
Studies of Refinement and Continuity in Isogeometric
Structural Analysis

J.A. Cottrell1, T.J.R. Hughes2, and A. Reali3

Institute for Computational Engineering and Sciences, TheUniversity of Texas at Austin,
201 East 24th Street, 1 University Station C0200, Austin, TX78712, USA

Abstract

We investigate the effects of smoothness of basis functionson solution accuracy within
the isogeometric analysis framework. We consider two simple one-dimensional structural
eigenvalue problems and two static shell boundary value problems modeled with trivari-
ate NURBS solids. We also develop a local refinement strategythat we utilize in one of
the shell analyses. We find that increased smoothness, that is, the “k-method,” leads to a
significant increase in accuracy for the problems of structural vibrations over the classi-
cal C0-continuous “p-method,” whereas a judicious insertion ofC0-continuous surfaces
about singularities in a mesh otherwise generated by thek-method, usually outperforms a
mesh in which all basis functions attain their maximum levelof smoothness. We conclude
that the potential for thek-method is high, but smoothness is an issue that is not well un-
derstood due to the historical dominance ofC0-continuous finite elements and therefore
further studies are warranted.
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1 Introduction

The concept of Isogeometric Analysis, introduced by Hughes, Cottrell and Bazilevs
[7] and further developed by Cottrellet al. [3] and Bazilevset al. [1], was initially
motivated by the gap existing between Computer Aided Design(CAD) and Finite
Element Analysis (FEA). The first manifestation of the gap isin the initial mesh
generation process. The design is encapsulated in some typeof CAD model. This
model often includes ambiguities, such as gaps and overlaps, and levels of detail,
such as individual bolts, welds, etc., that make it inappropriate for analysis. The
ambiguities must be removed and defeaturing must be performed to arrive at an
Analysis Suitable Geometry (ASG) that exactly represents the features of interest
for the calculation (see Figure 1). This ASG must then be replaced with a finite
element mesh, usually a piecewise polynomial approximation of the actual geom-
etry. Creating a mesh can be one of the more time consuming steps in the analysis
process.

Though initial mesh generation can be a significant bottleneck, additional difficul-
ties are encountered during refinement. Frequently, if an accurate solution is to be
obtained through a series of refinements, the quality of the geometric approxima-
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Fig. 1. The geometry of an object of engineering interest is initially encapuslated in a Com-
puter Aided Design (CAD) package. The CAD description must frequently be changed
significantly to create an Analysis Suitable Geometry (ASG).

tion must be simultaneously improved or else the error will reach a plateau from
which it cannot be reduced. If such geometric refinement is totake place, a link
must be established between the ASG and the refinement routine. This link usually
does not exist in practice (see Figure 2a). This may be one of the reasons why auto-
matic refinement has had little impact in industry despite the great promise shown
in academic research studies.

Isogeometric analysis is a methodology for addressing these problems. The idea is
to have one and only one representation of the geometry whichexactly encapsulates
the ASG and is more faithful to the initial CAD representation. While an ASG must
still be constructed, using functions and technologies of the sort found in CAD
packages may facilitate the development of links between the design and analysis
software. More importantly, if the finite element mesh were to exactly encapsulate
the ASG, refinement to any level could take place completely within the analysis
framework. The need for reestablishing the link with an external description of the
geometry would be completely obviated as the mesh wouldbethe exact geometry,
as in Figure 2b.

Our current implementation of the isogeometric analysis concept, based on Non-
Uniform Rational B-Splines (NURBS), accomplishes this last task in almost all
situations. The geometric flexibility of the NURBS basis allows for the exact repre-
sentation of a much larger class of objects than standard finite element technology.
Most notably, all conic sections can be represented exactly. At this point, genera-
tion of the initial mesh can still be a time consuming processbut once it has been
performed, the isogeometric meshencapsulates the exact geometry and may be
refined to any level without ever altering this geometry in any way.

Meshless methods do seem to share certain features with the isogeometric ap-
proach. The description of complicated geometries within such methods, however,
has been almost entirely ignored in the literature. Notableexceptions are found in
the papers of Subbarayan and colleagues [11, 20] and the recent work of Simkins
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(a)

(b)

(c)

Fig. 2. The analysis process. a) In finite element analysis, mesh refinement requires inter-
action with an external description of the geometry if the quality of the geometric approx-
imation is to be improved. The lack of such interaction is an impediment to adaptive mesh
refinement procedures. b) In isogeometric analysis, the mesh is the exact geometry and so
refinement can take place completely within the analysis framework. c) The literature on
meshless methods is yet to present a comprehensive view how complex geometries may be
represented and how that representation interacts with theprocess of refining the solution
space.

et al. [15]. While meshless methods do show great promise in certain areas, a clear
view of the proper way in which to define a geometry, as well as how that descrip-
tion affects both refinement of the solution space and, perhaps more importantly,
numerical integration of the basis functions, is yet to emerge; see Figure 2c.

An important feature of the NURBS-based approach to isogeometric analysis, that
was not one of its initial motivations, is the ability to use functions of higher order
and higher continuity. Section 2 will describe the construction of NURBS basis
functions that may have up top − 1 continuous derivatives across element bound-
aries, wherep is the order of the underlying polynomial. This is seen in Section
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3.1 to have a profound effect in structural vibration problems. The NURBS func-
tions of higher continuity offer a much more compact representation of the vibra-
tional modes of structures than do standard finite element functions, yielding much
greater accuracy per degree of freedom, even at the same polynomial order. In Sec-
tions 3.2 and 3.3 we study shells modeled as trivariate NURBSsolids. We explore
local refinement and control of continuity. Results indicate that in regions with very
large gradients, the use of functions with reduced continuity leads to more accurate
results on a per-degree-of-freedom basis, at least on coarse meshes. These observa-
tions lead to the conclusion that localcontrolof the continuity of the basis is a tool
to be exploited in efficiently representing many types of solutions. In Section 4 we
draw conclusions.

2 Overview of the Isogeometric Analysis Framework

Our current implementation of the isogeometric analysis concept is based on Non-
Uniform Rational B-Splines (NURBS). This section will present an in depth dis-
cussion of the NURBS functions and their usage in representing various geometries
comprised of a single NURBS patch. The myriad of refinement options encompass-
ing classicalh- andp-refinement, as well as the newk-refinement described in [7],
will be discussed in detail. Lastly, we will describe the useof multiple patches and
local refinement using constraint equations.

2.1 B-splines and NURBS

2.1.1 Knot Vectors

NURBS are built from B-splines and so a discussion of B-splines is a natural start-
ing point for the investigation of NURBS. Unlike in standardFEA, the B-spline
parametric space is local to “patches” rather than elements. Patches play the role
of subdomainswithin which element types and material models are assumed to be
uniform. However, a variety of refinement options may exist within a single patch.
More about this later. Many simple domains can be represented by a single patch.

Note that the distinction between “elements” and “patches”may be thought of in
two different ways. In [8] and [9], the patches themselves are referred to as el-
ements. This is not unreasonable as the parametric space is local to patches and
a finite element code must include a loop over the patches during assembly. As
mentioned previously, we take the alternate view that patches are subdomains com-
prised of many elements, namely the “knot spans”. This latter view seems more
appropriate as, in our current code, numerical quadrature is being carried out at the
knot span level. Furthermore, in the case of B-splines, the functions are piecewise
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polynomials where the different “pieces” join along knot lines. In this way the func-
tions areC∞ within an element. Lastly, surprisingly complicated domains may be
described by a single patch (e.g., all of the numerical examples in [7]). Describing
such domains as being comprised of one element seems unnatural.

