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EXECUTIVE SUMMARY 
The primary goal of this effort is to bring to maturity a select set of basic 

algorithms, hardware, and approaches developed under the Integrated Sensing and 
Processing (ISP) Phase I program, implement them on representative hardware, and 
demonstrate their performance in a realistic field environment. We have identified a few 
promising research thrusts investigated in ISP Phase I where field demonstrations are cost 
prohibitive but collected data sets are available. Here, we will conduct a thorough 
performance evaluation.  
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0. Technical Abstract 
Advances in sensor technologies, computation devices, and algorithms have 

created enormous opportunities for significant performance improvements on the modern 
battlefield. Unfortunately, as information requirements grow, conventional network 
processing techniques require ever-increasing bandwidth between sensors and processors, 
as well as potentially exponentially complex methods for extracting information from the 
data To raise the quality of data and classification results, minimize computation, power 
consumption, and cost, future systems will require that the sensing and computation be 
jointly engineered. ISP is a philosophy/methodology that eliminates the traditional 
separation between physical and algorithmic design. By leveraging our experience with 
numerous sensing modalities, processing techniques, and data reduction networks, we 
will develop ISP into an extensible and widely applicable paradigm. The improvements 
we intend to demonstrate here are applicable in a general sense; however, this program 
will focus on distributed sensor networks and missile seeker systems. 

1.0. Management Overview and Summary 
1. A. Program Summary 

The Raytheon Company, Missile Systems (Raytheon) ISP Phase II program is a 
twenty-four month contract with a Period of Performance (PoP) covering 1 March 2005 
to 28 February 2007. Raytheon has four universities and one small business as ISP Phase 
II subcontractors: Arizona State University (ASU); Fast Mathematical Algorithms and 
Hardware (FMAH); Georgia Institute of Technology (Georgia Tech); Melbourne 
University (UniMelb) and the University of Michigan (UM). 

1. B. Program Status 
The Raytheon ISP Phase II Program status can be summarized as remaining “on 

track.” All of the negotiations have been completed and all of the subcontractors are now 
under subcontract. We had incurred some minor schedule slips on both the distributed 
tracking and the Cooperative Analog Digital Signal Processing (CADSP) demonstrations 
during the PoP; the revised schedule supports demonstrations before 31 March 2007. 
This is a slip of approximately one month. We still expect to complete the contract on 
time and budget.  

1. C. Personnel Associated/Supported 
Raytheon 
Dr. Harry A. Schmitt    Principal Investigator 
Mr. Donald E. Waagen   Co-Principal Investigator 
Dr. Sal Bellofiore    Distributed Sensing Lead 
Mr. Thomas Stevens    Distributed Sensing Support 
Dr. Robert Cramer    Mathematical Support 
Mr. Craig Savage    Waveform Design and Control Lead  
Dr. Nitesh Shah    High Dimensional Processing Data Lead 

FMAH 
Professor Paolo Barbano 
Professor Ronald Coifman 
Dr. Nicholas Coult 
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ASU 
Professor Darryl Morrell 
Professor Antonia Papandreou-Suppappola  

Georgia Tech 
Professor David Anderson  
Professor Paul Hasler 

UniMelb 
Dr. Barbara LaScala 
Professor William Moran 
Dr. Darko Musicki 
Dr. Sofia Suvorova 

UM 
Professor Al Hero 
Dr. Raviv Raich 

Significant Personnel Actions: There were no significant personnel changes during the 
current PoP. 

1. D. Recent Events 
The following events occurred during the current PoP 

• Raytheon personnel (Waagen and Schmitt) visited Dr. Kirstie Bellman 
Aerospace Corporation 31 January 2007 to discuss possible collaboration and 
transition opportunities. 

• Raytheon personnel (Stevens and Bellofiore) visited Professor Neal Patwari at 
the University of Utah on 30-31 January 2007 to discuss the University of 
Michigan RSS mote self-localization approach. 

• Raytheon personnel (Bellofiore and Schmitt) visited Intelligent Automation 
Inc. (I-A-I) on 17 January 2007 to discuss various distributed mote algorithms 
and approaches being developed under a DARPA Phase II SBIR. 

• Raytheon personnel (Schmitt) visited the University of Melbourne on 15-19 
December 2006 to discuss work being performed. 

• Raytheon personnel (Schmitt) visited DARPA DSO on 16 January 2007. 
1. E. Near Term Events 

 Conduct distributed tracking demonstration by 31 March. 

 Conduct CADSP imager demonstration by 31 March 

 Write and submit the final Technical Report by 30 April.  

2. A. Technical Progress  
In this section we provide a more detailed discussion of the technical progress that 

occurred during the current PoP broken down by subcontractor. 

2.A.1. Raytheon Technical Progress 
We now discuss the technical progress for the Raytheon team. 
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2.A.1.a. Identification of target support overlap in a low-complexity classifier 
Target classification is an important step in Automatic Target Recognition (ATR). 

It is useful for classification algorithms to have low representation complexity, for 
purposes of meeting computational constraints in tactical systems and achieving 
generalization capabilities (avoiding over-training). Classifier complexity can be driven 
by several factors, including high-dimensional data structure, sparse sampling and 
complex decision boundary (possibly including regions of ambiguity) [Ho et al. 2000]. 
The Support Vector Machine approach can mitigate classifier complexity, however it 
does so at the cost of requiring substantial processing time for training [Burges 1998]. 
The Class Cover Catch Digraph approach produces a reduced-complexity 
partitioner/classifier without requiring extensive processing time for training [DeVinney 
et al. 2002], [Priebe et al. 2003].  

We present here an extension to CCCD, in which we find regions of class support 
overlap in high-dimensional data while maintaining (or actually reducing) partitioning 
complexity with respect to that achieved by the standard CCCD approach. In the context 
of Integrated Sensing and Processing, there are three avenues for exploiting identified 
mixed regions: ATR – GNC feedback, ATR – sensor feedback, and decision trees. For 
platforms with reconfigurable sensors and/or constrained sensor suites, identified regions 
of target overlap can be used in developing management and scheduling algorithms for 
sensor configuration and sensor suite utilization by providing “block out” regions in the 
configuration / suite space. That is, if certain targets look the same when viewed by a 
particular sensor in a particular configuration, then it is better to avoid operating the 
sensor in that mode. 

It is desirable for a tactical ATR system to be able to provide trajectory-shaping 
feedback to Guidance and Navigation Control (GNC). For example, it may be decided by 
a tactical missile’s ATR algorithm that the current azimuth/elevation view (aspect) of the 
detected target provides insufficient information to perform the target classification task, 
and that changing the target azimuth by 15˚ would allow for high-confidence 
classification. The GNC algorithm could then adjust the platform motion towards the 
target to provide the appropriate target aspect. If there are a set of detected targets that 
require classification disambiguation, the GNC algorithm could optimize platform 
trajectory to best accommodate an overall improvement in the viewing aspects of the 
various targets. 

The identified mixed regions can be used as part of an ATR decision tree. One 
can use feature-space regions that have significant target signature overlap, but little 
clutter signature overlap, as a robust mechanism for discriminating target detections from 
clutter detections. Then, given the detection is a valid target, one can use the results of 
another CCCD-mixed-region analysis that has been determined from only target 
signatures (no clutter included) to locate, for example, highly-overlapped “tracked 
targets” (with little “wheeled target” overlap) regions and highly overlapped “wheeled 
targets” (with little tracked targets) regions as robust tracked/wheeled recognizer. Then, 
given the target is tracked, one can use the results of another CCCD-mixed-region 
analysis that has been determined from only tracked-target signatures to know which 
highly-mixed regions to avoid when classifying the tracked target as a T72, BMP, SA12, 
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etc. So, in some cases, highly overlapped regions are to be used, in other cases highly 
overlapped regions are to be avoided – it depends on the question currently being asked. 

