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Wavefront Aberration Correction Using Zernike Polynomial
Parameterizations of Optical Phased Arrays

Jeffrey A. Butterworth, Charles Hindman, and Seth Lacy

Abstract— High performance laser communication systems
require adaptive optics based wavefront correction systems
to correct aberrations that result from imperfections in op-
tical hardware and atmospheric conditions. Traditionally, de-
formable membrane mirrors are used for wavefront correction.
These mirrors are bulky and require excessive amounts of
power, both of which can be detrimental to a space application.
Liquid crystal based optical phased arrays (OPAs) offer an
attractive alternative to these traditional devices. This paper
presents a method of correcting wavefront aberrations with an
OPA device by utilizing phase reconstruction of point-source
images and Zernike polynomial parameterizations of the OPA.
Limitations of common OPA architectures that reduce the
effectiveness of the proposed wavefront correction method will
be discussed. A simulation will demonstrate the effectiveness of
the proposed technique.

I. INTRODUCTION

Ultimately, the effectiveness of a laser communication
system reduces to optical power. Aberrations disturbing
the wavefront of a laser communications link lead to
reduced power which directly increases the communication
bit error rate. Correction of these wavefront aberrations
is essential to efficient communication with optics. This
paper presents a method of correcting wavefront aberrations
with an optical phased array (OPA) device by utilizing
phase reconstruction of point-source images and Zernike
polynomial parameterizations of the OPA. Section II
introduces the OPA device and describes its limitations
that reduce its effectiveness. Section III discusses Zernike
Polynomials and their common use in optics. Section IV
presents a common phase reconstruction technique and
establishes the initial Zernike parametrization of the OPA.
Section V discusses a method for representing Zernike
polynomials with the OPA. Last, Section VI summarizes
simulation methods and results. Conclusions and plans for
future work are discussed in Section VII.
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II. BACKGROUND ON & LIMITATIONS OF OPTICAL
PHASED ARRAYS

A. OPA Background

Optical phased arrays (OPAs), also known as spatial light
modulators, are non-mechanical beam steering and correction
devices that utilize liquid crystal technology to alter the phase
of a collimated beam of light as desired. The crystals in the
OPA can be rotated by applying a voltage across the strips
of crystals in the device, as shown in Fig. 1. The amount
of rotation of the crystal dictates the change in phase that
will be applied to the beam being sent through the OPA.
To achieve 2-D steering, the OPA can be fully pixelated
(like a CCD device); however, due to difficulty in addressing
and controlling the very large number of pixels that a 2-D
device would entail, 2-D steering is often achieved by using
two 1-D OPAs. Since one OPA can only alter the phase
of light down the columns of the device, the two OPAs are
mounted orthogonally to achieve complete beam steering and
wavefront correction.

Fig. 1. A view of a simplified OPA with only four strips of liquid crystals.
Actual OPA’s will have strips on the order of thousands.

This ability to alter the phase of a wavefront provides
an alternative to traditional methods that accomplish the
same task such as deformable mirrors and steering mirrors.
Although often effective, these devices require excessive
amounts of power and are heavy, both of which can be
detrimental to a space application. OPAs have not yet sur-
passed the performance levels of the traditional beam steering
and correction devices due to various limitations in the
technology (that will be discussed later), but their advantages
and potential are evident [1].



B. OPA Limitation: Dependent Pixel Relationship

The device of interest is a XY 1x4096 by Boulder
Nonlinear Systems [2]. As mentioned in the paragraph
above, two orthogonally mounted OPAs are used in this
device. This restricts the user’s ability to write a desired
phase profile to each pixel individually. As a result, the
phase change written to a pixel is not independent of pixels
sharing the same row of one OPA and column of the other.
In Fig. 2, one can see how the phase of the ”pixel” x11

is the sum of the phase resulting from the voltage input
u1 and u4. This ”non-pixelated” nature of the system is
the source of a major limitation when attempting to write
desired phase profiles to the device and will be evident in
the simulation shown in Section VI.

Fig. 2. A simplified view demonstrating the dependence of pixels sharing
the same row of one OPA and column of the other. The phase of the ”pixel”
x11 is the sum of the phase resulting from the voltage input u1 and u4.
Note that the actual OPA will have 4096 uk inputs on each OPA.

