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COVERAGE STATISTICS OF DISTRIBUTED SENSOR FIELDS

WITH HETEROGENEOUS RANGE SENSITIVITY

1. INTRODUCTION

This report examines the detection performance of a distributed sensor field composed

of a moderate to large number of sensors having heterogeneous range sensitivities. The need

to rapidly deploy a large number of sensors on short notice could place limitations on sensor

quality. In particular, the requirement that all sensors have the same range sensitivity could

be economically prohibitive for even moderately large systems. This report examines the

coverage statistics for a system of randomly distributed sensors having heterogeneous range

sensitivities. Throughout, comments are made on the implications of the analytical results on

design guidance and sensor deployment.

This research differs from previous work in this area in that it allows for the range sen-

sitivity of the sensors to be independent; it requires only the distributional characteristics of

the range sensitivities to be known.* Other work in this area considers the coverage provided

by systems of sparsely distributed sensors, all of which have identical range sensitivity; see

for example, Wettergren [I I or Cox [2]. In a recent article, Wan and Yi [3] examine the cov-

erage provided by randomly distributed wireless sensor networks. However, their research

considers only homogeneous sensor systems, that is, systems in which all sensors have iden-

tical range sensitivity. This analysis differs also from previous research in that it considers

the problem in both two- and three-dimensional space; previous work in the area considered

only the two-dimensional problem.

Section 2 of this report begins with a brief review of temporal Poisson point processes,

followed by a discussion of spatial Poisson point processes. The main result on the cover-

age of a randomly distributed sensor field is given in section 3. Section 4 contains examples

demonstrating how the theory can be used to measure sensor field coverage. Section 5 com-

pares the coverage of a sensor field with heterogeneous range sensitivities to the coverage of

a sensor field in which all sensors have identical sensitivity range. Section 6 is a simulation

study that verifies the theoretical results. Finally, appendix A contains a conditional uniformity

of sensor locations and appendix B contains a proof of the main result.

* It is supposed that the distributional characteristics of the sensors will be provided by the sensor manufacturer or can be determined

through sampling.
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2. SPATIAL POISSON PROCESSES

This section commences with a review of the more familiar temporal Poisson point pro-

cess, followed by a description of its spatial equivalent. Recall that the usual (i.e., temporal)

Poisson point process Nt, with rate A, is a stochastic process in which Nt is the number of

occurrences of an event during t units of time. Moreover, Nt follows a Poisson distribution

with mean At. Finally, the event occurrences in disjoint time intervals are independent. More

formally, the counting process N = {Nt, t > 0} is a Poisson process with rate A > 0, if it

possesses the following properties:*

1. No = 0,

2. P{N I 1} = Ah + o(h),

3. P{N,, 2} o(h),

4. Nt satisfies the stationary and independent increment property.

Property 2 says that, over a very short time period, the probability of an event occurrence

is approximately linear with time. Property 3 says that the probability of two or more oc-

currences over a very short time period is essentially zero. And according to property 4, the

process Nt is independent of the process Nt+h - Nt, i.e., the number of occurrences up to

time t is independent of the number of occurrences after time t.

For a spatial Poisson process, instead of counting the number of occurrences over a

time interval, one is interested in the number of points associated with an event over a region

of space. Let S be an n-dimensional set and suppose A c S, i.e., A is a subset of S. Consider

points scattered randomly throughout S and let N(A) denote the number of points from the

scattered set that are contained in A. The stochastic process N(A) is called a point process in

S. Depending on the dimension of 5, let IlAll denote the length, area, volume, etc., of A. The

stochastic process N = {N(A), A c S} is an n-dimensional Poisson counting process with

parameter A > 0 if

(a) N(A) follows a Poisson distribution with mean AllAll, and

(b) the number of points occurring in disjoint subsets of S are mutually independent.

