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STRAW - An Integrated Mobility and Traffic Model for VANETs

David R. Choffnes Fabián E. Bustamante
Department of Computer Science

Northwestern University
{drchoffnes,fabianb}@cs.northwestern.edu

Abstract

Ad-hoc wireless communication among highly dy-
namic, mobile nodes in a urban network is a criti-
cal capability for a wide range of important applica-
tions including automated vehicles, real-time traffic
monitoring, and battleground communication. When
evaluating application performance through simula-
tion, a realistic mobility model for vehicular ad-hoc
networks (VANETs) is critical for accurate results.
This technical report discusses the implementation
of STRAW, a new mobility model for VANETs in
which nodes move according to a realistic vehicu-
lar traffic model on roads defined by real street map
data. The challenge is to create a traffic model that
accounts for individual vehicle motion without in-
curring significant overhead relative to the cost of
performing the wireless network simulation. We
identify essential and optional techniques for model-
ing vehicular motion that can be integrated into any
wireless network simulator. We then detail choices
we made in implementing STRAW.

1 Introduction

Communication in mobile ad-hoc wireless networks
(MANETs) is the focus of extensive research due to
its ability to enable distributed applications among

mobile nodes in infrastructureless environments. Ve-
hicular ad-hoc networks (VANETs) are a particu-
larly challenging class of MANETs characterized by
nodes with relatively high mobility (speeds between
0 and 20 m/s). In addition, unlike many other mo-
bile ad-hoc environments where node movement oc-
curs in an open field (such as conference rooms and
caf́es), vehicular nodes are constrained to streets of-
ten separated by buildings, trees or other obstruc-
tions, thereby increasing the average distance be-
tween nodes and, in most cases, reducing the over-
all signal strength received at each node. Connectiv-
ity in this environment is essential for a wide range
of important applications including real-time traffic
monitoring, battleground communication and other
vehicular distributed systems.

We argue that a more realistic mobility model with
the appropriate level of detail [9] for VANETS is crit-
ical for accurate network simulation results. With
this in mind, we designed a new mobility model for
VANETs, STRAW (STreet RAndom Waypoint), that
constrains node movement to streets defined by map
data for real US cities and limits their mobility ac-
cording to vehicular congestion and simplified traffic
control mechanisms.

In a previous paper [5], we evaluated and com-
pared ad-hoc routing performance for vehicular
nodes when using STRAW mobility in diverse ur-
ban environments to the performance when nodes
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move in an open field using the classical random
waypoint (RWP) model. We have shown that the per-
formance of wireless network protocols in urban en-
vironments is dramatically different than that in an
open-field/RWP scenario and, further, that the type
of urban environment can have a significant impact
on the performance of a protocol.

In this paper, we discuss STRAW’s design in
detail, describe a reference implementation for the
SWANS [3] network simulator and detail the perfor-
mance of SWANS for several interesting cases. The
following section motivates the need for urban mo-
bility models in ad-hoc networks. In Sections 3 and
4, we describe the features of a realistic vehicular
mobility model. Section 5 details the implementa-
tion of STRAW. In Section 6 we discuss and evalu-
ate STRAW’s performance and we conclude in Sec-
tion 7.

2 Background

Routing messages in MANETs has become the focus
of much research. Some of the routing protocols that
have achieved prominence include topology-based
protocols (e.g., DSDV [19], DSR [10], AODV [18]
and MRP [17]) that rely exclusively upon IP ad-
dresses to locate nodes and location-based protocols
(e.g., DREAM [4], GPSR [11] and GLS [14] [16])
that use geographical position for this task.

Proposed protocols are compared against com-
peting or ideal ones in terms of metrics such as
packet delivery ratio, throughput, latency and over-
head. Due to the prohibitive cost and time constraints
of evaluating ad-hoc network protocols in real-world
deployments, most studies rely on simulators for ex-
perimentation (e.g. [20, 27, 2]).

When analyzing different protocols, researchers
often adopt a common set of simulation parameters,
such as:

• Nodes transmit signals that propagate with-
out error to other nodes within a radius of
250 m [13].

• Nodes move in an open field according to a ran-
dom waypoint model [26] or the Manhattan mo-
bility model [7] with arbitrary pause times and
often with arbitrary speed distributions between
0 and 20 m/s.

• The number of nodes is small (i.e.,≤ 100).

Such parameter settings are clearly inadequate for
many MANETs, and particularly for VANETs for
the following reasons:

• In [13], the authors have shown that the rela-
tionship between distance and signal reception
between two nodes is, at best, weakly correlated
over large distances. It is also well known that
radio transmission range does not form a circle
and, for commodity hardware, rarely achieves a
250 m range in common environments.

• Besides settings such as conventions in large
conference halls, it is difficult to imagine many
scenarios in which nodes move in a open field.
It is also rare that node mobility can be accu-
rately modeled by random waypoints. Specif-
ically in VANETs, nodes must be constrained
to roads and adjust their velocities according
to traffic control mechanisms, speed limits and
the behavior of nearby vehicles. Further, in
VANETs, most vehicles attempt to follow paths
that minimize trip duration between origin and
destination.

• In VANETs, nodes in urban environments can
easily number in the thousands or tens of thou-
sands.
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Recent interest in VANETs [23] [8] has encour-
aged researchers to design experiments that better
model real vehicular traffic scenarios. For exam-
ple, [12] studies the behavior of the MAC layer in
a vehicular environment using arbitrary road plans
while [25] and [24] use the CORSIM traffic mi-
crosimulator to provide mobility traces for the simu-
lation.

A small number of researchers have accounted
for street-constrained motion using real road plans
in their VANET simulations. In a closely related
work, Saha and Johnson [22] incorporate real map
data into the NS-2 network simulator. A limitation of
their work, however, is that cars do not interact with
one another and there is no notion of traffic control,
so each car consistently moves at or near the esti-
mated speed limit. Because nodes move at unrealis-
tic speeds, the interaction time between nodes in the
simulation can be significantly different from reality.
As a result, the wireless network interactions among
the vehicles are similarly invalid.

In [24], the authors use CORSIM to provide a
highly accurate model of vehicular movement. How-
ever, in this case, the vehicular network simulator is
detached from the wireless network simulator, mak-
ing it difficult to close the feedback loop in applica-
tions such as “traffic advisory,” where participating
nodes may alter their routes based on real-time ob-
served traffic conditions. For example, in such an en-
vironment, the participating nodes are likely to alter
their route to reduce travel time if there is congestion
along their current routes. In this case, it is likely that
the density of participating nodes along such “faster
routes” will be higher than on slower routes, further
altering network connectivity by increasing interfer-
ence.

