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Enhancement of Stochastic Resonance by Tuning System
Parameters and Adding Noise Simultaneously

Xingxing Wu, Zhong-Ping Jiang, and Daniel W. Repperger

Abstract- The stochastic resonance effect can be realized and information-based measures, such as mutual
by tuning system parameters or by adding noise. This paper information [11], are used instead. Over the years,
investigates the possibility to enhance the stochastic stochastic resonance has been applied in wide-range of
resonance effect by tuning system parameters and adding areas, such as physics, chemistry, biomedical sciences, and
noise simultaneously. First, we use some examples to engineering [2-3]. One of the important applications of
demonstrate the situation where only the system parameters stochastic resonance is in signal processing. As a nonlinear
or noise can be adjusted for maximizing the stochastic signal processor, it has been used for signal detection [12-
resonance effect. Then, it is shown using standard s13, signal transmission [14-15] and signal estimation [162.
optimization theory that the normalized power normal < C, > In order to realize the stochastic resonance so as to make
of the bistable double-well system with aperiodic input signal the chosen quantifier, e.g. the output signal-to-noise ratio
can reach a larger maximal value by tuning the system
parameter and adding noise simultaneously. Finally, for the (SNR), reach its maximal value, certain conditions must be
purpose of practical implementation, searching for the satisfied. The traditional way is to adjust the noise intensity
optimal system parameter and noise intensity Is realised by by adding optimal amount of noise. Recently, tuning system
an on-line fast-converging optimization algorithm, parameters have been demonstrated to be a better method to

realize stochastic resonance, especially when the initial
Index Terms- stochastic resonance, signal processing, and input noise level already exceeds the resonance region [17-
optimization. 19]. The output SNR will reach a higher maximal value by

tuning system parameters than by adjusting noise intensity
I. INTRODUCTION [18]. Among this research, either the noise intensity is

Stochastic resonance (SR) is the phenomenon that the adjusted or the system parameters are tuned in order to
noise can be used to enhance rather than hinder the maximize the chosen measure, but not both. This paper will
system performance. The noise can excite the richness of investigate the possibility to further increase the maximum
the nonlinearities and provides improved dynamics which by tuning the system parameters and by adding noise
better enables the system to increase signal-to-noise ratio simultaneously. This will in turn improve the system
(SNR) or mutual information. The concept of stochastic performance when used as the nonlinear signal processor
resonance was first proposed by Benzi in 1981, addressing for signal detection, signal transmission or signal
the problem of the periodically recurrent ice ages [1]. Over estimation.
the last two decades, stochastic resonance has been The rest of this paper is organized as follows. In Section
continuously attracting considerable attention. It is a 2, we demonstrate the cases when only system parameters
ubiquitous and conspicuous phenomenon. Many nonlinear or noise intensity can be adjusted. Section 3 will prove the
systems have demonstrated the stochastic resonance effects, possibility to further increase the maximal value of
such as discrete systems [4], dynamic systems [2], static normalized power norm [8] of the aperiodic stochastic
systems [5], coupled systems [6] and random systems [7]. resonance in bistable double-well system by adjusting
The signal can be periodic [2], aperiodic [8], subthreshold system parameters and noise intensity, based on the
[2] or suprathreshold [9]. In order to quantify the stochastic conventional first-order necessary condition and second-
resonance phenomena and reveal the synchronization order sufficient condition in optimization theory. Section 4
between signals and noise, different measures have been will provide an on-line fast-convergent optimization
adopted. For the periodic signals, the most commonly used algorithm to search the optimal system parameters and
quantifier is signal-to-noise ratio (SNR) [2]. For aperiodic noise intensity. Section 5 is devoted to verify, via computer
signals, cross-correlation measures [10], power norm [8] simulations, the improvement of maximal <c, > by

comparing the maximal normalized power norm obtained
This work has been partially supported by the Polytechnic CATT Center by tuning system parameters, by adding noise and by both.
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II. STOCHASTIC RESONANCE VIA TUNING SYSTEM t=t/T,, y==x T..-, - =X,1T.,/D,
PARAMETERS OR ADDING NOISE

