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PREFACE

The work described in this report was authorized under Project No. 622622
The work was started in May 2005 and completed in October 2006.

The use of either trade or manufacturers' names in this report does not constitute
an official endorsement of any commercial products. This report may not be cited for purposes
of advertisement.

This report has been approved for public release. Registered users should request
additional copies from the Defense Technical Information Center; unregistered users should
direct such requests to the National Technical Information Service.
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PERTURBATION BY UV LIGHT FOR RAPID CLASSIFICATION
OF BIOLOGICAL PARTICLES BY FLUORESCENCE

1. INTRODUCTION

Many government and private institutions have an interest in developing instrumentation
for rapidly assessing ambient air or water for pathogenic microorganisms. Since all
microorganisms seem to exhibit fluorescence, this phenomenon was expected to be useful as a
mode of detection. (In the present context, we will use the word "fluorescence" to encompass all
luminescence where a longer wavelength of light is emitted due to electronic excitation by a
more energetic shorter wavelength.) Indeed, the fluorescence of microorganisms following
excitation by UV wavelengths has proven useful in distinguishing biological from non-biological
particles in aerosols.1 2'3

Almost all strains of species belonging to the bacterial genera Bacillus and Clostridium
produce endospores when these bacteria run out of nutrient. Endospores are a particularly hardy
life form, which have great resistance to damage by various environmental hazards such as
sunlight and various chemicals. Therefore detection of endospores in aerosols has been a major
concern to people monitoring the environment for dangerous particles. Other bacteria form
different kinds of spores which are rather less resistant to damage. These are currently of lesser
interest. We will therefore use the word spore and endospore interchangeably in the present
discussion.

Some time ago we initiated studies to investigate fluorescence from the chemical
dipicolinic acid (DPA) in various forms.4 5 This chemical in the form of calcium dipicolinate
(CaDPA) is the organic chemical usually predominant (-10% of the spore's drt weight) in
endospores but rarely found elsewhere. Thus a characteristic fluorescence from CaDPA would
indicate the presence of spores. It was found that fluorescence was hardly detectable when the
chemical had been protected from light; however, fluorescence from DPA in various forms
became strong in the violet-blue region after UV radiation. 4-5 This was followed by an
investigation to see whether the effect of UV irradiation on fluorescence could also be observed
in living spores. 6 The effect was indeed present, and distinguishable from the fluorescence

6
resulting from the effect of UV on vegetative bacteria which do not contain DPA. Later
investigations showed that the enhanced fluorescence of the chemicals DPA and CaDPA could
be observed in the dry state as well as in the wet state, and in dry or wet spores.7-9 The
suggestion was made that UV and other perturbations5 6 could be used as a basis for rapid
classification of bacteria found in the environment.

Recently investigations were undertaken to investigate further how the CaDPA or DPA
contained in endospores affected the fluorescence of those spores. Excitation-emission (Ex-Em)
graphs were obtained for the isolated chemical in both dry form and in solution.7 These showed
where one might expect to see emission from the chemical as a spore component. These were
followed by studies of the Ex-Em graph of Bacillus subtilis spores of two types: The
fluorescence Ex-Em (or EEM) graphs from spores of a normal, wild-type strain in which CaDPA
was present, (DPA÷ PS 832) were compared with those produced from a mutant strain derived
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from the (FB 108, DPA, i.e., DPA-less) in which there is much less DPA (by a factor of 10 to
20).10 The DPA-less spores showed much less fluorescence in the region influenced by DPA.

We show in Figure 1, an example of the comparison of the Ex-Em graphs for different
Bacillus subtilis spores with the normal amount of CaDPA present (-10 % of dry weight) with
graphs for very similar but modified spores with very little DPA present (less than I % dry
weight). The situation illustrated is complicated. Both the two upper centers of luminescence
increase in intensity after UV (spots at excitation -350 nm and at -370 nm). The spot occurring
at the well known location for tryptophan fluorescence (excitation -280 nm) diminishes for both
DPA- and DPA+ spores by about the same percent (data not shown), but the scales in the figure
were adjusted so that the tryptophan fluorescence appears at roughly the same brightness for all
four graphs. The conclusion is that the two upper longer wave length fluorescence centers
become brighter after fluorescence in both cases, but are much brighter when CaDPA is present.
Since CaDPA is present in large proportions for almost all unmodified endospores, the situation
should be similar for all spores of Bacillus or Clostridium species. As a matter of fact, the results
from other endospores resemble those for the DPA+ spores shown here.

Minus DPA Plus DPA
Before UV (Top Two)

After L•" (Bottom Two)

Figure 1. Fluorescence of two isogenic Bacillus subtilis spore samples (DPA- and DPA+) before and after UV
exposure. The two graphs on the left are DPA-, while the two on the right are DPA+. The top graphs have
not had UV applied, while the bottom two have been subjected to 3.1 J/cm 2 of UVC (254 nm) during a 60 min.
irradiation.
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2. EXPERIMENTATION

In the course of this investigation we have looked at a variety of microorganisms
prepared grown in a number of different media, and with other variations in preparation.
Table 1 lists the organisms we have used in this project so far, and Table 2 lists the growth media
in most of the cases.

