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Abstract

We investigate the effects of smoothness of basis functensolution accuracy within
the isogeometric analysis framework. We consider two singple-dimensional structural
eigenvalue problems and two static shell boundary valublenas modeled with trivari-
ate NURBS solids. We also develop a local refinement streatiegtywe utilize in one of
the shell analyses. We find that increased smoothness sthaei %-method,” leads to a
significant increase in accuracy for the problems of stmattuibrations over the classi-
cal C°-continuous H-method,” whereas a judicious insertion €f-continuous surfaces
about singularities in a mesh otherwise generated by:theethod, usually outperforms a
mesh in which all basis functions attain their maximum lesfedmoothness. We conclude
that the potential for thé-method is high, but smoothness is an issue that is not well un
derstood due to the historical dominance(@t-continuous finite elements and therefore
further studies are warranted.
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1 Introduction

The concept of Isogeometric Analysis, introduced by Hug@estrell and Bazilevs
[7] and further developed by Cottradt al.[3] and Bazilevset al.[1], was initially
motivated by the gap existing between Computer Aided DeIgkD) and Finite
Element Analysis (FEA). The first manifestation of the gamishe initial mesh
generation process. The design is encapsulated in sometyp&D model. This
model often includes ambiguities, such as gaps and oveidagislevels of detail,
such as individual bolts, welds, etc., that make it inappate for analysis. The
ambiguities must be removed and defeaturing must be peero arrive at an
Analysis Suitable Geometry (ASG) that exactly represemesféatures of interest
for the calculation (see Figure 1). This ASG must then beaegd with a finite
element mesh, usually a piecewise polynomial approximaticthe actual geom-
etry. Creating a mesh can be one of the more time consumipg stehe analysis
process.

Though initial mesh generation can be a significant bottkenadditional difficul-
ties are encountered during refinement. Frequently, if anrate solution is to be
obtained through a series of refinements, the quality of #wgetric approxima-



CAD : - ASG

Remove ambiguities, such
as gaps and overlaps, remove
and/or add features, construct

one- and two-dimensional

manifold definitions and define
section properties, etc.

Fig. 1. The geometry of an object of engineering interestittailly encapuslated in a Com-
puter Aided Designh (CAD) package. The CAD description musgdiently be changed
significantly to create an Analysis Suitable Geometry (ASG)

tion must be simultaneously improved or else the error veflah a plateau from
which it cannot be reduced. If such geometric refinement ke place, a link
must be established between the ASG and the refinementeoiitars link usually
does not exist in practice (see Figure 2a). This may be orteeaasons why auto-
matic refinement has had little impact in industry despigedgheat promise shown
in academic research studies.

Isogeometric analysis is a methodology for addressingetpesblems. The idea is
to have one and only one representation of the geometry velxatily encapsulates
the ASG and is more faithful to the initial CAD representati@Vhile an ASG must
still be constructed, using functions and technologieshef gort found in CAD
packages may facilitate the development of links betweerd#sign and analysis
software. More importantly, if the finite element mesh werexactly encapsulate
the ASG, refinement to any level could take place completallgimvthe analysis
framework. The need for reestablishing the link with an exdé&description of the
geometry would be completely obviated as the mesh wbaltie exact geometry,
as in Figure 2b.

Our current implementation of the isogeometric analysiscept, based on Non-
Uniform Rational B-Splines (NURBS), accomplishes thig kask in almost all
situations. The geometric flexibility of the NURBS basi®ult for the exact repre-
sentation of a much larger class of objects than standatd g&fement technology.
Most notably, all conic sections can be represented exaktlihis point, genera-
tion of the initial mesh can still be a time consuming prodasisonce it has been
performed, the isogeometric meshcapsulates the exact geometry and may be
refined to any level without ever altering this geometry iy aay.

Meshless methods do seem to share certain features wittsdlgeametric ap-
proach. The description of complicated geometries withichsmethods, however,
has been almost entirely ignored in the literature. Notalgeptions are found in
the papers of Subbarayan and colleagues [11, 20] and thetreoek of Simkins
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Fig. 2. The analysis process. a) In finite element analyseshmefinement requires inter-
action with an external description of the geometry if thalgy of the geometric approx-

imation is to be improved. The lack of such interaction israpediment to adaptive mesh
refinement procedures. b) In isogeometric analysis, théiisghe exact geometry and so
refinement can take place completely within the analysisiésork. c) The literature on

meshless methods is yet to present a comprehensive viewdraplex geometries may be
represented and how that representation interacts witprtheess of refining the solution
space.

et al.[15]. While meshless methods do show great promise in ceai@as, a clear
view of the proper way in which to define a geometry, as well@s that descrip-
tion affects both refinement of the solution space and, parinaore importantly,
numerical integration of the basis functions, is yet to eyagsee Figure 2c.

An important feature of the NURBS-based approach to isogacranalysis, that
was not one of its initial motivations, is the ability to ussttions of higher order
and higher continuity. Section 2 will describe the construntiof NURBS basis
functions that may have up o— 1 continuous derivatives across element bound-
aries, wherep is the order of the underlying polynomial. This is seen intioec



3.1 to have a profound effect in structural vibration prob$e The NURBS func-
tions of higher continuity offer a much more compact repnésgon of the vibra-
tional modes of structures than do standard finite elememtions, yielding much
greater accuracy per degree of freedom, even at the sameqooigl order. In Sec-
tions 3.2 and 3.3 we study shells modeled as trivariate NUB®&I8ES. We explore
local refinement and control of continuity. Results indécéitat in regions with very
large gradients, the use of functions with reduced coryriaads to more accurate
results on a per-degree-of-freedom basis, at least oneaaeshes. These observa-
tions lead to the conclusion that loaantrol of the continuity of the basis is a tool
to be exploited in efficiently representing many types otisohs. In Section 4 we
draw conclusions.

2 Overview of the Isogeometric Analysis Framework

Our current implementation of the isogeometric analysiscept is based on Non-
Uniform Rational B-Splines (NURBS). This section will pezg an in depth dis-
cussion of the NURBS functions and their usage in represgrarious geometries
comprised of a single NURBS patch. The myriad of refinemetibap encompass-
ing classicah- andp-refinement, as well as the néwrefinement described in [7],
will be discussed in detail. Lastly, we will describe the o$enultiple patches and
local refinement using constraint equations.

2.1 B-splines and NURBS

2.1.1 Knot Vectors

NURBS are built from B-splines and so a discussion of B-gdiis a natural start-
ing point for the investigation of NURBS. Unlike in standdf&A, the B-spline
parametric space is local to “patches” rather than elemé&aches play the role
of subdomainswithin which element types and material models are assumbd t
uniform. However, a variety of refinement options may exighim a single patch.
More about this later. Many simple domains can be repreddnta single patch.

Note that the distinction between “elements” and “patchraay be thought of in
two different ways. In [8] and [9], the patches themselves raferred to as el-
ements. This is not unreasonable as the parametric spaceaistd patches and
a finite element code must include a loop over the patchesigl@assembly. As
mentioned previously, we take the alternate view that petetne subdomains com-
prised of many elements, namely the “knot spans”. This latiewv seems more
appropriate as, in our current code, numerical quadrasupeing carried out at the
knot span level. Furthermore, in the case of B-splines, tinetfons are piecewise



polynomials where the different “pieces” join along knaids. In this way the func-
tions areC'> within an element. Lastly, surprisingly complicated dongamay be
described by a single patch.g, all of the numerical examples in [7]). Describing
such domains as being comprised of one element seems uanatur

A knot vectorin one dimension is a set of coordinates in the parametricespa
written E = {&1, &, .., Enipr1 ), Whereg; € R is thei™ knot, 4 is the knot index,

1 =1,2,...,n+p+ 1, pisthe polynomial order, and is the number of basis
functions which comprise the B-spline. The knots partittbe parameter space
into elements. Element boundaries in the physical spacsiemgy the images of
knot lines under the B-Spline mapping, as shown in Figure 3.