Many accurate models for simulating vehicular
traffic exist, so why build a new model? In wire-
less network simulators, each node is treated individ-
ually for purposes of sending and receiving messages

and repositioning the node on a field according to its
mobility model. Because wireless network perfor-
mance and location are tightly coupled, one cannot
attain accurate wireless network simulation results
unless the underlying mobility model is sufficiently
accurate. Unfortunately, all known vehicular traffic
simulators model vehicular traffic according to traf-
fic flows measured in number of vehicles per unit
time. In these models, vehicles are treated individ-
ually only when they enter or leave a segment; when
inside a segment, all vehicles are indistinguishable
from each other. This critical design choice neces-
sitates an alternate traffic model to ensure accurate
wireless network simulation results.

3 Fundamental Abstractions

In this section, we describe the essential abstractions
for enabling street-constrained mobility in a wireless
network simulator. These abstractions represent el-
ements that should be implemented in all simulators
attempting to include vehicular traffic mobility, inde-
pendent of the traffic model.

At the most basic level, the simulation must ac-
count for vehicles that are directly tied to the posi-
tion of radios on the simulation field. Unlike radios
in most network simulators, where the size of the ra-
dios is considered negligible, the radios in a vehic-
ular network must be assigned to an object of some
length. Vehicular size can be uniform, as in the case
of using an average vehicle length, or vehicle sizes
can vary according to an empirically-derived distri-
bution. Further, these vehicles cannot be allowed to
collide with one another, unless the resulting colli-
sion is modeled appropriately.

We consider two approaches to modeling a sys-
tem in which collisions can occur. In the particle-
system approach, designers model a system that al-
lows nodes to move freely and use collision detection
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to react to collision events. This reactive approach is
appropriate for systems in which nodes are “dumb”
in the sense that they do not attempt to alter their tra-
jectories according to environmental conditions. In
our vehicular approach, we model a system of colli-
sion avoidance. We assume that vehicles avoid col-
lisions if possible. Further, we include traffic control
mechanisms that force drivers to follow a determinis-
tic admission control protocol when encountering an
intersection. This model does not preclude the oc-
currence of a collision event. A collision event can
occur if one or more vehicles create a situation in
which another vehicle cannot avoid collision given
its mobility constraints. Such a collision can be made
to impact the traffic flow in the vehicular network.

Another essential element for modeling vehicu-
lar traffic is the notion of aroad segment, or link.
Formally, a road segment is any portion of a road
between two intersections. Road segments can be
described by the following vehicle-independent at-
tributes:

• Shape–The road segment, if not a straight line,
can be represented by two more more line seg-
ments described by three or more endpoints. Of
these endpoints, exactly two unique points must
be indicated as endpoints for the entire road seg-
ment.

• Length–The length of the road segment is de-
fined by the sum of the lengths of its line seg-
ments.

• Width–The number of lanes in which vehicles
can move. The number of lanes for each direc-
tion of traffic may be different.

• Name–Each road segment should be assigned to
a street name.

• Average maximum speed–This is often repre-

sented by the posted speed limit for the seg-
ment.

• Class–The type of road (e.g., divided highway,
local street, etc.).

• Address–Each road segment should be assigned
start and end addresses for both sides of both
segment endpoints.

A related element is theintersectionabstraction.
An intersection can be described by the location of
the center of the intersection, the list of road seg-
ments that form the intersection and the traffic con-
trol, if any, employed at that intersection. It may also
be useful to include information such as the dimen-
sions of the intersection, the number of streets at the
intersection and the types of streets incident on the
intersection.

4 Vehicular Mobility Models

We now present vehicular mobility models that can
be included in a network simulator. Each model sup-
ports variable levels of detail according to the num-
ber of parameters that are defined for the simulation.
If tuned to empirical data, the parameters can im-
prove simulation accuracy, often at the cost of in-
creased simulation complexity and runtime.

For the purposes of this discussion, we divide mo-
bility models in our simulator into an intra-segment
component, an inter-segment component and a route
management and execution component (Fig. 1). We
discuss these components in order.

4.1 Intra-segment Mobility

The intra-segment mobility model controls vehicu-
lar motion from the point at which a vehicle enters a
road segment to the point at which it exits the seg-
ment. For this component, we consider only the
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Figure 1: Illustration of vehicular mobility compo-
nents and their interactions in STRAW.

well-known car-following modelof vehicular mo-
tion. At the simplest level, this model states that a
vehicle moves at or near the same speed as the ve-
hicle in front of it, if there is such a vehicle within
sufficient range of the current vehicle. Two impor-
tant parameters for this model are the speed of the
vehicle being followed and the space between the
followed and the the following vehicle. There are
many ways to determine this intervehicle distance,
though it is often modeled as a polynomial function
of velocity [21].

The car-following model does not specify a vehi-
cle’s behavior when there is no other (nearby) ve-
hicle to follow. We assume that if a vehicle is not
within a window of inter-vehicle spacing defined by

the car-following model, it accelerates at its speci-
fied rate until reaching the vehicle’s maximum speed
for the current segment. The acceleration rate can
be constant, dependent on the current speed or de-
pendent on the “type” of driver (e.g., aggressive or
defensive driver, hurried or “Sunday” driver). Simi-
larly, a vehicle’s maximum speed can be set to the the
speed limit of the segment being traversed, a value
assigned according to some distribution around that
speed limit or a value that is dependent on the afore-
mentioned “type” of driver.

The intra-segment model must also specify how
non-following vehicles behave when encountering
traffic control. We consider two primary forms of
traffic control: stop signs and stoplights. Some forms
of traffic control, such as railroad crossing gates, can
be generalized to one of these types of traffic control;
others, such as yield signs and speed-limit changes
must be modeled differently. In the case of stop signs
or red stoplights, an approaching vehicle must come
to a stop. A yellow stoplight will cause a vehicle to
come to a stop only if it cannot cross the intersec-
tion before the light turns red. For all cases in which
a vehicle must come to a stop, the vehicle must de-
celerate to zero velocity before encountering the in-
tersection. This can be accomplished with a single,
global deceleration rate, a speed-dependent rate or a
rate that varies between vehicles according to some
distribution.

