
Numerical Calculations for Passive Geolocation

Scenarios

Don Koks

Electronic Warfare and Radar Division
Defence Science and Technology Organisation

DSTO–RR–0319

ABSTRACT

This report reviews work done in gaining some familiarity with methods of
passive geolocation, and a search for rules of thumb that might tell us how
to optimise the geolocation for a given scenario. We first cover the main
approaches to collecting angle of arrival data and point out typical accuracies.
Following this is an account of the mathematics used to analyse this data to
produce an estimate of an emitter’s location. We then give an overview of
some of the literature, and finish by demonstrating a Matlab programme that
runs several geolocation algorithms. Simple rules of thumb that specify how to
fly a baseline and take data, so as to maximise the accuracies of the different
techniques, do not appear to be readily derivable.

APPROVED FOR PUBLIC RELEASE

DSTO–RR–0319

Published by

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, SA 5111, Australia

Telephone: (08) 8259 5555
Facsimile: (08) 8259 6567

c© Commonwealth of Australia 2007
AR No. AR–013-779
January, 2007

APPROVED FOR PUBLIC RELEASE

ii

DSTO–RR–0319

Numerical Calculations for Passive Geolocation Scenarios

EXECUTIVE SUMMARY

This report has been written with two broad aims. The first is to present an overview of
current geolocation techniques when bearings-only data is given. We give a short overview
of geolocation literature, as well as covering the backgrounds to several techniques: the
Cartesian Pseudo-Linear Estimator (which we extend to handle the case of a moving
emitter), the Gauss–Newton method, Recursive Least Squares, and two types of Kalman
Filter. These discussions are given with a view to being sufficient to enable the reader to
write code that implements these routines, as well as understanding some of the relevant
theory.

The second aim of this report is to analyse representative geolocation scenarios, in an
effort to quantify how well each technique can be expected to perform. We do this by using
a Monte Carlo approach of repeated runs using software written in Matlab specifically for
this research. We discuss a search for rules of thumb that could direct how to optimise the
geolocation geometry for a scenario involving one emitter and a constant velocity receiver.
In this and other contexts, the Cramér–Rao bound is discussed in some detail. This bound
gives the theoretical limit on the best accuracy that a geolocation approach can attain.

The results of analysing representative geolocation scenarios show that no straightfor-
ward rules of thumb appear to be derivable; it seems that nontrivial geolocation scenarios
contain too many parameters to allow each of the techniques’ geolocation accuracies to
be readily derivable using a simple rule. The situation only gets worse for more com-
plex scenarios involving multiple moving receivers and a single, perhaps moving, emitter.
Multiple emitters are not handled by this report; their presence calls for more specialised
techniques.

iii

DSTO–RR–0319

Author

Don Koks
Electronic Warfare and Radar Division

Don Koks completed a doctorate in mathematical physics at
Adelaide University in 1996, with a dissertation describing the
use of quantum statistical methods to analyse decoherence, en-
tropy and thermal radiance in both the early universe and black
hole theory. He holds a Bachelor of Science from the University
of Auckland in pure and applied mathematics, and a Master
of Science in physics from the same university with a thesis in
applied accelerator physics (proton-induced X ray and γ ray
emission for trace element analysis). He has worked on the ac-
celerator mass spectrometry programme at the Australian Na-
tional University in Canberra, as well as in commercial internet
development. Currently he is a Research Scientist with the
Maritime Systems group in the Electronic Warfare and Radar
Division at DSTO, specialising in jamming, three-dimensional
rotations, and geolocation.

v

DSTO–RR–0319

Contents

Glossary, Conventions, and Constants ix

1 Overview 1

2 Direction-Finding Techniques 1

2.1 Amplitude Response . 2

2.2 Time Difference of Arrival . 2

2.3 Interferometry . 3

2.4 Absolute Doppler . 3

2.5 Frequency Difference of Arrival . 4

2.6 Differential Doppler . 4

3 Statistical Processing of Bearing Data 5

3.1 Layout of a Geolocation Problem . 5

3.2 Cramér–Rao Lower Bound . 5

3.2.1 Two Types of Cramér–Rao Bound 6

3.3 Circular Error Probable and Range Errors as Ways of Quantifying Error . 8

3.4 Observability of the Emitter . 8

3.5 Producing an Estimate of the Emitter Position: The Stansfield Algorithm 10

3.6 A Least Squares Primer . 12

3.6.1 Total Least Squares: When the Errors are More Complicated . . 14

3.7 Cartesian Pseudo-Linear Estimator Approach (CPLE) 14

3.7.1 Relating the CPLE to the Method of Maximum Likelihood 17

3.8 Gauss–Newton/MLE Algorithm . 17

3.9 Recursive Least Squares (RLS) . 20

3.10 Kalman Filter . 21

4 Review of Selected Papers in the Field 26

5 Geolocation For a Triangle of Receivers 30

5.1 Calculating a Cramér–Rao Set of Bounds 30

5.2 Long-Baseline TDOA . 33

vii

DSTO–RR–0319

6 Results of Running a Matlab Simulation 37

6.1 Reproducing Some Known Results . 43

6.2 Checking an Old Suggested Rule of Thumb 45

7 Concluding Remarks 47

References 48

Appendices

A Posterior CRLB 51

B Total Least Squares 55

C Running the Matlab Geolocation Simulator 57

viii

DSTO–RR–0319

Glossary, Conventions, and Constants

CEKF Cartesian Extended Kalman Filter, a geolocation algorithm.

CEP Circular Error Probable. The radius of a circle drawn around the emitter that
encompasses 50% of all estimates made of its position. Thus 50% of the time, the
emitter will lie somewhere within a circle drawn around the estimate. In other
words, we can be 50% confident that the emitter lies within the CEP distance of
any particular estimate we make. Increasing this parameter to a higher certainty,
say 95%, can increase the corresponding CEP figure greatly.

DF Direction Finding.

DSTO Defence Science Technology Organisation.

G–N Gauss–Newton geolocation algorithm.

MPEKF Modified Polar Extended Kalman Filter, a geolocation algorithm.

CPLE Cartesian Pseudo-Linear Estimator geolocation algorithm.

RLS Recursive Least Squares geolocation algorithm.

TDOA Time Difference Of Arrival (also known as DTOA, Differential Time Of Arrival).

ix

DSTO–RR–0319

1 Overview

Passive geolocation in a broad sense has two rather separate parts. The starting point for
locating an emitter is the direction-finding process (DF), that is based upon hardware and
signal reception. Analysis then follows on the observed data; and in a noisy world, this
draws heavily on a statistical approach.

Direction-finding techniques make up a set of possibly complementary tools that are
used to produce bearing data suitable for statistical analysis. A general description of
these is presented in Section 2 of this report. Throughout the remaining sections we
concentrate more on the analysis of the bearings that the DF system provides, taking the
provision of (noisy) bearings as a given. Analysis of this bearing data itself is described in
Section 3. There we discuss several different methods, all of which are aimed at producing
an estimate of where the emitter actually is and how fast it might be moving.

Although geolocation has a long history, much good work in the field has been done
only relatively recently, as computer power continues to increase. The various techniques
that in the past were graded on their computational intensity are now all performed easily
at high speed on a modern computer, and the question of which one is to be preferred is
partly a question of how easy they each are to implement and understand. We discuss
recent work in the various geolocation techniques in Section 4.

Section 5 deals with a very specific scenario where three fixed receivers geolocate one
stationary emitter. We produce Cramér–Rao bounds, as well as comparing the results of
different geolocation routines. Long-baseline TDOA is then discussed for this geometry,
with results presented that give an idea of how the geolocation is affected by baseline
length and timing accuracy.

Since one of the aims of the current work has been to develop a feel for the types of
paths that must be flown to achieve a given geolocation accuracy, we need to be able to
run the various bearing analysis routines on sample data to see what effects the various
parameters have on the final estimate of the emitter’s position and state of motion. To this
end, in Appendix C we show the results of a Matlab programme that runs these routines
as required. Section 6 analyses these results with a view to obtaining some rules of thumb
for simple scenarios.

2 Direction-Finding Techniques

The art of direction finding itself goes back to Hertz and the beginnings of radio theory,
when it was realised that the anisotropy in an antenna’s reception pattern could be used
to find an emitter’s direction. This is still a common means of direction finding, but has
long been supplemented by more sophisticated coherent techniques. Because of this, it is
convenient to split DF apparatus into two classes: those that make use of the receiver’s
amplitude response, and those that use its phase response. The amplitude response type
can be of small size and thus fit well into fighter aircraft; on the other hand, the accurate
measurement of phase differences in the arrival of a wave front can require a larger receiver,
and antenna array, than might be practical on these.

1

DSTO–RR–0319

Even if we are able to locate an emitter to any desired accuracy, our measurements
can still be limited by our knowledge of our own ship’s position and heading. However,
own-ship position and heading are determined very accurately using GPS/INS.

2.1 Amplitude Response

The first of the noncoherent DF techniques is the simplest and oldest: locating the di-
rection of maximum signal strength while rotating the antenna. This has the simplifying
advantage that the only detailed knowledge of the beam pattern needed is the beam width,
where a typical resolution of this type of system is about 1/10 of that width. But this
simplicity brings several possible problems:

• The receiver might have to be held wide open to maximise signal reception probabil-
ity, which is a disadvantage in the presence of many signals. On the other hand, this
sort of wide band DF is not always required, with narrow band searching instead
being favoured. In some situations a wide band scan might still be done, the signal
located and then further searching done over a much smaller bandwidth.

• Many pulses need to be intercepted—with a correspondingly large amount of data
processed.

• Signals of varying strength can completely distort the measurement. This is the
main problem and can lead to the method being effectively useless, unless a cor-
rection is applied. Normally this is overcome by employing an extra nonscanning
nondirectional antenna that also processes the pulses, allowing us to normalise the
data by comparing the ratios of the signal strengths seen by each antenna.

Alternatively, we can dispense with the rotation by using at least two stationary antennas
with known, nonisotropic beam patterns: overlapping these patterns and comparing the
signal strength from each then gives the source direction, even when the signal strength
is changing. This method of amplitude comparison is used very commonly for direction
finding. Typically there are four or more antennas, with the coarse tuning being done by
simply measuring which has the strongest signal, followed by fine tuning by comparing
responses as above. Small errors in power received can lead to a large DF error, so that
typical bearing accuracy for four receivers is 10–15◦. This can be increased to about 5◦

for six receivers, while 2◦ is attainable with eight receivers.

2.2 Time Difference of Arrival

If our platform is large enough, measuring the difference in arrival times of the signal
at two or more widely spaced receivers will give good DF information. This technique is
known as Time Difference of Arrival (TDOA). In two dimensions, for each pair of antennas,
the emitter will be located somewhere on a hyperbola; so a third antenna on a different
baseline will narrow the position down to a point. In three dimensions the hyperbolæ
become surfaces of revolution about the line joining each pair, so four receivers will be

2

DSTO–RR–0319

needed. These four, or commonly still more receivers, will be set in a number of different
baselines.

For long baselines (greater than a few tens of metres), this is a modification to the
meaning of direction finding, in the sense that we are not locating the emitter on a ray
described by one bearing. Rather, a hyperbola needs to be specified. The situation is
simplified for baselines of perhaps ten or twenty metres (“short-baseline TDOA”), since
the multiple bearings are then essentially the same, lying more or less on the hyperbola’s
asymptotes. This produces a straight line geometry and a simple direction. In this case
the receivers can be sited on one platform, but the timing accuracy required then becomes
crucial. The hyperbolic case becomes more important, and in principle easier to imple-
ment, when the receivers are more widely separated. But in practice, widely separated
receivers are limited by the requirement that they both see the same pulse, and this is to
some extent dictated by the emitter beamwidth. This topic is covered in some detail in
Section 5.2, as well as in [1]. Typical bearing accuracy is 1–2◦.

2.3 Interferometry

Whereas TDOA measures the difference in arrival times of a wave at two receivers, inter-
ferometry measures the difference in arrival phase at two receivers.

Beasley and Miles [2] has a good discussion on the various sources of error possible.
Notable errors result from the following:

• Multipath interference due to the ESM platform’s fuselage etc. This might produce
bearings with significant errors, but if the receivers are changing orientation from
one measurement to the next (e.g. if the platform is turning), then these errors will
probably not lead to any bias in the measurements.

• Multipath interference caused by the radome, which is ever-present, but is at least
a systematic error.

• Bearing ambiguity. This will not occur if the antenna spacing is less than half a
wavelength. Typical radar wavelengths of 3–30 cm restrict the required antenna
spacing, but in practice ambiguities are overcome by using multiple baselines.

• Thermal noise. This cannot easily be removed through system design, and hence
may well be the greatest error contributor.

Interferometry tends to give very high accuracy: better than 0.5◦ is possible for single
pulses on line-of-sight paths.

2.4 Absolute Doppler

When an emitter is at rest—for example anchored to Earth—its Doppler shift will give us
information about where it is. This can be seen by realising that provided we know the
emitter’s velocity relative to us, together with its velocity radially from us, then we can

3

DSTO–RR–0319

in essence shift that velocity vector around our own position, until its radial component
matches the measured value. All such matches can only lie on a cone extending out from
ourselves, and this cone cuts Earth’s surface in a hyperbola. So we’ll know that the emitter
lies somewhere on this hyperbola.

We do know the emitter’s velocity relative to us because it is anchored to Earth, and
so is just equal and opposite to our known velocity relative to Earth. We also know its
radial velocity, since this is given by the ratio of observed to emitted frequencies:

fo

fe
≃ 1 − vradial

c
. (2.1)

The only real problem here is that we need to know the emitted frequency. And in practice,
accurate knowledge of this is probably not available—especially because this frequency can
change very quickly in modern radars. Thus, the method might only be of use for narrow-
band signals produced by crystal-controlled radar, instead of the more common magnetron
types whose frequencies are much less constant.

2.5 Frequency Difference of Arrival

Again for a stationary emitter, Frequency Difference of Arrival (FDOA) uses the difference
in Doppler shifts in emitter frequency as observed by at least two platforms that both move.
Since the Doppler shifts yield the radial velocity of each receiver from the emitter, it’s a
straightforward matter to determine the emitter location, which will be unique (or perhaps
two-fold ambiguous) for most receiver configurations.

2.6 Differential Doppler

The Differential Doppler technique follows the same basic idea as FDOA. But whereas
FDOA makes use of the same signal received by two receivers at widely separated points
in space, in principle Differential Doppler needs just one receiver to measure a change in
frequency over time, as the emitter moves relative to it. The complication arising is that
the emitted frequency might change over time in an unknown way.

Beasley and Miles [2] discuss Differential Doppler, but actually have not properly
incorporated the differential Doppler shift into their analysis. What they are calculating,
the rate of increase of interferometer phase difference with time, has two parts: a pure
Doppler component (i.e. involving dλ/dt) which they don’t include in their analysis, and
a sort of FDOA component caused by the motion of the emitter as seen by the receiver.
This last term is the only one written down by Beasley and Miles, although it turns out
to be the dominant one anyway. They doubt this technique has been tested. (A change is
necessary to their equation (2-22): replace sin2 φ with cos2 φ since they have confused the
two φ’s in their Figures 2-1 and 2-8.)

Suitability for Different Bands. Narrow-band signals are best suited to Differential
Doppler since they have a fairly well-defined wavelength. Also, their comparatively long
pulse duration means that Differential Doppler is more effective than TDOA for this type

4

DSTO–RR–0319

East

North

Receiver flight path Emitter (xe, ye)

βk noisy

θk exact

βk+1
θk+1

rk

rk+1

Figure 1: Bearings taken at the kth and k+1th receiver positions

of signal. With wide-band signals the situation is reversed: the spread of frequencies
means Differential Doppler does not perform well, so that TDOA is then preferred.

3 Statistical Processing of Bearing Data

3.1 Layout of a Geolocation Problem

For the next subsections, refer to the layout of Figure 1, adapted from [3]. A stationary
emitter is situated at (xe, ye), while a receiver moving along some path takes bearing
measurements at various points. The receivers are situated at r1 . . . rn, and take (noisy)
bearings β1 . . . βn, which form the data set. What we wish to do is either produce an
estimate of the emitter’s position (xe, ye), or else, given such an estimate, improve upon it
by producing a new estimate. We also require the error in the result. In general this can
be difficult to calculate, but we can be guided as to what error can reasonably be expected
by considering the Cramér–Rao lower bound for the given scenario, as well as the circular
error probable (CEP) and range errors, as discussed next.

3.2 Cramér–Rao Lower Bound

The Cramér–Rao lower bound is an indicator of how well we can locate a parameter that
is, in some sense, the “centre” of a distribution. Its use is motivated by this fact, since it
will tell us how well a geolocation algorithm is performing compared to the absolute best
possible performance theoretically attainable. This absolute benchmark also allows for a
better comparison of the various algorithms, rather than just comparing them with each
other.

5

DSTO–RR–0319

Suppose we receive a signal from which we wish to extract an interesting parameter x.
For example, in the case of a normal distribution, x might be the mean. In general, if a
data set depends on this unknown parameter, then in the absence of our being able to
determine x, we wish to define an “estimator” x̂ of x in such a way that x̂ is unbiased; by
this is meant that calculating it from a collection of data sets would yield x on the average,
so that the expected value E{x̂} equals x. In some situations the Cramér–Rao theory will
produce this unbiased estimator for us, as well as a lower bound on the associated variance.

