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NONSURGICAL BRAIN ACTIVITY RECOVERY FROM
A CAP CONTAINING MULTIPLE ELECTROENCEPHALOGRAM RECORDING SITES

AFRL / HEX TEAM

1 Four Parts of the Brain Activity Recovery Programs

A major purpose of our work to give amputees a natural control of an artificial limb with
their thoughts without any surgical penetration of brain tissue; we are using an inverse
source solution to aid in this effort. Dr. Todd Kuiken (Brown [22], September 14, 2006) has
accomplished this with Jesse Sullivan and Claudia Mitchell by connecting nerves in the chest
to an artificial limb. We have developed an algorithm to recover the brain neuronal signals
at sites within the brain tissue from 128 or more electroencephalogram recordings in a cap
which fits over the handicapped persons head. Each EEG recorder had its own operational
amplifier. There are four classes of computer processing efforts.

First, the raw EEG recordings were detrended so that operational amplifier drift was
removed and so that the net average voltage at each recording site was zero. Selected plots
of the raw EEG data are supplied in this report.

Next we created a dynamic head surface voltage representation over the entire surface
of the head from the full time profiles of activity at 128 or more EEG recording sites and
the relationship between the voltage values at these sites at each recording time. There are
two approaches to dynamic head surface voltage function representation. One approach is
computationally slow, involving large matrices which we would pre-factor ahead of time for
the handicapped person, but which has the potential for recovery of brain activity at many
sites throughout the brain.

The first dynamic head surface voltage representation method, which we programmed
uses the full time profile of activity at each of N = 128 or more recording sites and, for
each recording time, the relationships between voltage values at all sites at this time; this
is potentially a great deal of information that may be used for brain activity recovery.
These head surface voltage representation matrices are quite large but the matrix entries are
completely independent of brain activity and consequently their singular value decomposition
could be carried out ahead of time for the handicapped person enabling him or her to respond
rapidly to stimulus as the matrix multiplication of the decomposition factors by the EEG
stimulus vectors could be carried out with parallel processors and even with one processor
the computational complexity of the process would depend only on the square of the matrix
column dimension. This approach has the potential for recovery of a great deal of brain
activity.

A computationally simpler approach first would match the full time profile of activity at
each EEG recording site with a Fourier series and then find the head surface representation
from the Fourier components. With this approach, if the number of EEG recording sites
were N, the number of potential neuronal activity locations at which brain activity could be
recovered would be N/3. I plan to program this as a check on the first program which is
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the one we are using. This method would also have the potential to provide real help to the
handicapped person if we could expand the number of EEG recording sites.

The third suite of programs is brain activity recovery using our dynamic voltage inverse
source solution by the creation of multiple equations relating the dynamic head surface
voltage distributions to internal brain activity for each frequency component. The first part
of this effort is to create brain-activity independent interrogating scalar functions of the
spatial variables and frequency which satisfy the tissue interface boundary conditions that
they are continuous across tissue interfaces and that tissue permittivity, which is a function
of frequency, times the normal component of the gradient of the interrogating scalar function
is continuous across tissue interfaces. These are the same boundary conditions satisfied by
the dynamic voltage which starts out as a function proportional to the divergence of the
vector potential of brain activity.

What this means is that vector calculus may be used to obtain equations directly relating
scalp surface interrogation to internal brain activity. The mathematical theory is provided
in this report. The voltage itself is continuous across tissue interfaces as the electic field
vector stimulated by brain activity at all sites is finite. Since there are no net charges due
to brain activity at tissue interfaces, the tissue permittivity times the normal component
of the voltage gradient is continuous across tissue interfaces. This suite of calculations
based on singular value decomposition of the matrices defining the relationships between
head surface measurments and internal brain activity give us a Fourier series representation
of the three components of the neuronal current vectors at each potential site of brain
activity. As there is a separate singular value decomposition for each frequency component
the computational complexity of the recovery here is smaller than that of the voltage head
surface representation.

The final program gives the time profile of activity on individual neuronal sites from the
recovered Fourier coefficients giving us a 3Q+1 column data set where the row indexed by
the time t contains

t →
(t, J(1,x), J(1,y), J(1,z), · · ·, J(q,x), J(q,y), J(q,z), · · ·, J(Q,x), J(Q,y), J(Q,z))

where there are Q possible sites of neuronal activity.

2 Steps In Using the Algorithm

This is the outline of the steps in using our algorithm

1. Define the head geometry and electromagnetic properties of each tissue region.

2. Format the EEG recordings into data files xj , tk, and Vj(tk) where j runs from 1
through J and k runs from 1 through K.

3. Select a lattice of dipoles x(dipole,n).

4. Choose the frequencies ωp1 of interest.

5. For each frequency ωp1 choose the interrogating functions ψ(q,p1)(x).
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6. The code will then solve for the currents, transform the currents to the time domain
and output the results to a data file.

3 Data Showing the Recovery of Brain Activity from

Discrete Recordings of Time Profiles of EEG Volt-

ages at 128 Recording Sites

We create a dynamic head surface voltage distribution from the 128 EEG recordings using
the relationships at each time value of voltages at all of these sites. We then interrogate
this voltage distribution so that with each interrogation we obtain a relationship between
the EEG recordings and internal brain activity at a lattice of possible sites of brain activity.
A singular value decomposition is used for each frequency component to recover the trans-
membrane current vector components at each site for each frequency component. Another
program processes this data and gives us the time profile of brain activity at the internal
sites displayed in the following plots.

3.1 Graphical Data Showing the Recovery of Brain Activity from
EEG Recordings

We provide the reader with two data sets. The first consists of using the full 5 seconds of
data at 128 EEG recording sites to recover low frequency brain activity at 16 internal sites
with 30 evenly spaced frequencies from .2 to 6 Hertz. The second consists of using 1 second
of EEG data to recover low frequency components of brain activity at 17 internal sites for
30 frequency components from 1 to 30 Hertz.

3.1.1 Recovery of 30 Evenly Spaced Frequency Components from 1 to 6 Hertz
at 16 Potential Sites of Brain Activity with Using 5 Seconds of Data

We find a dynamic representation of brain activity, we interrogate it with brain activity
independent scalar interrogating functions that satisfy the same boundary conditions that
are satisifed by the dynamic voltage wave. We go from the scalp surface through the skull
bone without surgery to the brain activity. We process this recovery by recording the time
profile of each component of neuronal activity on each site of potential brain activity. There
are now three computer programs DYNHSV.FOR which produces the dynamic head surface
voltage representation, EEBARIS.FOR which is the brain activity recovery inverse source
solution which uses the output from DYNHSV.FOR, and produces output for the plotting
program EEGPLOT.FOR which plots the recovered currents as a function of time. These
are carried out for 30 frequency components from .2 to 5 Hertz

July 31, 2006 8
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Figure 1: Recovered Neuron 1 Current Components Versus Time

For q = 1 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (0800, 1., 0.) (3.1.1.1)
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Figure 2: Recovered Neuron 2 Current Components Versus Time

For q = 2 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 0.) (3.1.1.2)
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Figure 3: Recovered Neuron 3 Current Components Versus Time

For q = 3 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 90.) (3.1.1.3)
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Figure 4: Recovered Neuron 4 Current Components Versus Time

For q = 4 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 270.) (3.1.1.4)
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Figure 5: Recovered Neuron 5 Current Components Versus Time

For q = 5 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 180.) (3.1.1.5)
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Figure 6: Recovered Neuron 6 Current Components Versus Time

For q = 6 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 39.) (3.1.1.6)
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Figure 7: Recovered Neuron 7 Current Components Versus Time

For q = 7 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 321.) (3.1.1.7)
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Figure 8: Recovered Neuron 8 Current Components Versus Time

For q = 8 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 141.) (3.1.1.8)
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Figure 9: Recovered Neuron 9 Current Components Versus Time

For q = 9 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 229.) (3.1.1.9)

July 31, 2006 17



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−11

 Time (seconds)

 n
eu

ro
na

l c
om

po
ne

nt
s

 Neuron 10 current components versus time

Figure 10: Recovered Neuron 10 Current Components Versus Time

For q = 10 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 242.) (3.1.1.10)

July 31, 2006 18



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6
x 10

−12

 Time (seconds)

 n
eu

ro
na

l c
om

po
ne

nt
s

 Neuron 11 current components versus time

Figure 11: Recovered Neuron 11 Current Components Versus Time

For q = 11 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 18.) (3.1.1.11)
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Figure 12: Recovered Neuron 12 Current Components Versus Time

For q = 12 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 90.) (3.1.1.12)

July 31, 2006 20



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−11

 Time (seconds)

 n
eu

ro
na

l c
om

po
ne

nt
s

 Neuron 13 current components versus time

Figure 13: Recovered Neuron 13 Current Components Versus Time

For q = 13 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 270.) (3.1.1.13)
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Figure 14: Recovered Neuron 14 Current Components Versus Time

For q = 14 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 162.) (3.1.1.14)
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Figure 15: Recovered Neuron 15 Current Components Versus Time

For q = 15 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 198.) (3.1.1.15)
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Figure 16: Recovered Neuron 15 Current Components Versus Time

For q = 16 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 180.) (3.1.1.16)
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3.1.2 Frequency Components and Neuronal Source and Neural Source Loca-
tions for the 5 Seconds of Data

For q = 1 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 1., 0.) (3.1.2.1)

For q = 2 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 0.) (3.1.2.2)

For q = 3 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 90.) (3.1.2.3)

For q = 4 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 270.) (3.1.2.4)

For q = 5 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 180.) (3.1.2.5)

For q = 6 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 39.) (3.1.2.6)

For q = 7 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 321.) (3.1.2.7)

For q = 8 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 141.) (3.1.2.8)

For q = 9 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 229.) (3.1.2.9)

For q = 10 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 242.) (3.1.2.10)

For q = 11 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 18.) (3.1.2.11)

For q = 12 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 90.) (3.1.2.12)
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For q = 13 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 270.) (3.1.2.13)

For q = 14 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 162.) (3.1.2.14)

For q = 15 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 198.) (3.1.2.15)

For q = 16 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 180.) (3.1.2.16)

The set of 30 frequencies, in Hertz, for frequency components recovered are

F = {.2, .4, .6, .8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, · · ·, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0} (3.1.2.17)

3.1.3 Recovery of 30 Evenly Spaced Frequency Components from 1 to 30 Hertz
at 17 Potential Sites of Brain Activity for 1 Second of EEG Data

We find a dynamic representation of brain activity, we interrogate it with brain activity
independent scalar interrogating functions that satisfy the same boundary conditions that
are satisifed by the dynamic voltage wave. We go from the scalp surface through the skull
bone without surgery to the brain activity. We process this recovery by recording the time
profile of each component of neuronal activity on each site of potential brain activity. There
are now three computer programs DYNHSV.FOR which produces the dynamic head surface
voltage representation, EEBARIS.FOR which is the brain activity recovery inverse source
solution which uses the output from DYNHSV.FOR, and produces output for the plotting
program EEGPLOT.FOR which plots the recovered currents as a function of time. These
are carried out for 30 evenly spaced frequency components from 1 to 30 Hertz

July 31, 2006 26



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4
x 10

−5

 Time (seconds)

 n
eu

ro
na

l c
om

po
ne

nt
s

 Neuron 1 current components versus time

Figure 17: Recovered Neuron 1 Current Components Versus Time

For q = 1 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0100, 1., 0.) (3.1.3.1)
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Figure 18: Recovered Neuron 2 Current Components Versus Time

For q = 2 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 1., 0.) (3.1.3.2)
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Figure 19: Recovered Neuron 3 Current Components Versus Time

For q = 3 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 0.) (3.1.3.3)
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Figure 20: Recovered Neuron 4 Current Components Versus Time

For q = 4 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 90.) (3.1.3.4)
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Figure 21: Recovered Neuron 5 Current Components Versus Time

For q = 5 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 270.) (3.1.3.5)
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Figure 22: Recovered Neuron 6 Current Components Versus Time

For q = 6 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 180.) (3.1.3.6)
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Figure 23: Recovered Neuron 7 Current Components Versus Time

For q = 7 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 39.) (3.1.3.7)
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Figure 24: Recovered Neuron 8 Current Components Versus Time

For q = 8 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 321.) (3.1.3.8)
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Figure 25: Recovered Neuron 9 Current Components Versus Time

For q = 9 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 141.) (3.1.3.9)
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Figure 26: Recovered Neuron 10 Current Components Versus Time

For q = 10 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 229.) (3.1.3.10)
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Figure 27: Recovered Neuron 11 Current Components Versus Time

For q = 11 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 242.) (3.1.3.11)
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Figure 28: Recovered Neuron 12 Current Components Versus Time

For q = 12 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 18.) (3.1.3.12)
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Figure 29: Recovered Neuron 13 Current Components Versus Time

For q = 13 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 90.) (3.1.3.13)
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Figure 30: Recovered Neuron 14 Current Components Versus Time

For q = 14 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 270.) (3.1.3.14)
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Figure 31: Recovered Neuron 15 Current Components Versus Time

For q = 15 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 162.) (3.1.3.15)
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Figure 32: Recovered Neuron 16 Current Components Versus Time

For q = 16 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 198.) (3.1.3.16)

July 31, 2006 42



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−10

 Time (seconds)

 n
eu

ro
na

l c
om

po
ne

nt
s

 Neuron 17 current components versus time

Figure 33: Recovered Neuron 17 Current Components Versus Time

For q = 17 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 180.) (3.1.3.17)

July 31, 2006 43



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

3.1.4 Frequency Components and Neuronal Source Locations Recovered Using
1 Second of EEG Data at 128 EEG Recording Sites

For q = 1 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0100, 1., 0.) (3.1.4.1)

For q = 2 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 1., 0.) (3.1.4.2)

For q = 3 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 0.) (3.1.4.3)

For q = 4 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 90.) (3.1.4.4)

For q = 5 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 270.) (3.1.4.5)

For q = 6 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 46., 180.) (3.1.4.6)

For q = 7 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 39.) (3.1.4.7)

For q = 8 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 321.) (3.1.4.8)

For q = 9 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 141.) (3.1.4.9)

For q = 10 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 60., 229.) (3.1.4.10)

For q = 11 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 242.) (3.1.4.11)

For q = 12 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 18.) (3.1.4.12)
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For q = 13 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 90.) (3.1.4.13)

For q = 14 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 270.) (3.1.4.14)

For q = 15 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 162.) (3.1.4.15)

For q = 16 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 198.) (3.1.4.16)

For q = 17 the neuronal location, in spherical coordinates is,

(rq, θq, φq) = (.0800, 92., 180.) (3.1.4.17)

The set of 30 frequencies, in Hertz, for frequency components recovered are

F =

{1, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}
(3.1.4.18)

4 The Divergence and the Curl in Orthogonal Coordi-

nate Systems

We use vector calculus relationships to solve the inverse source problem of non-surgical
recovery of brain activity.

4.1 General Orthogonal Coordinate Systems

The surface of the head may be considered to be a locally Euclidean structure. The Gauss
divergence theorem is used to relate head surface EEG recordings to internal brain activity.

4.1.1 The form of the Curl, Divergence, and Laplacian in a General Orthogonal
Coordinate System

Let us suppose that we have a mapping from a Cartesian product of intervals in u, v, and w
space into x, y, and z space given by

(u, v, w) → (x(u, v, w), y(u, v,w), z(u, v, w)) (4.1.1.1)

so that the coordinate surfaces
u(x, y, z) = u0 (4.1.1.2)
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v(x, y, z) = v0 (4.1.1.3)

w(x, y, z) = w0 (4.1.1.4)

are orthogonal in the sense that the coordinate surfaces (4.1.1.2), (4.1.1.3), (4.1.1.4) are
defined by setting the three functions of Cartesian coordinates x, y, and z given by

(x, y, z) → (u(x, y, z), v(x, y, z), w(x, y, z)) (4.1.1.5)

equal to a constant and letting eu, ev, and ew respectively be the unit length normal vec-
tors to these surfaces we can define the curl and divergence operators. If we consider the
traditional unit vectors i, j, and k of three dimensional Euclidean space and recognize that
if we consider a point

(u, v, w) → (x(u, v, w), y(u, v,w), z(u, v, w)) (4.1.1.6)

and allow just one of u, v, or w to vary at a time we generate three curves whose tangent
vectors are

hueu =
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k (4.1.1.7)

hvev =
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k (4.1.1.8)

and

hwew =
∂x

∂w
i +

∂y

∂w
j +

∂z

∂w
k (4.1.1.9)

For an orthogonal coordinate system it is assumed that these three tangent vectors where it
is assumed that the vectors eu, ev, and ew all have length one, which means, for example,
that hu, hv, and hw are the lengths of these tangent vectors and

|| eu ||2= eu · eu = 1 (4.1.1.10)

or more compactly that
(eu · eu, ev · ev, ew · ew) = (1, 1, 1) (4.1.1.11)

so that the functions hu, hv, and hw appearing in equation (4.1.1.7), (4.1.1.8), and (4.1.1.9)
are given by

(hueu) · (hueu) = h2
u =

(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2

(4.1.1.12)

where

(hvev) · (hvev) = h2
v =

(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂z

∂v

)2

(4.1.1.13)

and

(hwew) · (hwew) = h2
w =

(
∂x

∂w

)2

+

(
∂y

∂w

)2

+

(
∂z

∂w

)2

(4.1.1.14)

In addition we assume that at every point the normal vectors eu, ev, and ew to the inter-
secting coordinate surfaces defined by setting u, v, and w equal to the value at a prescribed
point (x, y, z) are pairwise orthogonal in the sense that

eu · ev = eu · ew = ev · ew = 0 (4.1.1.15)
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Using this orthogonality relationship (4.1.1.15) and the unit length relationship (4.1.1.11)
we have by the chain rule for partial differentiation that

∂u

∂u
=
∂u

∂x
∂x∂u+

∂u

∂y
∂y∂u+

∂u

∂z
∂z∂u =

(
∂u

∂x
i +

∂u

∂y
j +

∂u

∂y
k

)
·
(
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

)
= (4.1.1.16)

so that
∂u

∂u
= ∇(u) · hueu = 1 (4.1.1.17)

∂u

∂v
= ∇(u) · hvev = 0 (4.1.1.18)

∂u

∂w
= ∇(u) · hwew = 0 (4.1.1.19)

Now since eu, ev, and ew are independent, we may write at each point,

∇(u) = Aeu +Bev + Cew (4.1.1.20)

for some constants A, B, and C which depend on the point (x, y, z) at which the gradient
of u is computed. Combining equations (4.1.1.15) and (4.1.1.17) we determine that

1

hu
= ∇(u) · eu = Aeu · eu = A (4.1.1.21)

0 = ∇(u) · ev = Beu · ev = B (4.1.1.22)

This shows that

∇(u) =
1

hu
eu (4.1.1.23)

A similar argument shows that

∇(v) =
1

hv

ev (4.1.1.24)

and

∇(w) =
1

hw

ew (4.1.1.25)

Equations (4.1.1.23), (4.1.1.24), and (4.1.1.25) are what we would expect, namely, that the
gradients of the functions defining the constant coordinate surfaces should be perpendicular
to these surfaces. We note that equations (4.1.1.23) and (4.1.1.7) are consistent in the sense
that

∇(u) ·
(
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

)
=

1

hu
eu · (hueu) = 1 (4.1.1.26)

The equations that we use, explicitly, in determination of the gradient in a general orthogonal
system, are however, derived from equations (4.1.1.7), (4.1.1.13), and (4.1.1.14) and are

eu =
1

hu

(
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

)
(4.1.1.27)
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ev =
1

hv

(
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k

)
(4.1.1.28)

and

ew =
1

hw

(
∂x

∂w
i +

∂y

∂w
j +

∂z

∂w
k

)
(4.1.1.29)

Thus, for an orthogonal coordinate transformation the tangent vectors defined by equations
(4.1.1.7), (4.1.1.8), and (4.1.1.9) are parallel, respectively, to the gradients of the coordinate
surfaces defined by equations (4.1.1.2), (4.1.1.3), and (4.1.1.4). Let f(x, y, z) be a contin-
uously differentiable function of x, y, and z and suppose that D, E, and F are complex
numbers such that

∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k = Deu + Eev + Few (4.1.1.30)

Then, equation (4.1.1.7) or equation (4.1.1.27) says that(
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

)
· eu =

(
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

)
·
(
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

)
1

hu

= Deu · eu = D =
1

hu

[
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
+
∂f

∂z

∂z

∂u

]
=

1

hu

∂f

∂u
(4.1.1.31)

Similarly equation (4.1.1.8) tells us that

E = Eev · ev =
1

hv

[
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
+
∂f

∂z

∂z

∂v

]
=

1

hv

∂f

∂v
(4.1.1.32)

From equation (4.1.1.9) and (4.1.1.30) we see that

F = Few · ew =
1

hw

[
∂f

∂x

∂x

∂w
+
∂f

∂y

∂y

∂w
+
∂f

∂z

∂z

∂w

]
=

1

hw

∂f

∂w
(4.1.1.33)

From equations (4.1.1.31), (4.1.1.32), and (4.1.1.33) we see that

∇(f) =
1

hu

(
∂f

∂u

)
eu +

1

hv

(
∂f

∂v

)
ev +

1

hw

(
∂f

∂w

)
ew (4.1.1.34)

Next, we express the curl operation in any coordinate system. We know that since in
general if Ψ is a continuously differentiable function and A is a continuously differentiable
vector field that

∇× (ΨA) = Ψ∇× (A) + ∇(Ψ) × A (4.1.1.35)

the fact that the curl of a gradient is the zero vector tells us that with

A = ∇(Φ) (4.1.1.36)

we have
∇× (Ψ∇(Φ)) = ∇(Ψ) ×∇(Φ) (4.1.1.37)

July 31, 2006 48



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

With this notation it can be proven that the curl is given by

∇× (F ) = ∇× (Fueu + Fvev) + Fwew) ={
1

huhvhw

}([
∂

∂v
(Fwhw) − ∂

∂w
(Fvhv)

]
hueu+[

∂

∂w
(Fuhu) −

∂

∂u
(Fwhw)

]
hvev+[

∂

∂u
(Fvhv) −

∂

∂v
(Fuhu)

]
hwew

)
(4.1.1.38)

which gives us a curl in any orthogonal coordinate system.
Finally, we express the divergence in any orthogonal coordinate system. The key to this

development is the use of the identity

∇·(ΦA) = ∇(Φ) · A + Φ∇·(A) (4.1.1.39)

so that
∇·(Fueu + Fvev + Fwew) =

∇(Fu) · eu + ∇(Fv) · ev + ∇(Fw) · ew+

Fu ∇·(eu) + Fv ∇·(ev) + Fw ∇·(ew) (4.1.1.40)

We have the following theorem.

Theorem 4.1 For all vector fields F we have

∇·(Fueu + Fvev + Fwew) =

∇(Fu) · eu + ∇(Fv) · ev + ∇(Fw) · ew+(
Fu

huhvhw

)
∂

∂u
(hvhw) +

(
Fv

huhvhw

)
∂

∂v
(huhw) +

(
Fw

huhvhw

)
∂

∂w
(huhv) (4.1.1.41)

or said differently
∇·(Fueu + Fvev + Fwew) =

1

huhvhw

(
∂

∂u
(Fuhvhw) +

∂

∂v
(Fvhwhu) +

∂

∂w
(Fwhwhv)

)
(4.1.1.42)

Proof of Theorem. Equations (4.1.1.7), (4.1.1.8), and (4.1.1.9) will enable us to express
i, j, and k in terms of eu, ev, and ew as follows. Since we know that eu, ev, and ew as
follows. If

i = A1eu +B1ev + C1ew (4.1.1.43)

so that from (4.1.1.7), (4.1.1.8), and (4.1.1.9) we have

(i · eu, i · ev, i · ew) = (A1, B1, C1)

=

(
1

hu

∂x

∂u
,

1

hv

∂x

∂v
,

1

hw

∂x

∂w

)
(4.1.1.44)
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Similarly, with the use of (4.1.1.7), (4.1.1.8), and (4.1.1.9) we have

(j · eu, j · ev, j · ew)

=

(
1

hu

∂y

∂u
,

1

hv

∂y

∂v
,

1

hw

∂y

∂w

)
(4.1.1.45)

and
(k · eu,k · ev,k · ew)

=

(
1

hu

∂z

∂u
,

1

hv

∂z

∂v
,

1

hw

∂z

∂w

)
(4.1.1.46)

Making use of the fact that for all continuously differentiable f and all continuously differ-
entiable vector fields A we have

∇·(fA) = ∇(f) · A + f ∇·(A) (4.1.1.47)

so that with
F = Fueu + Fvev + Fwew (4.1.1.48)

and equation (4.1.1.47) we have

∇·(F ) = ∇·(Fueu) + ∇·(Fvev) + ∇·(Fwew) =

∇(Fu) · eu + ∇(Fv) · ev + ∇(Fw) · ew+

Fu ∇·(eu) + Fv ∇·(ev) + Fw ∇·(ew) (4.1.1.49)

To compute the first divergence term on the right side of (4.1.1.49) we must get eu in terms
of i, j, and k. Observe that equations (4.1.1.44), (4.1.1.45), and (4.1.1.46) imply that

eu =
1

hu

∂x

∂u
i +

1

hu

∂y

∂u
j +

1

hu

∂z

∂u
k (4.1.1.50)

so that
∇·(eu) =

∂

∂x

(
1

hu

∂x

∂u

)
+

∂

∂y

(
1

hu

∂y

∂u

)
+

∂

∂z

(
1

hu

∂z

∂u

)
=

∂

∂u

(
1

hu

∂x

∂u

)
∂u

∂x
+

∂

∂v

(
1

hu

∂x

∂u

)
∂v

∂x
+

∂

∂w

(
1

hu

∂x

∂u

)
∂w

∂x
+

∂

∂u

(
1

hu

∂y

∂u

)
∂u

∂y
+

∂

∂v

(
1

hu

∂y

∂u

)
∂v

∂y
+

∂

∂w

(
1

hu

∂y

∂u

)
∂w

∂y
+

∂

∂u

(
1

hu

∂z

∂u

)
∂u

∂z
+

∂

∂v

(
1

hu

∂z

∂u

)
∂v

∂z
+

∂

∂w

(
1

hu

∂z

∂u

)
∂w

∂z
=

(
∂

∂u
eu

)
· ∇(u) +

(
∂

∂v
eu

)
· ∇(v) +

(
∂

∂w
eu

)
· ∇(w) (4.1.1.51)
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From the fact that

(∇(u),∇(v),∇(w)) =

(
eu

hu

,
ev

hv

,
ew

hw

)
(4.1.1.52)

which means, since
eu · eu = 1 (4.1.1.53)

that (
∂

∂u
eu

)
· eu + eu ·

(
∂

∂u
eu

)
= 0 (4.1.1.54)

so that

∇·(eu) =

(
∂

∂v
eu

)
· ev

hv
+

(
∂

∂w
eu

)
· ew

hw
(4.1.1.55)

Now observe that the first term on the right side of equation (4.1.1.55) is(
∂

∂v
eu

)
· ev

hv
=

∂

∂v

⎧⎨
⎩
[(

∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2
]−1/2 (

∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

)⎫⎬
⎭·

(
1

h2
v

){
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k

}

(−1/2)

[(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2
]−3/2 [

2

(
∂x

∂u

∂2x

∂v∂u
+
∂y

∂u

∂2y

∂v∂u
+
∂z

∂u

∂2z

∂v∂u

)]
hueu ·

ev

hv

+
1

huh2
v

[
∂2x

∂v∂u

∂x

∂v
+

∂2y

∂v∂u

∂y

∂v
+

∂2z

∂v∂u

∂z

∂v

]

=
1

huh2
v

[
∂2x

∂v∂u

∂x

∂v
+

∂2y

∂v∂u

∂y

∂v
+

∂2z

∂v∂u

∂z

∂v

]
=

1

huhv

∂hv

∂u
(4.1.1.56)

The right side of equation (4.1.1.56) is given, since,

hv =
√
h2

v =

√(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂z

∂v

)2

+ (4.1.1.57)

implies that

∂

∂u

√
h2

v =
1

2

(
1√
h2

v

)(
∂h2

v

∂u

)
(4.1.1.58)

that
1

huhv

∂hv

∂u
=

1

huh2
v

∂h2
v

∂u
=

1

huh2
v

1

2

[
2

(
∂2x

∂u∂v

∂x

∂v
+
∂2y

∂u
∂v
∂y

∂v
+
∂2z

∂u
∂v
∂z

∂v

)]
(4.1.1.59)

which means that
∂eu

∂v
· ev

hv

=
1

huhv

∂hv

∂u
(4.1.1.60)
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The second term is obtained by by replacing the v in the right side of equation (4.1.1.56) or
(4.1.1.60) by w so that

∂eu

∂w
· ew

hw
=

1

huhw

∂hw

∂u
(4.1.1.61)

By combining equations (4.1.1.60) and (4.1.1.61) it is clear that

Fu ∇·(eu) = Fu

{(
∂eu

∂v

)
· ev

hv
+

(
∂eu

∂w

)
· ew

hw

}

=

{
Fu

huhv

∂hv

∂u
+

Fu

huhw

∂hw

∂u
=

Fu

huhvhw

∂

∂u
(hvhw)

}
(4.1.1.62)

Continuing with this analysis we see that

Fu

huhvhw

∂

∂u
(hvhw) = Fu ∇·(eu) (4.1.1.63)

Fv

huhvhw

∂

∂v
(huhw) = Fv ∇·(ev) (4.1.1.64)

and
Fw

huhvhw

∂

∂w
(huhv) = Fw ∇·(ew) (4.1.1.65)

It follows from this that
∇·(Fueu + Fvev + Fwew) =

1

hu

∂Fu

∂u
+

1

hv

∂Fv

∂v
+

1

hw

∂Fw

∂w
+

Fu

huhvhw

∂

∂u
hvhw +

Fv

huhvhw

∂

∂v
huhw +

Fu

huhvhw

∂

∂w
huhv

=
1

huhvhw

[
∂

∂u
(hvhwFu) +

∂

∂v
(huhwFv) +

∂

∂w
(huhvFw)

]
(4.1.1.66)

which completes the proof of the theorem.
With these results we have the following representation of the Laplace operator ∆ in a

general orthogonal coordinate system.

Theorem 4.2 In a general orthogonal coordinate system the Laplacian or the divergence of
the gradient and, in view of equations (4.1.1.66) and (4.1.1.34) is given by

∇·(∇(f)) =

1

huhvhw

[
∂

∂u

(
hvhw

hu

∂f

∂u

)
+

∂

∂v

(
huhw

hv

∂f

∂v

)
+

∂

∂w

(
huhv

hw

∂f

∂w

)]
(4.1.1.67)
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In the spherical coordinate system we have

(hr, hθ, hφ) = (1, r, r sin(θ)) (4.1.1.68)

so that in spherical coordinates

∇(f) =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin(θ)

∂f

∂φ
eφ (4.1.1.69)

and
∇·(Frer + Fθeθ + Fφeφ) =

1

r2 sin(θ)

[(
∂

∂r

)
(r2 sin(θ)Fr) +

(
∂

∂θ

)
(r sin(θ)Fθ) +

(
∂

∂φ

)
(rFφ)

]
(4.1.1.70)

and the Laplacian is given by

∆f =
1

r2 sin(θ)

[
∂

∂r

(
r2 sin(θ)

∂f

∂r

)
+

∂

∂θ

(
sin(θ)

∂f

∂θ

)
+

∂

∂φ

(
1

sin(θ)

∂f

∂φ

)]
(4.1.1.71)

Finally, in spherical coordinates the curl operation is from (4.1.1.38) given by

∇× (Frer + Fθeθ + Fφeφ) =[
1

r2 sin(θ)

{
∂

∂θ
(Fφr sin(θ))

}
− 1

r2 sin(θ)

{
∂

∂φ
(Fθr)

}]
er

+

[
1

r sin(θ)

{
∂

∂φ
(Fr)

}
− 1

r sin(θ)

{
∂

∂r
(Fφr sin(θ))

}]
eθ

+

[
1

r

{
∂

∂r
(Fθr)

}
− 1

r

{
∂

∂θ
(Fr)

}]
eθ (4.1.1.72)

5 The Inverse Source Solution

We describe the inverse source solution which goes from a dynamic voltage distribution
on the head surface to internal brain activity. We start off with the construction of the
brain-activity independent interrogating scalar functions.

5.1 Construction of the Scalar Functions for Interrogation of the

Dynamic Head Surface Voltage Distribution and the Brain
Activity Recovery Relationships

Since the dynamic voltage wave generated by brain activity satisfies the condition that the
voltage and the permittivity times the normal component of the the gradient of the dynamic
voltage is continuous across tissue interfaces. The interrogating scalar functions in tissue
region with index p that are multiples of the associated Legendre function Pm

n (cos(θ)) that
are denoted by

(p, n,m) → ψ(p,n,m)(r, θ, φ) (5.1.0.1)

need to satisfy the same boundary conditions in order we can relate head surface measure-
ments to internal brain activity.
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5.1.1 Voltage Boundary Value Conditions

We want to recover brain activity to help handicapped people operate and artificial limb
from nonsurgical measurements of voltage distributions outside the head. Zhou ([140], page
9, equation (1.1.49)) gives the interface boundary conditions as (i) the voltage is continuous
across surfaces separating different tissue regions and (ii) the tissue permittivity times the
normal component of the voltage gradient is continuous across surfaces separating different
tissue regions. If (i) did not hold, since there is a finite resistence per unit thickness in tissue
layers, there would be an infinite current across the tissue interface. If (ii) did not hold there
would be a net charge on the separating surface.

5.1.2 The Representation of the Interrogating Scalar Functions for Relating
Head Surface EEG Recordings and Internal Brain Activity

We define the product
(p, �, j) → E(p, �, j) (5.1.2.1)

as
E(p, �, j) = ε(p, (−1)�jω)k(p, (−1)�jω) (5.1.2.2)

of permittivity and the propagation constant
We define

z̃p = k(p + 1, (−1)�jω)Rp (5.1.2.3)

where r = Rp is the outer boundary of the brain tissue interface, region when p = 1 and for
p = 1

z1 = zp = k(p, (−1)�jω)Rp (5.1.2.4)

We define the interrogating scalar functions in tissue region p as

ψ
(�,j)
(p,n,m)(r, θ, φ) = jn(k(p, (−1)�jω)r)Pm

n (cos(θ)) exp(imφ)h(�)
n (z1)C

(�,j)
(p,n,1)

+h(�)
n (k(p, (−1)�jω)r)Pm

n (cos(θ)) exp(imφ)jn(z1)C
(�,j)
(p,n,2) (5.1.2.5)

These interrogating functions are all solutions of the scalar Helmholtz equation ([110])

∆ψ
(�,j)
(p,n,m) + k(p, (−1)�jω)2ψ

(�,j)
(p,n,m) = 0 (5.1.2.6)

where ∆ is the Laplacian defined in Cartesian coordinates by

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(5.1.2.7)

Since ([118]) for every smooth vector field G there is a smooth vector field F such that

∆F = G (5.1.2.8)

then by the vector field identity

G = ∆F = ∇(∇·(F ) + ∇× (∇× (−F ) (5.1.2.9)
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we have the proof that every smooth vector field G is a gradient plus a curl. In the brain
tissue region when p = 1 the function ψ

(�,j)
(p,n,m) defined by (5.1.2.5) must be bounded which

means that when p = 1
C

(�,j)
(p,n,2) = 0 (5.1.2.10)

defined by

5.1.3 The Transition Matrix Relationship Ensuring Continuity of the Inter-
rogating Scalar Function and Permittivity Times its Normal Derivative
across Tissue Interfaces while Reducing Overflow and Underflow

We have

lim
z→zp

[
jn(z)h

(�)
n (z1) h

(�)
n (z)jn(z1)

E(p, (−1)�jω) {(d/dz)jn(z)}h(�)
n (z1) E(p, (−1)�jω)

{
(d/dz)h

(�)
n (z)

}
jn(z1)

]

·
[
C

(�,j)
(p,n,1)

C
(�,j)
(p,n,2)

]
=

lim
z→z̃p

[
jn(z)h

(�)
n (z1) h

(�)
n (z)jn(z1)

E(p + 1, (−1)�jω) {(d/dz)jn(z)}h(�)
n (z1) E(p + 1, (−1)�jω)

{
(d/dz)h

(�)
n (z)

}
jn(z1)

]

·
[
C

(�,j)
(p+1,n,1)

C
(�,j)
(p+1,n,2)

]
(5.1.3.1)

In matrix language equation (5.1.3.1) may be reexpressed as

T
(�,j)
(p,n)

[
C

(�,j)
(p,n,1)

C
(�,j)
(p,n,2)

]
= S

(�,j)
(p,n)

[
C

(�,j)
(p+1,n,1)

C
(�,j)
(p+1,n,2)

]
(5.1.3.2)

The multiplying matrices appearing in equation (5.1.3.2) are actually defined by equation
(5.1.3.1) so that

S
(�,j)
(p,n) =

lim
z→z̃p

[
jn(z)h

(�)
n (z1) h

(�)
n (z)jn(z1)

E(p + 1, (−1)�jω) {(d/dz)jn(z)}h(�)
n (z1) E(p + 1, (−1)�jω)

{
(d/dz)h

(�)
n (z)

}
jn(z1)

]

(5.1.3.3)

where z̃p is given by equation (5.1.2.3). The matrix T
(�,j)
(p,n) is defined by

T
(�,j)

(p,n) =

lim
z→zp

[
jn(z)h

(�)
n (z1) h

(�)
n (z)jn(z1)

E(p, (−1)�jω) {(d/dz)jn(z)}h(�)
n (z1) E(p, (−1)�jω)

{
(d/dz)h

(�)
n (z)

}
jn(z1)

]

(5.1.3.4)

where zp is given by (5.1.2.4), jn is a spherical Bessel function, and h
(�)
n is a spherical Hankel

function.
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5.1.4 The S
(�,j)
(p+1,n) Transition Matrices for Going through the Skull Bone to the

Head Surface

For consistency we multiply the spherical Hankel function columns of the transition matrices
by the same jn(z1) where zp is given by (5.1.2.4) and the spherical Bessel function columns
of We define

z̃p+1 = k(p + 2, (−1)�jω)Rp+1 (5.1.4.1)

where p is the index of brain tissue. We have

S
(�,j)

(p+1,n) =

lim
z→z̃p+1

[
jn(z)h

(�)
n (z1) h

(�)
n (z)jn(z1)

E(p + 1, (−1)�jω) {(d/dz)jn(z)}h(�)
n (z1) E(p + 1, (−1)�jω)

{
(d/dz)h

(�)
n (z)

}
jn(z1)

]

(5.1.4.2)
where z1 is the same argument of the spherical Bessel or Hankel function matrix column
vector multiplier defined by (5.1.2.4).