C. OPA Limitation: Parametrization

A device such as the stacked XY beamsteering unit from
Boulder Nonlinear Systems consists of two linear OPAs
having 4096 control inputs each for a total of 8192 inputs.
As a result, a method of parameterizing these inputs is
required in order to limit the number of inputs and ease
the computational burdens of any electronics working with
the OPA. Only the first eleven Zernike polynomials where
chosen as the best means for reducing the 8192 inputs to
11 Zernike coefficients. This is because realistic aberra-
tions from physical systems are dominated by the first few
Zernikes. In addition, modeling showed that the OPAs cannot
reproduce higher order Zernikes due to the dependent pixel
relationship of the OPA. Zernike polynomials are a well
known method for describing optical aberrations. Their use
will be discussed more detail in Section III of this paper.

D. OPA Limitation: Nonlinear Crystal Dynamics

The crystals in an OPA exhibit a nonlinear dynamics.
Specifically, when observing same-magnitude step responses,
the user will notice a faster rise time to the step towards
2π radians than the same-magnitude step back towards 0
radians. This is because the crystals are forced by the applied
voltage when moving towards 2π radians. This is in contrast
to moving towards 0 radians where the crystals are relaxing
to a natural position of no rotation [3]. In addition, OPA
phase profiles are not limited to those described only between
0 and 2π. Profiles that exceed these limits are created by

a phase reset in which a modulo 2π property exists. This
creates discontinuities in the phase profile represented by the
OPA in locations where the the desired phase profile is either
less than 0 or greater than 2π. The nonlinearity of the crystal
dynamics becomes even more complex in these ”fly-back”
regions defined by the modulo 2π phase resets. For example,
if a crystal is currently oriented at 2π − ε (where ε is some
arbitrarily small positive value), and if the next phase profile
command dictates this crystal should be oriented to 2π + ε;
the crystal will have to ”fall” back to ε position at a speed
dictated by the slower dynamics. The simulation, shown in
Section VI, only considers crystal dynamics between 0 and
2π radians. The complex dynamics associated with phase
resets is left to future work.

III. ZERNIKE POLYNOMIALS IN OPTICAL SYSTEMS

Zernike polynomials are commonly used in optics to
express wavefront data in polynomial form [4]. Described by
a radius ρ and angle θ, they are a complete set of polynomials
that are orthogonal over the interior of the unit circle. Zernike
polynomials can represent aberrations up to an infinite-order
of ρ. However, due to the limitations of the OPA, we will
only consider aberrations up to the sixth order. Table I lists
the Zernike polynomials used in this study.

TABLE I
ZERNIKE POLYNOMIALS

Zernike Polynomial Name
z0 1 Piston
z1 ρ cos(θ) Tilt X
z2 ρ sin(θ) Tilt Y
z3 −1 + 2ρ2 Power
z4 ρ2 cos(2θ) Astigmatism X
z5 ρ2 sin(2θ) Astigmatism Y
z6 ρ(−2 + 3ρ2) cos(θ) Coma X
z7 ρ(−2 + 3ρ2) sin(θ) Coma Y
z8 1− 6ρ2 + 6ρ4 Primary Spherical
z9 ρ3 cos(3θ) Trefoil X
z10 ρ3 sin(3θ) Trefoil Y
z11 ρ2(−3 + 4ρ2) cos(2θ) -
z12 ρ2(−3 + 4ρ2) sin(2θ) -
z13 ρ(3− 12ρ2 + 10ρ4) cos(θ) -
z14 ρ(3− 12ρ2 + 10ρ4) sin(θ) -
z15 −1 + 12ρ2 − 30ρ4 + 20ρ6 -

When describing or simulating an aberration, the sum of
a series individual Zernikes is considered. To ensure proper
scaling, the Zernike coefficient ai is introduced. Equation (1)
is an example of this for a situation that only considers an
aberration up to Zernike z15.