The ATR – sensor and decision tree applications can certainly be combined. If a 
sensor is reconfigurable, and/or if multiple operationally-constrained sensors are 
available, the configuration / scheduling can be determined using decision-tree analysis. 
For discriminating targets from clutter, the choice of individual sensor parameters and/or 
which sensor is used can be guided by creating large volumes in hyper-feature space that 
have significant within-target-class overlap and significant within-clutter-class overlap, 
with little overlap between target and clutter classes. Similar consideration can be given 
for finer levels of the decision tree. 

Generally ATR systems are trained on a set of data (measured or simulated) that 
spans the target set of interest, for example covering variations in target aspect. Given a 
set of classification features (either data-driven or defined by a domain expert) for target 
classes of interest, the high-dimensional feature space is partitioned into high-purity 
regions (data support limited to mostly one target class), and regions that are ambiguous 
(data support contains multiple target classes). In the context of the CCCD approach to 
partitioning high-dimensional feature spaces, we provide an extension to automatically 
identify regions of significant target support overlap, while maintaining low classifier 
complexity. We first provide an overview of the CCCD approach, then we discuss our 
extension for a two-class case (generalizable to n classes).  

In the CCCD approach, class-conditional regions are modeled with a mixture of 
balls. The number, location and size of the balls are determined based on the proximity 
between training samples. The balls form a low-complexity representation of each class. 
In the standard version of (α,β)-CCCD, each class-cover ball contains a percentage β of 
out-of-class samples (purity factor / sensitivity to contamination) and the union of class-
cover balls can neglect up to a percentage α of in-class samples (properness factor / 
sensitivity to outliers).  

We are given d-dimensional training data sets X0…n0 for class 0 and X1…n1 for 
class 1, and a dissimilarity measure (e.g., the standard Euclidean distance) over all 
pairwise combinations in the combined data set. Start with the samples of class 0 as the 
“base” set. Treat each sample as the center of a ball. For each ball, determine the 
maximum radius such that exactly (β*n1) class-1 samples are included in the ball. From 
the resulting n0 balls, select a subset in the following greedy approach. First select the 
ball that contains the largest number of class-0 samples. If the number of covered class-0 
elements is less than (α*n0), select the ball that contains the largest number of as-yet-
uncovered class-0 samples. Repeat this process until the union of balls covers at least 
(α*n0) class-0 samples. This set of balls forms the cover for class 0, C0. Now, exchange 
the roles of class-0 and class-1 samples and repeat the process, resulting in a cover for the 
class-1 samples, C1. The covers C0 and C1 provide a compact description of the support 
of the two classes, with the problem complexity implicit in the number of balls in the 
cover, their relative positions and the distribution of their radii. The covers C0 and C1 
found by the greedy approach are not necessarily optimized. Rather, the greedy approach 
is used to find an approximate dominating set in order to reduce the problem complexity 
from NP-hard to polynomial time. 
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We have developed the following extension. Define three parameters related to 
finding mixed regions: properness and purity parameters as before, αM and βM, and a 
fractional coverage threshold FT. First compute the covers C0 and C1 with α = β = 0 
(proper, pure covers). For the example case shown in Figure 1a (2-dimensional, 2-class 
data with n0 = n1 = 500), the proper, pure covers are shown in Figure 1b. 

Determine the fraction of in-class samples covered by each ball in C0 and C1. 
Identify the balls with membership falling below FT, and label these as “potentially 
mixed” balls. The other balls are labeled as “large” balls. The result for our example 
(using FT = 0.005) is shown in Figure 2a, with centers for “potentially mixed” balls 
highlighted in red. Note that some “potentially mixed” centers are in regions that are not 
mixed. 

 

Figure 1: Overlapping 2-Class example, (a) original data; (b) pure, proper CCCD covers 

We use the following clean up logic to remove these from further consideration. Remove 
from the “potentially mixed” list any ball whose center’s closest neighbor in (C0 U C1) is 
both a "large" ball and of the same class type. Remove from the “potentially mixed” list 
any ball whose center’s (closest neighbor is both "potentially mixed" and of the same 
class type) AND (next closest neighbor is both "large" and of the same class type). The 
result of applying these rules is shown in Figure 2b. 

 

Figure 2: “Potentially mixed” centers highlighted in red. (a) Arrows point out undesired 
centers. (b) After applying cleanup logic 
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Apply a “potentially mixed” label to all the class-0 and class-1 samples that are 
covered by balls that remain in the “potentially mixed” list. The remaining samples are 
labeled “unmixed.” Now apply the CCCD algorithm with αM and βM, with “potentially 
mixed” samples representing the new class 0 and “unmixed” samples representing the 
new class 1. One can then proceed with standard CCCD (or another partitioner) for the 
samples that are not in the “mixed” regions. The result for our example (with αM = 0.05, 
βM = 0.01, α = 0.01 and β = 0.01) is shown in Figure 3a, with the class-0 “mixed” region 
cover shown in red. For comparison, in Figure 3b we show the result of applying the 
standard CCCD (no extension for finding highly mixed regions) with α = 0.01 and β = 
0.01.  

 

Figure 3: (a) Standard CCCD after determining mixed region (red). (b) Standard CCCD 
with no mixed regions identified 

2.A.1.b. Distinguishing Between Direct Path and Terrain Bounce Jamming 
Introduction 

A radar system operates by radiating electromagnetic energy into space and 
detecting the echo signal reflected back to the radar from a target. The reflected energy 
not only indicates the presence of a target, but by comparing the received echo signal 
with the signal that was transmitted (matched filtering), the target location can be 
determined along with other target-related information [Skolnick 2001, p.1]. A hostile 
target would naturally like to deny the radar system access to this information, if possible, 
and thus may employ electronic countermeasures. In particular, noise jamming is the 
intentional transmission of energy in order to mask the target return and impair the 
effectiveness of the receiving radar. The receiving, or victim, radar may then employ a 
counter-countermeasure technique known as “home-on-jamming” designed to track the 
angle of the jamming signal and reveal the location of the jammer. To prevent discovery 
of his location, the jammer may employ “angle deception” or terrain-bounce jamming. 
This could be implemented, for example, by an aircraft flying at a relatively low altitude 
and transmitting a “noise waveform” toward the ground. This technique effectively 
presents a false targeting angle to the detecting radar system, thereby rendering 
ineffective the home-on-jamming counter-countermeasure. (See e.g. [Hsu]). 

Obviously, it is necessary to be able to distinguish between direct path and terrain 
bounce jamming signals, since the detecting radar must know whether or not it can 
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believe the target angle it is tracking. Under ISP, we have undertaken an information 
theoretic approach to this problem, which consists of the following two steps: 

1. Process a collection of raw data collected by the receiving radar via the ISOMAP 
algorithm. The data is simulated and is known as to whether it represents a direct 
path or a terrain bounce jamming signal. The result is two distinct collections of 
points embedded in a linear space of lower dimensionality than the input samples, 
which are said to occupy the high dimensional space. 

2. Compute the Henze-Penrose test statistic between the two collections of points in 
the low dimensional linear space, to determine whether the two collections are 
drawn from different underlying distributions. 

If the Henze-Penrose test indicates that the underlying distributions from which 
the samples are drawn are indeed significantly different, then we have established the 
existence of information which could be further exploited, for example to design a 
method for automated classification of jamming signals, at least so far as terrain bounce 
vs. direct path is concerned. 

Description of the Simulated Data 

The data for these experiments were generated at Raytheon, and consists of 
several scenarios, six high altitude cases and six low altitude cases. In all cases the 
jammer is stationary and at a fixed altitude with a missile flying in from various azimuth 
and dive angles. The simulation time for all scenarios is 10 seconds. “High altitude” 
means the initial range separation is 11,000 meters, the missile velocity is 1000 meters 
per second, and the final range separation is 1000 meters. “Low altitude” means the 
initial range separation is 1100 meters, the velocity is 100 meters per second, and the 
final range separation is 100 meters. In some cases the missile flies directly at the jammer 
and in some cases the flight path is directed toward the bounce point in the ground plane. 