5.1.5 Definition of the T
(�,j)
(p+1,n) Transition Matrices for Going through the Skull

Bone to the Head Surface

Here we define
zp+1 = k(p + 1, (−1)�jω)Rp+1 (5.1.5.1)

and for consistency zp is the same argument of the spherical Bessel or Hankel function matrix

column vector multiplier defined by (5.1.2.4). The matrix T
(�,j)

(p+1,n) is given by

T
(�,j)
(p+1,n) =

lim
z→zp+1

[
jn(z)h

(�)
n (z1) h

(�)
n (z)jn(z1)

E(p, (−1)�jω) {(d/dz)jn(z)}h(�)
n (z1) E(p, (−1)�jω)

{
(d/dz)h

(�)
n (z)

}
jn(z1)

]

(5.1.5.2)

5.1.6 Exact Formula Determinant of the Transition Matrices (5.1.3.3) in Equa-
tion (5.1.3.2) Using Wronskian Relations

The basic Wronskian Relationship involving spherical Bessel functions jn(z) and Neumann
functions yn(z) ([1]) is is

jn(z)

{(
d

dz

)
yn(z)

}
−

{(
d

dz

)
jn(z)

}
yn(z) =

1

z2
(5.1.6.1)

The derived Wronskian relationship is

jn(z)

{(
d

dz

)
h(�)

n (z)

}
−

{(
d

dz

)
jn(z)

}
h(�)

n (z) =
−i(−1)�

z2
(5.1.6.2)
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From equations (5.1.6.2) and (5.1.3.2) we deduce that

det(S
(�,j)

(p,n)) = ∆
(�,j)

(S,p,n)

= E(p + 1, (−1)�jω)

(
−i(−1)�

[k(p + 1, (−1)�jω)Rp]
2

){
jn(zp)h

(�)
n (z1)

}
(5.1.6.3)

where z1 is given by (5.1.2.4), where z̃p is given by (5.1.2.3) and E(p+1, (−1)�jω) is given by
(5.1.2.2). In a following section we will show numerical results comparing the exact formula
(5.1.6.3) with the numerical formula

det(S
(�,j)
(p,n)) = ∆

(�,j)
(S,p,n)

=
{
S

(�,j)

(p,n)(1, 1)S
(�,j)

(p,n)(2, 2) − S
(�,j)

(p,n)(1, 2)S
(�,j)

(p,n)(2, 1)
}

(5.1.6.4)

where S
(�,j)

(p,n) is given by (5.1.3.3).

5.1.7 Accurate Determination of the Representation of the Interrogating Scalar
Functions Outside the Skull Bone

The first step is to have a numerically accurate inverse of the transition matrix S
(�,j)
(n,p) defined

by (5.1.3.3) and (5.1.2.3) whose exact formula determinant ∆
(�,j)

(S,p,n) is given by (5.1.6.3) where

z̃p is given by (5.1.2.3) and E(p + 1, (−1)�jω) is given by (5.1.2.2). We have for the inverse
of the matrix given by (5.1.3.3) (

S
(�,j)
(n,p)

)−1

=

1

∆
(�,j)
(S,p,n)

[
S

(�,j)
(n,p)(2, 2) −S(�,j)

(n,p)(1, 2)

−S(�,j)
(n,p)(2, 1) S

(�,j)
(n,p)(1, 1)

]
(5.1.7.1)

where the determinant is given by (5.1.6.3). The expansion coefficients are then determined
by [

C
(�,j)
(p+1,n,1)

C
(�,j)
(p+1,n,2)

]
=

(
S

(�,j)
(n,p)

)−1

T
(�,j)
(n,p)

[
C

(�,j)
(p,n,1)

C
(�,j)
(p,n,2)

]
(5.1.7.2)

where T
(�,j)
(p,n) is defined by (5.1.3.4) and (S

(�,j)
(p,n))

−1 is defined by (5.1.7.1), and where in brain
tissue p = 1. Because the interrogating function must be differentiable in all tissue regions
we have for the brain tissue region[

C
(�,j)
(p,n,1)

C
(�,j)
(p,n,2)

]
p=1

=

[
1
0

]
(5.1.7.3)
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5.2 The Use of Interrogating Scalar Functions to Recover Brain

Activity from a Dynamic Head Surface Voltage Distribution

We rigorously define the dynamic voltage frequency components, its connection to the diver-
gence of the vector potential. and the boundary condtions and partial differential equations
that they satisfy; we then show that for all interrogating scalar functions ψ that satisfy
the same partial differential equations and boundary conditions that there is a relationship
between measurements outside the brain and

5.2.1 Rigorous Determination of Brain Activity from EEG Measurements

The rigorous EEG inversion method uses electrodynamics concepts found in Kovetz ([74],
page 160 and Jackson ([66], page 219). From the electrodynamics concepts in Kovetz ([74],
page 160) and Jackson ([66]) we develop a boundary value problem which enables us to
predict, using the Lorenz guage identity, the vector potential, the electric field E, and the
magnetic field H outside the head that are stimulated by brain activity.

The electrdynamics relationships ([74], page 160) give us relationships between electric
fields E and magnetic fields H that are stimulated by brain activity. We know that tan-
gential components of E and H are continuous across tissue interfaces. Coupling this with
the two electrodynamics relationships and the Lorenz gauge relationship gives us boundary
conditions satisfied by the vector potential and gives us a way of predicting it in intermediate
tissue layers and outside the head.

These vector fields give us predictions of the EEG voltage and the gradient of the EEG
voltage outside the head. We square the difference between predictions and measurements
and compute partial derivatives with respect to the coefficients representing internal brain
activity. This gives us a system of linear equations in the coefficients

q → c(n,m, �, (−1)�jω, p, q)(Uq, Vq,Wq) (5.2.1.1)

where q is an index for a potential site of a priori unknown brain activity in the total
internal vector potential equation (9.5.4.1) representing internal brain activity to external
EEG measurements where

c(n,m, �, (−1)�jω, p, q) =(
(n− | m |)!
(n+ | m |)!

)
Z(�)

n (k(p, (−1)�jω)rq)P
|m|
n (cos(θq)) exp(−imφq) (5.2.1.2)

where if � is zero Z
(�)
n (z) is the spherical Bessel function jn(z).

The elements of this matrix relating brain activity to EEG measurements are independent
of any brain activity.

To rigorously define voltage when the electric vector is nonconservative we, following the
notation in Kovetz ([74], page160) write

E = −∂A

∂t
−∇(V ) (5.2.1.3)

and

H =

(
1

µ

)
∇× (A) (5.2.1.4)
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If ρ represents the total charge density and J represents the total current density so that for
time harmonic radiation with a time dependence of

t → exp(i(−1)�ωt), (5.2.1.5)

which is a postive frequency for � = 2 and a negative frequency for � = 1, we have

∇·(D) = ρ (5.2.1.6)

and

∇× (H) =
∂D

∂t
+ J (5.2.1.7)

where D is the displacement vector and J is the current density. From (5.2.1.3) we have, in
spherical coordinates, where

∇(V ) = er
∂V

∂r
+

1

r
eθ
∂V

∂θ
+

(
1

r sin(θ)

)
∂V

∂φ
(5.2.1.8)

Thus, separating equation (5.2.1.3) into its three components we have

Er = −∂Ar

∂t
− ∂V

∂r
(5.2.1.9)

Eθ = −∂Aθ

∂t
− 1

r

∂V

∂θ
(5.2.1.10)

and

Eφ = −∂Aθ

∂t
−

(
1

r sin(θ)

)
∂V

∂φ
(5.2.1.11)

We decompose the brain wave signals into components whose time dependencies are of the
form We shall prove that outside the head, the charge density ρ is zero so that

∆V + k(p + 2, (−1)�ω)2V =
ρ

ε0
= 0 (5.2.1.12)

where
(�, ω) → k(p + 2, (−1)�ω) (5.2.1.13)

is the propagation constant in the tissue region outside the head and the vector potential
A and the voltage are related by the Lorenz gauge condition ([74], equation 44.4, page 160)
which waves with a time dependence of the form (5.2.1.5) are related by

i(−1)�ω∇·(A) − k(p+ 2, (−1)�ω)2V = 0 (5.2.1.14)

or solving for V in equation (5.2.1.14) that

V =

(
i(−1)�ω

k(p + 2, (−1)�ω)2

)
∇·(A) (5.2.1.15)

and
∆A = k(p + 2, (−1)�ω)2A = −µ0J = 0 (5.2.1.16)
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We have found linear equations which relate the Hirvonen vector potential (9.5.3.2) rep-
resenting the brain activity to rigorously to EEG measurements outside the head. We could
start with the known expansion in brain tissue and hypothesize a reflected vector potential
in brain tissue, a transmitted and reflected vector potential in the skull bone region and a
transmitted vector potential outside the skull the we use to obtain the EEG prediction. We
then use the vector potential discovered by measurement to predict the EEG measurement.
Jackson ([66], page 219) gives the same equations in Gaussian units. The vector potential
(9.5.3.2) uses the three vector fields (9.4.1.12), (9.4.1.13), and (9.4.1.15). However, only
the first one has a nonzero divergence since the others are multiples of curls of the others.
Thus, each Lorenz guage relationship using the true EEG voltage at an EEG measurement
point gives us an equation involving the expansion coefficients multiplying the vector fields
(9.4.1.12) for each EEG frequency component. We, thus, write out the Fourier series for
the predicted voltage in terms of the expansion coefficients multiplying the zero curl vector
fields given by (9.4.1.12). We square the difference between the predicted voltage time pro-
file defined by (5.2.1.15) and the measured EEG voltage and integrate over an entire time
interval. We take the partial derivatives with respect to the (9.4.1.12) vector field expan-
sion coefficients giving a linear system of equations in all the, a priori, unknown expansion
coefficients for each EEG measurement point. This, gives us the coefficients multiplying the
nonzero curl vector fields (9.4.1.12) that appear in the representation of the vector poten-
tial. By solving the boundary value problem described above we find the vector potential
representation inside the head which causes the coefficients of the vector fields (9.4.1.12) to
match the EEG measurements. The internal brain wave current density equations are then
determined by applying the Helmholtz operator to the brain-tissue vector potential.

5.2.2 Gauge EEG Voltages for Each Frequency Component

We suppose that the scattering body is partitioned into regions of constant permittivity.
The magnetic field is derived from the vector potential by

H =
1

µ
∇× (A) (5.2.2.1)

The electric vector is related to this vector potential, A, which has the form defined by
(9.5.3.2) uses the three vector fields (9.4.1.12), (9.4.1.13), and (9.4.1.15). and the true EEG
voltage V by

E =
∂A

∂t
−∇(V ) (5.2.2.2)

If the time dependence of a frequency component of the electric vector and magnetic
vectors stimulated by brain activity is

t → exp(i(−1)�ωt) (5.2.2.3)

then for this frequency component equation (5.2.2.2) has the form

E(�,ω) = −i(−1)�ωA −∇(V ) (5.2.2.4)

If D is the displacement vector and ρ is the charge density, then

∇·(D) = ρ (5.2.2.5)
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and in a region of constant permittivity ε((−1)�ω)

∇·(E) =
ρ

ε((−1)�ω)
(5.2.2.6)

and for the frequency component described by (5.2.2.3) equation (5.2.2.2) has the form

E = −i(−1)�ω∇·(A) −∇(V ) (5.2.2.7)

Applying the divergence operation (4.1.1.42) to each side of (5.2.2.7) and using the Laplacian,
∆, definition (4.1.1.67) that the Laplacian, ∆, of the EEG voltage V is

∆V = ∇·(∇(V )) (5.2.2.8)

we have
∇·(E) = −i(−1)�ω∇·(A) − ∆V =

ρ

ε((−1)�ω)
(5.2.2.9)

Rearranging terms in (5.2.2.9) and adding and subtracting

(�, ω) → k2 = ω2ε((−1)�ω)µ (5.2.2.10)

judiciously in (5.2.2.9) we have

∆V + k2V +
{
i(−1)�ω∇·(A) − k2V

}
= −ρ

ε
(5.2.2.11)

Factoring in (5.2.2.11) making use of

−k2 = i(−1)�ω
{
i(−1)�ωµε

}
(5.2.2.12)

Equations (5.2.2.11) and (5.2.2.12) give

∆V + k((−1)�ω)2V + i(−1)�ω
{
∇·(A) + i(−1)�ωµεV

}
= −ρ

ε
(5.2.2.13)

which is exactly the frequency component form of the first part of equation (44.3) in
Kovetz([74], page 160). For the frequency component with time dependence (5.2.2.3) the
curl (9.4.1.7) of the electric vector E stimulated by brain activity has the form

∇× (H) = i(−1)�ωεE + J (5.2.2.14)

Thus, applying the curl operation (9.4.1.7) to each side of (5.2.2.1) gives us after using the
general identity

∇× (∇× (A)) = ∇(∇·(A) − ∆A (5.2.2.15)

where ∆ is defined by (4.1.1.67) the relationship

∇× (H) =
1

µ
∇× (∇× (A)) =

1

µ
[∇(∇·(A) − ∆A]
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= i(−1)�ωε
[
−i(−1)�ωA −∇(V )

]
+ J (5.2.2.16)

Rearranging terms in (5.2.2.16) after multiplying all terms by the magnetic permeability µ
gives with ∆ defined by (4.1.1.67)

∆A + i(−1)�ωε
{
−i(−1)�

}
A

−∇(∇·(A) − i(−1)�ωµε∇(V ) = −µJ (5.2.2.17)

Using (5.2.2.10) and (5.2.2.12) in (5.2.2.17) gives us

∆A + k2A −∇
[
∇·(A) + i(−1)�ωµεV

]
= −µJ (5.2.2.18)

If we set [
∇·(A) + i(−1)�ωµεV

]
= 0 (5.2.2.19)

and substitute (5.2.2.19) into (5.2.2.13) we have the rigorous EEG voltage equation

∆V + k2V =
ρ

ε
(5.2.2.20)

which is exactly the first part of equation (44.5) of Kovetz ([74], page 161) for the frequency
component whose time dependence is given by (5.2.2.3). If we substitute (5.2.2.19) into
(5.2.2.18) we have

∆A + k2A = −µJ (5.2.2.21)

which is exactly the second part of equation (44.5) of Kovetz ([74], page 161) for the frequency
component whose time dependence is (5.2.2.3). For each frequency component with time
dependence (5.2.2.3) the EEG voltage is

V =

[
1

i(−1)�ωµ

]
∇·(A) (5.2.2.22)

which is exactly the Lorentz guage condition, equation 44.4, of Kovetz (citeKovetz, page
160). Thus, the magnetic vector H stimulated by brain activity is defined in terms of the
vector potential A by (5.2.2.3) and the electric vector E stimulated by brain activity is
defined in terms of the brain activity vector potential A defined in brain tissue by (9.5.3.2)
as

E = −i(−1)�ωA −
{

1

i(−1)�ωµε

}
∇(∇·(A) (5.2.2.23)

We can carry the non-conservative vector field EEG voltage from brain-tissue underneath
the skull bone, through the skull bone, to the region outside the head by requiring that V
and the function

(�, ω, r, θ, φ) → ε((−1)�ω)∇(V ) · n (5.2.2.24)

where n is the normal vector to the tissue interface separating two different tissue regions,
be continuous across the interfaces.
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5.2.3 A Proof that the Divergence of the Vector Fields

L
(m,�̃,(−1)�ω)
(n,p)

Associated with Brain Activity
are all Solutions of the EEG Voltage Equation

The purpose of this section is to carefully proof that the zero curl vector field defined by
(9.4.1.12) used in (9.5.4.1) to represent the vector potential from all sources of brain activity
has a divergence which satisfies

∆
{
∇·(L(m,�̃,(−1)�jω)

(n,p) )
}

+ k2
{
∇·(L(m,�̃,(−1)�jω)

(n,p) )
}

= 0 (5.2.3.1)

which is the same equation (5.2.2.20) that is satisfied by the EEG voltage when the charge
density ρ is set to zero.

For the frequency component whose time dependence is given by (5.2.2.3), the zero curl
component of the vector potential is

L
(m,�̃,(−1)�ω)
(n,p) =(

d

dz

)
Z(�̃)

n (z) |z=k(p,(−1)�ω)r P
m
n ((cos(θ)) exp(imφ)er

+

(
Z

(�̃)
n (k(p, (−1)�jω)r)

k(p, (−1)�ω)r

)[
d

dθ
Pm

n (cos(θ))eθ + im

(
Pm

n (cos(θ))

sin(θ)

)
eφ

]
exp(imφ) (5.2.3.2)

The divergence in spherical coordinates is, using (4.1.1.42), given by

∇·(Frer + Fθeθ + Fφeφ) =

1

r2 sin(θ)

[(
∂

∂r

)
(r2 sin(θ)Fr) +

(
∂

∂θ

)
(r sin(θ)Fθ) +

(
∂

∂φ

)
(rFφ)

]
(5.2.3.3)

As a simple check on (5.2.3.3) note that according to (4.1.1.42)

∇·(rer) = ∇·(xex + yey + zez) = 3 (5.2.3.4)

and using (5.2.3.3)

∇·(rer) =
1

r2 sin(θ)

(
∂

∂r

)
[(r2 sin(θ))r] =

1

r2

∂

∂r
r3 =

3r2

r2
= 3 (5.2.3.5)

We need Bessel’s equation (9.4.1.1) for spherical Bessel functions in the form(
1

z2

)
d

dz

(
z2dZ

(�̃)
n (z)

dz

)
= [

n(n+ 1)

z2
− 1]Z(�̃)

n (z) (5.2.3.6)

where the general spherical Bessel function is defined by (9.4.1.10). We also need the ordinary
differential equation for the associated Legendre function differential equation (9.4.1.2) in
the form

1

sin(θ)

d

dθ

[
sin(θ)

(
d

dθ

)
Pm

n (cos(θ))

]
=

(
m2

sin2(θ))

)
Pm

n (cos(θ)) − n(n+ 1)Pm
n (cos(θ))

(5.2.3.7)
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The first term of the divergence of the vector field (5.2.3.2) is with Fr being the er component
of (5.2.3.2) is, using (5.2.3.6), given by

1

r2 sin(θ)

[(
∂

∂r

)
(r2 sin(θ)Fr)

]

=
1

r2

[(
∂

∂r

)
(r2 sin(θ)Fr)

]

=
1

r2

(
∂

∂r

)[
r2 d

dz
Z(�̃)

n (z) |z=k(p,(−1)�ω)r P
m
n ((cos(θ)) exp(imφ)

]

= k

{
1

k2r2

(
∂

∂kr

)[
k2r2 d

dz
Z(�̃)

n (z) |z=k(p,(−1)�ω)r P
m
n ((cos(θ)) exp(imφ)

]}

= k

{
1

z2

d

dz

[
z2 d

dz
Z(�̃)

n (z)

]
|z=k(p,(−1)�ω)r

}
Pm

n ((cos(θ)) exp(imφ)

= k

[
n(n+ 1)

k2r2
− 1

]
Pm

n ((cos(θ)) exp(imφ) (5.2.3.8)

The second term of the divergence (5.2.3.3) from (5.2.3.2) with

Fθ =

(
Z

(�̃)
n (k(p, (−1)�ω)r)

k(p, (−1)�ω)r

)[
d

dθ
Pm

n (cos(θ))

]
exp(imφ) (5.2.3.9)

and considering the associated Legendre function differential equation in the easy-to-use
form (5.2.3.7) is given by

1

r2 sin(θ)

(
∂

∂θ

)
(r sin(θ)Fθ) =

=
1

r2

(
Z

(�̃)
n (k(p, (−1)�ω)r)

k(p, (−1)�ω)r

)[
1

sin(θ)

d

dθ

(
r sin(θ)

dPm
n (cos(θ))

dθ

)]
exp(imφ)

= k

([
Z

(�̃)
n (z)

z2

]
|z=k(p,(−1)�ω)r

)[
+m2P

m
n (cos(θ))

sin2(θ)
− n(n+ 1)Pm

n (cos(θ))

]
exp(imφ)

(5.2.3.10)
The third and final term in the computation of the divergence of the zero curl vector field

appearing in the equation (9.5.4.1) for the vector potential of brain activity from all sources
is using (5.2.3.2) with

Fφ =

(
Z

(�̃)
n (k(p, (−1)�ω)r)

k(p, (−1)�ω)r

)[
im

(
Pm

n (cos(θ))

sin(θ)

)]
exp(imφ) (5.2.3.11)

and the divergence formula (5.2.3.3) given by

1

r2 sin(θ)

(
∂

∂φ

)
(rFφ) = k

{
1

kr sin(θ)

(
Z

(�̃)
n (k(p, (−1)�ω)r)

k(p, (−1)�ω)r

)[
im

(
Pm

n (cos(θ))

sin(θ)

)](
∂

∂φ

)
exp(imφ)

}
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= k

([
Z

(�̃)
n (z)

z2

]
|z=k(p,(−1)�ω)r

)[
−m2P

m
n (cos(θ))

sin2(θ)

]
exp(imφ) (5.2.3.12)

where in (5.2.3.12) we used the fact that

im
∂

∂φ
exp(imφ) = −m2 exp(imφ) (5.2.3.13)

Adding up the contributions (5.2.3.8), (5.2.3.10), and (5.2.3.12) of the three terms of the

divergence of the zero curl vector field L
(m,�̃,(−1)�ω)
(n,p) we obtain

∇·(L(m,�̃,(−1)�ω)
(n,p) ) = −k

{
[Z(�̃)

n (z)] |z=k(p,(−1)�ω)r

}
Pm

n (cos(θ)) exp(imφ) (5.2.3.14)

which is a known solution of the EEG voltage scalar Helmholtz equation

∆V + k2V = 0 (5.2.3.15)

so that the sum of the divergences of the L
(m,�̃,(−1)�ω)
(n,p) terms of the vector potential represents

the EEG voltage.

5.2.4 Notation for Unit Vectors Orthogonal to Coordinate Planes

If ex, ey and ez are the length 1 coordinate vectors perpendicular, respectively, to the
coordinate planes defined, respectively, by setting x, y, and z equal to a constant, then,
the three unit vectors perpendicular to coordinate surfaces for spherical coordinates may be
expressed in terms of the vector r from the origin to the brain wave signal observation point
given by

r = r sin(θ) cos(φ)ex + r sin(θ) sin(φ)ey + r cos(θ)ez (5.2.4.1)

These three spherical coordinate unit vectors are

er =
1

r
r = sin(θ) cos(φ)ex + sin(θ) sin(φ)ey + cos(θ)ez (5.2.4.2)

eθ =
1

r

(
d

dθ

)
r = cos(θ) cos(φ)ex + cos(θ) sin(φ)ey − sin(θ)ez (5.2.4.3)

and

eφ =
1

r sin(θ)

(
d

dφ

)
r = − sin(φ)ex + cos(φ)ey (5.2.4.4)

5.2.5 Notation for the Unit Vector eq Defining the Neuronal Orientations and
the Vector Potentials and Derived Source Magnetic and Electric Fields
Associated with Brain Activity

We are attempting to recover the brain wave signal history file on each neuron in a lattice that
represents solutions of the nonlinear systems of differential equations describing brain activity
and that may be used to calculate the trans-membrane current at Gaussian quadrature points
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in order to accurately determine Fourier coefficients in a Fourier series representation of the
brain wave signal. The brain wave signal, as a Fourier series, is such that the transmembrane
current at the qth location inside the brain has the form of the infinite sum

Iq(t) = C(d/dt)Vq(t) = trans-membrane current =
∞∑

j=1

{
α̃(q,j) exp(ijωt) + β̃(q,j) exp(−ijωt)

}
=

∞∑
j=1

{(
(a(q,j) − ib(q,j))

2

)
exp(ijωt) +

(
(a(q,j) + ib(q,j))

2

)
exp(−ijωt)

}
(5.2.5.1)

where the complex Fourier coefficients of the real signal are

(
α̃(q,j), β̃(q,j)

)
=

(
(a(q,j) − ib(q,j))

2
,
(a(q,j) + ib(q,j))

2

)
(5.2.5.2)

Thus, the H field source for example then has the form

Hsource(t) = (1/µ)∇× (Ap(t)) (5.2.5.3)

where Ap is the vector potential in region p of assocated with the total contribution from
individual trans-membrane currents Iq(t) at locations rq inside the head given by

Ap =
M∑

q=1

∞∑
j=1

[
2∑

�=1

(
(a(q,j) − (−1)�ib(q,j))

2

)
A(p,q)(�, (−1)�jω, t)

]
(5.2.5.4)

where rq is the qth source of brain wave activity and p is the layer index with p=1 for a
brain tissue source and

A(p,q)(�̃, (−1)�jω, t) = µ/(4π) exp(i(−1)�jωt)
exp(−i(−1)�̃k(p, (−1)�jω) | r − rq |)

| r − rq |
eq

(5.2.5.5)
where r is the observation point and rq is the brain wave source location. and µ is the
magnetic permeability of brain tissue and

eq = Uqex + Vqey + Wqez

= Wq (cos(θ)er − sin(θ)eθ)+(
Uq − iVq

2

)
exp(iφ) [sin(θ)er + cos(θ)eθ + ieφ]

+

(
Uq + iVq

2

)
exp(iφ) [sin(θ)er + cos(θ)eθ − ieφ] (5.2.5.6)

In practice our inverse source solution recovers directly the Fourier coefficients and uses these
to represent the brain activity on individual neurons.

We can derive the magnetic fields stimulated directly by the brain wave activity as

Hsource(t) = (1/µ)∇× (Ap) =
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M∑
q=1

{ ∞∑
j=1

[
2∑

�=1

(
(a(q,j) − (−1)�ib(q,j))

2

)
(1/µ)∇ × (A(p,q)(�, (−1)�jω, t))

]}
(5.2.5.7)

However, because brain tissue is dispersive, and the brain tissue permittivity ε(p, (−1)�jω)
depends on the time dependencies exp(i(−1)�jωt) of the components of the brain wave signal
you have to write
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Esource = (1/µ)
M∑

q=1

∞∑
j=1

{
2∑

�=1

{
[(

[a(q,j) − (−1)�ib(q,j)]

2

)(
1

(i(−1)�ωε(p, (−1)�jω)

)
∇× (∇× (A(p,q)(�, (−1)�jω, t)))

]}}
(5.2.5.8)

Note that for each Fourier series index, j, you have to use the brain tissue permittivity

(p, �, jω) → ε(p, (−1)�jω) (5.2.5.9)

5.2.6 Relationship for the Recovery of Brain Activity and the Dynamic Volt-
age Relationship Between Voltage and Trans-Membrane Current and the
Relationship Between Head Surface Measurements and Brain Activity

From Kovetz ([74]) and the use of the fundamental solution of the Helmholtz operator we
have the dynamic voltage relationship

∆V + k((−1)�jω)2V =

(
i(−1)�jω)

k(p, (−1)�jω)2

)
∇·(J) (5.2.6.1)

between the total dynamic voltage in the brain tissue region and the trans-membrane neu-
ronal current distribution J for the projection of the voltage on the component with the
time dependence

t→ exp(i(−1)�jωt) (5.2.6.2)

The relationship for going from the outside of the head into brain tissue is with n denoting
the normal vector to the head surface is, with ψ denoting any brain-activity independent
function differentiable in each tissue region and which is continuous along with permittivity
times the tissue permittivity times the normal component of its derivative across tissue
interfaces, the suface and volume integral relationship relating external measurements to
internal brain activity is given by∫

∂Ω

ε(p + 2, (−1)�jω) {ψ∇(V ) −∇(ψ)V } · ndarea

= ε(p, (−1)�jω)

(
i(−1)�jω

k(p, (−1)�jω)2

)∫
Ω

ψ∇·(J)((−1)�jω)dvolume

= −
(
ε(p, (−1)�jω)

{
(−1)�jω

}
k(p, (−1)�jω)2

)∫
Ω

{
∂ψ

∂x
Jx(�, j) +

∂ψ

∂y
Jy(�, j) +

∂ψ

∂z
Jz(�, j)

}
dvolume

= −
(
ε(p, (−1)�jω)

{
(−1)�jω

}
k(p, (−1)�jω)2

)
Q∑

q=1

[
∂ψ

∂x
Jx(q, �, j) +

∂ψ

∂y
Jy(q, �, j) +

∂ψ

∂z
Jz(q, �, j)

]
(r,θ,φ)=(rq,θq,φq)

(5.2.6.3)
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The whole idea is to solve a system of equations derived from (5.2.6.3) for many different in-
terrogating functions ψ obtaining the complex quantities Jx(q, �, j), Jy(q, �, j), and Jz(q, �, j)
which represent the complex trans-membrane currents with frequency component

t→ exp(i(−1)�jωt) (5.2.6.4)

To create the matrix elements using (5.2.6.3) we need the fact that

∂ψ

∂x
= sin(θ) cos(φ)

∂ψ

∂r
+

(
cos(θ) cos(φ)

r

)
∂ψ

∂θ
+

(
− sin(φ)

r sin(θ)

)
∂ψ

∂φ
(5.2.6.5)

∂ψ

∂y
= sin(θ) sin(φ)

∂ψ

∂r
+

(
cos(θ) sin(φ)

r

)
∂ψ

∂θ
+

(
cos(φ)

r sin(θ)

)
∂ψ

∂φ
(5.2.6.6)

and
∂ψ

∂z
= cos(θ)

∂ψ

∂r
+

(
− sin(θ)

r

)
∂ψ

∂θ
(5.2.6.7)

These relationships are derived immediately from representing the gradient in spherical and
Cartesian coordinates and using the fact that its value is independent of the coordinate
system used to represent it and the representation

∇(ψ) =
∂ψ

∂r
er +

1

r

∂ψ

∂θ
eθ +

1

r sin(θ)

∂ψ

∂φ
eφ (5.2.6.8)

Equation (5.2.6.3) gives us the means of recovering brain activity from a dynamic head
surface voltage distribution.

5.2.7 The Use of Orthogonality Relationships for Rapid Interrogation of the
Dynamic Head Surface Voltage Distribution

We use the follwing lemma concerning the orthogonality of associated Legendre or Ferrer
functions ([133], page 323) which states that

Lemma 5.1∫ π

0

Pm
n (cos(θ)) · Pm

r (cos(θ)) sin(θ)dθ = δ(n,r)

2

2n+ 1
· (n+m)!

(n−m)!
(5.2.7.1)

where

δ(n,r) =

{
0 n �= r
1 n = r

(5.2.7.2)

and the fact that ∫ 2π

0

exp(−imφ) exp(im̃φ)dφ = δ(m,m̃)2π (5.2.7.3)

We use (5.2.7.1) and (5.2.7.3) to interrogate the V(�,j) components of the head surface dynamic
voltage.
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The derived dynamic head surface dynamic voltage distribution is given by

V = V (r, θ, φ, t) =
J∑

j=1

2∑
�=1

(
V(�,j)(r, θ, φ) exp(i(−1)�jωt)

)
=

J∑
j=1

2∑
�=1

ñ=N∑
ñ=0

m̃=+ñ∑
m̃=−ñ

{

c(ñ, m̃, j, �)h
(�)
ñ (k((−1)�jω)r)P

|m̃|
ñ (cos(θ)) exp(im̃φ) exp(i(−1)�jωt)

}
(5.2.7.4)

In equation (5.2.7.4) the calculated dynamic head surface voltage components are

V(�,j)(r, θ, φ) =

ñ=N∑
ñ=0

m̃=+ñ∑
m̃=−ñ

V
(�,j)
(p+2,ñ,m̃)h

(�)
ñ (k(p+ 2, (−1)�jω)r)P m̃

ñ (cos(θ)) exp(im̃φ) (5.2.7.5)

where we have used the notation

V
(�,j)
(p+2,n,m) = c(ñ, m̃, j, �) (5.2.7.6)

We interrogate the V(�,j) with the complex conjugate
We interrogate the V(�,j) in region p + 2 outside the skull by the complex conjugates if

the interrogating functions

ψ
(�,j)
(p+2,n,−m)(r, θ, φ) = jn(k(p+ 2, (−1)�jω)r)P |m|

n (cos(θ)) exp(i−mφ)h(�)
n (z1)C

(�,j)
(p+2,n,1)

+h(�)
n (k(p + 2, (−1)�jω)r)Pm

n (cos(θ)) exp(imφ)jn(z1)C
(�,j)

(p+2,n,2) (5.2.7.7)

Using the orthogonality relationships (5.2.7.1) and (5.2.7.3) we have upon interrogating V(�,j)

with the interrogating function defined by (5.2.7.7) the exact evaluations∫ φ=2π

φ=0

∫ θ=π

θ=0

{(
∂

∂r

)
ψ

(�,j)
(p+2,n,−m)

}
V(�,j) sin(θ)dθdφ =

k(p+2, (−1)�jω)

(
2

2n + 1

[
(n+ | m |)!
(n− | m |)!

]){ (
lim

z→z̃p+1

[(
d

dz

)
jn(z)

]
h(�)

n (z1)C
(�,j)
(p+2,n,1)V

(�,j)
(p+2,n,m)

+ lim
z→z̃p+1

[(
d

dz

)
h(�)

n (z)

]
jn(z1)C

(�,j)

(p+2,n,2)V
(�,j)

(p+2,n,m)

}
h

(�)
ñ (k(p + 2, (−1)�jω)Rp+1) (5.2.7.8)

where z1 is given by (5.1.2.4).
The other orthogonality relationship that we use is∫ φ=2π

φ=0

∫ θ=π

θ=0

{
ψ

(�,j)
(p+2,n,−m)

}{(
∂

∂r

)
V(�,j)

}
sin(θ)dθdφ =

k(p + 2, (−1)�jω)

(
2

2n + 1

[
(n+ | m |)!
(n− | m |)!

]){ (
lim

z→z̃p+1

[jn(z)] h(�)
n (z1)C

(�,j)

(p+2,n,1)V
(�,j)

(p+2,n,m)

+ lim
z→z̃p+1

[
h(�)

n (z)
]
jn(z1)C

(�,j)
(p+2,n,2)V

(�,j)
(p+2,n,m)

}[
lim

z→k(p+2,(−1)�jω)Rp+1

(
d

dz

)
h

(�)
ñ (z)

]
(5.2.7.9)
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where z1 is given by (5.1.2.4) and

z̃p+1 = k(p + 2, (−1)�jω)Rp+1 (5.2.7.10)

In the next section we show the accuracy of the determination of the interrogating scalar
functions.

The surface integral and the right side of the derived linear system is

ε(p+2, (−1)�jω)

∫ φ=2π

φ=0

∫ θ=π

θ=0

[
ψ

(�,j)
(p+2,n,−m)

(
∂

∂r
V(�,j)

)
−

(
∂

∂r
ψ

(�,j)
(p+2,n,−m)

)
V(�,j)

]
sin(θ)dθdφ

= ε(p+ 2, (−1)�jω)k(p+ 2, (−1)�jω)

(
2

2n + 1

)
(n+ | m |)!
(n− | m |)!

[
V

(�,j)

(p+2,n,m)

] [

lim
z→z̃p+1

({
C

(�,j)
(p+2,n,1)jn(z)h(�)

n (z1) + C
(�,j)
(p+2,n,2)h

(�)
n (z)jn(z1)

} d

dz
h(�)

n (z)jn(z1)

)
−

lim
z→z̃p+1

({
C

(�,j)
(p+2,n,1)

(
d

dz
jn(z)

)
h(�)

n (z1) + C
(�,j)
(p+2,n,2)

(
d

dz
h(�)

n (z)

)
jn(z1)h

(�)
n (z)

}
h(�)

n (z)jn(z̃p+1)

)]
(5.2.7.11)

Equation (5.2.7.11) represents an exact formula evaluation of the surface integral in (5.2.6.3).

5.3 Input and Output for the Inverse Source Computer Program

We describe the input and output variables for the four computer programs. A key input
is the set of dynamic head surface representation expansion coefficients defined in (5.2.7.4)
whose cardinality is limited by the maximum spherical Hankel function index n and the
number of frequency components used, the set of frequencies being recovered, the head
geometry, and the coordinates describing the locations of potential brain activity.

5.3.1 Program for Recovery of Neuronal Current Density Components

The input data for this program includes the locations within the head at which brain activity
is recovered. The qth site has the location

q → (rq, θq, φq)

in spherical coordinates which may be converted to Cartesian coordinates by

(xq, yq, zq) = (rq sin(θq) cos(φq), rq sin(θq) sin(φq), rq cos(θq))

We need from the head surface representation program the expansion coefficients

(n,m, �, j) → c(n,m, �, j) (5.3.1.1)

appearing in equation (5.2.7.4) that are used in the represenation of the head surface voltage
in equation (5.2.7.4).
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5.4 Trans-membrane Current Orientations, Vector Potentials, Helmholtz

Operators, Interrogating Scalar Functions, and Matrix Rela-
tionships for Brain Activity Recovery

We suppose that we have a dynamic head surface voltage distribution. We use vector calcu-
lus to find a relationship between this head surface voltage distribution and brain activity
without surgery.

5.4.1 A Direct Derivation of the Dynamic Voltage Inversion Relationship

The inversion will reveal the activity on multiple neuronal sources from noninvasive volt-
age distribution measurements outside the skull bone. We communicate the essence of the
derivation by considering a single neuronal source with orientation

eq = sin(αq) cos(βq)ex + sin(αq) sin(βq)ey + cos(αq)ez (5.4.1.1)

at location

rq = (xq, yq, zq) = (rq sin(θq) cos(φq), rq sin(θq) sin(φq), rq cos(θq)) (5.4.1.2)

and having strength P ((−1)�ω) for the time dependence

t → exp(i(−1)�ωt) (5.4.1.3)

so that at the observation point

r = (x, y, z) = (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)) (5.4.1.4)

the vector potential defining the stimulated electromagnetic activity is

Aq =

(
exp(−i(−1)�k(p, (−1)�ω)dq)

4πdq

)
eqP

(q)((−1)�ω) exp(i(−1)�ωt) (5.4.1.5)

where

dq =
√

(x− xq)2 + (y − yq)2 + (z − zq)2 (5.4.1.6)

From Sneddon and Read ([103] 2005) and Morse and Feshbach ([86]) we have from the
derivation of the fundamental solution of the Helmholtz operator that the action of the
Helmholtz operator on the vector potential (5.4.1.5) is

∆Aq + k(p, (−1)�ω)2Aq = −P q((−1)�ω) exp(i(−1)�ωt)δ(r − rq) (5.4.1.7)

where
P q((−1)�ω) = eqP

(q)((−1)�ω) (5.4.1.8)

so that if for all positive real numbers ξ

φξ∈C∞
c (R3) (5.4.1.9)
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is such that if for all
f∈C∞(R3) (5.4.1.10)

we have

f(rq) = 〈δ(r − rq), f(r)〉 = lim
ξ→0

∫
R3

φξ(r − rq)f(r)dvolume (5.4.1.11)

then in the weak topology sense

lim
ξ→0

φξ(r − rq) = δ(r − rq) (5.4.1.12)

This says that the Dirac delta function is a limit of a sequence φξ of infinitely differentiable
functions with compact support.

The total vector potential associated with brain activity from Q internal sites is

A =

Q∑
q=1

Aq (5.4.1.13)

5.4.2 Key Identity for Recovery of Brain Activity Using Dynamic Voltages

The key identity for recovery of brain activity, in its pure and simple form, is then simply to
say that for any smooth interrogating function ψ that if Ω is an open subset of brain tissue
containing the brain activity then integration by parts tells us that∫

Ω

ψ
{
∆∇·(A) + k(p, (−1)�ω)2 ∇·(A)

}
dvolume

=

∫
Ω

{−∇(ψ)} ·
{
∆A + k(p, (−1)�ω)2A

}
dvolume

=

∫
Ω

{−∇(ψ)} ·
{
∆A + k(p, (−1)�ω)2A

}
dvolume

= lim
ξ→0

∫
Ω

{−∇(ψ)} ·
{

(−1)

q=Q∑
q=1

φξ(r − rq)P
(q)((−1)�ω, t)

}
dvolume

=

Q∑
q=1

(
lim

(x,y,z)→(xq,yq ,zq)

)
·
{

[{
∂ψ

∂x
P (q)

x ((−1)�ω, t) +
∂ψ

∂y
P (q)

y ((−1)�ω, t) +
∂ψ

∂z
P (q)

z ((−1)�ω, t)

}]}
(5.4.2.1)

where ⎡
⎢⎣ P

(q)
x ((−1)�ω, t)

P
(q)
y ((−1)�ω, t)

P
(q)
z ((−1)�ω, t))

⎤
⎥⎦
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=

⎡
⎣ P (q)((−1)�ω) exp(i(−1)�ωt) sin(αq) cos(βq)
P (q)((−1)�ω) exp(i(−1)�ωt) sin(αq) sin(βq)

P (q)((−1)�ω) exp(i(−1)�ωt) cos(αq)

⎤
⎦ (5.4.2.2)

We define for d = dq

Ψ(d) =

[
−i(−1)�k(pq , (−1)�ω)d − 1

4πd3

]
exp(−i(−1)�k(p, (−1)�ω)d) (5.4.2.3)
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The partial derivative of Ψ(d) with respect to d is

∂Ψ

∂d
=
∂Ψ(p, d, (−1)�ω)

∂d
=

[
(−i)(−1)�k(p, (−1)�ω)Ψ(p, d, (−1)�ω)

+

(
(−i)(−1)�k(p, (−1)�ω)d

4πd4

)
exp(−i(−1)�k(p, (−1)�ω)d)

(
+(−3)

−i(−1)�k(p, (−1)�ω)d − 1

4πd4

)
exp(−i(−1)�k(p, (−1)�ω)d)

]
(5.4.2.4)

An alternative form of equation (5.4.2.4) is

∂Ψ

∂d
=

{
(−3)

[
−i(−1)�k(p, (−1)�ω)d − 1

]
− [k(p, (−1)�ω)d]2

4πd4

}
exp(−i(−1)�k(p, (−1)�ω)d)

(5.4.2.5)
The divergence of the vector potential is proportional to the voltage. If V q is the vector
from the qth site of brain activity to the observation point, then

V q = (x− xq)ex + (y − yq)ey + (z − zq)ez (5.4.2.6)

and
∇·(Aq) = Ψ(dq)(V q · eq)P

(q)((−1)�ω) exp(−i(−1)�ωt) (5.4.2.7)

where V q is given by (5.4.2.6), Ψ is given by (5.4.2.3) and the source strength and orientation
is given by (5.4.2.2).