A knot vector in one dimension is a set of coordinates in the parametric space,
written Ξ = {ξ1, ξ2, ..., ξn+p+1}, whereξi ∈ R is theith knot, i is the knot index,
i = 1, 2, ..., n + p + 1, p is the polynomial order, andn is the number of basis
functions which comprise the B-spline. The knots partitionthe parameter space
into elements. Element boundaries in the physical space aresimply the images of
knot lines under the B-Spline mapping, as shown in Figure 3.

Fig. 3. The parametric space is local to “patches” rather than elements. The knots partition
the patch into elements.

Knot vectors may beuniform if the knots are equally spaced in the parametric do-
main, or if they are unequally spaced, they arenon-uniform. Knot values may be
repeated, that is, more than one knot may take on the same value. The multiplici-
ties of knot values have important implications for the continuity properties of the
basis. A knot vector is said to beopenif its first and last knots appearp + 1 times.
Open knot vectors are standard in the CAD literature. In one dimension, basis func-
tions formed from open knot vectors are interpolatory at theends of the parametric
space interval,[ξ1, ξn+p+1], and in multiple dimensions they are interpolatory at the
corners of patches, but they are not, in general, interpolatory at interior knots. This
is a distinguishing feature between knots and “nodes” in finite element analysis.

2.1.2 Basis functions

B-spline basis functions are defined recursively starting with piecewise constants
(p = 0) :

Ni,0(ξ) =











1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(1)

Forp = 1, 2, 3, ..., they are defined by

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2)
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The results of applying (1) and (2) to a uniform knot vector are presented in Figure
4. For B-spline functions withp = 0 and1, we have the same result as for standard
piecewise constant and linear finite element functions, respectively. Quadratic B-
spline basis functions, however, are different than those in FEM. Each quadratic B-
spline is identical but shifted. This distinguishes them from quadratic finite element
functions, which are different for internal and end nodes. The homogeneous nature
of the basis has implications for the quality of the approximation and the potential
for efficient solution. In the case of structural vibrations, where the heterogeneity
of finite element functions leads to a branching of the spectrum that degrades the
accuracy of a large percentage of the computed frequencies,the homogeneity of B-
spline functions leads to dramatic improvements, as will beshown later in Section
3.1.

ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ

Fig. 4. Basis functions of order0, 1, 2 for uniform knot vectorΞ = {0, 1, 2, 3, 4, ...}.

ξ

Fig. 5. Quadratic basis functions for open, non-uniform knot vector
Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}.

For an open, non-uniform knot vector we can attain much richer behavior. An ex-
ample is presented in Figure 5. Note that the basis functionsare interpolatory at the
ends of the interval and also atξ = 4, the location of a repeated knot, where only
C0-continuity is attained. Elsewhere, the functions areC1-continuous. In general,
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basis functions of orderp havep−mi continuous derivatives across knotξi, where
mi is the multiplicity of the value ofξi in the knot vector. When the multiplicity of
a knot value is exactlyp, the basis is interpolatory there. When the multiplicity is
p + 1, the basis becomes discontinuous and the patch is effectively split into two
separate patches.

An important property of B-spline basis functions is that they constitute a partition
of unity, that is,∀ξ,

n
∑

i=1

Ni,p(ξ) = 1. (3)

This is a feature they share with finite elements and meshlessmethods. Also of note
is that the support of eachNi,p is compact and contained in the interval[ξi, ξi+p+1].
Lastly, observe that each basis function is point-wise non-negative over the entire
domain, that is,Ni,p(ξ) ≥ 0, ∀ξ. This means that all of the entries of a mass matrix
will be positive, which has implications for developing lumped mass schemes.

2.1.3 B-spline curves

B-spline curves inRd are constructed by taking a linear combination of B-spline
basis functions. The vector-valued coefficients of the basis functions are referred to
ascontrol points. These are analogous to nodal coordinates in finite element analy-
sis in that they are the coefficients of the basis functions, but the non-interpolatory
nature of the basis does not lead to the usual interpretationof the control point val-
ues. Piecewise linear interpolation of the control points gives the so-calledcontrol
polygon. Again note that, in general, control points are not interpolated by B-spline
curves. Givenn basis functions,Ni,p, i = 1, 2, ..., n, and corresponding control
pointsBi ∈ R

d, i = 1, 2, ..., n, a piecewise-polynomialB-spline curveis given by

C(ξ) =
n

∑

i=1

Ni,p(ξ)Bi. (4)

The example shown in Figure 6 is built from the quadratic basis functions consid-
ered in Figure 5. The curve is interpolatory at the first and last control points, a
general feature of a curve built from an open knot vector. Note that it is also in-
terpolatory at the sixth control point. This is due to the fact that the multiplicity
of the knot atξ = 4 is equal to the polynomial order. Note also that the curve is
tangent to the control polygon at the first, last, and sixth control points. The curve
is Cp−1 = C1-continuous everywhere except at the location of the repeated knot,
ξ = 4, where it isCp−2 = C0-continuous.

The properties of B-spline curves follow directly from the properties of their basis
functions. For example, B-spline curves have continuous derivatives up to order
p−1 in the absence of repeated knots or control points. Repeating a knot or control
pointk times decreases the number of continuous derivatives byk.
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(a) Curve and control points (b) Curve and mesh denoted by knot locations

Fig. 6. B-spline, piecewise quadratic curve inR
2. a) Control point locations are denoted by

•’s. b) The knots, which define a mesh by partitioning the curveinto elements, are denoted
by �’s. Basis functions and knot vector as in Figure 5.

Affine transformations of a B-spline curve are obtained by applying the transfor-
mations directly to the control points. This turns out to be the essential property for
satisfying so-called “patch tests,” as discussed in [7]. This property is referred to as
affine covariance.

2.1.4 h-refinement: Knot insertion

The mechanism for implementingh-refinement isknot insertion. 4 Knots may be
inserted without changing a curve geometrically or parametrically. Given a knot
vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, let Ξ̄ = {ξ̄1 = ξ1, ξ̄2, ..., ξ̄n+m+p+1 = ξn+p+1}
be anextendedknot vector such thatΞ ⊂ Ξ̄. The newn + m basis functions are
formed as before by applying (1) and (2) to the new knot vectorΞ̄. The newn + m
control points,B̄ = {B̄1, B̄2, ..., B̄n+m}

T, are formed from the original control
points,B = {B1, B2, ..., Bn}

T, by

B̄ = T
p
B (5)

where

T 0

ij =











1 ξ̄i ∈ if [ξj, ξj+1)

0 otherwise
(6)

and

T q+1

ij =
ξ̄i+q − ξj

ξj+q − ξj

T q
ij +

ξj+q+1 − ξ̄i+q

ξj+q+1 − ξj+1

T q
ij+1 for q = 0, 1, 2, ..., p− 1 (7)

4 Note that in the CAD literature “knot insertion” refers to inserting a single knot into a
knot vector, whereas “knot refinement” refers to inserting multiple knots simultaneously.
Here, we make no distinction and use “knot insertion” to refer to both cases. For an algo-
rithm for inserting an individual knot, see [7].
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Knot values already present in the knot vector may be repeated as above but, as
described subsequently in Section 2.1.2, the continuity ofthebasiswill be reduced.
Continuity of thecurveis preserved by choosing the control points as in (5), (6) and
(7).

Figure 7 shows the case of a global refinement of the curve fromFigure 6. Insertion
of new knot values has parallels with the classicalh-refinement strategy in finite
element analysis as it splits existing elements into smaller ones. Repeating existing
knot values to decrease the continuity of basis does not havean analogue in FEA.
We will return to this idea later.

(a) (b)

Ξ̄ = {0, 0, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4, 4.5, 5, 5, 5}

Fig. 7. Knot insertion. a) New control points are computed from the original control points
using (5). b) Each element has been split by inserting a new knot at the midpoint of each
knot span.