 This is a bi-static system, with the jammer transmitting continuously and the 
missile passively receiving. Noise energy is transmitted either through an isotropic, or 
spherical, antenna, or a directional antenna with very low side lobes pointed toward the 
ground. Each scenario consists of 10 coherent processing intervals (CPIs), and each CPI 
consists of 128 pulse repetition intervals (PRIs), 100 range gates, and 4 antenna channels. 

The ISOMAP Algorithm 
This algorithm is fairly well-known by now and a detailed description seems 

unnecessary, thus we make only some brief comments and refer the interested reader to 
the references, e.g. [Tenenbaum 2000]. The ISOMAP algorithm attempts to extract data 
which lie on a nonlinear manifold and place them on a linear one, such that the geodesic 
distances between points on the nonlinear manifold are closely approximated by 
Euclidean distances on the linear one. Geodesic distances are approximated in piecewise 
linear fashion, by added up a series of “short hops” between data points, which is the only 
manner in which this can reliably be done since outside of the data itself we have no 
knowledge of the underlying nonlinear manifold. It follows that the geodesic 
approximations can only be accurate if we have “lots” of data points. The aim is to 
faithfully represent the statistics of the data with a much smaller number of dimensions in 
the linear space, thus the notion of dimensionality reduction; however, we also 
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experiment below with embedding points in a linear space of higher dimensionality than 
what we started with. This seems odd in light of the manner in which ISOMAP is 
normally used, but the point is that it gives us something, and that this something may 
contain useful information. 

Henze-Penrose Two Sample Test 
This is a test for determining whether two sets of samples were drawn from the 

same, or different, underlying distributions. It is based on the earlier Friedman-Rafsky 
test [Friedman-Rafsky 1979], which begins by constructing a minimal spanning tree on 
the pooled, or combined, data. The spanning tree is then pruned, to remove all edges 
which connect points from different samples. The pruning procedure breaks the tree into 
a number of connected components which, if the data were statistically quite similar and 
thus heavily intermingled, will be large. A small number of connected components 
indicates the data are statistically dissimilar and allows us to conclude that the two 
samples were drawn from different underlying distributions. The contribution of Henze 
and Penrose was to provide proofs of Friedman and Rafsky’s conjectures. See [Henze-
Penrose 1999].  

Results of Experiments 
The raw signal data consists of complex voltages. Since we prefer to work with 

real numbers our first step was to replace each complex valued sample with the complex 
magnitudes, then normalize each data vector to have unit length. There are three different 
ways to extract data vectors, since the data is contained in a three-dimensional array each 
element of which corresponds to the following: 

.  channel antenna ,  pri ,  gate range        ),,data( kjikji ===⇔  

The three methods for selecting data vectors are as follows: 

1. All i for a fixed j and k. 
2. All j for a fixed i and k. 
3. All k for a fixed i and j. 

Having extracted data samples by one of these three methods, then pre-processed 
it as described above, the collection of samples for either direct path or terrain bounce are 
processed through the ISOMAP algorithm, and embedding coordinates one through 
twenty for each sample are computed. The Henze-Penrose test statistic is then computed 
between these collections of embedding coordinates, for one embedding dimension, then 
two, then three, etc. up to twenty embedding dimensions. Finally we plot the test statistic 
as a function of the number of embedding dimensions. 

For samples with an equal number of points in each, the test statistic should be 
near 0.5 if the two samples are very similar and near 1.0 if the two samples are very 
dissimilar. A value, say, above 0.8 might be considered a “good” indication, while a 
value above 0.9 might be considered a “terrific” indication of dissimilarity. Of course 
these thresholds are somewhat arbitrary. As mentioned above, what we are trying to do 
here is establish the existence of information that can be exploited, and this is indicated 
by high test scores. We present some results in the following figures. The caption below 
each figure gives the details. 
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Figure 4: Data with a directional antenna, first CPI (furthest from the target), showing 
two-sample test statistic for one through twenty embedding dimensions. The underlying 
distributions become more dissimilar as the number of dimensions increases. Data vector 
were extracted by taking all range gates for a given PRI and antenna channel, which 
resulted in a total of 512 samples, each of length 100. 

 
Figure 5: Data with a directional antenna, first CPI (furthest from the target), showing 
two-sample test statistic for one through twenty embedding dimensions. The underlying 
distributions become more dissimilar as the number of dimensions increases. Data 
vectors were extracted by taking all PRIs for a given range gate and antenna channel, 
which resulted in a total of 400 samples, each of length 128 
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Figure 6: Data with a directional antenna, first CPI (furthest from the target), showing 
two-sample test statistic for one through twenty embedding dimensions. The underlying 
distributions become more dissimilar, in this case markedly so, as the number of 
dimensions increases. Data vectors were extracted by taking all antenna channels for a 
given range gate and PRI, however we used only the first five PRIs, since if we try to use 
all of them the number of data points becomes too large for the computer to handle. This 
resulted in a total number of 500 samples, each of length 4. Note that the number of 
embedding dimensions becomes larger than the number of dimensions in the “high” 
dimensional space. However, the Henze-Penrose test seems to be telling us that there is 
useful information here and, furthermore, that these two sample distributions are very 
dissimilar in these regions. 

 
Figure 7: Data with a directional antenna, last CPI (nearest to the target), with data 
vectors extracted by taking all range gates for a given PRI and antenna channel. This 
figure should be compared with Figure 5, to get a feel for the variation with range of our 
results. It can be seen (empirically) that the test statistic for the last CPI increases a little 
faster than for the first CPI, but it appears that the statistic we are measuring is not a 
strong function of range to the target. 
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Conclusions 
We have processed radar data, formed into one-dimensional vectors using one of 

three possible methods, through ISOMAP and then computed Henze-Penrose two-sample 
test statistics, in an effort to determine whether samples of direct path and terrain bounce 
jamming signals show significant statistical differences. The results show that in fact they 
do, which implies that there is information here which can be exploited. We noted that 
the test statistic is a strong function of embedding dimensions, but only a weak function 
of range to the target. Also, these results would seem to indicate that forming data vectors 
by taking all the antenna channels for a fixed PRI and range gate gives the greatest 
statistical separation, however we do not wish to commit ourselves to such a conclusion 
too early, so at this point we merely call it an “indication.” 

2.A.1.c. Distributed Tracking Demonstration 
ISP Motes Demo Status 

Since our last status report, we have made some progress on the ISP Motes Demo. 
In particular, we have completed the Graphical User Interface (GUI) of the demo, we are 
one week away from completing the integration of the Unscented Kalman Filter (UKF) 
tracker (from University of Melbourne), and we are collecting data on the DWMDS self 
localization to improve the estimated location results. Details on each area follow. 

ISP Motes Demo’s GUI 
We have finally completed the ISP Motes Demo’s GUI. A snapshot of the GUI is 

shown in Figure 8. The GUI contains several features to help the user design his test. For 
example, the user can if he/she wishes name the test, and this test name (or experiment 
name) is carried out throughout all the output files. To avoid overwriting output files, a 
date and time stamp is attached to the experiment name. In addition to the experiment 
name, the user can choose among three different trackers:  Virtual Measurement (VM) 
tracker, UKF tracker, and Particle Filter (PF) tracker. Another feature to help the user is 
to choose among a live test versus a playback test. 
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Figure 8: A snapshot of the ISP Motes Demo’s GUI 

A live test operates on real time detections while the playback operates on saved time 
stamped detections. This is good because the user can replay the same detections with a 
different tracker offline. For the nodes location, the user has a choice to either use the 
actual location or estimated location (produced by the DWMDS code from the University 
of Utah in Salt Lake City, Utah). Finally, all input and output files needed for the demo 
are summarized at the bottom of the GUI so that the user is aware of which files are being 
used, and all settings of the GUI are saved to minimize user’s input. In a week, all 
trackers’ codes will be tested to verify full compatibility with this new GUI. 

UKF Tracker 
The new version of the UKF tracker’s code was received from the University of 
Melbourne. The new version includes a fix to take into account detections time stamps. In 
addition to this fix, the new version was built to be easily integrated with the new GUI. 
The UKF tracker’s code will be verified by the end of the week. 