We have for the components of the gradient, the relationships(
∂

∂x

)
∇·(Aq) = lim

d→dq

[{
∂Ψ(d)

∂d

(
x− xq

d

)}
(V · eq) + Ψ(d) sin(αq) cos(βq)

]
(5.4.2.8)

(
∂

∂y

)
∇·(Aq) = lim

d→dq

[{
∂Ψ(d)

∂d

(
y − yq

d

)}
(V · eq) + Ψ(d) sin(αq) sin(βq)

]
(5.4.2.9)

and (
∂

∂z

)
∇·(Aq) = lim

d→dq

[{
∂Ψ(d)

∂d

(
z − zq

d

)}
(V · eq) + Ψ(d) cos(αq)

]
(5.4.2.10)

For spherical coordinates and the total vector potential of brain activity we have(
∂

∂r

)
∇·(A) =

[
sin(θ) cos(φ)

∂

∂x
+ sin(θ) sin(φ)

∂

∂y
+ cos(θ)

∂

∂z

]
∇·(A) (5.4.2.11)
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5.4.3 Relationship for Using Scalp Measurements to Recover Brain Activity
from Dynamic Voltages

If we correctly define an interrogating scalar function ψ and the total vector potential A in
each tissue region and outside the skull, the inversion relationship is with ∂Ω denoting the
boundary of tissue regions Ω comprising the head.∫

∂Ω

ε(p + 2, (−1)�jω) {ψ∇(∇·(A) −∇·(A)∇(ψ)} · ndarea

=

∫
Ω

ε(p, (−1)�jω)∇· {ψ∇(∇·(A) −∇·(A)∇(ψ)}dvolume

=

∫
Ω

ε(p, (−1)�jω)

{
∇(ψ) · ∇(∇·(A)) + ψ∇·(∇(∇·(A)))

− [∇(∇·(A)) · ∇(ψ)

+∇·(A)∇·(∇(ψ))]

}
dvolume

=

∫
Ω

ε(p, (−1)�jω)
{
ψ∆∇·(A) −∇·(A)

[
−k(p, (−1)�ω)2ψ

]}
dvolume

=

∫
Ω

ε(p, (−1)�jω)ψ
{
∆∇·(A) +

[
k(p, (−1)�ω)2

]
∇·(A)

}
dvolume

= −
∫

Ω

ε(p, (−1)�jω) {ψ∇·(J} dvolume = +

∫
{∇(ψ) · J} dvolume

= +ε(p, (−1)�jω)

Q∑
q=1

{
∂ψ

∂x
(rq, θq, φq)P

(q)
x ((−1)�ω, t)

+
∂ψ

∂y
(rq, θq, φq)P

(q)
y ((−1)�ω, t) +

∂ψ

∂z
(rq, θq, φq)P

(q)
z ((−1)�ω, t)

}
(5.4.3.1)

The matrix equation is derived from the right side of (5.4.3.1). In equation (5.4.3.1) the
partial derivatives of the interrogating scalar functions ψ are determined by by

∂ψ

∂x
=

{
sin(θ) cos(φ)

∂ψ

∂r
+

cos(θ) cos(φ)

r

∂ψ

∂θ
− sin(φ)

r sin(θ)

∂ψ

∂φ

}
(5.4.3.2)

∂ψ

∂y
=

{
sin(θ) sin(φ)

∂ψ

∂r
+

cos(θ) sin(φ)

r

∂ψ

∂θ
+

cos(φ)

r sin(θ)

∂ψ

∂φ

}
(5.4.3.3)

and
∂ψ

∂z
=

{
cos(θ)

∂ψ

∂r
− sin(θ)

r

∂ψ

∂θ

}
(5.4.3.4)

In the brain tissue universe the function ψ can have the form

ψ = jn(k(p, (−1)�ω)r)Pm
n (cos(θ)) exp(imφ) (5.4.3.5)
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5.5 The Matrix Equation for Recovery of Brain Activity from

EEG Recordings

The row index is for the matrix

(j, �) → M
(j,�)

(5.5.0.1)

associated with the frequency component with time dependence

t → exp(−i(−1)�jωt) (5.5.0.2)

is
Irow(n,m) = n2 + (n+m+ 1) (5.5.0.3)

and the column index which depends on the coordinate index IC and the dipole index q is

Jcolumn = Jcolumn(q, IC) = 3(q − 1) + IC (5.5.0.4)

The matrix entry is

M
(j,�)

(Irow(n,m), Jcolumn)(q, IC) =

lim
(x,y,z)→(xq,yq ,zq)

⎧⎪⎨
⎪⎩

(∂/∂x)ψ
(�,j)
(n,m)(x, y, z) if IC = 1

(∂/∂y)ψ
(�,j)
(n,m)(x, y, z) if IC = 2

(∂/∂z)ψ
(�,j)

(n,m)(x, y, z) if IC = 3

(5.5.0.5)

The matrix equation has the form

M
(j,�)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P
(1)
x ((−1)�jω))

P
(1)
y ((−1)�jω))

P
(1)
z ((−1)�jω))

· · ·
· · ·
· · ·

P
(q)
x ((−1)�jω))

P
(q)
y ((−1)�jω))

P
(q)
z ((−1)�jω))

· · ·
· · ·
· · ·

P
(Q)
x ((−1)�jω))

P
(Q)
y ((−1)�jω))

P
(Q)
z ((−1)�jω))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(0, 0)
S(1,−1)
S(1, 0)
S(1,+1)

· · ·
· · ·
· · ·

S(n,−n)
· · ·
· · ·
· · ·

S(n,+n)
· · ·
· · ·
· · ·

S(N,−N)
· · ·
· · ·
· · ·

S(N, 0)
· · ·
· · ·
· · ·

S(N,+N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.5.0.6)
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5.6 Computer Comparison of Volume and Surface Integral Rela-

tionships for Brain Activity Recovery from EEG Recordings

The following is a comparison

n m integral value integral type

2 -2 3.368907528532080 × 101 + i[1.009482236012442 × 102] surface integral

2 -2 3.368907528532062 × 101 + i[1.009482236012455 × 102] volume integral

2 -1 −1.702135430384869 × 101 + i[−2.299168366554281 × 101] surface integral

2 -1 −1.702135430384874 × 101 + i[−2.299168366554279 × 101] volume integral

2 0 5.495104926656351 + i[1.099019699686706 × 101] surface integral

2 0 5.495104926656298 + i[1.099019699686709 × 101] volume integral

2 1 −8.180413502247294 + i[−2.741207074136922 × 101] surface integral

2 1 −8.180413502247248 + i[−2.741207074136920 × 101] volume integral

2 2 6.054493631657606 × 101 + i[8.752005211996486 × 101] surface integral

2 2 6.054493631657589 × 101 + i[8.752005211996534 × 101] volume integral

6 Program for Detrending of Raw EEG Recordings

The raw data had net positive or net negative average voltages and also showed upward or
downward drifting of the voltages.

6.1 Removal of Operational Amplifier Drift in EEG Recordings

A program was written to remove the operation amplifier drift in EEG recordings. The net
recorded voltages were either all positive or all negative. The covariance of the voltage and
time divided by the variance of the recorded times gave the slope of the best fitting line.
The best-fit line was subtracted from the recorded voltage giving a signal whose average
voltage was nearly zero. Computer output for all 128 recordings is shown in the computer
data subsection.

6.1.1 The Mathematics of Removal of Drift from EEG Recordings

Suppose we have N EEG recording site time and voltage coordinates (T1, V1), (T2, V2),
(T3, V3), · · ·, (TN , VN ) representing the observed time and voltage coordinates. We wish
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to find two numbers B0 and B1 such that the expression

S = S(B0, B1) = (V1 − B1 · T1 − B0)
2 + (V2 − B1 · T2 − B0)

2 + · · ·

+(Vi − B1 · Ti − B0)
2 + · · ·+ (VN−1 −B1 · TN−1 −B0)

2 + (VN − B1 · TN − B0)
2 (6.1.1.1)

is as small as possible.
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We collect terms in equation (6.1.1.1) by making use of the multiplication table:

MULTIPLY Vi −B1Ti −B0

Vi V 2
i −B1TiVi −B0Vi

−B1Ti −B1TiVi B2
1T

2
i B0B1Ti

−B0 −B0Vi B0B1Ti B2
0

Regrouping so that S(B0, B1) is more easily seen to be a polynomial in B0 and B1 we find
that

S(B0, B1) =

(
N∑

i=1

V 2
i

)
+

(
N∑

i=1

T 2
i

)
B2

1 +B2
0N

−
(

2

N∑
i=1

TiVi

)
B1 −

(
2

N∑
i=1

Vi

)
B0 +

(
2

N∑
i=1

Ti

)
B0B1 (6.1.1.2)

To analyze the terms we introduce the notation

NT =
N∑

i=1

Ti (6.1.1.3)

and

NV =
N∑

i=1

Vi (6.1.1.4)

where T and V denote the average values of the Ti and Vi. Collecting terms and substituting
(6.1.1.3) and (6.1.1.4) into (6.1.1.2) we find that

S = N
{
B2

0 − 2B0

[
V − B1T

]}
+(

N∑
i=1

T 2
i

)
B2

1 − 2

(
N∑

i=1

TiVi

)
B1 +

N∑
i=1

V 2
i (6.1.1.5)

Adding the quantity,
N(V − B1T )2 −N(V − B1T )2 = 0 (6.1.1.6)

to the right side of equation (6.1.1.5) we obtain

S = N
[{
B2

0 − 2B0

[
V − B1T

]}
+ (V − B1T )2

]
+(

N∑
i=1

T 2
i

)
B2

1 − 2

(
N∑

i=1

TiVi

)
B1 +

N∑
i=1

V 2
i −N(V − B1T )2 (6.1.1.7)

Simplifying equation (6.1.1.7) using the relation

(B0 − (V − B1T ))2 = B2
0 − 2B0(V − B1T ) + (V −B1T )2 (6.1.1.8)
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we see that (6.1.1.7) implies that

S = N(B0 − (V − B1T ))2 +B2
1

(
N∑

i=1

T 2
i −NT

2

)
−

2B1

({
N∑

i=1

TiVi

}
−NTV

)
+

N∑
i=1

V 2
i −NV

2
(6.1.1.9)

Collecting terms and completing the square we find that

S = N(B0 − (V − B1T ))2+

(
N∑

i=1

T 2
i −NT

2

)[
B1 −

( ∑N
i=1 TiVi −NTV∑N

i=1 T
2
i −NT

2

)]2

+

⎡
⎣
(

N∑
i=1

V 2
i −NV

2

)(
N∑

i=1

T 2
i −NV

2

)
−

(
N∑

i=1

TiVi −NTV

)2
⎤
⎦ /

(
N∑

i=1

T 2
i −NT

2

)

(6.1.1.10)
Thus, from (6.1.1.10) we conclude that the sum given by (6.1.1.7) is minimized if

B1 =

(∑N
i=1 TiVi −NTV∑N

i=1 T
2
i −NT

2

)
=

(
(
∑N

i=1 TiVi)/N − TV

(
∑N

i=1 T
2
i )/N − T

2

)
(6.1.1.11)

which is the estimate of the covariance (Feller [42], p 330) of the Ti and Vi divided by the
estimate of the variance (Feller [42], p 227) of the Ti, and B0 is given by

B0 = (V − B1T ) (6.1.1.12)

Since (T , V ) is on the line we note that

V = B1T +B0 (6.1.1.13)

If
α =| V | (6.1.1.14)

and
β =| T | (6.1.1.15)

and if T and V are linearly independent, then

Q = αX − βV �= 0 (6.1.1.16)

which tells us that
Q · Q > 0 (6.1.1.17)

or equivalently
(| T |)(| V |) > T · V (6.1.1.18)
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which is just a statement of the strict Cauchy-Schwarz inequality. If we let

V = (1, 1, · · ·, 1) (6.1.1.19)

then if
T = (T1, T2, · · ·, Ti, · · ·, TN) (6.1.1.20)

T cannot possibly depend linearly on the V given by (6.1.1.19) and then (6.1.1.16) and con-
sequently (6.1.1.18) is satisfied if there are as many as two different coordinates in T , which
is clearly the case when T represents the vector of observation times of the electroencephalo-
gram. We see what this means by making the substitutions in the inequality (6.1.1.18) and
squaring both sides, we obtain the result,

(T 2
1 + T 2

2 + · · · + T 2
n−1 + T 2

n) ·N > (T1 + T2 + · · ·+ Tn−1 + Tn)
2 (6.1.1.21)

which means that

T
2

=

(
T1 + T2 + · · · + Tn

N

)2

<

(
T 2

1 + T 2
2 + · · · + T 2

n

N

)
(6.1.1.22)

This last inequality (6.1.1.22) tells us that the denominator in (6.1.1.11) is nonzero and,
therefore, that we can always get a best fitting straight line with a finite slope, which is our
estimate of the drift of the recorded electroencephalogram voltage with respect to time, as
long as the values Ti are not all identical. Furthermore, equation (6.1.1.13) implies that if
we replace Vi by

Ṽi = Vi − B1 · Ti −B0 (6.1.1.23)

that the new detrended voltage variable Ṽi has zero mean. Our purpose is the extraction of
information content from the detrended electroencephalogram data.

6.1.2 Computer Data Showing the Results of Detrending the EEG Recordings

In this section the best fitting voltage versus time line at the EEG recording site with index
e is

Ve = B(1,e)Te +B(0,e) (6.1.2.1)

A sample of the detrending from the first and 128th EEG recording site is

10240 = NTIMES before READ(11
90.0087891 = TARRAY(1)
95.0083008 = TARRAY(NTIMES)
1 = IL = eeg lead index
2.49975586 = average time value
8772.91659 = original average voltage
0.00103979808 = B1 = slope of best fitting line
7.60074828E-010 = average of detrended voltage
128 = IL = eeg lead index
2042.29189 = original average voltage
0.00407213127 = B1 = slope of best fitting line
3.53542164E-010 = average of detrended voltage
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6.1.3 Voltage Versus Time Plots of EEG Data

In this section we have MATLAB plots of recordings of EEG voltage versus time data at
individual lead points on the surface of the skull. I provide the plots and a copy of the
FORTRAN program and matlab plotting files.
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Figure 34: EEG Voltage Versus Time at EEG Lead 1

The voltage versus time at the first EEG lead location is shown in the graph.
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Figure 35: EEG Voltage Versus Time at EEG Lead 2

The voltage versus time at the second EEG lead location is shown in the graph. The
local average of the voltage changes slowly but seems to be an increasing function of time.
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Figure 36: EEG Voltage Versus Time at EEG Lead 3

The voltage versus time at the third EEG lead location is shown in the graph. The local
average of the voltage changes slowly but seems to be an increasing function of time.
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We next describe the FORTRAN program and the COMMON BLOCK detrended the
EEG data. There was a 33 Megabyte data file which had in the first row the 10240 times and
rows 2 through 128+1, the EEG voltages at the 128 EEG leads. The data files EEG1.DAT
through EEG128.DAT all had exactly 10240 lines. It appears that in the data the voltage is
changing slowly and the local voltage average appears to be increasing linearly with time. To
show the idea we give a shortened version of the program. The slope of the best fitting line
is the covariance of the time and voltage data divided by the variance of the time data. The
voltage axis intercept of this best fitting line is the difference between the average voltage
and this slope multiplied by the average time.
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Figure 37: EEG Voltage Versus Time at EEG Lead 9

6.1.4 Sample Plot of the Undetrended and Detrended Voltage

We give a plot of the undetrended and detrended data for the 9th EEG lead recording site.
The voltage versus time at the nineth EEG lead location is shown in the graph. The EEG
recording appears to be comprised, in the Stone Weierstrass sense, of vertically displaced
sinusoids and has a low frequency envelope.
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Figure 38: Detrended EEG Voltage Versus Time at EEG Lead 9

The detrended EEG recording is
This was recorded at the following location on the head surface.

r θ φ
0.1000000000E+00 -0.99.50000000 0.144.0000000
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7 The Dynamic Head Surface Voltage Representation

from N ≥ 128 EEG Recording Sites

We use quadratic forms involving relationships between voltage recordings at given times t
at different EEG recording sites.

7.1 The Concept of Using the Complete Time Profile of EEG

Activity at a Finite Number of Sites to Recover Brain Activity

The key to the recovery of a head surface dynamic voltage representation from the complete
time profile of activity, an infinite amount of information, at just a finite number of EEG
recording sites is that the spherical Hankel functions used in representing the head surface
brain activity have arguments that depend on frequency. We then interrogate the head
surface representation with interrogating scalar functions which depend on physiology but
which are independent of brain activity. Each interrogation gives us a new equation for
recovery of the orientation of neurons and the activity on these neurons.

7.1.1 Quadratic Forms for Recovery of Head Surface Voltage Distributions from
EEG Recordings

We want to create a dynamic head surface voltage distribution that can be interrogated to
recover the brain activity. In the following we let

(p, ωj , �) → k(p, (−1)�ωj) (7.1.1.1)

denote the propagation constant for the brain-activity vector potential component with a
time dependence of the form

t→ exp(i(−1)�ωjt) (7.1.1.2)

We let p = 1 denote the brain tissue region index and we let p+2 be the index of the region
just beyond the skull.

We create quadratic forms in the apriori unknown expansion coefficients

(n,m, j, �) → c(n,m, j, �) (7.1.1.3)

based on the difference between this a priori unknown series expansion
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V(e,series)(t) =
J∑

j=1

2∑
�=1

{
V(�,j)(re, θe, φe) exp(i(−1)�jωt)

}

=
J∑

j=1

2∑
�=1

n=N∑
n=0

m=+n∑
m=−n

{ [
Pm

n (cos(θe)) exp(imφe) exp(i(−1)�ωjt)
]

c(n,m, j, �)
{
h(�)

n (k(p + 2, (−1)�jω)re)jn(k(p+ 2, (−1)�ωj)r2)
} }

(7.1.1.4)

at an EEG, electroencephalogram, recording site indexed by e and given in head surface
spherical coordinates by

e→ (re, θe, φe) (7.1.1.5)

In equation (7.1.1.4) we mollified the Hankel function by multiplying it by a spherical Bessel
function evaluated at the head boundary. The objective is of course to find the, a priori
unknown coefficients

(n,m, j, �) → c(n,m, j, �) (7.1.1.6)

We want the series representation to match the recorded representation

e→ Ve(t) (7.1.1.7)

at every EEG recording site. We have a fiber bundle of voltage vector spaces at each EEG
recording site and we construct a vector consisting of all linear combinations of voltage fields
Ve(t) at the EEG recording sites. We consider multiple sets of multipliers A(e,iset) of the
voltages Ve(t) at time t at the EEG recording site with index e. Thus, for scalars A(e,iset)∈R

for e being one of N(E) recording site indices we have a mapping

(A(1,iset), · · ·, A(e,iset), · · ·, A(N(E),iset)) →
∑
t∈T

e=N(E)∑
e=1

[{
A(e,iset)V(e,series)(t) −A(e,iset)Ve(t)

}]
(7.1.1.8)

If the V(e,series)(t) given by (7.1.1.4) is a perfect representation of the dynamic voltage distri-
bution over the surface of the head, then every one of the images (7.1.1.8) is the zero vector
field. Thus, the simplest quadratic form, using just one of the potentially infinite number of
interrelationships between the recording site measurements given by (7.1.1.8)

Q((A(1,iset), · · ·, A(e,iset), · · ·, A(N(E),iset)), (· · ·, c(n,m, j, �) · ··)) =

e=N(E)∑
e=1

(∑
t∈T

{[
A(e,iset)V(e,series)(t) −A(e,iset)Ve(t)

] [
A(e,iset)V(e,series)(t) − A(e,iset)Ve(t)

]} )

(7.1.1.9)
where Ve(t) is the recorded detrended voltage at time t and the EEG recording site with index
e. Since the recorded voltages are real we could assume that each A(e,iset) is a real number,
but to have more possibilities for equations we allow them to be complex numbers. In the
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next section we show how to obtain more equations for the head surface voltage distribution
representation by considering multiple sets of multipliers

(e, iset) → A(e,iset) (7.1.1.10)

that we can get independent equations with quadratic forms created by the difference between
the linear combinations of series represenation of the head surface voltage representations
at finite numbers of EEG recording sites and the same linear combinations of the recorded
voltages. The linear equations are derived by computing partial derivatives of the quadratic
forms with respect to the complex conjugates of the expansion coefficients.

7.1.2 Generalized Quadratic Forms for Recovery of Head Surface Dynamic
Voltage Expansion Representations

We want to recover the expansion coefficients

(n,m, j, �) → c(n,m, j, �) (7.1.2.1)

in equation (7.1.1.4) which define the voltages

(re, θe, φe, t) → V(e,series)(t) (7.1.2.2)

at the electroencephalogram recording sites

e→ (re, θe, φe) (7.1.2.3)

We consider the electroencephalogram recording site locations

e→ (re, θe, φe) (7.1.2.4)

on the head surface where
e∈{1, · · ·, e, · · ·, N(E)} (7.1.2.5)

at which we have EEG voltage values Ve(t) where t∈T . Instead of considering just one set of
multipliers Ae to define a single quadratic form (7.1.1.9) in the apriori unknown expansion
coefficients we consider multiple sets M of multipliers

M =
{
(e, iset) → A(e,iset) : e∈{1, · · ·, N(E)} andiset∈{1, · · ·, N(Q)}

}
(7.1.2.6)

and all defining the quadratic form

Q((A(1,iiset), · · ·, A(e,iiset), · · ·, A(N(E),iiset)); (..., c(n,m, j, �), ...) =
∑
t∈T

{

[

e=N(E)∑
e=1

{
A(e,iiset)V(e,series)(t)− A(e,iiset)Ve(t)

}
][

ẽ=N(E)∑
ẽ=1

{
A(ẽ,iset)V(ẽ,series)(t) −A(ẽ,iset)Vẽ(t)

} ⎫⎬
⎭

(7.1.2.7)
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Now we compute the partial derivative of the quadratic form defined by (7.1.2.7) with
respect to the complex conjugate

(n,m, j, �) → c(n,m, j, �) (7.1.2.8)

of the expansion coefficients in the representation (7.1.1.4). We have

0 = (∂/∂c(n,m, j, �))Q((A(1,iset), · · ·, A(e,iset), · · ·, A(N(E),iset)); (..., c(n,m, j, �), ...)) =
∑
t∈T

{

[

e=N(E)∑
e=1

{
A(e,iset)V(e,series)(t) −A(e,iset)Ve(t)

}
][

ẽ=N(E)∑
ẽ=1

{
A(ẽ,iset)(∂/∂c(n,m, j, �))V(ẽ,series)(t)

}
]

⎫⎬
⎭

(7.1.2.9)
The first set of equations derived from (7.1.2.9) correspond to iset = 1 and the last set of
equations in the expansion coefficients

(n,m, j, �) → c(n,m, j, �) (7.1.2.10)
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7.1.3 Linear Equations in the A Priori Unknown Coefficients Defining the Head
Surface Voltage Distributions

From (7.1.2.9) we derive the equation

∑
t∈T

{

⎡
⎣e=N(E)∑

e=1

⎛
⎝A(e,iset)

J∑
j̃=1

2∑
�̃=1

N∑
ñ=0

m̃=+m̃∑
m̃=−ñ

c(ñ, m̃, j̃, �̃)

{
{
h

(�̃)
ñ (k(p+ 2, (−1)�̃j̃ω)re)jñ(k(p+ 2, (−1)�̃j̃ω)Rp+1)

}

P m̃
ñ (cos(θe)) exp(im̃φe) exp(+i(−1)�̃j̃ωt)

} )}]
·

⎡
⎣ẽ=N (E)∑

ẽ=1

A(ẽ,iset)

{
h

(�)
n (k(p+ 2, (−1)�jω)rẽ)jn(k(p+ 2, (−1)�jω)Rp+1)

}

Pm
n (cos(θẽ)) exp(−imφẽ) exp(−i(−1)�jωt)

]}] }

=
∑
t∈T

⎧⎨
⎩

⎡
⎣e=N(E)∑

e=1

A(ẽ,iset)Ve(t)

⎤
⎦ ·

⎡
⎣ẽ=N(E)∑

ẽ=1

A(ẽ,iset)h
(�)
n (k(p+ 2, (−1)�jω)rẽ)jn(k(p + 2, (−1)�jω)Rp+2)

Pm
n (cos(θẽ)) exp(−imφẽ) exp(−i(−1)�jωt)

]}
(7.1.3.1)

Equations of the form (7.1.3.1) give a system of equations for the a priori unknown expansion
coefficients

(ñ, m̃, j̃, �̃) → c(ñ, m̃, j̃, �̃) (7.1.3.2)
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Since there are large numbers of time values in the EEG recordings, we reorder the
summations in (7.1.3.1) and rewrite this equation as{

⎡
⎣e=N(E)∑

e=1

⎛
⎝A(e,iset )

J∑
j̃=1

2∑
�̃=1

N∑
ñ=0

m̃=+m̃∑
m̃=−ñ

c(ñ, m̃, j̃, �̃)

{

{
h

(�̃)
ñ (k(p + 2, (−1)�̃j̃ω)re)jñ(k(p+ 2, (−1)�̃j̃ω)rp+1)

}{
P m̃

ñ (cos(θe)) exp(im̃φe)
}

[∑
t∈T

exp(+i(−1)�̃j̃ωt) exp(−i(−1)�jωt)

]} )}]
·

⎡
⎣ ẽ=N(E)∑

ẽ=1

A(ẽ,iset)h
(�)
n (k(p+ 2, (−1)�jω)rẽ)jñ(k(p+ 2, (−1)�̃j̃ω)rp+1)

Pm
n (cos(θẽ)) exp(−imφẽ)

]}] }

=

⎧⎨
⎩

⎡
⎣e=N(E)∑

e=1

A(e,iset)

{∑
t∈T

Ve(t) exp(−i(−1)�jωt)

}⎤
⎦ ·

⎡
⎣ ẽ=N(E)∑

ẽ=1

A(ẽ,iset)h
(�)
n (k(p + 2, (−1)�jω)rẽ)jn(k(p + 2, (−1)�jω)Rp+1)

Pm
n (cos(θẽ)) exp(−imφẽ)]

}

=

⎧⎨
⎩

⎡
⎣e=N(E)∑

e=1

A(e,iset)

{ ∑
t∈T

Ve(t) exp(−i(−1)�jωt)

}⎤
⎦
⎫⎬
⎭ ·

⎡
⎣ẽ=N(E)∑

ẽ=1

{
A(ẽ,iset)

[
h

(�)
n (k(p + 2, (−1)�jω)rẽ)j

(�)
n (k(p + 2, (−1)�jω)rRp+1)

]
·

[Pm
n (cos(θẽ)) exp(−imφẽ)]

}
(7.1.3.3)
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7.1.4 The Subroutines that Precompute Arrays Needed in Vector Space Ho-
momorphism Representations and Vectors Derived from EEG Recordings
to Determine Expansion Coefficients Defining the Head Surface Dynamic
Voltage Representation

Our purpose here is to transform the relationships (7.1.1.4) and (7.1.3.3) into a matrix
equation representation.

The subroutine

SUBROUTINE GHJNOL(NOFN,NOFJ,NOFEEG)

produces with p = 1 being the brain tissue region

HJNOL(NNDX,J,L,IEEG) =

h(�)
n (k(p+ 2, (−1)�ωj)reeg)jn(k(p + 2.(−1)�ωj)Rp+1) (7.1.4.1)

The subroutine

SUBROUTINE GPNMEXP(NOFN,NOFEEG)

produces
PNMEXP(NNDX,MNDX,IEEG) =

P |m|
n (cos(θeeg)) exp(imφeeg) (7.1.4.2)

The subroutine

SUBROUTINE GREPMTX(NOFN,NOFJ,NOFSET,NOFEEG)

produces the entries of the matrix multiplying the column of expansion coefficients that
define the dynamic head surface voltage distribution stimulated by internal brain activity.
In the FORTRAN program it produces the array

REPMTX(IROWCL,ICOLCL) =

e=N (E)∑
e=1

A(e,iset)

{ {
h

(�̃)
ñ (k(p + 2, (−1)�ωj̃)re)jñ(k(p+ 2, (−1)�ωj̃)re)

}
·

P
|m̃|
ñ (cos(θe)) exp(im̃φe)

}
·

[∑
t∈T

exp(+i(−1)�̃j̃ωt) exp(−i(−1)�jωt)

]
·

ẽ=N (E)∑
ẽ=1

{
A(ẽ,iset)

{
h

(�)
n (k(p+ 2, (−1)�ωjRẽ)jn(k(p+ 2, (−1)�ωjRp+1)

}
[
P |m|

n (cos(θẽ)) exp(−imφẽ)
] }

(7.1.4.3)
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7.1.5 Row and Column Indices of the Matrices Defining the Representation of
Dynamic Voltage from Local EEG Recordings

We use the indices appearing in equation (7.1.3.3) to find the row and column indices in the

matrices C that change (7.1.3.3) into the equivalent form

C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
· · ·
· · ·

c(ñ, m̃ = −ñ, j̃, �̃)
· · ·
· · ·
· · ·

c(ñ, m̃ = 0, j̃ , �̃)
· · ·
· · ·
· · ·

c(ñ, m̃ = +ñ, j̃, �̃)
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
· · ·
· · ·

VE(�, j, iset)IF(iset, n, �,m)
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.1.5.1)

where
VE(�, j, iset) =⎡

⎣e=N(E)∑
e=1

A(e,iset)

{∑
t∈T

Ve(t) exp(−i(−1)�jωt)

}⎤
⎦ (7.1.5.2)

and
IF(iset, n, �,m) =⎡

⎣e=N(E)∑
ẽ=1

A(ẽ,iset)h
(�)
n (k((−1)�jω)rẽ)P

m
n (cos(θẽ)) exp(−imφẽ)

⎤
⎦ (7.1.5.3)

The row index is
Irow = (iset − 1)LJN2 + (�− 1)JN2

+(j − 1)N2 + n2 + n+m+ 1 (7.1.5.4)

and the column index is

Icolumn = (�̃− 1)JN2 + (j̃ − 1)N2 + ñ2 + ñ+ m̃+ 1 (7.1.5.5)

We checked these equations comparing exact formulae above with results from augmenting a
row and column variable in nested do loops. A snippet of computer data confirming equation
(7.1.5.4) is
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1 1 2 6 -6 = IQ,L,J,N,M

137 = IROW

137 = predicted value of IROW

1 1 2 6 -5 = IQ,L,J,N,M

138 = IROW

138 = predicted value of IROW

1 1 2 6 -4 = IQ,L,J,N,M

139 = IROW

139 = predicted value of IROW

1 1 2 6 -3 = IQ,L,J,N,M

140 = IROW

140 = predicted value of IROW

1 1 2 6 -2 = IQ,L,J,N,M

141 = IROW

141 = predicted value of IROW

1 1 2 6 -1 = IQ,L,J,N,M

142 = IROW

142 = predicted value of IROW

1 1 2 6 0 = IQ,L,J,N,M

143 = IROW

143 = predicted value of IROW

1 1 2 6 1 = IQ,L,J,N,M

144 = IROW

144 = predicted value of IROW

1 1 2 6 2 = IQ,L,J,N,M

145 = IROW

145 = predicted value of IROW

1 1 2 6 3 = IQ,L,J,N,M

146 = IROW

146 = predicted value of IROW

1 1 2 6 4 = IQ,L,J,N,M

147 = IROW

147 = predicted value of IROW

1 1 2 6 5 = IQ,L,J,N,M

148 = IROW

148 = predicted value of IROW

1 1 2 6 6 = IQ,L,J,N,M

149 = IROW

149 = predicted value of IROW

A subset of the computer output confirming equation (7.1.5.5) is

1989 = predicted value of ICOL

1990 = ICOL

1990 = predicted value of ICOL

1991 = ICOL
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1991 = predicted value of ICOL

1992 = ICOL

1992 = predicted value of ICOL

1993 = ICOL

1993 = predicted value of ICOL

1994 = ICOL

1994 = predicted value of ICOL

1995 = ICOL

1995 = predicted value of ICOL

1996 = ICOL

1996 = predicted value of ICOL

1997 = ICOL

1997 = predicted value of ICOL

1998 = ICOL

1998 = predicted value of ICOL

A program with a nested do loop was written to update the Icolumn variable in equation
(7.1.5.5) and this was compared with the predicted value determined by equation (7.1.5.5).

7.2 Head Surface Anatomy and Coordinates Representing EEG

Recording Sites

The head is assumed to be a ten centimeter radius sphere with the origin of the coordinate
system at the center of the head. The x-y coordinate plane passes through the center of
the head and intersects or is close to the nose and the left and right ears. The z-axis is the
vertical coordinate and is oriented so that it goes through the electrode position just slightly
forward of the crown of the head. The positive x-axis is in a direction toward the nose and
the positive y-axis direction is toward the left ear giving us a right handed coordinate system.

Recording sites 1-32 are from the back of the head, recording sites 34-64 are from the
right side of the head, recording sites 97-128 are on the left side of the head. The motor
cortex region of the head controls the arm and hand movement.