2.1.5 p-refinement: Order elevation

The mechanism for implementingp-refinement isorder elevation5 . As its name
implies, the process involves raising the polynomial orderof the basis functions
used to represent the geometry (and the solution space, as our finite element imple-
mentation will be isoparametric). Recalling from Section 2.1.1 that the basis has
p −mi continuous derivatives across element boundaries, it is clear that, whenp is
increased,mi must also be increased if we are to preserve the discontinuities in the
derivatives of our original curve. During order elevation,the multiplicity of each
existing knot value is increased by one, but no new knotvaluesare added. As with
knot insertion, neither the geometry nor the parameterization are changed.

5 sometimes also called “degree elevation.”
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(a) (b)

Ξ̄ = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5}

Fig. 8. Order elevation. a) New control points are calculated so as to preserve the geome-
try and parameterization. b) The mesh remains unchanged as no new elements have been
created. Note the increased multiplicity of internal knots. This is done to preserve disconti-
nuities in the derivatives of the curve.
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The process for order elevation begins by replicating existing knots until their mul-
tiplicity is equal to the polynomial order, thus effectively subdividing the curve into
many Bézier curves by knot insertion (see Rogers [14] or Farin [5] for a discussion
of Bézier curves; we may think of them as one element B-spline curves). The next
step is to elevate the order of the polynomial on each of theseindividual segments.
Lastly, excess knots are removed to combine the segments into one, order-elevated,
B-spline curve. Several efficient algorithms exist which combine the steps so as to
minimize the computational cost of the process. Details areomitted for the sake of
brevity. For a thorough treatment, see Piegl and Tiller [12].

Figure 8 shows this process applied to the curve in Figure 6. The multiplicities of
the knots have been increased but no new elements created. Note that the locations
of control points for these order-elevated curves are different than those in theh-
refinement example (cf. Figure 7).

2.1.6 k-refinement: Higher order and higher continuity

As we have seen, the two primitive operations for B-splines are knot insertion and
order elevation. Knot insertion is similar toh-refinement, but for it to be a per-
fect analogue, each new knot value would have to be inserted with multiplicity
mi = p to ensure aC0 basis everywhere. Similarly, if we begin with a mesh where
all functions are alreadyC0 across element boundaries, order elevation coincides
exactly with our traditional notion ofp-refinement. Knot insertion and order eleva-
tion, however, provide us with more possibilities than the two standard notions of
refinement.

As mentioned above, we can insert new knot values with multiplicities of 1 to de-
fine new elements across whose boundaries functions will beCp−1. We can also
repeat existing knot values to lower the continuity of the basis across existing el-
ement boundaries. This makes knot insertion a more flexible process than simple
h-refinement. Similarly, we have a more flexible higher-orderrefinement as well. It
stems from the fact that the processes of order elevation andknot insertion do not
commute. If a unique knot value,ξ̄, is inserted between two distinct knot values in
a curve of orderp, the number of continuous derivatives of the basis functions at
ξ̄ is p − 1. As described above, if we subsequently elevate to some higher order,
q, the multiplicity of every distinct knot value (including the knot just inserted) is
incremented(q − p) times so that discontinuities in thepth derivative of the basis
are preserved. That is, the basis still has onlyp − 1 continuous derivatives at̄ξ, al-
though the order is nowq. If instead we elevated the order of the original, coarsest
curve toq and only then inserted the unique knot valueξ̄, the basis would haveq−1
continuous derivatives at̄ξ. We refer to this latter procedure ask-refinement. It has
no analogue in standard finite element analysis6 .

6 This notion ofk-refinement isnot the same as the “k-convergence” described in [8] in
which the position of the knots is altered. It bears more in common with the “k-version finite
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The concept ofk-refinement is important because isogeometric analysis is funda-
mentally a higher-order approach. While linear finite elements can be represented
within a NURBS context, it takes quadratic-level NURBS to represent conic sec-
tions – one of the key features of the method. In traditionalp-refinement there
is a very inhomogeneous structure to arrays due to the different basis functions
associated with surface, edge, vertex and interior nodes. In addition, there is a pro-
liferation in the number of nodes becauseC0-continuity is maintained in the re-
finement process. Ink-refinement, there is a homogeneous structure within patches
and growth in the number of control variables is limited. Letus emphasize that
an “element” in one dimension is defined as the span between two distinct knot
values. The number of elements in a curve will then be the number of non-zero
knot spans in the knot vector (e.g., the domain associated with the knot vector
Ξ = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4} consists of four elements).

Consider the classicalp-refinement process. Assume the initial domain consists of
one element andp + 1 basis functions (assuming an open knot vector), which we
then refine by inserting new knot values until we haven − p elements andn basis
functions, allCp−1. We then perform order elevation, maintaining continuity at the
p−1 level. This requires replicating each distinct knot value,adding a basis function
in each element and so increasing the total number of basis functions byn − p to
2n − p. After a total of r order elevations of this type, we have(r + 1)n − rp
basis functions, wherep is still the order of our original basis functions. This is
seen to be a large number of functions when one considers thatin most cases of
practical interest the number of elements will be quite a bitlarger than the order of
the basis. By comparison, consider beginning with the same one element domain
and proceed byk-refinement. That is, order elevater times adding onlyonebasis
function at each refinement, then insert knots until we haven−p elements as before.
The final number of basis functions isn + r, each havingr + p− 1 continuity. This
amounts to an enormous savings asn+r is considerably smaller than(r+1)n−rp.
Bear in mind that ind dimensions these numbers are raised to thed power. Recall
that the mesh, defined by the knotlocations, is fixed and is the same forp- and
k-refinements. See Figures 9 and 10.

It is important to note that “pure”k-refinement, where all functions maintainCp−1

continuity across element boundaries, is only possible if the coarsest mesh is com-
prised of one element. If the initial mesh places constraints on the continuity across
certain element boundaries, these constraints will exist on all meshes. In general,
though some such constraints will exist, the number of elements desired for analysis

element method” of [16, 17] in thatk refers to continuity, but the motivations are different.
The increased continuity in [16] is required so that a least-squares finite element approach
is possible. Such an approach requires that the solution space have the same number of
continuous derivatives as found in the highest order derivative of the differential operator.
Our motivations for using basis functions of higher continuity are efficiency and robustness
of the solution space in a classical Galerkin finite element formulation of the problem.
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will be much higher than the number needed for modeling the geometry. Refine-
ments may be performed such that the functions havep − 1 continuous derivatives
across these new element boundaries and the benefits ofk-refinement will still be
significant.

0 1
0

0.2

0.4

0.6

0.8

1

Ξ = {0, 0, 1, 1}, p = 1

(a)

Knot insertion Order elevation

↓ ↓

0     1/3 2/3 1     
0

0.2

0.4

0.6

0.8

1

0 1
0

0.2

0.4

0.6

0.8

1

Ξ = {0, 0, 1

3
, 2

3
, 1, 1}, p = 1 Ξ = {0, 0, 0, 1, 1, 1}, p = 2

(b) (c)

Fig. 9. When refining a coarse, low-order mesh to create a fine,higher-order mesh, one
may choose between ap- or k-refinement strategy. Here we see the initial step for each
case. (a) Base case of one linear element. (b) Classicp-refinement approach: knot insertion
is performed first to create many low-order elements. Subsequent order elevation will pre-
serve theC0 continuity across element boundaries. c) Newk-refinement approach: order
elevation is performed on the coarsest discretization. Subsequent knot insertion will result
a basis which isCp−1 across the newly created element boundaries. See the results of p-
andk-refinement for several different polynomial orders in Figure 10.

