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Abstract. This project aims at extending Constraint Programming (CP)
with four promising idens: linear programming, flow algorithms, random-
ization and symmetry breaking. The work has been conducted by TLOG
in collaboration with 1151 at Cornell University.

1 Introduction

W have [oeused our attention on Cardinality Matrix Problems (CMP),
Cardinality Matrix Problems are expressed by a matels where each row
and each column are constrained by cardinality constraints, that is by
constraints that define the number of times each value in & row or in
a column has (o be assigned to varlables. A typical example of CMP is
a rostering problems, and a lot of real world problemz can b modelled
asa CMP. We decided to mainly consider CMPs because it hos alréady
been proved that CP iz certainly one of the best technigues to solve these
problems, Sports scheduling problems are good examples of this claim,
for instance the National Football League in the US recently adopted
ILOG OPL and ILOG Solver to compute the schedule of the season.
The TES institute at Cornell has been working for several years on s
restricted fonn of the CMP: the alldiff matrix problem. In this cage, each
value has to be assigned at most once in every row and every column. The
alldiff matrix is the underlying structure of several roal world problems,
such as design of scientific experiments or fiber optics routing. Thus, we
decided Hrst wo study this restriction of CMPs, because we know that
most of the results that we obtain for alldiff matrix problem could be
adapted to CMPs.

We obtained two types of results: a new constraint using OR algorithms
and dedicated to alldiff matrix problems and an original and efficient
method to break the symmetries in that kind of problems. These resulis
are presented in the next section.
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2 Results
2.1  AlldiffMatrix Constraint

An alldiff matrix problem is defined by o matrix and imposes an alldif
comstraint on évery row and every columy of the matrix. Consider the
following example: a Gx6 matrix has to be filled with numbers ranging
fram 1 to 6. A classical mode! in OF conststs of defining one variable per
cell, each variable can take a value from 1 to 6, and one alldiff contraint
per row and one alldiff contraint per column. Now, consider the following
situation:

M E

s
e = ]

In this case, the alldiff constraints are only able to deduce that:
« anly the values 5 and 6 can be assigned to the cells (5,3) and (6, 3)
» anly the values 3 and 6 can be assigned to the cells [5, 4) and {6, 4).

However, with a careful study we can see that the value 6 will be assigned
either to (5,3) and (6,4) or to (5,4) and (6, 3) this means that the ather
columns.of rows 5 and 6 cannot take these vahies and therefore we can
remnove the value 6 from the domains of the corresponding variables.
Such & filtering algorithm can be easily established thanks to the Alld-
iffMatriz constraint, This constraints proposes to add o new alldiff con-
straint based on varfables defined on the symhbols that are used and to
link all the variables of all the alldiff constraints.

Moreover, we can identify the filtering algorithm sstociated with this
constraint, We can prove the following proposition:

Proposition 1 Consider an alldiff matriz prodlem. Then, an alldiff con-
straint defiveed on symbol & ensures that for every px g reclangles, denoted
by T, wre have:

mik) 2 p+qg—n,

where mik) denotes the number of times the symbol k appears i 7.

Thiz means that the AlldiTMatrix constraint is able to ensure with a
polynomial algorithm a property that have to be satisfied by an expo-
nential number of rectangles,

2.2 Symmetry breaking

Symmetries in search problems can increase the size of the search space
dramatically. Breaking syvmmetries.is therefore highly desirable. Symme-
try breaking strategies have been proposed for matriz models, congider-
ing the permmtation of rows and columns. We propose a representation




for matrix models that emphasizes a third level of symmetry, in addi-
tion to the permutation of rows and columns — permutation of symbals.
Furthermore, our representation scheme also allows us to identify sym-
metries at a higher level of grunulerity, namely by exchanging portions of
rows, colutnns, or symbols, This feature is particular useful for problems
that have additional constraints per row, cobumn, or symbal that prevent
the permutation of the complete row (column, symbol), such as models
with pre-sssigned values in some matrix cells. We show that exchang-
ing portions of {or entire) rows, columns, or symbaols in an alldiff matriz
model corresponds to toggling the edge labels of a bipartite graph, which
allows us to efficiently remove symmetries in an alldiff matriz model.
The main advantage of our approach in regards to the previous studics
is that for the first time we are able to break some symmetries whereas
some variables are preassigned. '

The results we obtained are fully detailied in the extended abstract which
is joined with this report.

3 Visit to Cornell

Jean-Charles Régin (ILOG Directar of Constraint Programming} will
vigit TIST at Cornell from March 27 to April 3 2004,




The Cardinality Matrix Constraint *

Jean-Charles Régin® and Carla Gomes®
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Abstract. Cardinality matrix problems are the underlying structure
of several real world problems such as rostering, sports scheduling | and
timetabling. These are hard computational problems given their inherent
combinatoridl structure. Constraint based approaches have been shown
to outperform other approaches for solving these problems. In this pa-
per we propose the cardinality matrix constraint, a specialized global
constraint for cardinality matrix problems. The cardinality matrix con-
straint takes advantage of the intrinsic stracture of the cardinality matrix
problems. If uses a global cardinality constraint per row and per column
and one cardinality {0,1)-matrix constraint per symbol. This latter con-
straint corresponds to solving a special case of a network flow problem,
the transpartation problem, which effectively captures the interactions
between rows, columuns, asd symbols of cardinality matrix problems. Our
results show that the cardinality mattix constraint outperforms standard
constraint based formulations of cardinality matrix problems.