DWMDS Self Localization 
Two weeks ago, we visited the University of Utah in Salt Lake City, Utah, to 

understand why the code was producing results outside of the anchor nodes. In other 
words, the algorithm estimates the relative distance of all the nodes within four known 
positioned nodes (anchor nodes). One of the reasons why the code was producing such 
results was that it was compiled with a different version of TinyOS, and that we were 
also using an outdated header file. We have been testing the self localization code for the 
past two weeks, and although our original results have improved, they are currently still 
poor. That is, the nodes are placed within the anchor nodes; however, the error on the 
estimated positions is too large. Figure 9 shows the graphical representation of the results 
from the DWMDS Self Localization code. The network tested was of 16 motes in a 4x4 
configuration with inter-spacing of 1 ft. The error varied anywhere from half a foot to 3 
ft. Figure 10 shows how each network node converges after several minutes. 



ISP Phase II (Contract N00014-04-C-0437) 
Quarterly Progress Report (CDRL A001 No. 7) 

 

 
Distribution Statement: Approved for public release; distribution is unlimited. 
 

17

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5
9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

 
Figure 9. The red circles represent actual location of the motes, the x’s represent the 

estimated locations, and the black lines are the errors. 
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Figure 10. Convergence of the network nodes after several minutes 

2.A.1.d. Heterogeneous Sensor Scheduling and Allocation 
How does one make the best use of available resources? This central question or 

theme reverberates throughout virtually all Operations Research type problems; in 
particular, the following one from the ISP-II program. Given the limited nature of the 
resources at hand (e.g., the number, type and mobility of sensors; communications 
bandwidth; and sensor computational, memory and power specs) and the tasks to be 
performed (e.g., target location and motion estimation; sensor scheduling, allocation and 
movement), one must find optimal (or, more realistically) sub-optimal yet still acceptable 
solutions. Pragmatic approaches to this problem require that the sensing and 
computational demands be jointly engineered, to enhance the results of this and all other 
downstream phases of the analysis. 
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Heterogeneous sensor scheduling implies the use of more than one type of sensor. 
The two types of sensor considered below are (1) “event-timing” sensors (labeled with 
prefix “S”) that accurately record the arrival time of an impulse signal and (2) sensors 
that measure the bearing angle of the impulse signal (prefix “A”). 

S1 S2

S3 S4

TS1 S2

S3 S4

T

 
Figure 11: Blue-colored square region defined by four green-colored “arrival time” 
sensors (S1, S2, S3, S4) that measure an impulse sent out by red-colored target (T). 

We look first at a very particular simpler sub-problem: determining the optimal 
use of measurements from a set of four TDOA sensors arranged in a square, with the 
source located within the square. The geometry of this layout is depicted in Figure 11. 
Due to the multiple symmetries of the square region (about vertical, horizontal, and 
diagonal lines, without any loss of generality the location of the target may, for simplified 
analysis purposes, be restricted to the triangular region shown in Figure 12. 
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T

 
Figure 12: Blue-colored square region defined by four green-colored “arrival time” 
sensors (S1, S2, S3, S4) that measure an impulse sent out by red-colored target (T). Here, 
target (T) is assumed to lie within the triangle whose interior vertex is located at the 
center of the square. The triangle’s area is one-eighth the square’s area 

Four sensors are used instead of only three sensors in order to remove potential 
ambiguities that arise when using only three TDOA sensors. This “3-sensor” scenario is 
illustrated in Figure 13. It shows the red, green, and blue “noise-added” hyperbolic 
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envelopes that are associated with the three possible ways of choosing two focal points 
(that define a hyperbola) from a set of three possible focal points. As shown in the figure, 
there are two solution regions associated with intersections of any of the three hyperbolas. 
This is the key reason why, in general, four TDOA sensors are required in order to 
accurately identify the location of a target emitter in the plane. Also, by using this 
approach (of intersecting hyperbolas), one may obtain a good measure of the geo-location 
error by counting the number of pixels within the black intersection regions of the red, 
green, and blue hyperbolas. In this figure, it is obvious that the location of the left 
intersection region is known with greater accuracy than the right intersection region. 

Returning to the scenario of Figure 12, there are 16 different combinations of 
three pairs of TDOAs that utilize all four of the sensor time arrival measurements. These 
are displayed in Table 1. In the vast majority of published multi-lateration studies that use 
the TDOA method, a “fan-type” selection of TDOA measurements is used for geo-
location. One special sensor is considered to be the basis point for time measurements 
and this time is subtracted from the time measurements of all other sensors. For example, 
if the special basis sensor is S1, then the “fan-type” TDOA measurements are given by 
the delta-times corresponding to: S2-S1, S3-S1, and S4-S1. This scenario is equivalent to 
Combination #1 in Table 1. The other three possible “fan-type” setups in Table 1 are 
Combination #6 (with basis sensor S2), Combination #12 (with basis sensor S3), and 
Combination #16 (with basis sensor S4). 

 
Figure 13: This shows the three “noisy” hyperbolic envelopes generated by the three 
TDOA sensors portrayed by the three black squares located at the upper-left (UL), the 
upper-middle (UM), and the lower-middle (LM). The green hyperbolic envelope is the 
hyperbola generated by focal points (UM) and (LM), the red hyperbolic envelope is 
generated by focal points (UL) and (LM), and the blue hyperbolic envelope is generated 
by focal points (UL) and (UM). A fixed error range corresponding to time arrival 
uncertainty is added to each of the TDOA measurements; note how the error envelope 
grows wider as one proceeds further out on the hyperbolic branches. (Slight differences 
in the horizontal and vertical scaling in the figure have introduced apparent distortions in 
the hyperbolas.) 

50 100 150 200 250 300

50

100

150

200

250

300



ISP Phase II (Contract N00014-04-C-0437) 
Quarterly Progress Report (CDRL A001 No. 7) 

 

 
Distribution Statement: Approved for public release; distribution is unlimited. 
 

20

Table 1: This table displays the sixteen combinations of three hyperbolas that use all four 
sensor measurements at least once. Combinations #1, #6, #12, and #16 are the “fan-type” 
sets of TDOA measurements that have been historically most commonly used 

Combination Hyperbola 1 
Focal Pts. 

Hyperbola 2 
Focal Pts. 

Hyperbola 3 
Focal Pts. 

#1 S1 & S2 S1 & S3 S1 & S4 
#2 S1 & S2 S1 & S3 S2 & S4 
#3 S1 & S2 S1 & S3 S3 & S4 
#4 S1 & S2 S1 & S4 S2 & S3 
#5 S1 & S2 S1 & S4 S3 & S4 
#6 S1 & S2 S2 & S3 S2 & S4 
#7 S1 & S2 S2 & S3 S3 & S4 
#8 S1 & S2 S2 & S4 S3 & S4 
#9 S1 & S3 S1 & S4 S2 & S3 
#10 S1 & S3 S1 & S4 S2 & S4 
#11 S1 & S3 S2 & S3 S2 & S4 
#12 S1 & S3 S2 & S3 S3 & S4 
#13 S1 & S3 S2 & S4 S3 & S4 
#14 S1 & S4 S2 & S3 S2 & S4 
#15 S1 & S4 S2 & S3 S3 & S4 
#16 S1 & S4 S2 & S4 S3 & S4 

 
Using MATLAB, a study was made of the performance of each of the above 16 

combinations of TDOA measurements for locations of the target (T) within the triangular 
region shown in Figure 12. The figure of merit was related to the size of the intersection 
region that bounded the probable location of the target. This size, given by the number of 
pixels that occurred simultaneously in all three hyperbolic envelope regions, was deemed 
to be better, the smaller it was.   

Somewhat surprisingly, a single combination (viz., #4) of TDOA sensors 
produced the tightest localization boundary around the target T over almost the entire 
triangular region. Quite often the improvement over the “fan-type” combination was 
substantial, amounting to a localization area (in pixels) that was half of the “fan-type” 
result. The only exception to the superior performance by combination #4 was when 
target T was located quite close to sensor S1 (approximately within a distance 
corresponding to the input noise modeling factor associated with the thickness of the 
hyperbolic envelopes). When T was within tight proximity of S1, an assortment of several 
TDOA combinations produced the best (although substantially degraded) results: 
combinations #1, #2, #3, #7, #8, and #14. 