2.1.7 The hpk-refinement space

As we have shown, knot insertion and order elevation are the primitive operations
by which classicalh- andp-refinements, as well as the newk-refinement, can be
implemented. Recognizing their flexibility as compared with classical refinement
procedures makes feasible the notion of anhpk-refinement space. Recalling that B-
spline curves may have no more thanp−1 continuous derivatives across an element
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Fig. 10. Three element, higher-order meshes forp- andk-refinement. a) Thep-refinement
approach results in many functions that areC0 across element boundaries. b) In compar-
ison,k-refinement results in a much smaller number of functions, each of which isCp−1

across element boundaries.
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boundary, the set of possible refinements may be characterized as in Figure 11. Pure
k-refinement keepsh fixed but increases the continuity along with the polynomial
order, as in Figure 12. Purep-refinement increases the polynomial order while the
basis remainsC0, as in Figure 13. Increasing the multiplicity of existing knot val-
ues decreases the continuity without introducing new elements, as in Figure 14.
Inserting new knot values with a multiplicity ofp results in classicalh-refinement,
whereby new elements are introduced that haveC0 boundaries, shown in Figure 15.
Inserting new knot values with a multiplicity of 1 decreasesh without decreasing
the minimum continuity already found in the mesh, as in Figure 16. Considering
all of the aforementioned techniques results in a multitudeof refinement options
beyond simpleh-, p- andk-refinement, see Figure 17.

Fig. 11. Thehpk-space. The set of all allowable refinements is contained in the region
shown in green. Note that this region extends in the direction of the arrows.

Fig. 12. Thehpk-space. In purek-refinement, the locations of the element boundaries (and
thus element size,h) are fixed. As the polynomial order,p, is increased, the continuity of
the functions across element boundaries,k, is increased such thatk = p− 1 at all levels of
refinement.
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Fig. 13. Thehpk-space. In purep-refinement, the locations of the element boundaries (and
thus element size,h) are fixed. As the polynomial order,p, is increased, the continuity of
the functions across element boundaries,k, is fixed atk = 0 for all levels of refinement.
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Fig. 14. Thehpk-space. Repetition of existing knot values decreases the continuity across
the corresponding element boundary without creating new elements or changing the poly-
nomial order. The basis hasp − mi continuous derivatives across knotξi, wheremi is the
multiplicity of that knot value.

Fig. 15. Thehpk-space. If we insert new knot values with multiplicity ofp, new elements
are created and the basis remainsC0 across all element boundaries. In this way classical
h-refinement is exactly replicated.

2.1.8 Rational B-splines

As described in the beginning of this section, NURBS are formed from B-splines.
Specifically, NURBS entities inRd can be obtained by projective transformations
of B-spline entities inRd+1, in particular, conic sections, such as circles and el-
lipses, can beexactlyconstructed by projective transformations of piecewise ra-
tional quadratic curves. The projective transformation ofa B-spline curve yields
a rational polynomial of the formCR(ξ) = f(ξ)/g(ξ), wheref andg are piece-
wise polynomials. The construction of a rational B-spline curve in R

d proceeds
as follows. Let{Bw

i } be a set of control points for a B-spline curve inR
d+1 with

knot vectorΞ. These are referred to as the “projective control points” forthe de-
sired NURBS curve inRd. The control points inRd are derived from the projective
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Fig. 16. Thehpk-space. Insertion of new knot values with a multiplicity of 1results in a
splitting of elements, and thus a decrease inh (shown in the figure as an increase inh−1).
The basis hasp−1 continuous derivatives across these new element boundaries, and so the
(possibly lower) minimum continuity already existing in the mesh is unchanged, as is the
polynomial order.

Fig. 17. Thehpk-space. Combining knot insertion and order elevation in various permuta-
tions allows us to traverse the entire allowable refinement space.
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control points by the following relations:

(Bi)j = (Bw
i )j/wi, j = 1, ..., d (8)

wi = (Bw
i )d+1 (9)

where(Bi)j is thejth component of the vectorBi, etc. andwi is referred to as the
ith weight. The rational basis functions and NURBS curve are given by

Rp
i (ξ) =

Ni,p(ξ)wi
∑n

î=1
Nî,p(ξ)wî

(10)

C(ξ) =
n

∑

i=1

Rp
i (ξ)Bi . (11)

Rational surfaces and solids are defined analogously in terms of the rational basis
functions

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j
∑n

î=1

∑m
ĵ=1

Nî,p(ξ)Mĵ,q(η)wî,ĵ

(12)

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k
∑n

î=1

∑m
ĵ=1

∑l

k̂=1
Nî,p(ξ)Mĵ,q(η)Lk̂,r(ζ)wî,ĵ,k̂

(13)

The powerful thing about the construction of the NURBS basisfunctions is that,
as NURBS inR

d are B-splines inRd+1, all of the refinement techniques we have
discussed are applied to NURBS by operating directly on those higher dimensional
B-splines. The NURBS basis functions also form a partition of unity. The conti-
nuity and support of NURBS are the same as for B-splines. Affine transformations
in physical space are still obtained by applying the transformation to the control
points, that is, NURBS possess the property of affine covariance.

2.2 Multiple patches and local refinement

In almost all practical circumstances, it will be required to describe a domain with
multiple NURBS patches. For example, if different materialor physical models are
to be used in different parts of the domain, it might simplifythings to describe these
subdomains by different patches. Also, if different subdomains are to be assembled
in parallel on a multiple processor machine, it is convenient from the point of view
of data structures to not have a single patch split between different processors.
Most common is the case where the domain simply differs topologically from a
cube. The tensor product structure of the parameter space ofa patch makes it poorly
suited for representing complex, multiply connected domains. Such geometries can
frequently be handled quite simply by using multiple patches (see,e.g., Figure 18).
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Fig. 18. The bracket on the top is exactly and concisely represented by five simple NURBS
patches (patch boundaries are shown in red, element boundaries in blue). The patches match
geometrically and parametrically on the internal faces where they meet.
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Even in cases where a cube can be mapped into the desired object, doing so might
introduce such extreme mesh distortion and widely varying Jacobians within el-
ements that analysis will be adversely affected. Figure 19b(from [7]) shows the
amount of mesh distortion needed to represent the “stiffened shell” of Figure 19a
with a single NURBS patch. A mesh using multiple patches, shown in Figure 19c,
exhibits far less distortion and yields a much more “natural” mesh.

(a)

(b) (c)

Fig. 19. Multiple patches usually produce better quality meshes. (a) The stiffened shell of
[7] can be modeled using a single NURBS patch. (b) Such a mapping produces severe
mesh distortion that is unavoidable when using a single patch. (c) Allowing the shell and
the stiffener to be modeled by different patches creates a much more natural mesh. Patch
boundaries shown in red.

Another reason for using multiple patches is that it makes local refinement possible.
The situation is represented in Figure 20. Even with multiple patches, if we want
the control points of the two patches on their interface to bein one-to-one corre-
spondence, we need to have matching knot vectors. This meansthat refinements of
one patch must necessarily propagate from that patch to the next. If we are to allow
knots to be inserted on one side and not the other (i.e., local refinement), we may
proceed as follows.
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(a) (b)

Fig. 20. (a) Global refinement employing the continuous Galerkin method. (b) Local re-
finement employing the discontinuous Galerkin method or constraint equations at the patch
level. With constraint equations, at leastC0-continuity can be attained across patches, and
higher-order continuity can be achieved in certain cases ifdesired.

Fig. 21. The two patches share a common interface. On the coarsest mesh, their control
points on that interface are in one-to-one correspondence,trivially enforcingC0 continuity.

Fig. 22. As Patch 2 is refined by knot insertion and the one-to-one correspondence of the
interface control points is lost. Constraint equations maybe employed to ensure that conti-
nuity is maintained.

Consider the two B-spline7 patches that meet on an interface, as shown in Figure
21. On the coarsest mesh, we assume that the control points and knot vectors in the
plane of the face are identical on both patches, thus ensuring that the patches match
geometrically and parametrically on that shared face. Using superscripts1 and2 to
identify the patch numbers, a subscriptf to denote control points on the face where
the patches meet, and a subscriptn to denote control pointsnot on that face, we

7 We will discuss the B-spline case here, but it is crucial to note that if we were to use
NURBS rather than B-splines, all of the relationships in this section must hold for the
projectivecontrol points andprojectivecontrol variables.

