
An Algorithm for Strengthening State Invariants

Generated from Requirements Speci�cations�

To be presented at RE'01, Toronto, August 27{31, 2001

Ralph D. Je�ords and Constance L. Heitmeyer

Naval Research Laboratory (Code 5546), Washington, DC 20375 USA

fje�ords, heitmeyerg@itd.nrl.navy.mil

Abstract

In earlier work, we developed a �xpoint algorithm
for automatically generating state invariants, proper-
ties that hold in each reachable state of a state ma-
chine model, from state-based requirements speci�ca-
tions. Such invariants are useful both in validating re-
quirements speci�cations and as auxiliary lemmas in
proofs that a requirements speci�cation satis�es other
invariant properties. This paper describes a new re-
lated algorithm that strengthens state invariants gen-
erated by our initial algorithm and demonstrates the
new algorithm on a simpli�ed version of an automobile
cruise control system. The paper concludes by describ-
ing how the two algorithms were used to generate state
invariants from a requirements speci�cation of a cryp-
tographic device and how the invariants in conjunction
with a theorem prover were used to prove formally that
the device satis�es a set of critical security properties.

1. Introduction

Automatic generation of state invariants, properties
that hold in every reachable state of a state machine
model, can be valuable in software development. Not
only can such invariants be presented to system users
for validation, in addition, they can be used as auxiliary
lemmas in proving other invariant properties. While
most algorithms for constructing state invariants oper-
ate on programs, we recently described an algorithm,
called KEEP, for automatically generating state invari-
ants from state-based requirements speci�cations [18].
Generating invariants from requirements speci�cations
rather than programs has two major advantages: 1) be-
cause requirements speci�cations, unlike programs, are
at a high level of abstraction, generation of and analysis
using such invariants is easier, and 2) using invariants

� This work was supported by the O�ce of Naval Research.

to detect errors during the requirements phase is con-
siderably more cost-e�ective than using invariants later
in software development.

This paper describes a new algorithm called
GROUP for strengthening state invariants produced
by the KEEP algorithm. It also provides evidence of
the utility of automatically generated invariants in de-
veloping practical systems by describing how invariants
generated by KEEP and GROUP were used to prove
critical properties of a secure system.

1.1. A Simple Example

x1 x2

x3

A /\ B
@T(A)

@F(A)

@F(B)@F(B)

Figure 1. State diagram of simple example.

To illustrate how theKEEP andGROUP algorithms
may be used to generate invariants, we consider a sim-
ple state machine that de�nes the value of a variable X
with values from fx1; x2; x3g comprising the \states" of
the machine. Figure 1 contains a �nite state diagram
describing the behavior of this simple state machine.
The state machine determines the current value of X
from changes in two Boolean variables A and B.1 At
each transition of this state machine, the value of ei-
ther A or B changes but not both. We use the notation
\@T(A)" to indicate that A changes from false to true
and \@F(A)" to indicate that A changes from true to
false. Initially, it is assumed that A ^ B holds. We
say that the state machine \enters state xi" if xi is an

1This di�ers from the classical �nite state machine: labels on
arrows represent changes in state variables rather than inputs.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
An Algorithm for Strengthening State Invariants Generated from
Requirements Specifications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Code 5546,4555 Overlook Avenue,
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

initial state or if there is a state transition satisfying
X 6= xi and X 0 = xi. (We use an unprimed variable
to indicate the value before a transition and a primed
variable to indicate the value after a transition.) Simi-
larly, we say that the machine is \in state xi" if X = xi
and that the machine \exits state xi" if there is a state
transition satisfying X = xi and X 0 6= xi.

Theorem 1 describes a special case of KEEP, intro-
duced by Atlee (Theorem 3.1 from [3]), which de�nes
a rule for testing whether a literal `, e.g., A, B, :A, or
:B, is invariant in some state xi:

Theorem 1 A literal ` is invariant in state xi if (a) `
is always true when xi is entered, and (b) event @F(`)
causes an exit from xi.

Applying the test in Theorem 1 determines invari-
ants for values x1 and x2 in Figure 1 as follows. To �nd
an invariant with respect to A when the state machine
is in state x1, we note that the only way to enter x1
is either 1) to start out initially in x1, in which case A
holds, or 2) to enter x1 from x2 when the event @T(A)
occurs, in which case A also holds. Thus A always
holds upon entry to state x1. Further, if in state x1,
the event @F(A) occurs, the state machine exits x1 and
enters x2. Hence, by Theorem 1, A is an invariant for
state x1. A similar analysis for state x2 determines
that :A is an invariant for x2. The KEEP algorithm
would also give these same results.

Checking state x1 with respect to variable B, we
note that the event @F(B) causes exit from x1 and
that B holds in the initial state. However, whether
B holds if the system enters x1 from x2 is unknown.
Hence, we cannot determine whether B is an invariant
for x1 using Theorem 1. A similar situation occurs
for state x2. The KEEP algorithm exhibits the same
limitations.

To overcome these limitations, our new GROUP al-
gorithm treats the two states x1 and x2 together as
a set fx1; x2g. For example, upon entry into the set
fx1; x2g, B is true (due to the initial state assump-
tion). Further, if the system is already in fx1; x2g,
the event @F(B) causes exit from fx1; x2g and entry
into x3. Hence, B is an invariant for both x1 and x2.
This illustrates the central idea of our new algorithm
GROUP, which is to apply Theorem 1 to a \group" of
states treated as a superstate.

Given G, a subset of states, our new theorem de-
scribes the test that GROUP applies to decide whether
a literal ` is an invariant for each state in G:

Theorem 2 A literal ` is invariant in state x for each
x in G if (*) ` is always true upon entry to G (either
in G initially or via a transition from some state not
in G), and (**) event @F(`) causes an exit from G.