Figure 14 shows the TDOA sensors that are affiliated with combination #4, the 
one that gives the best overall localization performance on target T. Inspecting the figure, 
the overall symmetry affiliated with this choice is evident and one can readily justify with 
physical reasoning why this choice is the best one. 
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Figure 14: The diagram shows combination #4 of the TDOA sensors; the wide blue lines 
represent TDOA measurements between sensors S1 & S2, S1 & S4, and S2 & S3 

Based on the above results, a heuristic approach to sensor scheduling and allocation 
presents itself quite naturally. Spread the sensors of type S (for TDOA analyses) in a 
square lattice array. In the initialization, or first measurements step, select four sensors at 
the corners of the largest available square. Any combination of two diagonals plus a side 
edge is adequate at this stage. Then perform a “hyperbolic envelopes” analysis; this 
should yield a smaller square which more tightly bounds the target’s location and allows 
a better “square’s edge” TDOA measurement selection to go with the two diagonal 
TDOA measurements. Repeat this procedure to get an initial estimate of the target’s 
motion. At this stage, the “Unscented Kalman Filter” algorithm can be incorporated for 
following the target’s motion. Based on predictions in this stage of the algorithm, an 
appropriate set of sensors can be queued up for the next set of measurements; also, 
instructions can be given to move an appropriate subset or “square lattice” constellation 
of sensors to best maintain precise and efficient tracking of the target. This modeling 
work will be done next. 
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Figure 15: When target T is close to sensor 1, a combination of using TDOA (S2 & S3, 
S2 & S4, S3 & S4) plus a single AOA (A1) measurement works best 

In the above procedure, whenever the target approaches a sensor location, it 
would be highly useful if one had dual measurement capability (i.e., TDOA & AOA) 
sensors; then, for the sensor very close to the target, an AOA measurement would help to 
localize the target more efficiently (as in Figure 15). Although the above outlined 
procedure is essentially a greedy algorithm (i.e., myopic) and only looks one time step 
ahead, its performance should be evaluated since it may be “good enough” and obviate 
the need for non-myopic algorithms (looking several time steps ahead) which entails 
considerably greater computational requirements. 

Future considerations and algorithm enhancements include: multiple targets and 
the “de-interleaving” problem, multi-path signals, generalizing from 2-D to 3-D, and 
incorporating “elliptical” error bars from the intersecting hyperbolas into the UKF 
algorithm. 

2.A.2. Melbourne Technical Progress 
2.A.2.a. Multiple target tracking using motes  

In previous work an algorithm based on the unscented Kalman filter has been 
developed for detection and tracking of multiple maneuvering targets using 
measurements from a collection of motes. A paper describing the algorithm and giving 
simulation results has been prepared for submission to the International Conference of 
Information Fusion. Matlab code has been prepared for the demonstration with real data 
and sent to Raytheon. 

2.A.2.b. Particle filters for EKV tracking 
 The EKV tracking problem involves guiding a ballistic missile to the intended 
target in the presence of spurious targets, or decoys. This involves recursive state 
estimation to find the positions of the target and decoys, classification to distinguish the 
target from the decoys and stochastic scheduling to position the missile. In our approach 
joint classification and state estimation is performed using a particle filter. Positioning of 
the missile is achieved by selecting at each time step, from a finite number of candidates, 
the target move which minimizes a suitable criterion. The criterion used is the expected 
length of the line which projects the target position onto the direction of travel of the 
missile. The algorithm has been implemented and successfully tested using simulations.  

2.A.2.c. Emitter Geolocation with Two UAVs 
This subsection describes research investigating resource allocation with 

geolocation of emitters, using passive sensors located on airborne vehicles (UAVs or 
manned aircraft, in further text the generic term UAVs is being used). The chosen method 
of geolocation is the time difference of arrival (TDOA) of emitter pulses to individual 
sensors. Possible resources to allocate include 

• Number of UAVs 
• Communication Resources 
• Computational Resources 
• Choice of received pulses to process 
• UAV Trajectories 
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• etc 
The resource allocation problems increase dramatically with the number of sensors, 

especially in the situation of limited communication bandwidth and limited 
computational resources available onboard the vehicles. A large number of emitter pulses 
arrive to each sensor, with a certain probability of detection. The number of possible 
combinations of received pulses, one per sensor, which need to be investigated to 
determine a correct combination, grows combinatorially with the number of the sensors. 
Required communication resource (transmission bandwidth) grows linearly with the 
number of sensors. 

The approach investigated in published literature is to use at least three, preferably 
four sensors simultaneously for emitter location triangulation. To reduce complexity, 
previous research phase concentrates on emitter geolocation when only two passive 
sensors on two UAVs are deployed, without data association issues. The algorithm used 
is relatively simple, and can be implemented on one of the UAVs, called here the 
processor UAV. Only one communication stream, from the other UAV to the sensor 
UAV is required. This work resulted in optimization of the required communication 
resources, as well as the optimization of the required number of UAVs. 

In this phase the data association issue was tackled. We assume that the emitter 
transmits pulses, so that multiple pulse combinations are feasible. One pulse transmitter 
position uncertainty in this case is shown in Figure 16, where the line widths indicate a 
one σ uncertainty. 

 
Figure 16: Two UAVs, four pulse / measurement uncertainty 

As previously, the uncertainty (four hyperbolae) is represented as a Gaussian sum. Track 
state is represented also as a Gaussian sum, where each component of the sum represents 
a possible emitter location uncertainty based on used measurement component sequence 

After 10 batches of 4 pulses have been processed, with all measurement batches 
arriving within 150 ms, all remaining track components are shown on Figure 17. After a 
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delay of 2.5 seconds with no measurements arriving, another 10 measurement batches 
have arrived, and all remaining track components are shown in Figure 18. The width of 
the area showing track components on Figure 18 indicate the one σ uncertainty. This 
work has minimized Data Association issues. 

 
Figure 17: Remaining track components after 10 measurement (150 ms) 

 
Figure 18: Remaining track components after 20 measurement batches (2.5s) 

After first 10 batches of measurements have been processed, possible emitter 
location uncertainty is greatly reduced. It is now possible to choose another sensor UAV 
at the optimal location (to be determined), to aid in further speedy decrease of the target 
emitter uncertainty. TDOA measurement between the additional sensor UAV and the 
processor UAV will create another uncertainty hyperbola, with the emitter location being 
estimated at the intersection between the new hyperbola and the remnant uncertainty 
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depicted in Figure 18. Precise localization of the emitter is expected within a small 
number of seconds using this approach. Due to already roughly localized emitter, the 
additional UAV will not significantly increase computational, communication and data 
association usage. This is the topic of the next phase. 

2.A.2.d. Scheduling for Distributed Passive Sensors 
This work investigated sensor scheduling for target tracking with a network of 

distributed passive sensors. 

Two aspects of this problem were investigated. These were: 

• Scheduling sensor activation to minimize bandwidth and battery usage while 
maintaining track accuracy; and 

• Sensor mode selection when tracking with a network of heterogeneous sensors. 

In the first case, all sensors were simple acoustic, binary proximity sensors. That 
is, they would return a single bit of information if a sufficiently strong target was in their 
sensing range. In the second case, the sensors were assumed to be a mix of acoustic 
sensors and passive infra-red (PIR) sensors. The PIR sensors report detections in a 
quadrant and hence provide more information than the simple acoustic sensors. 

In both cases the basic tracking algorithm employed was based on the Unscented 
Kalman Filter (UKF). A particle filter is normally employed in such problems however, 
as was reported previously the UKF outperforms a particle filter when tracking with 
binary proximity sensors. In addition, the computational costs are far lower and hence 
more suitable for distributed processing. Details of this study are presented in [Morelande 
2006]. 