In some stochastic resonance systems, the chosen A=A4IY T . = r / T, (

For the rescaled y-system, its noise density becomes unitmeasures can be described as a function of both the system and the output SNR is:
parameters and the noise. This, however, does not ensure 22

that both system parameters and noise can be adjusted at the SNR = 'r2 A X, exp(- /-- 4)-(
same time to maximize or minimize these quantifiers. In (1/,',) 1/0
[20], the output signal-to-noise ratio is affected by the ratio Now, the optimization parameters are A and x,,.
of noise variance and system parameter (threshold), rather
than by the parameter value and noise individually. The Obviously, A should take the maximal value in order to

paper [17] shows that the noise intensity cannot be adjusted maximize SNR. From (4), this means that the noise

and must be fixed at the initial value (no noise will be intensity should be fixed to its initial value D0 which is also

added) in order to minimize the bit error rate (BER) for the the minimal noise intensity, assuming the signal amplitude

aperiodic stochastic resonance (ASR). In this case, only A is not changeable. Again, only system parameter Xb can

system parameters tuning is meaningful. In what follows we be adjusted.

will demonstrate this is also true for the periodic stochastic In the next section, we will examine some interesting

resonance in double-well bistable dynamic systems. situations where both the system parameters and noise

The double-well bistable system is described by the intensity can be adjusted simultaneously to improve the

equation [21]: stochastic resonance effect.

r Xt) = xt)W- +sO)+r7Q), (1) III. STOCHASTIC RESONANCE ENHANCEMENT
Xb

In [22], the aperiodic stochastic resonance (ASR) was
where system parameters Ta > 0, Xb > 0. The periodic input demonstrated in the bistable-well system. The cross-

is s(t) = A cos(2 / T,). 17(t) is an additive Gaussian white correlation measures (power norm Co and normalized

noise with zero mean average and autocorrelation of power norm CI) were adopted for characterizing the ASR

< rq(t)(0) >= 2DQ(t). behaviour:
For small and slow input signal, the output signal-to- Co =max{St)RQt+ )}

noise ratio is given by [21]: C=. Co , (6)
SNRA= X/• e/4 Xp( 1 ' (2) [S'()]"'{iR(t)-SN ,2 ' 2x( t

(DO/rý) x Dir where S(t) is the zero-mean aperiodic input signal, R(t) is

Assuming parameter T', is fixed, the output SNR is a the mean transition rate of the system.

function of both system parameter Xb and noise intensity D. The symmetric bistable-well system with a fluctuating

One constraint on the noise intensity is that it should not be barrier is given by [22]:

less than the initial value Do. There are also constraints on = - +(t), (7)
the parameter Xb. For example, X, > -. ffAI2 for the dt ax

subthreshold system [17]. where U(x) =-[A-SQ)]x +x is the potential function.
24

To prove our above claim, assume the SNR is maximized Usually, A is a constant. Here A will be taken as a system

at the optimal values (X ,,D'). Obviously, there will be a parmt. A is a ussan wite ne th zem
parameter. ý(t) is Gaussian white noise with zero mean

local maximizer for this optimization problem if both average and autocorrelation of <•(t)(s) >= 2DS(t -s). The
system parameter Xb and noise intensity D can be adjusted angular brackets denote an ensemble average.
at the same time. According to the first-order necessary In general, the power norm does not have an explicit
condition for a local maximizer, we have VSNR(Xb,D) = 0, expression. For the specific case where the signal amplitude

and thus: is small compared with the barrier height, i.e., S(Q) 2 << A2 ,

X' = 8D,X' = 4D (3) and S(t) is a Gaussian-distributed signal, <Co> and <C1 >

The derived solution (Xb = 0 and D = 0) does not meet are given as [22]:
the constraint requirements. In other words, this <C.>- QAexp[-e + Aý7(S)/12]S (t), (8)
constrained optimization problem has no local maximizer.
This means either system parameter Xb or noise D, but not < C. >(

both, can be adjusted to maximize the output SNR. (exp 's'(t)] - I + o(D)Q-'exp[2 -6? S()]}' 2