Thus, for the spatial Poisson process, the statements equivalent to properties 1 - 4 above are

(here o denotes the empty set):
*The function g(h) is said to be little-oh h, written g(h) = o(h) if limh-0 o = 0. Thus, according to property 3, as h goes to zero,

the probability of two or more occurrences goes to zero faster than any linear function.
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1. N(o) =0,

2. P{N(A) = 1} = AIJAII + o(IlAI[),

3. P{N(A) > 2} = o(IJAII),

4. N(A) satisfies the stationary and independent increment property.

In particular, property (2) says that if 1JAII (the volume of the set A) is small, then the proba-

bility of one occurrence is approximately linear with respect to volume; property (3) says that

for small volumes, the probability of two or more occurrences is approximately zero. Finally,

property (4) says that if A, C C S, then N(A) is independent of N(C n A").

The definitions are summarized as follows: If N = {N(A), A C S} is an n-dimensional

Poisson counting process with parameter A > 0, then the probability of k occurrences in the

subset A is given by*

P{N(A) = k} = (AAI)k k IIAI

See, for example, Resnick [4] or Kingman 15] for further information on spatial Poisson

processes.

*Recall that if X is a Poisson random variable with mean A, then P{X = k} = Ake-•/k!. According to property (a), therefore, one

can substitute N(A) for X and A 1I A l! for A to get the equivalent probabilities for the spatial random variable.
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3. SENSOR COVERAGE

This section contains the main result of this report, with the remainder of the report

addressing the consequences of this result. Most of the discussion concerns coverage in three-

dimensional space; however, all arguments apply to two dimensions also. A two-dimensional

equivalent of the main result is also stated. The proof is technical and is postponed until

appendix B. A restatement of the problem can be found in chapter 16 of Karlin and Taylor [61,

where instead of sensors and range sensitivities, spherical centers and corresponding radii are

considered.

Theorem 1: Consider a set of omnidirectional sensors in three-dimensional space scattered

throughout some region S c R3 . Suppose that the sensors are spatially distributed according

to a Poisson point process with parameter A. Suppose also that the range sensitivity of all

sensors is distributed according to the cumulative distribution function F(r) with density

F'(r) = f(r) having finite third moment. Finally, assume that range sensitivity is independent

of the sensor location. Then, the number of sensors that will detect a target located at some

point x E S is a Poisson random variable with mean

A = 4Awr r 3f(r)dr. (1)

Remark 1: Given an arbitrary point x E S C R',

Ake-A
P{target at position x detected by k sensors} =

k!

The probability that the point is not detected is exp (-A). Hence, the probability that at least

one sensor covers the point is p = 1 - exp (-A).

Definition 1: Throughout the remainder of this report, the statistic p = 1 - exp (-A) will

be referred to as the predicted coverage for the sensor network. The coverage statistic p is a

measure of the probability that an arbitrary point is detected by at least one sensor.

Remark 2: If an arbitrary point in the volume is to be detectable by at least some fixed number

of sensors, then the result shows us what intensity level (i.e., A) is required to achieve this.

Since the mean number of sensors that detect a target at some point in S is A7r fo r3 f('r)dr,

one can adjust A (by increasing the number of sensors scattered throughout S) to achieve the
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desired coverage. The only quantity that is required is some estimate of f(r), the range

sensitivity density.

Remark 3 [The case of fixed range sensitivity]: The reference to range sensitivity distribu-

tion alludes to the fact that the sensors are not perfect. Thus, instead of a few very expensive

sensors with fixed range sensitivity ro, the network may contain several less expensive sen-

sors with variable range sensitivities. Nevertheless, through sampling, one can get an estimate

of the sensitivity distribution. In the idealized case in which all sensors have identical fixed

range sensitivity 7-, one obtains

A = 4_ r o3 6( - )d
3 Jor

4 3= A 37Tro.

3.1 NEAREST-NEIGHBOR PROBLEMS

Suppose that sensors are distributed throughout some three-dimensional space with un-

known or slowly changing* Poisson parameter A. If the sensors are designed to communicate

with each other so that it is possible to estimate the average distance between them at any

time, then, as will be shown presently, this result can be used to determine the current value of

A.

Proposition: Consider omnidirectional sensors in R3 distributed according to a Poisson pro-

cess with intensity parameter A. The distribution function FD(r) of the distance between a

sensor and its nearest neighbor, and the mean distance E(D) between nearest neighbors are,

respectively,t

FD(r) = 1 - exp A-17rr' and E(D)
1 3 r3_0ir

Proof: Let A be the region of space within a distance r of the reference sensor. Then,

FD(r) = P {nearest neighbor within distance r}

= 1 - P {nearest neighbor not within distance r}

= 1 - P {no other sensor within distance r of this one}

= 1 - exp {-AIJIAII} -(AIA)o
0!