Scheduling Algorithms 
A total of four scheduling algorithms were investigated. However, not all were 

used each of the two cases. Details of which algorithms were used in which case are 
given below. The first two scheduling methods were reported on previously. The two 
cost-based algorithms are new. 

In Range Scheduler 
This algorithm is based on the one used in [Stevens&Morrell 2003]. With this 

method, the all motes within a given range of the predicted target location are activated. 
That is, these motes return a measurement while all other motes in the region are 
switched off. The range around the predicted location is a multiple of the predicted 
position error. 

MaxS Scheduler 
This algorithm is a heuristic algorithm that is similar to the In Range scheduler. With this 
algorithm a fixed number, maxS, of motes are activated on each scan. The activated 
motes are those that are closest to the predicted target location. 

Cost-Based Scheduler 

This algorithm seeks to maximize track accuracy while simultaneously 
minimizing bandwidth usage. It makes use of the fact that the UKF filtered state error 
covariance, Pk|k, at the end of scan k is not a function of the sensor measurements during 
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that scan. Thus it can be computed at the start of the scan. The following cost function 
was used to quantify the tracking accuracy improvement per bit 

( ) ( )( ) ( )( )
( )k

kkkkk
k Jnbits

JPtrJPtr
JV |

0
| −

=       (1) 

where 

• Jk is a set of sensors to activate at time k 
• J0 is the set of all inactive sensors 
• nbits(Jk) is the number of bits needed to transmit all measurements from the set of 
active sensors Jk 

This scheduler then selects the set of motes Jk that minimizes this cost without 
exceeding a upper limit on the available bandwidth of Bmax. Due to the properties of the 
UKF, the numerator of the cost function is guaranteed to be positive semidefinite. 
However, the cost does not change monotonically with the number of activated sensors. 

TCost-Based Scheduler 
An additional cost-based method was also considered. Here, the aim was to maximize 
track accuracy within a given bandwidth allowance. With this method the set of motes to 
activate at time k were those that minimized the cost 

( ) ( )( ) ( )( )kkkkkk JPtrJPtrJV |
0

| −=       (2) 

Test Scenario 
The basic test scenario was identical in all the simulation studies carried out. The 

parameters are based on those used in [Morelande 2006] and [Stevens&Morrell 2003]. 
The surveillance region was 1000m2 with sensors placed randomly within it. The sensing 
range of both the acoustic and PIR sensors was identical and set to 75m. The probability 
of target detection when the target was on top of the sensor was unity and dropped off 
with the square of the distance between the target and sensor. The probability of a sensor 
reporting a false alarm was set to 0.001. 

As the focus of this work was on the effect of sensor scheduling, only a single 
target was present in the region. It moved through the region with near-constant velocity 
for 25 scans, with measurements taken every second. The target SNR was 20dB. One 
hundred Monte Carlo simulations were performed for each study. 

Sensor Activation 
For these simulations, all motes were equipped with acoustic, binary proximity 

sensors. One hundred such motes were randomly distributed throughout the surveillance 
region. The first set of simulations compared the performance of all four scheduling 
methods with a baseline scenario when all motes were active. The parameters for each 
scheduling method were: 

In Range - all motes within three times the predicted position error were activated; 
MaxS - the four motes closest to the predicted target location were activated, i.e. maxS = 
4; and 
Cost-Based - for both methods the best set of motes were activated, given a maximum 
bandwidth allowance of Bmax = 4. 
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The tracking performance is illustrated in Figure 19 and Figure 20. Note, the Baseline 
tracker, which has all motes active on every scan, does not necessarily provide the best 
performance. This is due to false detections. 

 
Figure 19: Y position RMS errors over time for each scheduling method. All motes have 
acoustic sensors 

 
Figure 20: X speed RMS errors over time for each scheduling method. All motes have 
acoustic sensors 

From these figures it can be seen that the two cost-based methods actually provide 
poorer performance than the two heuristic scheduling algorithms. The reason for this 
appears to be that the cost-based methods are too parsimonious with bandwidth. This is 
illustrated in Figure 21 which shows the average number of motes activated on each scan 
by each of the four scheduling methods. The two cost-based methods typically only 
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activated one mote per scan. In addition, often this mote was not the one closest to the 
predicted target location. The reason for this counter-intuitive behavior is the subject of 
current investigations. 

 
Figure 21: Average number of active motes over time. All motes have acoustic sensors. 

An additional point to note is the drop off in the number of motes activated by the 
In Range scheduling method. As the track progresses the volume of the state error 
covariance matrix reduces. Consequently, fewer motes are activated as the track 
progresses. On occasion, this can lead to track loss if the tracker is seduced from the true 
target trajectory by false alarms. The MaxS scheduling method is the least susceptible to 
false alarms and, as a result, provides the best performance. This method also had the 
lowest computational cost. Both the In Range and MaxS trackers took approximately one 
fifth the runtime of the Baseline tracker, while the two cost-based methods had a runtime 
that was almost 2.5 times longer than the Baseline. 

The second set of simulations was designed to investigate the effect of increasing 
the bandwidth on tracking accuracy. Only the two cost-based methods and the MaxS 
method were used, along with the standard baseline. In these simulations the available 
bandwidth was increased from 1 bit to 8 bits. 

Figure 22 shows the X position RMS error averaged over time for each method, 
with the Baseline for comparison. As expected, the two-cost based trackers have identical 
performance to the MaxS method when only one mote can be activated at each scan. The 
performance of the MaxS tracker thresholds at approximately 4 bits of bandwidth. In 
contrast, the performance of the two cost-based methods actually worsens as the amount 
of available bandwidth increases. As shown above, these two methods typically do not 
use all the available bandwidth but select a single mote instead to activate. As the 
available bandwidth increases, the set of motes that can potentially be activated increases. 
The two cost-based methods most often select a mote that is not the closest to the 
predicted target location, which generally results in no detection being recorded. 
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Figure 22: Average X position RMS as a function of bandwidth for bandwidth-limited 
scheduling methods. All motes have acoustic sensors. 

Sensor Mode Selection 
PIR sensors require four times the bandwidth of binary proximity sensors as they 

must report a detection or non-detection in each quadrant. However, they provide more 
information. These simulations were designed to quantify any performance improvement 
that could be obtained from using PIR sensors. The first set of tests had 50 acoustic 
sensors randomly located in the surveillance region. The number of PIR sensors was 
increased from 1 to 50, with 100 Monte Carlo runs performed at each step. Two tracking 
methods were compared for each set of sensors — the baseline of all motes active and the 
MaxS method. This scheduling method was used as it is computationally cheap while 
minimizing the effect of false alarms on track accuracy. 

The performance change as the number of PIR sensors increases is illustrated in 
Figure 18. This shows the average Y position RMS over time as a function of the number 
of PIR sensors. The tracking performance when there are only 50 acoustic sensors and no 
PIR sensors is also shown as the Baseline – All Acoustic case. From this figure it can be 
seen that the extra information provided by the PIR sensors actually worsens 
performance, rather than improves it. Again, the reason for this unexpected outcome is 
being investigated. 
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Figure 23: Average Y position RMS errors as a function of the number of PIR sensors. 

 
Figure 24: X speed RMS errors over time for each scheduling method. Half the motes 
have acoustic sensors, the rest PIR sensors. 

The final set of simulations used a network of 50 acoustic sensors and 50 PIR 
sensors. All four scheduling methods were used, along with the baseline scenario. The 
parameters for the scheduling methods were the same as those used in the first set of 
simulations. The results of these simulations are shown in Figure 24 and Figure 25. These 
show similar behavior to the results when all the motes are equipped with acoustic 
sensors 
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Figure 25: Average number of active motes over time. Half the motes have acoustic 
sensors, the rest PIR sensors. 

Conclusions 
These preliminary results suggest that the most robust and cost-efficient method 

for tracking with passive sensors is to make use of all the available bandwidth, i.e. use the 
MaxS scheduling method. However, the amount of bandwidth required for reasonable 
tracking accuracy does not seem to be high. An allowance of approximately 4 bits per 
track is adequate for this scenario. 