23



may write the control points for Patches 1 and 2 as

B
1 =







B
1
n

B
1
f





 and B
2 =







B
2
n

B
2
f





 , (14)

respectively, where
B

2

f = B
1

f . (15)

If we now refine the basis of Patch 2 by knot insertion, then we have the following
new set of control points for Patch 2:

B̃
2 = T̃B

2 =







T̃n 0

0 T̃f













B
2
n

B
2
f





 , (16)

whereT̃ is the multi-dimensional generalization of the extension operator defined
in (7). As before, it is sparse and its values are entirely defined by the knot vectors
and the polynomial orders. The block diagonal structure follows from the fact that
we are using open knot vectors. When open knot vectors are used, each face of a
NURBS solid is influenced only by the control points on that face. Put simply, each
face of the NURBS solid is a NURBS surface.

Combining (15) and (16), we see thatC0-continuity of the geometry is maintained
by the relationship

B̃
2

f = T̃fB
1

f . (17)

Building on the approach of Kagan, Fischer and Bar-Yoseph [9] 8 , it follows that for
our solution space to enforce the same continuity constraints, we need our control
variables to obey precisely the same relationship. Let

u
1 =







u
1
n

u
1
f





 and u
2 =







u
2
n

u
2
f





 (18)

be the control variables on Patch 1 and the refined Patch 2, respectively. ThenC0-
continuity of the solution across the interface between thepatches may be main-
tained by enforcing the constraint

u
2

f = T̃fu
1

f . (19)

From an implementational point of view, the two patches may be assembled locally
to create the two local problems

K
1
u

1 = b
1 (20)

8 In [9], a similar approach was taken for B-Splinessurfaces. Here we extend that to
NURBSsolids.

24



and
K

2
u

2 = b
2 (21)

for the control points on either patch. Consistent with the partitioning of the control
variables in (18), we partition the stiffness matrices as

K
1 =







K
1
nn K

1
nf

K
1
fn K

1
ff





 and K
2 =







K
2
nn K

2
nf

K
2
fn K

2
ff





 . (22)

Before solving, we must assemble problems (20) and (21) intoone global problem
accounting for the behavior of both patches, as well as theirinteraction. We should
have three coupled blocks of equations: one corresponding to weighting functions
with support in Patch 1 that vanish on the face shared by the two patches, one
corresponding to weighting functions with support on either or both patches that
do not vanish on the shared face, and one corresponding to weighting functions
with support on Patch 2 that vanish on the shared face. We begin by expanding (20)
using the partitioning of (22) to get

K
1

nnu
1

n + K
1

nfu
1

f = b
1

n (23)

and
K

1

fnu
1

n + K
1

ffu
1

f = b
1

f . (24)

Inserting (19) into (21) and expanding yields

K
2

nnu
2

n + K
2

nfT̃fu
1

f = b
2

n (25)

and
K

2

fnu
2

n + K
2

ffT̃fu
1

f = b
2

f . (26)

Note that (23) is the block of equations corresponding to weighting functions in
Patch 1 that vanish on the shared face. Similarly, (25) is theblock of equations cor-
responding to weighting functions in Patch 2 that vanish on the shared face. Now
(24) and (26) both correspond to weighting functions with support on the shared
face and as such we would like to add them together to get a finalexpression for that
block. Unfortunately, they contain different numbers of equations. This is because
we assembled the two patches independently. We correctly generated the equations
in (24) by testing against functions in the “master” weighting space associated with
Patch 1, but we generated the equations in (26) by testing against all of the functions
in the larger “slave” weighting space on Patch 2 without regard for the constraint.
Just as the basis functions of the slave solution space on Patch 2 corresponding to
the shared face are restricted to act only in the linear combinations defined bỹTf

that result in functions existing in the master solution space, so too must the func-
tions in the slave weighting space act only in such linear combinations as replicate
functions in the master weighting space. This constraint may be enforced by now
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premultiplying (26) byT̃T
f , thus constraining the weighting functions and reducing

the number of equations to match that of (24):

T̃
T

f K
2

fnu
2

n + T̃
T

f K
2

ff T̃fu
1

f = T̃
T

f b
2

f . (27)

We may now express the global system comprised of (23), (25),and
(

(24)+(27)
)

as
Ku = b, (28)

where

K =















K
1
nn K

1
nf 0

K
1
fn (K1

ff + T̃
T
f K

2
ffT̃f) T̃
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f K

2
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
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

, (29)

u =




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
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n
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f
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2
n


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
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

, (30)

and

b =















b
1
n

b
1
f + T̃

T
f b

2
f
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2
n















. (31)

We may recoveru2
f via (19) after solving (28).

This approach ensuresC0 continuity in the solution across the patch boundary when
one patch is a knot refined version of the other patch on their common interface.
Higher continuity has also been implemented by applying similar constraint equa-
tions in the normal direction. As long as the geometries are compatible, the patch
boundary may be seen as the result of inserting a knot into some “metapatch”p+1
times. It should be noted that these are strong, exact constraints, not approxima-
tions. An approach that would allow for weak enforcement of continuity, as well
as allowing for local order elevation is to use discontinuous Galerkin techniques
at the patch level. That is, weakly enforce continuity of appropriate fluxes across
patch boundaries while strongly enforcing them across element boundaries within
the patch.

Remark

It is important to note that these operations could also be applied over the entire
domain rather than just for the interface between patches. These could be used
in a multigrid scheme where the grid transfer operator wouldbe T̃. This could
potentially be very efficient as̃T is uniquely defined by the knot vectors and thus
its construction is very inexpensive.
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3 Numerical examples

In Section 2.1.6 we compared the number of degrees-of-freedom ink- andp-refined
meshes. We found that, for the same mesh and polynomial order, k-refinement in-
volved many fewer degrees-of-freedom thanp-refinement. This suggests to us that
k-refinement may be a moreefficientprocedure thanp-refinement. However, this is
not completely clear because other factors are at play. A traditional way to assess
efficiency is by comparing accuracy on a per degree-of-freedom basis, although
this may not be entirely satisfactory either. Nevertheless, to get some sense of the
relative efficiency ofk-refined andp-refined meshes, we will adopt this approach in
the following numerical examples. We will often refer top-refined meshes simply
as “finite elements” andk-refined meshes as “NURBS.”

3.1 Vibrations of beams and rods

We study the problem of the structural vibrations of an elastic fixed-fixed rod of unit
length, whose natural frequencies and modes, assuming unitmaterial parameters,
are governed by:

u,xx + ω2u = 0 for x ∈ ]0, 1[

u(0) = u(1) = 0,
(32)

and for which the exact natural frequencies are:

ωn = nπ, with n = 1, 2, 3... (33)

As a first numerical experiment, the eigenproblem is solved with both finite el-
ements and isogeometric analysis using quadratic basis functions. The resulting
natural frequencies,ωh

n, are presented in Figure 23, normalized with respect to the
exact solution (33), and plotted versus the mode number,n, normalized by the total
number of degrees-of-freedom,N . To produce the spectra of Figure 23, we used
N = 999 but the results are in fact independent ofN.

Figure 23 illustrates the superior behavior of NURBS basis functions compared
with finite elements. In this case, the finite element resultsdepict an acoustical
branch forn/N < 0.5 and an optical branch forn/N > 0.5 (see Brillouin [2]). As
we go to higher-order, the disparity becomes even greater. Higher-order NURBS
outperform higher-order finite elements by an ever increasing margin, see Figure
24.

Additionally, transverse vibrations of a simply-supported, unit length Bernoulli-
Euler beam are considered (see Hughes [6], Chapter 7). For this case, the natural
frequencies and modes, assuming unit material and cross-sectional parameters, are
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Fig. 23. Fixed-fixed-rod. Normalized discrete spectra for quadratic finite elements and
NURBS.