Another important component of intra-segment
mobility is the notion of lane changes. A vehicle can
change lanes only if there is space available in an
immediately adjacent lane. We consider two reasons
for lane changing: increasing speed and preparation
for turning.1 In the former case, if the average speed
in an adjacent lane is higher than the current lane, it

1Arguably, a third reason for changing lanes could be de-
scribed simply as “personal preference,” but we choose not to
discuss this model as it is difficult to implement accurately.
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is likely that the lane change can occur. We contend
this is true because a higher average speed indicates
not only that the lane has less congestion, but that the
inter-vehicle spacing is greater.

For the purposes of changing lanes to execute a
turn, it is quite likely that the turning vehicle will
cause the average speed of the current lane to de-
crease. In fact, in a highly congested network, there
may never be enough space to change lanes. To avoid
indefinite postponement, it is common for a driver
in one lane to allow space for a driver attempting
to change to the current lane. One can model this
scenario by implementing a “signaling” method that
causes a vehicle in the adjacent lane to make room
for the incoming vehicle with some probability.

4.2 Inter-segment Mobility

The inter-segment mobility model determines the be-
havior of vehicles between road segments; i.e., at in-
tersections. The inter-segment mobility model can
classify intersections according to the number of in-
tersecting road segments, the types of road segments,
and the type of traffic control, if any, at the intersec-
tion. In essence, the inter-segment mobility model
must perform admission control at each intersection.
The traffic-control rules vary according to the inter-
section type. For the purposes of this discussion,
we assume that the Route Management and Exe-
cution component discussed in Section 4.3 has al-
ready selected the next road segment before the ve-
hicle encounters the intersection and that the vehicle
discussed is not currently following another vehicle
when it determines the action to take at the intersec-
tion.

If there is no traffic control at an intersection,
we assume that there is a merging scenario (e.g.,
from an access ramp onto a highway). In this case,
the admission-control mechanism must determine if
there is enough space for the incoming vehicle to

enter the adjacent lane of the new road segment.
If so, the vehicle may enter; otherwise, the vehi-
cle must slow down until space becomes available.
Similar to the lane-changing component, this com-
ponent should include a mechanism to prevent in-
definite postponement.

If stop signs are present, the admission control
mechanism must consider the number of intersec-
tions containing the signs. For instance, if the in-
tersection is an “all-way” stop, a vehicle is admitted
into the next road segment only if there is room in
the next stop, and only after coming to a complete
stop and waiting until its turn to advance. To pre-
vent indefinite postponement, one may assign a total
linear ordering to streets in the intersection that de-
termine the order of release from the stopped posi-
tion. If there is one or more road segments without
a stop sign, vehicles at stop signs at that intersection
must yield to vehicles without a stop sign; they can
cross the intersection only if moving to the next road
segment would not cause a collision with another ve-
hicle (e.g., cross traffic). Note that this condition ac-
counts for the case where a vehicle cannot enter an
intersection because the next road segment is already
full.

If the intersection uses stoplights for traffic con-
trol, the inter-segment mobility component must
consider three cases: green, yellow and red lights. Of
these colors, there can be more than one type (e.g.,
a guarded turn signal). When a vehicle approaches
an intersection containing a red light, it should be-
gin to slow down at the location where the vehicle’s
deceleration rate curve would cause the vehicle to
stop just before the intersection. Upon encountering
a yellow light, the vehicle can cross the intersection
only if there is room on the next segment and if the
vehicle cannot safely come to a stop before the in-
tersection. Finally, upon encountering a green light,
the vehicle may cross the intersection without slow-
ing down, provided that the next road segment is not
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full. If the light is green and the vehicle executes a
turn, the vehicle may proceed only if the next road
segment is not full and, in the case of a left turn,
there is no oncoming traffic; otherwise, the vehicle
must come to a stop at the intersection. Assuming
that the vehicle can make make the turn, it must slow
down to the maximum turning speed for that vehicle
before executing the turn.

4.3 Route Management and Execution

The Route Management and Execution (RME) com-
ponent determines the ordered set of road segments
that a vehicle will traverse during a simulation run.
It must ensure that the sequence of road segments
along a vehicles path are continuous. The segments
along a path can be chosen deterministically, sto-
chastically or a combination of both.

In this paper, we discuss two RME implementa-
tions for STRAW (STreet RAndom Waypoint). The
first is a simple, modified random waypoint model
that requires no origin-destination (OD) informa-
tion. Unlike traditional random waypoint models,
this model determines a vehicle’s trajectory at each
intersection; namely, a vehicle will make a turn at an
intersection with a specified probability that can be
independently assigned to each vehicle.

The second model uses OD pairs and interarrival
times to drive the mobility in the network. In this
model, an OD pair is chosen for each each vehicle
and routes are initially calculated according to a min-
imum cost (e.g., fastest time, shortest distance). This
model can be configured to recalculate a vehicle’s
route if the cost of a path along or near its precalcu-
lated route significantly changes, thus enabling each
vehicle to react to traffic information.

Note that both models are independent of the un-
derlying vehicular mobility model. We detail the im-
plementation of these mobility models in the next
section.

5 Vehicular Traffic Simulation Im-
plementation

In this section, we describe the implementation-
specific elements to enable efficient interaction be-
tween the fundamental vehicular network constructs
discussed in Section 3 and the mobility model dis-
cussed in Section 4. Although our implementation
is written in Java, it can easily be ported to any lan-
guage supporting user-defined types.2 Our vehicular
mobility model extends interfaces provided by the
SWANS [3] simulator in thejist.swans.field
package, including theField interface, which en-
capsulates functionality for mapping radios to loca-
tions, theMobility interface, which provides in-
terfaces for implementing the mobility model and the
Spatial interface, which provides interfaces for
locating nodes in theField. The classes that im-
plement our vehicular mobility model are contained
in thejist.swans.field.streets package.

Before discussing components particular to vehic-
ular mobility, we present some basic concepts par-
ticular to our simulation environment. In all of our
simulations, individual vehicles are identified by a
unique integer value that maps directly to the node
id assigned to the vehicle’s radio. We have also ex-
tended SWANS to incorporate a notion of a penetra-
tion ratio; i.e., a percentage of vehicles in the net-
work that are equipped with radios. To enable inte-
gration with our network simulator, we represent ve-
hicles without radios simply as vehicles with radios
that cannot send or receive. This enables us to map
node IDs directly to vehicle IDs consistently, and al-
lows vehicles that are not participating in network
communication to interact with participating vehi-
cles.

2Note that the porting of our implementation is best accom-
plished in an object-oriented language due to our reliance on
interfaces and hierarchies.
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5.1 Model-independent implementation

This section details the implementation of model-
independent components of our vehicular mobil-
ity implementation. These components are en-
capsulated in theRoadSegment, StreetName,
Shape, Intersection andSpatialStreets
classes.