In an unpublished paper by Kim Brown at DSTO [4], this theory has been applied
to the case of an aircraft flying at various broadside angles and ranges to an emitter, in
an effort to calculate just what the minimum geolocation error will be, for the case of
a physically realistic probability density function of bearing errors seen by the receiver.
This function is chosen in [4] to be von Mises, a symmetrical bell-shaped curve with its
maximum at zero degrees error, being the angular version of a gaussian distribution. (That
is, it gives the probability density that the bearing suffers from some error, which can be
positive or negative corresponding to the measured direction being too far off true in one
direction or the other. The width of the bell curve is, as usual, related to the actual
bearing error we attribute to the DF equipment.)

The results in [4] have been reproduced independently using Matlab in Appendix C.
The Matlab programme goes further than [4], in the sense that it allows for arbitrary
broadside angles, emitter ranges, receiver speeds, observation periods and number of stan-
dard deviations for the uncertainty ellipse, as opposed to the paper’s static values. The
programme also does something a little different to the paper: it applies the von Mises
probability distribution to the geolocation scenarios it is analysing (as opposed to the ex-
ample in [4] which does not incorporate any tracking algorithms), and plots an uncertainty
ellipse superimposed on the map with the tracking algorithm output.

This uncertainty ellipse gives us an idea of the best accuracy we can hope for when
processing DF data, regardless of which method is being used to locate the emitter (al-
ways assuming a von Mises error, which is quite reasonable). The fact that the parameters
can be freely input to Matlab means that we can use the Cramér–Rao theory as a ba-
sis for comparing the techniques of Cartesian Pseudo-Linear Estimator, Gauss–Newton,
Recursive Least Squares, and Kalman filtering, as will be discussed shortly.

Cramér–Rao bounds are calculated for a multiple receiver scenario in Section 5.1. It
must be added that the lower bound is, strictly speaking, only applicable to an unbiased
estimator. But it turns out that the results of geolocation algorithms will generally tend
to be biased, so that we must treat Cramér–Rao results cautiously.

3.2.1 Two Types of Cramér–Rao Bound

Signal processing theory involves two types of Cramér–Rao bound. These correspond to
whether we use non-bayesian statistics or bayesian statistics for the geolocation calculation.
In the sections that follow, we will describe several geolocation methods. The Cartesian
Pseudo-Linear Estimator and Gauss–Newton are “batch” methods where the state of the
emitter (position, velocity, etc.) is treated as having a definite but unknown value, with
no prior knowledge assumed: this is a non-bayesian approach. One application of the
batch method is sufficient to yield an estimate of that state. The last three methods

6

DSTO–RR–0319

are all “recursive”, in which the state is treated as a random variable, according to some
probability density function given initially by prior knowledge. This prior knowledge
indicates that the Cramér–Rao calculation should assume a bayesian approach, since Bayes
theory makes use of this prior knowledge.

The lower bound on the variance of the unbiased estimator can be shown to be the
inverse of the Fisher information J (a matrix, in general). That is, if our unbiased
estimator of the emitter’s state is x̂, then Cramér–Rao theory states that the following is
always true:

var(x̂) > J−1 ≡ CRLB, the Cramér–Rao lower bound, (3.1)

where the meaning of “greater than a matrix” is quantified just after (3.6) ahead. How
do we calculate the Fisher information matrix? Consider first the non-bayesian case that
is applied to batch processes.

Non-Bayesian Case. Suppose the data set of k measurements is

Zk ≡ {z1, . . .zk} , (3.2)

which depends on an unknown parameter x (e.g., zi are bearing/range pairs, and x is the
position of the emitter). The set might also contain a first element z0, which is not a
measurement as such, but rather is prior information. The probability that given some
particular x, the k measurements Zk will be observed is p(Zk|x), called the likelihood. It
turns out to be more convenient to work with the negative logarithm of the likelihood:

L(Zk|x) ≡ − ln p(Zk|x) . (3.3)

For a one-dimensional case where x is a scalar, the non-bayesian Fisher information
(a scalar) is defined as an expected value over the data:

JNB ≡ EZk

{
∂2L(Zk|x)

∂x2

}
= EZk

{(
∂L

∂x

)2
}

(3.4)

(where the last equality can be proved easily). Generally the data is dependent on several
parameters, whose values at the latest time k are collectively called xk. Dropping the
k subscripts, the Fisher information at time k is now a matrix:1

JNB ≡ EZ

{
∇x

(
∇t

x
L(Z|x)

)}
= EZ

{
(∇t

x
L) (∇xL)

}
, (3.5)

where ∇L is a row vector, and ∇tL ≡ (∇L)t is a column vector. Component-wise, the
previous expression is:

JNB

∣∣∣
i,j

≡ EZ

{
∂2L(Z|x)

∂xi ∂xj

}
= EZ

{
∂L

∂xi

∂L

∂xj

}
(3.6)

(remembering that xi, xj are really the i, j components of xk). The inverse Fisher informa-
tion J−1

NB is a lower bound in the sense that cov(x̂)−J−1
NB is positive semidefinite—meaning

that the quadratic form it produces is always > 0.

1In general, the CRLB theory assumes the regularity condition to hold: EZk
{∇xk

L} = 0 for all xk,
which is true for well behaved distributions.

7

DSTO–RR–0319

Bayesian Case. The bayesian viewpoint used to calculate the Cramér–Rao bound,
known as the “posterior” CRLB, for recursive routines is much more involved, and has been
briefly described in Appendix A. It uses some recursive notation laid out in Section 3.10.
Good references to its discussion of the posterior CRLB are [5, 6].

3.3 Circular Error Probable and Range Errors as
Ways of Quantifying Error

There are various ways to quantify the accuracy of a geolocation method. Two in particular
are used in this report. The first is the circular error probable (CEP). This is the radius
of a circle that, when drawn around the actual position of an emitter, will encompass
half of a large number of estimates to that position. So this circle comprises the region
within which there is a 50% probability of estimating the emitter to lie; hence the smaller
the CEP, the better is the geolocation method. Broadly speaking, since the area of the
circle is proportional to the square of the CEP, a halving of the CEP really signals a
dramatic improvement in accuracy. Although the collection of estimates made to the
emitter position will not, in general, lie symmetrically around the true emitter position,
nevertheless, the CEP is a good one-parameter quantifier of the accuracy of a geolocation
method. In practice, the CEP will be drawn around the estimated position of the emitter,
because the actual emitter position is unknown.

The second way to quantify the accuracy of a geolocation method is to specify two
numbers: the cross- and down-range errors. Cross-range error is the transverse difference
between the actual emitter position and our estimate of it. Down-range error is the
difference between the range to the actual emitter and the range of the estimate, which is
more or less as depicted in Figure 2 if the cross-range error is not too large. The figure
shows a set of estimates to an emitter’s position, with the CEP and range errors indicated.

3.4 Observability of the Emitter

In order to determine the receiver network necessary for a given geolocation problem—or
perhaps the parameters of the flight path of one receiver—we need to give some consid-
eration to whether an emitter’s position can be uniquely determined, even in the absence
of noise. Since our measurements are bearings only, we can imagine a scenario in which
another, more agile, emitter moves arbitrarily, but always so as to remain hidden behind
the real emitter. Thus the position of an emitter is never uniquely determined, since this
other more agile emitter could really have been the only one present.

But this more agile emitter must have to follow a much more convoluted course than
the visible one, and the wisest choice might be to say that whichever of these alternative
emitters is moving in the simplest way is the real one. For example, suppose the receiver is
moving at constant velocity: that is, a straight line with constant speed. Then an emitter
that is really stationary will give rise to the same bearings as one that moves at just the
right speed to always appear to be behind or in front of the the real one. And these could
hide another one that is zig-zagging wildly back and forth, again always so as to remain

8

DSTO–RR–0319

estimates

Emitter

Down-range

error

Cross-range

errorCircle with

radius CEP

Receiver

Figure 2: Definitions of CEP and range errors

hidden behind the real one. Our intuition tells us that those two that move are almost
certainly not real, but rather are “ghosts”. Depending on what prior information we have,
the most pragmatic decision might be that the real emitter is in fact stationary.

Accepting the fact that the real emitter could be moving quite wildly in just the right
way so as to give rise to the observed bearings, we denote the stationary emitter in the
above example observable if, when we model it as stationary, a geolocation analysis will
produce an accurate value for its position. Likewise a constant-velocity emitter is denoted
as observable if, when it’s modelled as having a constant velocity, a geolocation analysis
returns an accurate value for its position and that constant velocity.

Relevant to this discussion is the idea of manoeuvring, which can be quantified in the
following way. If two objects A and B are moving, then A manoeuvres more than B if,
for example, A has a constant velocity while B only has a constant position; or A has a
constant acceleration while B only has at most a constant velocity, and so on.

It can be shown that if the emitter is observed, then the receiver must have manoeuvred
more to have found it. The converse is not quite true: just being more manoeuvrable does
not guarantee that we will locate the emitter, but we usually will even so, provided we
have made a reasonable model of its motion. The bottom line is that if we (the receiver)
suspect the emitter is stationary, then we must at least be moving to geolocate it; while if
we suspect the emitter has constant velocity then we must accelerate, even if that is limited
to a single turn connecting two constant-velocity paths. While an acceptable acceleration
might be nothing more than a kink in our otherwise constant-velocity flight path, the fact
that this kink might be very slight shows that there is a continuum of degrees to which an
emitter is observable. It is not true that emitters are either observable or not; the accuracy
of a geolocation analysis depends on how we model the emitter’s motion, and how we (the
receiver) move. Different geolocation techniques have differing degrees of sensitivity to the
emitter’s observability.

9

DSTO–RR–0319

All of this has the consequence of limiting what can be achieved, even in principle, with
target motion analysis. When implementing a geolocation routine, we must specify the
type of emitter motion: for example, if we suspect that the emitter has constant velocity,
then we (the receiver) must accelerate to out-manoeuvre it in order for the geolocation to
have any chance of making sense; and we also will need to provide some sort of model of
the emitter that allows it to have a constant velocity.

It might be thought that since constant velocity is only a special kind of constant
acceleration (where the acceleration is just zero), it might be useful to model the emitter
as accelerating, even though we suspect it probably only has a constant velocity. Or, to
take the situation to its logical conclusion, we might be able to model the emitter as having
some high manoeuvrability, and so long as the receiver outmanoeuvres it in actuality, then
it should be able to find the emitter’s true motion. But this cannot be true. Since we can
imagine that there is an infinite hierarchy of ever more complicated manoeuvring emitters
hidden behind the real one, as soon as we model the emitter as anything of a high order
motion, we will open ourselves up to confusing its motion with all of the ghost emitters
that have manoeuvrability at most as complicated as that of our model. So there will be
an ambiguity reflected in our results of where the emitter is.

In fact in practice, for some geolocation techniques (“smoothers” such as the CPLE
technique described in Sect. 3.7), the more manoeuvrability we build into the model of
the emitter, the closer its estimated position and motion lie to the receiver’s position and
motion. It actually appears to be sitting right on top of the receiver. With hindsight this
is not as strange a result as it sounds, because such an emitter will certainly always be
sighted in the direction given by the measured bearings. It’s as if the geolocation routine
is giving up, and simply returning an emitter state that will always “fit”, in the sense of
being compatible with the measured bearings.

3.5 Producing an Estimate of the Emitter Position:
The Stansfield Algorithm

Perhaps the earliest of the “modern” papers to discuss the processing of bearing data was
published by Stansfield in 1947 [7]. For the case where only noisy bearings are known
of a single stationary emitter, the setup as described by Stansfield is loosely pictured in
Figure 3.

Typically, the problem to be solved is that while the bearing lines due to two receivers
intersect with no ambiguity, in general the lines of three receivers do not intersect. Instead,
they form a so-called “cocked hat”, a triangle within which the emitter might be thought
probably to lie. In fact, in such a situation where the bearing line drawn is the centre
of some probability distribution, there is only a 1 in 4 chance that the emitter will lie
within the cocked hat triangle, despite the fact that somewhere within the triangle seems
to be the best place to estimate its position in the absence of any other information.
The best way out of this difficulty is to put any method of locating the emitter on a
good statistical footing. We assume the bearings are spread according to some known
probability distribution in bearing angle, peaked around the true bearing; and we require
the most probable emitter position given this set of measured bearings. This is known as
the maximum a posteriori estimate of the emitter’s position. So we need to calculate the

10

DSTO–RR–0319

*

Receiver 1

Receiver 2

Receiver 3

Receiver 4

Postulated emitter

position (x, y)

Figure 3: Stansfield scenario

probability that the emitter is at some position (x, y) given that bearing set, and vary x
and y over the whole region where the emitter could possibly be, until we find a maximum.

It proves easier, but just as useful, to follow a slightly different approach known as
the method of maximum likelihood. In this we take the true position of the emitter to
be the one most likely to have given rise to the measured bearings. That is, we calculate
the probability that the measured bearings will be what they are, for all possible emitter
positions, and choose the position maximising this probability.

That is, the maximum a posteriori approach maximises

prob(emitter at (x, y) | bearing data) , (3.7)

while the maximum likelihood approach maximises

prob(bearing data | emitter at (x, y)) . (3.8)

These two probabilities are related via Bayes’ rule.

Stansfield’s original calculation is based around the following maximum likelihood anal-
ysis. Begin by referring to Figure 1 on page 5. The kth measured bearing is just the exact
bearing plus some noise:

βk = θk(x, y) + νk . (3.9)

Provided the bearing errors are normally distributed, the maximum likelihood probability
will be a product of gaussian functions:

p(β1 . . . βn|θ1 . . . θn) ∝ exp
∑

k

−(βk − θk)
2

2σ2
k

. (3.10)

Maximising this probability is equivalent to minimising twice the sum of squares in the
exponent, this being known as the “cost function” of the problem:

ML cost function =
∑

k

(βk − θk)
2

σ2
k

. (3.11)

11

DSTO–RR–0319

Stansfield expressed βk − θk as a function of the emitter position (x, y), and then equated
each of the x, y partial derivatives with zero. This can be done in different ways, depending
on what level of accuracy is chosen and what assumptions are made. Different assumptions
will lead to slightly different formulations and solutions of the problem.

While Stansfield’s original paper used the maximum likelihood approach, it was writ-
ten very obscurely. It was rewritten a decade later by Ancker [8] using a slightly more
transparent approach. The calculation is complicated by the fact that the probability
distributions are expressed fundamentally in terms of angles, so that when converted to
distances using cartesian coordinates, the distance of the emitter from each receiver enters
the problem in a mathematically complicated way. This is not a problem in itself; it just
makes the resulting equations harder to solve.

Both Stansfield and Ancker tackled this difficulty by assuming that the distance from
each receiver to the trial position of the emitter does not change as this trial position is
varied. This approximation is viable, because the required probability will be nowhere
near its maximum when this distance has begun to extend to regions where we know the
emitter is certainly not present; thus we are really only considering the area around the
peak of the probability—and this is precisely the only region in which we were interested
anyway.

The so-called Stansfield solution for geolocation, as restated by Ancker, writes the
emitter’s best-estimate position in an expression that still involves these unknown dis-
tances, and as such is an iterative technique using a batch of bearings. Ancker suggested
that initial estimates of these distances be taken from the centre of the largest polygon
formed by the bearing lines. But calculating a good centre for the largest polygon formed
becomes a problem in itself not unlike the original. Ancker does add that in the absence
of such an estimate, we might resort to a trial and error approach.

In the following pages, we first consider two alternative formulations of Stansfield’s
problem, each having its own method of solution: the Cartesian Pseudo-Linear Estima-
tor (CPLE), and the Gauss–Newton technique. These are “batch routines”, in that they
process a set of points to arrive at some estimate of the emitter position. This is followed
by discussion and examples of a more modern, recursive, approach to geolocation, where
only the latest bearing measurement is used to update the estimated emitter position.
Sorenson [9] gives further background to the use of least squares in a DF context.

3.6 A Least Squares Primer

The discussions on the CPLE and Gauss–Newton routines that follow all use the formalism
of the theory of least squares, which we review here. Suppose we have taken n measure-
ments zi, which in a noiseless world would fit linearly to a set of m parameters x1, . . . , xm,
using well-defined coefficients that comprise an n × m matrix H:

z1
...

zn

 = H

x1
...

xm

 (3.12)

or just
z = Hx . (3.13)

12

DSTO–RR–0319

In general, we have an abundance of measurements: n > m so that H is taller than square.
In a noisy world the elements xi are required to be found through the inexact relation

z = Hx + noise , (3.14)

where the noise cannot be known exactly. In general this set of equations is overdeter-
mined, but we can find a best fit for x in a least-squares sense, by choosing x to minimise
the distance between the two points in n-dimensional space, Hx and z. This is equivalent
to choosing the x that minimises |Hx − z|2 (called a “cost function”, which equals the
squared length of the n-dimensional noise vector). This is done by setting the gradient of
the cost function to zero:2

∇
{
|Hx − z|2

}
= ∇

[
(Hx − z)t(Hx − z)

]

= ∇
[
x

tHtHx − 2z
tHx + z

t
z
]

= 2x
tHtH − 2z

tH . (3.16)

Equating the last expression with zero defines the least-squares solution x̄:

x̄ = (HtH)−1Ht
z ≡ H#

z , (3.17)

where H# is the pseudo inverse of H. Numerical packages such as Matlab do not just
calculate H# by inverting and transposing as in (3.17). Numerical matrix inversion can
be hazardous for near-singular matrices, so more sophisticated methods are used, such
as singular value decomposition. Matlab’s pinv function makes use of singular value
decomposition (pinv(H) = H#).