Fig. 24. Fixed-fixed-rod. Normalized discrete spectra for higher-order finite elements and
NURBS.

28



governed by:
u,xxxx − ω2u = 0 for x ∈ ]0, 1[

u(0) = u(1) = u,xx(0) = u,xx(1) = 0,
(34)

where
ωn = (nπ)2, with n = 1, 2, 3, ... (35)

The numerical experiments and results for the Bernoulli-Euler beam problem are
analogous to the ones reported for the rod. Note that the classical beam finite el-
ement employed to solve problem (34) is a two-node Hermite cubic element with
two degrees-of-freedom per node (transverse displacementand rotation), whereas
our isogeometric analysis formulation is rotation-free (see, for example, Engelet
al. [4]). Figure 25 presents the discrete spectra obtained using different order finite
element and NURBS basis functions. Again,k-refinement results are dramatically
better on a per degree-of-freedom basis.

Fig. 25. Simply-supported beam. Normalized discrete spectra for higher-order finite ele-
ments and NURBS.

Remark

It is very important to observe the trends in Figures 24 and 25. For finite elements,
the optical branches of the frequency spectradivergeasp is increased. That is, the
errors in the higher frequencies get worse asp is increased. It is well-known that
higher frequencies are inaccurate in finite element analysis, but it is apparently a
new observation that they get progressively worse asp is increased. On the other
hand, for NURBS,the entire spectrum convergesasp is increased. These oppo-
site trends may be very important in applications such as wave propagation and
turbulence, in which theentire discrete spectrum may participate significantly in
the solution. We conjecture that NURBS, capable of attaining almost spectral ac-
curacy on patches, as evidenced by Figures 24 and 25, may be superior to classical,
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higher-order,C0-continuous finite elements in these applications. It may also be
noted that, based on similar studies, NURBS exhibit superior accuracy compared
to finite elements for first-order spatial operators. This buttresses the belief that
NURBS should be capable of attaining better accuracy than finite elements in rep-
resenting wave phenomena and turbulence.

3.2 Hyperboloidal shell

The hyperboloidal shell problem was introduced to us by Prof. Barna Szabó. His
group had analyzed the structure using ap-refinement strategy on meshes created
using quasi-regional mappings based on optimal collocation at Babuška points [18].
He was interested in an independent estimate of the limit value of the potential en-
ergy and suggested we investigate it as our isogeometric approach is capable of
exactly representing the conic sections in the geometry. The problem was consid-
ered previously by Lee and Bathe [10] using shell elements, but unfortunately they
do not report the potential energy in their results.

The domain is the thin-walled solid seen in Figure 26, whose mid-surface is defined
by

x2 + z2 − y2 = 1, y ∈ [−1, 1]. (36)

The structure has a thickness oft = 0.001 in the direction normal to this mid-
surface (all distances are in meters). The loading is a smoothly varying pressure
normal to the surface,

p(θ) = p0 cos(2θ), (37)

with p0 = 1.0 MPa. The top and bottom of the structure are fixed.

Fig. 26. The geometry of the hyperboloidal shell.
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3.2.1 Mesh generation and implementation

Only a quarter of the structure is modeled due to symmetry. The mid-surface is a
conic section, namely a hyperbola, extruded in a path definedby another conic sec-
tion, a circle. As rational quadratic NURBS are capable of representing all conic
sections, this hyperboloidal surface of revolution can be represented exactly. How-
ever, the inner and outer surfaces of the structure are defined as offsets of the
mid-surface, shifted by±t/2 in the normal direction, and are not conic sections.
Moreover, they are not in the NURBS space, so our mesh will inherently be an
approximate geometry9 .

The decision was made to use two quadratic elements through the thickness of
the structure (see Figure 27). The knot value defining the boundary between the
elements has a multiplicity equal to its polynomial order,2, thereby making the
geometrically exact mid-surface a discernible entity within the mesh – it is the
boundary between the inner and outer layers of elements. Knots are then inserted
into the appropriate knot vectors to define the elements in the mid-surface of the
coarsest mesh. This mid-surface mesh is identical for all polynomial orders.

Fig. 27. Two quadratic elements are used through the thickness. The basis isC0 across
the interior element boundary, thus making the boundary itself a NURBS surface. By this
construction, the geometrically exact mid-surface is a discernible entity within the mesh.

Once the coarse mid-surface mesh is fixed, so too is the numberof basis functions
in the axial direction. The offset curves that define the inner and outer surfaces of
revolution must now be interpolated. The number of points along each curve that
may be interpolated is equal to the number of basis functionsin the axial direc-
tion. Due to the use of open knot vectors (see [7]), the numberof functions for a
fixed mesh grows withp. Specifically, for the chosen mesh there are14 + p ba-
sis functions in the axial (i.e., y) direction. As a result,14 + p points, equispaced
in the parametric domain, are calculated along the hyperbola, then offset by±t/2
using the analytically computed normals to the curve. Theseoffset points are then
interpolated usingCp−1 B-splines to create the approximate geometry. In this way,
the quality of the overall geometric approximation improves as the polynomial or-

9 Note that it is the offset of the hyperbola which is not represented exactly. In the radial
direction, the offset of a circle is again a circle and therefor exists in our NURBS space. It
is theradii of the circles denoting the inner and outer surfaces of the structure at a given
heighty that are not exact.
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der increases, though the mid-surface mesh is the same for all orders. The loading,
however, does not differ as it is applied directly to the mid-surface itself.

To complete Mesh 1 for each polynomial order, knots are inserted near the fixed
ends creating two rows of small elements in order to better resolve the boundary
layer. The multiplicity of these knots isp, and so the basis functions areC0 across
these element boundaries, shown in red in Figure 28. As discussed above, we could
have introduced thesame numberof new degrees-of-freedom into the region by
creating many small elements, each havingp − 1 continuous derivatives across
their boundaries. Instead we have chosen fewer elements with lower continuity.
The motivation for introducing theseC0 mesh-lines is that previous experience has
indicated that doing so helps to prevent the behavior in the layer from polluting
results elsewhere in the domain. The main reason for this is that introducing aC0

mesh-line results in a localizing of the support of the basisfunctions and thereby
decreasing the coupling of functions within the boundary layer with functions out-
side of the boundary layer (see Figure 29). The result is crisper layers and more
compact representations of the global solution, particularly on coarse meshes10 .

Meshes 2 and 3, seen in Figures 30 and 31, respectively, are the result of subsequent
uniformh-refinements. The basis isCp−1 across the element boundaries introduced
through these refinements. The geometry and parameterization remain unchanged,
and so Mesh 1 fixes the geometry for each polynomial order. In this way, our anal-
ysis is anh-method, repeated for several different polynomial orders, rather than
a p-method repeated for several meshes as in [18]. Recall, however, that the mid-
surface meshes for Mesh 1, Mesh 2 and Mesh 3 are independent ofthe polynomial
order. This was done in an effort to make the results from one polynomial order to
the next as comparable as possible.