1 Introduction

In recent years Constraint Programming (CI') techniques have been shown to
effectively solve hard combinatorial problems. In fact, constraint based methods
excel at solving problems that are inherently combinatorial, clearly outperform-
ing traditional Operations Research (OR) technigues. Sports scheduling and ros-
tering problems are good examples of highly combinatorial problems, for which
CT based techniques have been shown to be very successful (sce eig:, [11;5]):

In a rostering problem, piven a set of workers, a set of tasks, and a set
of days (typically a week), the goal is to assign the tasks per person and per
day satisfying various constraints. Among them, typical constraints reguire the
workload per day to be constrained by the number of times each task has to he
performed, and the schedule of each person to be constrainaed by the number of
times each task has to be performed.

Sports scheduling problems and rostering problems are particular cases of
what we refer to as cardinality metriz problems. Cardinality matrix problems
are eéxpressed by a matrix of variables where each row and each column are
constrained by cardinality constraints, that is by constraints that define the

* Supported by the Imtellipent Information Systems Institute, Cornell Universioy
(ATOSH grant F49620-01-1-0076) and EQARD grant FASG55-02-1-3022.
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number of times each valug in a row or in a column has to be assigned to
variables. We can model the rostering problem as a cardinality matrix problem
in which each row of the matrix corresponds to a worker and each column of the
miatrix corresponds to a day of the week, The values in the matrix correspond to
tasks. The cardinality constraints on the rows constrain the number of tasks to
be assigned per worker and the cardinality constraints on the columns constrain
the number of task to be assigned daily,

A straightforward model for representing cardinality matrix problems, e.g.,
rostering problems, consists of:

« & matrix of variables, in which each wvariable corresponds to & eell that
takes as value the task to be performed on a given day by a given person. The
variable domains are the set of tasks that can be performed by a given person
for o given day.

+ & global cardinality constraint (GCC) for every vow, which constraing the
number of times each task has to be performed by the person corresponding to
the row.

« a global cardinality constraint for every column; which constrains the num-
ber of times each task has to be performed for the day corresponding to the
column,

This formulation uses several global constraints and can give good results in
practice.. However, it suffers from some major drawbacks, namely:

1. Thereis poor communication between the variablez constraining the numbier
of times a value has to be taken, called cardinality variables.

2: The communication between the rows and the columns is poor. In fact, any
GCC defined on a row and any GCC defined on a column have only one
variable in common, This means that we have an efficient way to deal with
all the variables of a row (or a column) as a whole, but we are not able to
really deal with the notion of a matrix.

3. The GCCs deal with a set of predefined intervals constraining for each value
the number of times the value has to be assigned. In real-life problems, vari-
ables defining thase intervals are more often nsed. Even if it is easy to deduce
intervals from these variables, becanse it corresponds to the boundarvies of
these variables, we do not have filtering algorithms to reduce their ranges
in the general case (such a filtering algorithm has been proposed when the
domains of the variables on which the GCCs are defined are ranges [9]).

The communication between constraints mentioned in (1) and (2) can be
improved by adding implied constraints: An implied constraint for a given C5P
is & constraint that can be dedvoced from the other constraints of the CSP,
but which introduces a fltering algorithm that can reveal inconsistencies which
are not discovered by the combination of the filtering algorithms of the other
constraints. So the introduction of implied constraints can lead to a reduction
of the number of backtracks needed to find ope solution or to prove that there
is none. The introduction of implied consteaints can improve dramatically the




efficiency of search since it allows for the detection of inconsistencies earlier than
it would be possible if such constraints were not stated explicitly (see c.z., [3]).

The limitation stated in point (2) deserves a more careful study. Consider a
restricted form of the cardinality matrix problems: the alldiff matrix problem[8].
In this case, each value has to be assigned at most onee in each row and each
column. The alldiff matrix characterizes the structure of several real world prob-
lems, such as design of scientific experiments or fiber optics routing. Consider
the following example: a 6x6 matrix has to be filled with oumbers ranging from
1 to 6 (this is a latin square problem). A classical model in CP consists of defin-
ing one variable per cell, each variable can take a value from 1 to 6, and one
alldiff constraint per row amd one alldiff constraint per colurn. Now, consider
the following situation: '

R

| L3 ] =

o

In this case, the alldiff constraints are only able to deduce that:
= only the values 5 and 6 can be assigned to the cells (5,3) and (6, 3)
« only the values 3 and G can be assigned to the cells (5, 4) and (6, 4).

However, with a careful study we can see that the value 6 will be assigned
either to {5,3) and (6,4) or to (5, 4) and (6, 3) this means that the other columns
of rows 5 and & cannot take these values and therefore we can remove the value 6
from the domains of the corresponding variables (the ones with a e in the fgure).
We will show how our approach; using what we refer to as the cardinality {0.1)-
matrix, automatically performs these inferences.

One of the key successful approaches in CP has been the identification of typ-
ical constraints that arise in several real-world problems and associate with them
very specialized and efficiens filtering algorithms, so-called global constraints. In
recent years several global constraints have been proposed and shown to boost
dramatically the performance of CP hased technigues.

