the critical
stress intensity factor on the aluminum layer thickness.
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Figure 10.8: Comparison of crack path in fracture toughness test. Aluminum layer
thickness: (a) 0.05ptm; (b) 0.5gtm; (c) lIgm; (d) 2jtm; (e) Enlarged image of crack path
near the crack tip.
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Figure 10.8: continued
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Figure 10. 13: Comparison of crack path in fracture toughness test and FCG test.
Aluminum layer thickness: (a) 0.05 jim; (b) 0.5 pm; (c) 1pgm.
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Figure 10.14: Images of interface delamination for calculations of the crack tip opening
displacement at the initial crack tip under monotonic loading. (a) Before crack
propagation; (b) After crack propagation.
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Figure 10.16: Simulated crack bridging across different widths of glass layer. (a) 120inm;
(b) 60jm.
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Figure 10.17: Comparison of simulated FCG rates in dependence on the stress intensity
factor range to the experimental results. hA,=l litm.

279



A

S

(a)

S40 .;g, 1 1.m x8650 SEM .0u

(b)

Figure 10.18: (a) Schematic illustration of a segment of a deflected crack. (b) SEM image
of crack deflection for the sample with hAI=0.Spm in fracture toughness test.
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Figure 10.19: SEM image of crack deflection for the sample with hA,=0.5jtm in fatigue
crack growth test.
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