3.2.2 Results

The numbers of degrees-of-freedom and the numerically computed volume are re-
ported in Table 1. The potential energy for each mesh, as wellas the limit ash → 0
estimated using Richardson extrapolation (see the appendix), are reported in Table
2. Plots of the deformed geometry as seen from several different angles are shown
in Figures 32-34. The displacement has been amplified by a factor of 10 to make it
more visible. Due to the sinusoidal character of the loading, the deformed structure
has “compression lobes” and “expansion lobes.” In both cases, the largest gradients
of the solution are contained in thin layers near the fixed ends of the structure. Plots

10 Note that we would expect a very fine mesh (e.g., one with all of the elements the size
of those in the boundary layer) comprised of highly continuous functions to represent the
solution more efficiently than a classicalp-method on a per degree-of-freedom basis. On a
coarse mesh, however, the efficiency of the method is degraded if a large percentage of the
functions have support in both very small and very large elements. This issue is investigated
in more detail in Section 3.3.
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Fig. 28. Mesh 1. Basis functions havep − 1 continuous derivatives across blue element
boundaries. They are onlyC0 across red element boundaries.

of the radial and vertical displacement at a compression lobe and at an expansion
lobe are shown in Figures 35-42. In all of these plots, results for each of the polyno-
mial orders on Mesh 3 are shown. While the quadratics are far from converged, and
cubics seem to be showing signs of the geometry error, the quartics and quintics lie
practically on top of each other. It is likely that if the study were extended to higher
polynomial orders, the curves would be virtually indistinguishable from the quintic
solution.

p, q Mesh 1 DOF Mesh 2 DOF Mesh 3 DOF Vol. of shell

2, 2 2160 6300 21060 1.597535 ∗ 10−2 m3

3, 2 3045 7755 23655 1.597527 ∗ 10−2 m3

4, 2 4080 9360 26400 1.597530 ∗ 10−2 m3

5, 2 5265 11115 29295 1.597530 ∗ 10−2 m3

Table 1
Mesh data. Herep denotes the polynomial order in the plane of the surface, while q is the
polynomial order through the thickness. The exact volume ofthe shell is1.597530 ∗ 10−2

m3.

After this initial study was completed, a second study was performed using the
maximum continuity possible. The shell geometries were identical to those pre-
sented above, as were the meshes outside of the boundary layer region. The width
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Ξ = {0, 0, 0, 0, 0.1, 0.1, 0.1, 1, 1, 1, 1}

(a)

Ξ = {0, 0, 0, 0, 0.03, 0.06, 0.1, 1, 1, 1, 1}

(b)

Fig. 29. Example boundary layer meshes. Both meshes have thesame number of basis func-
tions. a) Only one of the seven basis functions has support both inside the layer(ξ < 0.1)
and outside of the layer(ξ > 0.1). b) Three of the seven basis functions have support both
inside and outside of the layer.

p, q Mesh 1 Mesh 2 Mesh 3 Est. limit

2, 2 −4.668902 −4.751145 −4.796779 −4.799821

3, 2 −4.783082 −4.794395 −4.801991 −4.802112

4, 2 −4.787948 −4.795994 −4.799878 −4.799893

5, 2 −4.791334 −4.798373 −4.799941 −4.799942

∗ 10−2 MNm ∗ 10−2 MNm ∗ 10−2 MNm ∗ 10−2 MNm
Table 2
Potential energy. Estimated limit calculated using Richardson extrapolation.
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Fig. 30. Mesh 2. The second mesh is generated by uniformh-refinement of Mesh 1. The
basis isCp−1 across the new element boundaries.

Fig. 31. Mesh 3. The third mesh is generated by uniformh-refinement of Mesh 2. The basis
is Cp−1 across the new element boundaries.
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Fig. 32. The deformed configuration. Displacements have been amplified by a factor of 10
for visibility.

Fig. 33. The deformed configuration. Compression lobes are visible where the loading is
directed inward.

Fig. 34. The deformed configuration. Expansion lobes are visible where the loading is di-
rected outward.
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Fig. 35. Compression lobe. Radial displacement versus height.

Fig. 36. Compression lobe. Detail of radial displacement versus height.

Fig. 37. Compression lobe. Vertical displacement versus height.
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Fig. 38. Compression lobe. Detail of vertical displacementversus height.

Fig. 39. Expansion lobe. Radial displacement versus height.

Fig. 40. Expansion lobe. Detail of radial displacement versus height.
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Fig. 41. Expansion lobe. Vertical displacement versus height.

Fig. 42. Expansion lobe. Detail of vertical displacement versus height.
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functionsmay result in a more accurate solution.

Mesh 1 Mesh 2 Mesh 3

C0 Boundary layer 0.1804% 0.0337% 0.0011%

Cp−1 Boundary layer 0.3379% 0.0206% 0.0007%

Table 3
Comparison of the potential energy errors in the two approaches to boundary layer meshing,
p = 5. Though the coarse mesh favors theC0 boundary layer, smooth functions prove to
be more accurate once the meshes are sufficiently fine. The reference solution used in the
error calculation is the estimated limit for the quintic case from the previous table.

Remark

In preliminary investigations of this problem, a mesh was used that had one cubic
element through the thickness, rather than the two quadratic elements as described
above. The interpolation, and thus the geometry itself, wasidentical. The pressure
loading was applied to the inner surface of the structure. Though a rigorous study
was not performed under these conditions, it was clear that the potential energy
was consistently greater (less negative) by about3% than the limit values reported
by Szabo [18]. The meshes used in the present study were generated in an effort to
improve upon these early efforts, as indeed they did. Pressurizing the mid-surface
instead of the inner surface not only allowed the use of accurate normals (which
was seen as the most likely source of error in the preliminaryefforts), but also
made the study more consistent as the loading is now the same for all polynomial
orders.

When comparing with the results of Szabó [18], our value forthe potential energy
is slightly more negative but the difference is only≈ 0.1% of the total energy. It is
likely that the discrepancy is due to geometrical differences in our models, though
the implementations of the loading may have had an effect as well. Despite having
the exact geometrical mid-surface, our approach to interpolation was somewhat
arbitrary, though the volume calculations imply that our geometries forp = 4 and
p = 5 are more accurate than those in [18].

3.3 Hemispherical shell with a stiffener

The hemispherical shell with a stiffener problem (see Figure 43) was modeled with
a single NURBS patch in [7]. As was shown in Section 2.2, use ofa single patch
leads to substantial distortion of the elements. While it speaks well of the overall
robustness of the method that accurate results were still obtained, efficiency clearly
suffered. Thep-method used in that convergence study was not competitive on
a per degree-of-freedom basis with the original results of Rank et al. [13], who
used a trunk spacep-refinement strategy. Such an approach does not use the full
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tensor product space of basis functions, but the much smaller trunkspace, just large
enough to ensure the optimal convergence rate at a given polynomial order (see
Szabó, D̈uster and Rank [19] for a discussion of the trunk space and thep-method
in general). As NURBS necessarily have an underlying tensorproduct structure, at
least on patches, an analogous isogeometric analysis approach exploiting the trunk
space has not been attempted thus far.

α

β

x

y

z

L2

R2

R1

t1

t2

Point A

Point B

Point C

Point D

pressurep

g

Boundary conditions:

At bottom surface of stiffener:

uz = 0

Symmetry atx-z-plane:

uy = 0

Symmetry aty-z-plane:

ux = 0

α = 30◦

β = 10◦

R1 = 10m

R2 = 5
√

3m

t1 = 0.1m

t2 = 0.4m

L2 = 0.4m

E = 6.825 · 107 kN

m2

ν = 0.3

ρ = 500
kg

m3

g = 10.0 m

s2

p = 100.0kN

m2

Fig. 43. Hemispherical shell with stiffener. Problem description from Ranket al. [13].

Despite the tensor product structure of NURBS,k-refinement presents the possi-
bility of improved efficiency. In fact,k-refinement, in conjunction with the use of
multiple patches to create better quality meshes, and the use of local refinement to
avoid placing functions in regions where they are not needed, enables the NURBS
based approach to show an accuracy per degree-of-freedom comparable to the re-
sults presented by Ranket al. in [13]; see Figures 46-49.