BACK OF THE HEAD

IEEG R THETA PHI

1 0.1000000000E+00 0.0000000000E+00 0.0000000000E+00

2 0.1000000000E+00 0.1150000000E+02 0.1800000000E+03

3 0.1000000000E+00 0.2300000000E+02 0.1800000000E+03

4 0.1000000000E+00 0.3450000000E+02 0.1800000000E+03

5 0.1000000000E+00 0.4600000000E+02 0.1575000000E+03

6 0.1000000000E+00 0.4600000000E+02 0.1350000000E+03

7 0.1000000000E+00 0.5750000000E+02 0.1350000000E+03

8 0.1000000000E+00 0.6900000000E+02 0.1440000000E+03

9 0.1000000000E+00 0.8050000000E+02 0.1440000000E+03

10 0.1000000000E+00 0.9200000000E+02 0.1440000000E+03

11 0.1000000000E+00 0.1035000000E+03 0.1440000000E+03
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12 0.1000000000E+00 0.1150000000E+03 0.1440000000E+03

13 0.1000000000E+00 0.1150000000E+03 0.1620000000E+03

14 0.1000000000E+00 0.1035000000E+03 0.1620000000E+03

15 0.1000000000E+00 0.9200000000E+02 0.1620000000E+03

16 0.1000000000E+00 0.8050000000E+02 0.1620000000E+03

17 0.1000000000E+00 0.6900000000E+02 0.1620000000E+03

18 0.1000000000E+00 0.5750000000E+02 0.1575000000E+03

19 0.1000000000E+00 0.4600000000E+02 0.1800000000E+03

20 0.1000000000E+00 0.5750000000E+02 0.1800000000E+03

21 0.1000000000E+00 0.6900000000E+02 0.1800000000E+03

22 0.1000000000E+00 0.8050000000E+02 0.1800000000E+03

23 0.1000000000E+00 0.9200000000E+02 0.1800000000E+03

24 0.1000000000E+00 0.1035000000E+03 0.1800000000E+03

25 0.1000000000E+00 0.1150000000E+03 0.1800000000E+03

26 0.1000000000E+00 0.1150000000E+03 -0.1620000000E+03

27 0.1000000000E+00 0.1035000000E+03 -0.1620000000E+03

28 0.1000000000E+00 0.9200000000E+02 -0.1620000000E+03

29 0.1000000000E+00 0.8050000000E+02 -0.1620000000E+03

30 0.1000000000E+00 0.6900000000E+02 -0.1620000000E+03

31 0.1000000000E+00 0.5750000000E+02 -0.1575000000E+03

32 0.1000000000E+00 0.4600000000E+02 -0.1575000000E+03

RIGHT SIDE OF THE HEAD (negative PHI)

IEEG R THETA PHI

33 0.1000000000E+00 0.1150000000E+02 -0.1080000000E+03

34 0.1000000000E+00 0.2300000000E+02 -0.1350000000E+03

35 0.1000000000E+00 0.4600000000E+02 -0.1350000000E+03

36 0.1000000000E+00 0.5750000000E+02 -0.1350000000E+03

37 0.1000000000E+00 0.6900000000E+02 -0.1440000000E+03

38 0.1000000000E+00 0.8050000000E+02 -0.1440000000E+03

39 0.1000000000E+00 0.9200000000E+02 -0.1440000000E+03

40 0.1000000000E+00 0.1035000000E+03 -0.1440000000E+03

41 0.1000000000E+00 0.1150000000E+03 -0.1440000000E+03

42 0.1000000000E+00 0.1035000000E+03 -0.1260000000E+03

43 0.1000000000E+00 0.9200000000E+02 -0.1260000000E+03

44 0.1000000000E+00 0.8050000000E+02 -0.1260000000E+03

45 0.1000000000E+00 0.6900000000E+02 -0.1260000000E+03

46 0.1000000000E+00 0.9200000000E+02 -0.1080000000E+03

47 0.1000000000E+00 0.8050000000E+02 -0.1080000000E+03

48 0.1000000000E+00 0.6900000000E+02 -0.1080000000E+03

49 0.1000000000E+00 0.5750000000E+02 -0.1125000000E+03

50 0.1000000000E+00 0.4600000000E+02 -0.1125000000E+03

51 0.1000000000E+00 0.3450000000E+02 -0.1200000000E+03

52 0.1000000000E+00 0.2300000000E+02 -0.9000000000E+02

53 0.1000000000E+00 0.3450000000E+02 -0.9000000000E+02

54 0.1000000000E+00 0.4600000000E+02 -0.9000000000E+02
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55 0.1000000000E+00 0.5750000000E+02 -0.9000000000E+02

56 0.1000000000E+00 0.6900000000E+02 -0.9000000000E+02

57 0.1000000000E+00 0.8050000000E+02 -0.9000000000E+02

58 0.1000000000E+00 0.9200000000E+02 -0.9000000000E+02

59 0.1000000000E+00 0.9200000000E+02 -0.7200000000E+02

60 0.1000000000E+00 0.8050000000E+02 -0.7200000000E+02

61 0.1000000000E+00 0.6900000000E+02 -0.7200000000E+02

62 0.1000000000E+00 0.5750000000E+02 -0.6750000000E+02

63 0.1000000000E+00 0.4600000000E+02 -0.6750000000E+02

64 0.1000000000E+00 0.3450000000E+02 -0.6000000000E+02

FRONT OF THE HEAD (PHI has a small absolute value)

IEEG R THETA PHI

65 0.1000000000E+00 0.1150000000E+02 -0.3600000000E+02

66 0.1000000000E+00 0.2300000000E+02 -0.4500000000E+02

67 0.1000000000E+00 0.4600000000E+02 -0.4500000000E+02

68 0.1000000000E+00 0.5750000000E+02 -0.4500000000E+02

69 0.1000000000E+00 0.6900000000E+02 -0.5400000000E+02

70 0.1000000000E+00 0.8050000000E+02 -0.5400000000E+02

71 0.1000000000E+00 0.9200000000E+02 -0.5400000000E+02

72 0.1000000000E+00 0.9200000000E+02 -0.3600000000E+02

73 0.1000000000E+00 0.8050000000E+02 -0.3600000000E+02

74 0.1000000000E+00 0.6900000000E+02 -0.3600000000E+02

75 0.1000000000E+00 0.3450000000E+02 -0.3000000000E+02

76 0.1000000000E+00 0.4600000000E+02 -0.2250000000E+02

77 0.1000000000E+00 0.5750000000E+02 -0.2250000000E+02

78 0.1000000000E+00 0.6900000000E+02 -0.1800000000E+02

79 0.1000000000E+00 0.8050000000E+02 -0.1800000000E+02

80 0.1000000000E+00 0.9200000000E+02 -0.1800000000E+02

81 0.1000000000E+00 0.9200000000E+02 0.0000000000E+00

82 0.1000000000E+00 0.8050000000E+02 0.0000000000E+00

83 0.1000000000E+00 0.6900000000E+02 0.0000000000E+00

84 0.1000000000E+00 0.5750000000E+02 0.0000000000E+00

85 0.1000000000E+00 0.4600000000E+02 0.0000000000E+00

86 0.1000000000E+00 0.3450000000E+02 0.0000000000E+00

87 0.1000000000E+00 0.2300000000E+02 0.0000000000E+00

88 0.1000000000E+00 0.3450000000E+02 0.3000000000E+02

89 0.1000000000E+00 0.4600000000E+02 0.2250000000E+02

90 0.1000000000E+00 0.5750000000E+02 0.2250000000E+02

91 0.1000000000E+00 0.6900000000E+02 0.1800000000E+02

92 0.1000000000E+00 0.8050000000E+02 0.1800000000E+02

93 0.1000000000E+00 0.9200000000E+02 0.1800000000E+02

94 0.1000000000E+00 0.9200000000E+02 0.3600000000E+02

95 0.1000000000E+00 0.8050000000E+02 0.3600000000E+02

96 0.1000000000E+00 0.6900000000E+02 0.3600000000E+02

LEFT SIDE OF THE HEAD (small positve PHI)
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IEEG R THETA PHI

97 0.1000000000E+00 0.1150000000E+02 0.3600000000E+02

98 0.1000000000E+00 0.2300000000E+02 0.4500000000E+02

99 0.1000000000E+00 0.4600000000E+02 0.4500000000E+02

100 0.1000000000E+00 0.5750000000E+02 0.4500000000E+02

101 0.1000000000E+00 0.6900000000E+02 0.5400000000E+02

102 0.1000000000E+00 0.8050000000E+02 0.5400000000E+02

103 0.1000000000E+00 0.9200000000E+02 0.5400000000E+02

104 0.1000000000E+00 0.9200000000E+02 0.7200000000E+02

105 0.1000000000E+00 0.8050000000E+02 0.7200000000E+02

106 0.1000000000E+00 0.6900000000E+02 0.7200000000E+02

107 0.1000000000E+00 0.5750000000E+02 0.6750000000E+02

108 0.1000000000E+00 0.4600000000E+02 0.6750000000E+02

109 0.1000000000E+00 0.3450000000E+02 0.6000000000E+02

110 0.1000000000E+00 0.2300000000E+02 0.9000000000E+02

111 0.1000000000E+00 0.1150000000E+02 0.1080000000E+03

112 0.1000000000E+00 0.2300000000E+02 0.1350000000E+03

113 0.1000000000E+00 0.3450000000E+02 0.1200000000E+03

114 0.1000000000E+00 0.3450000000E+02 0.9000000000E+02

115 0.1000000000E+00 0.4600000000E+02 0.9000000000E+02

116 0.1000000000E+00 0.5750000000E+02 0.9000000000E+02

117 0.1000000000E+00 0.6900000000E+02 0.9000000000E+02

118 0.1000000000E+00 0.8050000000E+02 0.9000000000E+02

119 0.1000000000E+00 0.9200000000E+02 0.9000000000E+02

120 0.1000000000E+00 0.9200000000E+02 0.1080000000E+03

121 0.1000000000E+00 0.8050000000E+02 0.1080000000E+03

122 0.1000000000E+00 0.6900000000E+02 0.1080000000E+03

123 0.1000000000E+00 0.5750000000E+02 0.1125000000E+03

124 0.1000000000E+00 0.4600000000E+02 0.1125000000E+03

125 0.1000000000E+00 0.6900000000E+02 0.1260000000E+03

126 0.1000000000E+00 0.8050000000E+02 0.1260000000E+03

127 0.1000000000E+00 0.9200000000E+02 0.1260000000E+03

128 0.1000000000E+00 0.1035000000E+03 0.1260000000E+03
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8 Finding the Optimal Representation of Low Frequency

Components of Brain Activity with A Comparison

of Brain Activity Recovery Potential Using All the

Interrelationships of the Full Time Profiles of Activ-

ity at Each Time on EEG Recording Sites Versus

First Decomposing Each EEG Recording Individ-

ually into Frequency Components and Using these

Components to Find the Dynamic Head Surface Volt-

age Representation

It is clear that first decomposing the EEG recordings into frequency components leads to
smaller matrices and a faster determination of the dynamic head surface representation
starting ab initio. However, if we carry out the singular value decomposition of the large
brain activity independent matrix relation representation coefficients to EEG recordings
ahead of time, it is hoped that the computation time which has the potential of recovering
a greater amount of information could be tolerable to the person using their brain activity
to control an artificial limb. We include a demonstration with a one dimensional model of
brain activity to illustrate the potential of the two methods for recovering brain activity.

We can Fourier analyze the time profiles of activity at each EEG recording site to achieve
faster spatial representation, or we can make use of all the relationships between voltages at
the same time at all the EEG recording sites to recover the brain activity. With the first
approach the matrices are smaller and, therefore, there is a more rapid determination of
the matrices With the second approach the matrices are potentially very large and, to be
practical for use with a person with physical needs the singular value decomposition of these
brain-activity independent matrices would have to be carried out in advance.

In this section we include a “one dimensional brain activity recovery model” with wave
source strengths at N fixed locations on the line and voltage wave measurement recordings
a M locations on on the line. if you have measurements at times in a set T , then if M = 1
is the number of measurement locations the number of equations relating source strengths
to measurements is the number of time is T . If you Fourier analyze first, then you have an
unknown

t → cos(ωjt)

and an unknown
t→ sin(ωjt)

multiplier at each source strength location xi so that you would need to have M ≥ N in
order to be able to find the source strength multipliers at each location.

There are at least two approaches to finding a spectral decomposition of an electroen-
cephalogram signal. One approach would use the Stone Weierstrass theorem to find simulta-
neously the best N frequencies ωj and the best multipliersAj and Bj of sinusoidal terms with
that frequency dependence which at each EEG site make for each EEG recording location
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index e∈E

infimum
{ωj , Aj, Bj} ⊂ R

[
supremum

t∈T | Ve(t) −
N∑

j=1

{Aj cos(ωjt) +Bj sin(ωjt)} |
]

A second approach would be to assume a set of frequencies ωj valid at each EEG recording
site with index e∈E and find out which sets of multipliers

j → (A(e,j), B(e,j)

of the functions
t→ cos(ωjt)

and
t → sin(ωjt)

best represents the signal by finding the minimum of the function

F (A(e,1), B(e,1), · · ·, A(e,j), B(e,j), · · ·, A(e,N), B(e,N)) =

∑
t∈T

[{
N∑

j=1

A(e,j) cos(ωjt) +B(e,j) sin(ωjt)

}
− Ve(t)

]2

Both of these methods are described in this section.

8.1 Determination of the Expansion Coefficients Representing Low

Frequency Components of Brain Activity

We determine the best representation of the EEG signal at each head surface EEG recording
site location

e→ (xe, ye, ze) = (re sin(θe) cos(φe), re sin(θe) sin(φe), re cos(θe)

that has the form of a trigonometric Fourier type series. The following section is presented
as an alternative method of recovering brain activity which would be computationally faster.
We didn’t use this method in our inverse source programs, because the method we are using
takes into account the interactions or relationships between recorded voltages at a given time
at the different EEG recording locations.

8.1.1 A Trigonometric Series Representation of the Low Frequency Compo-
nents of EEG Voltage Recordings at each EEG Recording Site

We suppose that Ve(t) is the recorded EEG voltage at the head surface location with coor-
dinates

(re, θe, φe) → (re sin(θe) cos(φe), re sin(θe) sin(φe), re cos(θe)) (8.1.1.1)

We minimize the function

F (A(e,1), B(e,1), · · ·, A(e,j), B(e,j), · · ·, A(e,N), B(e,N)) =
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∑
t∈T

[{
N∑

j=1

A(e,j) cos(ωjt) +B(e,j) sin(ωjt)

}
− Ve(t)

]2

(8.1.1.2)

We need to compute partial derivatives of the function defined by (8.1.1.2) with respect
to A(e,j) and B(e,j). We have at the minimum of the F defined by (8.1.1.2) the relationship,

0 =
∂F

∂A(e,j)

=

∑
t∈T

⎡
⎣
⎧⎨
⎩

N∑
j̃=1

A(e,j̃) cos(ωj̃t) +B(e,j̃) sin(ωj̃t)

⎫⎬
⎭− Ve(t)

⎤
⎦ cos(ωjt) (8.1.1.3)

Interchanging the order of summation in equation (8.1.1.3) we have

0 =
∂F

∂A(e,j)
=

N∑
j̃=1

A(e,j̃)

[∑
t∈T

{
cos(ωj̃t) cos(ωjt)

}]

+B(e,j̃)

[∑
t∈T

{
sin(ωj̃t) cos(ωjt)

}]
− Ve(t) cos(ωjt) (8.1.1.4)

Equation (8.1.1.4) in a form that is easy to transform into matrix language has the form

N∑
j̃=1

A(e,j̃)

[∑
t∈T

{
cos((ωj̃ + ωj)t) + cos((ωj̃ − ωj)t)

}]

+

N∑
j̃=1

B(e,j̃)

[∑
t∈T

{
sin((ωj̃ + ωj)t) + sin((ωj̃ − ωj)t)

}]

= 2
∑
t∈T

Ve(t) cos(ωjt) (8.1.1.5)

where to go from (8.1.1.4) to (8.1.1.5) we used the two trigonometric identities

(cos(α) cos(β), sin(α) cos(β)) =

(
cos(α + β) + cos(α − β)

2
,
sin(α+ β) + sin(α− β)

2

)
(8.1.1.6)

The partial derivatives with respect to B(e,j) of the function F defined by (8.1.1.2) is

0 =
∂F

∂B(e,j)

=

∑
t∈T

⎡
⎣
⎧⎨
⎩

N∑
j̃=1

A(e,j̃) cos(ωj̃t) +B(e,j̃) sin(ωj̃t)

⎫⎬
⎭− Ve(t)

⎤
⎦ sin(ωjt)
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=
N∑

j̃=1

A(e,j̃)

{
2
∑
t∈T

[
cos(ωj̃t) sin(ωjt)

]}

+
N∑

j̃=1

B(e,j̃)

{
2
∑
t∈T

[
sin(ωj̃t) sin(ωjt)

]}

−2
∑
t∈T

{Ve(t) sin(ωjt)} (8.1.1.7)

Using equation (8.1.1.7) and the trigonometric identities

(cos(α) sin(β), sin(α) sin(β)) =

(
sin(α+ β)− sin(α− β)

2
,
cos(α− β)− cos(α + β)

2

)
(8.1.1.8)

we have the relationship,

N∑
j̃=1

A(e,j̃)

{∑
t∈T

[
sin((ωj̃ + ωj)t) − sin((ωj̃ − ωj)t)

]}

+
N∑

j̃=1

B(e,j̃)

{∑
t∈T

[
cos((ωj̃ − ωj)t) − cos((ωj̃ + ωj)t)

]}

= 2
∑
t∈T

Ve(t) sin(ωjt) (8.1.1.9)

We transform equations (8.1.1.5) and (8.1.1.9) into the matrix equation

C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(e,1)

B(e,1)

· · ·
· · ·
· · ·
A(e,j̃)

B(e,j̃)

· · ·
· · ·
· · ·
A(e,N)

B(e,N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RT (1)
RT (2)
· · ·
· · ·
· · ·

RT (2(j − 1) + 1)
RT (2(j − 1) + 2)

· · ·
· · ·
· · ·

RT (2(N − 1) + 1)
RT (2(N − 1) + 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.1.1.10)

where equation (8.1.1.5) tells us that

RT (2(j − 1) + 1) = 2
∑
t∈T

Ve(t) cos(ωjt) (8.1.1.11)
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and that matrix element multiplier of A(e,j̃) is

C(2(j − 1) + 1, 2(j̃ − 1) + 1) =

[∑
t∈T

{
cos((ωj̃ + ωj)t) + cos((ωj̃ − ωj)t)

}]
(8.1.1.12)

Again for equation (8.1.1.5) the matrix element that is a multiplier of B(e,j̃) is

C(2(j − 1) + 1, 2(j̃ − 1) + 2) =

[∑
t∈T

{
sin((ωj̃ + ωj)t) + sin((ωj̃ − ωj)t)

}]
(8.1.1.13)

From the matrix equation (8.1.1.10) and (8.1.1.9) the right side of equation (8.1.1.9) is

RT (2(j − 1) + 2) = 2
∑
t∈T

Ve(t) sin(ωjt) (8.1.1.14)

The matrix element in equation (8.1.1.10) in the row corresponding to equation (8.1.1.9)
that multiplies A(e,j̃) is

C(2(j − 1) + 2, 2(j̃ − 1) + 1) =

{∑
t∈T

[
sin((ωj̃ + ωj)t) − sin((ωj̃ − ωj)t)

]}
(8.1.1.15)

The matrix element in equation (8.1.1.10) in the row corresponding to equation (8.1.1.9)
that multiplies B(e,j̃) is

C(2(j − 1) + 2, 2(j̃ − 1) + 2) =

{∑
t∈T

[
cos((ωj̃ − ωj)t) − cos((ωj̃ + ωj)t)

]}
(8.1.1.16)

The best fitting series representation is obtained by solving (8.1.1.9) using singular value
decomposition.

8.1.2 A One Dimensional Model of Brain Activity Recovery to Demonstrate
the Difference Between Time Domain and Frequency Domain Recovery
of Brain Activity Representations

We suppose that we have M sources of a wave and that there are N frequency components
representing the strength of the signal for each of the N frequency components at each site.
We suppose that we know the site locations x̃i for i running from 1 through M and that we
know frequencys ωj and the wavelengths λj for each j running from 1 through N that the
signal is

V (x, t) =

M∑
i=1

N∑
j=1

{
A(j,i) sin (ωjt− (x− x̃i)/λj) +B(j,i) cos (ωjt− (x− x̃i)/λj)

}
(
B(j,i) − iA(j,i)

2

)
exp(i (ωjt− (x− x̃i)/λj))
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(
B(j,i) + iA(j,i)

2

)
exp(−i (ωjt− (x− x̃i)/λj))

=
N∑

j=1

2∑
�=1

C(j,�,i) exp(i(−1)�ωjt) (8.1.2.1)

Suppose that at mesurement location xp where p runs from 1 through P we have the mea-
surements

V (xp, t) =
N∑

j=1

2∑
�=1

{
D(p,j,�) exp(i(−1)�ωjt)

}
(8.1.2.2)

If we try to recover the strengths C(j,�,i) from the D(p,j,�) alone, the number of p must be at
least as large as the number M of source locations. However, if this is carried out in the time
domain knowing V (xp, t) for all time, we can sometimes do this with just one measurement
location.

9 Description of the Interrogating Vector Field Inverse

Source Solution

One brain activity recovery solution uses as a starting point the divergence free portion of
the vector potential of Brain Activity.

Our program to recover brain activity from EEG recordings is based on the theory that
brain activity produces a dynamic voltage wave ([74]) which propagates through the skull
to the surface of the head which is picked up by electroencephalogram recordings.

9.1 A Cole-Cole Model of the Propagation of Different Frequency
Components of a Brain-Wave Signal

Brain tissue is a dispersive material (Gabriel [46]) at brain activity frequencies. Our model
determines and makes use of the propagation constant and permittivity of different tissue
regions as a function of frequency to properly solve the boundary value problem and predict
electric vectors E and H outside the head that are stimulated by internal brain waves.

9.1.1 Maxwell’s Equations and the curl Operator

The electric vector E and the magnetic vector H stimulated by brain activity are related
through Maxwell’s equations by the curl operator. We take (Cohoon et al. [28])

E = Exex + Eyey + Ezez (9.1.1.1)

and

∇× (E) =

(
∂Ez

∂y
− ∂Ey

∂z

)
ex +

(
∂Ex

∂z
− ∂Ez

∂x

)
ey +

(
∂Ey

∂x
− ∂Ex

∂y

)
ez (9.1.1.2)
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We consider E with a time dependence of the form

t → exp(i(−1)�ωt) (9.1.1.3)

For this time dependence Maxwell’s equations provide

∇× (E) = −i(−1)�ωµ0H (9.1.1.4)

and
∇× (H) = i(−1)�ωε((−1)�ω)E (9.1.1.5)

where � = 2 represents a positive frequency and � = 1 a negative frequency. The permittivity
ε of brain tissue is a function of frequency and the brain wave signal contains all frequency
components. In the next section we shall describe Gabriel’s ([46]) representation of the
permittivity of skull bone, brain, and other human tissue at brain wave frequencies.

9.1.2 Brain Tissue Electromagnetic Properties as a Function of Frequency

We use the representation of Gabriel ([46]) to determine the complex permittivity of human
tissue as a function of frequency. The fact that brain wave signals start and end at specific
times means that they contain all frequencies. We denote frequency by

f =
ω

2π
(9.1.2.1)

The Cole-Cole relationship (Cole [32], Torres [116]) has the form

εrelative = ε∞ +
εstatic − ε∞
1 + (iωτ )α

(9.1.2.2)

Gabriel ([46]) fits experimental data using relationships of the form

εrelative(f) = ε′ − iε′′ = ε∞ +
4∑

j=1

(
∆εj

1 + (if/fj)αj

)
− i

σ

ωε0
(9.1.2.3)

The actual meter, kilogram, second permittivity as a function of ω is

ε(ω) = ε0ε∞ + ε0

4∑
j=1

(
∆εj

1 + (iω/[2πfj])αj

)
− i

σ

ω
(9.1.2.4)

For brain tissue we have for the four compartments from the data in Gabriel [46] and Hurt
[64].

(σ, ε∞) = (.02, 4) (9.1.2.5)

and, as a further illustration of the use of the tissue tables which follow, we have

(∆ε1, f1, α1) = (45, 2 × 1010, 9/10) (9.1.2.6)

(∆ε2, f2, α2) = (40, 1 × 107, 85/100) (9.1.2.7)

(∆ε3, f3, α3) = (2 × 105, 1.5 × 103, 78/100) (9.1.2.8)

(∆ε4, f4, α4) = (4.5 × 107, 30, 1) (9.1.2.9)
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From Gabriel ([46]) the first set of parameters describing the propagation of brain waves
in tissue are in the following table.

Tissue ε∞ ∆ε1 f1 α1 σ ∆ε2 f2 α2

bile 4 66 2.1 × 1010 95/100 14/10 50 108 1
bladder 25/10 16 1.8 × 1010 9/10 2/10 400 106 9/10
blood 4 56 1.9 × 1010 9/10 7/10 520 1.2 × 106 9/10
blood vessel 4 40 1.8 × 1010 9/10 25/10 50 5 × 107 9/10
body fluid 4 65 2.2 × 1010 9/10 15/10 30 106 9/10
bone (cancellous) 25/10 18 1.2 × 1010 78/100 7/100 300 2 × 106 75/100
bone (cortical) 25/10 10 1.2 × 1010 8/10 2/100 180 2 × 106 8/10
brain 4 45 2 × 1010 9/10 2/100 400 107 85/100
cerebral spinal
fluid 4 65 2 × 1010 9/10 2 40 108 1
fat 25/10 3 2 × 1010 8/10 1/100 15 107 9/10
skin 4 32 2.2 × 1010 1 2 × 10−4 1100 4.9 × 106 8/10

For the same tissues the rest of the parameters needed to determine how brain waves prop-
agate in these tissues are in the table below.

Tissue ∆ε3 f3 α3 ∆ε4 f4 α4

bile 0 1000 8/10 0 10 8/10
bladder 105 1000 8/10 107 10 1
blood 0 1000 8/10 0 10 1
blood vessel 105 103 8/10 107 100 1
body fluid 0 1000 1 0 10 1
bone (cancellous) 5000 1000 8/10 2 × 107 10 1
bone (cortical) 5000 1000 8/10 105 10 1
brain 2 × 105 1500 78/100 4.5 × 107 300 1
cerebral spinal
fluid 0 1000 1 0 10 1
fat 3.3 × 104 1000 95/100 107 20 99/100
skin 0 1000 8/10 0 10 8/10
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9.2 Hodgkin Huxley Formulation of the Action Potential

We programmed the original 1952 Hodgkin and Huxley formulation description of (Hodgkin
[61]) nerve axon activity where the dependent variables are transmembrane voltage and
the potassium and sodium channel access probabilities and channel inhibition probabilities
using the stiff differential equation subroutines of Morris ([85]). The neuronal currents that
stimulate the electroencephalogram are then derived from the voltage differential equation
as the product of the the transmembrane capacitance and the voltage derivative.

9.2.1 The Hodgkin Huxley System of Differential Equations

The transmembrane voltage is given by

dV

dt
=

(
1

CM

){
Istimulus(t)

−
[
GKn(t)4(V (t) − VK) +GNa

(
m(t)3h(t) {V (t) − VNa}

)
+GL(V (t) − VL)

] }
(9.2.1.1)

The proportion, n, of K+ ions inside the membrane and the proportion 1 − n of K+ ions
outside the membrane are related by

dn

dt
= αn(V )(1 − n) − βn(V )n (9.2.1.2)

where

αn(V ) =
1

10
α((V + 10)/10) (9.2.1.3)

where α(ξ) is defined by

α(ξ) =

{
ξ/ [exp(ξ) − 1] if ξ �= 0
1 if ξ = 0

(9.2.1.4)

and βn is given by

βn(V ) =
1

8
exp(V/8) (9.2.1.5)
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The proportion, m of Na+ ions outside the membrane is described by

dm

dt
= αm(V )(1 −m) − βm(V )m (9.2.1.6)

where
αm(V ) = α((V + 25)/10) (9.2.1.7)

and βm is defined by
βm(V ) = 4 exp(V/18) (9.2.1.8)

The probability, h, of finding an inactivation molecule for Na+ conductance outside the
membrane, and the probability, 1−h, of finding a sodium conductance inactivating molecule
inside the membrane are related by the differential equation

dh

dt
= αh(V )(1 − h) − βh(V )h (9.2.1.9)

where

αh(V ) =
7

100
exp(V/20) (9.2.1.10)

and

βh(V ) =
1

exp((V + 30)/10) + 1
(9.2.1.11)

To achieve good accuracy and stability using the stiff differential equation package developed
by Morris ([85]) we used analytical, closed-form Jacobians in this solver. Details are available
on request.

Hodgkin and Huxley ([61], page 520) provided values of parameters for the above system
of differential equations. The values are

Constant Units Value Chosen Mean Range
CM µFarads/cm2 1.0 .91 .8 to 1.5
VNa millivolts -115 -109 -95 to -119
VK millivolts +12 +11 +9 to +14
GNa millimhos/cm2 120 160 120 to 260
GK millimhos/cm2 36 34 26 to 49
GL millimhos/cm2 0.3 .26 .13 to .50
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In addition to using the complete Hodgkin and Huxley model, we also used a Rinzel
model as modified by Wilson ([131]) given by

C
dV

dt
= −

{
17.81 + 47.58V + 33.8V 2

}
(V − 0.48) − 26R(V + .95) + I (9.2.1.12)

and
dR

dt
=

1

λR

{
−R + 1.29V + 0.79 + 3.3(V + 0.38)2

}
(9.2.1.13)

where λR is 5.6 milliseconds and the transmembrane capacitance C is given a value of 1
microfarad per square centimeter. The parameter values chosen were numerically fitted
to produce good approximations to the human neocortical neuron action potential. The
computer program reproduced the human neocortical neuron action potential with a constant
input current I in the Rinzel voltage equation of 1.57 nano Amperes. This system was solved
without using the stiff differential equation solver of Morris ([85]).

9.2.2 Transmembrane Current Representation

The transmembrane current, derived from the voltage differential equation, is

I(t) = CM
dV

dt
=

{
Istimulus(t)

−
[
GKn(t)4(V (t) − VK) +GNa

(
m(t)3h(t) {V (t) − VNa}

)
+GL(V (t) − VL)

] }
(9.2.2.1)

We used our differential equations to find a Fourier series for the transmembrane current

t→ C
dV

dt
(9.2.2.2)

The differential equations were solved and a table of data points was created. Lagrange
interpolation was used with the table to find two fixed time-interval end points, not neces-
sarily in the table, so that the voltage value, V (t), would be the same at each end of the time
interval. Thus, our Fourier series, while accurately representing the transmembrane current
over this time interval, will not have a constant term; the transmission of each component
of the brain wave signal through the skull can then be easily computed.
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9.3 Exact Analytical Brain Wave Source Solution

We can represent the electric and magnetic vectors of a general current source on an ar-
bitrarily oriented dipole by an exact formula. To validate our vector spherical harmonic
representation of the brain wave sources, these two representations of the brain wave source
must agree.

9.3.1 Analysis of the Vector Potential for a Single Dipole Source

We let ex, ey, and ez be the unit vectors in the direction of the positive x, y, and z coordinate
axes in a Euclidean system so that

(ex, ey, ez) = (∇(x),∇(y),∇(z)) (9.3.1.1)

We will be using spherical coordinates

(x, y, z) = (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)) (9.3.1.2)

r =
√
x2 + y2 + z2 (9.3.1.3)

and

r = r sin(θ) cos(φ)ex + r sin(θ) sin(φ)ey + r cos(θ)ez = xex + yey + zez (9.3.1.4)

We have
er = sin(θ) cos(φ)ex + sin(θ) sin(φ)ey + cos(θ)ez (9.3.1.5)

Now

eθ =
1

r

∂r

∂θ
= cos(θ) cos(φ)ex + cos(θ) sin(φ)ey − sin(θ)ez (9.3.1.6)

and

eφ =

(
1

r sin(θ)

)
∂r

∂φ
= − sin(φ)ex + cos(φ)ey (9.3.1.7)

and

ex = ∇(r sin(θ) cos(φ)) = sin(θ) cos(φ)er + cos(θ) cos(φ)eθ − sin(φ)eφ (9.3.1.8)

ey = ∇(r sin(θ) sin(φ)) = sin(θ) sin(φ)er + cos(θ) sin(φ)eθ + cos(φ)eφ (9.3.1.9)

and
ez = ∇(z) = ∇(r cos(θ)) = cos(θ)er − sin(θ)eθ (9.3.1.10)
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Using (9.3.1.4) the location of the brain activity source with index q is

rq = rq sin(θq) cos(φq)ex +rq sin(θq) sin(φq)ey +rq cos(θq)ez = xqex +yqey +zqez (9.3.1.11)

We consider the real current on a dipole contributed by components whose frequencies
are +ω and −ω of the form

I(t) = a cos(ωt) + b sin(ωt) = a

(
exp(iωt) + exp(−iωt)

2

)
+ b

(
exp(iωt)− exp(−iωt)

2i

)
(9.3.1.12)

which reduces to

I(t) =

(
a − ib

2

)
exp(+iωt) +

(
a + ib

2

)
exp(−iωt) (9.3.1.13)

Components of the brain wave signal with different frequencies propagate at different
speeds through tissues. The propagation constant, which has the units of frequency divided
by speed, is in the tissue region with index p denoted by k(p, (−1)�ω) where � = 1 denotes a
negative frequency and � = 2 a positive frequency. The square of the propagation constant
in the tissue region with index p is

k(p, (−1)�ω)2 = ω2µ0εp((−1)�ω) (9.3.1.14)

where εp((−1)�ω) is the permittivity in tissue region p at frequency (−1)�ω) defined by
(9.1.2.4) using the work of Gabriel ([46]) and Hurt ([64]) and µ0 is the permeability of a
nonmagnetic material.

Considering a dipole current density given by (9.3.1.13) we assume, for the qth dipole at
vector location rq that the vector potential of the radiation, at the vector observation point
r just outside the insulation has the form

A =
µ

4π

{(
a + ib

2

)(
exp(+ik(p,−ω) | r − rq |)

| r − rq |

)
exp(−iωt)eq+

(
a − ib

2

)(
exp(−ik(p,+ω) | r − rq |)

| r − rq |

)
exp(+iωt)eq

}
(9.3.1.15)

where
rq = xqex + yqey + zqez

= rq {sin(θq) [cos(φq)ex + sin(φq)ey] + cos(θq)ez} (9.3.1.16)

and
r = xex + yey + zez

= r {sin(θ) [cos(φ)ex + sin(φ)ey] + cos(θ)ez} (9.3.1.17)
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If jn(z) is the spherical Bessel function and yn(z) is the spherical Neumann function, then

h(1)
n (z) = jn(z) + iyn(z) (9.3.1.18)

which is given in (Abramowitz [1]) on page 437 and

h(2)
n (z) = jn(z) − iyn(z) (9.3.1.19)

The vector potential arising from the signal (9.3.1.13) on the dipole located rq is

A =

µ

4π

(
a − ib

2

)
{−ik(p,+ω)}

[
exp(−ik(p,+ω) | r − rq |)

−ik(p,+ω) | r − rq |

}
exp(+iωt)eq

+
µ

4π

(
a + ib

2

)
{ik(p,−ω)}

[
exp(+ik(p,−ω) | r − rq |)

+ik(p,−ω) | r − rq |

}
exp(−iωt)eq

=
µ

4π

a − ib

2
{−ik(p,+ω)}h(2)

0 (k(p,+ω) | r − rq |) exp(+iωt)eq

+
µ

4π

a + ib

2
{+ik(p,−ω)}h(1)

0 (k(p,−ω) | r − rq |) exp(−iωt)eq (9.3.1.20)

9.4 Fundamental Theory For Solving the Full Harmonic Predic-

tion of External Fields Stimulated by Brain Activity

The theory in the next section simplifies the validation of the solution of the boundary value
problem for predicting external fields.

9.4.1 A Proof that the Curl Operator is an Endomorphism of the Module of
Vector Spherical over the Ring of Differentiable Functions of the Radial
Variable

We used special functions in representing the vector spherical harmonics. The spherical
Bessel functions jn(z), spherical Weber functions (also called spherical Neumann functions)

yn(z), and spherical Hankel functions h
(�̃)
n for �̃ equal to 1 or 2 are all solutions of the

differential equation

z2d
2w

dz2
+ 2z

dw

dz
+ [z2 − n(n+ 1)]w = 0 (9.4.1.1)

July 31, 2006 116



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

The associated Legendre function Pm
n (cos(θ)) is a solution of the differential equation

− 1

sin(θ)

d

dθ

[
sin(θ)

(
d

dθ

)
Pm

n (cos(θ))

]
+

(
m2

sin2(θ))

)
Pm

n (cos(θ)) = n(n+ 1)Pm
n (cos(θ))

(9.4.1.2)
This function is used in representing the spatial variation of brain activity on the surface of
the head. There are three vector fields that we use to describe the spatial variation of the
brain wave signals on spherical measurement surfaces. These three vector fields are given by

C(m,n)(θ, φ) = P |m|
n (cos(θ)) exp(imφ)er (9.4.1.3)

A(m,n)(θ, φ) =

[
im

P
|m|
n (cos(θ))

sin(θ)
eθ −

(
d

dθ

)
P |m|

n (cos(θ))eφ

]
exp(imφ) (9.4.1.4)

and

B(m,n)(θ, φ) =

[(
d

dθ

)
P |m|

n (cos(θ))eθ + im
P

|m|
n (cos(θ))

sin(θ)
eφ

]
exp(imφ) (9.4.1.5)

The representation of the electric and magnetic fields stimulated by brain activity depends
on the three curl operation identities (Cohoon [26]).

Theorem 9.1 If f(r) is any differentiable function of r, then

∇× (f(r)A(m,n)(θ, φ)) =

n(n+ 1)
f(r)

r
C(m,n)(θ, φ) +

[
1

r

(
d

dr

)
(rf(r))

]
B(m,n)(θ, φ) (9.4.1.6)

where the vector field A(m,n) is defined by (9.4.1.4), the vector field B(m,n) is defined by
(9.4.1.5), and the vector field C(m,n) is defined by (9.4.1.3) and the curl operator is given in
spherical coordinates by

∇× (Erer + Eθeθ + Eφeφ) =
1

r2 sin(θ)

{[(
∂

∂θ

)
(r sin(θ)Eφ) −

∂

∂φ
(rEθ)

]
er

+ r

[(
∂

∂φ

)
Er −

(
∂

∂r

)
(r sin(θ)Eφ)

]
eθ + r sin(θ)

[
∂

∂r
(rEθ) −

(
∂

∂θ

)
Er

]
eφ

}
(9.4.1.7)

Theorem 9.2 If g(r) is any differentiable function of r, then

∇× (g(r)B(m,n)(θ, φ)) =

[
−1

r

(
d

dr

)
(rg(r))

]
A(m,n)(θ, φ) (9.4.1.8)

where the vector field A(m,n) is defined by (9.4.1.4), the vector field B(m,n) is defined by
(9.4.1.5), and the vector field C (m,n) is defined by (9.4.1.3) and the curl operator is defined
in spherical coordinates by (9.4.1.7).
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Theorem 9.3 For all differentiable functions h(r)

∇× (h(r)C(m,n)(θ, φ)) =
h(r)

r
A(m,n)(θ, φ) (9.4.1.9)

where the curl is defined by (9.4.1.7), C (m,n) is defined by (9.4.1.3), and A(m,n) is defined by
(9.4.1.4).

We define for all complex numbers z the relation

Z(�̃)
n (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn(z) if �̃ = −1

jn(z) if �̃ = 0

h
(1)
n (z) if �̃ = 1

h
(2)
n (z) if �̃ = 2

(9.4.1.10)

Related to Zn(z) we define the function Wn(z) by

W (�̃)
n (z) =

Z
(�̃)
n (z)

z
+

(
d

dz

)
Z(�̃)

n (z) (9.4.1.11)

The functions Z
(�̃)
n (z) are used to define vector spherical harmonics needed to represent

both brain wave signals and vector spherical harmonics needed to define interrogating vector
fields.

A zero curl vector field used to represent the vector potential of brain activity (Hirvonen
[59]) is

L
(m,�̃,(−1)�jω)
(n,p) =

(
d

dz

)
Z(�̃)

n (z) |z=k(p,(−1)�jω)r C(m,n)(θ, φ) +

(
Z

(�̃)
n (k(p, (−1)�jω)r)

k(p, (−1)�jω)r

)
B(m,n)(θ, φ) (9.4.1.12)

The following two vector fields are also needed (Hirvonen [59]) to describe the brain
activity vector potential and are the only ones needed to represent the brain activity electric
and magnetic fields.
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The first vector field is a radial function multiplied by the vector field (9.4.1.4) and for
us has the form

M
(m,�̃,(−1)�jω)
(n,p) = Z(�̃)

n (k(p, (−1)�jω)r)A(m,n)(θ, φ) (9.4.1.13)

where A(m,n) is given by (9.4.1.4), where � = 1 indicates a negative frequency, � = 2 a

positive frequency, and �̃ = 0 from equation (9.4.1.10) indicates that

Z(�̃)
n (k(p, (−1)�jω)r) = Z(0)

n (k(p, (−1)�jω)r) = jn(k(p, (−1)�jω)r) (9.4.1.14)

where in this relationship the function Z
(�̃)
n (k(p, (−1)�jω)r) is defined by (9.4.1.10). The curl

of this vector field is the propagation constant multiplied by the vector field

N
(m,�̃,(−1)�jω)
(n,p) = n(n+ 1)

Z
(�̃)
n (k(p, (−1)�jω)r)

k(p, (−1)�jω)r
C(m,n)(θ, φ) +W (�̃)

n (k(p, (−1)�jω)r)B(m,n)(θ, φ)

(9.4.1.15)

where W
(�̃)
n (k(p, (−1)�jω)r) is defined by (9.4.1.11). The curl of this vector field is the

propagation constant times the previous vector field. Specifically

∇×
(
N

(m,�̃,(−1)�jω)
(n,p)

)
= k(p, (−1)�jω)M

(m,�̃,(−1)�jω)
(n,p) (9.4.1.16)

and
∇×

(
M

(m,�̃,(−1)�jω)
(n,p)

)
= k(p, (−1)�jω)N

(m,�̃,(−1)�jω)
(n,p) (9.4.1.17)

9.5 Full Maxwell Solver: Vector Spherical Harmonic Representa-

tion of Brain Wave Signals

Transmembrane currents inside the brain define a vector potential A that can, in turn, be
used to define brain wave source magnetic and electric fields. Each brain wave stimulating
transmembrane current is represented by a sum of sinusoids. We have used Hodgkin Huxley
(Hogkin and Huxley [61]) and a modified Rinzel model (Wilson [131], Chapter 9) to represent
the cortical neuron currents in our brain model.

Each site of brain activity defines a sum of vector potentials associated with each fre-
quency component used to represent the transmembrane current at that site. Brain activity
source electromagnetic fields are derived from this vector potential. These fields interact
with tissue interfaces and some of the electromagnetic waves stimulated by brain activity
are reflected back into the brain by the brain-skull interface. Of course, some of the electro-
magnetic fields generated by neuron activity propagate to the surface of the head and out
into the air.

We begin with a dictionary of the meaning of symbols used to express the brain wave
activity vector potentials.
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q an index defining a site of brain wave activity
rq the vector location of the source of brain wave activity
rq the distance from the origin to rq

r the vector point where brain activity is observed
r the distance from the origin to r
ω the smallest frequency component of a brain wave signal
j a Fourier series index
jω a Fourier series brain signal frequency component
µp magnetic permeability of region p
a(q,j) jth cosine Fourier coefficient at the qth location
b(q,j) jth sine Fourier coefficient at the qth location
α̃(q,j) complex Fourier coefficient multiple of exp(+ijωt)

equal to (a(q,j) − ib(q,j))/2

β̃(q,j) complex Fourier coefficient multiple of exp(−ijωt)
equal to (a(q,j) + ib(q,j))/2

p a region index serving as a label for tissue
electromagnetic properties

Ap total vector potential from sources in region p
t the time at which the brain wave signal is observed
i the square root of -1
exp(ijωt) the positive frequency time harmonic time

variation of the jth component of the brain wave signal
exp(−ijωt) the conjugate time harmonic time

variation of the jth component of the brain wave signal
a frequency index with � = 2 indicating an exp(+jωt)

� frequency component, and � = 1 indicating
an exp(−jωt) frequency component

A(p,q)(�, (−1)�jω, t) vector potential component from
frequency component exp((−1)�jωt)
at location q in region p

C neuronal transmembrane capacitance
V neuronal transmembrane voltage
I(t) neuronal transmembrane current

9.5.1 Transmembrane Current Orientation and Vector Field Notation

We need to describe in detail the transmembrane current orientation and expressions needed
to define the vector potentials at the brain activity sites. This is found in the following table
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ex unit vector perpendicular to Cartesian coordinate plane x=0
ey unit vector perpendicular to Cartesian coordinate plane y=0
ez unit vector perpendicular to Cartesian coordinate plane z=0
eq the transmembrane current orientation at the

brain activity site at rq with index q
dq the distance from the brain activity site rq to

the observation point at r
(rq, θq, φq) the brain activity site in spherical

coordinates
(r, θ, φ) the observation point in spherical coordinates
er the unit vector perpendicular to the surface r = a constant
eθ the unit vector perpendicular to the surface θ = a constant
eφ the unit vector perpendicular to the surface φ = a constant
(Uq, Vq,Wq) the Cartesian coordinates of transmembrane

current orientation at the brain activity site with
index q at location rq

c(n,m, �̃, (−1)�jω, p, q) addition theorem expansion
coefficient of degree n and order m with frequency
jω in region p at the site with index q

Pm
n (cos(θq)) Associated Legendre function of degree n

and order m at cos(θq)
the complex propagation constant in region p of the

k(p, (−1)�jω) brain wave signal component with time harmonic
time variation exp((−1)�jωt)
the electromagnetic permittivity in region p

ε(p, (−1)�jω) associated with the time harmonic time variation
of the form exp((−1)�jωt)
the spherical Bessel function of index n evaluated at the

jn(z) the complex number z equal to the product
of the propagation constant k(p, (−1)�jω) and rq

the spherical Hankel function of type �̃

h
(�̃)
n (ζ) at the complex number ζ where �̃ is 1 or 2
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The solution of our boundary value problem requires consideration of the transmission,
absorption, and reflection of electromagnetic waves stimulated by brain activity. Our nota-
tion for the vector fields and expansion coefficients used in representing this solution is given
in the following table.