B-Spline
mapping

—_—

¢

L.
g

z

Q‘y

X

Fig. 3. The parametric space is local to “patches” rathen #laments. The knots partition
the patch into elements.

Knot vectors may beniform if the knots are equally spaced in the parametric do-
main, or if they are unequally spaced, they aom-uniform. Knot values may be
repeated, that is, more than one knot may take on the same. vidle multiplici-
ties of knot values have important implications for the ammty properties of the
basis. A knot vector is said to mpenif its first and last knots appear+ 1 times.
Open knot vectors are standard in the CAD literature. In amedsion, basis func-
tions formed from open knot vectors are interpolatory atahds of the parametric
space interval¢;, &,1,+1], and in multiple dimensions they are interpolatory at the
corners of patches, but they are not, in general, interpplatt interior knots. This

is a distinguishing feature between knots and “nodes” indialement analysis.

2.1.2 Basis functions

B-spline basis functions are defined recursively startinity wiecewise constants
(p=0):
Lif & <& < &y,

Nio(§) = _ (1)
0 otherwise.

Forp=1,2,3, ..., they are defined by

N;p(€) = ﬂ]\fwil(@ + M

= . - . 2
Sivp — & Sivpr1 — fi+1NZH’p 1) 2)



The results of applying (1) and (2) to a uniform knot vecta presented in Figure
4. For B-spline functions witlhh = 0 and1, we have the same result as for standard
piecewise constant and linear finite element functiongeetively. Quadratic B-
spline basis functions, however, are different than thn$e&M. Each quadratic B-
spline is identical but shifted. This distinguishes theamfrquadratic finite element
functions, which are different for internal and end noddse iomogeneous nature
of the basis has implications for the quality of the apprcadiion and the potential
for efficient solution. In the case of structural vibratipmsere the heterogeneity
of finite element functions leads to a branching of the spectthat degrades the
accuracy of a large percentage of the computed frequertbeeepmogeneity of B-
spline functions leads to dramatic improvements, as wikt@wvn later in Section
3.1

Fig. 5. Quadratic basis functions for open, non-uniform tknoector
==1{0,0,0,1,2,3,4,4,5,5,5}.

For an open, non-uniform knot vector we can attain much ritledavior. An ex-
ample is presented in Figure 5. Note that the basis functiomgterpolatory at the
ends of the interval and also &t= 4, the location of a repeated knot, where only
C°-continuity is attained. Elsewhere, the functions @fecontinuous. In general,



basis functions of order havep — m; continuous derivatives across krigtwhere
m,; 1S the multiplicity of the value of; in the knot vector. When the multiplicity of
a knot value is exactly, the basis is interpolatory there. When the multiplicity is
p + 1, the basis becomes discontinuous and the patch is effgcpét into two
separate patches.

An important property of B-spline basis functions is thatltonstitute a partition
of unity, that is,v¢,

> Nepl) = 1. ©

This is a feature they share with finite elements and meshiesisods. Also of note

is that the support of each; , is compact and contained in the interf@! &, ,+1].
Lastly, observe that each basis function is point-wise negative over the entire
domain, that is)V; ,(£) > 0, V€. This means that all of the entries of a mass matrix
will be positive, which has implications for developing lped mass schemes.

2.1.3 B-spline curves

B-spline curves iR are constructed by taking a linear combination of B-spline
basis functions. The vector-valued coefficients of thedfsictions are referred to
ascontrol points These are analogous to nodal coordinates in finite elenmahg-a
sis in that they are the coefficients of the basis functionsthe non-interpolatory
nature of the basis does not lead to the usual interpretafitre control point val-
ues. Piecewise linear interpolation of the control poinvegthe so-calledontrol
polygon Again note that, in general, control points are not intéafex by B-spline
curves. Givem: basis functions)N; ,,7 = 1,2,...,n, and corresponding control
pointsB; € R%, i = 1,2, ..., n, a piecewise-polynomid-spline curveis given by

C(€) = 3 Niyl€) B (4)

The example shown in Figure 6 is built from the quadratic $&snctions consid-
ered in Figure 5. The curve is interpolatory at the first arst ontrol points, a
general feature of a curve built from an open knot vector.eNibat it is also in-
terpolatory at the sixth control point. This is due to thetfdmat the multiplicity

of the knot at¢ = 4 is equal to the polynomial order. Note also that the curve is
tangent to the control polygon at the first, last, and sixthtie® points. The curve

is CP~1 = C'-continuous everywhere except at the location of the repkknot,

¢ = 4, where it isC?~2 = C°-continuous.

The properties of B-spline curves follow directly from theperties of their basis
functions. For example, B-spline curves have continuouwakt/es up to order
p—1inthe absence of repeated knots or control points. Repggatkmot or control
point k£ times decreases the number of continuous derivatives by



(a) Curve and control points (b) Curve and mesh denoted bylkoations

Fig. 6. B-spline, piecewise quadratic curveRi. a) Control point locations are denoted by
¢’'s. b) The knots, which define a mesh by partitioning the cimi® elements, are denoted
by W’s. Basis functions and knot vector as in Figure 5.

Affine transformations of a B-spline curve are obtained bglgpg the transfor-
mations directly to the control points. This turns out to e ¢ssential property for
satisfying so-called “patch tests,” as discussed in [7is Phnoperty is referred to as
affine covariance

2.1.4 h-refinement: Knot insertion

The mechanism for implementirigrefinement isknot insertion* Knots may be
inserted without changing a curve geometrically or paraicedty. Given a knot
vector = = {&1,82, -, Snipri}, 1BLE = {& = &1,80 -, Snvmiptt = Enipra)
be anextendedknot vector such that C =. The newn + m basis functions are
formed as before by applying (1) and (2) to the new knot vegtdfhe newn + m
control points,B = {By, By, ..., B, }T, are formed from the original control
points,B = { By, B, ..., B,}*, by

B =T"B (5)
where
1 _i e if N
Ti(;' _ 5 [fﬂ §J+1) (6)
0 otherwise
and

T = Lq — ngig + —57'*‘”1 — §f+q T, for ¢=0,1,2,..,p—1 (7)
§J+q EJ 5g+q+1 §g+1

4 Note that in the CAD literature “knot insertion” refers tosgrting a single knot into a
knot vector, whereas “knot refinement” refers to insertingltiple knots simultaneously.
Here, we make no distinction and use “knot insertion” to rébeboth cases. For an algo-
rithm for inserting an individual knot, see [7].



Knot values already present in the knot vector may be redemdéeabove but, as
described subsequently in Section 2.1.2, the continuitigebasiswill be reduced.
Continuity of thecurveis preserved by choosing the control points as in (5), (6) and

(7).

Figure 7 shows the case of a global refinement of the curve Figowe 6. Insertion
of new knot values has parallels with the classkeaéfinement strategy in finite
element analysis as it splits existing elements into smafies. Repeating existing
knot values to decrease the continuity of basis does not &aamalogue in FEA.
We will return to this idea later.

VNG

(a) (b)

0(30,0 05 1 15 2 25 3 35 44 45555

==10,0,0,.5,1,1.5,2,2.5,3,3.5,4,4,4.5,5,5,5}

Fig. 7. Knot insertion. a) New control points are computexhfrthe original control points
using (5). b) Each element has been split by inserting a new &nthe midpoint of each
knot span.