We propose the cardinality matric constraint to capiure the structure of
cardinality matrix problems such as the rostering problem. A cardinality matrix
constraint (cardMatrix) C is specified in terms of an nxcm matrix M of variables
which take their values from a set of s symbols, and two sets (rowCard and
colCard) of cardinality variables that specify the number of times each symbol
has to appear in a row (rowCard) and the number of times each symbol has to
appear in a column (eolCard). Mare specifically, the set of cardinality variables
rowCard constrains the number of variables of a row { of M instantiated to
a symbol p to be equal to rewCard]i, p] and the set of cardinality variables
eolCard constrains the number of variables of a column § of M instantiated toa
symbol g to be equal to eslCard[j, q]. In order to take advantage of the stricture




underlying the cardinalily matriz constraint we introduce a constraint named
cardinality (0,1)-matrix. The cardinality (0,1)-matrix is a particular case of a
network How problem, the transportation problem. This constraint effectively
captures the interactions between rows, columns, and symbaols in a cardinality
matrix problem. We also develop a simple filtering algorithm for the cardinality
matrix constraint with a low complexity that enables us to reduce the ranges of
the cardinality variables. As we show in our experimental section, we obtain very
promising resuits which allow us Lo solve problems that conld not be solved before
with constraint programming techniques. We also compare the performance of
our approach against standard formulations of a cardinality matrix problema.
We obtain dramatic speed ups with our approach.

The rest of the paper is organized as follows: In the next section we define our
notation and present definitions concerning constraint programming and graph
theory. We then roughly present the cardinality matrix constraint and propose
a simple filtering algorithm for reducing the ranges of cardinality variables of a
GCC. Next, we introduce the Cardinality (0,1)-Marrix Constraint followed by
the description of a filtering algorithm for the Cardinality Matrix Constraint,
We present experimental results in section 7, followed by conclusions.

2  Preliminaries

Po={Dol{z1), ..., Dolzy )} to represent the set of initial domains of A Indeed,
we consider that any constraint network A can be associated with an initial
domain Ty (containing ), on which constraint definitions were stated.
A constraint € on the ordered sct of variables X{C) = {£s,....,5:.) i5 a
subset T{C") of the Cartesian product Dg(mg ) » --- % Dlzg,) that specifies
the allowed combinations of values for the variables #1, ..., #.. An element of
Dglieq) »v 3 Dolar) iscalled a tuple on X (). v[z] denotes the value of 2 in
the tuple 7.
Let 0 be a constraint. A tuple = on X () is valid if ¥z € X(C), vjz] € D(x). C
is:consistent iff there exists a tuple r of T{C) which is valid. A value a'c D{zx)
is consistent with C iff « & X(C) or there exists a valid wple v of T(C)
with @ = rz]. A constraint is arc consistent if ¥z; € X{C), D(a;) # @ and
Ya £ D{2;), & i5 consistent with C.

The value graph of a set of variables X is the bipartite graph GV(X) =
(X.U,,exD{z:), E) where (2,0) € E iff a € D(z).

We recall the formal definition of a global cardinality constraint:

Definition 1 4 global cardinality constraint C defined on X and associated
with a set of values V' with D{X) C V is a constraint in which each value a; €V
s associaled wilh bwo posibive integers I and up with I < u; and
T(C)={r st T 15 a tuplz on X(C)

and Yoy € Vo I < #{ai, 7) < ui)
It ds denoted by gecl X, V. L u).

Note that an alldiff constraint can be defined by a GCC in which all lower bound
are equals to 0 and all upper bounds are equal to 1.




An instantiation of all variables that satisfies all the constraints is called a
solution of a ON. Constraint Programming {CP) proposes to search for a salu-
tion by associating with each constraint a filtering algorithm that removes some
values of variables that cannot belong 1o any solution. These filtering algorithms
are repeatedly called until no new deduction can be made. Then, CP uses a
search procedure (like a backtracking algorithm) where fitering algorithms are
systematically applied when the domain of a variable is modifed.

2.1 Graph Theory

These definitions are based on books of [2,16,1].

A directed graph or digraph & = (X, ) consists of a node set X and
an arc set U7 where every arc (u, v} is an ordered pair of distinet nodes. We
will denote by X(G) the node set of & and by U{G) the arc set of G.

A path from node v to node v in G i5 a list of nodes [vy, ..., v,] such that
(i, v541) 18 an arc for 4 € [1..k = 1], The path contains node v; for { € [1..k] and
arc (v, vz for § € [1.k — 1], The path is simple if all its nodes are distinct.
The path is a eycle if k > 1 and vy = vp. An undirected graph is connected if
there is & path between every pair of nodes. The maximal connected subgraphs
of 7 are its connected components. A directed graph is strongly connected
if there is a path between every pair of nodes, The maximal strongly connected
subgraphs of & are its strongly connected components. A bridge is an edge
whose removal increases the number of connected components.

Let & be a graph for which each arc (i, 7) is associated with two integers {;;
and 1y, respectively called the lower bound capacity and the upper bound
capacity of the arc. A flow in & is a function f satisfying the following two
conditions®
o For any arc (4,7), fi; represents the amount of some commodity that can
*How™ through the arc. Such a flow is permitted only in the indicated direction
of the arc, i.e., from § to j. For convenience, we assiume fis =0 (i, §) €U(G).
e A conservation law is observed at each node: Vj € X(G) : ¥, fis = X4 Fir-

A feasible flow ix & flow in & that satisfies the capacity constraint, that
is, such that V(i,7) € U(C) 1y < fij < ;.

Definition 2 The residual graph for a given flow f, denoted by R(S), is the
digraph with the same node set as in G. The are set of B{f) is defined as follows:
v(i,j) € U(G):

o fij <y e (4L7) e U{R{f)) and upper bound eapacity ryy = uy — fij.