Hsource the vector magnetic field stimulated by all brain activity sources

Esource the vector electric field stimulated by all brain activity sources
the vector magnetic field outside the head determined by solving

Hexternal the electromagnetic boundary value problem which includes reflection
of source fields off of and transmission of source fields through
all tissue interfaces
the predicted vector electric field outside the head

Eexternal stimulated by brain activity
n the order of the spherical Bessel or Hankel functions and

the degree of the associated Legendre functions used to
represent the spatial variation of the brain wave signals

m the order of the associated Legendre functions used to represent the
the variation of the brain wave signal over the head surface
and outside the head
the type of the spherical Bessel or Hankel function used to

�̃ describe the radial variation of the brain wave electromagnetic

fields with �̃ = 0 indicating the spherical Bessel function jn
and �̃ = 1 for the spherical Hankel function h

(1)
n and �̃ = 2 for h

(2)
n

the primary vector spherical harmonic in region p

M
(m,�̃,(−1)�jω)
(n,p) associated with the time dependence exp((−1)�jωt)

the derived vector spherical harmonic in region p

N
(m,�̃,(−1)�jω)

(n,p) associated with the time dependence exp((−1)�jωt)
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We next describe the expansion coefficients that are multipliers of the vector fields in the
previous table.

ã
(p,�,(−1)�jω))

(m,n,q) the source expansion coefficient multiplier of M
(m,�,(−1)�jω)

(n,p)

in the representation of the brain wave source magnetic field

b̃
(p,�,(−1)�jω)

(m,n,q) the source expansion coefficient multiplier of N
(m,�,(−1)�jω)
(n,p)

in the representation of the brain wave source magnetic field

α
(p,0,(−1)�jω))
(m,n,q) the expansion coefficient multiplier of M

(m,0,(−1)�jω)
(n,p)

representing brain wave radiation reflected from tissue interfaces

where the �̃ = 0 in the superscript signifies that we use
the nonsingular spherical Bessel functions and their derivatives
in the vector field instead of spherical Hankel functions

β
(p,0,(−1)�jω)
(m,n,q) the expansion coefficient multiplier of N

(m,0,(−1)�jω)
(n,p)

representing brain wave radiation reflected from tissue interfaces
in the brain tissue reflected magnetic field expansion

a
(p+2,�,(−1)�jω))
(m,n,q) the external H expansion coefficient multiplier of M

(m,�,(−1)�jω)
(n,p+2)

b
(p+2,�,(−1)�jω))

(m,n,q) the external H expansion coefficient multiplier of N
(m,�,(−1)�jω)

(n,p+2)
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9.5.2 The Permittivity ε(p, (−1)�jω), Propagation Constants k(p, (−1)�jω), and
Addition Theorem Expansion Coefficients c(n,m, �̃, (−1)�jω, p, q) Associated
with the Exact Analytical and Hirvonen ([59]) Expansion Representations
of the Vector Potential, Electric and Magnetic Fields and Dynamic Volt-
age from Brain Activity

The complex brain tissue permittivity ε(p, (−1)�jω) defines the brain wave propagation con-
stant k(p, (−1)�jω) in terms of the frequency ω and the magnetic permeability µp by the
relationship

k(p, (−1)�jω)2 = ω2µpε(p, (−1)�jω) (9.5.2.1)

The addition theorem expansion coefficient at the qth site rq of brain activity in region
p with degree n and order m is given by for the vector potential A(p,q) is given for �̃ equal
to zero by

c(n,m, �̃, (−1)�jω, p, q) =(
(n− | m |)!
(n+ | m |)!

)
Z(�̃)

n (k(p, (−1)�jω)rq)P
|m|
n (cos(θq)) exp(−imφq) (9.5.2.2)

where if �̃ is zero Z
(�̃)
n (z) is the spherical Bessel function jn(z). Definition (9.5.2.2) and the

addition theorem tells us that
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h
(�̃)
0 (k(p, (−1)�jω)dq) =

exp(−(−1)�̃ik(p, (−1)�jω)dq)

−(−1)�̃ik(p, (−1)�jω)dq)

=
∞∑

n=0

(2n + 1)
m=+n∑
m=−n

c(n,m, 0, (−1)�jω, p, q)P |m|
n (cos(θ)) exp(imφ)h(�)

n (k(p, (−1)�jω)r)

(9.5.2.3)
The vector potential to be expanded using this addition theorem is

A(p,q)(�̃, (−1)�jω, t) =

(
µp exp(i(−1)�jωt)

4π

)
exp(−i(−1)�̃k(p, (−1)�jω) | r − rq |)

| r − rq |
eq

(9.5.2.4)
where dq is | r − rq | or the distance from the brain activity site rq to the observation point
r and the brain activity current direction at the site q of potential activity is

eq = Uqex + Vqey + Wqez (9.5.2.5)

The transmembrane current direction eq given by (9.5.2.5) and used in (9.5.2.4) also has the
spherical coordinate representation

eq = Uq [sin(θ) cos(φ)er + cos(θ) cos(φ)eθ − sin(φ)eφ]

+Vq [sin(θ) sin(φ)er + cos(θ) sin(φ)eθ + cos(φ)eφ]

+Wq [cos(θ)er − sin(θ)eθ] (9.5.2.6)

Making the subsitutions

(cos(φ), sin(φ)) =

(
exp(iφ) + exp(−iφ)

2
,
exp(iφ)− exp(−iφ)

2i

)
(9.5.2.7)

into (9.5.2.6) we have

eq =

(
Uq − iVq

2

)
[sin(θ) exp(iφ)er + cos(θ) exp(iφ)eθ + i exp(iφ)eφ]

+

(
Uq + iVq

2

)
[sin(θ) exp(−iφ)er + cos(θ) exp(−iφ)eθ − i exp(−iφ)eφ]

+Wq [cos(θ)er − sin(θ)eθ] (9.5.2.8)

Using the definition of the spherical Hankel functions we have

A(p,q)(�̃, (−1)�jω, t) =

=

(
µp

exp(i(−1)�jωt)

4π

){
−(−1)�̃ik(p, (−1)�jω)

} exp(−(−1)�̃ik(p, (−1)�jω) | r − rq |){
−(−1)�̃ik(p, (−1)�jω)

}
| r − rq |

= µp

(
exp(i(−1)�jωt)

4π

){
−(−1)�̃ik(p, (−1)�jω)

}
h

(�̃)
0 (k(p, (−1)�jω) | r − rq |)eq (9.5.2.9)

because if �̃ is 1 or 2, then h
(�̃)
0 (z) is exp(−(−1)�̃iz) divided by −(−1)�̃iz.
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9.5.3 Representing the Vector Potential from Brain Activity in terms of Vector
Spherical Harmonics

In order to describe the transmission of electromagnetic waves from brain activity through
the skull bone, we must solve the associated electromagnetic boundary value problem.

Using the definition (9.5.2.2) for �̃ equal to 0, we see that vector potential (9.5.2.4) arising
from the frequency component

t→ exp(i(−1)�jωt) (9.5.3.1)

at site q in region p has the vector spherical harmonic expansion

A(p,q)(�̃, (−1)�jω, t)) =(
µp(−(−1)�̃ik(p, (−1)�jω) exp(i(−1)�jωt)

4π

) ∞∑
n=0

m=+n∑
m=−n

{
c(n,m, 0, (−1)�jω, p, q)

{

Wq

{
(n−m+ 1)

(
L

(m,�̃,(−1)�jω)

(n+1,p) +
1

n+ 1
N

(m,�̃,(−1)�jω)

(n+1,p)

)

− (n+m)

(
L

(m,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m,�̃,(−1)�jω)
(n−1,p)

)
+ im

(
2n + 1

n(n+ 1)

)
M

(m,�̃,(−1)�jω)
(n,p)

}

+

(
Uq − iVq

2

){(
L

(m+1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m+1,�̃,(−1)�jω)
(n+1,p)

)

+

(
L

(m+1,�̃,(−1)�jω)

(n−1,p) − 1

n
N

(m+1,�̃,(−1)�jω)

(n−1,p)

)
− i

(
(2n+ 1)

n(n + 1)

)
M

(m+1,�̃,(−1)�jω)

(n,p)

}

−
(
Uq + iVq

2

){
(n−m+ 1)(n−m+ 2)

(
L

(m−1,�̃,(−1)�jω)

(n+1,p) +
1

n + 1
N

(m−1,�̃,(−1)�jω)

(n+1,p)

)

+(n+m)(n+m− 1)

(
L

(m−1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m−1,�̃,(−1)�jω)
(n−1,p)

)

+(n+m)(n−m+ 1)

(
i(2n+ 1)

n(n+ 1)

)
M

(m−1,�̃,(−1)�jω)
(n,p)

}}}
(9.5.3.2)

where the three vector fields are defined by (9.4.1.12), (9.4.1.13), and (9.4.1.15). An equiva-
lent expression is found in Hirvonen ([59]). We need this representation in order to solve the
electromagnetic boundary value problem. Considering (9.5.2.5) the Wq term is the contri-
bution from a vertical dipole. We used this term and the fact that a rotation of coordinates
will make any dipole vertical in our analysis.
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9.5.4 The Vector Potential from all Sources

The total vector potential from all sources has the form

Ap =

Q∑
q=1

{
A(p,q)(�̃, (−1)�jω, t))

}
(9.5.4.1)

where A(p,q)(�̃, (−1)�jω, t)) is expressed in terms of the three vector spherical harmonics

(n,m, p, �̃, (−1)�(jω)) → (L
(m,�̃,(−1)�jω)
(n,p) ,M

(m,�̃,(−1)�jω)
(n,p) ,N

(m,�̃,(−1)�jω)
(n,p) ) (9.5.4.2)

by (9.5.3.2). Note that these three vector fields used in the expansion defined by (9.5.3.2)
and (9.5.4.1) are independent of the set of locations of the dipoles. Thus, we may collect
coefficients in the sum of the expansions (9.5.3.2) represented by (9.5.4.1) depending on the
dipoles in the sum. For the Hirvonen ([59]) expansion of the vector potential of brain activity
there is a known relationship between multipliers of the zero curl vector fields (9.4.1.12)

n→ L
(m−1,�̃,(−1)�jω)
(n−1,p) (9.5.4.3)

and the multipliers of the non zero curl vector fields (9.4.1.12). If we can go backwards from
H to the multipliers of the nonzero curl vector fields and recover the multipliers of the zero
curl vector fields and consequently recover the vector potential of brain activity. For, this
specific type of magnetic field, we can go back to the vector potential. We could always add
any zero curl vector field (9.4.1.12) and have two different vector potentials that gave the
same magnetic field.

9.6 The Full Wave Solution Boundary Value Problem

We rearrange terms in the expansion of the vector potential (9.5.3.2) describing brain activity
so that the representations of the source electric and magnetic vector are identical to the
representation used in (Cohoon [26]). While this works formally, considerable effort had to be
taken to merge the expansion coefficients of the vector potential described in the following
section with coefficients that represent the fields outside the head in order to accurately
represent the electromagnetic fields outside the head arising from sources close to the skull
bone. This was made possible by the special function program of Morris ([85]).
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9.6.1 Expansion in Vector Spherical Harmonics

We derive a brain-activity source magnetic field by computing the curl of the vector potential
from all sources for each frequency component. The source electric field is derived through
Maxwell’s equations from the curl of the magnetic vector. Through a change of indices in the
sum, we put the source magnetic field in exactly the same form that is given in Cohoon ([26]).
This solution is then used to solve the boundary value problem using the same transition
matrices described in Cohoon ([26]) to relate representation in adjacent tissue layers by
requiring that tangential components of E and H be continuous across tissue interfaces.

An addition theorem expansion factor that appears in the representation of the vector
potential, the magnetic field, and the electric field is

c(n,m, �, (−1)�jω, p, q) =(
(n− | m |)!
(n+ | m |)!

)
Z(�)

n (k(p, (−1)�jω)rq)P
|m|
n (cos(θq)) exp(−imφq) (9.6.1.1)

where the parameters
q → (rq, θq, φq) (9.6.1.2)

define the location of the qth brain activity site in spherical coordinates, Z
(�)
n is defined by

(9.4.1.10) and P
|m|
n is the nonsingular associated Legendre function satisfying (9.4.1.2).

9.6.2 Solution of the Boundary Value Problem

We predict the brain wave electric and magnetic fields that are reflected back into the brain
from tissue interfaces and which are transmitted outside the head one jω frequency at a time
where ω is the smallest positive frequency in the Fourier series used to represent the brain
wave signal and jω and −jω are the positive and negative frequencies associated with the
jth Fourier series index. We do this by requiring that tangential components of the electric
and magnetic vectors are continuous across tissue interfaces.

The source field expansion coefficients are determined from just the representation of the
brain wave source magnetic field in terms of vector spherical harmonics.
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The brain activity source field expansion coefficients depend upon the tissue region index
p, the index � ranging from 1 to 2, the Fourier series index j (so that � = 1 means that the
time dependence of the frequency component being considered has the form

t→ exp(−ijωt) (9.6.2.1)

and � = 2 means that the time dependence of the brain wave frequency component being
considered has the form

t→ exp(+ijωt), (9.6.2.2)

the m is used to represent the spatial variation of the brain wave magnetic field with the
equatorial angle φ and the index n used to represent the spatial variation of the brain wave
magnetic field as a function of cos(θ) where θ ranges from 0 at the North pole to 180 degrees
at the South pole of the bench mark model. The source expansion coefficients representing
the total source should have the form

(m,n, p, �, j) →
(
ã

(p,�,(−1)�jω)
(m,n) , b̃

(p,�,(−1)�jω)
(m,n,q)

)
(9.6.2.3)

To get these source coefficients we add up the contributions from source coefficients for each
source location, q, so that the individual contributions are from source expansion coefficients

(m,n, q, p, �, j) →
(
ã

(p,�,(−1)�jω)
(m,n,q) , b̃

(p,�,(−1)�jω)
(m,n,q)

)
(9.6.2.4)

noting that the source expansion coefficients

(m,n, q, p, �, j) → ã
(p,�,(−1)�jω)

(m,n,q) , (9.6.2.5)

using �̃ = �, for each brain wave source location q are multipliers of the vector spherical
harmonic

(n, p,m, �̃, (−1)�jω) → M
(m,�̃,(−1)�jω)
(n,p) (9.6.2.6)

Similarly, again for each brain wave source location index q, the source expansion coefficient

(m,n, q, p, �, (−1)�jω) → b̃
(p,�,(−1)�jω)
(m,n,q) , (9.6.2.7)

using �̃ = �, are multipliers of the vector spherical harmonic

(n, p,m, �̃, (−1)�jω) → N
(m,�̃,(−1)�jω)
(n,p) (9.6.2.8)

By requiring that the correct boundary conditions are satisfied across tissue interfaces,
the program predicts the total electric and magnetic vectors inside and outside the head
arising from the brain activity.
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The source electromagnetic fields have an alternative representation in terms of vector
spherical harmonics. The source magnetic field is given by

Hsource =
∞∑

j=1

2∑
�=1

∞∑
n=0

m=+n∑
m=−n

{

ã
(p,�,(−1)�jω)
(m,n) M

(m,�,(−1)�jω)
(n,p) + b̃

(p,�,(−1)�jω)

(m,n) N
(m,�,(−1)�jω)
(n,p)

}
(9.6.2.9)

The brain wave source field expansion coefficients

(m,n, p, �, j(−1)�ω) →
(
ã

(p,�,(−1)�jω)
(m,n) , b̃

(p,�,(−1)�jω)

(m,n)

)
(9.6.2.10)

have all been determined by exact formulae from representation of the vector potentials of
the sources in terms of the vector spherical harmonics

(n, p,m, �̃, (−1)�jω) →
(
M

(m,�̃,(−1)�jω)
(n,p) ,N

(m,�̃,(−1)�jω)
(n,p)

)
(9.6.2.11)

The source electric and magnetic fields interact with tissue interfaces producing a signal
that is regular everywhere in the interior of the brain. The magnetic field arising from this
has the �̃ = 0 representation

Hreflected =
∞∑

j=1

2∑
�=1

∞∑
n=0

m=+n∑
m=−n

{

α
(p,0,(−1)�jω)
(m,n) M

(m,0,(−1)�jω)
(n,p) + β

(p,0,(−1)�jω)
(m,n) N

(m,0,(−1)�jω)
(n,p)

}
(9.6.2.12)

where the 0 in the superscripts in the above equation indicate that the spherical Bessel
functions

(n, (−1)�jω, r) → jn(k(p, (−1)�jω)r) (9.6.2.13)

and their derivatives are used in the vector spherical harmonics rather than the spherical
Hankel functions

(n, �̃, (−1)�jω, r) → (h(�̃)
n (k(p, (−1)�jω)r)), (9.6.2.14)

using �̃ = � for � equal to 1 or 2, and their derivatives. The back reflected radiation must
be a smooth function at all interior points in the brain and use the �̃ = 0 vector spherical
harmonics. The expansion coefficients here are represented in terms of the known source
expansion coefficients by requiring that the tangential components of electric and magnetic
field vectors be continuous across tissue interfaces.

July 31, 2006 130



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

Similarly, instead of using vector potentials, we have an alternative representation of the
source electric field as

Esource =
∞∑

j=1

2∑
�=1

∞∑
n=0

m=+n∑
m=−n

{
(

k(p, (−1)�jω)

(i(−1)�ε(p, (−1)�jω)

){
ã

(p,�,(−1)�jω)
(m,n) N

(m,�,(−1)�jω)
(n,p) + b̃

(p,�,(−1)�jω)

(m,n) M
(m,�,(−1)�jω)
(n,p)

}}
(9.6.2.15)

The magnetic vector and electric fields outside the head are given by

(x, y, z) → (Hexternal,Eexternal) (9.6.2.16)

measured at a point (x, y, z) outside the head for a two layer model with p=1 for a source
of electrical activity in the brain itself is represented by expansion coefficients of the form

(m,n, p, �, jω) →
(
a

(p+2,�,(−1)�jω)
(m,n) , b

(p+2,�,(−1)�jω)
(m,n)

)
(9.6.2.17)

The total magnetic field outside the head in terms of our vector spherical harmonics has the
form

Hexternal =

∞∑
j=1

2∑
�=1

∞∑
n=0

m=+n∑
m=−n

{

a
(p+2,�,(−1)�jω)
(m,n) M

(m,�,(−1)�jω)
(n,p+2) + b

(p+2,�,(−1)�jω)
(m,n) N

(m,�,(−1)�jω)
(n,p+2)

}
(9.6.2.18)

The total electric field outside the head from all sources has the form

Eexternal =

∞∑
j=1

2∑
�=1

∞∑
n=0

m=+n∑
m=−n

{

(
k(p+ 2, (−1)�jω)

(i(−1)�ε(p+ 2, (−1)�jω)

)
[a

(p+2,�,(−1)�jω)
(m,n) N

(m,�,(−1)�jω)
(n,p+2) + b

(p+2,�,(−1)�jω)
(m,n) M

(m,�,(−1)�jω)
(n,p+2) ]

}
(9.6.2.19)

where p + 2 is the index for the region outside the head, and where the vector spherical
harmonics were selected so that the action of the curl operator, appearing the Maxwell
equations, satisfies

∇× (M
(m,�̃,(−1)�jω)
(n,p) ) = k(p, (−1)�jω)N

(m,�̃,(−1)�jω)
(n,p) (9.6.2.20)

and
∇× (N

(m,�̃,(−1)�jω)
(n,p) ) = k(p, (−1)�jω)M

(m,�̃,(−1)�jω)
(n,p) (9.6.2.21)
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When these conditions are satisfied, linear combinations of these vector fields as m and
n vary automatically satisfy the Maxwell equations of electromagnetic theory for a time
dependence of the form

t→ exp(i(−1)�jωt) (9.6.2.22)

In solving the brain wave signal boundary value problem we require continuity of tan-
gential components of electric and magnetic vectors across tissue interfaces. We derived in
(Cohoon [26]) 2 by 2 transition matrices with low round off error exact formula inverses that
depend only on the spherical Bessel function order, n, and not on the Legendre function
order,m. One set of transition matrices gives two equations in the two unknowns

(p, n,m, (−1)�jω) →
(
a

(p+2,�,(−1)�jω)
(m,n) , α

(p,0,(−1)�jω)
(m,n)

)
(9.6.2.23)

Again, just requiring continuity of tangential components of total H and E across tissue
interfaces we obtain a set of two by two transition matrices just depending on the spherical
Bessel function order n and completely independent of the associated Legendre function
order m which give us two equations in the two unknowns

(p, n,m, (−1)�jω) →
(
b

(p+2,�,(−1)�jω)

(m,n) , β
(p,0,(−1)�jω)

(m,n)

)
(9.6.2.24)

This gives us complete knowledge of the electric vector E and the magnetic vector H inside
and outside our model of the head. This will be use to test brain wave vector of activity
recovery algorithms that are valid for physiologically realistic models of the human head.

9.7 Recovery of Brain Activity – Inverse Source Solution

We consider the problem of interrogating the electromagnetic waves from brain activity that
are transmitted through the skull bone so that we may directly recovery both the orientation
of the sources and the profile of activity on the sources.

9.7.1 Construction of the Interrogating Vector Fields

We construct an infinite family of interrogating vector fields M and which along with ∇×
(M) satisfy in each tissue region the vector Helmholtz equation

∆M + k2M = 0 (9.7.1.1)

where 0 is the zero vector field and the Laplace operator, ∆, satisfies

∆F = ∇× (−∇× (F )) + ∇(+∇·(F )) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
F (9.7.1.2)
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The interrogating vector fields M , besides satisfying the vector Helmholtz equation
(9.7.1.1) also satisfy the additional property that M and ∇ × (M ) are continuous across
tissue interfaces.

We consider two classes of interrogating vector fields. The IM = 1 interrogating vector
field within the brain has the form which is a spherical Bessel function multiplied by the
vector field (9.4.1.4), the nonradial component of its curl is a multiple of the vector field

(9.4.1.5). The vector field N
(m,�̃,(−1)�jω)
(n,p) is an IM = 2 interrogating vector field in brain tissue

when �̃ = 0. If you apply the curl operator to either of these interrogating vector fields, the
result will be the propagation constant multiplied by the other interrogating vector field.

For IM = 1 the interrogating vector field in brain tissue, tissue region p, is smooth at all
points in the brain and is given by

M (p,1) = M
(m,0,(−1)�jω)
(n,p) = jn(k(p, (−1)�jω)r)A(m,n)(θ, φ) (9.7.1.3)

In the skull bone region the interrogating vector field has another form in order to assure that
both the vector field and its curl are continuous across the tissue interface the interrogating
vector field, in tissue region p + 1 we avoid r = 0 so that the smooth M vector field in the
bone region, the IM = 1 vector field has the form

M (p+1,1) == M(ã − α̃,m, n, p+ 1, �, (−1)�jω) =

ã
(p+1,0,(−1)�jω)
(m,n) M

(m,0,(−1)�jω)
(n,p+1) + α̃

(p+1,�,(−1)�jω)
(m,n) M

(m,�,(−1)�jω)
(n,p+1) (9.7.1.4)

and in the air region outside the head the IM = 1 interrogating vector field has the form

M (p+2,1) == M(ã − α̃,m, n, p+ 2, �, (−1)�jω) =

ã
(p+2,0,(−1)�jω)

(m,n) M
(m,0,(−1)�jω)

(n,p+2) + α̃
(p+2,�,(−1)�jω)

(m,n) M
(m,�,(−1)�jω)

(n,p+2) (9.7.1.5)

From our relationship between the two classes of vector fields the curl of the IM = 1 vector
field is

∇× (M (p+2,1)) == ∇× (M (ã − α̃,m, n, p+ 2, �, (−1)�jω)) =

k(p + 2, (−1)�jω)ã
(p+2,0,(−1)�jω)
(m,n) N

(m,0,(−1)�jω)
(n,p+2) + kp+2((−1)�jω)α̃

(p+2,�,(−1)�jω)
(m,n) N

(m,�,(−1)�jω)
(n,p+2)

(9.7.1.6)
where we have used (9.4.1.17). To find the correct representation of this vector field in all
regions we just have to find the coefficients

(p, n,m, �, (−1)�(jω)) → (ã
(p+1,0,(−1)�jω)
(m,n) , α̃

(p+1,�,(−1)�jω)
(m,n) , ã

(p+2,0,(−1)�jω)
(m,n) , α̃

(p+2,�,(−1)�jω)
(m,n) )

(9.7.1.7)
that cause the tangential components of these vector fields and their curls to be continuous
across tissue interfaces. We develop transition matrices with exact formulae inverses to find
these coefficients.
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The IM = 2 case is similar. For IM = 2 the interrogating vector field M (p,2), in brain
tissue region p, is smooth at all points in the brain and is given by

N
(m,0,(−1)�jω)

(n,p) = n(n+1)
Z

(0)
n (k(p, (−1)�jω)r)

k(p, (−1)�jω)r
C (m,n)(θ, φ)+W (0)

n (k(p, (−1)�jω)r)B(m,n)(θ, φ)

(9.7.1.8)

where C(m,n), B(m,n) andW
(0)
n (k(p, (−1)�jω)r) are given by (9.4.1.3), (9.4.1.5) and (9.4.1.11),

respectively. In the skull bone region the interrogating vector field has another form in order
to assure that both the vector field and its curl are continuous across the tissue interface the
interrogating vector field, in tissue region p + 1 we avoid r = 0 so that the smooth IM = 2
interrogating vector field has the form

M (p+1,2) == M (b̃ − β̃, m, n, p+ 1, �, (−1)�jω) =

b̃
(p+1,0,(−1)�jω)

(m,n) N
(m,0,(−1)�jω)

(n,p+1) + β̃
(p+1,�,(−1)�jω)

(m,n) N
(m,�,(−1)�jω)

(n,p+1) (9.7.1.9)

and in the air region outside the head the IM = 2 interrogating vector field has the form

M (p+2,2) == M (b̃ − β̃, m, n, p+ 2, �, (−1)�jω) =

b̃
(p+2,0,(−1)�jω)

(m,n) N
(m,0,(−1)�jω)
(n,p+2) + β̃

(p+2,�,(−1)�jω)
(m,n) N

(m,�,(−1)�jω)
(n,p+2) (9.7.1.10)

9.8 Details of Matrix Formulation of the Orientation Inversion
Algorithms

We are using interrogating vector fields to recover internal brain activity. Brain activity
is modeled as a complex of possible sites of activity. We do not assume any knowledge of
neuronal orientation at any of these sites. Both the orientation and time profile of neuronal
activity are recovered by our inverse source solution. Our inverse source solution uses an
identity relating the divergence of a cross product of vector fields and the scalar products of
these vector fields with the curl of the other vector field.

In this section we give inversion algorithms for recovery of the time profile of activity on
a set of generally oriented dipole sources and a second algorithm where we know just the
location of the source, but we don’t know the orientation.

9.8.1 Volume and Surface Integral Relationships for an Arbitrarily Oriented
Dipole

We use the fact that if U and V are any differentiable vector fields, then

∇·(U × V ) = V · ∇ × (U ) − U · ∇ × (V ) (9.8.1.1)
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Our basic surface integral to volume integral relationship based upon the vector calculus
identity (9.8.1.1) is ∫

∂Ω

{M ×∇× (E) − (E ×∇× (M )} ·ndarea

=

∫
Ω

{−M · ∇ × (∇× (E)) + E · ∇ × (∇× (M ))} dvolume

=

∫
Ω

{
−M · ∇ × (−i(−1)�(jω)µ0H) + E · k2M

}
dvolume

=

∫
Ω

{
−M · (−i(−1)�(jω)µ0[

{
i(−1)�(jω)ε

}
E + Jbrain wave] + E · (k2M

}
dvolume

=

∫
Ω

{
−M · k2E − M ·

[
−i(−1)�(jω)Jbrain wave

]
+ E · k2M

}
dvolume

=

∫
Ω

M ·
{
+i(−1)�(jω)µ0Jbrain wave

}
dvolume (9.8.1.2)

To recover both the time profile of activity on and orientation of a generally oriented
source of brain activity, we use the relationship∫

∂Ω

{((M ×∇× (E) − (E ×∇× (M )) · n} darea

=

∫
Ω

{
M · (+i(−1)�(jω)µ0Jbrain wave)

}
dvolume

= −Mx(−i(−1)�jωµ0px((−1)�(jω)))

−My(−i(−1)�jωµ0py((−1)�(jω))) −Mz(−i(−1)�jωµ0pz((−1)�(jω))) (9.8.1.3)

We can express the right side of (9.8.1.3) for a single source at

q → (rq sin(θq) cos(φq), rq sin(θq sin(φq), rq cos(θq)) (9.8.1.4)

in terms of spherical coordinates if we make use of

Mxex +Myey +Mzez = Mrer +Mθeθ +Mφeφ (9.8.1.5)

which gives us

Mxex +Myey +Mzez = Mr {sin(θq) cos(φq)ex + sin(θq) sin(φq)ey + cos(θq)ez}

+Mθ {cos(θq) cos(φq)ex + cos(θq) sin(φq)ey − sin(θq)ez} +Mφ {− sin(φq)ex + cos(φq)ey}
(9.8.1.6)
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Collecting terms in (9.8.1.6) we have

Mz = cos(θq)Mr − sin(θq)Mθ (9.8.1.7)

for a vertical dipole. For a dipole component parallel to the x-axis we have

Mx = Mr {sin(θq) cos(φq)}

+Mθ {cos(θq) cos(φq)} +Mφ {− sin(φq)} (9.8.1.8)

and for a dipole parallel to the y-axis we have

My = Mr {sin(θq) sin(φq)}

+Mθ {cos(θq) sin(φq)} +Mφ {cos(φq)} (9.8.1.9)

Thus, for a set of dipoles the volume and surface integral relationships are∫
∂Ω

{M ×∇× (E) − (E ×∇× (M )} ·ndarea

=

∫
Ω

{−M · ∇ × (∇× (E)) + E · ∇ × (∇× (M ))} dvolume

=

∫
Ω

{
−M · ∇ × (−i(−1)�(jω)µ0H) + E · k2M

}
dvolume

=

∫
Ω

{
−M · (−i(−1)�(jω)µ0[

{
i(−1)�(jω)ε

}
E + Jbrain wave] + E · (k2M

}
dvolume

=

∫
Ω

{
−M · k2E − M ·

[
−i(−1)�(jω)Jbrain wave

]
+ E · k2M

}
dvolume

=

∫
Ω

M ·
{
+i(−1)�(jω)µ0Jbrain wave

}
dvolume

=

Q∑
q=1

{
pq((−1)�(jω))i(−1)�(jω)µ0

[
Mx sin(αq) cos(βq) +My sin(αq) sin(βq) +Mz cos(αq)

]}

=

Q∑
q=1

{
pq((−1)�(jω))

{
i(−1)�(jω)µ0

}[

{Mr sin(θq) cos(φq) +Mθ cos(θq) cos(φq) +Mφ [− sin(φq)]} sin(αq) cos(βq)

+ {Mr[sin(θq) sin(φq)]Mθ[cos(θq) sin(φq)] +Mφ} sin(αq) cos(βq)

{cos(θq)Mr − sin(θq)Mθ} cos(αq

]}
(9.8.1.10)
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9.8.2 Arbitrarily Many Arbitrarily Oriented Dipoles– A Simultaneous Recov-
ery of the Individual Time Profiles of Activity and each Dipole’s Orien-
tation

We suppose that we have a set of interrogating vector fields

(n,m, IM) → M(n,m, IM) = Mx(n,m, IM)ex +My(n,m, IM)ez +Mz(n,m, IM)ez (9.8.2.1)

where these vector fields satisfy the property that they satisfy the vector Helmholtz equation
in each tissue region and that their tangential components and the tangential components
of their curl are continuous across tissue interfaces. Each interrogating vector field indexes
a row of a matrix. The row indices are

I(n,m, IM) = 2n2 + 2(n +m) + IM (9.8.2.2)

and the column index is
J (q, jC) = 3(q − 1) + jC (9.8.2.3)

If jC = 1, the matrix entry is

C(I(n,m, IM),J (q, jC)) = i(−1)�(jω)µ0)Mx(n,m, IM) (9.8.2.4)

If jC = 2, the matrix entry is

C(I(n,m, IM),J (q, jC)) = i(−1)�(jω)µ0)My(n,m, IM) (9.8.2.5)

If jC = 3, the matrix entry is

C(I(n,m, IM),J (q, jC)) = i(−1)�(jω)µ0)Mz(n,m, IM) (9.8.2.6)

For every row of the matrix there is a right side entry

Y(n,m, IM) =∫
∂Ω

[
{M (n,m, IM) ×∇× (E) − (E ×∇× (M(n,m, IM))} · n

]
darea (9.8.2.7)
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where n is the unit normal to the bounding surface. Thus, the equation that we solve is

C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1((−1)�(jω)) sin(α1) cos(β1)
p1((−1)�(jω)) sin(α1) sin(β1)

p1((−1)�(jω)) cos(α1)
· · ·
· · ·
· · ·

pq((−1)�(jω)) sin(αq) cos(βq)
pq((−1)�(jω)) sin(αq) sin(βq)

pq((−1)�(jω)) cos(αq)
· · ·
· · ·
· · ·

pQ((−1)�(jω)) sin(αQ) cos(βQ)
pQ((−1)�(jω)) sin(αQ) sin(βQ)

pQ((−1)�(jω)) cos(αQ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y(n = 0, m = 0, IM = 1)
Y(n = 0, m = 0, IM = 2)
Y(n = 1, m = −1, IM = 1)
Y(n = 1, m = −1, IM = 2)
Y(n = 1, m = 0, IM = 1)
Y(n = 1, m = 0, IM = 2)
Y(n = 1, m = +1, IM = 1)
Y(n = 1, m = +1, IM = 2)

· · ·
· · ·
· · ·

Y(n = Nmax, m = −Nmax, IM = 1)
Y(n = Nmax, m = −Nmax, IM = 2)

· · ·
· · ·
· · ·

Y(n = Nmax, m = +Nmax, IM = 1)
Y(n = Nmax, m = +Nmax, IM = 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.8.2.8)

9.8.3 Computer Determination of Each Dipole’s Orientation Angles αq and βq

from the Recovered Complex Dipole Strength and Direction Vectors

What we recover from equation (9.8.2.8) the complex components of each of the individual
dipole orientation vectors. The complex orientation vector from the qth dipole at frequency
jω appearing in the column vector on that the brain-activity-independent matrix on the left
side of equation (9.8.2.8) is acting on is the right side of the function

(q, �, jω) →

⎡
⎣ pq((−1)�(jω)) sin(αq) cos(βq)
pq((−1)�(jω)) sin(αq) sin(βq)

pq((−1)�(jω)) cos(αq)

⎤
⎦ (9.8.3.1)

We create a real direction vector from the projection of the solution vector in equation
(9.8.2.8) onto the complex three dimensional subspace generated by (9.8.3.1). We recover
the angles from the equation for � = 2 or positive frequency or � = 1, negative frequency
given by⎡

⎣ Rq sin(αq) cos(βq)
Rq sin(αq) sin(βq)

Rq cos(αq)

⎤
⎦ =

⎡
⎣ Real

{
pq((−1)�(jω)

}
sin(αq) cos(βq)

Real
{
pq((−1)�(jω)

}
sin(αq) sin(βq)

Real
{
pq((−1)�(jω)

}
cos(αq)

⎤
⎦ (9.8.3.2)
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For the moment we suppose that equation (9.8.3.2) From equation (9.8.3.2) we recover
Rq by the relationship

|Rq| =
√

[Rq sin(αq) cos(βq)]2 + [Rq sin(αq) sin(βq)]2 + [Rq cos(αq)]2 (9.8.3.3)

We then recover the pure direction vector up to a plus or minus sign by dividing the compo-
nents of the real part of the complex direction vector by |Rq|. The actual sign of Rq will be
exactly the same for the frequency (−1)�jω for both � = 1 and � = 2. Under the assumption
now that we know which of

Rq =
+
− | Rq | (9.8.3.4)

is correct we recover

βq = DATAN2(Rq sin(αq) sin(βq), Rq sin(αq) cos(βq)) (9.8.3.5)

which gives us
q → Rq sin(αq) (9.8.3.6)

which in turn gives us, from the DATAN2 FORTRAN subroutine

αq = DATAN2(Rq sin(αq), Rq cos(αq)) (9.8.3.7)

We could then determine an appropriate Iq, which is the imaginary part of the complex
current on the neuron, as recovered by our inverse source solution, that would be consistent
with saying that⎡

⎣ Iq sin(αq) cos(βq)
Iq sin(αq) sin(βq)

Iq cos(αq)

⎤
⎦ =

⎡
⎣ Imag

{
p((−1)�(jω))

}
sin(αq) cos(βq)

Imag
{
p((−1)�(jω))

}
sin(αq) sin(βq)

Imag
{
p((−1)�(jω))

}
cos(αq)

⎤
⎦ (9.8.3.8)

where for any complex current coefficient A + iB we have

(Real(A+ iB), Imag(A+ iB)) = (A,B) (9.8.3.9)

Thus, the orientation is determined up to a sign of the vector and we can determine the time
profiles of activity that are consistent with this direction eq or −eq of the dipole.

We correctly find a line containing the dipole orientation. If we started at the dipole
location on this line and selected the wrong direction, we would obtain an inverted brain
wave signal for that dipole source when we put together all of the frequency components
describing the activity at that source. Knowing the action potential shape, thus, our inversion
algorithm yields the precise orientation of the neuron.
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9.8.4 Computer Validation of the Angle Recovery Algorithm

We successfully recover the brain activity source current orientation angles α and β from the
recovered complex amplitude vectors which have the form

pxex + pyey + pzez = (A+ iB) sin(α) cos(β)ex +(A+ iB) sin(α) sin(β)ey +(A+ iB) cos(α)ez

(9.8.4.1)
In the angle recovery code we make use of the fact that

sin(π − α) cos(β − π)ex + sin(π − α) sin(β − π)ey + cos(π − α)ez

= −{sin(α) cos(β)ex + sin(α) sin(β)ey + cos(α)ez} (9.8.4.2)

so that in the angle recovery code if β is calculated to be negative, we replace β by β + π
and replace α by π − α to get a vector pointing in the opposite direction.