2.1.5 p-refinement: Order elevation

The mechanism for implementingrefinement isorder elevatior? . As its name
implies, the process involves raising the polynomial ordiethe basis functions
used to represent the geometry (and the solution spacer &riteielement imple-
mentation will be isoparametric). Recalling from Sectiad.2 that the basis has
p — m; continuous derivatives across element boundaries, iear ¢hat, whem is
increasedyn; must also be increased if we are to preserve the discorigauit the
derivatives of our original curve. During order elevatidhe multiplicity of each
existing knot value is increased by one, but no new kradtiesare added. As with
knot insertion, neither the geometry nor the parametaarare changed.

> sometimes also called “degree elevation.”

10



(b)

0,8,0,0 1,1 22 33 444 5555
==10,0,0,0,1,1,2,2,3,3,4,4,4,5,5,5,5}

Fig. 8. Order elevation. a) New control points are calculate as to preserve the geome-
try and parameterization. b) The mesh remains unchanged asw elements have been
created. Note the increased multiplicity of internal kndtsis is done to preserve disconti-
nuities in the derivatives of the curve.

11



The process for order elevation begins by replicating exgdtnots until their mul-
tiplicity is equal to the polynomial order, thus effectiyaubdividing the curve into
many Bézier curves by knot insertion (see Rogers [14] oinH&} for a discussion
of Bézier curves; we may think of them as one element B-spiirves). The next
step is to elevate the order of the polynomial on each of thebeidual segments.
Lastly, excess knots are removed to combine the segmeatsmet order-elevated,
B-spline curve. Several efficient algorithms exist whiclntne the steps so as to
minimize the computational cost of the process. Detailoarndted for the sake of
brevity. For a thorough treatment, see Piegl and Tiller [12]

Figure 8 shows this process applied to the curve in Figurené. multiplicities of
the knots have been increased but no new elements creategtHdothe locations
of control points for these order-elevated curves are diffethan those in thb-
refinement example (cf. Figure 7).

2.1.6 k-refinement: Higher order and higher continuity

As we have seen, the two primitive operations for B-splimeskaot insertion and
order elevation. Knot insertion is similar terefinement, but for it to be a per-
fect analogue, each new knot value would have to be insertddmultiplicity

m; = p to ensure a° basis everywhere. Similarly, if we begin with a mesh where
all functions are already¢® across element boundaries, order elevation coincides
exactly with our traditional notion gb-refinement. Knot insertion and order eleva-
tion, however, provide us with more possibilities than twe standard notions of
refinement.

As mentioned above, we can insert new knot values with niidtiles of 1 to de-
fine new elements across whose boundaries functions willbé. We can also
repeat existing knot values to lower the continuity of theibacross existing el-
ement boundaries. This makes knot insertion a more flexitdegss than simple
h-refinement. Similarly, we have a more flexible higher-ongfinement as well. It
stems from the fact that the processes of order elevatiorkaotinsertion do not
commute. If a unique knot valug, is inserted between two distinct knot values in
a curve of ordep, the number of continuous derivatives of the basis funstian
£is p — 1. As described above, if we subsequently elevate to some hagler,

q, the multiplicity of every distinct knot value (includingetknot just inserted) is
incremented ¢ — p) times so that discontinuities in th&" derivative of the basis
are preserved. That is, the basis still has gnly 1 continuous derivatives &t al-
though the order is now. If instead we elevated the order of the original, coarsest
curve tog and only then inserted the unique knot vajuéhe basis would havg— 1
continuous derivatives &t We refer to this latter procedure kgefinement It has
no analogue in standard finite element analysis

6 This notion ofk-refinement isnot the same as thek“convergence” described in [8] in
which the position of the knots is altered. It bears more mewn with the %k-version finite

12



The concept ok-refinement is important because isogeometric analysisndd-
mentally a higher-order approach. While linear finite elatsecan be represented
within a NURBS context, it takes quadratic-level NURBS tpresent conic sec-
tions — one of the key features of the method. In traditignatfinement there
is a very inhomogeneous structure to arrays due to the drftebasis functions
associated with surface, edge, vertex and interior nodesddlition, there is a pro-
liferation in the number of nodes becausB-continuity is maintained in the re-
finement process. Ikrefinement, there is a homogeneous structure within patche
and growth in the number of control variables is limited. lustemphasize that
an “element” in one dimension is defined as the span betweeristinct knot
values. The number of elements in a curve will then be the raurobnon-zero
knot spans in the knot vectoe.q, the domain associated with the knot vector
==1{0,0,0,1,2,3,3,4,4,4} consists of four elements).

Consider the classica@trefinement process. Assume the initial domain consists of
one element and + 1 basis functions (assuming an open knot vector), which we
then refine by inserting new knot values until we have p elements and basis
functions, allC?~!. We then perform order elevation, maintaining continuityhe
p—1 level. This requires replicating each distinct knot vakeding a basis function

in each element and so increasing the total number of bastsifuns byn — p to

2n — p. After a total of r order elevations of this type, we haye + 1)n — rp
basis functions, wherg is still the order of our original basis functions. This is
seen to be a large number of functions when one considersntimabst cases of
practical interest the number of elements will be quite ddsger than the order of
the basis. By comparison, consider beginning with the sameeetement domain
and proceed bk-refinement. That is, order elevatdimes adding onlyonebasis
function at each refinement, then insert knots until we have elements as before.
The final number of basis functionssist r, each having + p — 1 continuity. This
amounts to an enormous savingsasr is considerably smaller tham+1)n —rp.
Bear in mind that in/ dimensions these numbers are raised taitpewer. Recall
that the mesh, defined by the krlotations is fixed and is the same fg- and
k-refinements. See Figures 9 and 10.

It is important to note that “purek-refinement, where all functions maintait—!

continuity across element boundaries, is only possibledfdoarsest mesh is com-
prised of one element. If the initial mesh places constsantthe continuity across
certain element boundaries, these constraints will existlbmeshes. In general,
though some such constraints will exist, the number of efes@esired for analysis

element method” of [16, 17] in thatrefers to continuity, but the motivations are different.
The increased continuity in [16] is required so that a leagtares finite element approach
is possible. Such an approach requires that the solutiocespave the same number of
continuous derivatives as found in the highest order devivaf the differential operator.
Our motivations for using basis functions of higher coniiynare efficiency and robustness
of the solution space in a classical Galerkin finite elemenitilation of the problem.

13



will be much higher than the number needed for modeling thergry. Refine-

ments may be performed such that the functions havel continuous derivatives
across these new element boundaries and the benektseihement will still be

significant.

1
0.8
0.6
0.4

0.2

00 1

==1{0,0,1,1}, p=1

(@)
Knot insertion Order elevation
i il
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
00 1/3 2/3 1 00 1
E:{0,0,é,g,l,l},pzl E:{0,0,0,l,l,l},p:2
(b) (c)

Fig. 9. When refining a coarse, low-order mesh to create a ffiiggaer-order mesh, one
may choose betweenja or k-refinement strategy. Here we see the initial step for each
case. (a) Base case of one linear element. (b) Classifinement approach: knot insertion
is performed first to create many low-order elements. Sulessigorder elevation will pre-
serve theC? continuity across element boundaries. c) Nevwefinement approach: order
elevation is performed on the coarsest discretizations&girent knot insertion will result

a basis which ig2?~! across the newly created element boundaries. See thesre$pk
andk-refinement for several different polynomial orders in FigaO.