» fog =4y e (5,9) € U(R(T)) and upper bound capacity v = fij — Ly
All the lower bound caopacities are equal to 0.

! Without logs of generality (see p.45 and p297 in [1]), and to overcome notation
difficulties, we will consider that if ({,7) i5 an are of G then (§,1) s not an are of G,
and that all boundaries of capacities are nonnegative integers.




2.2 MNotation

e maz(z} (resp. min(z)) denotes the maximum (resp. minimum) value of D{z).

* D{X) denotes the union of domains of variables of X (i.e. D(X) = U, ey DNz
* #(a, 7) is the number of occurrences of the value a in the tuple .

* #{a, X) is the number of variables of X such that & € D{xz).

» Row(M) (resp. Col(M)) is the set of indices of the rows (resp. columns) of
the matrix M.

o If X is-an xm array, that is X=x[ij]}, then vars(i, =, X} = {z[i,j].i = L.m}

and vars(+, j,X) = {z[i, j].i = L.a}

3 Cardinality Matrix Constraint: Presentation

Definition 3 4 cardinality matrix constroint 15 o constraint © defined on a
Matriz M = =[i, j] of variahle s taking their values in a set V', and on two sets
of cardinality variables rowCard[i, §] dnd colCard[i, j] and
T{C)y = {7 st 7 is a tuple on X{C)
and Vo, € V,¥i € Row(M) : #(ay, vars(i, , M)) = rowCard[i, k]
and Yay, € V,¥j € Col(M) : #(ay. vars(i,+. M)) = colCardlj, k]
Tt is denoted by card-Matriz( M, V, rowGard, colCard).

In order to show how a cardinality matrix constraint is represented we nead
first to introduce cardinality variables. The GOUs consider that the lower and
the upper bounds are integer. There is no problem to use variables instead of
integers. In this case, the lower bound 38 the minimal value of the domain of the
variable and the apper bound is the maximal value of the domain. We will call
such variables cardinality variables. Thus, we can define a global cardinality
constraint involving cardinality variables (abbreviated cardVar-GCQ):

Definition 4 A global cardinality constraint involving cardinality vari-
ables defined on X and card and associated with a set of values V with DX} €
V' is a constraint O in which esch valie a;p € V' is agsociated with o cardinality
variakle cardfi] and
TC)={7 st.7 {5 & tuple on X(C)

and ¥a; € V1 cardfi] = #(aq 7))
It is - denoted by gec{ XV, card).

We propose to represent a cardinality matrix constraint by:

« one cardVar-GOOC per row and one cardVar-GOC per column;

« g sum constraint invelving the previous cardinality variables stating that
the number of symbols taken by all the rows (resp. all the columns) is the gize
of the matrix;

- one cardinality (0,1)-matrix constraint involving cardinality variables per
symbol. Such a constraint involves boolean variables corresponding to the pres-
ence or the absence of the symbol for & cell of the matrix, and combines the rows
and the columns for the symbol.




Thus, with such a representation the communication is improved in two ways:
» by the presence of cardinality variables
« by the introduction of a new constraint combining the rows and the
columns for each svmbol.

This communication will be efficent if some powerful filtering algorithms are
available to reduce the domains of the cardinality variables and the domains of
the boolean variables on which cardinality (0,1)-matrix constraints are defined:
This is what we study in the next sections.

4 Filtering Algorithm for costVar-GCC

A GCC C is consistent iff thers is a flow in the the value network of (7 [12]. The
consistency of gee{ X, V, card) is equivalent to the consistency of the constraint
gee( X, V, [ u) where for every ag € V I[i] = min{cardli]) and ufi] = maz(eardfi]).
When the minimum or the maximum value of the domain of a cardinality variable
is modified then O is modified and so the consistency of the constraint must be
established again, Since the flow algorithms are incremental, 2 new feasibile fow
can be computed in O(m), where m is the number of ares of the network,

Are congistency for cardVar-GOC can be established for the variables of X
by uging the method of GCCs, because the problem remaing the same for these
variables. For the cardinality variables we are more interested in the validity
of the minimum and the maximum value of the domains. Bound consistency
can be established by searching for the minimum and the maximam value such
that a feasible flow exists. However, the cost of this method is high and its
practical advantage has not been proved in genmeral. Therefore, we propose a
simple fltering algorithm whose cost is low and which is worthwhile in practice;

Property 1 Let O = geo{ X, V, card) be a cardVar-GOC. Then, we have:
» Wag €V cardi] < #{a;, X)
¢ e cardi] = |X|

The second point ig a classical sum constraint and bound consistency can be
established in O]V |). Then, we immediately have the property:

Property 2 Let C = geelX, V, card) be a cardVar-GOC, GV{X) be the value
graph of X . Then for every connected component OC of GV(X) we fave:
En;Eur.lI.yi{:l:':H eard[i] = |“’3"‘”'[GG}!.-

where vals{CC) denoles the values of Vo belonging Lo CC and vars denotes the
variables of X belonging to 0O,

proof: All the connected components are digjoint by definition, thus the problem is
equivalent to a disjunction of GUGCs, cach of them corresponding to a connected com-
ponent. Then, Praperty 1 can be independently applied on each GCC. @




The filtering algorithm associated with cardinality variables is defined by
Property 1 and by Property 2. Tts complexity is in €{]V]) for all the sum con-
straints that can be defined and Q(m) for the search for connected components,
where m is the number of edges of the value graph of X [15].