2.A.2.e. Distributed Algorithms on Motes 
Here we examined the problem of double-counting of data when performing 

distributed estimation with a sensor network. This is also sometimes termed data incest. 
The re-use of the same piece of information during data fusion can result in false levels of 
confidence and bias in the estimates. This problem is particularly acute in wireless sensor 
networks as network connectivity is not fixed and bandwidth is often limited. 

A number of results have been obtained and have been submitted for publication. 
The first considers the idealized case of localization of a single, static source. Here it is 
assumed that the network is fully connected; any communication delays between network 
nodes are bounded and the bandwidth is not limited. An optimal algorithm for 
eliminating double-counting has been developed and submitted to IEEE on Signal 
Transactions Processing [McLaughlin_2 2007]. A companion paper considers the case of 
a dynamic source or target [McLaughlin_1 2007]. 

While the two previous results provide optimal algorithms for distributed data 
fusion, the conditions for optimality may often be breached in practical systems. Using 
the insight gained from the previous work, three novel, sub-optimal algorithms for data 
fusion in distributed networks have been developed. These algorithms are designed for 
use in wireless sensor network applications. Simulation studies show that these 
algorithms eliminate a significant proportion of the error due to data incest. An outline of 
these results has been submitted to the 10th International Conference on Information 
Fusion to be held in Quebec City, Canada in July 2007 [McLaughlin_3 2007]. 



ISP Phase II (Contract N00014-04-C-0437) 
Quarterly Progress Report (CDRL A001 No. 7) 

 

 
Distribution Statement: Approved for public release; distribution is unlimited. 
 

32

2.A.2.f. Raytheon On-Site Support  
Work during the previous quarter was focused on two main areas: 

1. Optimal scheduling of Gauss-Markov systems 
2. Cancer prognosis prediction via random projections 

Additionally, joint work has been done for the integration of the UKF-based mote 
tracker for the demonstration. This has involved interfacing the UniMelb tracking routine 
with the Raytheon tracking GUI. A new version, updated to utilize time-stamped data, 
has been submitted to Raytheon. 

Optimal Scheduling of Gauss-Markov Systems 
We have been further investigating Gauss-Markov Systems (GMS), as identified in 
previous reports. During the past quarter, we have been investigating formulations of 
GMS for which we have provably optimal schedules. These are presented in Table 2; see 
also [SavLaSMor] and [HowSuvMor]. These results are being prepared for publication in 
the next few months. 

Table 2: Summary of scheduling algorithms with optimality proofs 

# Systems # Measurements Cost Type f-value Comments 
1 N Terminal Nonzero In preparation 

T < ∞ 1≤in  Terminal 1 [SavLaSMor] 
T < ∞ Bn

i
i ≤∑  Terminal Nonzero In preparation 

1 1 Cumulative Nonzero In preparation 
2 N Cumulative 1 [HowSuvMor] 

Cancer Prognosis Prediction via Random Projections 
As previously mentioned, through collaborations with National Information 

Communication Technology of Australia (NICTA), we have obtained genomic data for 
purposes of determining breast cancer prognosis. This type of data is an extreme case of 
sample starvation; we hope to gain some insight into problems such as the ballistic 
missile defense Kill Vehicle (KV) discrimination problem. In the BMD KV 
discrimination problem, the available collected training data is extremely sparse and the 
possible physical feature number on the order of tens. A plot of the log of gene 
concentrations is presented in Figure 26. The first task was to confirm that random 
projections (RP) would preserve distances on these data. The results for epsilon, defined 
by equation 1, are shown in Figure 27, considering all 97-choose-2 pairs.  

Equation 1: Definition of the squared distance ratio. The matrix P is a random projection, 
while x and y are two non-identical gene vectors. 
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Note that projection onto a larger number of dimensions results in tighter bounds 
of epsilon. From this, we are investigating adaptively selecting the number of dimensions 
to maintain epsilon and still be useful for prognosis. The aim here is to classify gene 
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concentrations into “good” or “bad” prognosis, not perform signal reconstruction. Based 
upon the results of Figure 27, it appears that the impact of taking a RP with “enough” 
dimension adds an amount of approximately Gaussian noise. The aim is to adaptively 
select a noise value that is still sufficient to perform classification in a Bayesian setting. 
The random projections have a benefit over more traditional feature selection algorithms 
in that the random projections have theoretical bounds as to distance preservation, while 
such bounds on traditional feature selection (e.g., the best N genes) have no such bounds.  

 
Figure 26: Plot of 24,481 selected genes for 97 patients 

 
Figure 27: Squared distance ratio as a function of the projection dimension, as shown by 
the various colors. The original data are as shown in Figure 4, over all x, y pairs 

2.A.3. ASU Technical Progress 
Since the last progress report, we have modified the ASU person tracking 

algorithm to use the initial imager interface supplied by the Georgia Tech team. This 
interface is implemented as a MATLAB Application Program Interface (API). Currently 
the API is for a MATLAB emulator of the imager; the same API will be used to interface 
to the actual imager hardware. In addition to integrating the imager API into the tracker 
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code, we have mapped the image filtering operations used by the tracker onto the imager 
hardware model. 

The imager acquires a 256x256 image (pixel intensities only) and is capable of 
performing separable row/column-wise FIR filtering and separable row/column-wise 
block transforms on blocks of the acquired image. The imager has four programmable 
8x8 matrices: A1 and A2 are used to perform column filtering/transforms and B1 and B2 
are used to perform row filtering/transforms. In the imager simulation, these matrices, as 
well as each image block, are padded with zeros to create 16x16 matrices. Note that 
while the imager simulation internally uses 16x16 matrices, one can only obtain an 8x8 
matrix from the imager simulation. This is not to trust explicitly in the discussion below. 

The imager is capable of performing 1-D block transform, 2-D block transform, 
1-D filtering and 2-D filtering. Note that 1-D row filtering/transform, followed by 1-D 
column filtering/transform (or vice-versa) performed sequentially, results in 2-D filtering. 
To perform a row or column filtering/transform, the appropriate A and B matrices are 
selected; in this report, we denote the selected column matrix as A and row matrix as B. 

The ASU tracker algorithm selects image blocks and correlates them with a 
Gaussian or a Mexican hat matrix; the correlation values for the selected blocks form the 
input to the tracker algorithm. Computing the correlation c requires component-by-
component multiplication of each pixel block P with a Gaussian matrix G or a Mexican 
hat matrix H, followed by a summation of the products. 

Note to that the correlation c can be computed as 

c = trace(PHT). 

To compute PHT using the imager, we load the A matrix with an identity and the B 
matrix with HT. The trace operation must be performed in the tracker software. 

The two-dimensional Gaussian matrix G can be de composed into a product of vectors as 

G = xxT 
where x is a Gaussian vector. In this case, the correlation c can be completely computed 
by the imager chip as follows. A is loaded with the FIR filter x, B is loaded with the FIR 
filter xT, and the resulting scalar c is the upper left element of APBT. 

The performance of the tracker/imager simulation has been evaluated using the 
same video sequences used to originally evaluate the tracker, and the performance is 
substantially the same as the original tracker performance. 

2.A.4. Georgia Tech Technical Progress 
Work continues on the imager simulator and associated API. This work is 

primarily concerned with testing and predicting algorithm performance for CADSP-type 
optical flow and compression algorithms.  We have also continued to develop and test 
efficient digital algorithms for optical flow that complement the imager, focusing on a 
recursive least-squares filter architecture that is memory and computationally efficient 
and also robust to imager noise.  

The CADSP Imager has demonstrated the ability to perform focal-plane 
processing. Images have been acquired and a DCT has been computed in the pixel plane. 
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To complete the full two-dimensional transformation, the backend vector-matrix 
multiplier (VMM) programming algorithm is being developed. For the demonstrated 
focal-plane DCT, it was configured as an identity matrix. We have successfully 
programmed the sense amplifiers which feed into the VMM and multiplier elements in 
the VMM. Developments now are concentrating on achieving target multiplications 
quickly and accurately so that arbitrary matrices may be programmed. 