Table 1. Microorganisms, Gram Classification, and Interferrants
for Experiments Reported.

Gram Positive (GP) Bacteria DataSet No.
Species
Vegetative Prep.
Staphylococcus epidermidis 1, 2, 3, 4, 5,45,46
Enterococcus durans 50, 58
Bacillus atrophaeus (BG vegetative) 42

Endospores
Bacillus atrophaeus(Field BG) 9,18
Bacillus atrophaeus (Fluidized BG) 28,41
Bacillus subtilis (PS832) 13
Bacillus subtilis (FP 122 plus DPA) 22,24,26,34
Bacillus subtilis (FP 122 minus DPA) 23,25,27,33,44
Bacillus thuringiensis (kurstoki,clean) 15,17,19
Bacillus thuringiensis (kurstoki, dirty) 29
Bacillus thuringiensis (israeliensis) 47,51
Bacillus cereus (T) 37
Clostridium perfringens 59

Gram Negative (GN) Bacteria
Species (all vegetative)
Escherichia coli (B/r) 6,7,8,10,11,12,14,38,39
Escherichia coli (K 12) 49,52,55,56,57
Pantoea agglomerans (formerly Erwinia h) 16,20,21,32

Interferrants Studied
Diesel Oil; Household Dust (Abingdon,
MD); Household Dust (Highland, MD);
Outdoor and Indoor Dust (Tempe,
Arizona);Lycopodium spores (nonbacterial);
Brain Heart Infusion medium; Luria Broth
(fresh); Luria Broth (depleted)
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The growth media along with a key to the experiments where they were used is presented
in Table 2.

Table 2. Media Used in Experiments.

Growth Medium Recipe (per liter distilled H20) DataSet No.
Luria broth (LB) Tryptone--- 10.0 g; Yeast Extract--- 6- (short growth-log

5. g; NaCl---10.0 g phase,6 only)7,8,
12,14,38,49,52,55,56,57,

Tripticase Soy Broth (TSB) Trypticase Soy Broth (Bacto 16,20,21,32
cat# 211825),used 30g/liter with no
other additive

Brain Heart Infusion broth (BHI) Brain Heart Infusion Broth (Difco 1,2,5,47,50,58
237500)--- 25.0 g; Nutrient Broth
(BD234000) --- 5.4 g
Yeast extract--- 2.5 g

Ml minimal medius M1 medium 3&46 (add .25 gm
NH4CI---2.0 g; Na2HPO4--- 6.0 g; Yeast Extract these 2
KH2PO4--- 3.0 g; NaCI--- 3.0 g exp. only);
Autoclave and add following 2 4 (add 39 ptmoles tryp
chemicals separately for final exp. 4 only), 11,39
concentration per liter:
MgSO4.7H20--- 0.25g
glucose--- 2.0 g
bring to pH 7.0 before autoclave

Danish Prep--Dugway Prepared under contract for Dugway 9,10,15,17,18,19,28,29,
with following recipe: Marcor Inc 41,42,
peptone HCT (a hydrolyzed protein
digest from pork) 6.0g; Amberex
1003 (yeast extract-Sensient
Technologies) 3.0g; Antifoam,
Pluronic -0.3 gm
MgSO 4 .7H20--0.3 Ig; MnSO4
A H20-0.08g; CaC12.2 H20-
0.16g; K2 HPO4 --0.16g; Dextrose
(autoclave separately)-6.0 g pH
adjusted 6.8 -7.2 w NaOH or
Sulfuric acid before autoclave.
Grown in fermenter with aeration.
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Table 2. Media Used in Experiments (Continued).

Growth Medium Recipe (per liter distilled H 20) DataSet No.
Leighton-Doy Difco Nutrient Broth 16 g 13,22,23,24,25,26,27,
Also called 2XSG in P.Setlow 1 M MgSO 4  2 ml 33,34, 44,
papers 2 M KC1 13 ml

I M MnC12  100 ul
0.36 M FeSO 4  3 ll
H 20 970 ml
For plates add 15 g/L agar.
Autoclave, then add sterile 50 x
Ca(N0 3)2.Glucose ------ 20 ml
50 x Ca(NO1) 2..Glucose
Ca(N0 3)2.4H 20 1.18 g
Glucose 5 g
H20 to 100 ml
For DPA plus plates, add
200 pig/ml filter sterilized DPA
before pouring plates (1.2mM in
plate)

DSM medium-from A. Driks Difco Nutrient Broth 8 g 47
1.2% MgSO4 10 ml
10% KC1 10 ml
1N NaOH 0.5 ml
Cool, then add Autoclaved
Seperately components 1 ml each.
then add autoclaved supplements
individually just before use:
1 M Ca(N03)2; 0.01 M MnC12;
1 mM FeSO4