Before discussing the detailed implementation of
these classes, it is important to describe how map
data is loaded into the simulator. This is performed
by theStreetMobility abstract class, which im-
plements theMobility interface and is extended
by the RME models to determine the next road.

Upon initialization, theStreetMobility class
loads street information from files containing the
road segment information, road segment shape and
street name. Note that the following relationships
hold: each road segment has exactly one street name
and zero or one shape. Further, street names may be
assigned to one or more road segments, while shapes
are assigned to exactly one road segment. If the road
segment has no entry in the shape file, the segment
forms a straight line; else the points along the road
are described by information in the shape file. The
road segment, street name and shape data are stored
in flat files containing fixed-length records. Thus,
each road segment entry contains a pointer to its cor-
responding shape record (if any) in the shape file and
each road segment contains a pointer to its corre-
sponding street name record.

When the StreetMobility constructor is
called, the user can specify, among other parame-
ters, the latitude-longitude position of the bottom-
left (Southwest) and top-right (Northeast) corners
of the region to which vehicle mobility should be
limited. Although the implementation could sim-
ply load all data in the files, for some municipali-
ties, the memory consumption due to unused map
data can become significant when the target region

is small. To reduce memory consumption, only road
segments that contain one endpoint in the specified
region are loaded into the simulator. Similarly, only
street names and shapes associated with these road
segments are loaded.

After eachRoadSegment is loaded into the sim-
ulator, a reference to that object is placed in aVec-
tor. TheRoadSegment Vector allows fast ac-
cess toRoadSegments identified by its index (an
int). This is particularly useful, for example, when
determining initial vehicle placement using random
road segments and when determining random OD
pairs. A reference to eachRoadSegment is also
loaded into a quad tree, or hierarchical grid, con-
taining aLinkedLists of Intersection ob-
jects as leaves. AnIntersection object con-
tains aLinkedList of RoadSegments, a lo-
cation representing its center (in latitude/longitude)
and a count of the number of streets. Because map
data is often imperfect, aRoadSegment is added
to an Intersection if one of its endpoints is
within a user-defined distance (5 m is usually suffi-
cient) from an existingIntersection. TheIn-
tersection class also provides fields and meth-
ods to facilitate the implementation of traffic control.
Because Java 1.4.x does not include a quad tree im-
plementation, we use theSpatialStreets class
(an extension of theSpatial class provided by
SWANS) to maintain the quad tree. The degree of
the quad tree can be specified by the user at runtime.

After loading RoadSegments and completing
the construction of the quad tree ofIntersec-
tions, theStreetMobility constructor loads
street names and shapes intoStreetName and
Shape objects. Because the number of streets and
segment shapes actually used in a simulation may
vary, but the street and shape indexes are constant
for a particular county,StreetName andShape
objects are placed inHashMap objects, where the
value of the index is the key and the reference to the
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object is the value.
The RoadSegment class includes the follow-

ing fields containing information provided by the
USCB’s TIGER data files [15]3:

int startAddressLeft;

int endAddressLeft;

int startAddressRight;

int endAddressRight;

Location2D startPoint;

Location2D endPoint;

char roadClass;4

int numberOfLanesToStart;

int numberOfLanesToFinish;

Note that thestartPoint andendPoint val-
ues are assigned arbitrarily from theRoadSeg-
ments endpoints, but the values are consistent for
the duration of the simulation and are used to de-
termine the trajectory for each vehicle along the
segment. Also note that locations are currently
represented as two-dimensional points because the
TIGER data files do not supply altitude information.
Should such data become available, the system can
be easily modified to support it.

TheRoadSegment class also contains the index
of the street name index, shape index and index in
theVector of RoadSegments as follows:

3Note that the Tiger data files do not contain information
about whether a road segment is one way. Further, estimates
for the number of lanes and the speed limit for a segment are
inferred from its road class.

4This assists in estimating the speed limit for the segment.

int streetIndex;

int shapeIndex;

int selfIndex;

TheRoadSegment class maintains several prop-
erties that aid in vehicle management within and be-
tweenRoadSegments, such as length of the seg-
ment, the maximum number of vehicles allowed on
a segment, the average vehicle size5, and following-
distance-related constants.

In addition to these constant values, theRoad-
Segment class contains properties for maintaining
runtime state about vehicles on eachRoadSeg-
ment. These include the number of vehicles on the
road segment, the number of lanes in the segment
and a linked list of vehicles for each lane in the seg-
ment:

int numberOfCars;

LinkedList carsToEnd [];

LinkedList carsToStart [];

The remaining classes mentioned in this section
are straightforward. TheStreetName class main-
tains a set ofStrings containing the street’s prefix
(e.g., N, S, E, W), name and suffix (e.g., Ln, Blvd,
etc.). TheShape class represents a multisegment
shape as an array of latitude/longitude pairs.

5.2 Initial Node Placement

Before the simulation can start, vehicles must be
placed on valid locations on the road plan for the
specified region. Currently, the simulator sup-
ports a random placement model, implemented by

5Our implementation currently supports only average vehicle
lengths but can be extended to support a distribution of vehicle
lengths, should the data become available to us.
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theStreetPlacementRandom class, which ex-
tends the SWANS simulator’sPlacement inter-
face. This simple model selects aRoadSegment at
random, then chooses a direction and a lane at ran-
dom. To simplify the implementation, the first vehi-
cle in a lane is placed at the front of the lane and sub-
sequent vehicles assigned to that lane are placed be-
hind the last vehicle in the lane. All nodes start with
zero velocity. Though simple, this model of place-
ment is sufficiently realistic if vehicles are provided
a “warm-up” period during which vehicles move, but
no network traffic is generated. This allows the ve-
hicles to acquire higher speeds and to change streets
before network performance is measured. We rou-
tinely include a warm-up time of at least 30 seconds
in each of our simulation runs.

Future iterations of the node placement model will
include support for traffic flows such that vehicles
enter and exit the field at various times during the
simulation run. This implementation will also in-
clude support for incoming flow rates at various lo-
cations, if such data is available.

5.3 Intra-segment mobility implementation

In this section, we detail the implementation of our
intra-segment mobility model. The implementation
consists of theStreetMobility class, which
implements theMobility interface to provide a
node’s position after each time step.