1.2. Organization of the Paper

This paper introduces our new algorithm GROUP,
a companion to KEEP, for generating state invariants
from requirements speci�cations in the SCR (Software
Cost Reduction) tabular notation. To provide back-
ground, Section 2 reviews the formal model, the special
notation, and tools associated with SCR. To demon-
strate how the GROUP algorithm is used in conjunc-
tion with the KEEP algorithm, Section 3 shows how
special state invariants called \mode invariants" can be
derived from a mode transition table (a type of table
appearing in SCR speci�cations) by applying KEEP
and how these mode invariants can be strengthened by
applying GROUP. Section 4 formalizes Theorem 2 and
the corresponding GROUP algorithm. It also describes
a more complete algorithm that applies to more general
systems, such as nondeterministic systems. This more
general result should be applicable to other state ma-
chine models. To demonstrate the practical utility of
automatically generated invariants, Section 5 describes
how invariants constructed with KEEP and GROUP
were used as auxiliary lemmas in proving three critical
security properties of a requirements speci�cation for a
cryptographic device. Finally, Sections 6 and 7 discuss
related work and present some conclusions.

2. Background: SCR Method

The SCR requirements method is designed to de-
tect and correct errors during the requirements phase
of software development. Originally formulated to doc-
ument the requirements of the ight program for the
U.S. Navy's A-7 aircraft [17], the SCR method has been
used by many organizations in industry (e.g., Bell Lab-
oratories, Grumman, Ontario Hydro, and Lockheed) to
specify the requirements of practical systems.

2.1. The SCR Model and Tools

An SCR requirements speci�cation describes a non-
deterministic environment and the required system be-
havior (usually deterministic) [15]. Monitored (also
called input) variables and controlled (also called out-
put) variables, represent the environmental quantities
that the system monitors and controls. The environ-
ment nondeterministically generates a sequence of in-
put events, where each input event changes some moni-
tored variable. Each input event may cause the system
to change one or more of the controlled variables.

In SCR, NAT and REQ, two relations of the Four
Variable Model [23], describe the required system be-
havior. NAT describes physical constraints on the en-
vironment; REQ describes the relation between moni-
tored and controlled variables that the system must en-

2

force. To specify REQ concisely, SCR speci�cations use
two types of auxiliary variables: mode classes, whose
values are modes, and terms. Both mode classes and
terms may be used to capture historical information.

More formally, an SCR system � is represented as
a state machine � = (S; S0; E

m; T), where S is the set
of states, S0 � S is the initial state set, Em is the set
of input events, and the transform T maps each input
event and old state to a new state [15]. A simplifying
assumption, called the One Input Assumption, states
that exactly one input event occurs at each state tran-
sition. The transform T is the composition of smaller
functions, called table functions, derived from the ta-
bles in an SCR requirements speci�cation. Each table
de�nes a term, a mode class, or a controlled variable.

The SCR requirements model includes a set RF =
fr1; r2; : : : ; rng containing the names of all state vari-
ables in a given speci�cation and a function TY map-
ping each variable to its type, i.e., set of legal values.
In the model, a state is a function mapping each vari-
able r to some value in TY (r), a condition is a pred-
icate de�ned on the system state, and an event is a
predicate de�ned on two successive system states that
denotes some change between those states. The no-
tation \@T(c) WHEN d" denotes a conditioned event,
de�ned as

@T(c) WHEN d
def
= :c ^ c0 ^ d: (1)

Informally, \@T(c) WHEN d" means that c is false in
the old state and changes to true in the new state, while
d is true in the old state but unrestricted in the new
state. In this paper, both :c and c denote the negation
of condition c.

Introduced in 1995, the SCR toolset [14, 15, 16] is an
integrated suite of tools supporting the SCR method.
The tools include a speci�cation editor for creating the
speci�cation, a simulator for validating that the speci-
�cation satis�es the customer's intent [14], and a con-
sistency checker [15] to analyze the speci�cation for
properties such as syntax and type correctness, deter-
minism, case coverage, and absence of circularity. The
toolset also contains a model checker, a veri�er called
TAME [2], a property checker called Salsa [6], and an
automatic invariant generator [18], which implements
the KEEP algorithm.

The utility of the SCR tools has been demonstrated
in several projects involving real-world systems. In one
project, NASA researchers used the SCR consistency
checker to detect missing assumptions and ambiguity
in the requirements speci�cation of the International
Space Station [11]. In a second project, engineers at
Rockwell Aviation used the SCR tools to detect 28 er-
rors, many of them serious, in the requirements speci�-

cation of a ight guidance system [22]. Recently, NRL
used the SCR tools to uncover numerous errors, includ-
ing a safety violation, in a sizable contractor-produced
requirements speci�cation of a weapons control panel
for a safety-critical U.S. military system [13].

2.2. Modes and Mode Invariants

Three kinds of tables found in most SCR speci�ca-
tions are mode transition tables, condition tables, and
event tables. Although this paper focuses on the gen-
eration of invariants from mode tables, extending the
GROUP algorithm to event tables is straightforward
(just as extending KEEP to event tables is straightfor-
ward [18]).

Figure 2 contains a mode transition table, part of an
SCR speci�cation for an Automobile Cruise Control
System [16]. The table de�nes the values of a mode
class M . In isolation, a mode class, its initial states,
its inputs, and its transitions|which we call a mode
machine|may be viewed as a very simple system �
with a single dependent variable, a mode class M . In
this machine, the mode is the \state" referred to in
the simple example in Section 1. A mode transition
table represents the transitions of a mode machine in
a tabular format. The inputs of the mode machine are
the variables appearing in the predicates that de�ne
the transitions. We informally say that the condition
q is a mode invariant for mode m if M = m) q is a
state invariant.