Error Analysis

In practice, each measurement might be subject to some error σk. Assuming gaussian
statistics, it is then more meaningful to minimise not the length of Hx− z, but rather to
weight each of its components by the corresponding inverse variance. That is, we should
minimise ∑

k

(Hx − z)2k
σ2

k

. (3.18)

This is identical to minimising a new cost function:

(Hx − z)tP−1(Hx − z) (3.19)

with respect to x, where P is a diagonal matrix of variances:

P ≡

σ2

1 0
. . .

0 σ2
n

 . (3.20)

2 Use the following easily-verified results:

∇x

`

a
t
x

´

= a
t and ∇x

`

x
t
Ax

´

= x
t(A + A

t) . (3.15)

13

DSTO–RR–0319

The calculation is almost identical to that of (3.16), with the following result:

x̄ = (HtP−1H)−1HtP−1
z . (3.21)

If all the errors are the same, i.e. σ1 = · · · = σn, then the variance matrix P cancels from
this expression, leaving us with the usual pseudo inverse expression (3.17).

3.6.1 Total Least Squares: When the Errors are More Complicated

On a more advanced note, the theory of how best to manipulate matrices, when real-world
noisy numbers are involved, can be used to improve upon the least-squares analysis of the
preceding pages. The relevant theory is known as singular value decomposition, and deals
with efficient ways to express matrices in terms of factors that are robust in numerical
work. Robustness can be necessary when small numbers are involved in the calculations,
that lie at the edge of the computing machine’s inbuilt precision. Such numbers might
be created in a numerical algorithm being used; matrix inversion is particularly prone to
this. Geolocation using singular value decomposition is discussed in Appendix B.

3.7 Cartesian Pseudo-Linear Estimator Approach (CPLE)

Our first variant of the maximum likelihood approach (as is shown later) relies on the
use of the orthogonality of vectors specifying bearings, as shown in Figure 4. In essence
what the method does is locate a best point of intersection of the bearing lines with a
least-squares fit. The calculation is simple enough to be done nonrecursively, and does
not require an initial estimate of the emitter position. CPLE is in essence equivalent to
the Stansfield algorithm, but the following description of it is conceptually simpler, and
unlike the usual exposition of Stansfield, is easily extended to moving emitters.

The great utility of the CPLE is that although a batch process—a once-only processing
of a given set of data—it is still accurate enough to compete with the other routines
discussed ahead. It can be run on an initial data set and then used again on sets of
subsequent data, but it can also be used to provide an initial estimate of where the emitter
is, in order to supply one of the following algorithms with their required initial estimates
of the emitter’s position and state of motion.

In this section the CPLE method is outlined and the moving-emitter case is covered, in
which the emitter is modelled as having at most a constant acceleration in two dimensions.
Extension to three dimensions and higher derivatives of position is straightforward.

Suppose that the emitter position is a vector s(t). There are n receiver positions, where
the kth position is a vector rk(t). Write all vectors as columns and work in cartesian coor-
dinates. The emitter has initial position s0, initial velocity v0 and constant acceleration a

(all vectors), so that

s(t) = s0 + v0t +
1

2
at2 . (3.22)

Group the three constant vectors that we wish to find into one column vector x. This has
six elements if we are confined to the plane, since each of the vectors s0, v0, a then has

14

DSTO–RR–0319

East

North

Receiver flight path Emitter
νk

bk

b
⊥
k

rk

s

Figure 4: Cartesian Pseudo-Linear Estimator approach

two elements:

x =

s0

v0

a

 . (3.23)

In tandem with x, introduce a matrix A(t) that serves to absorb the emitter dynamics:

A(t) ≡
[
1 0 t 0 t2

2 0

0 1 0 t 0 t2

2

]
so that s(t) = A(t)x . (3.24)

This leaves the state x of initial conditions remaining to be found.

The specifying of x has recast the problem into a stationary viewpoint. At some
time t, receiver k makes a bearing measurement, and notes that the direction from it to
the emitter is given by some not-quite-known noisy vector bk(t), plus some noise νk(t). (In
practice the lengths of bk(t), νk(t) are completely unknown or not even very well-defined,
but that is of no consequence to the calculation.) We must estimate x given the set of all
the rk and bk. For each k we can write

s(t) = rk(t) + bk(t) + νk(t) . (3.25)

Now, every bk has two unit vectors that are orthogonal to it. These turn out to be
useful, although since we are working in two dimensions for simplicity, only one of these
will be needed: call it b

⊥
k , so that b

⊥
k · bk = 0. The utility of b

⊥
k is that although we

have no knowledge of the length of bk, we do know its direction, which is enough to
specify b

⊥
k exactly. That being the case, projecting all vectors along the b

⊥
k direction will

then eliminate the unknown bk. This is effected by forming the dot product of both sides
of (3.25) with b

⊥
k , giving

b
⊥
k · s = b

⊥
k · rk + b

⊥
k · νk . (3.26)

15

DSTO–RR–0319

If the kth receiver takes its bearing measurement at time tk (which times need not all be
different), then the last equation becomes

b
⊥t
k A(tk)x = b

⊥
k · rk + b

⊥
k · νk . (3.27)

Writing this for each k gives

b
⊥
1 · r1

...

b
⊥
n · rn

 =

b
⊥t
1 A(t1)

...

b
⊥t
n A(tn)

x + residual noise term. (3.28)

This will match the basic equation (3.14), provided we identify

H ≡

b
⊥t
1 A(t1)

...

b
⊥t
n A(tn)

 , z ≡

b
⊥
1 · r1

...

b
⊥
n · rn

 , (3.29)

in which case the least-squares solution can be written down immediately:

x̄ = H#z =

b
⊥t
1 A(t1)

...

b
⊥t
n A(tn)

b
⊥
1 · r1

...

b
⊥
n · rn

 . (3.30)

Because the matrix H is built from noisy bearings, the method of total least squares might be
useful here; so rather than apply (B10) or (3.30), we might wish to try (B11). In fact, it turns out
that total least squares gives 10–20% smaller CEPs than the ordinary least-squares approach.

The CPLE is a simple locating method, yet gives very good results, even when using just
the minimum number of data points required (for low noise). This number can be small.
Consider, for example, the stationary emitter case in two dimensions, where just two
bearings are needed (since these specify two lines with a well-defined intersection where
the emitter can lie). Note that two bearing lines are also sufficient in three dimensions,
because again we are only finding their intersection; since each line needs two numbers
to specify it (altitude and azimuth), we have four numbers in total—more than enough
information to solve for the three emitter coordinates. Alternatively, in three dimensions
we are using two unit normals for each bearing line, so that with just two lines (3.26) is
really four equations, and hence s is already overspecified.

Being a batch process, the CPLE routine can use all of the data to produce a one-off
estimate of the emitter position, and incoming new bearings cannot be processed individu-
ally to refine this estimate. But in practice the CPLE gives a good estimate with very few
data points, and so can always be run on a subset of data points that includes the latest
one. Also, its simplicity means it can be used to generate an estimate quickly—which can
then be used to seed one of the methods described in the next sections. Unlike the CPLE,
these methods all require an initial estimate of the emitter state.

16

DSTO–RR–0319

Error Analysis

Because the CPLE is a straightforward application of the least-squares technique, the way
to calculate the error in the estimated emitter position (xe, ye) is known from standard
statistical theory. If the bearing error is a constant σ, then the relevant covariance matrix
is [3, 10]:

cov(xe, ye) = σ2(HtH)−1. (3.31)

As discussed in Appendix C, if we calculate this matrix and use it to draw an error
ellipse centred on the estimate point, the result is usually correlated well with the actual
performance of the algorithm in terms of where it estimates the emitter to be on repeated
runs. This error ellipse also tends to correlate well with the Cramér–Rao lower bound
ellipse—but not always. It might be much larger than the Cramér–Rao ellipse but can
also be somewhat smaller. It does tend to have about the same size and orientation.
Presumably the departure from Cramér–Rao is caused by a bias in the CPLE.

3.7.1 Relating the CPLE to the Method of Maximum Likelihood

The least-squares solution to the CPLE turns out to be a simplified form of the method
of Maximum Likelihood. We can show this by comparing the CPLE cost function to the
maximum likelihood cost function. Note from (3.27, 3.28, 3.29) that |Hx− z|2 is the sum
of squares of the noise terms b

⊥
k · νk. Writing dk as the true distance from receiver k to

the possibly-moving emitter at time tk, this sum of squares becomes a sum of squares of
perpendicular distances:

CPLE cost function ≡ |Hx − z|2 =
∑

k

(
b
⊥
k ·νk

)2

=
∑

k

d2
k sin2(βk − θk)

≃
∑

k

d2
k(βk − θk)

2 . (3.32)

In contrast, the maximum likelihood cost function was calculated on page 11 to be:

ML cost function =
∑

k

(βk − θk)
2

σ2
k

. (3.33)

This compares well with the CPLE cost function, provided that (a) our lack of knowledge
of the distances dk means we are prepared to set all of these to be constant, so that they
factor out of (3.32); and (b) the bearing errors are all the same, so can be factored out
of (3.33). The CPLE does indeed stand on a very solid statistical footing.

3.8 Gauss–Newton/MLE Algorithm

Given a set of bearings, and wishing to use a least-squares fit to the set of parameters
required, a very straightforward and widely-known approach again applies the maximum
likelihood idea, but this time to the angular difference between true and observed emit-
ter positions. It has attracted the name maximum likelihood estimation, and the usual

17

DSTO–RR–0319

solution method used is the Gauss–Newton method of following a gradient to locate a
minimum point. These are generic names, but both have been attached to this particu-
lar method, which is termed the Gauss–Newton algorithm in this report and elsewhere.
Further discussion can be found in the reference by Foy [11]. There, Foy compares the
Gauss–Newton and Kalman routines (described later), noting that Gauss–Newton is more
desirable due to its simplicity. However, like the CPLE, the Gauss–Newton algorithm is a
batch technique, and so fits into a different class of routines than does the Kalman filter.

Begin by relating measured to exact bearings:

βk = θk(x) + νk . (3.34)

We wish to recast this equation in the matrix language of Section 3.6, so as to solve it
in a least-squares sense. One way to do this first estimates the emitter state (3.23) to be
some x0, and then Taylor expands (3.34) around this estimate to first order:

βk ≃ θk(x0) + ∇θk(x0)(x − x0) + νk , (3.35)

where the gradient is

∇θk =

[
∂θk

∂(s0x
)

∂θk

∂(s0y
)

∂θk

∂(v0x
)

∂θk

∂(v0y
)

∂θk

∂(a0x
)

∂θk

∂(a0y
)

]
. (3.36)

With n measurements taken, write (3.35) as

β1 − θ1(x0)

...
βn − θn(x0)

 ≃

∇θ1(x0)

...
∇θn(x0)

 (x − x0) + ν , (3.37)

to be solved for x. Writing

H ≡

∇θ1(x0)

...
∇θn(x0)

 , z ≡

β1 − θ1(x0)

...
βn − θn(x0)

 , (3.38)

we see that this equation now matches (3.14), so that we can immediately write down an
updated state estimate x1 with a least-squares approach:

x1 = x0 +

∇θ1(x0)

...
∇θn(x0)

β1 − θ1(x0)

...
βn − θn(x0)

 . (3.39)

This, the Gauss–Newton algorithm, processes a batch of measurements and iterates to
converge (hopefully) to the actual emitter state. Simulations show that the method of
total least squares does not work anywhere near as well for the Gauss–Newton algorithm
as does normal least squares.

Use the notation from the previous pages, and set sk to be the emitter position at the
time of measurement k. (That is, we are free to model the emitter as having e.g. constant
velocity, constant acceleration, and so on.) If we set

[
∆xk

∆yk

]
≡ sk − rk , (3.40)

18

DSTO–RR–0319

then the true bearings are given by

θk = tan−1 ∆yk

∆xk

+ quadrant-dependent constant. (3.41)

In that case, if the emitter motion is modelled by e.g. constant acceleration, then the
gradient with respect to s0x, . . . , ay can be written down:

∇θk =
1

∆x2
k + ∆y2

k

[
−∆yk ∆xk

] [
12×2 tk 12×2 t2k/2 12×2

]
,

where 12×2 ≡
[
1 0
0 1

]
. (3.42)

The new estimate x1 will lead to new values of z and H, so that we must iterate until
hopefully the estimates converge to within some tolerance—although there is no guarantee
that this limit will be the actual emitter position. (Again, a bias is present in this tech-
nique, just as occurs in the CPLE.) In practice, we step between iterations by an amount
larger than that given in (3.39): that is, we introduce a gain, being some number whose
size is found by experiment (but is roughly 1), and multiply this gain by the step in (3.39).
In general, increasing the gain speeds up convergence—but if the steps are too large then
the algorithm will become oscillatory or unstable.

In writing code for these routines, we need to be aware that the lone inverse tangent function
needs to be supplemented with a constant in order to return angles within the full 360◦ range.
Of course, the constant differentiates to zero so need not be explicitly written here—although it
certainly must be inserted into code that implements the routine. But even this is not enough.
In the actual processing, we are ultimately comparing measured bearings with theoretical values.
Depending on the convention chosen, there must always be a critical emitter position where the
theoretical value jumps by 360◦ as the emitter is moved slightly. This lack of continuity will lead
to instability in the routine, unless the code is written carefully to take account of this fact.

Error Analysis

Although some sort of error analysis can be introduced into the one-run CPLE, a similar
approach to the iterative Gauss–Newton algorithm is not clear-cut. Each iteration is
a simple least-squares process; however, what results is not an estimate of the emitter
position, but rather an estimate of the step size needed to move away from the initial
estimate, together with the error in this step size, should we wish to calculate this error
by the same approach as was used for the CPLE. But we cannot just start out with some
initial estimate with its own error, and then simply add more errors as several more steps
are taken, since the errors are presumably not independent: this approach would yield
a final error much greater than what is actually observed through running simulations.
Gauss–Newton can give quite accurate results even with a very inaccurate initial estimate,
but by no means always—it can also diverge wildly when the other methods described here
are well-behaved.

Spingarn [3] writes the error for Gauss–Newton as our (3.31). For scenarios in which
Gauss–Newton does converge, the final error is described fairly well by the ellipse plotted
from the covariance matrix of (3.31). This error ellipse also usually approximately matches

19

DSTO–RR–0319

the Cramér–Rao bounding ellipse. An alternative representative error for Gauss–Newton
is often found by computing the CRLB at the final estimate of the state x.

Note that like the CPLE, Gauss–Newton is also a batch routine, in that it requires
a new observation to be added to at least some of the previous ones before running the
algorithm. In this sense it might be considered wasteful, since at least some old measure-
ments need to be reprocessed. The need for a streamlined approach led historically to the
Recursive Least Squares class of algorithms.

3.9 Recursive Least Squares (RLS)

Recursive Least Squares algorithms form a class of update algorithms that process the
latest data point only. Such techniques have been known for the last half century, and two
of the more widely known ones are considered here. The first is a procedure that dates
back to 1950 if not earlier [12], and this, at least in the form used by Godard in 1974, has
come to be called simply the Recursive Least Squares algorithm, and is very popular [13].
The second algorithm is the famous Kalman filter, due to Kalman in 1960 [14].

The principle behind these routines is that since we have already made use of all except
the latest data point, any step in the algorithm that uses all of the data should be re-
expressible in terms of past values and the latest data. This results in an update, using
only the latest data, of the last state estimate. Because of this, the amount of data needing
to be manipulated is kept at a constant small size: e.g. the matrix H of the previous two
routines is now always composed of just one row, without growing a new row with each
incoming data point, as it would do in the previous routines.

The usual RLS routine as presented here is derived in [15], although it is here extended
to the constant acceleration case for the emitter. As usual, the extension to higher order
motions is straightforward. The matrices H and z of the previous sections are now replaced
by the latest measurements only, giving them sizes 1 × 6 and 1 × 1 respectively. In analogy
to (3.38) we write

H = ∇θ(x) , z = β − θ(x) . (3.43)

The procedure followed using RLS is, however, more complicated than that of Gauss–
Newton. It’s written in the following way so as to be suggestive of the Kalman filter,
discussed next:

1. Start with some estimate of the matrix of variances P [as in (3.20)], equal to some
large number b times the 6 × 6 identity. A good choice of b is crucial and needs to
be determined empirically.

2. Choose a number r between 0 and 1, again to be determined empirically. This defines
a sort of fading memory, in the sense that it allows more weight to be given to more
recent measurements.

3. Calculate H, z from (3.43).

4. Calculate a gain K = PHt/(r + HPHt).

20

DSTO–RR–0319

5. Now update the emitter position:

x −→ x + Kz . (3.44)

6. Finally update P , and then return to step 3:

P → (16×6 − KH)P/r . (3.45)

This algorithm enables us to keep updating the latest estimate of the emitter position, by
only ever just incorporating the latest measurement as it arrives.

3.10 Kalman Filter

The Recursive Least Squares algorithm is not always stable, and several attempts have
been made to improve on it. The best known is due to Kalman [14], and for linear gaussian
models the Kalman filter is the only one in wide use [16]. Its basic principles are explained
well by Sorenson [9], whose notation is used here. The algorithm has been rederived
recently in an accessible way by Challa and Koks [17], using the ideas of Bayes theory.
The algorithm is conventionally called the “Kalman filter”, because, like Recursive Least
Squares, it filters the data to give a predicted estimate of the state at each timestep. This
differs from methods such as CPLE and Gauss–Newton, which are smoothers, in that they
operate on a set of data to produce just one state, which is then used to predict the future
motion of the emitter.