At fiest glance, Property 2 secms weak, but in fact this is not true, as shown
by the following property:

Property 3 Let © = gee(X,Vicard) be a cardVar-GCC, ey be a cardinality
varickle, and k be an integer. If cy = & in every solution of € then the domain
of ey is set to k after establishing are consistency of the X variables and afier
establishing bound consistency of sum constraints defined by Property 2

It order to prove this property we need first to introduce 2 theorem which'is a
generalization of a property used to establish are consistency for a GCC, Lbecause
it deals with any kind of lower and upper bound capacities, and not only (0,1),

Theorem 1 Let f be a feasible flow in N, and (r,a) be an arc of N. Then,
for every feasible flow f' in N: f;, = fL, if and only if one of the following
property is satisfied:

(1) (z,a) & R(f) ond (a, ) & R(f)

(i) RS} contains (z,;e) or (o x) but not both and = and a belong to two
different strongly connected components of B{f) _

(##) (z.e) € R{f) and (a,x) € B{f) and (r,a) 15 a bridge of ud(sce(R(f), z}),
where wd(see{ RIf), o)) 15 the undirected version of the strongly connected com-
penent of R{f) containing .

proof; (i) From definition of B(f), this means that {{z, 0) = ufa, ), 5o the fow value
cannot he changed in any feazible fow
{#) The flow theory claims that:

« the flow walue of (z,a) can be increased if and only if {3,2) € R(f) and there
is path from a to @ in R{f) — {{a,z)}, that is in R{f)} in this case hecause we have
{2,a) € H{F) = (a3} & R{f).

+ the fow vilue of (x,a) can be decreased if and only if (2, ) € B(f) and there
is path from z to @ in RB(f} — {({z, a)}, that isin R{f) in this case becanse wi have
{a.2) € RUS) = (&,a) & R(S),

So in this case, a fow value s constant if and only if @ and = belong to two different
strongly connected components,

(#it) We will call pon trivial (e, ) cyele, a directed cyele which contains {u, v) but not
(v, u). There are two possibilities:

1) there is a non trivial (x, a) cycle or 2 non trivial (g, &) cycle. This means that
the Bow can he increased or decressed, therefore it has not the same value for every
fopsible flow. Moreover, there exists a directed cvele which is non trivial, 3o this crcle is
also a cyclein the undirected version and the arc (&, a) is not a bridge and conversely.

2} there does not exist a non trivial (£, e) cycle and there does not exist a non
trivial (e, x) cycle. Lot X{x) be the set of nodes of see{R{f}—4a}, =), and X{a) be the
set of nodes of sco{R{f) = {z},a). Then ¥p € Xiz),p £ 5 and ¥g € X(al,q £ a, we
can prove that the ares (pog), (g.0), (209), (g, =), (ap), (poe) do not cxst, Suppose
that {p.q) exists. Then, there is a path from = to p which does not contain a and an arc
(p,q) and a path from g to o which does not contain ©, therefore this means that we




identify a non trivial (a, =) cyele, which contradicts the hypothesis. A similar CeASOming
s valid for all the arcs. Hence, if (z,a) and (a,} are removed from R(f) then z and
a will belong to two different connected component of the undirected version of E(f).
This is equivalent to saying, that (#,a) is a bridge.c

Now, we can give a proof of Property 3: Let a be the value whose cardinality
iz cy, and f be a feasible fow of N{C), the value network of C. For convenience
we will use USCC = ud{sce(R(f).n)), SCC = sce(R(f),a), OC = cc(GV(X),a),
Ag = vars(SCC), and Vs = vals(SCC), If the fow value of {a,1) i the same for
every feasible flow, then from Theorem 1 sither o and ¢ belong to different connected
components or (g, 1) s a bridge of U'SCC.

In the first case, this means that all the arcs between a value of 50C and £ have
the same direction, In other words, the flow value of these arcs is cither equal to
the dower bound capacity or is cqual to the upper bound capacity. S0 we have cither
\Xs| = 32, . cv, min{card(i]) or | X5} = 2oa ey maz(card[i]). In both cases the bound
consistency of the constraint [Xef = 57 . card|i] will instantiate all these cardinality
variables to the current Bow value of their corresponding ave.

Iu the second case, (a,t) is a bridge of USCC and the value graph does not contain t,
s0 CC isa subgraph of USCC. If SCC contains t and if (a, ¢) is-a bridge of USEC then
{a, ) and (t,a) exist in K(f) and there is no other arc hetween vals{C'C') and ¢, Thus,
the lower and the upper bound capacities are equal for every value of vals{(7C) which
18 not equal to o In fhis case, the bound consistency of the sum constraint involving
cy will instantiate ey to the current flow value of its corresponding are. @

5 Cardinality (0,1)-Matrix Constraint

5.1 Absence of Cardinality Variables

Definition § Let M = =i, j] be o matriz of (0,1)-variables. 4 Cardinality
(0,1)-Matrix constroint is o constraint & defined on M in which
« every row {8 associated with two positive integers Ir[i] and urli] with
Ir[i] < urli]
- every column j is associated with two positive integers lefi] and weli] with
lefi] < ueli], and
TC) ={ 7 5.t 7 s a tuple on X (C)
and ¥i & Row(M) : Ir[i] < EJ-EJ:_.D”M] i, ] < urli]
and ¥j € Col(M) :lefj] £ ¥, c powian 2lE: 5] < ueli]}
It ds denoted by cord-{0,1)-Matric{ M, Ir,wr lo, ue).