The image reading process remains slow, taking several minutes to extract an 
image. The communication from the system to the computer is now done using USB 
connections and the desired communications speeds have been achieved for video frame 
rates. Still remaining are unidentified system delays on the IC, requiring pauses for 
settling. Present component characterizations suggest faster times are possible, so the 
source of the delay is being tracked down. Once the discrepancy is resolved, which 
maybe a digital switching issue, faster reading should be possible. 

We are packaging the hardware and software into a stand-alone system which is 
primarily composed of a computer, an FPGA board, an imager board, and an external 
current measurement device. The external measurement device is to be eliminated in the 
final version once system components are characterized. A new user is being trained to 
use the system; they will, in turn, help develop the training requirements and procedure 
for other new users to freely use the imaging system. 

2.A.5. UM Technical Progress 
In the last quarter, we have wrapped up our research in classification constrained 

dimensionality reduction; self localization; and geometric entropy minimization (GEM). 
The major advance that we report here is the development of an out-of-sample extension 
of classification constrained dimensionality reduction (CCDR) that includes simultaneous 
updates for both unlabeled and labeled data. 

In our last review we presented results for the out-of-sample extension (OSE) for 
our CCDR that can only be applied to unlabeled data, e.g. test samples to be classified. 
This period we have concentrated on extension of CCDR to labeled as well as unlabeled 
data. An outline of the extension is given below. 

Let { }nxxx K,, 21  be high-dimensional samples, and { }nyyy K,, 21  be 
their lower-dimensional (d-dimensional) embedding found by SVD. As usual, define Λ  
as the dd ×  diagonal matrix of the first d eigenvalues of the Graph Laplacian. For a new 
unlabeled data point, 1+nx , the out-of-sample-extension for an unlabeled point is 
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For a new labeled data point 1+nx  which belongs to class k we can show the modified out-
of-sample-extension: 
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where kz  is the centroid for class k, given by the SVD performed for the first n points, 
and β  is the regularization parameter applied to the centroid points. A Matlab program is 
available to compute (1) and (2) and has been delivered to Raytheon for testing. 

2.A.6. FMAH Technical Progress 
In this last phase of the ISP Program we have integrated some new Signal 

Processing Algorithms from Raytheon into a Radar Hardware Demo. We have also 
created a simulated RF environment to test the basic capability of the Ent-To-End 
Design/Processing strategy based on ISP principles.   

Experimental Results - Setup 
The Radar System utilizes Chirp Waveforms at 1GHz, Analog Devices DDS card 

AD9854. The picture below sketches the position of four corner reflectors placed so that 
two lie at almost the exact same angle with respect to the radar antenna  

                     
 Figure 28: Waveform Experimental Set UP 

Results - Detection  
Abundant Experimental Evidence and extensive Simulations show that “Highly 

Textured Noise” (more formally called “Sparse”) due to the presence of a large number 
of scattering surfaces, when superposed with hardware-induced non-linearities, heavily 
affect the performance of any deterministic receiver.  We conclusively demonstrated in 
that ConvNets are capable of learning the extraordinary high number of variables, and 
thus they are natural candidates to break the complexity of a RF landscape data. 

As the Receiver is training to detect corners we plot the “ROC” curves for the 
ConvNet: the Red Curve represents the performance of the ConvNet as it tests its 
performance just against corner reflectors: 
 0><⋅− bt DpD
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Where the outputs of the target detector Dt and the one of the background Db are 
between -1 and 1 my knob “a” goes from 0 to 1. The Green curve represents the 
performance once the classifier is asked to decide on data containing returns from the 
multi-path signal of a pick-up truck parked sideways. The Following Picture illustrates 
the results:    

 
Figure 29: Waveform Processing Results 

2. C. Conference Proceedings 
There was one publication in conference proceedings during the current PoP. 
1. “Integrated Sensing and Processing Phase II Demonstration Program Overview,” H. Schmitt, 

D. Waagen, S. Bellofiore, N. Shah, R. Cramer, T. Stevens, C. Savage, and V. Berisha, 
Defense Applications of Signal Processing 2006, 10-14 December 2006, King Fisher Bay, 
Australia. 

2. “Sparse Manifold Learning with Applications to SAR Image Classification,” V. Berisha, N. 
Shah, D. Waagen, H. Schmitt, S. Bellofiore, A. Spanias, and D. Cochran, 32nd International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, HI, April 15-
20, 2007, accepted. 

2. D. Consultative and Advisor Functions 
There was one consultative or advisory function that occurred during the current 

PoP. The first relates to a Raytheon Shooter Localization demonstration using the MICA-
2/Z sensor nodes. This work is being funded under the DARPA IXO NEST Phase II 
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program. The Phase I shooter localization algorithms were developed by VU. Preliminary 
results indicated that the shooter localization algorithm has significant potential. The 
program was subsequently classified and was ultimately transitioned to Raytheon for 
demonstration and refinement under Phase II. The DARPA IXO Program Manager has 
given permission for several of these algorithms to be used in our program. The Raytheon 
NEST program has identified a critical need for the development of an accurate sensor 
localization algorithm that is scalable to hundreds or thousands of nodes. We have 
identified and are evaluating several promising mathematical approaches to sensor 
localization that will be made available to the Raytheon NEST program if they are 
successful. Thom Steven supports the DARPA ISP II and DARPA NEST programs, and, 
more generally, the two programs have developed a strong collaboration.  

2. E. New Discoveries, Inventions or Patent Disclosures 
There were no patent disclosures filed during the current PoP. 

2. F. Honors/Awards  
There were no honors or awards received during the current PoP. 

2. G. Transitions.  
There were no technology transitions achieved during the current PoP.  
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2. I. Acronyms 
ADTS    Advanced Detection Technology Sensor 
ASU    Arizona State University 
ATA    Automatic Target Acquisition  
AVU     Algorithms Verification Units  
CADSP    Cooperative Analog Digital Signal Processor 
CCDR    Classification Constrained Dimensionality Reduction 
CPI    Coherent Processing Interval 
CRB    Cramér–Rao Bound 
CROPS   Classification Reduction Optimal Policy Search 
DARPA   Defense Advanced Research Projects Agency 
DS    Danzig Selector 
DSA    Distinct Sensing Area 
dwMDS    Distributed, weighted, multi-dimensional scaling 
 FPA    Focal Plane Array 
FMAH    Fast Mathematical Algorithms and Hardware  
GEM    Geometric Entropy Maps 
Georgia Tech    Georgia Institute of Technology  
GMS    Gauss-Markov Systems  
GPS    Global Positioning System 
IASG    Independently Activated Sensor Group 
ISP     Integrated Sensing and Processing 
IXO    Information Exploitation Office 
kNN    k-Nearest Neighbor  
LEAN    Laplacian Eigenmap Adaptive Neighbor 
LIP     Linear Integer Programming 
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M2M     Multipoint-to-multipoint  
MC    Monte-Carlo 
MTT    Multi-target tracking 
NEST    Networked Embedded System Technology 
NDA    Non-disclosure Agreement 
NLIP    Nonlinear Integer Programming 
NLOS     NetFires Non-Line of Sight  
NUC    Non-Uniformity Compensation 
ONR     Office of Naval Research 
OSE    Out-of-sample extension 
PAM     Precision Attack Munition 
PDA    Probabilistic Data Association  
PRI    Pulse Repetition Intervals 
PWF    Polarization Whitening Filter 
PoP     Period of Performance 
RIM    Radio Interferometric Measurements 
RIPS    Radio Interferometric Positioning 
RISCO    Raytheon International Support Company  
RSS    Received Signal Strength 
TAA     Technical Assistance Agreement 
TDOA    Time Difference of Arrival 
TIM     Technical Interchange Meeting 
UAV     Unmanned Aerial Vehicle 
UCIR     Uncooled infrared imaging 
UKF    Unscented Kalman filter 
UM    University of Michigan 
UniMelb    Melbourne University 
VM    Virtual Measurement 
VU    Vanderbilt University 