A basic premise underlying Kalman theory is that the system being observed evolves
in some way able to be modelled. In the case of tracking, the emitter might be modelled
with e.g. constant velocity, so that its state comprises its position and velocity. In general
its state at the time of the kth measurement can be written as some vector xk whose
evolution we model as follows:

xk+1 = Fkxk + Gkvk + uk . (3.46)

Here, Fk is some evolution matrix allowing us to specify a model of how the emitter’s
state changes. vk is the “process” noise, a term that models how the emitter’s motion
might depart from what our model assumes through the Fk term. For the purpose of
investigation we have built the filter by assuming the emitter moves in some complicated
way, by putting the effects of acceleration (and its derivatives, if need be) into the evolution
matrix Fk, as is done in [18, 19]. We can also model any jitter in the target by another
kind of acceleration term, but rather than explicitly putting it into Fk, we include it in a
stochastic way through the matrix Gk that multiplies the noise. Finally, uk is any extra
non-noise term required, such as a shift in coordinates.

The state xk is not observed directly; rather, we make a measurement zk:

zk = Hkxk + wk + yk . (3.47)

Here, Hk describes the measurement process in terms of the system state, wk is any noise
introduced by the measurement, and yk is any extra term required as part of the model.
The process and measurement noises are assumed white and gaussian:

vk ∼ N(0, Qk) , wk ∼ N(0, Rk) . (3.48)

21

DSTO–RR–0319

The standard terminology also defines:

x̂k|k−1 ≡ predicted value (“predictor”) of xk determined after measurement k−1

x̂k|k ≡ best estimate (“filtered estimate”) of xk determined after measurement k.

(3.49)

The Kalman filter also allows us to predict the error in xk|k−1 and xk|k via the covariance
matrices:

Pk|k−1 ≡ E{(xk − x̂k|k−1)(same)t} = covariance of error in predicted estimate of xk

Pk|k ≡ E{(xk − x̂k|k)(same)t} = covariance of error in filtered estimate of xk.

(3.50)

The Kalman filter is implemented through the following procedure:

1. Estimate x̂0|0, P0|0, Qk, Rk ∀k.

For k = 1 onwards, calculate the following:

2. Pk|k−1 = Fk−1 Pk−1|k−1 F t
k−1 + Gk−1 Qk−1 Gt

k−1

3. x̂k|k−1 = Fk−1 x̂k−1|k−1 + uk−1

4. Kk = Pk|k−1 Ht
k

(
Hk Pk|k−1 Ht

k + Rk

)−1

5. x̂k|k = x̂k|k−1 + Kk

(
zk − Hk x̂k|k−1 − yk

)

6. Pk|k = (I − Kk Hk)Pk|k−1 (3.51)

Note that Pk|k−1, Kk and Pk|k can be calculated offline if the process and measurement
matrices are known for all time, as they often are; and this makes the linear Kalman filter
very fast to implement.

The Kalman filter does not have the same sort of gain as found in Gauss–Newton, nor
a fading memory parameter as found in RLS. It simply combines the state inferred from
the latest measurement, with the current state of the system as predicted from the other
measurements to date, using appropriate weightings; and it does this in a statistically
robust and optimal way.

Despite its many components, there is no common notation in general use for the
Kalman filter. For example, the noise vector and scalar v and w are commonly called
w and v.

Extended Kalman Filter (EKF)

The linear Kalman filter gives the best possible fit for linear problems with gaussian noise,
i.e. where the state parameters and the measurements taken at time k + 1 are linear

22

DSTO–RR–0319

combinations of the state parameters at time k. But no such claim can be made for the
nonlinear case, such as is encountered in geolocation through (3.41). The modification
made to the linear filter to incorporate nonlinearity gives rise to the Extended Kalman
filter (EKF). We consider here two types: the first uses cartesian coordinates, while the
second, both more effective and more complex, uses a modified set of polar coordinates.

To extend the linear filter’s application to these nonlinear cases, start with analogues
of the linear equations (3.46, 3.47):

xk+1 = fk(xk) + gk(vk)

zk = hk(xk) + wk , (3.52)

and linearise these assuming xk − x̂k|k to be small, using expressions like

fk(xk) ≃ fk(x̂k|k) + Fk · (xk − x̂k|k)

= Fk xk + fk(x̂k|k) − Fk x̂k|k . (3.53)

Fk is a matrix whose ith row is the gradient of the ith component of fk, with respect to the
set of state parameters. Similar equations hold for gk and hk and define Gk, Hk. (It seems
to be normal to expand both fk and gk around x̂k|k but hk around x̂k|k−1; this is just
an arbitrary convention, but we have followed suit.) The filter is applied in the following
way:

1. Estimate x̂0|0, P0|0, Qk, Rk ∀k as before.

Then for k = 1 onwards:

2. Pk|k−1 = Fk−1 Pk−1|k−1 F t
k−1 + Gk−1 Qk−1 Gt

k−1

3. x̂k|k−1 = fk−1(x̂k−1|k−1)

4. Kk = Pk|k−1 Ht
k

(
Hk Pk|k−1 Ht

k + Rk

)−1

5. x̂k|k = x̂k|k−1 + Kk

[
zk − hk(x̂k|k−1)

]

6. Pk|k = (I − KkHk)Pk|k−1 (3.54)

Two problems arise in a nonlinear scenario. The first is that since we are always
expanding around the latest estimate of the state vector, the matrices Pk|k−1, Kk, and
Pk|k can no longer be calculated offline, and this adds greatly to the time taken to run
the filter. The second problem is that since the covariance matrix Pk|k depends on Hk—
which is now being calculated from the latest estimates of the state vector in a similar
way to (3.53)—the covariances inherit the inaccuracy of this state vector, and so can no
longer be relied upon to provide the true errors in the results. Hence there appears to be
no good method of estimating the accuracy of the result, apart from measuring the spread
of estimated emitter positions or tracks based on a Monte Carlo approach. Worse, the
inaccuracies in Pk|k now feed back into the Kalman equations and can produce instabilities.

23

DSTO–RR–0319

Cartesian EKF

The tracking problem can be formulated in the following way for the case of an emitter with
constant acceleration in cartesian coordinates. Remember that in the RLS and Kalman
approaches, we don’t characterise the state of the emitter by the constants parametrising
its motion in the way that we did for the CPLE and Gauss–Newton. Rather, the emitter’s
state vector xk reflects its state at the instant k. If we write its position at k as (xk, yk)
(hoping that the use of both xk and xk does not cause confusion!), then the state vector
is (with dots denoting time rates of change, and a transpose used to save vertical space):

xk =
[
xk yk ẋk ẏk ẍk ÿk

]t
. (3.55)

Next we write the state equation

xk+1 =

1 0 ∆t 0 ∆t2/2 0
0 1 0 ∆t 0 ∆t2/2
0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1

xk ≡ Fkxk . (3.56)

Writing [
∆xk

∆yk

]
≡
[
xk

yk

]
− rk , (3.57)

then the measurement model is just the bearing seen by the receiver:

zk = tan−1 ∆yk

∆xk︸ ︷︷ ︸
≡ Kalman h

k
(x

k
)

+ noise, (3.58)

in which case we have

hk(xk) ≃ hk(x̂k|k−1) +

[
∂hk

∂xk

∂hk

∂yk

∂hk

∂ẋk

∂hk

∂ẏk

∂hk

∂ẍk

∂hk

∂ÿk

]

bxk|k−1︸ ︷︷ ︸
≡ Kalman H

k

(xk − x̂k|k−1) , (3.59)

where

Hk =
1

∆x2
k + ∆y2

k

[
−∆yk ∆xk 0 0 0 0

]
. (3.60)

The algorithm can now be implemented, and this has been done using Matlab as described
ahead in Appendix C.

Challa and Faruqi [20] have made a comparison of two approaches to using this filter
for a stationary emitter. They use two versions of the state vector xk. The first is the
one used here, i.e. the emitter position, a 2 × 1 vector. The other version they use is a
4 × 1 vector composed of the emitter’s position and its velocity relative to the receiver,
with all components expressed as fractions of the range. They then show, by running
several simulations of Spingarn’s example [3], that the second choice of state vector leads
to better results: faster convergence, and also more accurate convergence in the presence
of noise. This begs the question of what actually is the best choice of state vector, and
this is a large area of ongoing research in the geolocation community, that has not been
investigated in this report.

24

DSTO–RR–0319

Error Analysis

Like Gauss–Newton, errors in the Recursive Least Squares and Kalman routines are also
difficult, if not impossible, to evaluate. When the Kalman filter is applied to linear tasks,
the errors in its state estimates are given by the entries of the covariance matrix Pk|k; but
for a linear approximation to the nonlinear problem of geolocation as used here, the Pk|k

matrix loses some of its covariance meaning even though its role in the Kalman algorithm
is unchanged. See the discussion on page 23.

Since both RLS and the Kalman filter are iterated as each new data point comes in,
the covariance evolves over time. Thus, while e.g. the error in the x component of position
as seen in Pk|k might get smaller to an acceptable final value, the y position error may well
start out by getting smaller, but might soon begin to grow; it might even become much
larger than the final error in the estimated placement of the emitter. Or, it might shrink
to zero. As in the Gauss–Newton case and to some extent the CPLE also, it could well be
that the best way to calculate a state estimate error is through a Monte Carlo approach,
by processing repeated runs of the receiver flight path and looking at the scattering of
estimates to the emitter position that result.

Modified Polar Coordinate EKF

The Cartesian EKF is not always stable and can give biased estimates, as shown explicitly
in [20]. Variations have been proposed that are based instead on polar coordinates [20, 21].
We consider one such well known way here: the Modified Polar coordinate EKF algorithm
(MPEKF) [19, 22, 21]. The increased stability provided by this algorithm is paid for
initially by a more complicated choice of state vector. In the notation of Arulampalam [19],
if βk is the bearing angle of the emitter as seen by the receiver measured clockwise from
north (i.e. Arulampalam’s βk = π/2 − our βk in Figure 1), and if Arulampalam’s rk is
the range to the emitter measured from the receiver, then the state vector corresponding
to (3.55) is set to be

xk =

[
β̇k

ṙk

rk

βk

1

rk

]t

. (3.61)

Unlike the previous state vectors described, this is independent of whether or not the
emitter accelerates, since we are now modelling the effects of acceleration only by including
a nonzero matrix Qk, the covariance of the process noise. So this form for the state
vector xk suffices no matter how the emitter’s motion is modelled. The more complex
entries of the state vector mean that the implementation of the filter is more involved:
refer to [19] for the details of calculating the initial matrices that model covariances and
how the system evolves.

As shown in Appendix C, the performance of the MPEKF is dependent on a good
initialisation, which of course is something that cannot necessarily be achieved in practice.
The filter’s performance has also been analysed in [21], and is shown there to be stable
and asymptotically unbiased.

25

DSTO–RR–0319

4 Review of Selected Papers in the Field

Stansfield’s original geolocation paper [7] became much cited in the literature, although
the main effect it had was to spark interest in finding efficient ways to solve the geolocation
problem. At the time, nomograms and specially graded least-squares rulers were used for
working with charts overdrawn with bearing lines, but the advent of more computing
power also saw the rise of more complex methods, such as the Kalman filter, that depend
for their use on computers.

The Kalman filter is often seen as fundamental to tracking (and for example is used in
Spingarn’s widely-quoted paper [3]), but the simpler Gauss–Newton method is still quite
comparable in its performance. This is especially true with more powerful computers that
allow the fast reprocessing of data as per Gauss–Newton’s needs. For example, Poirot
and McWilliams [23] apply Gauss–Newton successfully to bearings as measured on Earth
(i.e. using latitude and longitude). Rao and Reddy [24] also deal with Earth using a least-
squares approach that makes use of new combinations of the various bearing parameters,
and by combining this new routine with a Kalman filter, have produced a more efficient
algorithm. This highlights an important point in the search for more efficient algorithms:
by solving the problem using new and unusual combinations of the conventionally used
variables, an increase in efficiency can sometimes be obtained (as is done in [20]); but an
approach to producing these unusual combinations is not clear.

Elliott and others [16] have recently produced an algorithm that generalises the Kalman
filter and appears to perform much better, but their analysis is somewhat obscure, and
the algorithm is not considered in this report.

Gavish and Weiss [25] compare the performance of a least-squares algorithm with
the more involved Stansfield algorithm. They state a well-known theorem that says the
Maximum Likelihood Estimator is unbiased, and can achieve the Cramér–Rao lower bound
in its accuracy provided the number of measurements is large enough. By running scenarios
using both a least-squares approach and the Stansfield algorithm, they find that the least-
squares bias vanishes as the number of measurements increases, while the Stansfield results
are biased and this bias does not vanish, and can even grow, as the number of measurements
increases.

Mahapatra takes a different approach to geolocation in general [26]. He suggests flying
a receiver flight path such that the bearing of the stationary emitter is held constant; the
parameters of the flight path then give the emitter location without actually using the DF
bearing. In this way, the moving receiver is free to concentrate on keeping an accurate fix
on the emitter without needing to record exactly what this fix is. The down side to this is
that a very special path geometry needs to be flown, which of course does not necessarily
suit the goals of a given flight mission.

The effect of bearing bias in passive geolocation has also been studied by Gavish and
Fogel [27], who consider a constant angle added to the emitter bearing. As we have done
in Section 3.4, they define the notion of observability to mean that in the absence of noise
but perhaps with this bias, the emitter’s position is still able to be uniquely determined.
They show that if there is any possibility of an additive bearing bias being present, then
the receiver should not fly a circle that has any chance of passing though the emitter’s
position.

26

DSTO–RR–0319

Their argument runs as follows. Suppose that to the right hand side of (3.41) we
allow a constant bearing bias to be present, and disregard the noise so that we are only
considering the systematic error of the added bias. Then the notion of observability means
there is only one emitter position allowed as a solution to this equation. But suppose that
on the contrary there are two distinct solutions, perhaps with different biases. Then it’s
straightforward to show that the track that gives these solutions is a circle passing through
the emitter’s actual position. So the moral is that if we want to be assured of not having
any ambiguity, then we should not invite difficulties by flying any such circle in the first
place.

Gavish and Fogel also consider the Cramér–Rao lower bound and how it is affected
by a bias. In particular, they consider the case of a constant velocity receiver flying
approximately broadside to an emitter. The bias added to the bearings is no longer a
constant, but rather gaussian-distributed around zero mean with some specified standard
deviation. They calculate a Cramér–Rao ellipse for a number of different track lengths,
assuming a 2◦ standard deviation noise and both with and without a 3◦ s.d. bias. What
they find is that, as might be expected, the error ellipse is larger for the biased case, and
as a simple rule of thumb it could be said that typically the addition of the bias means
that the major axis of the no-bias ellipse becomes the minor axis of the biased ellipse, with
the shape of the ellipse being roughly unchanged.

Reports of Healy and of Beasley & Miles. Here we describe two longer reports
that give an overview of stationary-emitter geolocation in general, as well as comparing
different methods.

(1) Healy’s thesis. The first is a thesis by Healy [28]. In this he compares the
Gauss–Newton and RLS methods for the case of both stationary and moving emitters, with
his main effort going toward quantifying the algorithms’ effectiveness. After discussing the
algorithms and the general problem to be solved, he runs each for a variety of scenarios
and calculates several things: the speed of convergence, misadjustment accuracy (how
well the algorithms pinpoint the emitter), computational complexity (number of floating
point operations required for the calculations), and robustness to initial data and different
conditions of data generation.

A selection of Healy’s results have been verified or compared using the Matlab pro-
gramme described in our Appendix C. One of Healy’s initial results is that the speeds of
convergence of G–N (Gauss–Newton) and RLS are similar once the RLS has overcome its
slow start, during which time it needs to stabilise the matrix P in (3.45). In fact this is,
however, quite dependent on how we implement the G–N algorithm. Healy divides the
data points into batches of ten, overlapping by five, and runs the algorithm separately on
each batch. In the Matlab programme of Appendix C, this has not been done; instead the
algorithm is always run on the entire set of points since we have enough computational
speed to justify this. What this means is that just one calculation is done at the end of the
flight path. Doing this and recording the number of floating point operations required by
Matlab to implement the various algorithms, it turns out that for fairly straightforward
scenarios, Gauss–Newton takes about three times as many floating point operations as do
both RLS and Kalman. Healy’s results also agree with this.

27

DSTO–RR–0319

On his page 77, Healy states that G–N’s misadjustment accuracy is fairly well inde-
pendent of its gain. By running our Matlab programme we find that although G–N does
generally converge for each of the two gains that Healy uses (0.3 and 1), it might oscil-
late wildly and iterate a very large number of times before approaching a limit value. In
agreement with Healy, we find that RLS is very sensitive to gain changes, as discussed in
Appendix C.

Healy also finds that RLS and G–N are about equally robust when applied to various
situations of moving emitters. On his page 87, Healy writes that the G–N algorithm’s
stability is not affected by the choice of gain. Although it is certainly true that changing
the gain will not make the algorithm diverge, a change may well cause a convergence to a
very different final value if the gain is too small, or cause it to oscillate heavily about the
true value if the gain is too large—and also the numbers of iterations required for even
these scenarios are heavily dependent on the gain choice. So it would be näıve to infer
that just because an algorithm is stable, its results can be trusted.