In studying the stiffened shell problem with ak-refinement approach, certain pre-
viously unobserved features begin to emerge. As above, if a given mesh of higher-
order and high continuity does not achieve the level of accuracy desired, one can
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Fig. 44. Hemispherical shell with stiffener. The coarse mesh may be refined in multiple
ways.
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(a) Localk-refinement (b) Localk∗-refinement

Fig. 45. Hemispherical shell with stiffener. (a) Ak-refinement approach withCp−1 conti-
nuity across element boundaries. Many small elements are used to get a well-resolved so-
lution. (b) Functions areC0 across the element boundaries in red,Cp−1 elsewhere. Fewer
elements are needed than in (a). In both cases, the basis isC0 across patch boundaries,
shown in black, and local refinement is implemented at the patch level.
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add more degrees-of-freedom by inserting a knot in one of theparametric direc-
tions. The number of new degrees-of-freedom isexactly the same regardless of
whether a new knot value is inserted (creating new elements by splitting existing
ones), or whether an existing knot value is repeated (creating no new elements,
but decreasing the continuity of the basis across the corresponding element bound-
aries). While a rigorous analysis of the two approaches has not yet been performed,
in the present results it seems clear that in regions where the solution is very smooth
(such as in the shell, a reasonable distance away from the stiffener), inserting a new
knot, and thus more functions that maintain high continuity, was the more benefi-
cial refinement. In the vicinity of a singularity (such as near the reentrant corner
where the shell meets the stiffener and the stress is singular), it is more beneficial
to repeat an existing knot value, decreasing the continuityof the basis and simulta-
neously decreasing the support of the basis functions in thephysical space. Both of
these effects help localize the singularity and prevent it from polluting the results
elsewhere in the domain11 .

The meshes for the multiple-patch treatment of the stiffened shell are shown in
Figures 44 and 45. The locally refined,k-method meshes are seen in Figure 45a. In
Figure 45b, we see the case where fewer elements are used. Ak-type refinement
is used everywhere except at the knot lines marked in red. Themultiplicities of
these knots were increased with the polynomial order such that the basis remained
C0 across them. The results for this mesh are labeled “Localk*-ref” to indicate
that thek-refinement paradigm was altered near the singularity. The displacements
are plotted versus the number of degrees of freedom in Figures 46-49. The calcu-
lated von Mises stresses are plotted versus the number of degrees of freedom in
Figures 50-53. The trunk spacep-method results from Ranket al. [13] are plotted
for comparison. For displacements, the single patch results from [7] are plotted as
well.

4 Conclusions

We described the possibility ofh-, p-, andk-refinement strategies and explored
their behavior on four numerical examples. The first two examples concerned the
free vibration of an elastic rod and a thin beam. In these cases the superiority of the
k-method over the classicalp-method is quite dramatic. On a per degree-of-freedom
basis, the results are significantly more accurate across the entire spectrum. In addi-
tion, spurious optical branches for thep-method are found to diverge withp, where
as optical branches are eliminated for thek-method. In the latter case the entire

11 This is reminiscent of the heuristic notion that anhp-method should use large elements
with higher-order in smooth regions and small elements of lower-order near singularities.
Coupling this with control over the continuity across elements opens the door to the possi-
bility of an hpk-method.
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Fig. 46. Hemispherical shell with stiffener. The displacement at point A is plotted versus
the total number of degrees-of-freedom.
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Fig. 47. Hemispherical shell with stiffener. The displacement at point B is plotted versus
the total number of degrees-of-freedom.
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Fig. 48. Hemispherical shell with stiffener. The displacement at point C is plotted versus
the total number of degrees-of-freedom.
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Fig. 49. Hemispherical shell with stiffener. The displacement at point D is plotted versus
the total number of degrees-of-freedom.

46



0.5 1 1.5 2 2.5
x 10

4

4500

5000

5500

6000

6500

7000

 

 

Rank et al.
Local k−ref

Local k*−ref

Degrees-of-freedom

Fig. 50. Hemispherical shell with stiffener. The von Mises stress at point A is plotted versus
the total number of degrees-of-freedom.
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Fig. 51. Hemispherical shell with stiffener. The von Mises stress at point B is plotted versus
the total number of degrees-of-freedom.
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Fig. 52. Hemispherical shell with stiffener. The von Mises stress at point C is plotted versus
the total number of degrees-of-freedom.
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Fig. 53. Hemispherical shell with stiffener. The von Mises stress at point D is plotted versus
the total number of degrees-of-freedom.
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spectrum converges as order is increased. We feel in these cases that the increased
smoothness of thek-method basis functions better exploits the smoothness of the
exact analytical eigensolutions than do theC0-continuous basis functions of thep-
method. For further studies of the behavior of isogeometricapproaches to structural
vibrations, see Cottrellet al. [3].

We then considered two elliptic boundary value problems forshell structures ex-
hibiting singular behavior. The first shell was a hyperboloid subjected to circum-
ferentially varying pressure (Lee and Bathe [10]). There isa weak boundary layer
singularity. The second shell was a spherical cap, with a hole at the apex, built into
a solid ring stiffener (Ranket al.[13]). The intersection of the shell and the stiffener
creates a strong line singularity. These problems providedthe opportunity to study
the effects of smoothness of basis functions in the vicinityof singularities. In both
cases, we used a trivariate NURBS solid description insteadof a shell theory. For
the hyperboloidal shell, we reduced smoothness locally in the vicinity of the bound-
ary layer. In the case of coarse meshes, this improved accuracy, where as for finer
meshes the purek-method was more accurate. In the case of the spherical cap, we
employed a multipatch approach with local refinement and again compared smooth
discretizations within the patches with ones in which continuity was reduced toC0

in the vicinity of the singularity. We found this latter approach led to more rapid
convergence. The reason for this seems to be that basis functions having support in
the vicinity of the singularity tend to propagate information away from the singu-
larity. The support of smoothk-method basis functions is greater than the support
of the same orderp-method functions when there are approximately the same num-
bers of degrees-of-freedom. As a result, the errors createdby the singularities tend
to propagate further for the smoother basis functions of thek-method. By judi-
ciously locating a few surfaces of reduced continuity, the “pollution” created by
the singularities seemed to be more locally confined.

In conclusion, or studies revealed some cases where increased smoothness dramat-
ically improved accuracy and other cases where some local reduction in smooth-
ness also enhanced accuracy. Historically, the dominance of C0 finite elements has
precluded the opportunity for assessing the potential of increased smoothness. It
is clear from the studies described herein, and those in our other recent papers
[1, 3, 7], that the potential is very significant. However, itdoes not seem to be a
black and white issue, but rather to depend strongly on the nature of the exact solu-
tion. Further studies need to be performed to assess the tradeoffs in a wider variety
of problems.

AcknowledgementsWe thank Barna Szabó, Ernst Rank and Alexander Düster for
helpful discussions on the shell problems considered herein. The support of Office
of Naval Research under contract N00014-03-0263 is gratefully acknowledged.

Appendix
Richardson Extrapolation
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Richardson extrapolation is a technique in which two approximations of a known
order of accuracy relative to some parameter are combined toobtain an approxima-
tion with a higher order of accuracy. In the case of finite elements, the parameter is
the mesh size,h, and the order of accuracy is dictated by the polynomial order of
the basis functions12 . In general, we generate an approximationA(h) to a desired
quantityA, where the order of the error is known. That is,

A = A(h) + Bhk + Chk+1 + Dhk+2 + ... (A.1)

wherek is known butB, C, D, etc. are unknown constants. More concisely, we
write

A = A(h) + Bhk + O(hk+1). (A.2)

We can get a second such equation by generating a second approximation with a
different mesh size, for example

A = A(h/2) + B(h/2)k + O(hk+1). (A.3)

We can remove the lowest order term in the error by taking2k times A.3 and sub-
tracting A.2, which yields

(2k − 1)A = 2kA(h/2) − A(h) + O(hk+1). (A.4)

Simplifying, we arrive at

A =
2kA(h/2) − A(h)

2k − 1
+ O(hk+1). (A.5)

We now have a new approximation

Ã ≡
2kA(h/2) − A(h)

2k − 1
(A.6)

whose order of accuracy is higher than either of the two approximations that gen-
erated it.
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