SNB (supplemented nutrient Difco Nutrient Broth 8 g 37
broth) SNB salts 8 ml

Bactoagar (Difco) 15 g
Add 980 ml H20 autoclave, cool,
Add sterile Ca-glu soln 20 ml
Ca-glu solution:
0.5 M CaC12 10 ml
Glucose 5 g
H20 to 100 ml
SNB salts
0.5 M FeSO4 0.28 ml
1 M MnCI2 2 ml
KCL 100 g
MgSO4.7H20 25 g
H20 to 800 ml
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So far, variations in the growth medium as well as the final washes and optical density
before the luminescence experiment have not affected the classification results in the cases
where we have varied the preparation for a single strain of bacteria.

We subjected the bacteria to a final wash for all experiments (usually there were two
washes). The wash, centrifugation, and final suspension were with filtered deionized H20 or
with 0.9% NaC1 solution. These were tested periodically and did not have detectable
fluorescence.

The spectra were taken from a spot of 0.2 ml of particle suspension dried onto a filter.
The filter used had negligible fluorescence. The suspension from which the spot was made was
adjusted to - 0.03 to 0.06 mg of spores or roughly 5 x 105 colony forming units (cfu) for BG
spores several years old. The spot was roughly circular about 5 to 8 mm in diameter. For
vegetative cells (freshly grown), OD 600 was adjusted to the range 0.1 to 0.3 and about 2 to 4 x 107

cfu in the spot.

Spots were formed and dried before measuring fluorescence for the "Before UV" sample
and the "After UV" sample. The UV irradiation was given in two ways. In the protocol used
first (P1), Data sets 1-17, the spot itself was irradiated in the fluorometer at excitation 270 nm
with 1 mm excitation slits for -38 min. A rough measure of the effectiveness of this irradiation
on BG spores was made by following disappearance of the tryptophan fluorescence. This
showed this method roughly equivalent to be about 10% less effective than the same time of
exposure with our UVC lamp. Irradiation protocol P1 has the advantage that the Ex-Em "After
UV" graph is measured on exactly the same cells as are measured for the "Before UV" graph. A
second protocol (P2), was used for samples with a Data set numbered greater than 17 with the
exception of Ex-Em for some liquid exposures-Data sets 30,51,53,54-taken only Before and
in a quartz cuvette. In protocol P2, -3 x 104 j/jm 2 was given during a 60 min exposure by a
lamp emitting UVC (predominantly 254 nm) light to the cells in a quartz cuvette. This dose is
lethal to the bacteria. This had the advantage of a more accurate measure of the dose given, but a
separate spot was formed and dried for Ex-Em measurements after the UV. This made the
number of cells exposed for excitation before and after only equivalent to -50%.

Fluorescence measurements for this report were made on spots dried from suspensions
onto nonfluorescent filters as described above. The instrument used was a Spex Fluorolog-2
Spectrofluorometer equipped with double grating excitation and emission spectrometers. Two
excitation and two emission slits were all opened to 1 mm, giving an excitation bandpass of
1.70 nm and an emission resolution of 3.40 nm. The data was taken at excitation intervals of
10 nm, between 260 and 450 nm, and emission intervals of 5 nm between 300 and 450 nm. The
UV irradiation during measurement of Ex-Em graphs gave a measurable effect for the time spent
with the 1 mm slit open for excitations of 290 nm and less. An illustration of the effect of
irradiation during the scan is shown in Figure 2. One sees that fluorescence at excitations near
350 and 370 nm becomes much increased due to the result of the previous scan only. To
minimize this effect, the fluorometer was programmed so that all the longer wavelength
excitations where most of the important luminescence occurs were taken prior to exposure to the
short wavelength excitations.

14
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Figure 2. Ex-Em graphs for Staphylococcus epidermidis cells on a fluorescence free filter. Left graph is first
scan with 1 mm excitation slit where exposure to wavelengths below 300 nm lasted -3 min. Graph on Right
shows the second scan taken with long wavelength excitations first. The only prior UV exposure was during
the first scan. A comparison shows substantial changes due to UV exposure during the first scan. On all Ex-
Em graphs the vertical axis gives excitation wavelength.

3. RESULTS

Some of the results using protocol P2 are shown for before and after UV in the graphs
below. All the following graphs showing Ex-Em data have the same scale before and after UV.
In Figure 3, the Ex-Em graphs are shown for an overnight growth of Escherichia coli B/r in rich
medium.

Before UV After UV

Figure 3. Ex-Em graphs for E. coli grown overnight in rich medium
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The excitation axis is vertical and ranges from 260 nm to 450 nm. The horizontal
emission axis ranges from 300 to 500 nm. The Ex-Em graph for E. coli seen in Figure 3 has a
quite modest change in fluorescence for excitations near 350 and 360 nm in contrast to the
change shown in Figure 1 for DPA+ B. subtilis spores. A similar change for Bacillus spores of a
different species is shown in Figure 4.