When the simulation starts, nodes move accord-
ing to thecar-following model such that nodes will
attempt to accelerate at a constant rate of up to 5 mph
per second to move with a speed equal to the max-
imum speed for the current driver.6 This speed is

6We acknowledge that acceleration rates are hardly uniform
in real life, but this simplifying assumption reduces program
and computational complexity. Future iterations of the mobil-
ity model will include more accurate acceleration curves when
such data becomes available.

equal to the speed limit for the current road plus
a Gaussian distributed value with a zero mean and
a 4 mph standard deviation.7 The car will alter its
speed according to the following rules:

• The car encounters an intersection and the next
road segment on which it will travel is full.In
this case, the car stops before the intersection
and remains stopped until there is room in the
next road segment.

• There is a car in front of the current car.In
this case, the node will slow down to the speed
necessary to maintain a speed-based following
distance between the current node and the node
in front of it. We use the simple formula cited
in [21]:

S = α + βV + γV 2, (1)

where

α = the vehicle length

β = the reaction time (we use 0.75 seconds)

γ = the reciprocal of twice the maximum av-
erage deceleration of the following vehi-
cle (we use the empirically-derived value,
0.0070104s2/m [21])

If the car in front of the current car is moving
faster than the current car, no speed adjustment
is necessary.

7According to the NHTSA [1], traffic engineers take drivers’
perceptions into account in setting speed limits. A posted speed
limit is often set to the speed at which 85 percent of drivers travel
at or below. However, [6] reports that observed speeds are nor-
mally distributed with a center at the posted speed limit. Un-
fortunately, we could not find a widely accepted mean for this
distribution.
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• The car encounters traffic control.In this case,
the car will slow down (at a uniform accelera-
tion) before an intersection with a red stoplight
or a stop sign; if the stoplight turns green, the
car attempts to accelerate if possible.

• The car turns onto a new street.In this case, the
car slows down before the intersection to make
the turn at a reasonable speed (5 mph), then ac-
celerates, if possible, to the highest speed it can
attain given the other constraints.

Because nodes for our experiments (i.e., urban en-
vironments) are constrained to roads in downtown
urban environments and therefore exhibit average
speeds no larger that 12 m/s for our experiments, we
update each node’s position once per second using its
current speed and direction. We intend to incorporate
speed-based position updates, among other features,
in future iterations of STRAW. It is also important
to note that lane changing has not been incorporated
into our simulator at this point.

5.4 Inter-segment mobility implementation

This section discusses the implementation of our
inter-segment mobility model. Our simulator sup-
ports two levels of admission control at an intersec-
tion.

The first form of admission control simulates com-
mon traffic control mechanisms. Our simulator sup-
ports stop signs and timed traffic lights. (Lights for
guarded turns are not currently supported.) We ex-
pect that future iterations of the model will include
triggered lights and guarded turns. Note that because
we do not currently support lane changing, we also
do not consider a vehicle’s current lane when it at-
tempts to make a turn.

TheIntersection class provides traffic con-
trol functionality in our simulator. In addition to

maintaining the location of the center of the inter-
section, theIntersection object also contains
other state information, such as the list ofRoad-
Segments incident on the intersection, the number
and index of unique streets incident on the intersec-
tion and the number of streets of each road class for
this intersection. This class also contains fields to
facilitate the synchronization of nodes attempting to
cross an intersection.

The Intersection class performs admission
control via thegetPauseTime method, which re-
turns the number of seconds for which a node must
pause at the intersection. A nonzero value indicates
that a node must stop; a zero value indicates that the
vehicle may cross the intersection.

Because real-world, per-intersection traffic con-
trol information is unavailable, the simulator cur-
rently assigns traffic control to intersections accord-
ing to the class of road segments at those intersec-
tions. For example, access to the intersection be-
tween two local/neighborhood roads is controlled by
a stop sign; access to the intersection between “sec-
ondary” roads and state highways is controlled by a
timed stoplight. The types of traffic control at vari-
ous intersections is given in Table 1. Our traffic light
model currently supports only two streets (up to four
road segments) at an intersection containing street
lights. Although the simulation will run if there are
more than two streets in such an intersection, it will
not correctly ensure that traffic flows without colli-
sion.

If the light is red, thegetPauseTime method
returns the number of seconds until the light turns
green; otherwise, thegetPauseTime method re-
turns zero, indicating that the vehicle may cross the
intersection.

For simplicity, we used timed stoplights that turn
red and green at regular intervals that are dependent
on the simulation time. This means that all of the
stoplights for intersections of the same type are syn-
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Road Class Interstate US Highway Secondary Urban/Rural Ramp

Interstate stoplight (30) stoplight (30) stoplight(15) stop sign no pause
US Highway stoplight (30) stoplight (30) stoplight (15) stop sign no pause
Secondary stoplight (45) stoplight (45) stoplight(30) stop sign stop sign

Urban/Rural no pause no pause no pause stop sign stop sign
Ramp no pause no pause no pause no pause no pause

Table 1: Table of traffic control and pause times according to intersecting street types. The column header
represents the current street type and the row header represents theintersecting street type. The values in
parentheses represents the number of seconds per green light at thatintersection.

chronized, an assumption that is invalid in the real
world, in general. We used this technique for its sim-
plicity.

If a vehicle encounters a stop sign at an intersec-
tion, thegetPauseTime method determines the
vehicle’s stop time according to the state of the in-
tersection. In the simplest case, if there are no vehi-
cles currently in the intersection or waiting to cross
the intersection, the vehicle stops for one second and
crosses the intersection. If theIntersection ob-
ject has already selected a vehicle,VA, to cross the
intersection andVA has not yet crossed the intersec-
tion, a different vehicle on the same street, but on the
opposite side of the intersection fromVA, may cross
the intersection. Otherwise, the vehicle is added to
the list of waiting vehicles and pauses for three sec-
onds (allowingVA to cross the intersection) before it
can attempt to cross the intersection by callingget-
PauseTime again.

To prevent indefinite postponement, theInter-
section object contains a field that specifies the
identifier of the next street on which vehicles can
cross the intersection. The “next street” is changed
after the previous street is serviced; the streets at
an intersection are serviced round robin. If there is
no contention at an intersection, however, the street
with one ore more vehicles is serviced immediately.
Although real drivers do not necessarily behave in

such a reasonable manner, we believe that this model
is sufficiently accurate for modeling vehicle interac-
tions at stop-sign intersections.

Another type of admission control is regulated by
the capacity of the next road segment on which the
vehicle will travel. A node is not allowed to move to
the next segment unless there is enough room on that
segment. This admission control is performed only
after the traffic control admission permits the vehicle
to move to the next segment.