In the Cruise Control system, the set of state
variables RF is de�ned by RF = fIgnOn, Lever,
EngRunning, Brake, Mg, where IgnOn, Lever,
EngRunning, and Brake are monitored variables andM
is a mode class with values in the set fOff, Inactive,
Cruise, Overrideg. The variables IgnOn, EngRunning,
and Brake are Boolean; the variable Lever has the enu-
merated type foff, const, resume, releaseg. In
the initial states of Cruise Control, both IgnOn and
EngRunning are false and M = Off.

Figure 2 de�nes the transform T for this simple sys-
tem. T maps the old state and an event, a change in
the value of one of the monitored variables, to a new
state. For example, the third row of Figure 2 states
that if the system is in mode Inactive and the event
@T(Lever = const) occurs when the engine is run-
ning but the brake is not applied, then the new mode
is Cruise. If, in a given state, none of the events de�n-
ing transitions from the current mode occurs (yet some
input event has occurred), then there is no change in
mode. For example, if the system is in mode Inactive
and the brake is on when @T(Lever = const) occurs,
the system remains in Inactive. This is because neither
event that triggers exit from Inactive can occur: the

3

Old Mode M Event New Mode M

1 Off @T(IgnOn) Inactive

2 Inactive @F(IgnOn) Off

3 Inactive @T(Lever = const) WHEN EngRunning AND NOT Brake Cruise

4 Cruise @F(IgnOn) Off

5 Cruise @F(EngRunning) Inactive

6 Cruise @T(Brake) OR @T(Lever = off) Override

7 Override @F(IgnOn) Off

8 Override @F(EngRunning) Inactive

9 Override @T(Lever = resume) WHEN NOT Brake OR Cruise

@T(Lever = const) WHEN NOT Brake

Initially: M = Off ^ :IgnOn ^ :EngRunning

Figure 2. Mode Transition Table for Cruise Control.

brake is on means that @T(Lever = const) WHEN
EngRunning AND NOT Brake does not occur, while
the One Input Assumption prevents the occurrence of
@F(IgnOn).

3. State Invariants for Cruise Control

Section 3.1 briey reviews the KEEP algorithm in-
troduced in [18] by applying KEEP to the mode tran-
sition table in Figure 2. Then, Section 3.2 describes
the new GROUP algorithm by showing how the state
invariants generated by KEEP can be strengthened by
applying GROUP.

3.1. Applying theKEEP Algorithm

Our technique automatically generates mode in-
variants from propositional formulas extracted from a
mode machine and constraints on the input variables
associated with that mode machine. To compute the
mode invariants for the mode class M , we �rst iden-
tify the input variables appearing in the events of the
mode transition table and in any constraints on the
mode machine (such as the One Input Assumption).
We then choose a set of atomic conditions that provides
a su�cient basis for a Boolean encoding of all events
in the table and these constraints. For example, in the
Cruise Control speci�cation, we choose the atomic con-
ditions I � IgnOn, E � EngRunning, B � Brake, O �
Lever=off, C � Lever=const, R � Lever=resume,
and L � Lever=release.2 Below, the term literal
refers to either an atomic condition or its negation.
The KEEP algorithm consists of the following three
steps, repeated until a �xpoint is reached:

1. For each mode m, compute the mode entry condi-
tion N(m), the disjunction of the conditions which
may be true upon entry into mode m.

2Our Boolean encoding assigns one atomic condition for each
of the four values of Lever even though Figure 2 mentions only
three of these values.

2. For each mode m, compute the exit set X(m),
where X(m) is the set of literals, each of whose
falsi�cation causes exit from m.

3. For each mode m, compute the mode invariant
P (m) by removing from each disjunct in N(m)
all literals that are not members of X(m), while
\keeping" those literals which are members of
X(m). More precisely, replace each literal that
is not in X(m) by true.

Let Ni(m), Xi(m), and Pi(m) represent the values
of the mode entry condition, the exit set, and the in-
variant for mode m at the end of the ith pass of the
algorithm. During each pass, a number of additional
facts may be used to strengthen the invariant: environ-
mental constraints, such as the One Input Assumption;
constraints on enumerated type variables; and invari-
ants computed on previous passes. A constraint on an
enumerated type (needed due to our Boolean encoding)
simply states that an enumerated type variable has ex-
actly one value. For example, in the Cruise Control
System, C , O^R^L.

Applying KEEP to the mode transition table in Fig-
ure 2 produces the mode entry conditions, the exit sets,
and the invariants shown in Figure 3 on the �rst pass.
Because applying KEEP on the second pass does not
change these results, the algorithm reaches a �xpoint
on the second pass. Thus, two passes of KEEP gener-
ate the following state invariants:

� M = Off) :IgnOn

� M = Cruise) :Brake ^ Lever 6= off

� M = Override) true

� M = Inactive) true

4

Mode m N1(m) X1(m) P1(m)

Off I _ I _ I _ I^E fIg I

Cruise C^E^B^O^R^L _ C^B^O^R^L _ R^B^O^C^L fI;E;B; Og B^O

Override B^O _ O^B^C^R^L fI;Eg true

Inactive I _ E^O^B _ E fIg true

Figure 3. Mode Invariant Generation for Cruise Control

To illustrate the GROUP algorithm, we slightly
modi�ed the table in [18] to produce the table in Fig-
ure 2. Figure 2 omits IgnOn from the WHEN clause
for transition 3 and IgnOn and EngRunning from the
WHEN clauses for transition 9. Due to these modi-
�cations to the table, the KEEP algorithm generates
weaker invariants than the algorithm generated for the
original table in [18]. However, as Section 3.2 will show,
the GROUP algorithm generates the remaining invari-
ants.