Figure 4. Bacillus thuringiensis spores. Left is "Before UV". Right is "After
UV",.

The change in contrast between the long wavelength emission and that for the tryptophan
emission at 280 nm again appears much greater for the spore Ex-Em graph shown in Figure 4,
than for the E. coli graph shown in Figure 3. We will show that an algorithm for automated
recognition of these differences can be obtained with the use of pattern recognition techniques
later in this section.

Figure 5. Ex-Em graphs for a sample of dust from a house in Highland, MD. Left is Before UV. Right is
After UV.
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The graphs shown in Figure 5, give one example of a possible background Ex-Em
measurement. This graph (as with other background graphs examined) is quite different from
those for endospores (Figures 1 and 4), for Gram negative (GN) bacteria (Figure 3), and for
Gram positive (GP) vegetative bacteria (Figure 2); whereas, each of the graphs for bacteria
appears similar to other graphs for the same class and dissimilar to graphs of other classes. We
could take ratios of the emissions at various wavelengths and arrive at a fairly simple method of
discriminating between the classes considered here (i.e., GN bacteria; GP bacterial spores; GP
vegetative bacteria; various background materials likely to be found in aerosols). It is preferable
to take a more general approach provided by modem pattern recognition techniques. In the
following section, we explore this option.

4. PATTERN RECOGNITION APPLIED TO BACTERIAL LUMINESCENCE

4.1 Brief Non-Expert's Introduction.

We start with a PARAFAC type of analysis. Excitation-emission scans (Ex-Em or
EEM) from a specific sample naturally form two dimensional matrices with zeros for emission at
wavelength less than the excitation wavelength and zero entered for second order emission
values. For each specific sample, we have M excitation values (rows index m) and N emission
values (columns index n). The Ex-Em data thus form M by N rectangular matrices. Suppose we
have P experiments. If we take "Before" UV exposure scans and "After" UV exposure scans as
separate experiments, we then have 2 x P = P' of these matrices. We can arrange these P'
matrices in a stack like a deck of cards.

EEM's for K samples
\samples Relative concentration

oof nWhspecies.

N Emission profile

.o fnf nth species.
•x n=1l

Excitation profile
of nth species.

Figure 6. Notional sketch of Ex-Em matrices for different experiments stacked like a deck of cards.

This is shown in Figure 6. ParaFac analysis has typically been used by chemists to determine the
amount of several known chemicals mixed in unknown proportions and with an unknown
background. Consider the case for three chemicals. It is straight-forward to construct a three
dimensional plot of excitation, emission, and concentration from laboratory measurements for
the three chemicals. These graphs are then used to analyze a mixture for the concentration of the
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three chemicals in initially unknown proportion and with one or more unknown contaminants for
their relative concentration in the mixture. The effectiveness of this approach has been
demonstrated in the lab of one of the authors in a case where UV photodegradation was applied
to chemicals in a manner similar to the way microorganism exposure to UV was used in the
present project. The approach was successfully applied to the photolysis Ex-Em spectra of
pesticide" and polycyclic aromatic hydrocarbons.

The present problem is related to the above, but differs in an important aspect from the
above. We start with laboratory measurements of a number of known specific microorganisms.
However, we may not know exactly the condition of the constituent chemicals giving rise to the
luminescence. Gram positive spores or GP vegetative bacterial cells or GN bacterial cells have a
fairly well-known chemical makeup. However, cells of a particular bacterial species have
localized structure which affects how these chemicals respond to the excitation. Hence, any one
chemical may fluoresce with observable differences in two different microbes, depending on its
local environment. For such reasons, it is not possible at this point to assign all hot spots of
luminescence to the spectra of single chemicals.

In the present case considering microorganisms, the vertical axis of Figure 6 gives
Excitation (index i), the horizontal axis corresponds to Emission (index j), and the axis into the
page is the index indicating the measurement (index k), with Before UV and After UV labeled as
separate experiments. The initial stack appears smoother and is more compatible with a fit if we
arrange the deck like a new deck of cards so that similar samples are grouped and normalized so
absolute values of entries are similar. Since we are studying known preparations at this time, this
may be accomplished from a-priori knowledge and inspection. Since fluorescence spectra are
usually smooth, we could do a three dimensional smoothing of the data.

4.2 PARAFAC Analysis.

The PARAFAC approach applied to the present problem derives a fit of all the spectra in
the stack with the two dimensional spectra of a small number of latent factors representing
"surrogate chemicals" or "pseudo-chemicals". The spectrum of each of these "pseudo-
chemicals" differs from card to card in the deck only as to concentration. The Ex-Em spectrum
of a particular "pseudo-chemical" may correspond to that for an actual chemical constituent of
cells of a particular species, but does not necessarily do so. One well known center of
luminescence, the location of which corresponds almost directly with that of a known chemical,
is the peak for the amino acid, tryptophan, which almost always appears in the Ex-Em spectrum
for bacteria at excitation near 280 nm. The number of factors, N, was in the present case,
selected from the set 3, 4,. ...... 8. The actual number finally decided on was determined from the
number giving the best results for the analysis using linear combinations of the Ex-Em graphs for
the N factors.