Many of Healy’s trials use a moving emitter, for which he has success with the RLS
algorithm. Understandably his Gauss–Newton routine fails here, being only designed for
the stationary case. In Section 3.8 we have tailored the G–N routine to cope with moving
emitters.

(2) Report by Beasley and Miles. The second report available is by Beasley and
Miles [2]. This provides a general overview of both direction finding and the associated
statistical processing for geolocation, such as maximum likelihood. It then focuses on
TDOA, using least-squares analysis with gaussian errors.

The report’s modelling section describes the calculation of error ellipses, that are asso-
ciated with geolocation from a constant velocity aircraft employing a small TDOA receiver
at each wingtip. As expected, these ellipses show that errors are minimised for broadside
emitters (the closer the better), with the down-range error increasing rapidly as the emitter
angle moves away from broadside. This is a reasonable result, since the time differences
of signal reception are then becoming less sensitive to distance. In that case too, the
corresponding cross range errors also increase, but are much smaller in size. Perhaps the
main results from the modelling section in [2] are that the down- and cross-range errors
can be approximated as follows:

Down range ∝ R2

Ld
√

NB3TP
; Cross range ∝ R

d
√

NB3TP
, (4.1)

where

R = range to emitter L = receiver flight path length

d = baseline of sensor pair N = number of bearings taken

B = emitter bandwidth T = length of signal wave train

P = emitter’s effective radiated power. (4.2)

(Although these expressions are specifically for a TDOA scenario with two receivers, they
are referred to on our page 46 in connection with a more general proposed rule of thumb.)

28

DSTO–RR–0319

Also included in Beasley and Miles’ report are studies of ways to beat systematic errors.
One approach for estimating any bias uses reference emitters at known locations. Beasley
and Miles do this, but for their example the method offers only a small improvement in
accuracy. Another suggested way of cancelling bias is by the use of race track paths for
the receiver, in which it flies along a straight line and then back again, with the aim of
cancelling any errors introduced by the emitter’s being always on the same side of the
plane.

The report also discusses the physical characteristics required of the receiver antenna
for good reception of the signal, and briefly discusses the relevant signal processing re-
quirements. It finishes by describing DF work carried out by the United Kingdom Defence
Evaluation and Research Agency (DERA) in Malvern, Defford, Portsdown, and Reading.

One area not well described in the geolocation literature is the shape of tracks flown,
not just by emitters but also by receivers. Spingarn [3] and Challa & Faruqi [20, 29]
use a constant velocity receiver with stationary emitter; Arulampalam [19] and Lindgren
& Gong [30] use a zig-zagging receiver flying at constant velocity on each leg, following
a constant velocity emitter. Farina [22] and Galkowski & Islam [31] do much the same
but with a single change in receiver direction. This simplicity, especially in older litera-
ture, is presumably the result of the authors’ not having fast enough computers at their
disposal to be programmed easily for more complex motion. It is addressed by the Mat-
lab programme described in Appendix C, which incorporates receivers and emitters flying
arbitrary tracks—at least insofar as these are describable using a series of waypoints.

Moving Emitters. Much less space in the literature has been devoted to the more in-
teresting subject of moving emitters, although several authors have discussed geolocating
a constant velocity emitter. Lindgren and Gong [30] describe a Kalman filter with a simple
receiver motion consisting of just two constant velocity legs, and find good convergence;
although they concede that precisely how the receiver should move to maximise the al-
gorithm’s performance is a matter for further study. Lévine and Marino [32] discuss a
similar problem, proving theorems about observability and the advantages of knowing the
emitter’s distance, but they carry out no simulations using actual data.

Other Kalman Filters. Arulampalam has published a report [19] in which he compares
the performance of various Kalman filters. Besides the Cartesian and Modified Polar
EKFs, he also considers others: the Pseudo-Linear Estimator EKF, Modified Gain EKF,
and range-parametrised versions of the Cartesian and Modified Polar EKFs.

The first two of these other filters are built on modifications to xk or Hk in Section 3.10.
The range-parametrised versions of the CEKF/MPEKF are built essentially by running
the usual CEKF/MPEKF filters in parallel for different range initialisations, and then
combining the results in a way that uses bayesian analysis to provide weightings. This can
all be computationally intensive, but in practice some of the parallel calculations have a
negligible enough weighting as to exclude them from needing to be performed at all.

Arulampalam’s work shows the following. The Pseudo-Linear Estimator is generally
only as good as, or worse than, the others; although along with the MPEKF it outperforms

29

DSTO–RR–0319

the others in giving a heading error that quickly drops to zero with time. On the other
hand it can give a poor range error. It is not considered further in this report. The
performance of the Modified Gain EKF is generally similar to that of the CEKF and also
is not considered further here. The two range-parametrised trackers are found to be of
most efficacy only when there is little or no knowledge of the initial range. However, in
Arulampalam’s scenarios they are perhaps 50% better at estimating emitter speed than
their CEKF/MPEKF counterparts, while their range, azimuth, and heading errors differ
little from those of the usual CEKF/MPEKF. These range-parametrised algorithms have
also been excluded from further study in this report.

Receiver Position Errors. Little work has been published on the case where the re-
ceiver positions are themselves subject to error. Ancker [8], in his rewrite of the Stansfield
algorithm, considered the case where the linear errors in the receiver positions are gaus-
sian and small compared to the emitter distances, but large enough to be comparable with
linear errors corresponding to the bearing error. He calculated an effective bearing error
by simply adding the two linear errors from the receiver position and the emitter location.
This requires knowledge of the emitter range (as discussed previously), which in practice
can be estimated initially and then again at each step of an iterative solution. Wax [33]
considers the same problem and generalises it, although the analysis is somewhat obscure.

It is more realistic for the receiver positions not to have normally distributed errors, but
rather to be subject to some offset. Receiver positions that are calculated using GPS have
a very small error. More important is the gyro error of the inertial navigation system, since
this cannot be calibrated using GPS. It can be modelled in a first analysis as increasing
linearly, although it is also subject to an oscillation. But this error is also very small: a
typical value for our two-dimensional scenario would be a 0.001◦ hr−1 increase in yaw, so
that this would manifest as a bias of the same amount to each bearing measured. We have
not considered such small values any further.

5 Geolocation For a Triangle of Receivers

In this section we consider a more restricted problem than previously. Given a geometry
consisting of three stationary receivers placed in an equilateral triangle, using bearings-
only geolocation for a stationary emitter, how good a geolocation can be done?

Our start point is a calculation of the Cramér–Rao bound, being the theoretical best-
obtainable accuracy. The calculation is done here in detail for its pedagogical value. Next
we run several simulations of various geolocation algorithms, and measure parameters such
as the CEP. These parameters are then plotted against the emitter’s distance from the
triangle along the direction in which the Cramér–Rao results indicate that we can expect
the worst estimates. Figure 5 shows the basic geometry always used.

5.1 Calculating a Cramér–Rao Set of Bounds

A set of error ellipses that describe the Cramér–Rao lower bound for a multiple receiver
setup is produced in this section. As discussed in Section 3.2, the underlying principle is

30

DSTO–RR–0319

y (north)

x (east)

(xe, ye)

(x1, y1) (x2, y2)

(x3, y3)

b̂2 = exact bearing

at receiver 2

Figure 5: Calculation of the Cramér–Rao bound for three receivers observing
one emitter

that the inverse of the Fisher Information matrix is the best covariance matrix obtainable
for an unbiased estimator of the emitter location.

The Fisher Information matrix is produced in the following way. Suppose we have a
set of n stationary receivers, each observing a stationary emitter (as in Figure 5, where
n = 3). The exact bearing at receiver i is denoted b̂i:

b̂i = tan−1 xe − xi

ye − yi

+ quadrant-dependent constant. (5.1)

We define the actual (i.e. noisy) bearing observed by receiver i as bi with error εi ≡ bi− b̂i.
These errors are gaussian-distributed around zero with standard deviation σi:

p(εi) =
1

σi

√
2π

exp
−ε2

i

2σ2
i

. (5.2)

The procedure for calculating the Fisher Information matrix begins with the probability
density for all of the receivers. They are independent, so we can write

p(ε1, . . . , εn) = p(ε1) . . . p(εn) . (5.3)

As in (3.3), calculate the negative log-likelihood function defined by

L(xe, ye) = − ln p(ε1, . . . , εn) =
∑

i

ln
(
σi

√
2π
)

+
ε2
i

2σ2
i

. (5.4)

The Fisher Information matrix itself is then the expected value of a matrix of partial

31

DSTO–RR–0319

derivatives of this negative log-likelihood:

I ≡ E

∂2L

∂x2
e

∂2L

∂xe∂ye

∂2L

∂xe∂ye

∂2L

∂y2
e

=
∑

i

1

σ2
i

E

(
∂b̂i

∂xe

)2

− εi

∂2b̂i

∂x2
e

 E

{
∂b̂i

∂xe

∂b̂i

∂ye

− εi

∂2b̂i

∂xe∂ye

}

E

{
∂b̂i

∂xe

∂b̂i

∂ye

− εi

∂2b̂i

∂xe∂ye

}
E

(
∂b̂i

∂ye

)2

− εi

∂2b̂i

∂y2
e

. (5.5)

The expectations are taken with respect to the gaussian in (5.2)—which is of course an
even function, in which case the following holds:

I =
∑

i

1

σ2
i

(
∂b̂i

∂xe

)2
∂b̂i

∂xe

∂b̂i

∂ye

∂b̂i

∂xe

∂b̂i

∂ye

(
∂b̂i

∂ye

)2

. (5.6)

The partial derivatives are found from (5.1), producing

I =
∑

i

[
(ye − yi)

2 −(xe − xi)(ye − yi)

−(xe − xi)(ye − yi) (xe − xi)
2

]

σ2
i

[
(xe − xi)2 + (ye − yi)2

]2 . (5.7)

The Cramér–Rao theory states that I−1 is the best covariance matrix obtainable from
an unbiased estimator of (xe, ye). The c-sigma uncertainty ellipse around each emitter
position is then given by the following plot:

[
x − xe y − ye

]
I

[
x − xe

y − ye

]
= c2 . (5.8)

If we take the scenario in Figure 5 with 1◦ bearings errors (i.e. all σi = 1◦), then a plot
of 3-sigma ellipses is shown in Figure 6. We see the expected threefold symmetry, as
well as the fact that the best results (smallest ellipses) occur when the overall angular
spread of the receivers is largest, when seen from the emitter (which lies at the centre
of any given ellipse). Thus any emitter at the centre of the northernmost ellipses (and
their counterparts at bearings of 120◦ and 240◦) see the largest receiver-subtended angle,
corresponding to these ellipses having the smallest major axes. The reverse is true for the
southernmost ellipses and their counterparts. Minor axes comparisons are not so easy to
make.

What we now wish to do is plot a representative dimension of, say, each 1σ Cramér–
Rao ellipse for the worst case scenario (where two receivers are equally further distant than

32

DSTO–RR–0319

North

Figure 6: Cramér–Rao 3σ ellipses for the setup of Figure 5. The receivers
are blue crosses, with the centre of each ellipse being the actual position of
the emitter used in the calculation of that Cramér–Rao ellipse. We have used
3σ instead of the more usual 1σ purely to make the ellipses large enough for
easy viewing

the closest receiver to the emitter), as a function of the emitter distance from the centre
of the triangle. This worst case scenario corresponds to an emitter being at a bearing
of 60◦ in Figure 6. What we will plot is the circular error probable (CEP), being the
radius of the circle centred on the true emitter position, within which the emitter would
be estimated to lie 50% of the time. This has been found by calculating the radius of the
circle, centred at the emitter, that makes a domain such that when the double gaussian of
the Cramér–Rao ellipse is integrated over this domain, the answer is 0.5. The resulting
plots are in Figure 7 for bearing errors of 1◦ and 8◦, along with baselines of 20 and 40 km.

5.2 Long-Baseline TDOA

In this section, we wish to establish an accuracy for geolocation using the long-baseline time
difference of arrival technique, again for the above equilateral triangle of three receivers
drawn in Figure 5. Each of these receivers is located at some distance R from the origin,
and each has an inherent timing error of τ—meaning that the times they register are
in error by an amount drawn from a normal distribution with zero mean and standard
deviation τ .

Suppose that the signal arrives at receiver 1 at time t, at receiver 2 at time t + ∆t12,
and at receiver 3 at time t + ∆t13. Then the radio waves have travelled at speed c
for an extra distance c∆t12 to get to receiver 2 as compared with receiver 1, and sim-
ilarly for receiver 3. So if the unknown emitter location is (x, y), with the receivers at
positions (x1, y1) → (x3, y3), then we can write, for d1 → d3 being the distances of the
receivers from the emitter:

di =
√

(xi − x)2 + (yi − y)2 for i = 1 → 3

d2 = d1 + c∆t12

d3 = d1 + c∆t13 . (5.9)

33

DSTO–RR–0319

0 50 100 150 200 250
0

10

20

30

40

50

60

Range

C
E

P
 (

50
%

)

Bearing error: 1 degree
Receiver spacing: 20 km

Range (km)

C
E

P
(5

0%
)

(k
m

)

0 50 100 150 200 250
0

5

10

15

20

25

30

Range

C
E

P
 (

50
%

)

Bearing error: 1 degree
Receiver spacing: 40 km

Range (km)

C
E

P
(5

0%
)

(k
m

)

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

Range

C
E

P
 (

50
%

)

Bearing error: 8 degrees
Receiver spacing: 20 km

Range (km)

C
E

P
(5

0%
)

(k
m

)

0 50 100 150 200 250
0

50

100

150

200

250

Range

C
E

P
 (

50
%

)

Bearing error: 8 degrees
Receiver spacing: 40 km

Range (km)

C
E

P
(5

0%
)

(k
m

)

Figure 7: 50% CEP for Cramér–Rao estimates, applied to the setup of
Figure 5, with the emitter at a 60 ◦ bearing as seen from the centre of the
receiver triangle. Top row: bearing error 1 ◦; baselines 20 km (left) and 40 km
(right). Bottom row: bearing error 8 ◦; baselines 20 km (left) and 40 km
(right)

Given time differences ∆t12, ∆t13, equation (5.9) can be solved numerically to find the
emitter position. See the box on the facing page for how to do this.

Conversely, if we start with knowledge of the emitter position, then this TDOA can
be used to establish a geolocation accuracy for this technique when the timing error τ is
present: by simulating the geolocation many times and building up a spread of estimated
positions for the emitter. First we place the emitter at some well defined position, and
calculate values for ∆t12, ∆t13. Thus each geolocation simulation can be made by first
perturbing these values, by adding to each of them a random number chosen from the
normal distribution N(0, τ2); and then treating the new “noisy” time differences as simu-
lated data from which we calculate an estimated position for the emitter by solving (5.9).
Doing this many times gives a spread of estimated emitter positions, and we can calculate
a CEP for this spread, relative to the true position of the emitter.

34

DSTO–RR–0319

Solving Nonlinear Simultaneous Equations

How do we solve the set of equations (5.9)? Write it as

d2(x, y) − d1(x, y) − c∆t12 = 0

d3(x, y) − d1(x, y) − c∆t13 = 0 (5.10)

There are two equations in x and y here. With x ≡ [x y]t, write the first
equation as f1(x) = 0 and the second as f2(x) = 0. For some x0 not too
far from x, we can Taylor-expand them both to first order, writing (and
remembering that ∇f1 and ∇f2 are row vectors):

[
f1(x)
f2(x)

]
≃
[
f1(x0)
f2(x0)

]
+

[
∇f1(x0) (x − x0)
∇f2(x0) (x − x0)

]

=

[
f1(x0)
f2(x0)

]
+

[
∇f1(x0)
∇f2(x0)

]

︸ ︷︷ ︸
≡J(x0)

(x − x0) (5.11)

If f1(x) = f2(x) = 0 by definition, then

[
f1(x0)
f2(x0)

]
+ J(x0) (x − x0) ≃ 0 , (5.12)

or

x ≃ x0 − J−1(x0)

[
f1(x0)
f2(x0)

]
. (5.13)

This equation can be used iteratively: the initial estimate of the emit-
ter position is x0, and the new estimate is given by the right hand side
of (5.13).

When this is done using (5.13), we can get a feel for how the geolocation is a function
of the baseline and timing accuracies. The timing accuracy is more crucial, by which is
meant that if a given long baseline TDOA system has a certain geolocation accuracy, and
we decide to halve the baseline, then in order to keep the stated geolocation accuracy,
we must do more than halve the number specifying the timing accuracy. This is seen in
the setup of Figure 5 (page 31), with a triangle side of 10 km and an emitter 100 km to
the east. The receivers have a 1 ns timing accuracy. Following the procedure outlined in
the previous paragraph, the 50% CEP is calculated to be 2.3 km. Now, if we reduce the
triangle side length by a factor of ten to 1 km, does the accuracy required to keep the
same CEP now also reduce by a factor of 10 to become 100 ps? No: the required timing
accuracy turns out to be about 1 ps. So in order to reduce the size of the TDOA array,
we need a drastically improved timing capability. This is shown in Figure 8.

Note that for TDOA, the geolocation accuracy is quite geometry-dependent. For the
above case of a 10 km triangle side with 1 ns timing, if the emitter is 100 km north of the
triangle (see Figure 9), then the 2.3 km CEP reduces to just 0.1 km. In that case, scaling
the triangle down by a factor of 10 places less of a demand on the timing accuracy to keep
the 0.1 km CEP: instead of 1 ps, we need just 10 ps.