3.2. Applying the GROUP Algorithm

Suppose TY (M) is the set of modes of a mode class
M , L is a set of literals, and X(m) is the exit set for
each m in TY (M). For each candidate ` in L, the
GROUP algorithm consists of the following four steps:

1. Let G be the largest subset of TY (M) such that,
for all m in G, ` belongs to X(m).

2. If for some m in G, (*) of Theorem 2 fails to
hold (i.e., there is some m in G whose mode en-
try condition|either initially or from some mode
outside of G|does not imply `), then remove m
from G.

3. If for some m in G, (**) of Theorem 2 fails to hold
because @F(`) causes transition to some other
mode m0 in G, then remove m0 from G.

4. Repeat steps 2 and 3 until no more modes may be
eliminated from G.

Step 1 is natural since it provides the largest poten-
tial G. Step 2 is also straightforward. However, note
that step 3 removes m0 (not m) when (**) fails. While
removal of m would be sound, it produces weaker in-
variants. This shows that the translation of even a
simple intuitive criterion (such as the criterion in Theo-
rem 2) to an appropriate algorithm requires careful de-
liberation. As with KEEP, environmental constraints
and constraints on enumerated types may always be
used to strengthen invariants. Also similar to KEEP,
more than one pass may be required because invariants
computed during one pass may either strengthen the
mode entry conditions N(m) or increase the exit sets
X(m) for the next pass.

To illustrate the GROUP algorithm, we apply it to
the Cruise Control example. Step 1 of the algorithm
limits our choice of ` to members of X1(m) in Figure 3.
Applying the GROUP algorithm to this example pro-
duces nontrivial results for two cases: the literals I
and E. Consider the case in which ` = I . At step 1,
G = fCruise; Override; Inactiveg, since I belongs to
the exit set X1(m) of each mode m in G (see Figure 3).
At step 2, (*) holds, since the only possible entry into
G is from O� into Inactive, and Figure 4 shows that
I holds upon entry into Inactive.3 At step 3, (**)
holds, since each occurrence of @F(I) from a mode in
G causes an exit to Off, a mode outside G. Hence,
the GROUP algorithm determines that the initial G
satis�es Theorem 2 after a single pass.

Mode m Mode entry from outside G New invariant

Cruise false I

Override false I

Inactive I I

Figure 4. GROUP for Cruise Control (` = I)

In the case of ` = E, at step 1, G = fCruise,
Overrideg. Step 2 computes the mode entry condi-
tion from outside G, which is limited to transition 3 of
Figure 2. This transition from Inactive to Cruise is
triggered by the event @T(C) WHEN E ^ B, which
means that C holds in the new state and both E and
B hold in the old state. Because GROUP computed
I as an invariant of Inactive, I also holds in the old
state. Because of the One Input Assumption, the three
old state values are preserved in the new state. Finally,
the enumerated type constraint means that O ^R ^ L
also holds in the new state (see Figure 5). (Although
not shown in this example, previously computed in-
variants and enumerated constraints|besides the One
Input Assumption|can be critical for ensuring that
the mode entry condition implies `.) As in the �rst
case, GROUP determines that the initial G satis�es
Theorem 2 after a single pass.

In summary, Figure 4 indicates that m 2
fCruise; Override; Inactiveg) IgnOn, and Figure 5
shows that m 2 fCruise; Overrideg) EngRunning.

3The entries labeled false in Figure 4 indicate that the system
can never enter Cruise or Override from outside G.

5

Mode m Mode entry from outside G New invariant

Cruise C^I^E^B^O^R^L E

Override false E

Figure 5. GROUP for Cruise Control (` = E)

Combining the invariants generated by the GROUP al-
gorithm with those generated by the KEEP algorithm
produces strengthened invariants as follows:

� M = Off) :IgnOn

� M = Cruise) IgnOn ^ EngRunning ^
:Brake ^ Lever 6= off

� M = Override) IgnOn ^ EngRunning

� M = Inactive) IgnOn

While the invariant for mode Off is unchanged, each of
the remaining three mode invariants are strengthened.

Thus combining KEEP and GROUP derives the
same invariants for the modi�ed table in Figure 2 as
the KEEP algorithm alone derived for the original ta-
ble in Cruise Control [18]. It is now easy to show that
the two tables are equivalent: the inclusion of I in the
WHEN clause for transition 3 in the original table is
redundant|adding it back to the modi�ed system will
cause no change in behavior since we know that I is in-
variant for mode Inactive; a similar argument holds
for the other modi�cations to the table. With this ob-
servation, one may prefer the modi�ed table in Figure 2
in certain contexts (e.g., in doing analysis of the speci�-
cation) since it has less redundant information encoded
in the WHEN clauses.

4. A Formal Treatment of GROUP

This section formally de�nes and extends concepts
described informally above. Section 4.1 de�nes a mode
machine as an abstract state machine, Section 4.2
formalizes Theorem 2, and Section 4.3 gives a more
general, but less intuitive, formalization that also ap-
plies to nondeterministic systems and to mode tables
with self-transitions. The weaker formalization in Sec-
tion 4.2 appears so far to be su�cient in practice.
While much of the notation in this section is borrowed
from [13] and [18], some de�nitions have been simpli-
�ed. The proofs of the two theorems presented in this
section appear in [19]. The correctness of our results
has been checked using the PVS prover [10].