The RoadSegment class’saddNode method
performs admission control according to the capacity
of lanes in that segment. In the current implementa-
tion, this method first finds the lane with the fewest
vehicles. If there is room for the incoming vehicle,
the method adds the vehicle to the lane and returns
a reference to the linked list of vehicles in that lane,
for car-following purposes. If there is not room, the
method returnsnull. If a vehicle receivesnull
from anaddNode call at an intersection boundary,
it remains at the intersection threshold until room
becomes available. In particular, the vehicle calls
addNode every 1/4 second of simulation time until
the method returns a valid reference. At this point,
the vehicle moves to the next segment on its path,
and the intra-segment mobility module manages its
motion.
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5.5 Per-Vehicle State Information

To manage vehicular mobility efficiently, each ve-
hicle maintains state information in aStreetMo-
bilityInfo object. This state object allows the
user to configure per-vehicle settings such as its max-
imum speed, reaction time and acceleration rate, and
to maintain information vital to the car-following and
inter-segment mobility models, including the road
segment that the vehicle is currently on, the direc-
tion it is moving, the next road segment it will travel,
the vehicle that it is following, the current speed and
the remaining distance to the end of the current road
segment.

5.6 Route Management and Execution

This section describes the Route Management and
Execution (RME) implementations for our STRAW
mobility model. We consider two models: state-
less intersegment mobility and mobility with origin-
destination (OD) pairs. In the former model, the next
segment to which a vehicle will move is determined
stochastically at each intersection. In the latter one,
the decision is based on the precomputed shortest
path between the vehicle’s specified origin and des-
tination.

5.6.1 Simple Intersegment Mobility

The simple intersegment mobility model maintains a
single value to determine the next segment on which
a vehicle will travel: the probability that it will turn
at any given intersection. This probability can be
shared among all vehicles, or can be assigned differ-
ently to different vehicles. Although this model does
not represent any real car-driving phenomenon, it is
simple to implement and incurs negligible storage
and computation overhead while producing a weak

form of random waypoint mobility.8

This component is implemented by theStreet-
MobilityRandom class, which extends theStreet-
Mobility abstract class by defining the inherited
setNextRoad method. This method returns the
next segment on the same street in the current di-
rection of motion with probability (1-p) and a road
segment on a different street (chosen at random)
with probability p. The valuep for a vehicle is
maintained by theStreetMobilityInfoRan-
dom class, which extends theStreetMobility-
Info class.

5.6.2 Mobility with Origin-Destination Pairs

This scenario models vehicles that move from a start
point to an end point along a path that approximately
minimizes trip duration according to the speed limit
of the available roads. This model currently supports
three types of motion: a single origin and destina-
tion for the duration of the experiment, a sequence
of randomly generated origin-destination pairs and a
sequence of predetermined origin-destination pairs.
In future iterations, we will extend the simulator to
support the abundance of existing empirical traffic
information that is expressed in flows of vehicles per
unit time at a road segment.

When a vehicle is placed on a field and its initial
OD pair has been specified, the simulator computes
the shortest path between origin and destination. The
vehicle then follows the path until reaching the desti-
nation. If another OD pair is specified, then the new
path is calculated; otherwise, the node is considered
to have finished participating in the simulation and
is moved off the map (with its radio turned off) to

8We describe this motion as “weak” random waypoint be-
cause the set of possible waypoints and the set of possible tra-
jectories are constrained by the fixed street plan. This differs
from the random waypoint model in an open field, where way-
points and trajectories are chosen uniformly at random.
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prevent interaction with other nodes.
This component uses theA* shortest pathalgo-

rithm to find a near-optimal shortest path while sig-
nificantly reducing the range of the problem space
explored by using a heuristic function that estimates
the distance to the goal. For the purposes of this com-
ponent, we use theManhattan distance(i.e., sum of
the distances along the two orthogonal axes between
origin and destination) between the current location
and the destination as the heuristic for computing the
estimated remaining distance. To reduce the num-
ber of turns along a path, and to increase the like-
lihood of a fast route, the algorithm penalizes turns
and non-interstate routes by increasing the costs of
paths meeting these criteria.

Mobility with OD pairs is implemented by the
StreetMobilityOD class, which implements
the StreetMobility abstract class by defin-
ing thesetNextRoad method, which returns the
next road segment along the vehicle’s current path.
The state for each vehicle is represented by the
StreetMobilityInfoOD class, which extends
the StreetMobilityInfo class to include the
destination location and the path (a linked list of road
segments) from origin to destination.

The A* search is implemented with theAS-
tarSearch class, which uses theSegmentN-
ode class to represent road segments as nodes in
a graph. TheSegmentNode class implements the
AStarNode abstract class to provide definitions for
the heuristic and cost functions. In the current im-
plementation, the cost of a particular road segment is
the estimated speed limit for that segment. In future
iterations of this component, we will include other
sources for cost analysis, such as current road and
traffic conditions.

It is important to note that the A* search is by far
the most computationally intensive part of our mo-
bility model. In the future, we will implement route
caching to improve performance in this area.

6 Performance

In this section, we provide a brief summary of
STRAW’s performance. For all of our figures, we
simulated a 16-minute experiment that included a
30-second warm-up time and a 30-second resolution
time typical of network performance experiments.
Each data point represents the average of five sim-
ulation runs, and error bars representing the standard
deviation are included if significant. We used the
random placement model described in Section 5.2 to
determine initial node placement. For STRAW mo-
bility with OD pairs, each time a node reached a des-
tination, we chose a new destination at random and
computed the shortest path to that location. These
simulations were run on a server equipped with an
Intel Xeon 2 GHz processor. The simulation ran con-
current with other applications that consumed ap-
proximately 50% of the CPU.

Figure 2 illustrates simulation runtimes accord-
ing to numbers of nodes in the system. We com-
pare the performance of STRAW in Boston, MA and
Chicago, IL to that of the random waypoint model
in regions of similar size. As discussed in Sec-
tion 5.6.1, the “simple” STRAW mobility model in-
curs a small (approximately constant) factor of run-
time overhead compared to the random waypoint
model. The STRAW mobility with OD pairs model
requires a significantly longer execution time, which
is due to the high cost of computing shortest paths.
It is important to note that runtimes for this mobility
model eventually decreased as the number of nodes
increased. This occurs because there is significant
congestion in the network (i.e., a traffic jam), mean-
ing that each node covers less distance per unit of
simulation time and thus will require fewer shortest
path searches.