= 1- exp{-A47r,-3}4_ 3

*For example, the parameter A may change due to ocean currents.
tRecall that F(z) = Io tz-letdt.
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The nearest-neighbor density fD(r) = F' (r) = 4Awrr 2 exp {-A47r?3 } Therefore,

E(D) = 0 4Airr 3 exp -A 7rr 3 dr

S36Awr3F(4)

3r(1 (2)

where the identity F(r + 1) = rF(r) for r > 0 is used in the last line.

Knowing A enables one to determine the probability of detecting an object that enters

the sensor network space: From formula (1), the number of sensors that detect the object

will be a Poisson random variable with mean

4 fS
A = -Ar 0r3 f(r)ddr

3 Jo
1 (-) r f(r)dr, (3)

27 [E(D)]3r

where the substitution A 1 obtained from equation (2) was made.

Before concluding this section, it should be pointed out that the proposition's results

relating an arbitrary sensor to its nearest-neighbor sensor also apply to any arbitrary point.

That is, the distribution function GD(r) of the distance between an arbitrary point and the

nearest sensor, and the mean distance E(D) between an arbitrary point and the nearest sensor

are, respectively,

G-D(r) = -exp A-A4Irr 31' and E(D) =F(3)

3.2 PROBLEM STATEMENT FOR R 2

Theorem 2: Consider discs in two-dimensional space with centers distributed according to a

Poisson distribution with mean Al AII, where ItAII represents the area of the set A. Suppose
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that the radii of all discs are independent of the location of the center of the disc and distributed

according to F(r) with density f(r) and finite second moment. Then, the number of discs

that cover a point x is a Poisson random variable with parameter

A7r r 2f(r)dr. (4)

The proof of this result follows the proof of Theorem I provided in appendix B.

Proposition: For the two-dimensional case, the solutions to the nearest-neighbor problem are

FD(x) = 1 - exp {-A--' 2 } and E(D)= 1/(2v/=)

respectively.
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4. EXAMPLES

Example 1: Suppose sensors have been distributed throughout some region in space with

average distance between a sensor and its nearest neighbor equal to E(D) kilometers. (a)

What is the probability that a target in the region is detected by at least N sensors? (b) What

is the probability that a target in the region is detected by at least two sensors?

Solution (a):

P{X>NJ A'• exp{-An}
- ni

n=N

N-i An exp-An} 
(5)E n!(5

n=O

where A= I rf(r)dr.

Solution (b): Let X denote the number of sensors that detect the target:

P{X>_2} = 1-(P{X=0}+P{X=1})

= 1 e-A - Ae-A

= + (1A +)e-A

= - 1+ 2-7[E(D)]3- fo raf (r)dr

f 3• f~ r3f(r)dr)•exp _L ILL(0)] O

Example 2: (a) What average distance is required between each sensor and its nearest neigh-

bor in order to have an a-% chance that at least two sensors cover an arbitrary point in the

volume? (b) How intensely* should the sensors be distributed over the volume in order to

achieve this coverage?

Solution (a): Here, we want

P{XŽ>2}= 1-(P{X=0}0s+P{X=1})
= 1 - c-A - Ae-A

= (~.1

*This refers to the parameter A: larger values of A imply a denser sensor field.
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Thus, one first solves A - log(1 + A) + log(1 - v) = 0 for A (numerically) and then uses

equation (3) to obtain

E(D) 3) J -r3f(r)d,". (6)

Having found the answer to (a), one can easily answer (b): Solving (2) for A gives

A 367r[E(D)]
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5. COVERAGE COMPARISON STUDY

This section provides a comparison of the coverage provided by two systems of ran-

domly distributed sensors. Throughout this section, it is assumed that the sensors are dis-

tributed over a planar region, i.e., S C R2 . Case 1 considers a system in which all sensors

have identical range sensitivity: r, = 3 units. Thus, the range sensitivity density for this

system is the dirac-delta function 6((r - ?,,). For case 2, the gamma density is used to model

the range sensitivity over all sensors, that is,

1 -

f (r) = I- ra-ler/3, r > 0.