4.1. Mode Machines as Abstract State Machines

We represent a system as a state machine � =
(S;�; �), where S is the set of states, � is the ini-
tial state predicate, and � is the next-state relation on

pairs of states. To de�ne the state machine � corre-
sponding to an SCR machine (S; S0; E

m; T), we de�ne
1) the initial-state predicate � on a state s 2 S such
that �(s) is true i� s 2 S0 and 2) the next-state pred-
icate � on pairs of states s; s0 2 S such that �(s; s0)
is true i� there exists an event e 2 Em, enabled in s,
such that T (e; s) = s0. Thus the predicate � is simply a
concise and abstract way of expressing the transform T
without reference to events.

A full SCR speci�cation modeled as a state machine
� = (S;�; �) has, for each mode class, an abstraction
�A = (SA;�A; �A) that is a mode machine. We de�ne
abstraction so that a mode invariant qA computed for
a mode machine �A corresponds to a mode invariant q
in the overall state machine �. See [18] for details.

SupposeM is a mode class, TY (M) the set of possi-
ble values (i.e., modes) of M , and EA the set of events
in the mode transition table for M . As in [18], four
constructs de�ne the mode machine for mode class M :
the relation �A describing the mode transitions, the
initial state predicate �A, and two predicates C1 and
C2 on the monitored variables of �A, which capture
environmental constraints:

� �A is a relation on TY (M)�EA�TY (M). In SCR
speci�cations, this relation is represented by the
Boolean encoded form of the mode transition table
forM . We assume that �A has no self-transitions,
i.e., transitions of the form (m; e;m).

� �A is the condition over �A which describes the
initial states. Additionally, we de�ne the initial
states associated with each m 2 TY(m) as �A(m),
where �A(m) = fs j �A(s) ^ s(M) = mg.

� C1 is a conjunction of encoded constraints on mon-
itored variables in a single state. Among these
constraints are the axioms needed to encode �nite
types as mutually exclusive Booleans. Other con-
straints are derived from NAT.

� C2 is a conjunction of encoded constraints on mon-
itored variables in two consecutive states. One
constraint C2 for the Cruise Control system is the
One Input Assumption.

4.2. Formalization of Theorem 2 andGROUP

To formalize Theorem 2 and the GROUP algorithm,
we borrow two functions from [18]: NEW, which is used
to de�ne the mode entry conditions, and EX, which
is used to de�ne the exit sets. Also required in the
formalization are a variant of EX called EX+, the exit
set X(m), and a variant of the mode entry condition
N(m) denoted N+(m̂;m).

6

The function NEW, de�ned formally in [18], com-
putes the strongest condition known to be true upon
entry into the new state. Applying NEW to a two-
state predicate in Disjunctive Form, i.e., a disjunction
of non-false terms, simply replaces each old state literal
with the literal true and suppresses the primes on the
remaining new state literals. For example, the follow-
ing shows how the event in transition 3 in Figure 2 can
be rewritten �rst by applying (1), next by applying the
One Input Assumption, and third by applying NEW:

NEW(@T(C) WHEN E^B) =

NEW(C^C 0
^E^B) =

NEW(C^C 0
^E^B^E0

^B
0
) = C^E^B:

The GROUP algorithm requires two versions of the
function EX. The version in [18] de�nes a two-state
predicate which describes the events causing exit from
m as a disjunction. Formally, EX is de�ned by

EX(m)
def
=

0
@ _
e;m0:m0 6=m&�A(m;e;m0)

e

1
A :

Applying this de�nition to lines 2 and 3 of Figure 2
means that

EX(Inactive) = @F(I) _ @T(C) WHEN (E^B):

The second version, EX+, a slight modi�cation to de-
scribe an exit from G, is a two-state predicate which is
the same except for the quali�er m0 =2 G. This predi-
cate is de�ned by

EX+(m;G)
def
=

0
@ _
e;m0:m0 6=m&m0 =2G&�A(m;e;m0)

e

1
A :

For example,

EX+(Cruise; fCruise; Overrideg) = @F(I) _@F(E):

Also needed are the exit sets X(m) and the mode
entry conditions N+(m̂;m). In both de�nitions, P is
the vector of invariants (computed prior to the applica-
tion of GROUP) known to hold in the old state. Each
exit set X(m) is the set of literals whose falsi�cation
in the context of known invariants and environmental
conditions causes exit from m:4

X(m)
def
= f` j @F(`) ^ P (m) ^ C2) EX(m)g:

4This de�nition is slightly less general than the de�nition
in [18]. However, in practice, use of this de�nition for both
KEEP and GROUP appears to cause no loss of precision in the
computed invariants.

Each N+(m̂;m) de�nes the mode entry condition into
modem from mode m̂. N+(m̂;m), a special case of the
mode entry condition N(m) (de�ned formally in [18]),
is de�ned by

N+(m̂;m)
def
=

0
@ _
e:�A(m̂;e;m)

NEW(P (m̂) ^ C2 ^ e)

1
A^C1:

To show that this de�nition correctly captures our
intuitive notion of what is known upon mode entry,
a more formal computation of the mode entry con-
dition N+(Cruise, Override) for the Cruise Control
follows:

N+(Cruise, Override) = NEW[(P (Cruise) ^ C2

^(@T(B) _@T(O))] ^ C1

= NEW[B^O ^ C2 ^ (B^B0 _O^O0)] ^ C1

= NEW[B^B0
^O^O

0
_ O^O0

^B^B
0
] ^ C1

= [B^O _ O^B] ^ C1

= B^O _ O^B^C^R^L

In the above computation, C2 represents the One Input
Assumption and C1 the enumerated type constraint
O , C^R^L.