Figure 3 demonstrates how the simulation’s mem-
ory consumption varies according to the number of
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Figure 2: Effect of number of nodes on runtime
for STRAW and a simple random waypoint model
(RWP).

nodes in the system.9 We include the same mobility
models as in the previous figure. In this case, the ran-
dom waypoint model, which does not load any map
data, provides a baseline for the memory consump-
tion in STRAW. Notice that the number of nodes in
the system has much smaller effect on memory con-
sumption than it does on the runtime. This indicates
that memory is not a significant factor when scaling
the system to large numbers of nodes. In fact, the
most significant factor for memory consumption is
the number of road segments in test region, which
is directly correlated to the size of the region. For
the portion of the Chicago region used in this ex-
periment (approximately 2 square miles, 370 seg-
ments), total memory consumption was between 2
and 5 MB. When loading map data for the entire city
of Chicago (230 square miles containing 157,120
road segments, not shown), memory consumption

9Note that we use the Java API’s memory reporting functions
to determine memory consumption. Due to Java’s garbage col-
lection implementation, it is difficult to determine how much al-
located memory is actually being consumed. We attribute anom-
alies in the memory consumption graph to this property, not to
any intrinsic properties of STRAW or the SWANS simulator.
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Figure 3: Effect of number of nodes on memory con-
sumption for STRAW and a simple random waypoint
model (RWP).

was approximately 92 MB. Although the size of the
data structures supporting STRAW varies during the
execution, the 92 MB value yields approximately 58
bytes of memory perRoadSegment, on average.

The results of our experiments demonstrate that,
in general, one can successfully model large-scale
realistic vehicular motion on commodity hardware.
Although STRAW with OD pairs does not scale as
well as other mobility models, its worst-case perfor-
mance is bounded by the finite capacity of the under-
lying road plan.

7 Conclusion and Future Work

This paper described the principles and implementa-
tion of a realistic vehicular mobility model for use in
a wireless network simulator. We discussed the mo-
tivation for including a realistic mobility model for
correctly evaluating the performance of vehicular ad-
hoc networks. Then we identified implementation-
independent features of vehicular mobility models
and proposed three components of vehicular mobil-
ity models that can be developed and enhanced in-
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dependently to improve realism. Next, we detailed
our implementation of the STRAW (STreet RAndom
Waypoint) vehicular mobility model and its support-
ing components, such as the street placement model,
the car-following intra-segment mobility implemen-
tation, basic traffic control implementations and the
route management and execution implementations.
Finally, we demonstrated that STRAW mobility pro-
vides reasonable runtimes and memory consumption
that scales fairly well with the size of the simulation.

Although we believe that our model is a signifi-
cant improvement over the random waypoint model
and other similar vehicular mobility models, we ac-
knowledge that there are several important details
that may further enhance the realism of the mobil-
ity model. For example, most empirical traffic data
concerns traffic flows; i.e., counts of vehicles enter-
ing (and/or exiting) a road segment per unit time. We
intend to extend our mobility model to support such
traffic flows. Another important aspect of vehicular
motion is lane changing. In the future, we will im-
plement lane changing and ensure that vehicles must
be located in the correct lane before turning at an
intersection, for example. We are also interested in
implementing the capability to calculate the shortest
path between origin and destination by including the
current average vehicle speed on a segment to de-
termine the cost of a segment. Finally, performance
analysis and optimization of our system is part of our
future work.
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ÖZGÜNER, U. Urban multi-hop broadcast protocol for
inter-vehicle communication systems. InProc. of ACM
VANET(2004).

[13] KOTZ, D., NEWPORT, C., GRAY, R. S., LIU , J., YUAN ,
Y., AND ELLIOTT, C. Experimental evaluation of wireless
simulation assumptions. InProc. of ACM MSWIM(2004).

[14] L I , J., JANNOTTI , J., COUTO, D. S. J. D., KARGER,
D. R., AND MORRIS, R. A scalable location service for
geographic ad hoc routing. InProc. of ACM/IEEE Mobi-
Com(2000).

[15] M ILLER , C. L. UA census 2000 TIGER/Line files techni-
cal documentation, April 2002.

[16] MORRIS, R., JANNOTTI , J., KAASHOEK, F., LI , J.,AND
DECOUTO, D. Carnet: a scalable ad hoc wireless network
system. InProc. of ACM SIGOPS European Workshop
(2000).

[17] NAIN , D., PETIGARA, N., AND BALAKRISHNAN , H. In-
tegrated routing and storage for messaging applications in
mobile ad hoc networks.Mob. Netw. Appl. 9, 6 (2004),
595–604.

[18] PERKINS, C. Ad hoc on demand distance vector (aodv)
routing, 1997.

[19] PERKINS, C., AND BHAGWAT, P. Highly dynamic
destination-sequenced distance-vector routing (DSDV) for
mobile computers. InProc. of ACM SIGCOMM(1994).

[20] PROJECT, V. The network simulator - ns-2.
[21] ROTHERY, R. W. Car following models. InTrac Flow

Theory (1992), Transportation Research Board, Special
Report 165.

16



[22] SAHA , A. K., AND JOHNSON, D. B. Modeling mobility
for vehicular ad-hoc networks. InProc. of ACM VANET
(2004).

[23] SMITH , T. Auto makers to create a car-to-car wlan by
2006. The Register (www.theregister.co.uk), December
2004.

[24] WU, H., FUJIMOTO, R., GUENSLER, R., AND HUNTER,
M. Mddv: a mobility-centric data dissemination algorithm
for vehicular networks. InProc. of ACM VANET(2004).

[25] Y IN , J., ELBATT, T., YEUNG, G., RYU , B., HABER-
MAS, S., KRISHNAN, H., AND TALTY, T. Performance
evaluation of safety applications over dsrc vehicular ad hoc
networks. InProc. of ACM VANET(2004).

[26] YOON, J., LIU , M., AND NOBLE, B. Sound mobility
models. InProc. of ACM/IEEE MobiCom(2003).

[27] ZENG, X., BAGRODIA, R., AND GERLA, M. Glomosim:
a library for parallel simulation of large-scale wireless net-
works. InProc. of PADS(1998).