2.1.7 The hpk-refinement space

As we have shown, knot insertion and order elevation are timeitive operations
by which classicah- andp-refinements, as well as the néwefinement, can be
implemented. Recognizing their flexibility as comparedmatassical refinement
procedures makes feasible the notion of.ah-refinement space. Recalling that B-
spline curves may have no more than1 continuous derivatives across an element

14
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Fig. 10. Three element, higher-order meshespfoand k-refinement. a) The-refinement
approach results in many functions that ar& across element boundaries. b) In compar-
ison, k-refinement results in a much smaller number of functionshexd which isCP~!

across element boundaries.
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boundary, the set of possible refinements may be charaetiesizin Figure 11. Pure
k-refinement keeps fixed but increases the continuity along with the polynomial
order, as in Figure 12. Pugerefinement increases the polynomial order while the
basis remaing’’, as in Figure 13. Increasing the multiplicity of existingdtval-
ues decreases the continuity without introducing new etgsias in Figure 14.
Inserting new knot values with a multiplicity gfresults in classical-refinement,
whereby new elements are introduced that h@¥&oundaries, shown in Figure 15.
Inserting new knot values with a multiplicity of 1 decreasewithout decreasing
the minimum continuity already found in the mesh, as in Fegii8. Considering
all of the aforementioned techniques results in a multitafleefinement options
beyond simplé:-, p- andk-refinement, see Figure 17.

0+ /

Fig. 11. Thehpk-space. The set of all allowable refinements is containedhénrégion
shown in green. Note that this region extends in the diraatiothe arrows.

4 41 Pure k-refinement
k=p-1

Fig. 12. Thehpk-space. In puré-refinement, the locations of the element boundaries (and
thus element sizey) are fixed. As the polynomial ordep, is increased, the continuity of
the functions across element boundarigss increased such that= p — 1 at all levels of
refinement.
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4 Classical
p-refinement

3 k=0

2 -

1 -

0 * * @ * > > p
1 2 3 4

-1

Fig. 13. Thehpk-space. In pure-refinement, the locations of the element boundaries (and
thus element siz&y) are fixed. As the polynomial ordep, is increased, the continuity of
the functions across element boundariess fixed atk = 0 for all levels of refinement.
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k 4 Knot values are repeated

4 to reduce k&

3

2 -

| I

0 i T T T 4 > p
1 2 3 4 1

-1

Fig. 14. Thehpk-space. Repetition of existing knot values decreases thincity across
the corresponding element boundary without creating nemehts or changing the poly-
nomial order. The basis has— m; continuous derivatives across kgt wherem; is the
multiplicity of that knot value.

Pure h-refinement
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Fig. 15. Thehpk-space. If we insert new knot values with multiplicity @fnew elements
are created and the basis remaidrfsacross all element boundaries. In this way classical
h-refinement is exactly replicated.

2.1.8 Rational B-splines

As described in the beginning of this section, NURBS are fadrfrom B-splines.
Specifically, NURBS entities iiR? can be obtained by projective transformations
of B-spline entities inR¥*!, in particular, conic sections, such as circles and el-
lipses, can bexactlyconstructed by projective transformations of piecewise ra
tional quadratic curves. The projective transformatiorad-spline curve yields

a rational polynomial of the forn®'z(&) = f(£)/g(&), where f and g are piece-
wise polynomials. The construction of a rational B-splineve in R? proceeds
as follows. Let{ B*} be a set of control points for a B-spline curveld*! with
knot vector=. These are referred to as the “projective control points’tfer de-
sired NURBS curve ifR?. The control points iR are derived from the projective
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Fig. 16. Thehpk-space. Insertion of new knot values with a multiplicity ofelults in a
splitting of elements, and thus a decreasé {shown in the figure as an increasehin').
The basis hag — 1 continuous derivatives across these new element bousdarid so the
(possibly lower) minimum continuity already existing iretimesh is unchanged, as is the

polynomial order.

k 4

Knot values are repeated
to reduce k&

Fig. 17. Thehpk-space. Combining knot insertion and order elevation imove permuta-
tions allows us to traverse the entire allowable refinempats.
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control points by the following relations:

w; = (B")a+1 9)

where(B;); is thej* component of the vectdB;, etc. andw; is referred to as the
i" weight The rational basis functions and NURBS curve are given by

RIE) = s 4 (10
~ S RUOB,. (11)

Rational surfaces and solids are defined analogously irstefrthe rational basis
functions

D,q ( ) a(Mwi
Riem = N (O, 12
qukr(f n, C) ( ) q(n)Lk T(C)wl 7,k (13)

E?:l Zj:l Zkz:l i p(g)M],q(n)Ll%,r(C)wi,ﬁ,l%

The powerful thing about the construction of the NURBS bésmtions is that,
as NURBS inR“ are B-splines iR?*!, all of the refinement techniques we have
discussed are applied to NURBS by operating directly ondtmgher dimensional
B-splines. The NURBS basis functions also form a partitibmraty. The conti-
nuity and support of NURBS are the same as for B-splines. Affiansformations
in physical space are still obtained by applying the tramsédgion to the control
points, that is, NURBS possess the property of affine conaea

2.2 Multiple patches and local refinement

In almost all practical circumstances, it will be requireddescribe a domain with
multiple NURBS patches. For example, if different mateoiabhysical models are
to be used in different parts of the domain, it might simplifings to describe these
subdomains by different patches. Also, if different subdors are to be assembled
in parallel on a multiple processor machine, it is convetieam the point of view
of data structures to not have a single patch split betwetereint processors.
Most common is the case where the domain simply differs tgio&lly from a
cube. The tensor product structure of the parameter spacpaith makes it poorly
suited for representing complex, multiply connected darsabuch geometries can
frequently be handled quite simply by using multiple patc{se=eg.g, Figure 18).
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Fig. 18. The bracket on the top is exactly and concisely sspried by five simple NURBS
patches (patch boundaries are shown in red, element baasdablue). The patches match
geometrically and parametrically on the internal facesnalteey meet.
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Even in cases where a cube can be mapped into the desired, dojeg so might
introduce such extreme mesh distortion and widely varyiagpbians within el-
ements that analysis will be adversely affected. Figure (f@m [7]) shows the
amount of mesh distortion needed to represent the “stiffestnell” of Figure 19a
with a single NURBS patch. A mesh using multiple patchesywshio Figure 19c,
exhibits far less distortion and yields a much more “natumash.

IIIII

i

(b) (c)

Fig. 19. Multiple patches usually produce better qualityshes. (a) The stiffened shell of
[7] can be modeled using a single NURBS patch. (b) Such a mgpmioduces severe
mesh distortion that is unavoidable when using a singletpgt) Allowing the shell and
the stiffener to be modeled by different patches creates @more natural mesh. Patch
boundaries shown in red.

Another reason for using multiple patches is that it makealleefinement possible.
The situation is represented in Figure 20. Even with mudtiphtches, if we want
the control points of the two patches on their interface tarbene-to-one corre-
spondence, we need to have matching knot vectors. This nifegngfinements of
one patch must necessarily propagate from that patch tcetktelhwe are to allow

knots to be inserted on one side and not the other (ocal refinement), we may
proceed as follows.
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@ (b)

Fig. 20. (a) Global refinement employing the continuous €alemethod. (b) Local re-
finement employing the discontinuous Galerkin method ostramt equations at the patch
level. With constraint equations, at le@st-continuity can be attained across patches, and
higher-order continuity can be achieved in certain casdesfred.

Fig. 21. The two patches share a common interface. On theestamesh, their control
points on that interface are in one-to-one correspondérigially enforcing C° continuity.

Master Face Slave Face

Fig. 22. As Patch 2 is refined by knot insertion and the onerA®-correspondence of the
interface control points is lost. Constraint equations maymployed to ensure that conti-
nuity is maintained.