Z = a0z0 + a1z1 + a2z2 + ... + a14z14 + a15z15 (1)



IV. PHASE RECONSTRUCTION & INITIAL ZERNIKE
PARAMETRIZATION

A. Method of Phase Reconstruction

The affect of an aberrated phase profile on a series of point
sources (often referred to as the object in this document) can
be described with an optical transfer function as in (2). The
phase profile, ψ(x, y) is the phase as described across a plane
(the plane of the OPA, for example). The coordinates x and
y describe the location of interest in the plane. Due to this,
ψ(x, y) will be a matrix with dimensions corresponding to
the size and griding resolution of the OPA. The elements of
this matrix will be the value of the phase at the location (x, y)
described by the corresponding row and column information
of the matrix. The aperture function, A(u, v) is a binary
matrix describing the aperture over the plane. A one is
inserted in all areas where the aperture is open, whereas a
zero is used where the aperture is closed. Most often, the
aperture function describes a circle. It is important to note
the use of the Hadamard product in (2); standard matrix
multiplication is NOT used here. In addition, the exponential
in (2) is NOT the matrix exponential. Although ψ(x, y) is
a matrix, the exponential in (2) is calculated in an element-
wise manner.

H(u, v) = A(u, v)⊗ eiψ(x,y) 1 (2)

Note the careful use of (x, y) and (u, v) in (2). As with
typical transfer functions, the result of (2) is in the Fourier
domain, described here by (u, v). So in order to work with
(2), the object of interest must also be in the Fourier domain.
Given an object in the spatial domain, o(x, y), the two-
dimensional Fourier transform can be used to obtain O(u, v)
in the Fourier domain. When using (2) it is not necessary to
put the phase profile into the Fourier domain, so it appears
as ψ(x, y).

Once a known object can be described in the Fourier
domain, the image resulting from sending that object through
a phase profile described by the optical transfer function can
be described by (3) and (4). Note the use of the Hadamard
product in (3).

I(u, v) = H(u, v)⊗O(u, v) (3)

i(x, y) = F−1[I(u, v)] (4)

With this knowledge, one can rearrange (3) into a form
that allows the user to recover the phase profile while
only knowing the object, o(x, y) and the image received at
the camera, i(x, y). Equation (5) presents this form; it is
important to note the use of Hadamard division inside the
natural log.

ψ(x, y) = −i ln[I(u, v)® (A(u, v)⊗O(u, v))] (5)

Assuming all the crystals in the OPA are at rest (at zero
radians phase profile), a point source can be sent through the

1The symbol ”⊗” in this document represents the Hadamard product,
also know as ”dot multiply” in Matlab. The symbol ”®” in this document
represents the Hadamard division, also know as ”dot divide” in Matlab.

OPA. The image received at the camera will be representative
of the aberrations in the system. Using (5), one can recover
the phase profile associated with the aberration. The negative
of this profile associated with the aberration can then be
written to the OPA for wavefront correction.

B. Initial Zernike Parameterization

The result of reconstructing the phase as in Section IV-A
presents a recovered phase profile completely described
over the plane. Using a least squares fit to this profile, one
can parameterize it to the first eleven Zernike polynomials.
This allows the profile to be described by only eleven
coefficients rather than the entire phase plane worth of data.
Again, parametrization is only performed to the first eleven
coefficients due to the dependent pixel relationship of the
OPA and its inability to decently represent Zernikes beyond
this coefficient.

V. OPA REPRESENTATION OF ZERNIKE POLYNOMIALS

A. Creating OPA Representations of Zernike Polynomials

Creating a best OPA fit to the eleven-coefficient represen-
tation recovered phase profile was done using a least squares
method, but in many cases the quality of the fit is severely
limited by the orthogonal nature of the pair of OPAs. In the
interest of clarity, the fitting method will be described using
the simplified OPA example as shown in Fig. 2. Here, there
are six uk inputs and nine xm,n states. To start, the matrix
of states needs to be vectorized as in (6) and the inputs must
be gathered in vector form as in (7).

~x = [x1,1 x1,2 x1,3 x2,1 x2,2 x2,3 x3,1 x3,2 x3,3]T (6)

~u = [u1 u2 u3 u4 u5 u6]T (7)

The interest is to create a relationship from input vector
to state vector as in (8). The matrix B must be defined as in
(9) such that it captures the dependent state relationship. The
dimensions of B will always be (k2)× (2k) where k is the
total number of inputs on one OPA; in this simple example
k = 3. In addition, B will also always take the form of k
blocks of identity matrices down the left half of the matrix
with square blocks of unity in advancing columns, down the
right half.