The test dipole set for angle recovery is

r% th ph a b
10 70.0 38.0 22.0 36.0
18 165.0 218.0 44.0 72.0

where the columns are for the qth dipole

(r%, th, ph, a, b) = (100rq/R, θq, φq, αq, βq) (9.8.4.3)

In the following table we let irow be the row of the matrix on the left side of (9.8.2.8),
we let n and m be the indices of the interrogating vector field of type IM and we let � = 1
indicate an negative frequency and � = 2 indicate a positive frequency component of the
brain activity. The frequency is (−1)�ω. The first row of the volume and surface integral
comparison table is the surface integral or the left side of equation (9.8.1.2) and the entry
immediately following is the volume integral or the right side of (9.8.1.2).
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(irow, n, m, IM , �, ω) volume and surface integral comparisons
(1, 0, 0, 2, 2, 1.0794306 × 103) 0.000000000000000 × 100 + 0.000000000000000 × 100i

0.000000000000000 × 100 + 0.000000000000000 × 100i
(2, 1, -1, 2, 2, 1.0794306 × 103) −1.320135022079054 × 10−8 − 4.468247822403349 × 10−9i

−1.320135022079061 × 10−8 − 4.468247822403294 × 10−9i
(3 , 1, 0, 2, 2, 1.0794306 × 103) −4.089329856351770 × 10−9 − 2.244830615710698 × 10−8i

−4.089329856351848 × 10−9 − 2.244830615710694 × 10−8i
(4 , 1, 1, 2, 2, 1.0794306 × 103) 1.066360388068776 × 10−8 − 9.655225939468862 × 10−9i

1.066360388068783 × 10−8 − 9.655225939468971 × 10−9i

The use of larger index interrogating vector fields enables us to discriminate between brain
activity sources that might be quite close to one another. The following table of comparisons
of the left and right sides of equations (9.8.1.2) or (9.8.1.10) when the interrogating vector
fields have a more rapid spatial variation over the head surface.

(irow, n, m, IM , �, ω) volume and surface integral comparisons
(5, 2, -2, 2, 2, 1.0794306 × 103) −5.656663013791870 × 10−13 − 3.330120308392874 × 10−13i

−5.656663013791797 × 10−13 − 3.330120308392892 × 10−13i
(6, 2, -1, 2, 2, 1.0794306 × 103) 4.163604144291942 × 10−13 − 1.075021093853240 × 10−12i

4.163604144292082 × 10−13 − 1.075021093853259 × 10−12i
(7 , 2, 0, 2, 2, 1.0794306 × 103) 7.178816274648380 × 10−13 + 4.974185383067127 × 10−13i

7.178816274648210 × 10−13 + 4.974185383067257 × 10−13i
(8 , 2, 1, 2, 2, 1.0794306 × 103) −6.069387102102143 × 10−13 + 6.574869190019451 × 10−13i

−6.069387102102162 × 10−13 + 6.574869190019583 × 10−13i
(8 , 2, 1, 2, 2, 1.0794306 × 103) −6.069387102102143 × 10−13 + 6.574869190019451 × 10−13i

−6.069387102102162 × 10−13 + 6.574869190019583 × 10−13i
(9 , 2, 2, 2, 2, 1.0794306 × 103) −3.056248668414576 × 10−13 − 3.600373772113263 × 10−13i

−3.056248668414578 × 10−13 − 3.600373772113235 × 10−13i
(25 , 4, 4, 2, 2, 2.1588612 × 10+3) 1.122765566955568 × 10−19 − 3.409032427668378 × 10−20i

1.122765566955462 × 10−19 − 3.409032427667254 × 10−20i
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An abbridged comparison of actual directions and angles and those recovered by solving
equation (9.8.2.8) along with the recovered complex current amplitudes and their actual
values are shown below. The actual values appear in the second row of the tables. The
recovered angles are frequency independent. In the following the Cartesian component of
the neuronal current vector is x, y, or z. The dipole index is q. The value of � is 1 for a
negative frequency and 2 for a positive frequency. The frequency is (−1)�ω. The recovered
complex amplitudes are from the solution column vector in the matrix equation (9.8.2.8).

(Cartesian component, q, �, ω) Calculated and actual complex amplitude
(x, 1, 2, 1.0794306 × 103) −0.460990849927645 × 10−5 + 0.616939868458433 × 10−6i

−0.460990849927383 × 10−5 + 0.616939868457858 × 10−6i
(y, 1, 2, 1.0794306 × 103) −0.334929457493588 × 10−5 + 0.448233051656706 × 10−6i

−0.334929457493581 × 10−5 + 0.448233051656667 × 10−6i
(z, 1, 2, 1.0794306 × 103) −0.141034415856990 × 10−4 + 0.188745078086807 × 10−5i

−0.141034415856988 × 10−4 + 0.188745078086793 × 10−5i

angle dipole index q Calculated Angle Actual Angle
α 1 22.0 22.0
β 1 36.0 36.0

(Cartesian component, q, �, ω) Calculated and actual complex amplitude
(x, 2, 2, 1.0794306 × 103) −0.319914139971859 × 10−5 + 0.786212668484572 × 10−6i

−0.319914139972118 × 10−5 + 0.786212668485148 × 10−6i
(y, 2, 2, 1.0794306 × 103) −0.984594481901767 × 10−5 + 0.241971378651542 × 10−5i

−0.984594481901767 × 10−5 + 0.241971378651537 × 10−5i
(z, 2, 2, 1.0794306 × 103) −0.107204715527522 × 10−4 + 0.263463520169600 × 10−5i

−0.107204715527524 × 10−4 + 0.263463520169605 × 10−5i

angle dipole index q Calculated Angle Actual Angle
α 2 44.0 44.0
β 2 72.0 72.0

The recovered dipole direction is

eq = sin(αq) cos(βq)ex + sin(αq) sin(βq)ey + cos(αq)ez (9.8.4.4)

Knowing the direction angles and the complex vector of component amplitudes in complex
three dimensional space then gives us the complex amplitude of the dipole current.
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9.9 Identity for Recovery of Brain Activity Through the Skull

Bone

To recover brain activity through the skull bone we needed to interrogate, or derive informa-
tion from, the electromagnetic fields outside the head that were stimulated by brain activity.
For this purpose we used members of an infinite family of interrogating vector fields M
which all satisfied the vector Helmholtz equation in each tissue region and had the property
that the vector fields, along with their curls had tangential components that were continuous
across tissue interfaces.

9.9.1 Properties of the N Layer Sphere Interrogating M Function

Our particular solution of the inverse source problem for brain activity uses a M function
which in the pth layer satisfies the vector Helmholtz equation, for region p with propagation
constant k(p, (−1)�ω) defined by (9.3.1.14) at frequency (−1)�ω, which is

∆M + k(p, (−1)�ω)2M = 0 (9.9.1.1)

We require that at every tissue interface with normal vector n we have

n × Moutside = n ×M inside (9.9.1.2)

and
n ×∇× (M outside) = n ×∇× (M inside) (9.9.1.3)

We can create such a vector field by letting M be the total electric vector solution of a
scattering problem with an external source.

9.9.2 Recovery of Information Through the Skull

Let M be a vector field satisfying (9.9.1.2) and (9.9.1.3) We use these identities, the fact
that tangential components of the electric and magnetic vector are continuous across tissue
interfaces and the fact that in a triple scalar product for all vector fields A, B, and C that

A · (B × C) = (A × B) · C = B · (C × A) (9.9.2.1)

In equation (9.9.2.1) we are saying that the dot product is commutative and that we can
interchange the dot product and the cross product in a triple scalar product. We have∫

∂Ω

{(M outside ×∇× (Eoutside)) · n} darea =

∫
∂Ω

{(n × Moutside) · ∇ × (Eoutside)} darea

=

∫
∂Ω

{(n × M inside) · (−iωµ0Houtside)} darea

=

∫
∂Ω

{(−iωµ0Houtside) · (n × M inside)} darea
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=

∫
∂Ω

{(−iωµ0Houtside) × n) · M inside)} darea

=

∫
∂Ω

{(−iωµ0H inside × n) · M inside} darea

=

∫
∂Ω

{M inside · (−iωµ0H inside) × n)} darea

= −iωµ0

∫
∂Ω

{(M inside) × H inside) · n} darea

=

∫
∂Ω

{(M inside ×∇× (Einside) · n} darea (9.9.2.2)

This argument proves that the surface integrals are exactly the same on opposite sides of
tissue interfaces.

We next use the continuity of tangential components of the curl of M across tissue inter-
faces. We simply interchange E and M in the above integral and use (9.9.2.1) repeatedly.
We have ∫

∂Ω

{n · (Eoutside ×∇× (M outside))} darea =

∫
∂Ω

{(n × Eoutside) · ∇ × (M outside)} darea

=

∫
∂Ω

{(n × Einside) · ∇ × (M outside)} darea

=

∫
∂Ω

{n · (Einside) ×∇× (Moutside))} darea

=

∫
∂Ω

{(Einside) ×∇× (Moutside) · n} darea

=

∫
∂Ω

{Einside · (∇× (M outside) × n} darea

=

∫
∂Ω

{Einside · (∇× (M inside) ×n)} darea

=

∫
∂Ω

{(Einside) ×∇× (M inside) · n} darea

=

∫
∂Ω

n · {(Einside ×∇× (M inside)} darea (9.9.2.3)

Thus, all intermediate interior surface integrals vanish.
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10 Proof of the Expansion Representation of the Exact

Analytical Vector Potential of Brain Activity for

Validation of the Algorithm for Dynamic Voltage

Recovery of Brain Activity

The orthogonality of basis elements used in the expansion representation of dynamic voltage
is the reason that we have a rapid recovery of brain activity.

We give in this section a proof of equation (9.5.3.2 where the three vector fields appear-
ing in (9.5.3.2 are defined by (9.4.1.12), (9.4.1.13), and (9.4.1.15). The dynamic voltage
expression involves only the terms arising the divergence of the L vector fields (9.4.1.12).

10.1 Recursion Relationships Needed for Rapid Recovery of Brain
Activity

The recursion relationships are needed to establish the representation of the vector potential
of brain activity which, in turn, gives us an expansion, in terms of orthogonal basis elements,
of the dynamic head surface voltage distribution.

10.1.1 Spherical Bessel and Hankel Functions and Recursion Relationships

The spherical Bessel functions jn(z) and the spherical Neumann functions yn(z) have the
representations

jn(z) = zn

(
−1

z

d

dz

)n
sin(z)

z
(10.1.1.1)

and

yn(z) = zn

(
−1

z

d

dz

)n (
−cos(z)

z

)
(10.1.1.2)

Since brain waves have low frequency components we need small argument representations
of the spherical Bessel and Neumann functions which are

jn(z) = An(z) exp(Bn(z)) (10.1.1.3)

yn(z) = Cn(z) exp(Dn(z)) (10.1.1.4)

where the complex valued functions An, Bn, Cn, and Dn have a modest size.
The spherical Bessel and Hankel functions are all solutions of the singular, self-adjoint,

second order linear ordinary differential equation(
d

dz

(
z2dw

dz

))
+ [z2 − n(n+ 1)]w = 0 (10.1.1.5)

We deduce immediately from (10.1.1.5) the following proposition.
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Proposition 10.1 If f(z) and g(z) are any two solutions of (10.1.1.5) then

d

dz

(
z2 {f(z)g′(z) − f ′(z)g(z)}

)
= 0 (10.1.1.6)

so that there is a constant K independent of z such that the Wronskian relationship

{f(z)g′(z) − f ′(z)g(z)} =
K

z2
(10.1.1.7)

holds for all values of z.

Proof of Proposition. This is a simple consequence of the fact that if we replace w by
fn(z) or gn(z), the differential equation (10.1.1.5) is satisfied.

In order to explain the vector spherical harmonics

(n, p, �̃, (−1)�jω) →
(
M

p+2,�̃,(−1)�jω)
(n,p) ,N

p+2,�̃,(−1)�jω)
(n,p)

)
(10.1.1.8)

used to describe brain activity we need the special function definitions.

Definition 10.1 If jn(z) is the spherical Bessel function and yn(z) is the spherical Neumann
function, then

h(1)
n (z) = jn(z) + iyn(z) (10.1.1.9)

which is given in ([1]) on page 437 and

h(2)
n (z) = jn(z) − iyn(z) (10.1.1.10)

where

(jn(z), yn(z)) = (zn

(
(−1)

z

d

dz

)n
sin(z)

z
,−zn

(
(−1)

z

d

dz

)n
cos(z)

z
) (10.1.1.11)

We have the following consequence of the definitions

Proposition 10.2 If h
(�̃)
n is defined by (9.3.1.18) and (10.1.1.10) for �̃ equal to 1 and 2,

then

(h
(1)
0 (z), h

(2)
0 (z)) =

(
exp(iz)

iz
,
exp(−iz)

−iz

)
(10.1.1.12)

Proof of Proposition. Observe that (10.1.1.11) for n = 0 implies that

h
(1)
0 (z) = j0(z) + iy0(z) =

sin(z)

z
+ i(−1)

cos(z)

z

=
i

i

{
(−i) cos(z) + sin(z)

z

}
=

cos(z) + i sin(z)

iz
=

exp(iz)

iz
(10.1.1.13)

and

h
(2)
0 (z) = j0(z) − iy0(z) =

sin(z)

z
− i(−1)

cos(z)

z
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=
−i
−i

{
(+i) cos(z) + sin(z)

z

}
=

cos(z) − i sin(z)

−iz =
exp(−iz)

−iz (10.1.1.14)

Our complex arguments are the product z of the complex propagation constant and the
distance r from the origin given by

z = k(p, (−1)�jω)r (10.1.1.15)

We define for all complex numbers z the relation

Z(�̃)
n (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn(z) if �̃ = −1

jn(z) if �̃ = 0

h
(1)
n (z) if �̃ = 1

h
(2)
n (z) if �̃ = 2

(10.1.1.16)

Related to Zn(z) we define the function Wn(z) by

W (�̃)
n (z) =

Z
(�̃)
n (z)

z
+

(
d

dz

)
Z(�̃)

n (z) (10.1.1.17)

We first describe the Wronskian relationships needed for effective computation of the
transition matrices

W (0)
n (z)h(1)

n (z) −W (1)
n (z)jn(z) =

−i
z2

(10.1.1.18)

the determinant is found to be

det

[
h

(1)
n (kpRp) jn(kpRp)

kpW
(1)
n (kpRp)/(−iωεp) kpW

(0)
n (kpRp)/(−iωεp)

]

= h(1)
n (kpRp)kpW

(0)
n (kpRp)/(−iωεp) − jn(kpRp)kpW

(1)
n (kpRp)/(−iωεp)

= lim
z→kpRp

(
kp

(−iωεp)

){
h(1)

n (z)W (0)
n (z) − jn(z)W

(1)
n (z)

}
= lim

z→kpRp

(
kp

(−iωεp)

){
h(1)

n (z)W (0)
n (z) − jn(z)W

(1)
n (z)

}

= lim
z→kpRp

(
kp

(−iωεp)

){
h(1)

n (z)

[
jn(z)

z
+

(
d

dz

)
jn(z)

]
− jn(z)

[
h

(1)
n

z
+

(
d

dz

)
h(1)

n (z)

]}

= lim
z→kpRp

(
kp

(−iωεp)

){
h(1)

n (z)

[(
d

dz

)
jn(z)

]
− jn(z)

[(
d

dz

)
h(1)

n (z)

]}

= lim
z→kpRp

(
kp

(−iωεp)

){
1

iz2

}
=

1

ωεpkpR2
p

(10.1.1.19)

We also use the definition that for all complex numbers z including the z value we use in
our vector spherical harmonics which is

z = k(p, (−1)�jω)r, (10.1.1.20)

which is the product of the tissue propagation constant and the distance r from the origin
to the brain wave signal observation point, by the rule (10.1.1.17)

We also need the relationships
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Lemma 10.1 If fn(z) represents a spherical Bessel or Hankel function that is a solution of
the differential equation (10.1.1.5) then for all indices n or, in particular, for

fn(z)∈
{
jn(z), yn(z), h

(1)
n (z), h(2)

n (z)
}

(10.1.1.21)

we have

(n+ 2)
fn+1(z)

z
+

(
d

dz

)
fn+1(z) = fn(z) (10.1.1.22)

and

−(n− 1)
fn−1(z)

z
+

(
d

dz

)
fn−1(z) = −fn(z) (10.1.1.23)

A corollary of this lemma that we use is that for �̃ equal to 1 or 2 we have with W
(�̃)
n

being defined by (10.1.1.17) and Z
(�̃)
n being defined by (10.1.1.16) that

Z
(�̃)
n+1(z)

z
+
W

(�̃)
n+1(z)

n+ 1
=
Z

(�̃)
n+1(z)

z
+

(
1

n + 1

){
Z

(�̃)
n+1(z)

z
+

(
d

dz

)
Z

(�̃)
n+1(z)

}

=

(
1

n + 1

){
((n+ 1) + 1)Z

(�̃)
n+1(z)

z
+

(
d

dz

)
Z

(�̃)
n+1(z)

}
=

(
1

n+ 1

)
Z(�̃)

n (z) (10.1.1.24)

Now using equation (10.1.1.23) of the Lemma we have from the definition (10.1.1.17) of

W
(�̃)
n that

Z
(�̃)
n−1(z)

z
− W

(�̃)
n−1(z)

n
=
Z

(�̃)
n−1(z)

z
−

(
1

n

){
Z

(�̃)
n−1(z)

(
z) +

(
d

dz

)
Z

(�̃)
n−1(z)

}

=
1

n

{
(n− 1)

(
Z

(�̃)
n−1(z)

z

)
−

(
d

dz

)
Z

(�̃)
n−1

}
=
Z

(�̃)
n

n
(10.1.1.25)

10.1.2 The Papperitz Differential Equation and Associated Legendre Functions

The associated Legendre function P
|m|
n (ξ) can be computed from the Rodriques formula

P |m|
n (ξ) = (1 − ξ2)|m|/2

(
d

dξ

)n+|m|
(ξ2 − 1)n (10.1.2.1)

These functions can be derived from the general Papperitz differential equation which
has the form

d2u

dz2
+

{
1 − α− α̃

z − a
+

1 − β − β̃

z − b
+

1 − γ − γ̃

z − c

}
du

dz

+

{
αα̃

(
(a − b)(a − c)

z − a

)
+ ββ̃

(
(b − c)(b − a)

z − b

)
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+ γγ̃

(
(c − a)(c − b)

z − c

)}
u

(z − a)(z − b)(z − c)
= 0 (10.1.2.2)

The differential equation (10.1.2.2) was studied by Riemann ([133], page 206) who de-
noted it using the Riemann P function, or the Riemann P scheme in some literature, as

u(z) = P

⎧⎨
⎩

a b c
α β γ z

α̃ β̃ γ̃

⎫⎬
⎭ (10.1.2.3)

which represents a solution of the differential equation (10.1.2.2). We note that in equation
(10.1.2.2) that every time there is an a, b, or an c in a numerator, there is also one in the
denominator which means that we can take the limit of all terms in the differential equation
(10.1.2.2) or (10.1.2.3) as one or more of these terms approach infinity. Thus, the Riemann
P function defined by

w(z) = P

⎧⎨
⎩

0 ∞ 1
m/2 n+ 1 m/2 z
−m/2 −n −m/2

⎫⎬
⎭ (10.1.2.4)

is a solution of the differential equation

d2w

dz2
+

{
1

z
+

1

z − 1

}
dw

dz
+

[
m2/4

z2(z − 1)
+

(−n)(n+ 1)

z(z − 1)
+

(−m2/4

(z(z − 1))2

]
w = 0 (10.1.2.5)

Collecting terms in (10.1.2.5) gives

d2w

dz2
+

2z − 1

z(z − 1)

dw

dz
+

[
−m2/4 − n(n+ 1)z(z − 1)

(z(z − 1))2

]
w = 0 (10.1.2.6)

If in equation (10.1.2.6) we set

z =
1

2
− ξ

2
(10.1.2.7)

and define
ψ(ξ) = w(z) (10.1.2.8)

we see immediately that

4
d2ψ

dξ2
−

(
8ξ

1 − ξ2

)
dψ

dξ
+ 4

[
−m2 + n(n+ 1)(1 − ξ2

(1 − ξ2)2

]
ψ(ξ) = 0 (10.1.2.9)

Multiplying all terms of (10.1.2.9) by

ξ → (1 − ξ2)

4
(10.1.2.10)

we have

(1 − ξ2)
d2ψ

dξ2
− 2ξ

dψ

dξ
+

[
− m2

(1 − ξ2)
+ n(n+ 1)

]
ψ(ξ) = 0 (10.1.2.11)

which is exactly the differential equation satisfied by the associated Legendre functions ([133],
page 324). The Papperitz representation gives us access to powerful methods for verification
of recursion relationships needed for validation of our brain activity measurement solutions.
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10.1.3 Associated Legendre Function Recursion Relationships

We prove a series of theorems concerning associated Legendre function recursion relationships
needed to validate our brain activity model.

When n is a nonnegative integer and m is a nonnegative integer not larger than n define
negative order associated Legendre functions using the fact that for all nonnegative integers
n and all nonnegative integers m not exceeding m that

Pm
n (x) = (1 − x2)m/2

(
d

dx

)m (
1

2nn!

)(
d

dx

)n

(x2 − 1)n (10.1.3.1)

by
We can interpret the recursion relationships needed in this model for positive or negative

orders through the following definition.
Notice that if you interchange m and −m in equation (10.1.3.5), the new relationship is

consistent.
The following theorem gives us the main identities for associated Legendre functions.
We need the following definition for negative degrees and negative orders

Definition 10.2 For every nonnegative integer n and all integers m we have

Pm
−n−1(x) = Pm

n (x) (10.1.3.2)

which implies
P 0

0−1 = P0(x) = 1 (10.1.3.3)

and for all nonnegative integers n and all integers m ranging from −n to +n we have

P−m
n (x) = (−1)m (n−m)!

(n+m)!
Pm

n (x) (10.1.3.4)

which is equation (2.5.18) of Edmonds ([40]) and(
d

dθ

)
P−m

n (cos(θ)) =

(
(n−m)!

(n +m)!

)(
d

dθ

)
Pm

n (cos(θ)) (10.1.3.5)

The following theorem gives identities needed to establish representation of the vector po-
tential.

Theorem 10.1 If n is a nonnegative integer and m is a nonnegative integer not exceeding
n, then

Pm
n (x) =

(
1 − x2

)m/2 dmPn(x)

dxm
=

{
(1 − x2)

m/2

2nn!

}
dn+m(x2 − 1)n

dxn+m
(10.1.3.6)

We also have the relationship,

sin(θ)Pm
n (cos(θ)) =

(
1

2n + 1

){
Pm+1

n+1 (cos(θ)) − Pm+1
n−1 (cos(θ))

}
(10.1.3.7)
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cos(θ)Pm
n (cos(θ)) =

(n−m+ 1)Pm
n+1(cos(θ)) + (n+m)Pm

n−1(cos(θ))

2n + 1
(10.1.3.8)

and

Pm+1
n (cos(θ)) =

(n +m+ 1) cos(θ)Pm
n (cos(θ)) − (n−m+ 1)Pm

n+1(cos(θ))

sin(θ)
(10.1.3.9)

A data table showing the correctness of (10.1.3.9) is shown below

3 1 = N,M

37. = theta in degrees

4.338762973472225E+00 = (P sub n sup m+1)

4.338762973472225E+00 = [ (n+m+1) \cos(theta) (P sub n sup m) -

(n-m+1) (P sub n+1 sup m )]/\sin(theta)

7 = NOFCAL =number of calculations

3 -3 = N,M

3.615635811226854E-02 = (P sub n sup m+1)

3.615635811226854E-02 = [ (n+m+1) \cos(theta) (P sub n sup m) -

(n-m+1) (P sub n+1 sup m )]/\sin(theta)

(n-m+1) \sin( theta) )

3 -2 = N,M

-1.646786611136893E-01 = (P sub n sup m+1)

-1.646786611136893E-01 = [ (n+m+1) \cos(theta) (P sub n sup m) -

(n-m+1) (P sub n+1 sup m )]/\sin(theta)

(n-m+1) \sin( theta) )

3 -1 = N,M

7.550834780192207E-02 = (P sub n sup m+1)

7.550834780192214E-02 = [ (n+m+1) \cos(theta) (P sub n sup m) -

(n-m+1) (P sub n+1 sup m )]/\sin(theta)

(n-m+1) \sin( theta) )

3 0 = N,M

1.976143933364271E+00 = (P sub n sup m+1)

1.976143933364271E+00 = [ (n+m+1) \cos(theta) (P sub n sup m) -

(n-m+1) (P sub n+1 sup m )]/\sin(theta)

(n-m+1) \sin( theta) )

3 1 = N,M

4.338762973472225E+00 = (P sub n sup m+1)

4.338762973472225E+00 = [ (n+m+1) \cos(theta) (P sub n sup m) -

(n-m+1) (P sub n+1 sup m )]/\sin(theta)

(n-m+1) \sin( theta) )

3 2 = N,M

3.269492411096037E+00 = (P sub n sup m+1)

3.269492411096035E+00 = [ (n+m+1) \cos(theta) (P sub n sup m) -

(n-m+1) (P sub n+1 sup m )]/\sin(theta)

(n-m+1) \sin( theta) )

3 3 = N,M
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0.000000000000000E+00 = (P sub n sup m+1)

1.821731254024130E-15 = [ (n+m+1) \cos(theta) (P sub n sup m) -

(n-m+1) (P sub n+1 sup m )]/\sin(theta)

(n-m+1) \sin( theta) )

We also have

− sin(θ)
dPm

n (cos(θ))

dθ
= (n+ 1) cos(θ)Pm

n (cos(θ)) − (n−m+ 1)Pm
n+1(cos(θ)) (10.1.3.10)

and

− sin(θ)
dPm

n (cos(θ))

dθ
= (n+m)Pm

n−1(cos(θ)) − n cos(θ)Pm
n (cos(θ)) (10.1.3.11)

which together tell us that
dPm

n (cos(θ))

dθ
=

n(n−m+ 1)Pm
n+1(cos(θ)) − (n+ 1)(n +m)Pm

n−1(cos(θ))

(2n + 1) sin(θ)
(10.1.3.12)

Proof of Theorem. Some of these identities are found in Gradshteyn and Ryzhik ([51],
pages 1004-1007) and in Magnus and Oberhettinger ([80]). Gradshteyn and Ryzhik ([51],
page 1005, equation 4 of 8.7333) gives

P µ
ν−1(x)− P µ

ν−1(x) = (2ν + 1)
√

1 − x2P µ−1
ν (x) (10.1.3.13)

which is equivalent to equation (10.1.3.7) of the theorem.
Equation (10.1.3.8) of the theorem is equivalent to equation 2 of section 8.7333 of Grad-

shteyn and Ryzhik ([51], page 1005) which is given in the form

(2ν + 1)xP µ
ν (x) = (ν − µ+ 1)P µ

ν+1(x) + (ν + µ)P µ
ν−1(x) (10.1.3.14)

We prove the validity of equation (10.1.3.12) for all integer values of m and n. Dividing
both sides of equation (10.1.3.10) by n+ 1 gives us

−sin(θ)

n+ 1

dPm
n (cos(θ))

dθ
= cos(θ)Pm

n (cos(θ)) − n−m+ 1

n+ 1
Pm

n+1(cos(θ)) (10.1.3.15)

Dividing both sides of equation (10.1.3.11) by n gives

−sin(θ)

n

dPm
n (cos(θ))

dθ
= − cos(θ)Pm

n (cos(θ)) +
n+m

n
Pm

n−1(cos(θ)) (10.1.3.16)

Adding equations (10.1.3.15) and (10.1.3.16) gives us

(2n + 1)

n(n+ 1)

dPm
n (cos(θ))

dθ
=

1

sin(θ)

[
(n −m+ 1)

(n+ 1)
Pm

n+1(cos(θ)) −
(n+m)

n
Pm

n−1(cos(θ)

]
(10.1.3.17)

Multiplying both sides of equation (10.1.3.17) by the product of n and n + 1 divided by
2n + 1 gives us equation (10.1.3.12). A computer check of this identity for negative as well
as positive values of m is shown below.
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5 3 60.0000000000000 = N,M,THETAD

0.500000000000000 = X = COSTH

-1828.59910844391 = VLEFT=

= (2n+1)\sin(theta)*(d/dtheta)P_{n}^{m}(x)

-1828.59910844391 = VRIGHT=

=(n(n-m+1))P_{n+1}^{m}(x)-(n+1)(n+m)P_{n-1}^{m}(x)

5 -3 = N,M

-9.521484374999995E-003 = DPDTHR(N,M,THETA)

-2.114319833458096E-004 = ALF(N+1,M,COSTH)

6.765823467065927E-003 =ALF(NM1,M,COSTH)

5 -3 60.0000000000000

= N,M,THETAD

0.500000000000000 = X = COSTH

-9.070432085535253E-002 = VLEFT=

= (2n+1)\sin(theta)*(d/dtheta)P_{n}^{m}(x)

-9.070432085535256E-002 = VRIGHT=

=(n(n-m+1))P_{n+1}^{m}(x)-(n+1)(n+m)P_{n-1}^{m}(x)

Another major identity needed to verify that the θ components of the expansion of the
vector potential A in terms of vector spherical harmonics and the expansion in terms of
vector spherical harmonics are identical is the following.

Theorem 10.2 For every nonnegative integer n and every integer m from −n to +n we
have [(

n− | m | +1

n+ 1

)
dP

|m|
n+1(cos(θ))

dθ
−

(
n+ | m |

n

)
dP

|m|
n−1(cos(θ))

dθ

−
(
m2(2n+ 1)

n(n + 1)

)
P

|m|
n (cos(θ))

sin(θ)

]
exp(imφ)

= −(2n+ 1) sin(θ)P |m|
n (cos(θ)) exp(imφ) (10.1.3.18)

Using the definition in equation (10.1.3.4) we also have for all nonegative integers n and all
integers m ranging from −n to +n the relationship[(

n−m+ 1

n+ 1

)
dPm

n+1(cos(θ))

dθ
−

(
n+m

n

)
dPm

n−1(cos(θ))

dθ

−
(
m2(2n + 1)

n(n + 1)

)
Pm

n (cos(θ))

sin(θ)

]
exp(imφ)

= −(2n+ 1) sin(θ)Pm
n (cos(θ)) exp(imφ) (10.1.3.19)

Proof of Theorem. This is obtained by the use of the ordinary differential equation
satisfied by the associated Legendre function and equation (10.1.3.12) A data table showing
the left and right sides of this equations as evaluated for several values of n and m by a
computer program is shown below
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This file is THETAID.DAT produced by ALFTSUM.FOR

We next verify the complex theta identity

We print out left and right sides of the identity

CLEFT =

[\frac{n-|m|+1}{n+1}(d/d \theta)

P_{n+1}^{|m|}(\cos(\theta)) -

\frac{n+|m|}{n}(d/d \theta)

P_{n-1}^{|m|}(\cos( \theta)) -

(mm(2n+1)/(n(n+1))

P_{n}^{|m|}(\cos(\theta))/\sin(\theta)]\exp(im \phi)

CRIGHT =

-(2n+1)\sin(\theta)P_{n}^{|m|}(\cos(\theta))\exp(i m \phi)

33.000000000000000 = THETAD

37.000000000000000 = PHID

1 -1 1 = N,M,MA

(-7.107017754742906E-001,5.355522013238984E-001) = CLEFT

(-7.107017754742910E-001,5.355522013238987E-001) = CRIGHT

1 0 0 = N,M,MA

(-1.370318186463901,0.000000000000000E+000) = CLEFT

(-1.370318186463901,0.000000000000000E+000) = CRIGHT

1 1 1 = N,M,MA

(-7.107017754742906E-001,-5.355522013238984E-001) = CLEFT

(-7.107017754742910E-001,-5.355522013238987E-001) = CRIGHT

2 -2 2 = N,M,MA

(-6.679679545720074E-001,2.329481092797287) = CLEFT

(-6.679679545720080E-001,2.329481092797289) = CRIGHT

2 -1 1 = N,M,MA

(-2.980223308384224,2.245759344243680) = CLEFT

(-2.980223308384225,2.245759344243681) = CRIGHT

2 0 0 = N,M,MA

(-1.511516241731492,0.000000000000000E+000) = CLEFT

(-1.511516241731491,0.000000000000000E+000) = CRIGHT

2 1 1 = N,M,MA

(-2.980223308384224,-2.245759344243680) = CLEFT

(-2.980223308384225,-2.245759344243681) = CRIGHT

2 2 2 = N,M,MA

(-6.679679545720074E-001,-2.329481092797287) = CLEFT

(-6.679679545720080E-001,-2.329481092797289) = CRIGHT

3 -3 3 = N,M,MA

(3.310956837838389,8.625337451925956) = CLEFT

(3.310956837838395,8.625337451925971) = CRIGHT

3 -2 2 = N,M,MA

(-3.921435446811742,13.675670617801000) = CLEFT

(-3.921435446811744,13.675670617801000) = CRIGHT

3 -1 1 = N,M,MA
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(-6.260533297103741,4.717650221835924) = CLEFT

(-6.260533297103741,4.717650221835924) = CRIGHT

3 0 0 = N,M,MA

(-8.262770302945248E-001,0.000000000000000E+000) = CLEFT

(-8.262770302945240E-001,0.000000000000000E+000) = CRIGHT

3 1 1 = N,M,MA

(-6.260533297103741,-4.717650221835924) = CLEFT

(-6.260533297103741,-4.717650221835924) = CRIGHT

3 2 2 = N,M,MA

(-3.921435446811742,-13.675670617801000) = CLEFT

(-3.921435446811744,-13.675670617801000) = CRIGHT

3 3 3 = N,M,MA

(3.310956837838389,-8.625337451925956) = CLEFT

(3.310956837838395,-8.625337451925971) = CRIGHT

4 -4 4 = N,M,MA

(38.405738008763170,23.998568619135260) = CLEFT

(38.405738008763190,23.998568619135280) = CRIGHT

4 -3 3 = N,M,MA

(24.991218464694390,65.104349935749170) = CLEFT

(24.991218464694400,65.104349935749200) = CRIGHT

4 -2 2 = N,M,MA

(-11.793710424451120,41.129556080707920) = CLEFT

(-11.793710424451120,41.129556080707920) = CRIGHT

4 -1 1 = N,M,MA

(-8.599039107647558,6.479840746560134) = CLEFT

(-8.599039107647558,6.479840746560134) = CRIGHT

4 0 0 = N,M,MA

(4.813549172134375E-001,0.000000000000000E+000) = CLEFT

(4.813549172134379E-001,0.000000000000000E+000) = CRIGHT

4 1 1 = N,M,MA

(-8.599039107647558,-6.479840746560134) = CLEFT

(-8.599039107647558,-6.479840746560134) = CRIGHT

4 2 2 = N,M,MA

(-11.793710424451120,-41.129556080707920) = CLEFT

(-11.793710424451120,-41.129556080707920) = CRIGHT

4 3 3 = N,M,MA

(24.991218464694390,-65.104349935749170) = CLEFT

(24.991218464694400,-65.104349935749200) = CRIGHT

4 4 4 = N,M,MA

(38.405738008763170,-23.998568619135260) = CLEFT

(38.405738008763190,-23.998568619135280) = CRIGHT

We prove the following theorem.

Theorem 10.3 For all positive integers n and all nonnegative integers m satisfying

m∈{−n,−(n− 1), · · ·,−1, 0,+1, · · ·,+n} (10.1.3.20)
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we have for
ξ = cos(θ) (10.1.3.21)

the relations

(2n+ 1) cos(θ)P |m|
n (cos(θ)) = (n− | m | +1)P

|m|
n+1(cos(θ)) + (n+ | m |)P |m|

n−1(cos(θ))
(10.1.3.22)

and
(2n + 1) sin(θ)P |m|

n (cos(θ)) = P
|m|+1
n+1 (cos(θ)) − P

|m|+1
n−1 (cos(θ)

= (n+ | m |)(n+ | m | −1)P
|m|−1
n−1 (cos(θ)) − (n− | m | +1)(n− | m | +2)P

|m|−1
n+1 (cos(θ))

(10.1.3.23)

A data snippet showing the calculation of the left and right sides of (10.1.3.23) from data
file PMNRREL.DAT produced by program PMNAT.FOR is

33.0000000000000 = theta in degrees

5 3 = N,M

270.856905936849

= (2n+1)\sin(theta)P_{n}^{m}(\cos(theta))

270.856905936848

= P_{n+1}^{m+1}(\cos(theta))-P_{n-1}^{m+1}(\cos(theta))

270.856905936849 =

(n+m)(n+m-1)P_{n-1}^{m-1}(\cos(theta))

- (n-m+1)(n-m+2)P_{n+1}^{m-1}(\cos(theta))

We need the following identity for validation of the θ component of the (Uq + iVq)/2
term of the expansion of the vector potential of brain activity in terms of vector spherical
harmonics.

Theorem 10.4 For all nonnegative integers n and all nonnegative integers m not exceeding
n we have

(−1)

(
(n−m+ 1)(n−m+ 2)

n+ 1

)(
d

dθ

)
Pm−1

n+1 (cos(θ))

+(−1)

(
(n+m)(n+m− 1)

n

)(
d

dθ

)
Pm−1

n−1 (cos(θ))

+

(
(n+m)(n−m+ 1)(2n + 1)(m− 1)

n(n + 1)

)(
Pm−1

n (cos(θ))

sin(θ)

)
= (2n+ 1) cos(θ)Pn(cos(θ))

(10.1.3.24)

Equation (10.1.3.24) can be proven by expanding the Rodriques representations. A set of
computer output showing the left and right sides of the above equation (10.1.3.24) is shown
below.

The identity for the (U_{q}+iV_{q})/2

theta component

1 1 = N,M
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1.37031818646390

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

1.37031818646390

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

2 1 = N,M

5.74622765853812

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

5.74622765853812

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

2 2 = N,M

3.73164387369620

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

3.73164387369620

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

3 1 = N,M

12.0710583961309

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

12.0710583961309

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

3 2 = N,M

21.9073392084600

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

21.9073392084600

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

3 3 = N,M

14.2267924287275

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)
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14.2267924287275

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

4 1 = N,M

16.5799778218649

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

16.5799778218649

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

4 2 = N,M

65.8862853409620

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

65.8862853409620

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

4 3 = N,M

107.384328776183

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

107.384328776183

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

4 4 = N,M

69.7361984976709

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

69.7361984976710

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

5 1 = N,M

14.5281258312329

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

14.5281258312329

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

5 2 = N,M

133.756953092333

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))
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-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

133.756953092333

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

5 3 = N,M

417.083059659375

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

417.083059659375

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

5 4 = N,M

643.342669204362

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

643.342669204362

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

5 5 = N,M

417.791614409267

=-((n-m+1)(n-m+2)/(n+1))(d/d theta)P_{n+1}^{m-1}(\cos(theta))

-((n+m)(n+m-1)/n)(d/d theta)P_{n-1}^{m-1}(\cos(theta))

+ [(n+m)(n-m+1)(2n+1)(m-1)/(n(n+1))] *

P_{n}^{m}(\cos(theta))/\sin(\theta)

417.791614409267

= (2n+1)\cos(theta)P_{n}^{m}(\cos(theta))

The following identity is used with the φ component of the (Uq+iVq)/2 term for describing
an arbitrarily oriented dipole in the presence of a spherical interface.

Theorem 10.5 For all nonnegative integers n and all integers m we have(
(n−m+ 1)(n−m+ 2)(m− 1)

n + 1

)(
Pm−1

n+1 (cos(θ))

sin(θ)

)

+

(
(n+m)(n+m− 1)(m− 1)

n

)(
Pm−1

n−1 (cos(θ))

sin(θ)

)

−
(

(n+m)(n−m+ 1)(2n+ 1)

n(n+ 1)

){(
d

dθ

)
Pm−1

n (cos(θ))

}
= (2n + 1)Pm

n (cos(θ)) (10.1.3.25)
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This can be proven using the Rodrigues representation of the associated Legendre func-
tions and their derivatives and collecting common powers of the independent variables.