Consider the two B-spline patches that meet on an interface, as shown in Figure
21. On the coarsest mesh, we assume that the control poohisiabvectors in the
plane of the face are identical on both patches, thus ergtirat the patches match
geometrically and parametrically on that shared face. ¢superscript§ and2 to
identify the patch numbers, a subscrfjtio denote control points on the face where
the patches meet, and a subscripib denote control pointaot on that face, we

7 We will discuss the B-spline case here, but it is crucial tterthat if we were to use
NURBS rather than B-splines, all of the relationships irsteection must hold for the
projectivecontrol points angbrojectivecontrol variables.
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may write the control points for Patches 1 and 2 as

_ Bn ., _ B
B =1 and B =| ", (14)
Bj By

B2 = B. (15)

respectively, where

If we now refine the basis of Patch 2 by knot insertion, then exeelthe following
new set of control points for Patch 2:

-, [T, 0)(B?
B?=TB’= . : (16)
0 T;) \B?

whereT is the multi-dimensional generalization of the extensiperator defined
in (7). As before, it is sparse and its values are entirelyn@efiby the knot vectors
and the polynomial orders. The block diagonal structurlovas from the fact that
we are using open knot vectors. When open knot vectors art aaeh face of a
NURBS solid is influenced only by the control points on thaefaPut simply, each
face of the NURBS solid is a NURBS surface.

Combining (15) and (16), we see th@t-continuity of the geometry is maintained
by the relationship

B} = T;B}. (17)
Building on the approach of Kagan, Fischer and Bar-Yoseph,[@follows that for
our solution space to enforce the same continuity condgave need our control
variables to obey precisely the same relationship. Let

u, u,
u' = and u®= (18)
uy uj

be the control variables on Patch 1 and the refined Patch@ectgely. ThenC?-
continuity of the solution across the interface betweenphtehes may be main-
tained by enforcing the constraint

u(j} = Tfu}. (19)
From an implementational point of view, the two patches magd$sembled locally
to create the two local problems

K'u' = b! (20)

8 In [9], a similar approach was taken for B-Splinssrfaces Here we extend that to
NURBSsolids
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and

K?*u® = b? (22)
for the control points on either patch. Consistent with tagiponing of the control
variables in (18), we partition the stiffness matrices as

K = Lo and K-°= R (22)
K}, Kj; Ki. Kjy

Before solving, we must assemble problems (20) and (21)in&global problem
accounting for the behavior of both patches, as well as thesraction. We should
have three coupled blocks of equations: one correspondimgeighting functions
with support in Patch 1 that vanish on the face shared by tlepatches, one
corresponding to weighting functions with support on eitbeboth patches that
do not vanish on the shared face, and one corresponding to wegghimctions
with support on Patch 2 that vanish on the shared face. Wa lbygxpanding (20)
using the partitioning of (22) to get

K, u, + K u;=b, (23)
and
K;,u, +Kju; = by (24)

Inserting (19) into (21) and expanding yields

K2, ul +K2,Tru} =b? (25)
and ~
K7},ul + K}, Tfu; = b (26)

Note that (23) is the block of equations corresponding togiveng functions in
Patch 1 that vanish on the shared face. Similarly, (25) iblbek of equations cor-
responding to weighting functions in Patch 2 that vanishlenghared face. Now
(24) and (26) both correspond to weighting functions witpmurt on the shared
face and as such we would like to add them together to get asfupaéssion for that
block. Unfortunately, they contain different numbers ofiations. This is because
we assembled the two patches independently. We correatlgrgeed the equations
in (24) by testing against functions in the “master” weiglgtspace associated with
Patch 1, but we generated the equations in (26) by testingst@dl of the functions
in the larger “slave” weighting space on Patch 2 without rddar the constraint.
Just as the basis functions of the slave solution space ch Ratorresponding to
the shared face are restricted to act only in the linear coatlins defined byl ¥
that result in functions existing in the master solutioncgyao too must the func-
tions in the slave weighting space act only in such linearlwoations as replicate
functions in the master weighting space. This constraint beenforced by now
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premultiplying (26) byf} thus constraining the weighting functions and reducing
the number of equations to match that of (24):

TT 12 2 TT1o2 T 1 TT1.2

We may now express the global system comprised of (23), eﬁﬁj((24H(27))
as
Ku = b, (28)
where
K=K}, (K}, +T{K}T;) TTK?%, |, (29)
0 KTy K>,

(30)
and

b=|b}+TFb?|. (31)
b2
We may recoven? via (19) after solving (28).

This approach ensuré®’ continuity in the solution across the patch boundary when
one patch is a knot refined version of the other patch on tlegimoon interface.
Higher continuity has also been implemented by applyinglamaonstraint equa-
tions in the normal direction. As long as the geometries aragatible, the patch
boundary may be seen as the result of inserting a knot int@sSometapatch’p + 1
times. It should be noted that these are strong, exact @ity not approxima-
tions. An approach that would allow for weak enforcementaftmuity, as well
as allowing for local order elevation is to use discontinei@alerkin techniques
at the patch level. That is, weakly enforce continuity of rampiate fluxes across
patch boundaries while strongly enforcing them across etg¢rhoundaries within
the patch.

Remark

It is important to note that these operations could also Ipdieg over the entire
domain rather than just for the interface between patchbesd& could be used
in a multigrid scheme where the grid transfer operator wdgdr'. This could
potentially be very efficient a¥' is uniquely defined by the knot vectors and thus
its construction is very inexpensive.

26



3 Numerical examples

In Section 2.1.6 we compared the number of degrees-of-Greed k- andp-refined
meshes. We found that, for the same mesh and polynomial, drdefinement in-
volved many fewer degrees-of-freedom tharefinement. This suggests to us that
k-refinement may be a mosdficientprocedure thap-refinement. However, this is
not completely clear because other factors are at play. ditiomal way to assess
efficiency is by comparing accuracy on a per degree-of-fveetbasis, although
this may not be entirely satisfactory either. Neverthelesget some sense of the
relative efficiency of-refined ancg-refined meshes, we will adopt this approach in
the following numerical examples. We will often refergaefined meshes simply
as “finite elements” and-refined meshes as “NURBS.”

3.1 Vibrations of beams and rods

We study the problem of the structural vibrations of an étdisted-fixed rod of unit
length, whose natural frequencies and modes, assumingnantérial parameters,
are governed by:

U 4p +w?u = 0 forz €]0,1]

32
u(0) = u(l) =0, (32)

and for which the exact natural frequencies are:
wy, = nm, Withn = 1,2, 3... (33)

As a first numerical experiment, the eigenproblem is solvéith woth finite el-
ements and isogeometric analysis using quadratic basaidms. The resulting
natural frequencies,”, are presented in Figure 23, normalized with respect to the
exact solution (33), and plotted versus the mode numb@ormalized by the total
number of degrees-of-freedomy,. To produce the spectra of Figure 23, we used
N =999 but the results are in fact independent\of

Figure 23 illustrates the superior behavior of NURBS basiscfions compared
with finite elements. In this case, the finite element resdéipict an acoustical
branch forn/N < 0.5 and an optical branch for/N > 0.5 (see Brillouin [2]). As

we go to higher-order, the disparity becomes even greaighdt#order NURBS
outperform higher-order finite elements by an ever increasnargin, see Figure
24.

Additionally, transverse vibrations of a simply-suppdrtenit length Bernoulli-

Euler beam are considered (see Hughes [6], Chapter 7). Focdke, the natural
frequencies and modes, assuming unit material and cratieisal parameters, are
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Fig. 23. Fixed-fixed-rod. Normalized discrete spectra faadyatic finite elements and
NURBS.
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Fig. 24. Fixed-fixed-rod. Normalized discrete spectra fighkr-order finite elements and
NURBS.
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governed by:
U gree — w2u = 0 forz €0, 1]

u(0) =u(l) = u’m(()) — u,:c:c(l) -0, (34)

where
wp = (nm)?, withn =1,2,3, ... (35)

The numerical experiments and results for the BernoulleEbeam problem are
analogous to the ones reported for the rod. Note that theickldeam finite el-
ement employed to solve problem (34) is a two-node Hermibeccelement with
two degrees-of-freedom per node (transverse displaceamehtotation), whereas
our isogeometric analysis formulation is rotation-freegsfor example, Enget
al. [4]). Figure 25 presents the discrete spectra obtainedyusfferent order finite
element and NURBS basis functions. Agadirefinement results are dramatically
better on a per degree-of-freedom basis.