35

DSTO–RR–0319

2.3 km CEP

1 ps timing

1 km side

10 km side

1 ns timing

2.3 km CEP

(ii) Scaled−down version

(i) Original scenario

100 km away

100 km away

Figure 8: A schematic of a Monte Carlo set of estimated emitter positions.
Beginning with a 10 km triangle and 1 ns timing (i), the 50% CEP is 2.3 km.
To maintain this CEP while scaling the receiver geometry down by a factor
of 10 means increasing the timing accuracy by a factor of 1000, as seen in (ii)

Linear Analysis

Although a linear analysis of TDOA might be possible, it is certainly fraught with dif-
ficulty. The reason is that the emitter is being located at the intersection of (at least)
two hyperbolæ, and any linear assumption might affect the position of the distant arms of
these that are doing the intersecting. Although it might be thought that as the emitter’s
distance increases, a linear assumption will be increasingly accurate, in practice a compet-
ing effect is present: the distance to the intersection of the appropriate hyperbolæ arms
will become ever more sensitive to the position of those arms as they become more and
more parallel. So even a slight error for a distant emitter can produce a huge error in the
geolocation—even in the absence of noise.

A good example of this occurs in the following way. Suppose we first assume that the
incoming rays from the emitter are parallel, and then use TDOA with simple trigonometry
to establish a direction to the emitter. This method gives a very accurate emitter direction,
but it cannot be used in practice to geolocate: although the second bearing line drawn
with the aid of a third receiver does indeed intersect the first, the placement error (for no
noise) turns out to be prohibitively large. For example, in the scenario of Figure 9, the
emitter will be incorrectly geolocated at about twice its correct distance from the receiver

36

DSTO–RR–0319

1 ns timing

1 km side

(ii) Scaled−down version

(i) Original scenario

10 km side

100 km away

100 km away

0.1 km CEP

0.1 km CEP

10 ps timing

Figure 9: As for Figure 8, but with a different receiver triangle orienta-
tion (i). The 50% CEP is now much smaller: 0.1 km. To maintain it now
while scaling the receiver geometry down by a factor of 10 means we need
“only” increase the timing accuracy by a factor of 100 (ii)

triangle. In the final analysis, geolocation with TDOA certainly demands good baselines,
timing, and numerical accuracy.

6 Results of Running a Matlab Simulation

This section describes some results of simulating various geolocation scenarios. These
scenarios were used as a testbed for comparing the various geolocation algorithms described
in this report. The algorithms were coded into Matlab using a graphical user interface,
or “gui”, designed to allow reasonably arbitrary scenarios to be set up. All scenarios
assumed one emitter and one receiver, with either moving along a set of arbitrarily laid-
down waypoints. The receiver would make a bearing measurement at time intervals that
could also be specified and easily changed. These measurements were subject to bearing
noise whose error could be input and changed easily. This gui is described in Appendix C.

The primary result to emerge from this process of running geolocation simulations is
that rules of thumb for efficient geometries appear not to be obtainable. Simulations can

37

DSTO–RR–0319

always give a feel for what the algorithms are capable of, and what their foibles are; but
simple rules of thumb have not arisen from any of the work described in this section.
Because of that, the software is mainly useful for developing a feel for geolocation, and
is available from the author. The package has survived a Matlab upgrade, although that
upgrade created a bug that was only fixed with difficulty. Matlab software cannot be
assumed to be backwards compatible. Also, any changes caused by an upgrade will not
necessarily cause a graceful failure; rather, the software might still run, but give slightly
wrong results—and then only sometimes.

The output from the following command is a simple example of how Matlab can give an empty-
matrix result which is wrong due to (necessary) internal rounding, but which is meant to be “[3]”:
find([0.5 : 0.1 : 0.8] == 0.7). It demonstrates that internal rounding errors do not necessarily
imply a result that is incorrect in e.g. the tenth decimal place. Rather, they can be completely

wrong, which the user of the software will not necessarily be aware of. Worse, very problematical
to the code used in the gui is that there seems to be a new Matlab requirement to declare double
precision in places not listed in its official documentation, and which was not the case in previous
versions; and the explicit use of double precision is not commonplace in Matlab anyway. The
problem is that not declaring double precision does not always simply lead to less accurate results;
rather, it can produce meaningless ASCII characters in places where numbers are expected, which
leads to erratic behaviour in the gui. (Submitting modified code for Matlab’s find command,
along with a request asking for the documentation to be updated, have not had any effect.)

Some care needs to be taken with coding geolocation routines as regards the trigonom-
etry used. For example, Spingarn’s well known work [3] uses an inverse tangent function;
but such a function will need careful coding if it is not to fail in some situations. An
example of the pitfall can be set up with two receiver trajectories that point in two only
slightly differing directions, where for one the algorithm succeeds, while for the other it
fails. It might be thought that since (3.41) uses an inverse tangent, then all we need do is
call on the appropriate one of Matlab’s two built-in functions for this purpose. The reason
why this will sometimes fail is that the linearisation of the routines as in (3.35) expects
the z-vector to have entries that become smaller with each iteration. But because these
entries result from the difference of two angles, we might have a situation where one of
the angles is a little more than zero (say 0.1 radians), while the other, given via an inverse
tangent function, is a little under 2π: say 6.2 radians. While these two angles represent
vectors that really are close to each other, their numerical difference is certainly nowhere
near zero. So in practice, routines for dealing with angles often need more sophistication
than Matlab’s inverse tangent functions can provide. The gui software has been written
to handle this situation.

As regards computing speed, recent increases in processor speed mean that the 3500
bearing computations that Healy mentions taking 15 minutes for RLS in 1996–97 [28]
now take just a few seconds on a standard personal computer. This is a good indication
that geolocation algorithms can now be more realistically used than they could even a few
years ago.

In an effort to investigate the parameters used by Healy for the Gauss–Newton and
RLS routines, the programme used in this report was first run using a fairly straightfor-
ward initial scenario: a 50◦ subtended receiver flight path as seen by the emitter, emitter
broadside to mid-path, flight path length 100 units, initial estimate of emitter position
about 20 units from actual position and somewhat closer to the flight path than the emit-
ter. A very convoluted flight path with multiple loops and curves was also used. Bearing

38

DSTO–RR–0319

error was set at 1–2◦, which is a very typical figure. What resulted were the following
parameter choices:

Gauss–Newton gain Healy [28] determines the best value by asking how many iter-
ations are required in order for the difference in successive iterations to be less
than 0.001. He finds that a gain of 1 gives the fastest convergence, although appar-
ently has not considered gains higher than 1. When running the Matlab programme
we find that for a bearing noise of 1◦, the number of iterations required to get
to a < 0.001 update is minimised for gain values in the range 0.95–1.05, and hence
when running the programme the gain has usually been set equal to 1.

RLS parameters There are two that need determining (see page 20):

1. The constant b. The value of this is not well discussed in the literature, but is
supposed to be large in some sense. Healy suggests a value of between 1 and
10, but eventually uses both 150 and 0.1 with a moving emitter. The value of b
needs to be set in conjunction with the following parameter λ.

2. The value of λ. Healy sets this equal to 1.65k/(k + 1) where k is the current
iteration number. If we do this and use his value of b = 0.1 with 50 bearings,
we find that RLS only converges when the region of interest is small—so it
appears that the values must be chosen to reflect the typical distances between
the various points. So a range of b’s and λ’s was tested. When b = 1, the final
estimate of emitter position oscillates wildly for say λ . 0.4, settles to within
the 5σ uncertainty ellipse for λ = 0.65 → 0.70, and then falls quite short as λ
increases: for λ = 0.72 the routine barely arrives at the 30σ ellipse.

As b is increased over the values 10, 102, 103 up to 108, the typical λ values for
which the iterations converge to within the 5σ ellipse or better move steadily
upward through the values 0.7, 0.8 etc., but the estimated emitter positions
still fall short as λ → 1, unless b & 106. By the time b & 107, then for λ & 0.95,
the approximation to even 2σ or better is very good—and it remains very good
when the region over which the scenario is played out shrinks to the size for
which Healy’s values b = 0.1, λ = 1.65k/(k + 1) were usable above. Hence the
values chosen for the following simulations were b = 108, λ = 1.

Further preliminary notes to emerge from running the programme are summarised in the
following paragraphs.

CPLE approach. This gives quite accurate initial estimates for the case of a stationary
emitter. For example, if the flight path containing ten data points (each with 2◦ bearing
noise) subtends an angle of 15◦ at the emitter, then typically the emitter position is
calculated as fairly evenly spread over a 2σ Cramér–Rao ellipse, with a final down-range
error of about 2%, and a final cross-range error of <1%.

The method also gives excellent estimates of initial position, velocity and acceleration
for an emitter of constant acceleration, provided no more than about 0.1◦ bearing noise
is present. Beyond this it loses accuracy quickly. The more we ask of our bearing data in
terms of showing higher derivatives of position, the more sensitive the results are to noise.

39

DSTO–RR–0319

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

0

500
0

500emitter 0 −> final time οοο
receiver 0 −> final time ∇∇∇

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

0

500

0

500

emitter 0 −> final time οοο
receiver 0 −> final time ∇∇∇

Figure 10: Scenarios 1 (left) and 2 (right) referred to on page 40

Kalman covariance matrix. Although the Cartesian Kalman covariance matrix Pk|k

represents the uncertainty in the state estimate, in practice its entries might be huge even
when the estimates are quite close to the actual emitter position, or they might be small
even though the routine is not locating the emitter very well at all. So they seem not
to be useful, except for the fact that Pk|k is used to calculate the next state estimate,
and this can sometimes be very accurate even though Pk|k’s entries are anomalously large.
Presumably the failure of Pk|k to adequately reflect the true situation is related to the use
of linearisation in the extended Kalman filter.

Cramér–Rao lower bound. This is usually, if not always, much better than the typ-
ical accuracies achieved by RLS and Kalman, although Gauss–Newton does tend to give
accuracies around the Cramér–Rao mark.

Algorithm speed and number of computations. The various algorithms can be
quantified more fully, to measure how long they take and how many computations they
each perform. Two simple scenarios are shown in Figure 10, which shows how these are
plotted within the Matlab gui.

Scenario 1: Use a stationary emitter, and a receiver flying at constant velocity and taking
500 bearings. Model the emitter as stationary.

Scenario 2: Use an emitter moving with constant speed but in a slightly curved path,
with the receiver following a more zig-zag motion. This more complicated receiver
motion must be chosen because the receiver needs to outmanoeuvre the emitter in
order for the geolocation to work. Again take 500 bearings. We try various models:

a: Emitter modelled as stationary.

b: Emitter modelled as accelerating, with initial conditions supplied that are not
very accurate.

c: Emitter modelled as accelerating, with very accurate initial conditions supplied.

40

DSTO–RR–0319

For these runs we have used the following parameters (refer to Figure 10 for the scale):
initial position estimate = (600, 700); initial velocity estimate = (2, 0); initial acceleration
estimate = (0, 0); receiver x, y position errors taken to be zero for all the routines, and:

CPLE: Has no parameters.

G–N: Gain = 1, tolerance = 5 (i.e. this is the distance between subsequent emitter posi-
tion estimates that, once achieved, causes the algorithm to stop).

RLS: λ = 1, b = 108 as explained on page 39.

CEKF: P0|0 = 1000 × unit matrix, Q = unit matrix.

MPEKF: Initial emitter distance error σr = 100; initial emitter speed error σv = 5; initial
range ≃ 500. This routine is found to be grossly unstable if we model the emitter’s
acceleration by adding any sort of Q, so we have set matrix Q equal to zero.

The performance of the various routines is presented in Tables 1–4 on the next page. Each
main entry refers to a 1◦ bearing error, with the corresponding result for a 0.1◦ bearing
error in parentheses. What do these results tell us?

CPLE handles stationary emitters well. It handles accelerating emitters well only if they
are modelled correctly, but even then, is easily thrown out by bearing noise. It is
fairly fast to run.

Gauss–Newton takes the longest time to process the data, but this is obviously affected
by how strongly we require it to converge, by stopping its iterations when the final
result changes by less than some tolerance. It locates stationary emitters well. Like
the CPLE, its performance degrades if we model the emitter incorrectly. Although
fairly insensitive to our guess of the emitter’s initial position, it is badly affected by
poor estimates of the initial velocity and acceleration.

It should be remembered that this G–N calculation is being done from one position
of the receiver (the last), using all of the available data, and so is an estimate made
at that position only. On the other hand, RLS and Kalman give one estimate for
each flight path point while the receiver is moving. Even so, their estimates do not
always settle to any obvious limit point at all. In fact these estimates might wander
about significantly before apparently beginning to settle in the vicinity of the actual
emitter position.

RLS performs well for a stationary emitter in the presence of noise. When the emitter
moves, good results are only obtained if we model it correctly, and then RLS is not
greatly affected by a poor choice of initial conditions. However it can sometimes
diverge, even for the low bearing error case chosen of 0.1◦.

Cartesian EKF only performs well if the emitter is modelled loosely as stationary, al-
though the addition of a non-zero Q means that we are actually modelling a certain
amount of unknown behaviour in its motion. In fact, it appears to be more effec-
tive to include a nonzero Q to model acceleration, than it is to explicitly model the
emitter as accelerating by altering F in (3.46).

41

DSTO–RR–0319

Table 1: Performance comparison of the different routines: Scenario 1
(page 40). Main entry is for 1◦ bearing error; parentheses refer to result
for 0.1◦

CPLE G–N RLS CEKF MPEKF

Final cross range 0.11 (0.01) 0.04 (0) 0.3 (0) 0.12 (0.03) 1.6 (31)
error (% of final range)
Emitter placement 0.2 (0) 0 (0) 0 (0) 5 (10) 41 (430)
error (% of final range)
cpu time (s) 1 (1) 3.7 (3.7) 1.5 (1.5) 1.2 (1.2) 2.5 (2.5)
kflops 23 (23) 81 (81) 50 (50) 59 (59) 433 (433)

Table 2: Performance comparison of the different routines: Scenario 2a
(page 40). Main entry is for 1◦ bearing error; parentheses refer to result
for 0.1◦

CPLE G–N RLS CEKF MPEKF

Final cross range 2.3 (2.1) 2.0 (1.9) 3 (3) 0.6 (0.1) 16 (160)
error (% of final range)
Emitter placement 55 (56) 57 (57) 55 (56) 8 (3) 50 ± 50 (400)
error (% of final range)
cpu time 1 (1) 4.5 (4.6) 1.5 (1.5) 1.2 (1.2) 2.5 (2.5)
kflops 23 (23) 99 (99) 50 (50) 59 (59) 433 (433)

Table 3: Performance comparison of the different routines: Scenario 2b
(page 40). (“div.” = “diverges”.) Main entry is for 1◦ bearing error; paren-
theses refer to result for 0.1◦

CPLE G–N RLS CEKF MPEKF

Final cross range 4 (0.05) diverges 0.3 ± 0.2 (0.06) div. (div.) div. (div.)
error (% of final range) (diverges)
Emitter placement 55 (2) div. (div.) 100 ± 30 (1.5) div. (div.) div. (div.)
error (% of final range)
cpu time 1.2 (1.2) div. (div.) 2.2 (2.2) 1.6 (1.6) 2.5 (2.5)
kflops 106 (106) div. (div.) 480 (480) 865 (865) 433 (433)

Table 4: Performance comparison for Scenario 2c (page 40). Main entry
is for 1◦ bearing error; parentheses refer to result for 0.1◦

CPLE G–N RLS CEKF MPEKF

Final cross range 4 (0.05) 0.02 (0.01) 3 ± 2 (0.02) div. (div.) 0.7 (0.3)
error (% of final range)
Emitter placement 55 (2) 3.4 (0) 100 ± 200 (0.3) div. (div.) 17 (10)
error (% of final range)
cpu time 1.2 (1.2) 2.8 (1.6) 2.3 (2.2) 1.6 (1.6) 2.5 (2.5)
kflops 106 (106) 240 (140) 480 (480) 865 (865) 433 (433)

42

DSTO–RR–0319

Table 5: Performance comparison of the different routines

CPLE G–N RLS CEKF MPEKF

Need initialising? no yes yes yes yes
Correct convergence (low noise)? v. good good v. good poor good
Robust? Stationary emitter: yes yes yes no no
Robust? Moving emitters: yes no moderate no no
Heavily affected by noise? yes no no no no

Modified polar EKF This is very sensitive to a good choice of initial conditions, as was
also found by [19]. Although in principle capable of good accuracy, this routine needs
a lot of computation even for the simple Scenario 1 on page 40. But certainly the
nature of the computations is also important: for example, note that in Scenario 2b
the Cartesian EKF takes only 1.6 seconds, but uses many more kiloflops (kilo floating
point operations) in Matlab than the other routines; those mostly take longer to run
but use fewer kiloflops. The main improvement of Modified Polar over Cartesian
EKF is that MPEKF is far less sensitive to how we model the emitter’s motion.
Good results are obtained even if we model a constant velocity emitter as having
constant acceleration, whereas the CEKF would perform very badly in that situation.