In order to determine which one will take the extremum
and which one is not adjustable, we can rescale the wherea(D)= K <Q-) >, < RQ) >= Qexp[-O+A 2S'(t)/2]

variables as: Q= kA/-F2r, 0 = A 2 /4D,A = A /2D



We will choose <C1> as the objective function to be Proof- First, it is shown that the first-order necessary
maximized. The theoretic expression of<C1 > can predict its condition has at least one solution:
real shape, even when the noise intensity is outside the From the first-order necessary condition:
range of its validity [22]. So, we can form the following a 'Ond a<C,>=0. (15)
constrained optimization problem: ae aQ
max < C, >, (10) We get:
subject to S(t)' << A', D > D, caAQ=l, , (16)

The optimization parameters are the system parameter A (2-2s'A2)exp[s'A']-2

and the noise intensity D. From the expressions of Q, E + k, (2Q-' -caA - 2dAQ-') exp[caQA + A] 0

and A, we notice that E is a function of Q and A:f-2.,•a_ (11) Letting Q-'= ca A, we have

E) = 2 -cQA' (11 (2-22s 2A2)exp[s2A2]-2 (17)

where c=,.-2[/12k is a constant, Q and A are functions of A +cak, (A - 2dA') exp[l + dA2 ] = 0

and D.
The <C1> can be expressed in term of Q and A: Letf(A)denote the left hand of equation (17).

< >As, (12) Obviously, f(0) = 0 and f(+co) = _oo. Also:
(exp[A's 2 ]_-+k 1Q-'exp[cAQ+dA2]}) ' -= (-4s2A - 4s 4A') exp[s2A ]

whes +kca(l+2s'A2_s A,)exp[l+dA'] , (18)where s=[s'(t)]"' " d=S'(t)/2-S'()=--.
2

Therefore we will be interested in maximizing <C1 > at If A -- 0+, we get af > 0* We can conclude that there is
some nonzero optimal values Q' and AY. TA

From the simulation, we find that there is a unique local at least one A > 0 satisfying eq. (17).
maximizer for the unconstrained optimization problem, i.e. Now, we need to prove that the solution is unique for
(10) without the constraints. Unfortunately, the local fixed parameters a and b.

maximizer (Q" andSA) cannot meet the constraint Letf,(A)=(2-2sWA')exp[sWA']. The function f,(A) will

requirements for some input signal. For example, when decrease monotonically to - - as A -- c, starting from

s=0.01, we will have A7=142.791, Q'=0.003 2 , A*=O.014. f,(0) = 2. We denote the rest part of the LHS of equation

It cannot meet the requirement of small signal (s(«), << A'). (17) as function f 2 (A) = cak1A(1 + s2A' )exp[l -s 2A' / 2]. It
will first increases from zero, and then decreases to zero.

So we introduce two additional parameters (a>O, b>0) From these special characteristics of f.((A) and f2(A), it
X2 X4itst b ei follows readily that equation (17) can only have one positive

U(x) = -[A - S(t,)](13) solution.
2a 4bWe can then get:W e an (14) Proposition 2: The parameter a can be used to continuously

(xp[s2AI]_ I+kQ, exp[caaQ+dA'])1,' adjust the values of Q' and A9 satisfying the first-order
where: Q=k kA/V, re O=bA'/4a2D,A=bA/2a2D,O=caAQ. necessary condition of the unconstrained optimization

From (14), one sees that the bigger the parameter a, the problem to ensure A* and D* will meet the constraint
smaller the <C,> will be. Here parameter a will be taken as requirements.