25 . ‘ ‘ ; =
- = =cubic FEM %

- = —quintic FEM !
- - —septic FEM i
—cubic NURBS >
—quintic NURBS
c —septic NURBS
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1
I
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I
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15} £ -
1
b

0 0.2

n/N

Fig. 25. Simply-supported beam. Normalized discrete spdor higher-order finite ele-
ments and NURBS.

Remark

It is very important to observe the trends in Figures 24 and=25 finite elements,
the optical branches of the frequency spedikgergeasy is increased. That is, the
errors in the higher frequencies get worsepas increased. It is well-known that
higher frequencies are inaccurate in finite element arglysit it is apparently a
new observation that they get progressively worse &sincreased. On the other
hand, for NURBSthe entire spectrum convergeasp is increased. These oppo-
site trends may be very important in applications such asewawepagation and
turbulence, in which thentire discrete spectrum may participate significantly in
the solution. We conjecture that NURBS, capable of attgirilmost spectral ac-
curacy on patches, as evidenced by Figures 24 and 25, mapbeea@uo classical,
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higher-order,C°-continuous finite elements in these applications. It may e
noted that, based on similar studies, NURBS exhibit sup@gouracy compared
to finite elements for first-order spatial operators. Thistlegses the belief that
NURBS should be capable of attaining better accuracy thae ffements in rep-
resenting wave phenomena and turbulence.

3.2 Hyperboloidal shell

The hyperboloidal shell problem was introduced to us by FBaina Szabo. His
group had analyzed the structure using-gefinement strategy on meshes created
using quasi-regional mappings based on optimal collopai®abuska points [18].
He was interested in an independent estimate of the limitevaf the potential en-
ergy and suggested we investigate it as our isogeometrimaplp is capable of
exactly representing the conic sections in the geometrg. grbblem was consid-
ered previously by Lee and Bathe [10] using shell elementis,ibfortunately they
do not report the potential energy in their results.

The domain is the thin-walled solid seen in Figure 26, whosksurface is defined
by

2 —yt=1, ye|[-1,1]. (36)
The structure has a thickness iof= 0.001 in the direction normal to this mid-

surface (all distances are in meters). The loading is a dmowarying pressure
normal to the surface,

p(0) = po cos(20), (37)
with py = 1.0 MPa. The top and bottom of the structure are fixed.

1 0.5 0 -0.5 -1
X

Fig. 26. The geometry of the hyperboloidal shell.
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3.2.1 Mesh generation and implementation

Only a quarter of the structure is modeled due to symmetrg. ffird-surface is a
conic section, namely a hyperbola, extruded in a path debgedhother conic sec-
tion, a circle. As rational quadratic NURBS are capable piesenting all conic
sections, this hyperboloidal surface of revolution candpesented exactly. How-
ever, the inner and outer surfaces of the structure are dkbfiseoffsets of the
mid-surface, shifted byt¢/2 in the normal direction, and are not conic sections.
Moreover, they are not in the NURBS space, so our mesh wiknaihtly be an
approximate geometfy.

The decision was made to use two quadratic elements thrdwglhickness of
the structure (see Figure 27). The knot value defining thenBary between the
elements has a multiplicity equal to its polynomial orderthereby making the
geometrically exact mid-surface a discernible entity witthe mesh — it is the
boundary between the inner and outer layers of elementstskare then inserted
into the appropriate knot vectors to define the elementsemitid-surface of the
coarsest mesh. This mid-surface mesh is identical for dyinmonial orders.

! — 1
08

0.6,

0.4

02

0(?0,0 1,1 222

Fig. 27. Two quadratic elements are used through the thgskriEhe basis i€° across
the interior element boundary, thus making the boundaglfis NURBS surface. By this
construction, the geometrically exact mid-surface is aatisible entity within the mesh.

Once the coarse mid-surface mesh is fixed, so too is the nuohibasis functions
in the axial direction. The offset curves that define the irared outer surfaces of
revolution must now be interpolated. The number of pointsmgleach curve that
may be interpolated is equal to the number of basis functiorike axial direc-
tion. Due to the use of open knot vectors (see [7]), the nurobé&rnctions for a
fixed mesh grows withp. Specifically, for the chosen mesh there ade+ p ba-
sis functions in the axiali.g., ) direction. As a result]4 + p points, equispaced
in the parametric domain, are calculated along the hypartiben offset byt /2
using the analytically computed normals to the curve. Tlodfset points are then
interpolated using?—* B-splines to create the approximate geometry. In this way,
the quality of the overall geometric approximation impreas the polynomial or-

9 Note that it is the offset of the hyperbola which is not repried exactly. In the radial
direction, the offset of a circle is again a circle and theredxists in our NURBS space. It
is theradii of the circles denoting the inner and outer surfaces of thetire at a given

heighty that are not exact.

31



der increases, though the mid-surface mesh is the samd twdals. The loading,
however, does not differ as it is applied directly to the raidface itself.

To complete Mesh 1 for each polynomial order, knots are tegenear the fixed
ends creating two rows of small elements in order to betteolve the boundary
layer. The multiplicity of these knots j5 and so the basis functions ar€ across
these element boundaries, shown in red in Figure 28. As sistliabove, we could
have introduced theame numbeof new degrees-of-freedom into the region by
creating many small elements, each having 1 continuous derivatives across
their boundaries. Instead we have chosen fewer elemenitsloviter continuity.
The motivation for introducing thesg” mesh-lines is that previous experience has
indicated that doing so helps to prevent the behavior in @lyerl from polluting
results elsewhere in the domain. The main reason for thisaisintroducing aC"°
mesh-line results in a localizing of the support of the b&asmctions and thereby
decreasing the coupling of functions within the boundayetavith functions out-
side of the boundary layer (see Figure 29). The result iperigayers and more
compact representations of the global solution, partityitan coarse meshé$.

Meshes 2 and 3, seen in Figures 30 and 31, respectivelyarestlt of subsequent
uniform h-refinements. The basisd® ! across the element boundaries introduced
through these refinements. The geometry and parametenza&timain unchanged,
and so Mesh 1 fixes the geometry for each polynomial ordehigwtay, our anal-
ysis is anh-method, repeated for several different polynomial ordeather than

a p-method repeated for several meshes as in [18]. Recall, yewat the mid-
surface meshes for Mesh 1, Mesh 2 and Mesh 3 are independéiet pdlynomial
order. This was done in an effort to make the results from atgnomial order to
the next as comparable as possible.