~x = B~u (8)

B =




1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1




(9)

Given a vector representing the desired Zernike phase
profile, ~xzern, one can define a value function (10) to be
minimized when performing least squares. Solving for the ~u



that minimizes (10) results in the expression in (11) for the
fit optimizing ~uopt.

V (~x) =
∑

(~x− ~xzern)2 (10)

~uopt = (BT B)−1BT ~xzern (11)

Due to the structure of B, the matrix (BT B) is singular
making inverting it impossible. As a result, the calculation of
~uopt in (11) is ill-conditioned. The source of this singularity,
and a technique to correct the problem becomes clear when
looking at the eigenvalues of the matrix (BT B). In the case
of the simplified example with only three inputs per OPA,
the eigenvalues of (BT B) are 0, 3, 3, 3, 3 and 6. The fact
that there exists only one zero-valued eigenvalue and that no
other eigenvalue are within ±1 of zero suggests that a small
perturbation, δ could be added to the matrix (BT B) before
it is inverted as in (12) where 0 < δ << 1.

~uopt = (δI + BT B)−1BT ~xzern (12)

The δ perturbation becomes more robust as the number
of inputs per OPA is increased. Specifically, the difference
between the zero-value eigenvalue increases linearly by one
with each input ~uk included. For example, when using OPAs
with 2048 ~uk inputs, the difference between the zero-value
eigenvalue and the next eigenvalue closest to zero is 2048. At
that level, the addition of the δ does not substantially affect
the results except to make the calculation possible.

B. The OPA’s Limitations in Representing Zernike Polyno-
mials

Due to the orthogonal nature of the pair of OPAs in
the Boulder Nonlinear Systems beamsteering device, the
representation of a recovered phase profile by the OPA is
severely limited. In some cases the OPA can fit a profile
with minimal error, in others the result is a poor fit or
nonexistent. Fig. 3 presents several examples of OPA
Zernike approximations.

VI. SIMULATION & RESULTS

A. A Model for the Liquid Crystal Dynamics

The nonlinear nature of the liquid crystal dynamics was
captured with the use of two linear first order models with
an appropriate time constant for each, see (13) and (14).
In simulation, an ”if statement” is used to select the proper
crystal model based on the direction of rotation of the crystal.
Based on experimental work by Harris [5], time constants
for ”falling” and ”rising” crystals were modeled respectively
as τfall = 12 and τrise = 4.9 milliseconds. It is clear that
this simplified model will not fully capture all the interesting
dynamics of the crystals as it assumes that all crystals located
in one input column will all have the same orientation. This
is not necessarily true as in reality crystals near the ends
of the columns will not rotate as much as those located in
the middle of the column [1]. Regardless, this model will
be sufficient in helping to validate the proposed wavefront
correction technique
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Fig. 3. Examples of OPA Zernike approximations. The Pure Zernikes
are on the left and their OPA approximations are on the right. The error
corresponding to each approximation is: (b) 2.5×10−10, (d) 1.3×10−10,
(f) 1.9× 10−10, (h) 33.1, (j) 3.1, (l) 0.62



H(s) =
K( 1

τ )
s + ( 1

τ )
(13)

τ =
{

τrise if crystal ⇑
τfall if crystal ⇓ (14)

B. Simulation

In simulation, a source of aberrations had to be developed.
This was accomplished by randomly selecting the Zernike
coefficients ai for the first sixteen Zernikes described in
Table I. The resulting aberration from (1) was then scaled
to limit the peaks of the aberration between −π and π.
Here the assumption is made that aberrations in the sys-
tem will not exceed these bounds. This random abberation
is then used to create an aberrated image with (2), (3),
and (4). Now the randomly generated phase profile created
for aberration can be considered to be unknown and the
simulation begins assuming the object is known and the
aberrated image has been received at a camera. Next the
phase profile is reconstructed with (5). It is then fit to the first
11 Zernike coefficients, which is then fit to an OPA Zernike
representation. The negative representation is written to the
OPA and the wavefront is corrected as the crystals settle into
the commanded position.