a supporting parameter used to adjust the local maximizer Proof. From (17) and definitions of f,(A) and f,(A), we
notice that parameter a only affects f, (A), but not f,(A)( Q *, A 7 ) t o e a l A * a n d D * t o m e e t t h e c o n s t r a i n t s . w i h i e r a i g f n t o f A h n r a e o

Parameter b. is also taken as a supporting parameter which which is a decreasing function of A. The increase of
will be used to match parameter a to keep the potential parameter a will increase the value off,(A) for the same
function in good shape and make the optimal noise intensity A. This will in turn increase AS. Also, A' will approach
D* reasonable. For example, we can let b/ (2a2) be a proper zero when parameter a approaches zero. This means that
constant. AN can be changed continuously by adjusting parameter a.

Proposition 1: There exists one and only one pair of Proposition 3: There is one and only one local maximizer
parameters (Q,,A*) satisfying the first-order necessary for the unconstrained optimization problem with small
condition of this unconstrained optimization problem. input (s<<1) and properly chosen parameters a and b.



Proof. Assume the pair (Q*, A*) is the only solution Therefore, Proposition 4 follows directly from Proposition
3.

satisfying the first-order necessary condition. We need to

prove the pair will also satisfy the sufficient condition of the Proposition 5: The local maximizer (A*, D*) is also theunosrie piiainpolm htiteHessian PooiinS h oa aiie A* * sas h
unconstrained optimization problem, that is, the Hglobal maximizer of the constrained optimization problem
matrix v, < c, > (,QO) is negative definite. (10).

At the point (Q*, A7 ), we have: ' Proof. It follows from Proposition 4 and the fact that the
a = <first-order necessary condition only has one solution.

(19)
x kca(- s2 )p From the above analysis, the normalized power norm

2(-s'A* )fs•' exp[s'A*21+kc( -1+ sa)]exp[1 -s'A / 2]
+ 4 <C,> of the double-well bistable system with Gaussian-

distribution input signal can be maximized by tuning
a2 < C1 > = (-kc'aa3ssA`4 ) (20) system parameter A and adding noise simultaneously and

aQ.7 2(exp[s2A.2]-I+k•Q.'-exp[l+dA. ])3I2, will reach a higher maximal value than that of adjusting

a2 < C, > = a2 < C > only the system parameter or noise intensity.
aA'aQ" aQa• , (21)

(-klc 2a 2sA"2)exp[l +dA" 2] IV. OPTIMIZATION ALGORITHM

2(exp[s 2A"2]-l + kQ'- exp[1 + dA"2 ])312  There is no closed-form solution for the constrained
optimization problem in Section 3. The maximizer can be

We have: (for s<<l) obtained by solving the nonlinear equation (17) with the aid

2s2A2 exp[sA2S] of standard optimization algorithms. In some situations,
however, this optimization problem should be solved on-

+ 2ktcasA*(-l / 2 + s2A2 / 4) exp[l -s2 2 / 2] line with changing input signals, such as the case of high-

=2exp[s2S
2]-2 speed target detection when it is used as the nonlinear

+ kcaA[(l - s) + s2 "2(1 + s / 2)] exp[l- s 2 '2 /2] signal processor. The speed is a critical requirement in

S2S2A 2 exp[s 2A2] > 0 these situations. This makes the development of an on-line
fast convergent optimization algorithm an issue of crucial
importance.

So ao <C, > <0 forQ ,A , and small input signal (s<<l).
aA'• Let f(A) be the left part of equation (17). Noting that

If the parameter a is adjusted properly such that Vf(K) is nonsingular for small input signals, the following
s( A *)2>> l, the numerator of the Hessian matrix result can be proved using standard arguments from [23]:
determinant value is:
2 exp[s'A"] -2 Proposition 6: The Newton's Method for Nonlinear

+ klca(A - I + s2A'3) exp[l - s2A" / 2] Equations, when applied to solving f(A) = 0, gives a
5•

- 2 exp[s 2A' 2]-2 local Q-quadratic convergence, if A0 is sufficiently close to

+ klca(A" + s2'A") exp[l - s'A' / 2] AS.