This constraint corresponds to a generalization of a well imown problem named
"Matrices composed of 0's and 187 by Ford and Fulkerson [6]. In this latter
problem, there is no lower bound for the rows and no upper bound for the
columns. Both Ryser [14] and Gale [7] independently showed that this problem
can be solved by using a flow. The introduction of lower bounds on rows and
upper bounds on columns only slightly modified the Aow:




Definition 8 Given M = xi,j] a matrir of (0,{)-variables and C = card-
(0,1 )-Matriz(M, lr, ur,le, ue) o cardinality (0,1)-matriz constraint; the bipartite
network of C, denoted by N(C'), consisis of 0 node set defined by:

& set of nodes SR = {r,..., v} corresponding to the rows of M.

- o set of nodes SC = {ey,...,¢m} corresponding to the columns of M.

« o source node & and o sink ¢
and an are sef 4 defined by

+¥r; € SR (s8,7;) € A with a lower bound capacity equal to Ir[i] and an
upper: bound capacity equal to urli].

*¥ey £ SC (¢58) € A with g lower bound capucity equal to Icff] and an
upper bound copacity egual to wclj].

«¥ri € SR, Ve; € 5C (ri.¢j) € A with a capecity equal to z{i, 7], that is
the lower bound capacity is equal to min{z[i;j]) and the upper bound capacity is
equal to maz(z[i, §]).

« anoare (t,2) without capacity consiraint,

Mote that the (0,1)-variables define the capacity constraints of the arcs between
nodes corresponding to rows and nodes corresponding to columns.

Proposition 1 @ i consistent if and only if there is o feasible flow in the
bipartite network of C.

We can establish arc consistency of the card-(0,1)-Matrix constraint by a
similar method to the one used for GCCs™:

Proposition 2 Let C be a consisient eardinality (0,1)-Matriz consiraint and f
be a feasible flow in the Wpartite network of €. Then we have:

Nri € SR, Yoy € SC: r; and 5 do not belong to the same strongly connected
romponent in B(f) if and ondy if 2li, 7] = fre,

proof: Immediate from Properties (7} and (#)} of Theorem 1 (Property (ifi) cannot he
applied because the capacity of the arcs hetween rows and columins are 0 or 1), @

Thus, arc consistency can be established by only one identification of the
strongly connected components in 12 f), that is in O[|AL]).

The advantage of the cardinality {0,1)-matrix constraint i3 emphasized by
the following theorem:

Theorem 2 Consider C = card-{0.1 }-rnatriz{ M, Ir, ur,le, ue) a cardinality (0.1)-
muatriz constraint, Kstablishing arc consistency for © ensures that for every p= g
rectangle, denoted by T we stmultancously have:

Y, aliglz > ol = Y udj (1)

(AET € Renn [T} FE{llal (M) —Zol{TF)
3 alidlz N del] - N wid] (2)
(+d1ET HECel{T) FELRaw{ M)~ Rou(T))

* A similar constraint, althrough expressed in a guite different way, with the same
kind of algorithm to esrablish arc consistency, is given in [10].




prooft C is consistent. Consider (@ the rectangle containing the same rows as T and
the columns that are not contained in 7. Every feasible faw of N(C) satisfied the con-
straints on the rows: E[m}e{f'ua] zlf, ] = E'.Eﬁw{,,.] Ir[i]: We have Eim}EiTum zfi, 4] =
L gier 2l 31+ 3y gy eq =l 4] 50 Liper 2+ L jeg il 2 Lienour) rlil
Maoroover Eit__ﬂeqz[i,j} = 2 eroalth)-catiry Welil, because the constraints on the
columns of © are satisfied. So, Equation 1 is satisfied.

Similarly, consider ¢} the rectangle containing the same columns as T and the
rows that are not contamed in 7. Every foasible fow of N{C) satisfies the constraints
on the columns: 32 o0 oroy 23] 2 3oy leli] We bave 30 oo aling] =
Pagyer T E ¢ yeq 2l 3], 90 LugershiHEaaneg el = Lisciori deli k)
Moreover E{.,ﬂeq zli, §] £ EJE{Raw(M:I—Haw{T}] urlj], because the constraints on the
rows of ¢ are satisfied. So, Equation 2 is satisfied, @

A corollary of this theorem is close to a necessary condition of a thesrem
proposed for latin square by Ryser [13]:

Corollary 1 If Vi € Row(M) Irli] = wrli] = 1, and ¥j € Col(M) Ic[j) =
uelj] = 1, then Z(i,,}g?'l[tﬂ z2p-(n-q)

Thus, with only one cardinality (0.1}-matrix constraint, we are able to take
into account a property which is available for all px g rectangles involved in the
constraint. Instead of having an exponential number of cardinality constraints
(because every row and column can be permuted) we have only one cardinality
{3,1)-matrix constraint.

5.2 Introduction of cardinality variables

In'a way similar-as the one used for GCCs we propose to introduce cardinality
variables in Cardinality ((0,1)-Matrix constraint.