We programmed the left and right sides of the identity (10.1.3.25) and obtained the
following table.

(U_{q}+iV_{q})/2 phi component

N,M = 1 1

1.63391710504508

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

1.63391710504508

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 2 1

6.85159093231951

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

6.85159093231951

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 2 2

4.44947517693149

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

4.44947517693150

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 3 1

14.3930869372256

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)
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-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

14.3930869372256

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 3 2

26.1215071158734

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

26.1215071158734

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 3 3

16.9635050668110

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

16.9635050668110

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 4 1

19.7693569508258

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

19.7693569508258

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 4 2

78.5603881418783

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*
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(d/d theta)P_{n}^{m-1}(\cos(theta))

78.5603881418783

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 4 3

128.041131858547

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

128.041131858547

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 4 4

83.1508832705442

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

83.1508832705442

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 5 1

17.3228039548639

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

17.3228039548639

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 5 2

159.486881028878

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

July 31, 2006 162



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

159.486881028878

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 5 3

497.314530401544

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

497.314530401544

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 5 4

767.098183474380

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

767.098183474381

= (2n+1)P_{n}^{m-1}(\cos(theta))

(U_{q}+iV_{q})/2 phi component

N,M = 5 5

498.159385076279

= ((n-m+1)(n-m+2)(m-1)/(n+1))*

P_{n+1}^{m-1}(\cos(theta))/\sin(theta)

+ ((n+m)(n-m+1)(2n+1)/(n(n+1))*

P_{n-1}^{m-1}(\cos(theta))/\sin(theta)

-(((n+m)(n-m+1)(2n+1))/(n*(n+1)))*

(d/d theta)P_{n}^{m-1}(\cos(theta))

498.159385076280

= (2n+1)P_{n}^{m-1}(\cos(theta))

The following theorem enables us to prove the correctness of the θ component of the
(Uq − iVq)/2 term.

Theorem 10.6 For all nonnegative integers n and all integers m ranging from −n to +n
we have

1

n + 1

(
d

dθ

)
Pm+1

n+1 (cos(θ)) +
1

n

(
d

dθ

)
Pm+1

n−1 (cos(θ))

+
(m+ 1)(2n + 1)

n(n + 1)

Pm+1
n (cos(θ))

sin(θ)
= (2n + 1)Pm

n (cos(θ)) cos(θ) (10.1.3.26)
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We show computer output which compares the left and right sides of the important
identity (10.2.8.4).

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

0 1 = M,N

1.22020992922740 = DPDTH(N+1,M+1,THET0D)

2 1 0.838670567945424 = N,M,X

1.22020992922740 =-SINTH0*DALFF(N+1,M+1,COSTH0)

0.000000000000000E+000 = DPDTH(N-1,M+1,THET0D)

0 1 0.838670567945424 = N,M,X

0.000000000000000E+000 =-SINTH0*DALFF(N-1,M+1,COSTH0)

2.11010496461370

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

2.11010496461370

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

0 2 = M,N

-0.565442402871763 = DPDTH(N+1,M+1,THET0D)

3 1 0.838670567945424 = N,M,X

-0.565442402871763 =-SINTH0*DALFF(N+1,M+1,COSTH0)

0.838670567945424 = DPDTH(N-1,M+1,THET0D)

1 1 0.838670567945424 = N,M,X

0.838670567945424 =-SINTH0*DALFF(N-1,M+1,COSTH0)

2.32753090287902

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

2.32753090287902

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

1 2 = M,N

9.06909745038895 = DPDTH(N+1,M+1,THET0D)
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3 2 0.838670567945424 = N,M,X

9.06909745038895 =-SINTH0*DALFF(N+1,M+1,COSTH0)

0.000000000000000E+000 = DPDTH(N-1,M+1,THET0D)

1 2 0.838670567945424 = N,M,X

0.000000000000000E+000 =-SINTH0*DALFF(N-1,M+1,COSTH0)

5.74622765853812

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

5.74622765853812

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

0 3 = M,N

-5.34647200179526 = DPDTH(N+1,M+1,THET0D)

4 1 0.838670567945424 = N,M,X

-5.34647200179526 =-SINTH0*DALFF(N+1,M+1,COSTH0)

1.22020992922740 = DPDTH(N-1,M+1,THET0D)

2 1 0.838670567945424 = N,M,X

1.22020992922740 =-SINTH0*DALFF(N-1,M+1,COSTH0)

1.27235504935530

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

1.27235504935530

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

1 3 = M,N

12.6559607364621 = DPDTH(N+1,M+1,THET0D)

4 2 0.838670567945424 = N,M,X

12.6559607364621 =-SINTH0*DALFF(N+1,M+1,COSTH0)

2.74063637292780 = DPDTH(N-1,M+1,THET0D)

2 2 0.838670567945424 = N,M,X

2.74063637292780 =-SINTH0*DALFF(N-1,M+1,COSTH0)

12.0710583961309

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /
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\sin(theta)

12.0710583961309

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

2 3 = M,N

56.4830305953196 = DPDTH(N+1,M+1,THET0D)

4 3 0.838670567945424 = N,M,X

56.4830305953196 =-SINTH0*DALFF(N+1,M+1,COSTH0)

0.000000000000000E+000 = DPDTH(N-1,M+1,THET0D)

2 3 0.838670567945424 = N,M,X

0.000000000000000E+000 =-SINTH0*DALFF(N-1,M+1,COSTH0)

21.9073392084600

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

21.9073392084600

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

10.2 Proof of the Vector Potential Expansion Representations of

the Exact Analytical Vector Potential of Brain Activity

In this section we describe two representations of brain activity and prove that they are
identical.

10.2.1 The Basic Addition Theorem

The complex brain tissue permittivity ε(p, (−1)�jω) defines the brain wave propagation con-
stant k(p, (−1)�jω) in terms of the frequency ω and the magnetic permeability µp by the
relationship

k(p, (−1)�jω)2 = ω2µpε(p, (−1)�jω) (10.2.1.1)

The addition theorem expansion coefficient at the qth site rq of brain activity in region
p with degree n and order m is given by for the vector potential A(p,q) is given for � equal
to zero by

c(n,m, �, (−1)�jω, p, q) =(
(n− | m |)!
(n+ | m |)!

)
Z(�)

n (k(p, (−1)�jω)rq)P
|m|
n (cos(θq)) exp(−imφq) (10.2.1.2)

where if � is zero Z
(�)
n (z) is the spherical Bessel function jn(z). Definition (10.2.1.2) and the

addition theorem tell us that

h
(�)
0 (k(p, (−1)�jω)dq) =

exp((−1)�ik(p, (−1)�jω)dq)

(−1)�ik(p, (−1)�jω)dq)
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=
∞∑

n=0

(2n + 1)
m=+n∑
m=−n

c(n,m, 0, (−1)�jω, p, q)P |m|
n (cos(θ)) exp(imφ)h(�)

n (k(p, (−1)�jω)r)

(10.2.1.3)
Computer output illustrating the convergence of this infinite sum is shown in the fol-

lowing table using data from the file AOUT.DAT generated by the FORTRAN program
PMNAT.FOR.

(1.485170053372780E-002,-1.329087450783936E-002) = CK=FK1 in CHECKA

(2.970340106745561E-004,-2.658174901567873E-004) = FK1*r_{0} in CHECKA

(8.911020320236682E-004,-7.974524704703618E-004) = FK1*r in CHECKA

(-556.662106688870,623.150743282911) = initial term of series

= j_{0}(k_{1}R_{1})*h_{0}^{(2)}(k_{1}R)

(-1.418408530107035E-007,1.584980690603384E-007) = NTH TERM OF SERIES

20 = N = term number

(-4.023235067037618E-008,4.495707511743944E-008) = NTH TERM OF SERIES

21 = N = term number

(-9.386450512115296E-009,1.048875725734174E-008) = NTH TERM OF SERIES

22 = N = term number

(-1.430991926411865E-009,1.599041822239793E-009) = NTH TERM OF SERIES

--> SUCCESSFUL CONVERGENCE

7.078081354406533E-013 = ERROR

1.000000000000000E-012 = requested accuracy

(-795.706934681846,890.268319923796) = CSUM

(-795.706934681283,890.268319923166) = EXACT ANSWER

23 = NUMBER OF TERMS

10.2.2 Vector Potential Expansion for the exp((−1)�jωt) Frequency Component
at the qth Brain Activity Site

Using the definition (9.5.2.2) for � equal to 0, we see that vector potential (9.5.2.4) arising
from the frequency component

t→ exp(i(−1)�jωt) (10.2.2.1)

at site q in region p has a the vector spherical harmonic expansion
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A(p,q)(�̃, (−1)�jω, t)) =(
µp(−(−1)�̃ik(p, (−1)�jω) exp(i(−1)�jωt)

4π

) ∞∑
n=0

m=+n∑
m=−n

{
c(n,m, 0, (−1)�jω, p, q)

{

Wq

{
(n−m+ 1)

(
L

(m,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m,�̃,(−1)�jω)
(n+1,p)

)

− (n+m)

(
L

(m,�̃,(−1)�jω)

(n−1,p) − 1

n
N

(m,�̃,(−1)�jω)

(n−1,p)

)
+ im

(
2n + 1

n(n+ 1)

)
M

(m,�̃,(−1)�jω)

(n,p)

}

+

(
Uq − iVq

2

){(
L

(m+1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m+1,�̃,(−1)�jω)
(n+1,p)

)

+

(
L

(m+1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m+1,�̃,(−1)�jω)
(n−1,p)

)
− i

(
(2n+ 1)

n(n + 1)

)
M

(m+1,�̃,(−1)�jω)
(n,p)

−
(
Uq + iVq

2

){
(n−m+ 1)(n−m+ 2)

(
L

(m−1,�̃,(−1)�jω)
(n+1,p) +

1

n + 1
N

(m−1,�̃,(−1)�jω)
(n+1,p)

)

+(n+m)(n+m− 1)

(
L

(m−1,�̃,(−1)�jω)

(n−1,p) − 1

n
N

(m−1,�̃,(−1)�jω)

(n−1,p)

)

+(n+m)(n−m+ 1)

(
i(2n+ 1)

n(n+ 1)

)
M

(m−1,�̃,(−1)�jω)
(n,p)

}}}
(10.2.2.2)

We need this representation in order to solve the electromagnetic boundary value problem
and predict measurable fields outside the head. We compare the er, the eθ, and the eφ

components of the expansion given by (10.2.2.2) and the exact analytical addition theorem
expansion for the same vector potential (9.5.2.4) is, using (9.5.2.2) given by

Ã(p,q)(�̃, (−1)�jω, t)) =(
µp(−(−1)�̃ik(p, (−1)�jω) exp(i(−1)�jωt)

4π

) ∞∑
n=0

m=+n∑
m=−n

{
c(n,m, 0, (−1)�jω, p, q)

{

(2n + 1)P |m|
n (cos(θ)) exp(imφ)Z(�̃)

n (k(p, (−1)�r)

{

Wq [cos(θ)er − sin(θ)eθ] +

(
Uq − iVq

2

)
exp(iφ) [sin(θ)er + cos(θ)eθ + ieφ]

+

(
Uq + iVq

2

)
exp(−iφ) [sin(θ)er + cos(θ)eθ − ieφ]

}}
(10.2.2.3)

We prove the following theorem.

Theorem 10.7 The vector potentials defined by (10.2.2.2) and (10.2.2.3) are identical.
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Proof of Theorem. We define the common factor appearing in every summand of both
(10.2.2.2) and (10.2.2.3) as

C(p, �̃, �, j, ω, n,m, q) =(
µp(−(1)�̃ik(p, (−1)�jω) exp(i(−1)�jωt)

4π

)
c(n,m, 0, (−1)�jωp, q) (10.2.2.4)

where the propagation constant

(p, (−1)�jω) → k(p, (−1)�jω)

is defined by (9.5.2.1) and the common factor

(n,m, �̃, (−1)�jωp, q) → c(n,m, �̃, (−1)�jωp, q)

is defined by (9.5.2.2) and the transmembrane current direction at brain activity site q,

q → (Uq, Vq ,Wq)

is given by (9.5.2.5). The theorem’s proof is divided into 9 parts showing that the dot
products with respect to er, eθ, or eφ of the partial derivatives of the two representations of

(p, q, �̃, (−1)�jω, t) → Ã(p,q)(�̃, (−1)�jω, t))

with respect to each component of

q → (Wq, (Uq − iVq)/2, (Uq + iVq)/2) (10.2.2.5)

followed by the partial derivative with respect to the C(p, �̃, �, j, ω, n,m, q) defined by (10.2.2.4)
are identical.

This important theorem shows that we can represent the magnetic and electric vectors
stimulated by brain activity in terms of vector spherical harmonics. This enables us to
predict the external measurement assessment of brain activity.

For the first part of nine parts of the theorem we show that(
∂

∂((Uq − iVq)/2)

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · er =

(
∂

∂((Uq − iVq)/2)

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)additiontheorem · er

(10.2.2.6)
We carry out the proof in nine steps showing that the radial, θ, and φ components of the

multiples of W , (U− iV )/2, and (U+ iV )/2 in equations (10.2.2.2) and (10.2.2.3) are exactly
the same. We make repeated use of the Lemma. If fn(z) represents a spherical Bessel or
Hankel function that is a solution of the differential equation (9.4.1.1), then for all indices n
or, in particular, for

fn(z)∈
{
jn(z), yn(z), h

(1)
n (z), h(2)

n (z)
}

(10.2.2.7)

that fn satisfies the recursion relationship (10.1.1.22) and (10.1.1.23)
To prove the theorem we need 9 separate formulae for the projections of the vector

fields (9.4.1.12), (9.4.1.13), and (9.4.1.15) defining the vector spherical harmonics used in
our expansion on the unit vectors er, eθ, and eφ.
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Lemma 10.2 For the vector field

L
(m,�̃,(−1)�jω)
(n,p) =

[(
d

dz

)
Z(�̃)

n (z)C(m,n)(θ, φ) +
Z

(�̃)
n (z)

z
B(m,n)(θ, φ)

]
|z=k(p,(−1)�jω)r (10.2.2.8)

where the surface vector fields

(m,n, θ, φ) →
(
B(m,n)(θ, φ),C(m,n)(θ, φ)

)
(10.2.2.9)

are defined by (9.4.1.5), and (9.4.1.3), respectively and Z
(�̃)
n (z) is defined by (10.1.1.16) then

for the associated Legendre function P
|m|
n (ξ) defined by (10.1.2.1) which for ξ equal to cos(θ)

satisfies (9.4.1.2) we have

L
(m,�̃,(−1)�jω)
(n,p) · er =

[(
d

dz

)
Z(�̃)

n (z)P |m|
n (cos(θ)) exp(imφ)

]
|z=k(p,(−1)�jω)r (10.2.2.10)

where er is defined by (5.2.4.2)

L
(m,�̃,(−1)�jω)
(n,p) · eθ =

[
Z

(�̃)
n (z)

z

(
d

dθ

)
P |m|

n (cos(θ)) exp(imφ)

]
|z=k(p,(−1)�jωr (10.2.2.11)

where eθ is given by (5.2.4.3), and finally

L
(m,�̃,(−1)�jω)

(n,p) · eφ =

[
Z

(�̃)
n (z)

z
im

(
P

|m|
n (cos(θ))

sin(θ)

)
exp(imφ)

]
|z=k(p,(−1)�jωr (10.2.2.12)

where eφ is given by (5.2.4.4).

The next lemma gives us the projection of the vector field

M
(m,�̃,(−1)�jω)
(n,p) = Z(�̃)

n (k(p, (−1)�jω)r)

[
im

P
|m|
n (cos(θ))

sin(θ)
eθ −

(
d

dθ

)
P |m|

n (cos(θ))eφ

]
exp(imφ)

(10.2.2.13)
onto the unit vectors in spherical coordinates.

Lemma 10.3 For the vector field defined by (10.2.2.13) and for the unit vector er is defined
by (5.2.4.2) we have

M
(m,�̃,(−1)�jω)
(n,p) · er = 0 (10.2.2.14)

for the unit length vector eθ defined by (5.2.4.3) we have

M
(m,�̃,(−1)�jω)
(n,p) · eθ = Z(�̃)

n (k(p, (−1)�jω)r)im

(
P

|m|
n (cos(θ))

sin(θ)

)
exp(imφ) (10.2.2.15)

and for the unit vector eφ defined by (5.2.4.4) we have

M
(m,�̃,(−1)�jω)

(n,p) · eφ = Z(�̃)
n (k(p, (−1)�jω)r)

[(
d

dθ

)
P |m|

n (cos(θ))

]
exp(imφ) (10.2.2.16)
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The last three projection equations that we use in the proof are given by the following
lemma.

Lemma 10.4 If Z
(�̃))
n is defined by (10.1.1.16) and W

(�̃))
n is defined by (10.1.1.17), then

N
(m,�̃,(−1)�jω)
(n,p) = n(n+ 1)

(
Z

(�̃)
n (z)

z

)
|z=k(p,(−1)�jω)r P

|m|
n (cos(θ)) exp(imφ)er

+W (�̃)
n (z) |z=k(p,(−1)�jω)r

[(
d

dθ

)
P |m|

n (cos(θ))eθ + im

(
P

|m|
n (cos(θ))

sin(θ)

)
eφ

]
exp(imφ)

(10.2.2.17)
From (10.2.2.17) we have

N
(m,�̃,(−1)�jω)
(n,p) · er = n(n+ 1)

{[
Z

(�̃)
n (z)

z

]
|z=k(p,(−1)�jω)r

}
P |m|

n (cos(θ)) exp(imφ) (10.2.2.18)

N
(m,�̃,(−1)�jω)

(n,p) · eθ = W (�̃)
n (z) |z=k(p,(−1)�jω)r

(
d

dθ

)
P |m|

n (cos(θ)) exp(imφ) (10.2.2.19)

and

N
(m,�̃,(−1)�jω)
(n,p) · eφ = W (�̃)

n (z) |z=k(p,(−1)�jω)r

(
P

|m|
n (cos(θ))

sin(θ)

)
exp(imφ) (10.2.2.20)

We defined a common factor appearing in the vector spherical harmonic expansion
(10.2.2.2) and the addition theorem expansion (10.2.2.3) of the vector potential by (10.2.2.4).

10.2.3 The r Component of the Wq Term

We consider the vector potentials defined by (10.2.2.2) using the three vector spherical har-
monics

(n, p,m, �̃, (−1)�jω) →
(
L

(m,�̃,(−1)jω)
(n,p) ,M

(m,�̃,(−1)jω)
(n,p) ,N

(m,�̃,(−1)jω)
(n,p) ,

)
(10.2.3.1)

defined by (9.4.1.12), (9.4.1.13), and (9.4.1.15) and (10.2.2.3)
We prove the following theorem

Theorem 10.8 For the spherical Harmonic representation vector potential defined by (10.2.2.2)
and the addition theorem vector potential defined by (10.2.2.3) we have(

∂

∂(Wq/2)

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · er =

(
∂

∂(Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)additiontheorem · er (10.2.3.2)
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Proof of Theorem. The left side of (10.2.3.2) is given by(
∂

∂(Wq/2)

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · er

= (n−m+ 1)

[
L

(m,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m,�̃,(−1)�jω)
(n+1,p)

]
· er

+(−1)(n+ | m |)
[
L

(m,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m,�̃,(−1)�jω)
(n−1,p)

]
· er + im

(
2n+ 1

n(n + 1)

)
M

(m,�̃,(−1)�jω)
(n,p) · er

=

{
(n−m+ 1)

[(
d

dz

)
Z

(�̃)
n+1(z) +

(n+ 1)(n + 2)

n+ 1

(
Z

(�̃)
n+1(z)

z

)]
Pm

n+1(cos(θ))

+ (−1)(n+m)

[(
d

dz

)
Z

(�̃)
n−1(z) −

(
(n − 1)n

n

)(
Z

(�̃)
n−1(z)

z

)]
Pm

n−1(cos(θ))

}
exp(imφ) |z=k(p,(−1)�jω)r

(10.2.3.3)
Substituting the recursion relationships (10.1.1.24), and (10.1.1.23) into (10.2.3.3) we have(

∂

∂(Wq/2)

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · er

=
[
(n−m+ 1)Pm

n+1(cos(θ)) + (n−m)Pm
n−1(cos(θ))

]
Z(�̃)

n (z) exp(imφ) |z=k(p,(−1)�jω)r

(10.2.3.4)
Now subsituting the associated Legendre function relationship (10.1.3.22) into (10.2.3.4)
gives us(

∂

∂(Wq/2)

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · er

= (2n+ 1) cos(θ)Pm
n (cos(θ))Z(�̃)

n (z) exp(imφ) |z=k(p,(−1)�jω)r (10.2.3.5)

which is exactly the right side of equation (10.2.3.2) which is also exactly the er component
of the Wq term of (10.2.2.3). This proves the theorem.

10.2.4 The θ Component of the Wq Term

We consider the vector potentials defined by (10.2.2.2) using the three vector spherical har-
monics

(n, p,m, �̃, (−1)�jω) →
(
L

(m,�̃,(−1)jω)
(n,p) ,M

(m,�̃,(−1)jω)
(n,p) ,N

(m,�̃,(−1)jω)
(n,p) ,

)
(10.2.4.1)

defined by (9.4.1.12), (9.4.1.13), and (9.4.1.15) and (10.2.2.3)
We prove the following theorem
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Theorem 10.9 For the spherical Harmonic representation vector potential defined by (10.2.2.2)
and the addition theorem vector potential defined by (10.2.2.3) we have(

∂

∂Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · eθ =

(
∂

∂Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)additiontheorem · eθ (10.2.4.2)

Proof of Theorem. The left side of equation (10.2.4.2) after substituting equation (10.2.2.2)
is (

∂

∂Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · eθ

= (n−m+ 1)

[
L

(m,�̃,(−1)jω)
(n+1,p) +

1

n + 1
N

(m,�̃,(−1)jω)
(n+1,p)

]
· eθ

+(−1)(n+m)

[
L

(m,�̃,(−1)jω)
(n−1,p) +

1

n
N

(m,�̃,(−1)jω)
(n−1,p)

]

+im

(
2n+ 1

n(n + 1)

)
M

(m,�̃,(−1)jω)

(n,p) · eθ (10.2.4.3)

Substituting (9.4.1.12), (9.4.1.13), (9.4.1.15), (9.4.1.4), (9.4.1.5), and (9.4.1.3) into (10.2.4.3)
gives us (

∂

∂Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · eθ

{
(n−m+ 1)

[
Z

(�̃)
n+1(z)

z
+
W

(�̃)
n+1(z)

n+ 1

](
d

dθ

)
Pm

n+1(cos(θ))

+(−1)(n+m)

[
Z

(�̃)
n−1(z)

z
+
W

(�̃)
n−1(z)

n

](
d

dθ

)
Pm

n+1(cos(θ))

+ im

(
2n + 1

(n(n+ 1)

)(
imPm

n (cos(θ))

sin(θ)

)
Z(�̃)

n (z)

}
exp(imφ) |z=k(p,(−1)�jω) (10.2.4.4)

Substituting the spherical Bessel function recursions relationships (10.1.1.24) and (10.1.1.25)
into (10.2.4.4) gives us(

∂

∂Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · eθ

=

{ [(
n−m+ 1

n + 1

)(
d

dθ

)
Pm

n+1(cos(θ)) −
(
n+m

n

)(
d

dθ

)
Pm

n−1(cos(θ))

]

+ (−1)

(
m2(2n + 1)

n(n+ 1)

)(
Pm

n (cos(θ))

sin(θ)

)}
Z(�̃)

n (z) exp(imφ) |z=k(p,(−1)�jω)r (10.2.4.5)
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Substituting the associated Legendre function recursion relationship (10.1.3.18) into (10.2.4.5)
gives us (

∂

∂Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · eθ

= −(2n+ 1)Z(�̃)
n (z) sin(θ)Pm

n (cos(θ)) exp(imφ) |z=k(p,(−1)�jω)r (10.2.4.6)

which proves the theorem

10.2.5 The φ Component of the Wq Term

We consider the vector potentials defined by (10.2.2.2) using the three vector spherical har-
monics

(n, p,m, �̃, (−1)�jω) →
(
L

(m,�̃,(−1)jω)
(n,p) ,M

(m,�̃,(−1)jω)
(n,p) ,N

(m,�̃,(−1)jω)
(n,p) ,

)
(10.2.5.1)

defined by (9.4.1.12), (9.4.1.13), and (9.4.1.15) and (10.2.2.3) for the exact analytical expres-
sion and show, in spite of the fact that there is a φ component in every term of (10.2.2.2)
that they all cancel out exactly using the remarkable associated Legendre function identity
(10.1.3.12).(

∂

∂Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · eφ =

(
∂

∂Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)additiontheorem · eφ (10.2.5.2)

From (10.2.2.2) the left side of equation (10.2.5.2) is

(n−m+ 1)

[
L

(m,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
L

(m,�̃,(−1)�jω)
(n+1,p)

]
· eφ

+(−1)(n+m)

[
L

(m,�̃,(−1)�jω)
(n−1,p) − 1

n
L

(m,�̃,(−1)�jω)
(n−1,p)

]
· eφ

+im

(
2n + 1

n(n+ 1)

)
M

(m,�̃,(−1)�jω)
(n,p) · eφ

=

{
(n−m+ 1)

[
Z

(�̃)
n+1(z)

z
+

1

n+ 1
W

(�̃)
n+1(z)

]
im

(
Pm

n+1(cos(θ))

sin(θ)

)
exp(imφ)

+(−1)(n+m)

[
Z

(�̃)
n−1(z)

z
− 1

n
W

(�̃)
n−1(z)

]
im

(
Pm

n−1(cos(θ))

sin(θ)

)
exp(imφ)

+

[
2n + 1

n(n+ 1)
Z(�̃)

n (z)

](
− d

dθ

)
Pm

n (cos(θ)) exp(imφ)

}
|z=k(p,(−1)�jω)r (10.2.5.3)
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Substituting (10.1.1.24) and (10.1.1.25) into (10.2.5.3) gives us(
∂

∂Wq

)(
∂

∂C(p, �̃, (−1)�jω, n,m, q))

)
A(p,q)(�̃, (−1)�jω)sphericalharmonics · eφ

=

{ (
n−m+ 1

n+ 1

Pm+1
n+1 (cos(θ))

sin(θ)

)
+ (−1)

(
n+m

n

Pm+1
n−1 (cos(θ))

sin(θ)

)

−
(

2n+ 1

n(n + 1)

)(
d

dθ

)
Pm

n (cos(θ))

}
Z(�̃)

n (z)im exp(im(φ) |z=k(p,(−1)�jω)r (10.2.5.4)

Substituting the recursion relationship (10.1.3.12) or equivalently (10.1.3.17) into (10.2.5.4)
shows that the φ component of the vector potential is exactly zero as it should be.

10.2.6 The Radial Component of the (Uq − iVq)/2 Term

We begin by considering the radial component that multiplies (Uq − iVq)/2 where q is the
index of a potential site of brain activity. We use the explicit definitions (9.4.1.12), (9.4.1.13),
and (9.4.1.15) for the vector spherical harmonics and observe that(

Uq − iVq

2

){(
L

(m+1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m+1,�̃,(−1)�jω)
(n+1,p)

)

+

(
L

(m+1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m+1,�̃,(−1)�jω)
(n−1,p)

)
− i

(
(2n+ 1)

n(n+ 1)

)
M

(m+1,�̃,(−1)�jω)
(n,p)

}
· er =

{(
Uq − iVq

2

)[(
d

dz

)
Z

(�̃)
n+1 +

(n+ 1)(n + 2)

n+ 1

(
Z

(�̃)
n+1(z)

z

)]
|z=k(p,(−1)�jω)r P

m+1
n+1 (cos(θ))

+

[(
d

dz

)
Z

(�̃)
n−1(z)−

(
(n− 1)n

n

)
Z

(�̃)
n−1(z)

z

]
|z=k(p,(−1)�jω)r P

m+1
n−1 (cos(θ))

}
exp(i(m+ 1)φ)

(10.2.6.1)
Substituting the spherical Hankel function relationships (10.1.1.24) and (10.1.1.25) into
(10.2.6.1) gives us(

Uq − iVq

2

){(
L

(m+1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m+1,�̃,(−1)�jω)
(n+1,p)

)

+

(
L

(m+1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m+1,�̃,(−1)�jω)
(n−1,p)

)
− i

(
(2n+ 1)

n(n+ 1)

)
M

(m+1,�̃,(−1)�jω)
(n,p)

}
· er =

=

(
Uq − iVq

2

)
Z(�̃)

n (z) |z=k(p,(−1)�jω)

[
P

|m|+1
n+1 (cos(θ)) − P

|m|+1
n−1

]
exp(i(m+ 1)φ) (10.2.6.2)

Substituting the associated Legendre function recursion relationship (10.1.3.23) into (10.2.6.2)
gives us (

Uq − iVq

2

){(
L

(m+1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m+1,�̃,(−1)�jω)
(n+1,p)

)
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+

(
L

(m+1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m+1,�̃,(−1)�jω)
(n−1,p)

)
− i

(
(2n+ 1)

n(n+ 1)

)
M

(m+1,�̃,(−1)�jω)
(n,p)

}
· er =

=

(
Uq − iVq

2

)
Z(�̃)

n (z) |z=k(p,(−1)�jω)

[
(2n+ 1)P |m|

n (cos(θ))
]
exp(i(m+ 1)φ) (10.2.6.3)

which exactly matches the corresponding term in (10.2.2.3)

10.2.7 The Radial Component of the (Uq + iVq)/2 Term

We now verify that the radial component of the (m,n) term of the multiple of (Uq + iVq)/2
for the spherical harmonic expansion exactly matches the radial component of the (m,n)
term of the addition theorem expansion.

Theorem 10.10(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · er =

(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)additiontheorem · er

(10.2.7.1)

Proof of Theorem For the spherical harmonics expansion we have(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · er =

−
{

(n− | m | +1)(n− | m | +2)

(
L

(m−1,�̃,(−1)�jω)

(n+1,p) +
1

n+ 1
N

(m−1,�̃,(−1)�jω)

(n+1,p)

)

+(n+ | m |)(n+ | m | −1)

(
L

(m−1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m−1,�̃,(−1)�jω)
(n−1,p)

)

+ (n+ | m |)(n− | m | +1)

(
i(2n+ 1)

n(n+ 1)

)
M

(m−1,�̃,(−1)�jω)
(n,p)

}
· er

= −
{

(n− | m | +1)(n− | m | +2)

[(
d

dz

)
Z

(�̃)
n+1(z)

+
1

n+ 1
(n+ 1)(n + 2)

(
Z

(�̃)
n+1(z)

z

)]
|z=k(p,(−1)�jω)r P

|m|−1
n+1 (cos(θ)) exp(imφ) exp(−iφ)

(n+ | m |)(n+ | m | −1)

[(
d

dz

)
Z

(�̃)
n−1(z)

−1

n
n(n− 1)

(
Z

(�̃)
n−1(z)

z

)]
|z=k(p,(−1)�jω)r P

|m|−1
n−1 (cos(θ)) exp(imφ) exp(−iφ)

}
(10.2.7.2)
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Substituting the spherical Bessel function recursion relationships (10.1.1.22) and (10.1.1.23)
into (10.2.7.2) gives us(

∂

∂(Uq + iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · er

= Z(�̃)
n |z=k(p,(−1)�jω)r

[
(n− | m | +1)(n− | m | +2)P

|m|−1)
n+1 (cos(θ))

− (n+ | m |)(n+ | m | −1)P
|m|−1
n−1 (cos(θ))

]
exp(i(m− 1)φ)) (10.2.7.3)

Substituting the associated Legendre function recursion relationship (10.1.3.23) into (10.2.7.3)
gives us(

∂

∂(Uq + iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · er

= Z(�̃)
n |z=k(p,(−1)�jω)r (2n + 1)P |m|

n (cos(θ)) exp(imφ) exp(−iφ) (10.2.7.4)

which corresponds to this term of the addition theorem expansion.

10.2.8 The θ component of the (Uq − iVq)/2 Term

We now state a theorem concerning the θ component of the

q → (Uq − iVq)/2

term.

Theorem 10.11(
∂

∂(Uq − iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eθ =

(
∂

∂(Uq − iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)additiontheorem · eθ

(10.2.8.1)

Proof of Theorem. Using (10.2.8.1) and (10.2.2.2) we have the left side of (10.2.8.1) is{(
L

(m+1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m+1,�̃,(−1)�jω)
(n+1,p)

)

+

(
L

(m+1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m+1,�̃,(−1)�jω)
(n−1,p)

)
− i

(
(2n + 1)

n(n+ 1)

)
M

(m+1,�̃,(−1)�jω)
(n,p)

}
· eθ

=

{(
d

dθ

)
Pm+1

n+1 (cos(θ))

[
Z

(�̃)
n+1(z)

z
+
W

(�̃)
n

n+ 1

]
exp(i(m+ 1)φ)
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(
d

dθ

)
Pm+1

n−1 (cos(θ))

[
Z

(�̃)
n−1(z)

z
− W

(�̃)
n−1(z)

z

]
exp(i(m+ 1)φ)

−i
(

(2n + 1)i(m+ 1)

n(n+ 1)

)
Z(�̃)

n (z)

(
Pm+1

n (cos(θ))

sin(θ)
exp(i(m+ 1)φ)

)}
(10.2.8.2)

Using the recursion relationships (10.1.1.24) and (10.1.1.25) in (10.2.8.2) we have that the
left side of (10.2.8.1) is(

∂

∂(Uq − iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eθ =

(
d

dθ

)
Pm+1

n+1 (cos(θ))

(
Z

(�̃)
n (z)

n+ 1

)
exp(i(m+ 1)φ)

+

(
d

dθ

)
Pm+1

n−1 (cos(θ))

(
Z

(�̃)
n (z)

n

)
exp(i(m+ 1)φ)

+

(
(m+ 1)(2n+ 1)

n(n+ 1)

)
Pm+1

n (cos(θ))

sin(θ)
exp(i(m+ 1)φ) (10.2.8.3)

We next use the following lemma.

Lemma 10.5 For all nonnegative integers n and all integers m ranging from −n to +n we
have

1

n + 1

(
d

dθ

)
Pm+1

n+1 (cos(θ)) +
1

n

(
d

dθ

)
Pm+1

n−1 (cos(θ))

+
(m+ 1)(2n + 1)

n(n + 1)

Pm+1
n (cos(θ))

sin(θ)
= (2n+ 1)Pm

n (cos(θ)) cos(θ) (10.2.8.4)

Proof of Lemma. Equation (10.2.8.4) or (10.1.3.26) relates derivatives of associated Leg-
endre function to the product of the cosine function and the associated Legendre function.

We show computer output which compares the left and right sides of the important
identity (10.2.8.4).

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

0 1 = M,N

1.22020992922740 = DPDTH(N+1,M+1,THET0D)

2 1 0.838670567945424 = N,M,X

1.22020992922740 =-SINTH0*DALFF(N+1,M+1,COSTH0)

0.000000000000000E+000 = DPDTH(N-1,M+1,THET0D)

0 1 0.838670567945424 = N,M,X

0.000000000000000E+000 =-SINTH0*DALFF(N-1,M+1,COSTH0)

2.11010496461370
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= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

2.11010496461370

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

0 2 = M,N

-0.565442402871763 = DPDTH(N+1,M+1,THET0D)

3 1 0.838670567945424 = N,M,X

-0.565442402871763 =-SINTH0*DALFF(N+1,M+1,COSTH0)

0.838670567945424 = DPDTH(N-1,M+1,THET0D)

1 1 0.838670567945424 = N,M,X

0.838670567945424 =-SINTH0*DALFF(N-1,M+1,COSTH0)

2.32753090287902

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

2.32753090287902

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

1 2 = M,N

9.06909745038895 = DPDTH(N+1,M+1,THET0D)

3 2 0.838670567945424 = N,M,X

9.06909745038895 =-SINTH0*DALFF(N+1,M+1,COSTH0)

0.000000000000000E+000 = DPDTH(N-1,M+1,THET0D)

1 2 0.838670567945424 = N,M,X

0.000000000000000E+000 =-SINTH0*DALFF(N-1,M+1,COSTH0)

5.74622765853812

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

5.74622765853812

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2
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0.287979326579064 = THET0D*PI/DFLOAT(180)

0 3 = M,N

-5.34647200179526 = DPDTH(N+1,M+1,THET0D)

4 1 0.838670567945424 = N,M,X

-5.34647200179526 =-SINTH0*DALFF(N+1,M+1,COSTH0)

1.22020992922740 = DPDTH(N-1,M+1,THET0D)

2 1 0.838670567945424 = N,M,X

1.22020992922740 =-SINTH0*DALFF(N-1,M+1,COSTH0)

1.27235504935530

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

1.27235504935530

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

1 3 = M,N

12.6559607364621 = DPDTH(N+1,M+1,THET0D)

4 2 0.838670567945424 = N,M,X

12.6559607364621 =-SINTH0*DALFF(N+1,M+1,COSTH0)

2.74063637292780 = DPDTH(N-1,M+1,THET0D)

2 2 0.838670567945424 = N,M,X

2.74063637292780 =-SINTH0*DALFF(N-1,M+1,COSTH0)

12.0710583961309

= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

12.0710583961309

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

0.575958653158129 = THETHA0

33.0000000000000 = THET0D

1.00000000000000 = COSTH0**2+SINTH0**2

0.287979326579064 = THET0D*PI/DFLOAT(180)

2 3 = M,N

56.4830305953196 = DPDTH(N+1,M+1,THET0D)

4 3 0.838670567945424 = N,M,X

56.4830305953196 =-SINTH0*DALFF(N+1,M+1,COSTH0)

0.000000000000000E+000 = DPDTH(N-1,M+1,THET0D)

2 3 0.838670567945424 = N,M,X

0.000000000000000E+000 =-SINTH0*DALFF(N-1,M+1,COSTH0)

21.9073392084600
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= (1/(n+1))(d/d theta)P_{n+1}^{m+1}(\cos(theta))

+ (1/n)(d / d theta)P_{n-1}^{m+1}(\cos(theta))

+ [(m+1)(2n+1))/(n(n+1))]P_{n}^{m+1}(\cos(theta)) /

\sin(theta)

21.9073392084600

= (2n+1)P_{n}^{m}(\cos(theta)) \cos(theta)

Substituting (10.2.8.4) into (10.2.8.3) gives us the relationship(
∂

∂(Uq − iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eθ

= {(2n+ 1)Pm
n (cos(θ))} cos(θ) (10.2.8.5)

which is the right side of (10.2.8.1) which proves the theorem.

10.2.9 The φ Component of the (Uq − iVq)/2 Term

We now state a theorem concerning the φ component of the

q → (Uq − iVq)/2

term.

Theorem 10.12(
∂

∂(Uq − iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eφ =

(
∂

∂(Uq − iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)additiontheorem · eφ

(10.2.9.1)

Proof of the Theorem. We observe that the left side of equation (10.2.9.1) is(
∂

∂(Uq − iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eφ =

{(
L

(m+1,�̃,(−1)�jω)

(n+1,p) +
1

n+ 1
N

(m+1,�̃,(−1)�jω)

(n+1,p)

)

+ +

(
L

(m+1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m+1,�̃,(−1)�jω)
(n−1,p)

)
− i

(
(2n + 1)

n(n+ 1)

)
M

(m+1,�̃,(−1)�jω)
(n,p)

}
· eφ
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10.2.10 The θ Component of the (Uq + iVq)/2 Term

Now we carry out the proof for the θ component of the (Uq + iVq)/2 term.