In general, for Scenario 1 on page 40 (stationary emitter), CPLE and G–N converge better
to the actual position than do either RLS or Kalman. CPLE does not need initialising,
while G–N is extremely robust and will usually converge to the correct position when
the initial estimate is so bad that RLS and Kalman give useless results. Extremely noisy
bearings usually throw CPLE, RLS, and Cartesian Kalman completely off track, and
though they might still converge to some limit point, it will almost certainly be nowhere
near the actual emitter position. In the same case G–N generally will still converge very
accurately, although it might take longer than usual to do this. Broadly speaking, for a
one-off estimate of where the emitter is, G–N gives better results than RLS/Kalman, while
if we are interested in fast real time tracking, then RLS/Kalman are better suited if they
are provided with a good initial state estimate. This estimate can easily be provided by
the CPLE approach. These results are summarised loosely in Table 5, although it is very
difficult to draw general conclusions.

6.1 Reproducing Some Known Results

In this section, we run the Matlab programme to check on some known results and as a
further comparison of the different routines. The results we are seeking to reproduce are
samples taken from graphs in [34]. The emitter-receiver layout as used in this reference
is shown in Figure 11. In the four different scenarios reproduced here, the receiver always
moves at 105 m/s westwards (204 kts) with each flight lasting for 350 seconds, taking one
bearing every 50 seconds. In all cases the receiver position is known with zero error.

Reference [34] does not specify the algorithm it uses, describing it only as a simple least-
squares routine. It quantifies this routine’s accuracy for each geometry by doing 500 runs—
each run giving one estimate of the emitter position—which are then averaged, producing

43

DSTO–RR–0319

Receiver

Midpoint range

Track angle

Emitter

Figure 11: Typical geometry used in Section 6.1

the mean deviation of the estimated emitter position from its actual position (or its last
position if it is moving). We have done likewise using the Matlab programme. Additionally,
the Matlab programme produces a 50% CEP that gives a simple one-parameter indication
of the spread of the estimates. In the Matlab programme each scenario uses only 100 runs,
since this number already gives good statistics.

The four scenarios chosen were as follows:

1. Emitter stationary (at the middle of the path drawn in Figure 11); bearing error 1◦.
Range from midpoint of receiver path to emitter is 50 km.

2. Emitter moves at 10 m/s at a track angle of 30◦; bearing error 1◦.
Midpoint range 50 km.

3. Emitter moves at 20 m/s at a track angle of −60◦; bearing error 1◦.
Midpoint range 50 km.

4. Emitter moves at 20 m/s at a track angle of 45◦; bearing error 2.3◦.
Midpoint range 200 km.

For each scenario we first run the CPLE routine, always modelling the emitter as stationary
even when it is moving, as per [34]. As usual, we use CPLE to seed the other routines.
The only exception to this is the modified polar Kalman filter, which is fairly sensitive
to initial conditions, and the forms it requires are not quite given by the CPLE routine.
In particular, MPEKF needs an initial speed error estimate which CPLE cannot provide,
since we are necessarily modelling the emitter as stationary. This error has been specified
somewhat arbitrarily by us.

The results for the mean deviation of the estimated emitter from the actual emitter
(or its last position if it is moving) are given in Table 6. The report’s values were taken
from its graphs, while the values output from the Matlab programme include a 50% CEP
in parentheses.

In general, the spread of estimates tends to overlap the actual emitter position. But
this is by no means always the case, because of varying sensitivities to initial estimates; in
particular the fact that we are modelling the emitter as stationary means that we are always

44

DSTO–RR–0319

Table 6: Comparison of performance values of [34] with the Matlab pro-
gramme described in this report. Shown are results for the mean deviation of
estimated emitter position from actual emitter position (or its last position
if it is moving). Values in parentheses are a 50% CEP. All distances are in
kilometres

Scenario Report [34] Matlab programme modelling:
(page 44) (unknown

algorithm)

CPLE G–N RLS CEKF MPEKF
1 1.4 0.12 (1.1) 0.14 (1.0) 0.24 (0.9) 0.10 (0.8) 1.4 (4.6)
2 1.5 1.1 (1.4) 0.9 (1.3) 0.9 (1.2) 1.1 (1.1) 6.1 (5.5)
3 12 11 (11) 12 (12) 12 (12) 13 (13) 3 (6)
4 63 56 (61) 8 (33) 47 (36) 43 (42) 99 (66)

estimating its velocity to be zero, and this can badly degrade some routines’ performance.
Further simulations with the emitter’s constant velocity being modelled cannot be done
in this scenario, because the receiver never accelerates, and so it can never geolocate a
moving emitter. Hence we have not added any results for the emitter modelled as moving,
since that requires a remodelled receiver path, which then complicates or destroys the
comparison. But the performances of the Matlab routines do generally agree with those
of [34], which is what we set out to test.

The sensitivity of MPEKF to our choice of initial conditions is worth noting. The
“99 (66)” values correspond to an initial range of 500 km, range error of 100 km, and
speed error of 5 km/s (rather large, admittedly). If we change these values to 200, 50
and 0.1 respectively the tabulated values become 63 (64). If we now change the initial
conditions to 200, 10, 0.5, the tabulated values become 1.3 (46). These tabulated values
will also change from one set of 100 runs to the next. Clearly this sensitivity implies
possible low expectations for our results if we start with no prior knowledge of the initial
conditions.

6.2 Checking an Old Suggested Rule of Thumb

Reference [34] writes down rules of thumb for computing expected cross- and down-range
errors for the case of a stationary emitter and a receiver moving with constant velocity. It
includes no derivations, and its two rules appear to be based only on a vague but incorrect
geometry. Certainly its expression for relative cross-range error is not reasonable, and
does not work in practice.

If the cross- and down-range errors are labelled σ
CR

, σ
R

respectively, with k bearings
over a flight path that sweeps out an angle θs as seen from the emitter (as in Figure 12),
with a bearing error of σ

b
, then the rules of thumb are given to within a factor of about

unity as
σ

CR

R
≃ σ

b√
k

σ
R

R
≃ 2σ

b

θs

√
k

. (6.1)

45

DSTO–RR–0319

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

0

20

0

20

emitter 0 −> final time οοο
receiver 0 −> final time ∇∇∇

Emitter

Swept angle
s

α

Receiver path

θ

Figure 12: Typical scenario tested in Section 6.2

Note that the relative cross-range error is independent of swept path, something we will
show to be false. This is not a simple mistake in [34], because the relative cross-range
error is plotted there quite explicitly as a constant.

Expressions (6.1) are reminiscent of Beasley and Miles’ result (4.1), which has

σ
CR

R
∝ 1√

k

σ
R

R
∝ 1

θs

√
k

. (6.2)

However Beasley and Miles’ result is calculated only for a very specific case of TDOA with
two receivers, and so cannot include any bearing error σ

b
. Their cross-range error also

comes out as independent of swept angle θs.

The scenario used in the present report to test the rules in (6.1) is shown in Figure 12.
A stationary emitter is located at (100, 900), with a receiver flying at constant velocity,
starting at (100, 100). The end point of the receiver flight path is placed variously over the
grid in such a way that the swept angle θs and the angle α are varied over a convenient
range. For each of the end points these two numbers produce, we consider a range of
bearing errors and a range of numbers of bearings taken.

Each single scenario thus resulting is then repeated 100 times, with new noise randomly
added in each run for a Monte Carlo approach. This yields average measured values of
σ

CR
/R and σ

R
/R, together with the corresponding predictions obtained from (6.1).

As well as the relative cross- and down-range errors, the circular error probable (CEP)
is also important, since such a figure is necessary for deciding whether a missile can pass
close enough to the emitter for its explosive radius to be sufficient to have an effect.

Comparison with Rules of Thumb (“r.o.t.”):

CPLE As the number of bearings taken increases, σ
R
/R increases from ∼ 0.2 × rule of

thumb to ∼ 2 × r.o.t., while σ
CR

/R increases from ∼ 0.25 r.o.t. to 5 r.o.t.

46

DSTO–RR–0319

G–N σ
R
/R drops from 0.15 r.o.t. to a very small fraction if α is small, but stays roughly

constant at 0.15 r.o.t. if α is not small; σ
CR

/R is always about 0.20 r.o.t., dropping
slightly as the number of bearings increases.

RLS σ
R
/R drops from 0.15 r.o.t. to < 0.05 r.o.t; σ

CR
/R is always at 0.30 r.o.t., perhaps

dropping slightly with an increasing number of bearings.

CEKF σ
R
/R increases from 0.20 r.o.t. to r.o.t; σ

CR
/R is around 0.40 r.o.t. but can fluc-

tuate wildly.

MPEKF σ
R
/R drops from r.o.t. to perhaps 0.1 r.o.t; σ

CR
/R drops from 0.50 r.o.t. to

perhaps 0.05 r.o.t. if α = 0, but can grow to 2 r.o.t. if α = 60◦.

Clearly the trends are not especially simple or linear.

Least squares fitting of the data. Consider, say, σ
CR

/R as a function of σ
b
, θs, α,

and the number of bearings n. We wish to try to fit some sort of function of the four
parameters to the data, in a least-squares sense. A cue for what function to use is taken
from the fact that the data is supposedly at least roughly fitted by (6.1). So perhaps a
polynomial in σ

b
, θs, α, and

√
n is needed. This immediately presents a problem, because

even a simple case can have many terms. A “simple” fitting function might be:

σ
R
/R = z1σb

+ z2θs + z3α + z4

√
n + z5σb

/θs + . . . + z21/
√

n , (6.3)

where the highest order of any parameter is just one, terms with one parameter in nu-
merator and denominator are included, and terms of order −1 are included since we are
fitting a surface that looks to have something like a hyperbolic shape. The calculation can
be done easily using Matlab, but a good fit does not result: although many data points
might fit within a 10% margin, others will be out by a factor of 2. Of course higher order
fitting surfaces can be tried, but the number of terms required to describe these becomes
very large. Even using (6.1) as a cue to fitting with just one parameter,

σ
R

R
= z1 + z2

σ
b

θs

√
n

, (6.4)

does not give a good fit over the whole surface, and experimenting with higher order
polynomials in σ

b
/(θs

√
n) does no better. So it’s not apparent that any useful rule of

thumb can be arrived at, even with such a simple geometry as tried here: a constant
velocity receiver and a stationary emitter.

7 Concluding Remarks

The search for straightforward rules of thumb for expected geolocation accuracies is a
difficult one, at least in the sense of writing down an expression that takes in the param-
eters of a platform’s motion, and produces the various geolocation errors for the various
techniques. The search depends on which technique is used, and also depends heavily on
receiver geometry and the kinematics of emitter/receiver motion.

47

DSTO–RR–0319

In the preceding pages, we have described tackling the problem by first explaining
common geolocation techniques. Various details of theory and implementation have been
given, so that the algorithms can be run with little extra research required of the reader.

Although we have calculated some Cramér–Rao bounds, being the theoretical best
possible accuracy obtainable for a given setup, we have tended to take a sort of “hands-on”
statistical view of quantifying the accuracies. That is, for this report Matlab software was
developed that simulates various scenarios, and this was used in a Monte Carlo approach
to build up many estimates of where an emitter is, based on gaussian noise added as
bearing error. Initial work was hampered by relatively long computing times, since much
was being asked of the software. Currently, even on a time scale of one or two years,
computer speeds increase enough that more and more processing can readily be done in
geolocation algorithms.

In the final analysis, perhaps it might be that the best way to predict the accuracy
that a geolocation algorithm can achieve, is to model a required scenario fairly specifically.
In this respect, attempts to optimise a receiver configuration from the outset in any purely
theoretical way appear to be very difficult—especially without depending on some sort of
visualisation tool such as described in this report.

References

1. D.J. Torrieri (1984), Statistical theory of passive location systems, IEEE Trans. Aero.
Elect. Syst., 183–198

2. P.D.L. Beasley, D.A. Miles (1998), Enhanced geolocation for electronic reconnaissance,
DERA

3. K. Spingarn (1987), Passive position location estimation using the extended Kalman
filter, IEEE Trans. Aero. Elect. Syst., 558–567

4. K.L. Brown (1997), Emitter position estimation from N independent bearing mea-
surements, unpublished, DSTO

5. M.S. Arulampalam, N. Gordon, S. Maskell, W.J. Fitzgerald (April 2002), Bistatic
radar tracking using bearing and Doppler measurements, DSTO report DSTO-TR-
1303

6. P. Tichavský, C.H. Muravchik, A. Nehorai (May 1998), Posterior Cramér–Rao bounds
for discrete-time nonlinear filtering, IEEE Trans. Sig. Proc. 46, 1386–1396

7. R.G. Stansfield (1947), Statistical theory of DF fixing, IEE Proc. Radar, Sonar &
Nav., 762–770. See [8] for a clearer exposition.

8. C.J. Ancker (1958), Airborne direction finding—the theory of navigation errors, IRE
Trans. Aero. Nav. Elect., 199–210

9. Kalman Filtering: Theory and Application, ed. H.W. Sorenson. IEEE Press (1985)

10. W.H. Press et al. (1995), Numerical Recipes in C, 2nd edition. Cam. Uni. Press

48

DSTO–RR–0319

11. W.H. Foy (1976), Position-location solutions by Taylor series approximation, IEEE
Trans. Aero. Elect. Syst., 12, 187–194

12. R.L. Plackett (1950), Some theorems in least squares, Biometrika 37, 149

13. Shaohua Niu, D.G. Fisher, Deyun Xiao (1992), An augmented UD identification al-
gorithm, Int. J. Control, 56, 193–211

14. R.E. Kalman (1960), A new approach to linear filtering and prediction problems, J.
Basic Eng. 82D, 35–45

15. P. Strobach (1990), Linear prediction theory: a mathematical basis for adaptive sys-
tems, Springer

16. R.J. Elliott, V. Krishnamurthy (1999), New finite-dimensional filters for parameter
estimation of discrete-time linear gaussian models, IEEE Trans. Automatic Control
44, 938–951. See also Exact finite-dimensional filters for maximum likelihood param-
eter estimation of continuous-time linear gaussian systems, SIAM J. Control Optim.
35, 1908–1923 (1997); W.P. Malcolm, R.J. Elliott, A general smoothing equation for
Poisson observations, obtained from R.J. Elliott

17. D. Koks, S. Challa (2003), An Introduction to Bayesian and Dempster–Shafer Data
Fusion, DSTO report no. DSTO-TR-1436. Also S. Challa and D. Koks (April 2004)
Bayesian and Dempster–Shafer fusion, Sādhanā 29, 145–174.

18. R.F. Berg (1983), Estimation and prediction for maneuvering target trajectories, IEEE
Trans. Automatic Control 28, 294

19. S. Arulampalam (2000), A comparison of recursive style angle-only target motion
analysis algorithms, DSTO report no. DSTO-TR-0917. Note there is a sign error in
his equation (38): the last line should be

α4 = y2(k) − y4(k)[u3(k, k + 1) sin β(k) + u4(k, k + 1) cos β(k)]

20. S. Challa, F.A. Faruqi (1996), Non-linear system/linear measurements approach to
passive position location using extended Kalman filtering, IEEE TENCON Digital
signal processing applications, 665–669

21. V.J. Aidala, S.E. Hammel (1983), Utilization of modified polar coordinates for
bearings-only tracking, IEEE Trans. on Automatic Control 28, 283–294

22. A. Farina (1999), Target tracking with bearings-only measurements, Signal Processing
78, 61–78. See also A. Farina (1998), Association of active and passive tracks for
airborne sensors, Signal Processing 69, 209–217

23. J.L. Poirot, G.V. McWilliams (1974), Application of linear statistical models to radar
location techniques IEEE Trans. Aero. Elect. Syst., 10, 830–834

24. K.D. Rao, D.C. Reddy (1994), A new method for finding electromagnetic emitter
location, IEEE Trans. Aero. Elect. Syst., 30, 1081–1085

49

DSTO–RR–0319

25. M. Gavish, A.J. Weiss (1992), Performance analysis of bearing-only target location
algorithms, IEEE Trans. Aero. Elect. Syst., 28, 817–828

26. P.R. Mahapatra (1980), Emitter location independent of systematic errors in direction
finders, IEEE Trans. Aero. Elect. Syst., 16, 851

27. Motti Gavish, Eli Fogel (1990), Effect of bias on bearing-only target location, IEEE
Trans. Aero. Elect. Syst., 22–25

28. G.J. Healy (1996–1997), Tracking algorithms for passive detection applications, MSc in
School of Engineering and Applied Science, Royal Military College of Science, Shriven-
ham

29. S. Challa, F.A. Faruqi (1997), Passive position location using Bayes’ conditional den-
sity filter, SPIE 3087, 84–93

30. A.G. Lindgren, K.F. Gong (1978), Position and velocity estimation via bearing obser-
vations, IEEE Trans. Aero. Elect. Syst., 14, 564–577

31. P.J. Galkowski, M.A. Islam (1991), An alternative derivation of the modified gain
function of Song and Speyer, IEEE Trans. Automatic Control, 36, 1323–1326

32. J. Lévine, R. Marino (1992), Constant-speed target tracking via bearings-only mea-
surements, IEEE Trans. Aero. Elect. Syst., 28, 174–182

33. M. Wax (1983), Position location from sensors with position uncertainty, IEEE Trans.
Aero. Elect. Syst., 19, 658–662

34. Appendix E, labelled “Emitter location accuracy” of a handwritten report held in
DSTO’s Electronic Warfare and Radar Division. Its origin is unknown but it appears
to be about ten years old.

50

DSTO–RR–0319

Appendix A Posterior CRLB

The posterior Cramér–Rao lower bound was discussed in Section 3.2.1, and the ideas
underlying it are outlined in this appendix.