In the example given, a = 2.5 and j = 1.2; thus, the mean range sensitivity is also aJ3 = 3.0.

The gamma density is used to model range sensitivity to convey the idea that some sensors

will be better than others. Upon deployment, some sensors will be defective or give very poor

performance, whereas others will perform very well. And, of course, several will provide

average performance (figure 1).

C:)

C:)

CD

I I III I I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1. Gamma Density Function with Parameters a = 2.5 and = 1.2

(The line x = 3 represents the idealized density with support concentrated at 3.)

11



In general, for f equal to the gamma density, one has*

A- F(C) I 0 rt+'ý-tl-r/ýd

- -- F(± +y)3••(+±. (7)

From section 3.2, it follows that the mean parameter for the homogeneous case is A

A7r 2o r2 ( 'Ar~

In this simulation, 100 sensors are uniformly distributed over a 100 by 100 square

unit area. For the homogeneous system, with all sensors having range up to r0 = 3 units,

the predicted coveraget is p =1 - exp (-AXrrr) = 0.246. On the other hand, for the het-

erogeneous system with range sensitivity following a gamma distribution with parameters

a = 2.5, f3 = 1.2, the predicted coverage is p = 1.0-exp { Ar(• F(( + 2)j1±+2} = 0.326.

Note that the mean sensitivity range for the heterogeneous sensors is ail = 3. Figure 2

compares the coverage provided by just one simulation of a randomly distributed system of

homogeneous and heterogeneous sensors. The plot on the left depicts 100 randomly placed

sensors. The actual coverage provided by this system is 0.256. The plot on the right contains

100 sensors with 0.339 coverage. This is, of course, just one instantiation of the two systems.

In the next section, data from several instantiations are used to test the long-term accuracy of

the simulations.

.Here, the parameters C and -y depend on the dimension: if the search region is in R2, then -y = 2 and C = Air: if the search region is

asubset of R3. then -y = 3 and C = 1 A7r.
t The term predicted coverage denotes the probability that an arbitrary point in the space is within range of at lease one sensor.

12



100 Homogeneous Sensors 100 Heterogeneous Sensors

Homogeneous Sensor Field Heterogeneous Sensor Field

A0j 0U5 00 C0 kv 0y~ 0 00

Cb 00~
CI) 0 00 000024 0 o o o

06CS 0j()
2 ~ ~ 0 0' 00 GID~' t

0 0 0o9 0 °0,Z7'C
0 Cj

AM 0 00o
"00 00b

000 0o 0000 ,o' 0 (•CT 00 00 o0 CIO 0 o

Predicted coverage: .246 Predicted coverage: .327

Actual coverage = .256 Actual coverage = .339

Figure 2. Comparison of Homogeneous and Heterogeneous Sensor Fields

Figure 3 compares the number of sensors deployed to the predicted coverage. From the

formula for p, it is clear that the critical factor in the coverage statistic (for the case of a planar

field of sensors*) is the mean coverage area of the sensors: fo r2f(r)dr.

p = 1 -e - ) x f ./ °r 2 f r r) d r _•

Ci

0.

N' f(r) = r',5 exp(-r/ 1.2)

-- f(r) = 5(r -3)

I I I I I I I I I

0 100 200 300 400 500 600 700 800 900 1000

No. of Sensors Deployed (100 by 100 sq unit area)

Figure 3. Number of Sensors Deployed Versus the Probability of Detection

by at Least One Sensor

*For a network of sensors over a volume, the mean volume j'I" raf(r)dr is the critical statistic.
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6. MONTE CARLO STUDY OF THE COVERAGE STATISTIC

Suppose that, for each simulation, one randomly distributes sensors over a search region

and then randomly chooses a point in this region. The randomly chosen point should be

covered by at least one sensor approximately p = 1 - exp (-A) percent of the time.* For the

ith simulation, let Xi = 1 if the randomly chosen point is within range of at least one sensor;

otherwise, set Xi 0. The random variables Xi are binomial with success probability p. The

sample average ý3 _ X-N I Xi of the simulations can be used to determine the number of

simulations required so that , is within 5% of p with 90% confidence. Specifically, one wants

to estimate N such that

P(IP--p-<0.05p) = 0.90.