Next, we present Theorem 3, a formalization of The-
orem 2:

Theorem 3 M = m) ` is a state invariant for each
m in G of a deterministic mode machine �A if for each
m 2 G: (*) �A(m) ^ C1) `; N+(m̂;m)) ` for each
m̂ =2 G, and (**) @F(`) ^ P (m) ^ C2) EX+(m;G).

The GROUP algorithm is derived from Theorem 3:

To test if some literal ` is an invariant:

(a) Initially choose G to be all modes m for which
@F(`) causes exit from m, i.e., ` belongs to X(m).

(b) If for some mode m in G (*) fails, then remove m
from G.

(c) If for some mode m in G there is some m0(6= m)
in G and event e such that �A(m; e;m

0) and the
formula @F(`) ^ P (m) ^ C2 ^ e is satis�able (i.e.,
the formula holds for some state pair (s; s0)), then
remove m0 from G.

(d) Repeat steps (b) and (c) until no more modes may
be removed.

There is a subtlety to the test in step (c): it detects
the special case of the failure of (**) when m0 is reach-
able from m via the occurrence of e. If (**) fails
but m0 is not reachable via the occurrence of e (i.e.,

7

@F(`) ^ P (m) ^ C2 ^ e is unsatis�able) then we may
ignore this case as it has no e�ect. In such situations,
the event e should never have been included in the
de�nitions of EX(m) or EX+(m;G). Making this re-
striction in general, however, would complicate matters
for the KEEP algorithm, where the distinction is irrel-
evant. Such subtleties are easily overlooked in informal
proofs of algorithm correctness but are essential in our
formal proofs using PVS.

4.3. A More General Formalization

The more general formalization of Theorem 2
applies to nondeterministic systems, allows self-
transitions in the mode table, and handles the more
general de�nition of X(m) in [18]. We give an infor-
mal exposition of this more general result. For formal
details and the transcription of this Theorem to a more
general version of the GROUP algorithm, see [19]:

Theorem 4 (More General Formalization): For a
given literal ` and subset of modes G, if for each m 2 G:
(#) Assuming ` is an invariant for all of G � fmg
means ` is true upon entry to m and (##) @F(`) al-
ways enables exit from m,5 then we conclude that ` is
a mode invariant for each m 2 G.

5. Applying Invariants in Practice

5.1. A Cryptographic Device CD

COMSEC (Communications Security) devices, de-
vices which manage encrypted communications, are vi-
tal to the correct operation of U.S. military systems.
CD is a COMSEC device designed to provide cryp-
tographic processing for a U.S. Navy radio receiver.
CD, based on a technology for implementing COM-
SEC devices in software as well as hardware, presents
a new challenge in the development of COMSEC de-
vices. While a solid base of experience exists for im-
plementing trustworthy COMSEC devices in hardware,
implementing COMSEC devices in software is rare.

To provide a high degree of assurance in the cor-
rectness of CD's speci�cation, we applied the SCR
tools [20]. Our results suggest that applying SCR in
the development of COMSEC devices of moderate size
and complexity is practical, e�ective, and low-cost. In
approximately one person-month, we were able to rep-
resent a signi�cant subset of a prose requirements doc-
ument for CD in the SCR notation and to establish
that the SCR speci�cation satis�es seven critical secu-
rity properties. The SCR speci�cation of CD is mod-
erately complex, consisting of 39 variables (17 input

5We say \enables exit from m" since a nondeterministic sys-
tem with explicit self-transitions among the modes may allow a
self-transition to be taken even if exit is another possibility.

iii
No. Description Propertyiii
1 If CD is tampered with, then @T(mTamper)

key 1 in keybank 1 is zeroized ⇒ cKeyBank1Key1′ = 0iii
2 When the zeroize switch is activated, @T(mZeroizeSwitch = on)

key 1 in keybank 1 is zeroized ⇒ cKeyBank1Key1′ = 0iii
3 No key can be stored in location 1 cKeyBank1Key1 =/ 0

of keybank 1 before an algorithm ⇒ cAlgStoreSegment1 =/ 0
has been loaded into the first location
of algorithm storage segment 1iii

4 If backup power has an undervoltage @T(mBackupPower = undervoltage)
when primary power is unavailable, WHEN mPrimaryPower = unavailable
the CD enters either Alarm mode or ⇒ smOperation′ = sAlarm
Off mode OR smOperation′ = sOffiii

5 If backup power is overvoltage mBackupPower = overvoltage
then the CD is in Initialization, ⇒ smOperation = sInitialization
Standby, Alarm, or Off mode OR smOperation = sStandby

OR smOperation = sAlarm
OR smOperation = sOffiii

6 If primary power has an overvoltage @T(mPrimaryPower) = overvoltage
then either the CD is in Initialization, ⇒ smOperation = sStandby
Standby, Alarm, or Off mode, or the CD OR smOperation = sAlarm
enters Initialization mode OR smOperation = sOff

OR smOperation′ = sInitializationiii
7 If primary power has an undervoltage @T(mPrimaryPower) = undervoltage

then either the CD is in Initialization, ⇒ smOperation = sStandby
Standby, Alarm, or Off mode, or the CD OR smOperation = sAlarm
enters Initialization mode OR smOperation = sOff

OR smOperation′ = sInitializationiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 6. Security properties CD must satisfy.

variables, three auxiliary variables, and 19 output vari-
ables). Figure 6 lists the seven security properties that
we veri�ed with the SCR tools.

5.2. Proving Security Properties Using Invariants

Our experience is that state invariants automatically
generated using KEEP and GROUP are often su�cient
to establish interesting safety properties. These gener-
ated invariants played an extremely useful role when
applied in conjunction with TAME, a user interface
to PVS that can prove many invariants automatically.
In the case of CD, the automatically generated state
invariants produced by KEEP and GROUP were su�-
cient to complete the proofs of all valid security prop-
erties that were investigated.