The PARAFAC program then iteratively, starting from random entries, develops N three
dimensional contour graphs for each of these factors which added together in appropriate
proportions fit each graph contained in the stack of Figure 6. The fourth dimension, the
concentration of each pseudo-chemical in a given experiment, corresponds to the relative
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luminescence contributed by that chemical to a given matrix in the stack. The sum of these for
all N factors is fit to the smoothed data stack or three dimensional matrix.

Next, we decide on the number of classes, C, for which we are testing the experimental
data. (e.g., Gram positive vegetative bacteria, Gram negative bacteria; endospores;... etc.) and
determine whether the best number of pseudo-chemicals for the whole set of experiments is able
to characterize each of these classes. If not, we try again one more pseudo-chemical and check
again.

The best fit for trials with different numbers of factors occurred for N = 5. Each of these
five pseudo-chemicals may occur in different proportions for each k value in the stack shown in
Figure 6. The contour plots in an Ex-Em diagram of contour plots for each of the five pseudo-
chemicals are shown in Figure 7, where two of these are near a tryptophan location.

440 ' - /
420 (

400,

S380 s

3-0- \ I

Wl340 -

320 - \

300

280 .

2_O 320 340 360 380 400 420 440 460 480 500
Emission (nm)

Figure 7. Ex-Em graph for the five pseudo-chemicals whose linear combinations give reasonable fit
to matrix stack of Figure 6 for all the data.

The contours indicating concentration, are centered about peaks, which show
large emission for each of the five pseudo-chemicals.

Now, we restate the approach to be used more precisely, assuming familiarity with the
ideas above. We are using both Parallel Factor (PARAFAC) Analysis and Partial Least
Squares - Discriminant Analysis (PLS-DA) to differentiate between the three classes of
microbes: Gram positive vegetative bacteria, GN bacteria, and GP endospores and later
discrimination from several common backgrounds. PARAFAC is used to extract spectral
features common to most samples analyzed. The relative contributions of the extracted spectral
features to each sample are used in the PLS-DA model to distinguish among the three classes. A
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nested PLS-DA model is used. First, a model is built to distinguish Gram positive from Gram
negative microbes. Then, a second model is applied to just the Gram positive microbes to
distinguish between vegetative bacteria and endospores.

Ex-Em spectra, both before and after UV photo-conversion, were collected for 37
microbial samples: 6 GP vegetative bacteria, 14 GN bacteria, and 17 GP endospores. The
spectra were collected at 20 excitation wavelengths from 260 nm to 450 nm at 10 nm resolution
and 41 emission wavelengths from 300 nm to 500 nm at 5 nm resolution. The spectra were
formed into a 20 x 41 x 74 three-dimensional data cube (Figure 6). The 'Before UV exposure'
and 'After UV exposure' Ex-Em spectra or each sample are treated independently as unique
objects in this PARAFAC analysis. However, the data could be formed into a 20 x 41 x 37 x 2
four-dimensional cube and equivalently analyzed by a 4-way PARAFAC model.

The PARAFAC model assumes that there is a finite set of N fluorophores (or pseudo-
chemicals), that contribute to the Ex-Em spectra of all 74 samples. Each of these N fluorophores
will have the same excitation profile and emission profile in each sample; the only change will
be the relative concentration of the N fluorophores throughout the 74 samples. The outer product
of the nth resolved excitation profile and nth resolved emission profile presents the extracted Ex-
Em spectra of a given fluorophore that contributes to the overall Ex-Em spectra. Figure 7 shows
5 resolved Ex-Em spectra that were extracted from the 74 samples by PARAFAC analysis. The
PARAFAC model provides N sets of three vectors: an excitation spectrum, an emission
spectrum, and a 74 element long vector containing the relative contribution of the nth fluorophore
to each of the 74 samples. Thus, if the correct value of N is chosen, the data is reproduced by the
sum of the outer products of these N triads.

To fit the PARAFAC model to the collected data, a weighted PARAFAC algorithm was
used. The weighted algorithm assigns weights of zero to Ex-Em wavelengths containing
Rayleigh scattering and Ex-Em wavelengths where the emission energy is less than or equal to
half the excitation energy. All other Ex-Em wavelengths are assigned a weight of 1. Based on
this algorithm, PARAFAC models using from N = 1 to N = 8 factors are constructed. Based on
fit of the PARAFAC models to the data, the model with N=5 was found to be best. The resolved
Ex-Em spectra from the 5 factors of this model are shown in Figure 7. The relative contributions
of these 5 Ex-Em spectra extracted with the PARAFAC model were used for the PLS-DA model
below.