Definition T Let M = zfi, 7] b a matre of (0,1)-variables. A Cardinality
{0,1)-Matrix constraint involving cardinality variables is a constraint O
defined on M and rowCard and colCard in which
« cvery row i 18 gssociated with o cordinality variable rowCardfi]
» every column j is associated with a cordinality variable colCard[j], and
T(C)={ 7 st 7 i5s o tuple on X (C)
and Vi € Row(M) : 3 e coan #l1,3] = rowCard]i]
and Vi € Col(M} : 3 powian T, 31 = colCardlj]}
It is denoted by card-(0.1)-Matriz{ M, rowCard, colCard).

The consistency of € = eard-(0,1)-matric{M, Ir, ur, le, uc) is equivalent to the
consistency of the constraint card-(0,1)-matriz{ M, rowCard, eol Card) where
¥i € Row(M) Irli] = min{rowCard[i]] and ur[i] = moz{rowCardfi]) and
¥i € Col(M) le[i] = min{eolCard]i]) and uc[f] = maz{colCard[i]). When the
minimum or the maxirnum value of the domain of a cardinality variable is mod-
ified then € is modified and so the consistency of the constraint must be estab-
lished again. Since the flow algorithms are ineremental, a new feasible flow can
be computed in Ofm).




Are consistency can be established for the variables of M, because the prob-
lem remains the same for these variables, For the cardinality variables we have
similar properties as for card Var-GOQs:

Froperty 4 Let C = gee(X, V,card) be & cardinality (0,1)-Matriz constraint
involving cardinalily variables. Then, we have:

2ie rowean TowCardli] = ¥y colCardlj]

Bound consistency of a sum constraint involving n variables can be established
in O(n). Az for cardVar-GCCs; we have the property:

Property 5 Let C be a cardinality (0,1 }-matriz constraint involving cardinality
varighles, ud(N(C) — {s,t}) be the undirected version of the network of C in
which the node 5 end ¢ have been removed. Then for every connected component
CC of wd{N(C) — {s,t)) we hove:

ZiERow{C‘C‘U rowCard(i] = E_fe{?ulir_'m col Cardj],

where Row(CC) denotes the rows of M belonging to CC and Col(CC) denotes
the columns of M belanging to CC,

proof: All the connécted components are disjoint by definition, thus the problem is
equivalent to a disjunction of cardinality {0,1)-matrix constraint, each of them corre-
sponding 10 a connected compoment. Then, Property 1 can be independently applied
on each constraint, @

The filtering algorithm associated with cardinality variables is defined by
Property 4 and by Property 5. Its complexity is C(| Row{ M )|+ |Col{ M)} for all
the sum constraints that can be defined and (W{(m) for the search for connected
companents; where i is the number of edges of wd{N{C) — {5,£}).

6 Filtering Algorithm for the Cardinality Matrix
Constraint

A cardinality matrix constraint is modeled by a cardVar-GOC on every row,
a cardVar-GCC on every column, a constraint between the sum of cardinality
variables, and a cardinality (0,1}-matrix constraint per symbaol:

Definition 8 Let © = card-Matriz({M, V,rowCard, colCard) be a cardinality
mairiz constraind involving n rows, m columns and = symbals, Then,

o for every row i we define Cr; = gee{vars(i, =, M), V, vars(i, », rowCard))

+ for every column § we define Co; = geclvars(s, 7, M)V, vars(j, +, colCard)

« for every value a, € V' we define the cardinality (0,1)-matriz
Cmy, = card-(0,1 )-matriz( By, vars(+, &k, rowCard), vars(+, k, colCard))

« for every value ap € Vo and for every variebles z[i, j].4 = 1.n,j = 1l.m
we define: the (0.1)-varigble B, §, k] and the constraint Wi, 1,k = 1 & a; €
Diz[i,7]). We will denote by By all the (0,1)-variables defined from ay,ond by
C'hy the set of constraints defined from ag,




- we define the constroints: Cgr: 3, ¥, rowCardli, k] = nm and
Cge: 3y m Loy, tolCard[j k] = nm
Fiven
Xg =M U rowCard U colCard U(lJ,_, ,Bs)
D(Xg) the set of domains of the variables Xy

Co= |J onu |J ceu |J cowu |J Omyucorucge

i=1.m j=l.m k=1..5 =1

The construint network @ = (X, D(Xg), Cg) is called the constraint net-
work associated with a card-matrix constraint.

Proposition 3 Given € = card-matriz(M, V,rowCard, col Card), and
I = (M, D(M),{C)) be a constraimt network and Q@ the constraint network
associated with C then, IT 5 sotisfiable iff Q @5 satisfiable.

praoof When the M variables of IT are instantiated, the b constraint 5 of & instan-
tiated the (0,1)-variables of © and since a solution satisfied the cardinality constraint
for all the symbaols then a solution of IT is a solution of §. Conversely, a salution of O
is obviously a solution of T because the M and the cardinality variables of @ are the
variables of 1T, and the constraints of 1T arvé satisfied by any solution of 2.2

So, & card-matrix constraint can be filtered by applying arc consistency to
the constraine network associated with it

7 E=xperiments

In order to perform comparisons with other approaches for which there are
results reported in the literature we performed our empirical analysis for the
particilar case of the cardinality matrix constraint in which each value has to
be assigned at most once in each row and coluwmnn (alldiff matrix constraint). We
uged hard Latin square instances, (The benchmark instances are available from:
http:/ fmar.gsia.cmu.edu/ COLORO2 or from gomes@cs cornell.edu.)