Theorem 10.13 If the vector potential at brain activity site q is (10.2.2.2) for the vector
spherical harmonic expansion and by (10.2.2.3) for the addition theorem expansion and the
dipole direction giving the transmembrane current direction at site q is given by (9.5.2.6),
and the coefficient

(p, q, �̃, (−1)�jω,m, t) → C(p, q, �̃, (−1)�jω, n,m, t) (10.2.10.1)

is defined by (10.2.2.4) then(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, q, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eθ =

(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)additiontheorem · eθ

(10.2.10.2)

Proof of Theorem. From equation (10.2.2.2) we see that the left side of (10.2.10.2) is(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, q, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eθ =

−
{

(n−m+ 1)(n−m+ 2)

[
L

(m−1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m−1,�̃,(−1)�jω)
(n+1,p)

]

+(n+m)(n+m− 1)

[
L

(m−1,�̃,(−1)�jω)
(n−1,p) − 1

n1
N

(m−1,�̃,(−1)�jω)
(n−1,p)

]

+ (n+m)(n−m+ 1)

(
i(2n+ 1)

n(n+ 1)

)
M

(m−1,�̃,(−1)�jω)
(n,p)

}
· eθ (10.2.10.3)

The exact value of the right side of (10.2.10.2) is(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)additiontheorem · eθ

= (2n+ 1) cos(θ)Pm
n (cos(θ))Z(�̃)

n (z) exp(i(m− 1)φ) |z=k(p,(−1)�jω)r (10.2.10.4)

We need to compute

−eθ ·
{

(n −m+ 1)(n −m+ 2)

(
L

(m−1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m−1,�̃,(−1)�jω)
(n+1,p)

)

+(n+m)(n+m− 1)

(
L

(m−1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m−1,�̃,(−1)�jω)
(n−1,p)

)

+(n+m)(n−m+ 1)

(
i(2n+ 1)

n(n+ 1)

)
M

(m−1,�̃,(−1)�jω)
(n,p)

}
(10.2.10.5)

We begin with the following
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Lemma 10.6 For all nonnegative integers n and all integers m with m − 1 not exceeding
n+ 1 we have for

(n, p,m, �̃, (−1)�jω) →
(
L

(m−1,�̃,(−1)�jω)
(n+1,p) ,N

(m−1,�̃,(−1)�jω)
(n+1,p)

)
(10.2.10.6)

defined by (9.4.1.12) and (9.4.1.15) we have[
L

(m−1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m−1,�̃,(−1)�jω)
(n+1,p)

]
· eθ

=

(
Z

(�̃)
n (z)

n + 1

)(
d

dθ

)
Pm−1

n+1 (cos(θ)) exp(i(m− 1)φ) |z=k(p,(−1)�jω)r (10.2.10.7)

where
(n, z) → Z(�̃)

n (z) (10.2.10.8)

is defined by (10.1.1.16)

(n, z) → W (�̃)
n (z) (10.2.10.9)

is defined by (10.1.1.17) and

(n,m, θ) → Pm−1
n+1 (cos(θ)) (10.2.10.10)

is defined by (10.1.2.1)

Proof of Lemma. From the definitions (9.4.1.4), (9.4.1.5), and (9.4.1.3) of the standard
vector fields

(m,n, θ) →
(
A(m,n)(θ, φ),B(m,n)(θ, φ),C(m,n)(θ, φ)

)
(10.2.10.11)

(9.4.1.12) and (9.4.1.15) we have[
L

(m−1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m−1,�̃,(−1)�jω)
(n+1,p)

]
· eθ

=

[
Z

(�̃)
n+1(z)

z

(
d

dθ

)
Pm−1

n+1 (cos(θ)) exp(i(m− 1)φ)

+
W

(�̃)
n+1(z)

n+ 1

(
d

dθ

)
Pm−1

n+1 (cos(θ)) exp(i(m− 1)φ)

]
|z=k(p,(−1)�jω)r

=

[
Z

(�̃)
n+1(z)

z
+
W

(�̃)
n+1(z)

n+ 1

](
d

dθ

)
Pm−1

n+1 (cos(θ)) exp(i(m− 1)φ) |z=k(p,(−1)�jω)r

=
Z

(�̃)
n (z)

n+ 1

(
d

dθ

)
Pm−1

n+1 (cos(θ)) exp(i(m− 1)φ) |z=k(p,(−1)�jω)r (10.2.10.12)

where in (10.2.10.12) we used the relation (10.1.1.24).
We also need the following.
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Lemma 10.7 From the definitions (9.4.1.4), (9.4.1.5), and (9.4.1.3) of the standard vector
fields

(m,n, θ) →
(
A(m,n)(θ, φ),B(m,n)(θ, φ),C(m,n)(θ, φ)

)
(10.2.10.13)

(9.4.1.12) and (9.4.1.15) for

(n, p,m, �̃, (−1)�jω) →
(
L

(m−1,�̃,(−1)�jω)

(n−1,p) ,N
(m−1,�̃,(−1)�jω)

(n−1,p)

)
(10.2.10.14)

we have [
L

(m−1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m−1,�̃,(−1)�jω)
(n−1,p)

]
· eθ

=

(
Z

(�̃)
n (z)

n

){(
d

dθ

)
Pm−1

n−1 (cos(θ))

}
exp(i(m− 1)φ) |z=k(p,(−1)�jω)r (10.2.10.15)

where Z
(�̃)
n is defined by (10.1.1.16) and Pm−1

n−1 (x) is defined by (10.1.2.1).

Proof of Lemma. From the definitions (9.4.1.4), (9.4.1.5), (9.4.1.3), (9.4.1.12) and (9.4.1.15)
we have [

L
(m−1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m−1,�̃,(−1)�jω)
(n−1,p)

]
· eθ

=

[
Z

(�̃)
n−1(z)

z

{(
d

dθ

)
Pm−1

n−1 (cos(θ))

}
exp(i(m− 1)φ)

− W
(�̃)
n−1(z)

n

{(
d

dθ

)
Pm−1

n−1 (cos(θ))

}
exp(i(m− 1)φ)

]
|z=k(p,(−1)�jω)r

=

[
Z

(�̃)
n−1(z)

z
−
W

(�̃)
n−1(z)

n

]{(
d

dθ

)
Pm−1

n−1 (cos(θ))

}
exp(i(m− 1)φ) |z=k(p,(−1)�jω)r

=
Z

(�̃)
n (z)

n

{(
d

dθ

)
Pm−1

n−1 (cos(θ))

}
exp(i(m− 1)φ) |z=k(p,(−1)�jω)r (10.2.10.16)

where we have made use of the spherical Bessel function recursion relationship (10.1.1.25).
This completes the proof of (10.2.10.15) and the lemma.

We need another lemma to complete the proof of the theorem of these section.

Lemma 10.8 For all nonnegative integers n and all nonnegative integers m not exceeding
n+ 1 we have

M
(m−1,�̃,(−1)�jω)
(n,p) · eθ

= Z(�̃)
n (z) {i(m− 1)}

(
Pm−1

n (cos(θ))

sin(θ)

)
exp(i(m− 1)φ) |z=k(p,(−1)�jω)r (10.2.10.17)

Proof of Lemma. This follows from the definition (9.4.1.13) of

(n,m, p, �̃, (−1)�jω) → M
(m−1,�̃,(−1)�jω)
(n,p) (10.2.10.18)

and the definition (9.4.1.4) of A(m,n).
We combine the previous lemmas to prove the following.
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Lemma 10.9 For all brain activity site indices q, all tissue layers p, all frquency indices j
and �, and spherical Bessel function types �̃ we have(

∂

∂(Uq + iVq)/2

)(
∂

∂C(p, q, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eθ

= Z(�̃)
n (z) exp(i(m− 1)φ)

[
(−1)

(
(n−m+ 1)(n −m+ 2)

n+ 1

)(
d

θ

)
Pm−1

n+1 (cos(θ))

+(−1)

(
(n+m)(n+m− 1)

n

)(
d

dθ

)
Pm−1

n−1 (cos(θ))

+

(
(n+m)(n−m+ 1)(m− 1)(2n + 1)

n(n+ 1)

)(
Pm−1

n (cos(θ))

sin(θ)

)]
|z=k(p,(−1)�jω)r (10.2.10.19)

Proof of Lemma. We simply combine equations (10.2.10.7), (10.2.10.15), and (10.2.10.17)
from the previous lemmas we derive (10.2.10.19).

Proof of Theorem. From equation (10.2.10.19) and the associated Legendre function iden-
tity (10.1.3.24) we immediately deduce that the left side of (10.2.10.2) is equal to (10.2.10.19)
which is, in turn, equal to (10.2.10.4) which is the right side of (10.2.10.2). which proves the
theorem.

10.2.11 The φ Component of the (Uq + iVq)/2 Term

We have the following theorem.

Theorem 10.14(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, q, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eφ =

(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)additiontheorem · eφ

(10.2.11.1)
where the vector potential

(p, q, �̃, (−1)�jω, t) → A(p,q)(�̃, (−1)�jω, t) (10.2.11.2)

is defined by (9.5.2.4) and (10.2.2.2) and the coefficient

(p, �̃, (−1)�jω, n,m, t) → C(p, �̃, (−1)�jω, n,m, t) (10.2.11.3)

is defined by (10.2.2.4).

Proof of Theorem. We begin with the following Lemma which uses (10.2.2.2).

July 31, 2006 185



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

Lemma 10.10 For all indices n, p, m, �̃, and frequencies (−1)�jω we have(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, q, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eφ =

(−1)(n− | m | +1)(n− | m | +2)

[
L

(m−1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m−1,�̃,(−1)�jω)
(n+1,p)

]
· eφ

+(−1)(n+ | m |)(n+ | m | −1)

[
L

(m−1,�̃,(−1)�jω)

(n−1,p) − 1

n
N

(m−1,�̃,(−1)�jω)

(n−1,p)

]
· eφ

+(−1)(n+ | m |)(n− | m | +1)

[(
i(2n+ 1)

n(n+ 1)

)
M

(m−1,�̃,(−1)�jω)
(n,p)

]
· eφ

= (−i)(2n+ 1)Z(
n�̃)(z)P

m
n (cos(θ)) exp(i(m− 1)φ) |z=k(p,(−1)�jω)r (10.2.11.4)

Proof of Lemma. This lemma gives the theorem since the right side of equation (10.2.11.4)
is the right side of (10.2.11.1) in view of equation (5.2.5.6) and (10.2.2.3).

We break down the proof of this lemma into three easier lemmas and an associated
Legendre function identity.

Lemma 10.11 For all nonnegative integers n and all integers m we have[
L

(m−1,�̃,(−1)�jω)
(n+1,p) +

1

n+ 1
N

(m−1,�̃,(−1)�jω)
(n+1,p)

]
· eφ =

[(
Z

(�̃)
n+1(z)

z

)
i(m− 1)

(
Pm−1

n+1 (cos(θ))

sin(θ)

)

+

(
W

(�̃)
n+1(z)

n + 1

)
i(m− 1)

(
P

(m−1)
n+1 (cos(θ))

sin(θ)

)]

=

[
Z

(�̃)
n+1(z)

z
+
W

(�̃)
n+1(z)

n+ 1

](
Pm−1

n+1 (cos(θ))

sin(θ)

)
i(m− 1) exp(i(m− 1)φ)

(
Z

(�̃)
n (z)

n+ 1

)(
Pm−1

n+1 (cos(θ))

sin(θ)

)
i(m− 1) exp(i(m− 1)φ) |z=k(p,(−1)�jω)r (10.2.11.5)

Proof of Lemma. This is just a consequence of the spherical Bessel function recursion
relationship (10.1.1.24).

The second lemma helps us with the second term of the left side of equation (10.2.11.4).

Lemma 10.12 For all nonnegative integers n and all integers m and all spherical Bessel
function types �̃ and all frequencies (−1)�jω we have[

L
(m−1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m−1,�̃,(−1)�jω)
(n−1,p)

]
· eφ

=

(
Z

�̃)
n (z)

n+ 1

)(
Pm−1

n−1 (cos(θ))

sin(θ)

)
i(m− 1) exp(i(m− 1)φ) |z=k(p,(−1)�jω)r (10.2.11.6)
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Proof of Lemma. The left side of equation (10.2.11.6) is[
L

(m−1,�̃,(−1)�jω)
(n−1,p) − 1

n
N

(m−1,�̃,(−1)�jω)
(n−1,p)

]
· eφ

=

[(
Z

(�̃)
n−1(z)

z

)
i(m− 1)

Pm−1
n−1 (cos(θ))

sin(θ)

−
(
W

(�̃)
n−1(z)

n

)
i(m− 1)

Pm−1
n−1 (cos(θ))

sin(θ)

]
exp(i(m− 1)φ) |z=k(p,(−1)�jω)r

=

[
Z

(�̃)
n−1(z)

z
−
W

(�̃)
n−1(z)

n

]
i(m− 1)

Pm−1
n−1 (cos(θ))

sin(θ)
exp(i(m− 1)φ) |z=k(p,(−1)�jω)r

=
Z

(�̃)
n (z)

n
i(m− 1)

(
Pm−1

n−1 (cos(θ))

sin(θ)

)
exp(i(m− 1)φ) (10.2.11.7)

which is a consequence of the spherical Bessel function recursion relationship (10.1.1.25).
The next lemma enables us to evaluate the third term of the left side of equation

(10.2.11.4).

Lemma 10.13 For all all nonnegative integers n and all integers m all spherical Bessel
functin types �̃ and all frequencies (−1)�jω we have

M
(m−1,�̃,(−1)�jω)
(n,p) · eφ =

Z(�̃)
n (z) |z=k(p,(−1)�jω)r

(
− d

dθ

)
Pm−1

n (cos(θ)) exp(i(m− 1)φ) (10.2.11.8)

Proof of Lemma. This is a consequence of the definitions (9.4.1.13) and (9.4.1.4). Putting
together equations (10.2.11.5), (10.2.11.6), and (10.2.11.8) we have the following lemma

Lemma 10.14(
∂

∂(Uq + iVq)/2

)(
∂

∂C(p, q, �̃, (−1)�jω, n,m, t)

)
A(p,q)(�̃, (−1)�jω, t)sphericalharmonics · eφ

= (−i)
[(

(n−m+ 1)(n −m+ 2)(m− 1)

n+ 1

)(
Pm−1

n+1 (cos(θ))

sin(θ)

)

+

(
(n+m)(n+m− 1)(m− 1)

n

)(
Pm−1

n−1 (cos(θ))

sin(θ)

)

−
(

(n +m)(n−m+ 1)(2n + 1)

n(n + 1)

){(
d

dθ

)
Pm−1

n (cos(θ))

}]
exp(i(m−1)φ)Z(�̃)

n (z) |z=k(p,(−1)�jω)r

= (−i)(2n+ 1)Pm
n (cos(θ)) exp(i(m− 1)φ)Z(�̃)

n (z) (10.2.11.9)
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Proof of Lemma We just use the associated Legendre function identity(
(n−m+ 1)(n−m+ 2)(m− 1)

n + 1

)(
Pm−1

n+1 (cos(θ))

sin(θ)

)

+

(
(n+m)(n+m− 1)(m− 1)

n

)(
Pm−1

n−1 (cos(θ))

sin(θ)

)

−
(

(n+m)(n−m+ 1)(2n+ 1)

n(n+ 1)

){(
d

dθ

)
Pm−1

n (cos(θ))

}
= (2n + 1)Pm

n (cos(θ)) (10.2.11.10)

Substituting (10.2.11.10) or equivalently (10.1.3.25) into (10.2.11.9) gives the lemma and the
theorem proving (10.2.11.4). Following (10.1.3.25) there is table of computed values of the
left and right sides of this equation showing agreement to machine precision.

10.3 The Expansion of the Source Dynamic Voltage Representa-
tion of Brain Activity

We use the relationship (10.2.2.2) to compute the expansion of the divergence of the vector
potential of brain activity and consequently that of the dynamic voltage associated with
brain activity.

10.3.1 Expansion of the Divergence of the Vector Potential of Brain Activity

We apply the divergence operation to each side of (10.2.2.2) remembering that the divergence
of the M and N vector fields are zero since they are each separately multiples of the
application of the curl operation to the other and the divergence of any curl of a vector field
is zero.
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∇·(A(p,q)(�̃, (−1)�jω, t))) =(
µp(−(−1)�̃ik(p, (−1)�jω) exp(i(−1)�jωt)

4π

) ∞∑
n=0

m=+n∑
m=−n

{
c(n,m, 0, (−1)�jω, p, q)

{

Wq

{
(n−m+ 1)

(
∇·(L(m,�̃,(−1)�jω)

(n+1,p) ) +
1

n+ 1
∇·(N (m,�̃,(−1)�jω)

(n+1,p) )

)

− (n+m)

(
∇·(L(m,�̃,(−1)�jω)

(n−1,p) ) − 1

n
∇·(N (m,�̃,(−1)�jω)

(n−1,p) )

)

+im

(
2n+ 1

n(n + 1)

)
∇·(M (m,�̃,(−1)�jω)

(n,p) )

}

+

(
Uq − iVq

2

){(
∇·(L(m+1,�̃,(−1)�jω)

(n+1,p) ) +
1

n+ 1
∇·(N (m+1,�̃,(−1)�jω)

(n+1,p) )

)

+

(
∇·(L(m+1,�̃,(−1)�jω)

(n−1,p) ) − 1

n
∇·(N (m+1,�̃,(−1)�jω)

(n−1,p) )

)

−i
(

(2n + 1)

n(n+ 1)

)
∇·(M (m+1,�̃,(−1)�jω)

(n,p) )

−
(
Uq + iVq

2

){
(n−m+ 1)(n−m+ 2)

(
∇·(L(m−1,�̃,(−1)�jω)

(n+1,p) )

+
1

n+ 1
∇·(N (m−1,�̃,(−1)�jω)

(n+1,p) )

)

+(n+m)(n+m− 1)

(
∇·(L(m−1,�̃,(−1)�jω)

(n−1,p) ) − 1

n
∇·(N (m−1,�̃,(−1)�jω)

(n−1,p) )

)

+(n+m)(n−m+ 1)

(
i(2n+ 1)

n(n+ 1)

)
∇·(M (m−1,�̃,(−1)�jω)

(n,p) )

}}}
(10.3.1.1)

10.3.2 The Dynamic Voltage Expansion

We want to move from measurements of external voltages outside the skull bone to brain
activity and use this to help handicapped naturally operate an artificial limb.

The dynamic voltage satisfies the scalar Helmholtz equation. The relationship between
the electric vector and the gradient of the voltage is

E = −∂A

∂t
−∇(V ) (10.3.2.1)

Applying the divergence operator to each side of (10.3.2.1) and assuming that there are no
net charge accumulations in the brain which is interpreted as

∇·(E) = 0 (10.3.2.2)
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we have
0 = ∇·(E) = −i(−1)�ω∇·(A) −∇·(∇(V )) (10.3.2.3)

Substituting
∇·(∇(V )) + k(p, (−1)�ω)2V = 0 (10.3.2.4)

into (10.3.2.3) gives

V =

(
i(−1)�ω

k(p, (−1)�ω)2

)
∇·(A) (10.3.2.5)

so that

∇(V ) =

(
i(−1)�ω

k(p, (−1)�ω)2

)
∇(∇·(A)) (10.3.2.6)

Now using the fact that the divergence of the N and M vector fields are zero in equation
(10.3.1.1) we have using (10.3.2.5) the dynamic voltage expansion from the neuronal source
with index q is.
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V(source,p,q) =

(
i(−1)�jω

k(p, (−1)�jω)2

)
∇·(A(p,q)(�̃, (−1)�jω, t))) =

(
i(−1)�ω

k(p, (−1)�ω)2

)[ (
µp(−(−1)�̃ik(p, (−1)�jω) exp(i(−1)�jωt)

4π

) ∞∑
n=0

m=+n∑
m=−n

{

c(n,m, 0, (−1)�jω, p, q)

{

Wq

{
(n−m+ 1)

(
∇·(L(m,�̃,(−1)�jω)

(n+1,p) )
)

− (n+m)
(
∇·(L(m,�̃,(−1)�jω)

(n−1,p) )
)}

+

(
Uq − iVq

2

){(
∇·(L(m+1,�̃,(−1)�jω)

(n+1,p) )
)

+
(
∇·(L(m+1,�̃,(−1)�jω)

(n−1,p) )
)}

−
(
Uq + iVq

2

){
(n−m+ 1)(n −m+ 2)

(
∇·(L(m−1,�̃,(−1)�jω)

(n+1,p) )
)

+(n+m)(n+m− 1)
(
∇·(L(m−1,�̃,(−1)�jω)

(n−1,p) )
)} } } ]

(10.3.2.7)

To evaluate the divergence of the L vector fields in (10.3.2.7) we use following notation
for a general form of spherical Bessel and Hankel functions We define for all complex numbers
z the relation

Z(�̃)
n (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn(z) if �̃ = −1

jn(z) if �̃ = 0

h
(1)
n (z) if �̃ = 1

h
(2)
n (z) if �̃ = 2

(10.3.2.8)

so that using (10.3.2.7), (9.4.1.3), (9.4.1.5), (9.4.1.12), (10.1.1.5), (9.4.1.2), (4.1.1.66), (9.4.1.2),
and (10.3.2.8)

∇·(L(m,�̃,(−1)�jω)
(n,p) )

= k(p, (−1)�jω)Z(�̃)
n (k(p, (−1)�jω)r)Pm

n (cos(θ)) exp(imφ) (10.3.2.9)

This relationship is also given in Stratton ([110]). We define

Φ
(m,�̃,(−1)�jω)
(n,p) =

Φ
(m,�̃,(−1)�jω)
(n,p) (r, θ, φ) = Z(�̃)

n (k(p, (−1)�jω)r)Pm
n (cos(θ)) exp(imφ) (10.3.2.10)

Substituting (10.3.2.10) into (10.3.2.7) gives

V(source,p,q) =

(
i(−1)�jω

k(p, (−1)�jω)2

)
∇·(A(p,q)(�̃, (−1)�jω, t)))

= i(−1)�ω

[ (
µp(−(−1)�̃i exp(i(−1)�jωt)

4π

) ∞∑
n=0

m=+n∑
m=−n

{
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c(n,m, 0, (−1)�jω, p, q)

{

Wq

{
(n−m+ 1)

(
Φ

(m,�̃,(−1)�jω)
(n+1,p) (r, θ, φ)

)
− (n+m)

(
Φ

(m,�̃,(−1)�jω)
(n−1,p) (r, θ, φ)

)}

+

(
Uq − iVq

2

){(
Φ

(m+1,�̃,(−1)�jω)
(n+1,p) )(r, θ, φ)

)
+

(
Φ

(m+1,�̃,(−1)�jω)
(n−1,p) (r, θ, φ)

)}

−
(
Uq + iVq

2

){
(n−m+ 1)(n−m+ 2)

(
Φ

(m−1,�̃,(−1)�jω)
(n+1,p) (r, θ, φ)

)

+(n+m)(n+m− 1)
(
Φ

(m−1,�̃,(−1)�jω)
(n−1,p) (r, θ, φ)

)} } } ]
(10.3.2.11)

July 31, 2006 192



Recovery of Brain Activity from EEG Recordings
to Aid in Human Prosthetic Design

11 Limb Control and Behavior Prediction

Considerable effort has been expended in development of methods of controlling artificial
limbs. Dr. Hanson at Boston Digital Arm has had success with myoelectrodes inmplanted
in the chest Marks ([81], June 19, 2006). Kamitani ([123]) has had success with a system
where he asks subjects to make shapes with their hands and then simultanously records the
functional magnetic resonance imaging scans of the brain and then having them think about
the shape of the robot hand and using their thoughts and the MRI scan to control the shape
of the robot hand. Suggestions of methods of design of neuroprosthetic devices are described
in ([111], 2003).

We are concerned with the control of artificial limbs with brain activity. We consider the
shoulder direction, the elbow direction, the wrist direction, the thumb and the thumb joint
directions and the directions of each of the fingers and the primary joint of each of the four
fingers; the second joints could be added. We assume that we know the direction vectors at
a time t − T and that we recover brain activity from time t − T to the present time t and
assume a model with a convolution control at each brain activity site that would be carried
out by digital signal processing ([122], 1993).
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s = direction vector of the shoulder
e = direction vector of the elbow
w = direction vector of the wrist
t = direction vector of the thumb
tj = direction vector of the thumb joint
f1 = direction vector of first finger
f (1,j) = direction vector of first finger joint

f2 = direction vector of second finger
f (2,j) = direction vector of middle finger joint

f3 = direction vector of third finger
f (3,j) = direction vector of ring finger joint

f4 = direction vector of fourth finger
f (4,j) = direction vector of little finger joint
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We want to be able to derive influence functions that will be able to put the artificial
arm in the desired position in a natural way. Help will be sought from others who have
successfully controlled limbs by transplanting nerves from the arm to the chest in the case of
Jessie Sullivan, a shoulder level amputee. Letting Xn represent the recovered brain activity
at location n, we have the following functional relationships to be constructed where we are
supposing that if we recovered the brain activity Xn(τ ) for times τ from t − T to T and
that Xn is taken to be zero otherwise for convolution operation representation purposes, we
would hypothesize relationships
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s(t) = F (s(t− T ), β(s,1) ∗X1(t), · · ·, β(s,n) ∗Xn(t))
= shoulder direction vector

e(t) = F (e(t− T ), β(e,1) ∗X1(t), · · ·, β(e,n) ∗Xn(t))
= elbow direction vector

w = F (w(t− T ), β(w,1) ∗X1(t), · · ·, β(w,n) ∗Xn(t))
= wrist direction vector

t = F (t(t− T ), β(t,1) ∗X1(t), · · ·, β(t,n) ∗Xn(t))
= direction vector of the thumb

tj = F (tj(t− T ), β(tj ,1) ∗X1(t), · · ·, β(tj ,n) ∗Xn(t))
= direction vector of the thumb joint

f 1 = F (f1(t− T ), β(f1,1) ∗X1(t), · · ·, β(f1,n) ∗Xn(t))
= direction vector of first finger

f (1,j) = F (f (1,j)(t− T ), β(f(1,j) ,1) ∗X1(t), · · ·, β(f(1,j),n) ∗Xn(t))

= direction vector of first finger joint
f 2 = F (f2(t− T ), β(f2,1) ∗X1(t), · · ·, β(f2,n) ∗Xn(t))

= direction vector of second finger
f (2,j) = F (f (2,j)(t− T ), β(f(2,j) ,1) ∗X1(t), · · ·, β(f(2,j),n) ∗Xn(t))

= direction vector of second finger joint
f 3 = F (f3(t− T ), β(f3,1) ∗X1(t), · · ·, β(f3,n) ∗Xn(t))

= direction vector of third finger
f (3,j) = F (f (3,j)(t− T ), β(f(3,j) ,1) ∗X1(t), · · ·, β(f(3,j),n) ∗Xn(t))

= direction vector of ring finger joint
f 4 = F (f4(t− T ), β(f4,1) ∗X1(t), · · ·, β(f4,n) ∗Xn(t))

= direction vector of fourth finger
f (4,j) = F (f (4,j)(t− T ), β(f(4,j) ,1) ∗X1(t), · · ·, β(f(4,j),n) ∗Xn(t))

= direction vector of little finger joint
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11.1 Homotopy Recovery of Brain Activity

Homotopy ([27]) could be used to identify the convolution operators

t− τ →
(
βs, · · ·, β(f(4,j) ,n)

)
(t− τ )

particularly if they are defined by digital signal processing filter transform operators ([122],
1993) and (Wu, [138], 2004).

11.1.1 Homotopy Methods in Using Recovered Brain Activity to Control Limbs

The article ([27]) uses concepts such as judicious selection of complex thickensses to deter-
mine a starting problem at the beginning of the homotopy path that has an obvious known
solution.

Statistical modeling has been used in an attempt to develop brain computer interfaces
(Shoham [102], 2005), (Wu [137], 2006). We applied the homotopy method of ([27]) to find
maximum likelihood estimate parameters without any a priori knowledge of the correct val-
ues. We propose the use a homotopy path connecting a problem that is easy to solve exactly
and the brain activity control problem of interest. The sought after likelihood estimator
parameters were the terminal point of the orbit of a dynamical system defined by a system
of differential equations; this orbit is the homotopy path connecting the simple problem
to the problem of interest. This was the classic problem of maximum likelihood estimator
determination and the Hessian of the equations defining the nonlinear problem to be solved
had an everywhere negative definite quadratic form which meant that there was only one
global maximum and no local maximums other than the unique absolute maximum. The key
idea is to find a critical point of a function representing the difference between the left and
right sides of the homotopy relationship giving a system of differential equations involving
the parameters being sought and a homotopy path parameter λ(s) where when λ(s) is 1 and
the left and right sides of the homotopy relationships are satisfied from λ(0) = 0 to λ(s) = 1,
we are guaranteed to have identified the coordinates of the critical point.

We found that Newton methods for locating these parameter values are successful if we
start very close to the correct answer. However, our globally convergent homotopy method
is robust and stable permitting us to quickly find the best parameter values to high precision
without any a priori knowledge about the proper values of the estimator parameters.

We generally have a matrix function differential equation system of the form

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(d/ds)λ(s)
(d/ds)β0(s)

· · ·
· · ·
· · ·

(d/ds)β�(s)
· · ·
· · ·
· · ·

(d/ds)βL(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
· · ·
· · ·
· · ·
0
· · ·
· · ·
· · ·
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.1.1.1)
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which represents L+ 1 equations, one for each maximum likelihood estimator parameter, in
L+2 unknowns which are the derivative of the homotopy parameter λ(s) and the derivatives

of each of the L+ 1 maximum likelhood estimator functions β�(s), where the first row of M
is given by

M(1,1) = −n
2

+
n∑

i=1

Yi (11.1.1.2)

M(1,2) = −
n∑

i=1

(Pi − P 2
i ) (11.1.1.3)

and for � going from 1 through L

M(1,�+2) = −
n∑

i=1

(Pi − P 2
i )X(�,i) (11.1.1.4)

The last L rows have the form for � running from 1 through L

M(�+1,1) = −1

2

n∑
i=1

X(�,i) +

n∑
i=1

X(�,i)Yi (11.1.1.5)

M(�+1,2) = −
n∑

i=1

(Pi − P 2
i )X(�,i) (11.1.1.6)

and for �̃ running from 1 through L

M(�+1,�̃+2) = −
n∑

i=1

(Pi − P 2
i )X(�,i)X(�̃,i) (11.1.1.7)

We have all entries of the coefficient matrix.
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The homotopy differential equation is given by the Lagrange expansion of the determinant
where ej is the unit vector along the jth coordinate of L+ 2 dimensional space given by

dλ(s)

ds
e1 +

dβ0(s)

ds
e2 + · · · + dβ�(s)

ds
e�+2 + · · · + dβL(s)

ds
eL+2

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1 e2 · · · e�+2 · · · eL+2

M(1,1) M(1,2) · · · M(1,�+2) · · · M(1,L+2)

· · · · · · · · · · · · · · · · · ·
M(�+1,1) M(�+2,2) · · · M(�+1,�+2) · · · M(�+1,L+2)

· · · · · · · · · · · · · · · · · ·
· · · · · · · · ·

M(L+1,1) M(L+1,2) · · · M(L+1,�+2) · · · M(L+1,L+2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.1.1.8)

Thus, the right sides of the derivatives of the homotopy differential equation dependent
variables are the components of the L + 2 dimensional cross product of the vectors formed
from each of the L+1 differential equations resulting modifying the left sides of the equations
resulting from setting the derivatives of the logarithm of the Maximum likelihood estimator
probability g(Y ) with respect to β0 through βL equal to zero and then differentiating both
sides of each of these equations with respect to the homotopy parameter s giving us L + 1
ordinary differential equations with L + 2 dependent variables. The components of the

vectors whose L+ 2 dimensional cross product of the rows of M are equal to the derivatives
of the L + 2 dependent variables. Save the λ(s) data around λ(s) = 1 and use Lagrange
interpolation as before to find the maximum likelihood estimator parameters β� for � running
from 0 through L.

dλ(s)

ds
e1 +

dβ0(s)

ds
e2 + · · · + dβ�(s)

ds
e�+2 + · · · + dβL(s)

ds
eL+2

=

L+2∑
j=1

⎧⎪⎨
⎪⎩(−1)1+j det

⎡
⎢⎣ N

(j)
(1,1) · · · N

(j)
(1,�+1) · · · N

(j)
(1,L+1)

· · · · · · · · · · · · · · ·
N

(j)
(L+1,1) · · · N

(j)
(L+1,�+1) · · · N

(j)
(L+1,L+1)

⎤
⎥⎦ej

⎫⎪⎬
⎪⎭ (11.1.1.9)

11.1.2 Uniqueness of Control Parameter Determination

We want to avoid error in sending signals to control an artificial limb. We need conditions
under which the problem of determination of control parameters has a unique solution.

We prove the following theorem concerning conditions under which a function,G of N
variables cannot have more than one local maximum where we use the notation

DUjG(U1, U2, · · ·, UN) =

(
∂

∂Uj

)
G(U1, U2, · · ·, UN ) (11.1.2.1)

Theorem 11.1 A real analytic function

(U1, U2, · · ·, UN ) → G(U1, U2, · · ·, UN) = G (11.1.2.2)
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of N variables in R
N cannot have more than one local maximum if the quadratic form

(U1, U2, · · ·, UN ) →

(U1, U2, · · ·, UN)

⎛
⎜⎜⎜⎜⎝

D2
U1
G · · · DU1DUjG · · · DU1DUN

G
· · · · · · · · · · · · · · ·

DUiDU1G · · · DUiDUjG · · · DUiDUN
G

· · · · · · · · · · · · · · ·
DUN

DU1G · · · DUN
DUjG · · · D2

UN
G

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

U1

· · ·
Uj

· · ·
UN

⎞
⎟⎟⎟⎟⎠ (11.1.2.3)

is strictly negative for all vectors satisfying

(U1, U2, · · ·, UN ) �= (0, 0, · · ·, 0) (11.1.2.4)

Proof of Theorem. This theorem is based on the obvious generalization of the following
lemma to functions of N variables.

Lemma 11.1 If the everywhere real analytic function G(V,W ) had an isolated local maxi-
mum at two distinct points (V1,W1) and (V2,W2) in R

2 , then there would be a local minimum
of the function

h(λ) = G((1 − λ)V1 + λV2, (1 − λ)W1 + λW2) (11.1.2.5)

at a value λ with 0 < λ < 1 and the quadratic form associated with the Hessian is not
negative definite at this point.

Proof. We can assume that

G(V1,W1) ≤ G(V2,W2) (11.1.2.6)

so that the fact that with a strict local maximum we would have h′(λ) < 0 for λ close to 0
which means that means that we have a minimum

h(λ∗) = G((1−λ)V1+λV2, (1−λ)W1+λW2) < minimum {G(V1,W1), G(V2,W2)} (11.1.2.7)

where necessarily the first derivative h(1)(λ∗) is zero and a locally convergent Taylor series
expansion

h(λ) = h(λ∗) + h(2)(λ∗)

(
(λ− λ∗)

2

2!

)
+ higher order terms (11.1.2.8)

which means that it would be impossible to have

h(2)(λ∗) < 0 (11.1.2.9)

since if h(λ∗) is a local minimum, then h(λ) would have to be larger than h(λ∗) for all λ �= λ∗
that are near λ∗. Observe that using the notation

(Dv, Dw) =

(
∂

∂v
,
∂

∂w

)
(11.1.2.10)
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we have
h(1)(λ) = DvG(1 − λ)V1 + λV2, (1 − λ)W1 + λW2) {V2 − V1}+

DwG((1 − λ)V1 + λV2, (1 − λ)W1 + λW2) {W2 −W1} (11.1.2.11)

and suppressing the argument

λ → (1 − λ)V1 + λV2, (1 − λ)W1 + λW2) (11.1.2.12)

we have that at the minimum that

h(2)(λ) = D2
vG

{
(V2 − V1)

2
}

+ 2DvDw {(V2 − V1)(W2 −W1)}+Dw

{
(W2 −W1)

2
}

(V2 − V1,W2 −W1)

(
D2

vG DvDwG
DwDvG D2

wG

)(
V2 − V1

W2 −W1

)
≥ 0 (11.1.2.13)

Thus, at the local minimum on a line between two isolated strict local maximum, the
quadratic form associated with the Hessian of G is not negative.

Even in a probabilistic model relating limb control to brain activity we need a unique
solution of the influence parameters.

Corollary 11.1 The maximum log likelihood function

�n(f(β0, β1)) = �n(g(Y1, · · ·, Yi, · · ·, Yn)) = �n(

n∏
i=1

P Yi
i (1 − Pi)

1−Yi)

=

n∑
i=1

{Yi�n(Pi) + (1 − Yi)�n(1 − Pi)} (11.1.2.14)

has only one local maximum which is the global maximum when Pi is given by

Pi =
exp(β0 + β1Xi)

1 + exp(β0 + β1Xi)
(11.1.2.15)

so that
∂Pi

∂β0
= Pi − P 2

i (11.1.2.16)

and
∂Pi

∂β1
= Xi

{
Pi − P 2

i

}
(11.1.2.17)

Proof of Corollary. The definition (11.1.2.15) of Pi and the basic partial derivative rela-
tionships (11.1.2.16) and (11.1.2.17) give us the following.

Using (11.1.2.16) we see that
∂�n(Pi)

∂β0
= 1 − Pi (11.1.2.18)

and (
∂

∂β0

)
�n(1 − Pi) = −Pi (11.1.2.19)
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so that (
∂

∂β0

)
�n(f(β0, β1) ==

n∑
i=1

{Yi − Pi} (11.1.2.20)

Using (11.1.2.17) we see that

(
∂

∂β1

)
�n(f(β0, β1) =

n∑
i=1

{Xi[Yi − Pi]} (11.1.2.21)

The associated Hessian, which we must prove to be negative definite, is

(β0, β1) →
(
A B
C D

)
(11.1.2.22)

where

A =

(
∂2

∂β2
0

)
�n(f(β0, β1) = −

n∑
i=1

(Pi − P 2
i ) (11.1.2.23)

B = C =

(
∂2

∂β0∂β1

)
�n(f(β0, β1) = −

n∑
i=1

Xi(Pi − P 2
i ) (11.1.2.24)

and

D =

(
∂2

∂β2
1

)
�n(f(β0, β1) = −

n∑
i=1

X2
i (Pi − P 2

i ) (11.1.2.25)

The Laplacian

∆ =
∂2

∂β2
0

+
∂2

∂β2
1

(11.1.2.26)

of the function

�n(f(β0, β1)) =

n∑
i=1

{Yi�n(Pi) + (1 − Yi)�n(1 − Pi)} (11.1.2.27)

is everywhere negative and using (11.1.2.23), (11.1.2.24), and (11.1.2.25) we have

AD −BC =

(
N∑

i=1

Xi(Pi − P 2
i )

)(
N∑

j=1

Xj(Pj − P 2
j )

)

−
n∑

i=1

n∑
j=1

XiXj(Pi − P 2
i )(Pj − P 2

j )

=
∑

{i,j}⊂{1,···,n}

{

[
−2XiXj +X2

i +X2
j

]
(Pi − P 2

i )(Pj − P 2
j )

}
> 0 (11.1.2.28)
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provided that there is just one pair with Xi �= Xj . Thus, since A < 0 the Hessian of the
function

(β0, β1) → �nf(β0, β1) (11.1.2.29)

which has the form
Q(β0, β1) =

A

{[
β0 +

(
B

A

)
β1

]2

+

[
DA− B2

A2

]
β2

1

}
< 0 (11.1.2.30)

since equation (11.1.2.28) proves that

DA −B2 ≥ 0 (11.1.2.31)

is everywhere negative definite and cannot have more than one local maximum and conse-
quently has only one pair β0 and β1 which gives the maximum value.
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