3.2.2 Results

The numbers of degrees-of-freedom and the numerically cbadpvolume are re-
ported in Table 1. The potential energy for each mesh, asasdhe limit ash — 0

estimated using Richardson extrapolation (see the appgiade reported in Table
2. Plots of the deformed geometry as seen from several difteingles are shown
in Figures 32-34. The displacement has been amplified bytarfat10 to make it

more visible. Due to the sinusoidal character of the loading deformed structure
has “compression lobes” and “expansion lobes.” In bothsabke largest gradients
of the solution are contained in thin layers near the fixedsearidhe structure. Plots

10 Note that we would expect a very fine mesghg; one with all of the elements the size
of those in the boundary layer) comprised of highly contumiéunctions to represent the
solution more efficiently than a classigaimethod on a per degree-of-freedom basis. On a
coarse mesh, however, the efficiency of the method is dedridddarge percentage of the
functions have support in both very small and very large eleis1 This issue is investigated
in more detail in Section 3.3.
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Fig. 28. Mesh 1. Basis functions hawe— 1 continuous derivatives across blue element
boundaries. They are only° across red element boundaries.

of the radial and vertical displacement at a compressioa &id at an expansion
lobe are shown in Figures 35-42. In all of these plots, redalteach of the polyno-
mial orders on Mesh 3 are shown. While the quadratics aredar tonverged, and
cubics seem to be showing signs of the geometry error, theigsiand quintics lie
practically on top of each other. It is likely that if the syudtere extended to higher
polynomial orders, the curves would be virtually indistinghable from the quintic
solution.

p»,q | Mesh 1 DOF | Mesh 2 DOF | Mesh 3 DOF Vol. of shell

2,2 2160 6300 21060 1.597535 * 1072 m3

3,2 3045 7755 23655 1.597527 % 1072 m3

4,2 4080 9360 26400 1.597530 * 1072 m?

5,2 5265 11115 29295 1.597530 * 1072 m?
Table 1

Mesh data. Here denotes the polynomial order in the plane of the surfacelewis the
polynomial order through the thickness. The exact volumthefshell is1.597530 * 10~2
m3.

After this initial study was completed, a second study wasopeed using the
maximum continuity possible. The shell geometries weretidal to those pre-
sented above, as were the meshes outside of the boundarydgien. The width
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Fig. 29. Example boundary layer meshes. Both meshes hasarienumber of basis func-
tions. a) Only one of the seven basis functions has suppdhrtibside the layef{ < 0.1)

and outside of the laydg > 0.1). b) Three of the seven basis functions have support both
inside and outside of the layer.

Dy q Mesh 1 Mesh 2 Mesh 3 Est. limit
2,2 | —4.668902 —4.751145 —4.796779 —4.799821
3,2 | —4.783082 —4.794395 —4.801991 —4.802112
4,2 | —4.787948 —4.795994 —4.799878 —4.799893
5,2 | —4.791334 —4.798373 —4.799941 —4.799942
%1072 MNm | * 1072 MNm | * 1072 MNm | % 10~2 MNm

Table 2
Potential energy. Estimated limit calculated using Ridsan extrapolation.
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Fig. 30. Mesh 2. The second mesh is generated by uniferefinement of Mesh 1. The

basis isC?~! across the new element boundaries.

5

Fig. 31. Mesh 3. The third mesh is generated by uniforrefinement of Mesh 2. The basis
3

is CP~! across the new element boundaries.



Fig. 32. The deformed configuration. Displacements have hegplified by a factor of 10
for visibility.

Fig. 33. The deformed configuration. Compression lobes eible where the loading is
directed inward.

Fig. 34. The deformed configuration. Expansion lobes aiiéleisvhere the loading is di-
rected outward.
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Fig. 35. Compression lobe. Radial displacement versusheig
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Fig. 36. Compression lobe. Detail of radial displacememswe height.
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Fig. 37. Compression lobe. Vertical displacement versigtie
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%107 Vertical Displacement v. Height at Compression Lobe
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Fig. 38. Compression lobe. Detail of vertical displacemaarsus height.
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Fig. 39. Expansion lobe. Radial displacement versus height

Radial Displacement v. Height at Compression Lobe

—— Quadratic
—— Cubic
00136 | —— Quartic
00134} |— Quintic

dial displacement

£ 0.0126F

05 0.6 0.7 0.8 0.9 1
y

Fig. 40. Expansion lobe. Detail of radial displacement weiseight.
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Vertical Displacement v. Height at Expansion Lobe
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Fig. 41. Expansion lobe. Vertical displacement versusliteig
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functionsmay result in a more accurate solution.

Mesh1l | Mesh2 | Mesh 3
C° Boundary layer | 0.1804% | 0.0337% | 0.0011%
CP~! Boundary layer| 0.3379% | 0.0206% | 0.0007%

Table 3

Comparison of the potential energy errors in the two apgreado boundary layer meshing,
p = 5. Though the coarse mesh favors th& boundary layer, smooth functions prove to
be more accurate once the meshes are sufficiently fine. Theenele solution used in the
error calculation is the estimated limit for the quintic edsom the previous table.

Remark

In preliminary investigations of this problem, a mesh wasdithat had one cubic
element through the thickness, rather than the two quadeiments as described
above. The interpolation, and thus the geometry itself, iastical. The pressure
loading was applied to the inner surface of the structur@ugh a rigorous study
was not performed under these conditions, it was clear tiapbtential energy
was consistently greater (less negative) by al3gtithan the limit values reported
by Szabo [18]. The meshes used in the present study wereageden an effort to
improve upon these early efforts, as indeed they did. Prizasg the mid-surface
instead of the inner surface not only allowed the use of ateunormals (which
was seen as the most likely source of error in the prelimiredfyrts), but also
made the study more consistent as the loading is now the samaé polynomial
orders.

When comparing with the results of Szab6 [18], our valuetlier potential energy
is slightly more negative but the difference is onty0.1% of the total energy. It is
likely that the discrepancy is due to geometrical diffees our models, though
the implementations of the loading may have had an effectedls Bespite having
the exact geometrical mid-surface, our approach to intatpm was somewhat
arbitrary, though the volume calculations imply that ouogeetries forp = 4 and
p = b are more accurate than those in [18].

3.3 Hemispherical shell with a stiffener

The hemispherical shell with a stiffener problem (see Fegi) was modeled with

a single NURBS patch in [7]. As was shown in Section 2.2, usa sihgle patch
leads to substantial distortion of the elements. While @ads well of the overall
robustness of the method that accurate results were stalrada, efficiency clearly
suffered. Thep-method used in that convergence study was not competitive o
a per degree-of-freedom basis with the original results ahliRet al. [13], who
used a trunk space-refinement strategy. Such an approach does not use the full
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tensor product space of basis functions, but the much sntallg space, just large
enough to ensure the optimal convergence rate at a givem@uoiyal order (see
Szab6, Mister and Rank [19] for a discussion of the trunk space ang-thethod
in general). As NURBS necessarily have an underlying tepsmduct structure, at
least on patches, an analogous isogeometric analysisagipexploiting the trunk
space has not been attempted thus far.

Point B

) // /pressur@
/7
g / / // /

Point A

Ry
Ly
Ry PointD/,
y t2
«@ a = 30°
—»
Jh 3 = 10°
Boundary conditions: Ry = 10m
R2 = 5\/§m
At bottom surface of stiffener: t1 = 0.1lm
u, =0 to =  0.4m
LQ = 0.4m
Symmetry atz-z-plane: E = 6.825- 10743
uy =0 v = 03
p = 50054
Symmetry aty-z-plane: g = 10.0%
ug =0 p = 100.0&%

Fig. 43. Hemispherical shell with stiffener. Problem dgsesn from Ranket al. [13].

Despite the tensor product structure of NURBSefinement presents the possi-
bility of improved efficiency. In factk-refinement, in conjunction with the use of
multiple patches to create better quality meshes, and thefuscal refinement to
avoid placing functions in regions where they are not negdedbles the NURBS
based approach to show an accuracy per degree-of-freedmpacable to the re-
sults presented by Rarmt al.in [13]; see Figures 46-49.