A new strategy to select the next variable and the value to branch on for
Latin square problems was proposed in [4]. This strategy clearly outperforms
all the previous ones that have been tested. It consists of selecting the variable
with the minimum domain size and then select the value which oceurs the fewest
times in the domains of the variables of the rows and the columns of the selected
variable. We will denate it by dom-lessQ, This strategy 15 a kind of minimum
conflict strategy. We have improved this strategy by breaking the tie of variables.
When two variables have the same size of domain we select the one for which the
nuember of instantiated variables of the row and of the column is maximum. We
tested several combinations (like the minimum number of already instantiated
variables), and it appears that our variant is the most robust one. Breaking ties
is interesting, but the ways we break the ties seem almost equivalent. We will
denote our new strategy by dom-maxB-lessO.




Zalidiff-AC Jalldiff- AT 2alldif-GAC | alldiffmatrix
domi-less( dom-less() dom-less() dorm-less()

time!  Fifeils) time pfails| time|  fEfails|time FEails
awh.orderdl holes31i TR >-80,000( 0.33 10f0:33 3
awh.orderdl holes3 20 = 30,000 > 50,000( 1.16 1334|034 22
qwh.order50. heles2000 = 50,000] 1.45 230| 46 ol 5.8 i
gqwhoordesfi). oles1440 = 56,000 = 50,000 = 50,000 = &, 000
gwhoarderti) holes1620 = 50,000 = 50,000 = §0.000| 66.9 24 604
qwh.orderfil. holes1692 = 50,000 > 50,000/15.06)  7,084| 7.57 7817
qwh.orderGl. holesi 728 = 50,000 = 50,000 = 50,00 316 14
qwh_arderf0. holesl 764 = 50,000 > sl:r,rmnl| 34 2771 3.68 150
qwh.orderdil. holes1 500 = 50,000 = 30,000 3.9 554 34 3
qwh_order70, holes2450 = SL00 > ML000) 5,77 24} 6.5 i
gwh.orderT0 holes2940 = 50,000 > §0,0000 9.7 305 10.8 T4
gwh-orderTll holesd430 = 50,000 > §0,000] 14.4 0l 17 ]

Zalldiff-(AC Zalldiff-GAC | alldiff-matrix | alldif-matrix
dom-lessl)  [dom-maxB-lessO|  dom-lessQ  |dom-maxB-lessO
ol time|  #fails) time FHails| time| Ffailsltime Hiails
gwh.orderdl holesl1i | 0:33 10{ 0.62 476| 0.33 3| 37 44
qwh.ﬂrdarﬂl]_hule_ﬁﬂﬁﬂ' 116 1334} 0.33 21| 0.34 22| 0.35 32
qwh.orderi0. holes2000] 4.6 0 4.57 1| &8 0l &7 1
gwh.orderf( holes1440 = 60,000 >-50,000 > -500000] 2:32 18
gqwh orderf. holes1620 = 50,000 = 50000 669 24.604) 634 1,439
aqwh . ordert holes1692] 15.96 T.0E4 275 ol TAT 7,917 3.15 47
gk orderf. holes1 728 = B0l 27 4] .16 14[ 3.16 o
gqwh orderf) holes1764) 3.4 277 2.82 1 3.68 150f3.28 12
wh.ordertl. holes1800) 3.9 5564|1528 1,369 34 3 4.0 261
qwh.order70 holes2450( 5.77 24| BT 1| A3 1| 6.6 39
whoorder70 holes2040( 2.7 398] 9.5 145 10.8 741 11.1 130
gwh.order? holes3430| 144 o 14.2 i} 17 0| 172 b

We present two sets of results. The first one i8 2 comparison of our method

with the approach of [4], the most competitive CP based strategy. We will see
that cur approach. using the alldiff raatrix constraint, outperforms the approach
reported in [4]. The second one is a comparison of the branching strategies when
the alldiff matrix constraint is used.

The " 2alldiff-GAC" method is the classical model using 2 alldiff constraints
associated with the Altering algorithm establishing arc consistency. The * 3alldiff-
AC" method is the model in which 3 -alldiff constraints have been used but the
global constraints are not used, and " 2alldif-AC"T method uses only 2 alldiff con-
straints. Thiz latter method has been used by [4]. All the experiments have been
performed on a Pentiom IV M, 2Mhz running under Windows XTI Professional,
and TLOG Solver 6.0. The code is available upon request from the authors. Thus,
these experiments are reproducible.

These results clearly show that:

« difficult instances cannot be solved without efficient fltering algorithms

« the alldiffF-matrix clearly outperforms 2alldiff models
» the branching strategy we propose is better than the previous ones.




Several instances remain open for a CP approach: gwh.orderd(l holes528,
qwh.orderdl.holes544.qgwh.orderd. holes560, qwh.order33. holes. 381 bal,
qwh.order5i.holrd825 bal, The nstance qwh.order3s holes405 is solved with our
approach in 9,900 5 and 6,322,742 backtracks,

8 Conclusion

We present the Cardinality Matrix Constraint to efficiently model cardinality
matrix problems. We also propose a simple filtering algorithm of low cost to
reduce the ranges of the cardinality variables. The cardinality (0,1}-matrix con-
straint is-a particular case of the transportation prablem, a well-studicd network
flow problem, and it provides a good representation to capture the interactions
between rows, columns, and symbols. We report results for the Alldiff Matrix
constraint, a particular case of the Cardinality Matrix Constraint. Our results
show that the Alldiff Matrix constraint clearly outperforms standard formula-
tions of Alldiff Matrix problems.
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