We recognize that there are likely to be more than 5 different fluorophores present in the
microbes. However, at the level of sensitivity accepted for the present experiments, the
additional fluorophores would give rise to patterns indistinguishable from experimental noise.
At the same time, a single fluorophore may occur in several different environments within a class
of microbes, and its Ex-Em spectrum could appear to be two different pseudochemicals. While
the 5 resolved profiles may not all represent identifiable chemicals, they do provide a solid
description of the Ex-Em spectra from which to determine class differences. One further note on
the experimental data. These data have not yet been corrected for the spectrum of the xenon
lamp in the fluorometer used. Since there will be a one to one correspondence of the corrected
spectra with the uncorrected spectra, this is not expected to affect the separation of classes, but
the Ex-Em graphs for the data and the pseudo-chemicals will change their appearance.
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4.3 Partial Least Squares-Discriminant Analysis (PLS-DA).

The PLS-DA is analogous to Partial Least Squares Regression (PLSR). Where PLSR is
the inverse least squares formulation of multiple linear regression (MLR), PLS-DA is the inverse
least squares formulation of Linear Discriminant Analysis (LDA). The PLS-DA has the same
error reduction and variable selection advantages over LDA as PLSR has over MLR.

4.3.1 Model 1: Differentiating GN and GP Samples.

In PLS-DA, samples within the target class are assigned a value of 1, and samples
external to the target class are assigned a value of 0. A PLS model is built to predict the assigned
value for each sample. There are two parameters that must be optimized for PLS-DA. The
optimal number of factors in the model is found by cross validation to best predict the 'score'
values of 0 or 1, which were assigned to the samples. A cut-off value is found by Bayesian
statistics applied to the distribution of 'score' values such that a sample achieving above the cut-
off has >50% chance of truly being included in the target class.

To use PLS-DA, 12 new variables were created from the five factors extracted with the
PARAFAC model. To have an accurate value for the UV dose (see Section 2), we chose the
method, which required separate spots to be measured for the Before and After spectrum for
most of the samples. This allowed the possibility for substantial variation of the number of
bacteria in the excitation light between Before and After measurements for one preparation.
Thus, instead of comparing absolute concentrations for the linear combination of pseudo
chemicals, which fit a given experiment, we took ratios of the concentrations for each of the
other four factors to the "tryptophan" factor for the before and after sample separately. The
tryptophan factor was designated as that with its excitation peak closest to 280 nm. A 37 x 12
matrix is formed and each of the 37 samples is associated with a class value of 0 or 1 for PLS
regression.

Each of the 37 bacteria is associated with two Ex-Em spectra: 'Before UV exposure' and
'After UV exposure'. Thus, for the 5 pseudo-fluorophores extracted by PARAFAC, there are 4
Ratios (i.e., concentrations relative to the tryptophan concentration) associated with the 'Before'
spectrum and 4 Ratios with theAfter. This yields 8 new variables; 4 from the 'Before' spectra
and 4 from the 'After' spectra for each sample. The remaining 4 new variables are constructed
by calculating the ratio of the normalized factors between the 'Before' and 'After' spectra (i.e.,
ratio of ratios). We call the above 12 ratios the Ratio Variables (RV). We then determine the
subspace of the RV space in which the most variability or best separation is exhibited between
the Gram positive (GP) and Gram negative (GN) sets. In doing this, we construct orthogonal m
dimensional subspaces, first of dimension 1; then 2; then 3; ...... 12 in which the two data sets,
GP and GN show the most separation from each other. Each axis in the m dimensional subspace
is formed of a linear combination of the 12 RV or latent variables, and is orthogonal to the
preceding in-I dimensional subspace. This continues from m = I through m = 12.

In Figure 8, we use PLS-DA to determine the total variance of the GP samples from their
predicted value.
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The PLS-DA was then used to differentiate the GP
0. microbes as a single class from the GN microbes.

0 0 The result from Figure 8 was that a 6 latent variable
0 0.35-

(i.e., m=6) PLS-DA model was found to be optimalS0.31 '

(least variability from expected value) based on the> 0125
.... -.. .root mean squared error (RMSE) of classification

0 02 for the PLS-DA model (Figure 8, green, lower

0.1!curve) and RMSE from leave-3-out-crossvalidation
. (Figure 8, blue, upper curve). The meaning of theL 0.1

S6crossvalidation test is that the program leaves out 3
L0att a1 2 4 6 e 8 9 10 1 12 randomly chosen data sets (12 times) while

Figure 8. Variance of separation of GP evaluating the error. Leaving out a small number of

from GN microorganisms, data sets lets us determine if one or several of these
sets has had too much effect on the final result. It

also provides a better feel for how a model will perform on future samples. The 6 latent variable
model (RV) corresponds to a minimum in both of these two curves. With this model, 95% of the
variance in the X-block (measured variable block) and 57% of the variance in the Y-block
(predictor variable block) is captured.