= 2s 2 A"2 exp[s 2A' 2 ] > 0 Our proposed optimization algorithm is based on the

From the standard test on negative-definiteness of a Newton Algorithm. The optimization algorithm is divided
symmetric matrix, it follows that the Hessian matrix is into two categories. The fist case is when parameters a and
negative definite. This completes the proof of Proposition 3. b are fixed. They are properly chosen so that the pair of

optimal solutions (A*, D*) for the unconstrained
Proposition 4: There is one and only one local maximizer optimization problem can meet the given constraints. The
for the original constrained optimization problem (10) with second case is when parameter a should also be adjusted on-
small input and properly chosen parameter a and b. line. Here we assume parameter b is a pre-defined function

Proof: From above, we can get A*=2/ A. In order to satisfy of parameter a. For example, b/(2a 2) = const.

the constraint: (A*) 2 >>S2, we should have S2( A7 )2<<4. Case 1:

Combined with the requirement s(A 7)2>>1, we should
have: S<< «S 2 (S) 2 < 4 for small input signal (s<). This The convergence speed of the Newton algorithm depends

can be satisfied by adjusting parameter a. Also, D* will be on the initial value A0 . We propose a way to estimate the
greater than Do for the properly chosen parameter b. initial value for different input signals on-line, based on a



table or function con tructed off-line. The table or the Yk+= =Yk ,Xk,+ = ak

function describes the relationship between input signal if Yk+1 = +00:

average amplitude s an i the optimal value A which can be ak., = 2a,

got off-line. For a given input signal s, A will first be else:
estimated using inteipolation for the table or direct -k,= (x,,+y+,) / 2
calculation for the fiinction constructed off-line. This Step 6:
A7 will then be used as the initial valueAofor this input If I a4 +,-ak- < C:

signal. It will be close to the optimal value to ensure the Calculate Q*, A* and D* and stop.
required convergence ;peed, if the table or the function is else:
constructed properly. Go back to Step 3

V. SIMULATION RESULTS
Algorithm 1:

Step 1: In order to verify the improvement of the maximal value
Calculate its i.verage amplitude value s=-(-t) for of normalized power norm <C1 > by adjusting system

the given input signal; parameter A and noise intensity D simultaneously over that

Step 2: by adjusting system parameter A or noise intensity D alone,

Estimate initieI A., using the constructed table or simulation is performed. The following is the simulation
result: (Ko=l, K1=0.019, a=0.001, and A=l when adjusting

function; D, and D=O. I when adjusting A)
Step 3:

Solve f(S) = 0 using normal Newton Algorithm T , ..-.

[23]; 0.

Step4:
Calculate Q*, k* and D* and stop. 0.-

0.6

Case 2: v 0.5

0.4

If adjustable, the smallest parameter a ensuring the 03 .
satisfaction of constra nts will maximize <Ce>. 0.2 .0'

Similarly we can rcly on the off-line work to increase the 0.... .... ...
convergence of the cn-line algorithm. Two tables or two x1 W . . l0e

functions will be coistructed off-line. The first table or Fig. 1. Comparison of Maximal <Cl>
function describes th, relationship of A * with input s and
parameter a. The sec 'nd table or function is the relationship
of input signal s with a*, where a* is the smallest parameter V. CONCLUSION
a for the above-statxl constrained optimization problem This paper demonstrates the possibility to further
with input signal s. enhance the stochastic resonance effect if the system

Algorithm 2: parameter and the noise intensity can be adjusted at the

Step 1: same time. The enhancement of the stochastic resonance
effect will in turn improve the system performance and have
wide application in signal and image related engineering

Step 2: problems such as target detection. Specifically, the
Estimate a*, 'ake it as the initial value ao; nonlinear signal processor based on stochastic resonance

Step 3: Estimate tte initial value A,; will increase the target detection performance if it has a

Step 4: higher output signal-to-noise ratio.

Solve f(A' = 0 using normal Newton Algorithm REFRENCES
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