Note that

[Li, = p

2ý= p(1 - p)/N.

By the Central Limit Theorem, for N large, ,5 is approximately normally distributed

with mean p and variance p(l - p)/N. Hence,

0.90 P(Jp-pj<_0.05p)=P P -< 0.05Pvp(

where -p)IN / )' p(1-p)

P ZI< 0.051)

where Z is the standard normal random variable. In order for ý to be within 5% of p (90% of

the time), it is required that

0.05p f 1.645;
/P(1 - p)

that is, N - (1.645/0.05)2(1 - p)/p.

*Recall from Theorem I that the number of sensors that detect a randomly chosen point in space is Poisson with mean A. Hence, the

probability that the point is not detected is exp (- A). The probability that at least one sensor covers the point is 1 - exp (-A).
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The analysis was performed for A = 0.05 over a 100 by 100 square unit area. Thus,

each simulation has roughly 10000A = 500 sensors. As in the previous section, each sensor

in the homogeneous field has a range sensitivity of r0 = 3 units, and the sensor range density

for the heterogeneous system is gamma with parameters a = 2.5, = 1.2. The predicted

coverages provided by the two systems are 0.757 and 0.862, respectively. Note that, for this

example, detection in the homogeneous case is a more rare event, hence more simulations are

required to approximate the true value: N = (1.645/0.05))2(1 - 0.757)/0.757 = 348 versus

N = (1.645/0.05)2(1 - 0.862)/0.862 = 174 for the heterogeneous case.

Table 1. Monte Carlo Simulation of Coverage Probability

System No. Simulations p /3 Percentage Difference

Homogeneous 348 0.757 0.744 1.72

Heterogeneous 174 0.862 0.845 1.97
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7. SUMMARY

Through an entirely probabilistic approach, coverage statistics for a system of randomly

distributed sensors having heterogeneous range sensitivities have been derived in this report.

It has been demonstrated that the case in which all sensors have identical range sensitivity

is just one idealized case of the heterogeneous problem. Simulation studies that support the

theoretical results are provided.

17 (18 blank)



APPENDIX A

CONDITIONAL UNIFORMITY AND INDEPENDENCE

Lemma: Let N be a spatial Poisson process with parameter A. Then, under condition

N(A) = k for IIAH[ > 0, the k points are independent and uniformly distributed.

Proof: Let A,, A2, . ,A, be n disjoint regions with U" A, = A. Suppose also that the

integers k1, k2,... k, satisfy k, + k2 + ... + k, = k. Then,

P{N(A1 ) = ki,N(A2) = k2 ,. .. ,N(A,) = k, I N(A) = k}

P{N(A1 ) = ki,N(A2 ) = k2 ,. .. , N(A,) = k,}

P{N(A) = k}
[ALILA I1]kl e - AllAIIiII [LAIIA 2 11k2 e- A 1A2111  [[AJJAII]k,, e-All A. 11

[- ! e_,-A•llAi

k!

k_ !1.1.. , 11] k'IA [II L - 1 ]- k2 ... AR k n (A -I)

k1 !k2! . .. k,! J II I LIAJI J IIAll]
In particular,

P{N(A1 ) =1 N(A) =} = P{N(A1 )= 1,N(A) = 0 1N(A)= 1}
P{N(A1 ) = 1, N(Al) = 0}

P{N(A) = 1}

IIAIll- I 11 (A-2)

According to (A-2), given that an event has occurred in volume A, it is equally likely to be

found anywhere in A. Also, note that

P{N(A1 ) = kI N(A) = k1 } = AIki (A-3)LJA Idl * A3

Thus, equation (A- 1) implies independence. Note that the leading coefficient in (A- 1) is the

sum over all the configurations in which the k points can be divided into n subgroups with ki

points in the first group, k2 in the second, etc. Each of these configurations has probability

IAI ll1",IA2 11k2"... 1A- ( -2kn/lbAla

A-1I (A-2 blank)



APPENDIX B

PROOF OF MAIN THEOREM

Theorem 1: Consider a set of omnidirectional sensors in three-dimensional space scattered

throughout some region S C R3 . Suppose that the sensors are spatially distributed according

to a Poisson point process with parameter A. Suppose also that the range sensitivity of all

sensors is distributed according to the cumulative distribution function F(r) with density

F'(r) = f(r) having finite third moment. Finally, assume that range sensitivity is independent

of the sensor location. Then, the number of sensors that will detect a target located at some

point x E S is a Poisson random variable with mean

A = -A7r jr3f(r)dr.