The 6-factor PLS-DA model achieved a 96% classification rate for GP microbes (22 of
23) and a 93% classification rate for GN microbes (13 of 14). Figure 9 presents the predicted
scores for the GP and GN microbes for the 6 latent variable PLS-DA model.
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Figure 9. GP (values above red line) vs GN assignment. Samples were renumbered (horizontal axis) and are
different from tables.

The GP samples are represented by red triangles and labeled either 'PB' for GP
vegetative bacteria or 'PS' for GP spores. The Gram negative bacteria are labeled NB. A cut-off
value of 0.58 was determined to differentiate between the two classes. Samples with a score
greater than 0.58 would be determined to be GP. Samples with a score less than 0.58 would be
classified as other than GP. In reality, such samples could be either GN or just random
background sample fluorescence. However, because no environmental background spectra were
included in this preliminary analysis, we are realistically performing a binary classification
between GP and GN microbes. The sample numbers in Figure 9 and the other Figures below are
from the same data, but with different numbering from Tables 1 and 2.
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Bayesian statistics can be used to
1 ,PS V'P5

5 Ysp5 Ps'ss convert the predicted scores on the
0.9 VM'B PsPS PB Y-axis to probabilities of each sample

S0.•PB belonging to the GP class (Figure 10).
140.7 S s
0PS 'PS Samples with a score greater than I are

E 0.&6 ,PB capped at a 100% probability of being

aP 0.5 •S GP. Samples with a score less than 0 are
-0 0.4 assigned a 0% probability of being GP.

0.3 Only 2 samples were misclassified (blue
"circles). One GP sample was classifieda.0.2 I•

*0.1 "NB B NB as being GN, and one GN sample was
0 • .... 3 • N.....NB misclassified as being GP. The reasons

5 10 15 20 25 30 35 for these misclassification are under
Sample investigation. We note that since many

Figure 10. Separation of GP (upper, PS and PB) from
GN bacteria (NB). different culture and preparation

conditions were used. this is a source of
variability in the analysis.
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Figure 11. Threshold and ROC curves for separating GP and GN samples.

The performance of the classification model can be seen in the threshold (Figure 11, left)
and ROC curves (Figure 11, right). The threshold graph shows the effect on sensitivity (green,
descendng to right--the lower the sensitivity, the more GPs are missed) and specificity (blue,
ascending to right-the higher the specificity, the less GNs are included as GPs) of the model of
choosing the cut-off value (threshold). These figures of merit are presented for the model
applied to all the data (solid lines) and estimated values from leave-3-out cross-validation
(dashed lines). The cross validation figures of merit are believed to more accurately predict
future performance of the model than are the figures of merit from self-fit. The Y-axis presents
the sensitivity of the model as the fraction of GP samples correctly classified and the specificity
of the model as the fraction of GN samples classified as not being GP. The vertical dotted red
line is the cut-off chosen for the model.
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Increasing the cut-off threshold increases specificity the at the expense of decreasing the
sensitivity. Similarly, decreasing the cut-off threshold increases the sensitivity at the expense of
the specificity. The trade-off between the sensitivity and specificity at different thresholds is
seen in the ROC curve (Figure 11, right), which is obtained simply as a parametric evaluation of
sensitivity and specificity for each threshold value. The blue line is the ROC curve for the fit of
the model to the 37 training samples. The green line is the ROC curve based on cross validation.
The red circles are the locations along the ROC curves of the threshold value shown in the
previous plots. Taken together, the threshold and ROC curves indicate that although -95%
specificity and sensitivity were observed based on fit of the model to the training set, 80%
sensitivity and specificity are predicted for future samples being applied to this model. However,
the data used here are preliminary and were collected under a variety of culturing and processing
conditions.

4.3.2 Model 2: Differentiating GP Spores from GP Bacteria.

A second PLS-DA model was
d0.3- constructed to differentiate among the two

0
0.3ý classes of GP microbes. The 6 GP vegetative

, 0.25 bacteria and 17 GP spores were used as a
0 training set. The RMSE of calibration (Figure

_0 12, green, lower graph) and RMSE from
0.1!
0.1 .. leave-2-out cross validation (Fig. 12 upper

Ito.1 . . graph) indicate that a 4-factor PLS-DA model
.° be used. While the cross validation

performance of the two models was very
0L 2 3 4 V N 7 8 9 10 i 12 similar, the 4- factor model was chosen over

Latent Variable Number

Figure 12. Performance for separation of the 3-factor model based on performance in fit
GP spores from GP vegetative bacteria, to the training set. However, it is recognized

that a 3-factor model may, in fact, prove
slightly more robust with future analyses.
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Figure 13. Separation of GP spores (upper, PS, red) from GP vegetative bacteria
(PB, lower, blue).
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Figure 13 presents the scores for classification between GP spores and bacteria using 4
latent variables. Figure 14 presents the same data converted to probability of classification as a
GP spore. No GP bacteria are classified as a GP spore (100%, 6 of 6) and only 1 GP spore is
misclassified (94% correct, 16 of 17). The probability of inclusion of each sample as GP shows
that besides the misclassified sample, only one other sample has a probability of classification
between 5% and 95%. Most samples are very unambiguously and correctly classified as either
spores or vegetative bacteria.
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Figure 14. Probability of correct classification for GP spores vs GP vegetative
bacteria.