In studying the stiffened shell problem withkerefinement approach, certain pre-
viously unobserved features begin to emerge. As above,iffemgnesh of higher-
order and high continuity does not achieve the level of eaxyidesired, one can
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Fig. 44. Hemispherical shell with stiffener. The coarse mesy be refined in multiple
ways.
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(a) Localk-refinement (b) Locak*-refinement

Fig. 45. Hemispherical shell with stiffener. (a)karefinement approach with?~! conti-
nuity across element boundaries. Many small elements & tosget a well-resolved so-
lution. (b) Functions ar€ across the element boundaries in ré#;! elsewhere. Fewer
elements are needed than in (a). In both cases, the baSf agross patch boundaries,
shown in black, and local refinement is implemented at thelpatel.

43



add more degrees-of-freedom by inserting a knot in one ofptdrametric direc-
tions. The number of new degrees-of-freedonexactlythe same regardless of
whether a new knot value is inserted (creating new elemegntplitting existing
ones), or whether an existing knot value is repeated (crgato new elements,
but decreasing the continuity of the basis across the quoreting element bound-
aries). While a rigorous analysis of the two approaches bagat been performed,
in the present results it seems clear that in regions whersdlution is very smooth
(such as in the shell, a reasonable distance away from ffensti), inserting a new
knot, and thus more functions that maintain high continwitgs the more benefi-
cial refinement. In the vicinity of a singularity (such as n## reentrant corner
where the shell meets the stiffener and the stress is sirgitles more beneficial
to repeat an existing knot value, decreasing the contirafitie basis and simulta-
neously decreasing the support of the basis functions iphlgsical space. Both of
these effects help localize the singularity and prevenbinf polluting the results
elsewhere in the domath.

The meshes for the multiple-patch treatment of the stiffiesieell are shown in
Figures 44 and 45. The locally refinddmethod meshes are seen in Figure 45a. In
Figure 45b, we see the case where fewer elements are udetyp® refinement
is used everywhere except at the knot lines marked in red.nmil@plicities of
these knots were increased with the polynomial order suatthie basis remained
C° across them. The results for this mesh are labeled “Lktaéf” to indicate
that thek-refinement paradigm was altered near the singularity. Té@acements
are plotted versus the number of degrees of freedom in FsgdBe49. The calcu-
lated von Mises stresses are plotted versus the number oéekegf freedom in
Figures 50-53. The trunk spapemethod results from Randt al. [13] are plotted
for comparison. For displacements, the single patch re$wdi [7] are plotted as
well.

4 Conclusions

We described the possibility di-, p-, and k-refinement strategies and explored
their behavior on four numerical examples. The first two epka® concerned the
free vibration of an elastic rod and a thin beam. In thesescdmesuperiority of the
k-method over the classicalmethod is quite dramatic. On a per degree-of-freedom
basis, the results are significantly more accurate acressrttire spectrum. In addi-
tion, spurious optical branches for thenethod are found to diverge wigh where

as optical branches are eliminated for thenethod. In the latter case the entire

1 This is reminiscent of the heuristic notion that lammethod should use large elements
with higher-order in smooth regions and small elements wklsorder near singularities.
Coupling this with control over the continuity across eleseopens the door to the possi-
bility of an hpk-method.
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Fig. 46. Hemispherical shell with stiffener. The displaggrnat point A is plotted versus
the total number of degrees-of-freedom.
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Fig. 47. Hemispherical shell with stiffener. The displa@agiat point B is plotted versus
the total number of degrees-of-freedom.
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Fig. 48. Hemispherical shell with stiffener. The displaegrmat point C is plotted versus
the total number of degrees-of-freedom.
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Fig. 49. Hemispherical shell with stiffener. The displaesihat point D is plotted versus
the total number of degrees-of-freedom.
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Fig. 50. Hemispherical shell with stiffener. The von Miseess at point A is plotted versus
the total number of degrees-of-freedom.
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Fig. 51. Hemispherical shell with stiffener. The von Mis&ress at point B is plotted versus
the total number of degrees-of-freedom.
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Fig. 52. Hemispherical shell with stiffener. The von Miseess at point C is plotted versus
the total number of degrees-of-freedom.
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Fig. 53. Hemispherical shell with stiffener. The von Misgess at point D is plotted versus
the total number of degrees-of-freedom.
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spectrum converges as order is increased. We feel in thess taat the increased
smoothness of the-method basis functions better exploits the smoothnesseof t
exact analytical eigensolutions than do tff&continuous basis functions of the
method. For further studies of the behavior of isogeomefpjaroaches to structural
vibrations, see Cottre#t al.[3].

We then considered two elliptic boundary value problemsstegll structures ex-
hibiting singular behavior. The first shell was a hyperbdlsubjected to circum-
ferentially varying pressure (Lee and Bathe [10]). Thera i8eak boundary layer
singularity. The second shell was a spherical cap, with a Abthe apex, built into

a solid ring stiffener (Rankt al.[13]). The intersection of the shell and the stiffener
creates a strong line singularity. These problems provideapportunity to study
the effects of smoothness of basis functions in the vicioitgingularities. In both
cases, we used a trivariate NURBS solid description instéadshell theory. For
the hyperboloidal shell, we reduced smoothness locallyervicinity of the bound-
ary layer. In the case of coarse meshes, this improved angwere as for finer
meshes the pure-method was more accurate. In the case of the spherical ap, w
employed a multipatch approach with local refinement anthagampared smooth
discretizations within the patches with ones in which awouity was reduced t6"

in the vicinity of the singularity. We found this latter ajpaich led to more rapid
convergence. The reason for this seems to be that basisdosttaving support in
the vicinity of the singularity tend to propagate infornaatiaway from the singu-
larity. The support of smooth-method basis functions is greater than the support
of the same order-method functions when there are approximately the same num
bers of degrees-of-freedom. As a result, the errors crdatete singularities tend

to propagate further for the smoother basis functions ofitimeethod. By judi-
ciously locating a few surfaces of reduced continuity, thelfution” created by
the singularities seemed to be more locally confined.

In conclusion, or studies revealed some cases where imttasasoothness dramat-
ically improved accuracy and other cases where some lodakt®n in smooth-
ness also enhanced accuracy. Historically, the dominan€® finite elements has
precluded the opportunity for assessing the potential ofeiased smoothness. It
is clear from the studies described herein, and those in theraoecent papers
[1, 3, 7], that the potential is very significant. Howeverddes not seem to be a
black and white issue, but rather to depend strongly on the@af the exact solu-
tion. Further studies need to be performed to assess theofifadn a wider variety
of problems.

AcknowledgementsWe thank Barna Szab0, Ernst Rank and AlexandastBr for
helpful discussions on the shell problems considered heféie support of Office
of Naval Research under contract NO0014-03-0263 is grigefaknowledged.

Appendix
Richardson Extrapolation
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Richardson extrapolation is a technique in which two appnations of a known
order of accuracy relative to some parameter are combinebtsn an approxima-
tion with a higher order of accuracy. In the case of finite edats, the parameter is
the mesh size), and the order of accuracy is dictated by the polynomial oode
the basis function¥ . In general, we generate an approximatitih) to a desired
guantity A, where the order of the error is known. That is,

A= A(h) + Bh* + Ch*™ + DR 4 . (A.1)

wherek is known butB, C, D, etc. are unknown constants. More concisely, we
write

A = A(h) + BhF + O(R*F™1). (A.2)

We can get a second such equation by generating a secondiapation with a
different mesh size, for example

A= A(h/2) + B(h/2)F + O(R*F). (A.3)

We can remove the lowest order term in the error by takifhigmes A.3 and sub-
tracting A.2, which yields

(28 — 1)A = 2"A(h/2) — A(h) + O(R*). (A.4)
Simplifying, we arrive at

_ 2MA(h/2) — A(h)

A
2k — 1

+ O(R*1). (A.5)

We now have a new approximation

2% A(h/2) — A(h)

A
2k — 1

(A.6)

whose order of accuracy is higher than either of the two apprations that gen-
erated it.
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