Independence Assumptions: (1) Sensors are distributed according to a Poisson random vari-

able. This means that the number of sensors in non-intersecting regions of space (e.g., non-

intersecting spherical shells centered about any point) are independent. It is useful to think

of each sensor and its sensitivity extent as a sphere, with the center of the sphere at the sensor

location, and radius equal to the sensitivity range of the sensor. (2) According to the theorem,

the radius of each sphere is assumed to be a random variable independent of the location of

the sphere.

Proof: Fix the origin* at any point in R3 . Let S(r) be the sphere of radius r with center

at the origin. Also, let S(r, 7- + Ar) denote the volume of the shell, or region, between two

concentric spheres centered at the origin and having radii r and r + Ar, respectively. Then,

S(r, r + Ar) = flS(r + Ar)lI - l S(r) l
= 47r(r + r3_4 7r3

4 34
-- o r + Ar)3 -- Tr

= -- r [7-3 + 3T2 Ar + 3r(Ar) 2 + (Ar) 3 -- 7.3]
3

= 4 7r r [3,-2 + 3,7-A, + (A ') 2]

47r 2Ar + o(Ar).

Therefore, the probability of a sphere occurring in the shell (i.e., having center in the shell

S(r, r + Ar)) with radius extending out to the origin is the product of (i) the probability a

*For argument's sake, the origin is used, although any fixed point would suffice. It might be useful for the reader to consider this point a

target, as it will be shown that the number of sensors that detect this point follows a Poisson distribution.
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spherical center occurs within the shell (i.e., A (47rr'Ar + o(Ar))) and (ii) the probability

that the sphere's radius extends at least out to r (i.e., J" f(p)dp):

A (4irr 2Ar + o(Ar)) j f(p)dp = (A47rr2 J f(p)dp) Ar + o(Ar).

That is,

P{N(S(r,r + Ar)) = 1} = A(r)Ar + o(Ar), (B-I)

where N(S(r, 7- + At)) is the number of sensors (i.e., sphere centers) to occur in the shell

S(r, i- + At) with radius extending out to the origin, and A(7r) = 4 rAt2 .j f(p)dp.

It remains to be shown that the probability of the occurrence of two or more spheres

with centers in the shell S(r, i" + At-) and radii extending out to the origin is o(Ar):

P {N(S(r ,r + At)) > 2} = exp (-47rAr 2 Ar) k! (2 k f(p)(1P)

k=2
1- 47rAvr2 A 7 f ) f ( 1p~ ] k

= exp (-47rArAr) 2!
- 2=2

[47rAr
2 Ar f17 f(p)dp] k

xE k!

k>O

=exp (-47rAr2 A7_) eXP (_ 47r x2,A1 f/ fY)dp)

[4.rAj 2 f I f(p)dp] 2

x 2! (,At)2 (B-2)

= o(Ar). (B-3)

Note that for small Ar, the exponential factors in (B-2) are approximately 1. The coefficient

of (ATr) 2 in the third factor is a constant.

From the two independence assumptions, it follows that S(r) has independent incre-

ments. Now, (B-1), (B-3) and the independent increment property imply that the number of

spheres with centers approximately a distance r from the origin and having radius out to the

B-2



origin is a Poisson random variable with mean A(r). That is, the number of sensors with range

out to the origin is a non-homogeneous Poisson random variable with local intensity function

A(r). Finally, one integrates A(r) over all ranges to get the cumulative intensity function:

j A(r)dr = J 4rAr 2  f(p)dpdr

- oj f(P) j 47A•r 2drdp

-Jo 4 7Ap f(p)dp.

Since the point chosen as origin was arbitrary, the result follows for any point in R 3 .
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