The threshold and ROC curves, shown in Figure 15, predict better performance for PLS-
DA differentiating between GP vegetative bacteria and GP endospores, than for differentiating
between GP and GN microbes. Cross validation predicts 100% specificity and almost 90%
sensitivity.
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Figure 15. Threshold and ROC curves for differentiating GP spores from GP vegetative bacteria.
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5. CONCLUSIONS

The above analysis suggests that based on only one perturbation, i.e., exposure to a single
UV dose, we can achieve good separation among several classes of bacteria. There are other
additional perturbative physical treatments, which could be inexpensively incorporated into field
instruments in a way in which further discrimination of microbial classes could be rapidly and
automatically achieved.' 3 It is not unreasonable to expect that incorporation of additional
perturbations would allow separation of unknown biological particles into additional well-
defined classifications. The analysis is potentially fast and direct.13

26



LITERATURE CITED

1. Reyes, F.L., Jeys, T.H., Newbury, N R., Primmerman, C.A., Rowe, G.S., Sanchez, A.
"Bio-aerosol Fluorescence Sensor." Field Analyt. Chem. Technol. Vol. 3, (4-5), pp 240-248
(1999).

2. Faris, G.W., Copeland, R.A., Mortelmans, K., Bronk, B.V. "Spectrally-Resolved

Absolute Fluorescence Cross Sections for Bacillus Spores." Appl. Optics Vol. 36,
pp 958-967 (1997).

3. Ho, J., Spence, M., Hairston, P. "Measurement of Biological Aerosol with a Fluorescent
Aerodynamic Particle Sizer (FLAPS): Correlation of Optical Data with Biological Data."
Aerobiologia Vol. 15, pp 1573-3025 (1999).

4. Nudelman, R., Feay, N., Hirsch, M., Efrima, S., Bronk B. "Fluorescence of Dipicolinic
Acid as a Possible Component of the Observed UV Emission Spectra of Bacterial Spores." In

Proceedings of SPIE, Vol. 3533, pp 190-195, Air Monitoring and Detection of Chemical and
Biological Agents. J. Leonelli and M.L. Althouse, Eds. (1999).

5. Nudelman, R., Bronk, B.V., Efrima, S. "Fluorescence Emission Derived from
Dipicolinic Acid, Its Sodium, and Its Calcium Salts." Appl. Spectrosc. Vol. 54, pp 445-449
(2000).

6. Bronk, B., Nudelman, R., Shoaibi, A., Akinyemi, A. "Physical Perturbation for
Fluorescent Classification of Microorganism Particles." In Proceedings of SPIE, Vol. 4036,
pp 169-180, Chemical and Biological Sensing, Chair: Patrick J. Gardner (April 2000).

7. Sarasanandarajah, S., Kunnil, J., Bronk, B.V., Reinisch, L. "Two Dimensional
Multiwavelength Fluorescence Spectra of Dipicolinic Acid and Calcium Dipicolinate." Appl.
Optics Vol. 44, pp 1182-1187 (2005).

8. Bronk, B.V., Reinisch, L., Setlow, P. "The Role of DPA in the Fluorescence of Bacillus
Spore." In 61h Joint Conference on Standoff Detection for Chemical and Biological Defense.
CBIAC Report CB-193503, APG, MD (October 2004).

9. Sarasanandarajah, S., Kunni, J., Chacko, E., Bronk, B.V., Reinisch, L. "Reversible
Changes in Fluorescence of Bacterial Endospores found in Aerosols due to Hydration/Drying."
J. Aerosol. Sci. Vol. 36, pp 689-699 (2005).

10. Paidhungat, M., Setlow, B., Driks, A., Setlow, P. "Characterization of Spores of B.

subtilis which Lack DPA." J. Bact. Vol. 182, pp 5505-5512 (2000).

11. Nahorniak, M.L., Cooper, G.A., Kim, Y.C., Booksh, K.S. "Three- and Four-Way

Parallel Factor (PARAFAC) Analysis of Photochemically Induced Excitation-Emission Kinetic
Fluorescence Spectra." Analyst, Vol. 130, pp 85-93 (2005).

27



12. Kim, Y.C., Jordan, J.A., Nahomiak, M.L., Booksh, K.S. "Photocatalytic Degradation-
Excitation-Emission Matrix Fluorescence for Increasing the Selectivity of Polycyclic Aromatic
Hydrocarbon Analyses." Anal. Chem. Vol. 77, pp 7679-7686 (2005).

13. Nahorniak, M.L., Booksh, K.S. "Optimizing the Implementation of the PARAFAC
Method for Near-Real Time Calibration of Excitation-Emission Fluorescence Analysis." .J.
Chemometric. Vol. 17, pp 603-608 (2003).

28