TAME was able to prove four of the CD security
properties (3, 5, 6, and 7 in Figure 6) automatically.
To prove the remaining three properties, TAME re-
quired the user to apply the �ve auxiliary invariants6

listed in Figure 7. The KEEP algorithm generated the
unbracketed parts of the invariants, with the remain-
ing bracketed parts ([]) generated by GROUP. KEEP
generated the �fth invariant from the event table for
cKeyBank1Key1 with \cKeyBank1Key1 = 0" treated as
one mode and \cKeyBank1Key1 6= 0" treated as a sec-
ond mode. The KEEP invariants are not strong enough

6The more general form of KEEP generated additional in-
variants not used here, e.g., the mode invariant for sStandBy:
mBackupPower =2 funavailable; undervoltageg ^ (:mTamper ^
mZeroizeSwitch 6= on ^ mHealthyFull _ mPrimaryPower 6=
unavailable). This invariant, much stronger than the invari-
ant generated by Theorem 1, demonstrates the power of KEEP.

8

Mode Invariant for mode

sInitialize [mPrimaryPower 6= unavailable]

sConfiguration mBackupPower 6= overvoltage

[^ mPrimaryPower 6= unavailable]

sIdle mBackupPower 6= overvoltage

[^ mPrimaryPower 6= unavailable]

sTrafficProcessing mBackupPower 6= overvoltage

[^ mPrimaryPower 6= unavailable]

\cKeyBank1Key1 6= 0" smOperation 6= sO�

Figure 7. Invariants generated for CD

to prove the fourth security property|the invariants
generated by GROUP are also required. All of these re-
sults were also veri�ed with the SCR property checker
Salsa [6].

Our invariant generation tool implements part of the
KEEP algorithm. For example, our tool constructed
the unbracketed results in the �rst four lines of Fig-
ure 7. However, the �fth invariant, which was con-
structed from an event table, and the invariant men-
tioned in footnote 6, were generated by hand. The
GROUP algorithm has not yet been implemented.

6. Related Work

Our KEEP and GROUP algorithms for generat-
ing invariants from SCR speci�cations extend work by
Atlee and Gannon [3, 4], who used mode invariants
to analyze SCR speci�cations with the MCB model
checker. However, their automated technique only ad-
dressed a special case of our KEEP algorithm and did
not cover the GROUP technique. Their work provided
the inspiration for our research on mode invariant gen-
eration.

Mode invariants are similar to local invariants of
programs, where the program location is analogous to
the mode. Bensalem and his colleagues have re�ned
techniques for generating local invariants [5]. However,
their generation process is di�erent from ours. For each
process they determine \generalized rea�rmed invari-
ants without (with) cycles" which are analogous to our
mode entry condition computation (GROUP computa-
tion). The invariants from the processes are combined
into overall system invariants. In contrast, we consider
a single process (a mode machine) with e�ects of other
processes expressed by the constraints (C1 and C2).

Recently, researchers at SRI have developed a theo-
retical framework for invariant generation based upon
under- and over-approximation of inductive7 invari-
ants [25]. An under-approximation is a formula that
is too strong to be an invariant, while an over-
approximation is a formula that is an invariant, but is

7A formula is inductive if it satis�es (i) �A) q, and (ii)
q ^ �A) q0.

weaker than the best invariant. In this framework, each
computation of mode entry conditions at step 1 of a
pass of the KEEP algorithm is an under-approximation
of the mode invariants. The remaining two steps of
KEEP provide an inductive over-approximation. The
�rst step of the GROUP algorithm is also an under-
approximation. The remaining steps of GROUP com-
prise another inductive over-approximation, which pro-
vides invariants that often strengthen the results com-
puted by KEEP. We have also shown (see [19]) how
these approximations relate to abstract interpretation
with widening and narrowing [8].

Other static techniques which analyze a state ma-
chine speci�cation include the techniques of Halb-
wachs [9] and of Bj�rner et al. [7]. In Halbwachs' tech-
nique, a system is represented as a system of linear
inequalities, whose solution (a convex, closed poly-
hedron) is determined by successive approximations.
While our techniques generate only simple invariants,
Bj�rner et al. have investigated the generation of gen-
eral safety properties, using past temporal operators
over the evolution of the system.

There are also dynamic techniques for obtaining in-
variants. Ernst et al. [12] obtain \potential invari-
ants" for programs by monitoring likely expressions
over many executions (although these would then have
to be proved sound).

7. Conclusions

We have developed a new algorithm, GROUP, which
improves upon invariants generated by a previous al-
gorithm, KEEP. Because our algorithms produce in-
tuitive, readable invariants (as compared to the more
complete, detailed invariants that would be generated
by a full reachability analysis of the mode machine �A),
our invariants can be presented to system users for val-
idation.

Our algorithms are designed for SCR systems, but
we have strived for generality that should make them
applicable to other ways of modeling systems. The
SCR concepts of the One Input Assumption and
\strong causality" (i.e., transitions \must occur" when
an appropriate event occurs, as opposed to a weaker
concept of \may occur") support systems with stronger
invariants than would occur without such assumptions.
Nevertheless both the KEEP and the generalized ver-
sion of GROUP (Theorem 4) do not require these as-
sumptions. Nor do they require determinism. In the
future we will investigate the applicability of both algo-
rithms to other state-based models such as TLA (Tem-
poral Logic of Actions) [21], Reactive Modules [1], and
RSML�e [24].