17



STRAW - An integrated mobility & traffic 
model for vehicular ad-hoc networks

David R. Choffnes & 
Fabián E. Bustamante

Department of Computer Science, 
Northwestern University

www.aqualab.cs.northwestern.edu



Dept. of Computer Science
Northwestern University 2

C3 - Car-to-Car Cooperation

An opportunity 
– Computers everywhere - ~100 in  a BMW 7x
– Increased interconnectivity (adv. in wireless communication)
– A large & well spread platform – growing vehicle population
– Good & accessible location information

Distributed systems based on car-to-car cooperation

Some example applications
– Traffic advisory
– Mobile sensor network for recognizance

A few key properties
– Self-organizable & infrastructure independent
– Natural scalability
– Highly resilient to failure

Distributed systems based on car-to-car cooperation
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A challenge for experimenters

C3 – a mobile ad-hoc network over vehicles
– Infrastructureless networks (ad-hoc networks)
– Nodes act as routers finding/maintaining routes to others
– Nodes are capable of movement & can be connected 

dynamically in an arbitrary manner (MANETS)

The challenge - How can we play with our ideas for 
such systems?
– Real-world experimentation 

• Currently no test-bed available
• Hard to explore scalability
• Classical problem with repeatability
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An experimenters’ challenge

Emulation
– Uses real sw/hw in simulated environment to ensure accuracy
– Higher scalability, but still limited

Network simulation (e.g. NS-2, GloMoSim, SWANS) 
– Scalable to large number of nodes
– Easy to vary system configuration
– Repeatability
– …

Desirable simulation characteristics
– Close correspondence with real world - trace-based simulation? …
– Generalizable - should enable a wide range of scenarios
– Feedback loop - enable self-steering (e.g., traffic advisory)
– Scalability - interesting problem instances
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Outline

C3 motivation & approach
Mobility models for MANETs
STRAW design and implementation
STRAW performance
Conclusion and future directions
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The importance of a mobility model

Mobility – key component of MANET simulators 
& emulators
– Mobility constraints (e.g., streets)

• Affects velocities and distances between cars, which 
affects radio transmission

– Nodes should physically interact with one another
• E.g., avoid collisions

– Central to “feedback loop” in many scenarios
• Cars can change trajectory in response to data

– What’s commonly used?
• Random waypoint, Mobility traces, ...
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Random Waypoint considered harmful

Random Waypoint (RWP)
– Benefits

• Simple
• Common
• Low overhead

– Disadvantages
• NOT representative of 

mobility for worst-case or 
general-case performance

• Nodes cannot interact wrt 
mobility

• Encourages use of open 
field simulation
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RWP effects on wireless communication

Every position on map is a waypoint with 
equal probability
– Average number of neighbors is relatively uniform 

over the field
Nodes generally cannot leave the field
– Routes generally live longer

Arbitrary stopping points and stopping times
– Affects route lifetimes arbitrarily

Arbitrary speeds and speed distributions
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Mobility traces

Advantages
– Represents real motion
– Little overhead in simulation

Disadvantages
– Difficult to obtain
– Rarely distributed (legal issues)
– Difficult to generalize
– Does not allow feedback loop
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Vehicular motion

Stoplight
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Car mobility & wireless communication

Nodes tend to spend more time at intersections
– Increases interference in this region
– Increases number of unconnected pairs

Buildings further reduce connectivity between nodes 
on different streets
Nodes often traveling in opposite or orthogonal 
directions
– Short interaction time window

Vehicular congestion slows nodes
– Can stabilize topology, but can reduce overall connectivity

We need a new mobility model: STRAW
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Outline

C3 motivation & approach
Mobility models for MANETs
STRAW design and implementation
STRAW performance
Conclusion and future directions
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STRAW (Street Random Waypoint)

Node movement incorporates
– Car-following model
– Speed limits
– Traffic control
– Multiple lanes

Loads free map data for entire US (easily extended 
to load data from other map sources)
Low overhead
– Insignificant for “simple” model
– Bounded by vehicular capacity of region for shortest-path 

origin-destination (OD) calculations

Easy to configure
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Basic abstractions for vehicular motion

Vehicle (containing finite length)
Road Segment
– Shape
– Length
– Width
– Name
– Average maximum speed (speed limit)
– Class
– Address

Intersection
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Some implications of STRAW

Performance 
may not “port” 
across cities

Random waypoint 
performs far better 

than STRAW
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STRAW initialization

Loads road segments, names & shapes for 
rectangular region
– Organized into a quad tree, with intersections at 

the leaves
• Intersections contain a list of associated road segments
• Manage inter-segment mobility

– Number of lanes, speed limit, traffic control 
inferred from “road class”

Nodes placed on random streets & lanes
– If a node is already in that lane, put new one 

behind last node in the lane
– All nodes start with zero velocity
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Intra-segment mobility

Car-following model
– Speed-based following distance

Cruising speed
– Each vehicle moves at a speed distributed about 

the speed limit for the current segment
Acceleration/Deceleration
– Currently linear, can be extended to any curve 

made available
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Inter-segment mobility

Precondition for all segment changes - there 
is capacity on the next segment
Timed stoplights
– Wait times inferred from road classes

Stop signs
– Drivers take turns crossing the intersection

Highway merge
– No need to stop if there is room

Nodes gradually slow down to a stop before 
the intersection if they cannot cross it
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Route management & execution

Simple STRAW
– Turn with certain probability
– Insignificant overhead

STRAW with OD
– Pick a series of origins and destinations
– Overhead scales with size of region
– Uses efficient A* shortest path search
– Supports flows of vehicles from an origin to a 

destination
• Vehicles removed from communication participation 

when they leave the map
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Outline

C3 motivation & approach
Mobility models for MANETs
STRAW design and implementation
STRAW performance
Conclusion and future directions
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STRAW current implementation

Implemented as part of SWANS (Scalable 
Wireless Ad-hoc Network Simulator)
SWANS features
– Built atop Java in Simulation Time (JiST)
– Automates porting to Java application code to the 

simulator
– Very efficient and scalable discrete event sim
– Natural programming model
– Very modular and extensible, supports all 

important MANET abstractions
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A sample of SWANS performance

From: BARR, R. An efficient, unifying approach to simulation 
using virtual machines. PhD thesis, Cornell University, 2004.

Log-log scale
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How much does STRAW cost?

Reasonable runtime overhead

Varying nodes Varying field size

Runtime overhead (log-log scale)
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How much does STRAW cost?

Reasonably small memory overhead

Greater Chicago’s Cook County ≈ 92MB

Varying nodes Varying field size
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Conclusion & Future directions

Summary
– Mobility significantly impacts network perf.
– Performance varies with road plan
– STRAW models VANET mobility with low 

overhead
Future directions
– STRAW implications on the effectiveness of 

location-based, mobility-aware communication 
protocols

– Middleware for VANET applications
– Content distribution on VANETs