C. Results

Fig. 4 is a summary of results from a simulation of the
wavefront correction algorithm. The original point-source
objects with intensity levels of 1.0 are shown in contour and
surface views in Figs. 4(a) and 4(b). After being exposed to
an aberration, the the resulting image in Figs. 4(c) and 4(d)
experiences a power drop to 0.28 with an error of 12.5. After
phase reconstruction, a depiction of the aberration profile
is available in Fig. 4(e). There is a complete loss of the
lump-like feature in the center of the phase plane when the
recovered phase profile is fitted with only the first eleven
Zernike coefficients, Fig. 4(f). The OPA command to correct
the aberration is shown in Fig. 4(g). Note that the OPA
representation loses the bowl-like feature of the recovered
phase profile. That combined with the loss of the lump-like
feature are the source of some imperfections in the corrected
image in Figs. 4(h) and 4(i). Despite the losses due to the
OPA limitations, the intensity of the image is restored to 0.51
and the error is reduced to 6.5.

Considering the system dynamics and the difficulty the
OPA had in depicting the desired phase profile, the algorithm
took about 20 milliseconds to converge. In Fig. 5, the
intensity and the error converge to the final values in an
exponential manner. Notice the slight decrease in intensity
in the first few iterations of the simulation. This is due to the
reorientation of the crystals and is not a source for concern
as the error of the corrected image is constantly decreasing.

In another simulation shown in Fig. 6, the random
aberration is changed every 20 milliseconds and the
algorithm is left to correct for each new aberration. It is
interesting to note that despite the differences in ”rising”
and ”falling” liquid crystal dynamics, there is no obvious
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Fig. 4. Simulation results: (a) & (b): The original object with intensity
1.0 shown as a contour and surface plot. (c) & (d): The aberrated image
with intensity 0.28 and an error of 12.5. (e): The recovered phase profile
associated with the aberration. (f): The least squares fit to the first eleven
Zernikes, note the loss of the of the lump-like feature in the center of the
plane. (g): The negative OPA representation of (f) which is written to the
OPA as a command. (h) & (i): The corrected image with intensity 0.51 and
an error of 6.5.
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Fig. 5. Simulation results: The dynamics of the liquid crystals are
evident here. The intensity can be seen converging to the final value in
20 milliseconds (top) while the error of the correction continually drops
(bottom).

change in the settle time of the correction. The differences
in converging values for intensity and error in Fig. 6 is
a reminder that the success of this technique is heavily
dependent on the OPA’s ability to represent the aberration
in the system.
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Fig. 6. Simulation results: The random aberration is varied every 20
milliseconds and the algorithm works to correct for the changes. Note that
despite the differences in ”rising” and ”falling” liquid crystal dynamics the
settle times for the intensity (top) and the (error) are essentially the same.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Simulations show that the proposed technique for wave-
front aberration correction of point sources performs well

and shows improvement of the wavefront in all situations.
However, it is clear that the effectiveness of the technique is
severely restricted by the limitations of the OPA. Specifically,
the dependent pixel relationship of the OPAs is the major
source of the occasional limited success of the algorithm.
If the OPA had the ability to perfectly represent the first
eleven Zernike polynomials, the proposed method would
perform almost without flaw. However, as Fig. 3 indicates
the beamsteering device struggles to represent many of the
first eleven Zernikes, and performance declines. Perhaps the
use of three OPAs mounted in an offset of 60 degrees from
each other or a pixelated spatial light modulator as used in
previous work by Love [6] would offer more success.

B. Future Work

The next step is to preform system identification on the
Boulder Nonlinear Systems OPA to obtain a better model
of the liquid crystal dynamics. As the crystals are currently
modelled, much of the interesting dynamics are lost. The
model used in the simulations is sufficient for a proof of
concept, but the actual dynamics of the OPA must eventually
be addressed. In addition, once an more accurate model of
the crystal dynamics exists, work can begin on developing
an elegant controller which will speed the response to
aberrations in the system. Ideally, the settling time in Fig.
5 can be vastly improved, and validated experimentally.
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