9

In practice, we have found that both the GROUP
and KEEP algorithms are needed for generating aux-
iliary lemmas useful in proving major system proper-
ties of requirements speci�cations. Our experience ap-
plying these two methods to a cryptographic device
showed that these generated invariants were su�cient
for proving the desired security properties. Although
there is no guarantee that this will always happen, our
experience suggests that applying invariant generation
is a useful �rst step in verifying a set of properties,
particularly since, once both algorithms are completely
implemented in the SCR toolset, invariant generation
will be fully automatic.

Acknowledgments. Myla Archer provided very
helpful comments on earlier drafts of this paper and
supplied Figure 1. We also thank an anonymous ref-
eree for the improvement of step 3 in the GROUP al-
gorithm.

References

[1] R. Alur and T. A. Henzinger. Reactive modules. For-
mal Methods in System Design, 15(1):7{48, July 1999.

[2] M. Archer, C. Heitmeyer, and E. Riccobene. Using
TAME to prove invariants of automata models: Two
case studies. In Proc. FMSP'00, pp. 25{36, Aug. 2000.

[3] J. M. Atlee. Automated Analysis of Software Require-
ments. PhD thesis, Dept. of Computer Science, Univ.
of Maryland, College Park, MD, 1992.

[4] J. M. Atlee and J. Gannon. State-based model check-
ing of event-driven system requirements. IEEE Trans.
Softw. Eng., 19(1):24{40, Jan. 1993.

[5] S. Bensalem and Y. Lakhnech. Automatic genera-
tion of invariants. Formal Methods in System Design,
15:75{92, 1999.

[6] R. Bharadwaj and S. Sims. Combining constraint
solvers with BDDs for automatic invariant checking.
In Proc. TACAS'2000, pp. 378{394, Berlin, Mar. 2000.

[7] N. Bj�rner, A. Browne, and Z. Manna. Automatic
generation of invariants and intermediate assertions.
Theoretical Comput. Sci., 173(1):49{87, Feb. 1997.

[8] P. Cousot and R. Cousot. Abstract interpretation: a
uni�ed lattice model for static analysis of programs by
construction or approximation of �xpoints. In Proc.
POPL'77, pp. 238{252, Los Angeles, CA, Jan. 1977.

[9] P. Cousot and N. Halbwachs. Automatic discovery
of linear restraints among variables of a program. In
Proc. POPL'78, pp. 84{97, Tucson, AZ, Jan. 1978.

[10] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Sri-
vas. A tutorial introduction to PVS. Technical report,
Computer Science Lab, SRI Int'l, Menlo Park, CA,
Apr. 1995.

[11] S. Easterbrook and J. Callahan. Formal methods for
veri�cation and validation of partial speci�cations: A
case study. J. Syst. Softw., 40(3):199{210, 1998.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program in-
variants to support program evolution. IEEE Trans.
Softw. Eng., 27(2):99{123, Feb. 2001.

[13] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and
R. Bharadwaj. Using abstraction and model checking
to detect safety violations in requirements speci�ca-
tions. IEEE Trans. Softw. Eng., 24(11):927{948, Nov.
1998.

[14] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj.
SCR*: A toolset for specifying and analyzing software
requirements. In Proc. CAV'98, pp. 526{531, Vancou-
ver, Canada, June 1998.

[15] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Au-
tomated consistency checking of requirements speci�-
cations. ACM Trans. Softw. Eng. Method., 5(3):231{
261, July 1996.

[16] C. L. Heitmeyer, J. Kirby, Jr., and B. G. Labaw. Tools
for formal speci�cation, veri�cation, and validation
of requirements. In Proc. COMPASS'97, pp. 35{47,
Gaithersburg, MD, June 1997. IEEE.

[17] K. Heninger, D. L. Parnas, J. E. Shore, and J. W.
Kallander. Software requirements for the A-7E air-
craft. Technical Report 3876, Naval Research Lab.,
Wash., DC, 1978.

[18] R. Je�ords and C. Heitmeyer. Automatic generation
of state invariants from requirements speci�cations. In
Proc. 6th Int'l Symp. on Foundations of Softw. Eng.
(FSE-6), pp. 56{69, Orlando, FL, Nov. 1998. ACM.

[19] R. D. Je�ords and C. L. Heitmeyer. E�cient auto-
matic generation of state invariants from executable
requirements speci�cations. Technical report, Naval
Research Lab., Washington DC, 2001. (Draft).

[20] J. Kirby, Jr., M. Archer, and C. Heitmeyer. SCR: A
practical approach to building a high assurance COM-
SEC system. In Proc. of the 15th Annual Computer
Security Applications Conf. (ACSAC '99), pp. 109{
118, Dec. 1999.

[21] L. Lamport. The temporal logic of actions. ACM
Trans. Prog. Lang. Syst., 16(3):872{923, May 1994.

[22] S. Miller. Specifying the mode logic of a ight guid-
ance system in CoRE and SCR. In Proc. 2nd ACM
Workshop on Formal Methods in Software Practice
(FMSP'98), pp. 44{53, 1998.

[23] D. L. Parnas and J. Madey. Functional documenta-
tion for computer systems. Sci. Comput. Program-
ming, 25(1):41{61, Oct. 1995.

[24] J. Thompson, M. P. E. Heimdahl, and D. Erickson.
Structuring formal control systems speci�cations for
reuse: Surviving hardware changes. In Proc. 5th
NASA Langley Formal Methods Workshop, pp. 117{
128, Williamsburg, VA, June 2000.

[25] A. Tiwari, H. Rue�, H. Sa�idi, and N. Shankar. A
technique for invariant generation. In T. Margaria and
W. Yi, editors, TACAS 2001, volume 2031 of LNCS,
pp. 113{127, Genova, Italy, Apr. 2001.

10