When using a recursive geolocation routine, we need to take into account the prior
knowledge available at each step of the recursion. The state x that we seek now takes on
a new value as each measurement arrives. Hence, index it with the measurement number:
the measurement set Zk ≡ {z1, . . . ,zk} estimates the latest value of the state, xk. Prior
information is given by the quantity z0, which will be a measurement, but is not counted
as part of the data set.

Instead of dealing with the conditional density p(Zk|xk) as in Section 3.2.1, the state xk

is now treated as a random variable in its own right, and so the combined density p(Zk, xk)
is used to compute the bayesian Fisher information at each time k:

JB(k) ≡ EZ
k
,x

k

{
∇

x
k

(
∇t

x
k

L(Zk, xk)
)}

, (A1)

where EZ
k
,x

k

{·} ≡ EZ
k

{
E

x
k

{·}
}
. Define L(xk) via

L(Zk, xk) = − ln p(Zk, xk)

= − ln p(xk) − ln p(Zk|xk)

≡ L(xk) + L(Zk|xk) . (A2)

Equations (A1) and (A2) combine to give

JB(k) = E
x

k

{
∇

x
k

(
∇t

x
k

L(xk)
)}

︸ ︷︷ ︸
≡ J

P
(k), the prior information

+ EZ
k
,x

k

{
∇

x
k

(
∇t

x
k

L(Zk|xk)
)}

︸ ︷︷ ︸
= Ex

k
{J

NB
(k)}, the data information

, (A3)

where we have replaced EZ
k
,x

k

by E
x

k

in the first term on the right in (A3), since its

argument does not depend on the measurements Zk. Also, as is typically done to simplify
calculations in bayesian theory, the second term of (A3), E

x
k

{JNB(k)}, is usually replaced

by JNB(k). This corresponds to using an unchanging set of initial conditions in a set of
Monte Carlo simulations.

Suppose that an initial measurement z0 (i.e. prior information) has indicated a target
state x0, and assume x0 is normally distributed: p(x0) ∼ N (x̂0, P0), by which is meant

p(x0) =
1√

|2πP0|
exp

−1

2
(x0 − x̂0)

t P−1
0 (x0 − x̂0) . (A4)

Then if uk and vk are set to zero in (3.46) (as done in bearings-only tracking), it follows
that xk is normally distributed: p(xk) ∼ N (x̂k, Pk). Setting Fk ≡ F , a constant matrix,
the relevant expressions now involve the kth power of F :

x̂k = F k
x̂0 , Pk = F kP0(F

k)t. (A5)

In that case, the prior information turns out to be

JP (k) = P−1
k . (A6)

51

DSTO–RR–0319

Thus, the calculation of the posterior CRLB in (A3) reduces to a calculation of JNB, the
non-bayesian Fisher information. The calculation of this matrix is somewhat laborious;
the remainder of this appendix outlines the way it is done, for an emitter modelled as
having constant velocity.

For this constant velocity case, the emitter state is defined in terms of its position
(xk, yk) and velocity (ẋk, ẏk) at time k:

xk =
[
xk yk ẋk ẏk

]t
. (A7)

Beginning with (3.3, 3.6), we need the conditional probability

p(Zk|xk) ≡
1√
2πR

exp

[
−1

2R

k∑

i=1

[zi − h(xk, i)]
2

]
, (A8)

which directly gives L(Zk|xk). The quantity h(xk, i) is the same as used in (3.52), being
a sort of backwards prediction of the exact bearing that should be seen at time i 6 k,
given the current time k and current state xk. With equal time steps ∆t, we can write
the emitter’s position at some intermediate time i as:

(xi, yi) = (xk, yk) + (ẋk, ẏk)(i − k)∆t , (A9)

so that (omitting the quadrant-dependent constant in the following inverse tan functions,
which will differentiate to zero anyway—see the comment on page 19)

h(xk, i) ≡ tan−1
yi − ri,y

xi − ri,x

≡ tan−1 ∆yi

∆xi

(for all emitter models)

= tan−1
yk + ẏk(i − k)∆t − ri,y

xk + ẋk(i − k)∆t − ri,x

(constant velocity model only), (A10)

where (ri,x, ri,y) is the receiver position at time i. The Fisher information matrix has the
raw form of

JNB(k) = EZ
k

{
∇

x
k

(
∇t

x
k

L(Zk|xk)
)}

. (A11)

For convenience, if we rewrite the state as

xk =
[
x1

k x2
k x3

k x4
k

]t
, (A12)

then, with further effort, the Fisher information matrix can be shown to have as its (m, n)th

element:

JNB(k)
∣∣∣
mn

=
1

R

∑

i

∂h(xk, i)

∂xm
k

∂h(xk, i)

∂xn
k

. (A13)

Actually this last expression holds for emitter models with arbitrary motion, not just
constant velocity; what does change for different emitter models is the form of h(xk, i)
in the second line of (A10), where the numerator and denominator would contain extra
Taylor series terms involving higher derivatives of position.

52

DSTO–RR–0319

For the constant velocity case, further manipulation leads to

JNB(k) =
1

R

k∑

i=1

1
(
∆x2

i + ∆y2
i

)2 ×

∆y2
i −∆yi∆xi ∆y2

i (i − k)∆t −∆yi∆xi(i − k)∆t

∆x2
i −∆yi∆xi(i − k)∆t ∆x2

i (i − k)∆t

∆y2
i (i − k)2∆t2 −∆yi∆xi(i − k)2∆t2

(symmetric) ∆x2
i (i − k)2∆t2

.

(A14)

The bayesian Fisher information JB(k) then follows from (A3, A6, A14).

53

DSTO–RR–0319

54

DSTO–RR–0319

Appendix B Total Least Squares

Here we supply the relevant details referred to in Section 3.6.1.

When the matrix H of (3.14) itself contains noise, the usual pseudo inverse is not
guaranteed to give the most accurate estimate of the state x. In this case the method of
Total Least Squares can sometimes give better results. To construct the method, begin by
rewriting (3.14) as

[
H −z

] [x
1

]
= residual. (B1)

Suppose we multiply both sides by
[
H −z

]t
:

[
H −z

]t [
H −z

] [x
1

]
=
[
H −z

]t
residual. (B2)

In a noiseless world the right hand side would be zero, in which case A ≡
[
H −z

]t [
H −z

]

(a square matrix) would be singular. In practice we will perturb it to produce a new
singular version, in the least perturbative way, by zeroing its smallest eigenvalue. This
can be done through first finding three matrices U, S, V that make up the singular value
decomposition of

[
H −z

]
:

[
H −z

]
= USV t

Matlab: [U, S, V] = svd([H, -z], 0) . (B3)

The matrices U, S and V have useful properties that need not concern us here, except
that S is diagonal, having as its entries the square roots of the eigenvalues of A. If we
arrange these in descending order down the diagonal,3 then we can perturb A to be singular
by zeroing the last eigenvalue of S, to produce a new matrix S̄. In that case, the new
matrix US̄V t defines new H and z matrices:

[
H̄ −z̄

]
≡ US̄V t . (B4)

Solving the new system

[
H̄ −z̄

] [x
1

]
= 0 , i.e. z̄ = H̄x , (B5)

produces a possibly better estimate of the state x. In practice, the calculation is further
simplified because the equation which is to be solved,

US̄V t

[
x

1

]
= 0 , (B6)

can be rewritten in terms of the columns of the n × n matrix V . If the state x has n
entries, then

for each row i,

[
x

1

]
·

n−1∑

j=1

UijSjjVcolumn j = 0 , (B7)

3U and V would have to be altered to suit, but this preferred arrangement is automatically produced
by Matlab anyway. We need do nothing extra.

55

DSTO–RR–0319

so that

[
x

1

]
must be orthogonal to the first n − 1 columns of V . But a special property

of V is that it is orthogonal: its columns are all mutually orthonormal. Hence

[
x

1

]
must

be proportional to the last column of V . In that case, the total least squares estimate of x

is just

x̄ =
1

Vnn

V1n

...
Vn−1,n

 . (B8)

This is all easily programmed in Matlab, especially since the matrices U, S are not used.
In summary, when solving for x with a noisy H:

Hx = z + noise, (B9)

the two approaches of least squares and total least squares can be programmed in the
following way:

Least squares:

x̄ = H#
z

Matlab: x = pinv(H) * z (B10)

Total least squares:

USV t =
[
H −z

]
(s.v.d.); x̄ =

1

Vnn

V1n

...
Vn−1,n

Matlab: [notNeeded, notNeeded, V] = svd([H, -z], 0);

x = V(1:end-1, end)/V(end, end) (B11)

56

DSTO–RR–0319

Appendix C Running the Matlab Geolocation

Simulator

The Matlab programme referred to in this report is used to investigate the tracking al-
gorithms of Sections 3.7–3.10. It allows us to specify fairly general flight paths for one
receiver and one emitter. It then generates noisy bearings at regular intervals along the
flight paths, and uses our choice of either the CPLE, Gauss–Newton, RLS, or either type of
Kalman filter to estimate the emitter’s flight path. It also plots Cramér–Rao uncertainty
ellipses as described in Section 5.1 and [4], that serve as a guide to how accurately we can
ever hope to locate the emitter.

Here we describe two possible ways of running the Matlab gui.

1. To run the gui in its simplest form, type geolocationGui at the Matlab command
prompt, which will run the geolocationGui.m file. This brings up the gui. Param-
eters can then be entered into various boxes. Pressing the appropriate button draws
and processes the flight paths.

2. If a better feel for the statistics of the final estimation is needed, a Monte Carlo
approach can be used. This runs the relevant routine many times for various emitter-
receiver geometries. Instead of typing geolocationGui from the command line, type
manyRuns instead, which runs the code in manyRuns.m. The gui will start as usual, at
which point the appropriate parameters must be entered into it; this is just equivalent
to running geolocationGui.m for each set of parameters and entering these by hand
into the gui. Currently manyRuns.m is only set up to handle a stationary emitter
and constant velocity receiver.

Running geolocationGui.m (the Gui)

After typing geolocationGui, the window in Figure C1 appears. The plot area for
flight paths is a flat area with north upwards and east to the right. It starts off with a
nominal axes scaling, although the scaling can be changed at any time by clicking the

Change axes limits button.

Once appropriate axes limits have been chosen, the paths of both emitter and receiver
are plotted on this map. They can be plotted in either order, and are both recorded in
the same way. For example, we enter emitter waypoints by first clicking on the button

labelled Start recording emitter waypoints , then clicking the left mouse button to place

each waypoint on the map. We finish by clicking the same gui button, now relabelled

Stop recording emitter waypoints .

The actual flight speeds and bearing measurement times involved are changed by en-
tering numbers in the two input boxes: Time between receiver waypoints and Time

between bearing measurements. The time between emitter waypoints cannot be set,
since it is determined by the number of waypoints for emitter and receiver we input,
together with the time between receiver waypoints.

57

DSTO–RR–0319

Results panel

Plot area

for tracks

Track recorder

Error specifier

Routine chooser

Monte Carlo

specifier

Initial conditions

specifier

Figure C1: Startup window for the geolocation gui

As an alternative to specifying the flight paths this way, we can use an initial condition

approach. First click on the Specify initial conds button. This brings up a new set of

buttons and input boxes. Before doing anything else, ensure that the time between bearing
measurements has been entered. Then, for each of the receiver and emitter (in either
order), enter the flight time (which should be the same for both), and the initial position,

velocity, etc. Clicking on Draw emitter path or Draw receiver path then plots a path

based on these initial conditions.

Next specify how many runs we wish to make. Specifying one run makes the receiver
and emitter fly their paths just once; the receiver takes noisy bearing measurements at
intervals given by the Time between bearing measurements input box, and an answer
for the estimated position or track of the emitter is computed. If a number greater than
one is chosen, this process is repeated many times, for a new set of noise values each time.
Each estimated emitter track is overlaid on the screen at the end of the computation—
or whenever Matlab decides to draw its graphics buffer to the screen, which currently is
always at the end of the whole set of computations.

Checking the Retain estimated emitter paths box means that no matter how many

runs are made, successive paths will remain on the screen. To clear these runs, click the

Clear estimates button. This prevents Matlab from doing a slow screen refresh with
these paths in place as part of its screen management before it starts the next run.

Now enter the bearing error into the Bearing error (degrees) box. (Note that all of
the input boxes are independent of each other, so the various inputs can be entered in any
order.) This is a value that will become the standard deviation of a normal distribution

58

DSTO–RR–0319

centred about 0◦, from which Matlab will draw random values to add to the exact, true,
bearing. This noisy bearing is what Matlab then actually uses to perform its geolocation
computation.

We can also enter receiver position errors into the Receiver x error and Receiver y

error boxes. These numbers, analogously to the bearing error, are the standard deviations
of normal distributions about zero from which will be randomly drawn numbers to add
to the receiver x and y positions. They reflect our uncertainty of where the receiver is,
due to INS and GPS errors. These numbers are ordinarily quite small, if they are present
at all.

A geolocation method must be selected from the following:

CPLE. To run this routine first click the CPLE button, which causes a new set of
buttons to be drawn. There is just one button to press to run the routine: (another)

CPLE , since this routine requires no seed estimate. Pressing this button causes
Matlab to do the following with the flight paths. First it interpolates the waypoints
so as to make the same number of points in each track, spaced in time by the bearing
measurement interval. That way the new waypoints can be paired off, so that the
emitter position corresponding to each receiver measurement is unambiguous. Then
a cubic spline curve is computed through each set of points to make two smooth
paths.

Next, Matlab builds a list of noisy bearings, one for each receiver-emitter waypoint
pair. Once this is done, further processing of the noisy bearings depends on the
routine.

If we have modelled the emitter’s motion as constant position, then the estimate
produced by the CPLE routine will be a single point. Likewise if we have chosen
constant velocity as the model, the routine works out an initial position and initial
velocity, and plots the constant velocity path resulting from these, which is neces-
sarily a straight line. (This fact should be noted because the other routines might
do this differently; e.g. the Kalman routine tracks the emitter, and will seldom—
essentially never—produce a straight line for the same constant velocity emitter.)
Similarly, a set of initial conditions is produced and used to plot the emitter motion,
when we model that motion as having higher derivatives.

After running the CPLE routine, its results can, if we choose, be used as initial
conditions of any of the other routines, which all require a seed. Do this by clicking

the Use result to set new ICs button.

Gauss–Newton. Choose this with the Gauss–Newton button. Enter a gain and tol-
erance in the box that appears. The gain is a factor around unity that multiplies
the stepping size calculated by Gauss–Newton, in the hope of helping the iterations
converge faster. The tolerance is the distance on the plot area such that once the
change in (final) position from one iteration to the next is less than this amount, the
routine will terminate.

Next, estimate the initial conditions. They might have been already estimated by a
preliminary run of the CPLE; but if not, choose an emitter motion model from the
list next to Emitter is modelled with constant:. It is possible to “cheat” by

59

DSTO–RR–0319

hitting the Guess ICs button. This calculates the actual initial conditions for the
emitter path that was entered, and is a way of entering something at least half way
reasonable, as a way of experimenting with different scenarios for which guessing
reasonable initial conditions is difficult.

Now click the newly appeared Gauss–Newton button to run the routine. Its it-
erations stop once the tolerance has been reached. Iterations also stop once 25 of
them have occurred, since this indicates that the routine is probably not converging
and should be abandoned. (This number 25 is just the value of the maxIterations

variable in Gauss--Newton.m and can be changed there if required.)

As with the CPLE routine, Gauss–Newton calculates a set of initial conditions for
the emitter. Thus if the emitter is modelled with constant velocity, an absolutely
straight line will necessarily be drawn.

Recursive Least Squares. Clicking Recursive least squares prints the relevant but-

tons to the gui. Initial conditions and a model of the emitter’s motion must be
specified.

There are now two parameters to specify to run RLS: Lambda and Q, as defined in
Section 3.9. Typical values might be Lambda = 1 and Q = 1e8 (i.e. 108). Pressing

the new Recursive least squares button runs the routine.

The type of track to expect of the estimated emitter plot is different for this and
the next techniques. For example, if we choose the emitter as being modelled with
constant position, then unlike the CPLE and G–N case, the resulting plot will almost
certainly not be just one point. The reason is that RLS and the Kalman filters are
not batch processors, and so do not produce just one state estimate from their
processing. Rather, they plot a point whose location is then updated as each new
bearing arrives. Similarly if we choose to model the velocity as constant: a straight
line is not expected to be output, since as before, the position of the emitter is simply
being estimated and updated for each bearing.

Cartesian Extended Kalman. Click on the Cart. Kalman button to run this. Besides
our supplying initial conditions as before, the routine also requires the parameters
labelled P_0|0 and Q as defined in Section 3.10. Typical values might be 1000 and 1.

Then click the Cartesian Kalman button.

Modified Polar Extended Kalman. For this, press the MP Kalman button and en-
ter values for sigma_r, sigma_v and Approx. range. These are, respectively, the
errors in the initial position and speed, and an estimate of the range (some interme-
diate value can be given if the range changes greatly for the supplied paths). Then

click on the Modified Polar Kalman button.

Other Buttons and Output Fields

Display various... There is sometimes a need to produce various numbers indicating

the performance of an algorithm. Clicking on this button writes these numbers to the
Matlab command line. It will produce an error message when clicked if some of the
information coded to be output doesn’t exist.

60

DSTO–RR–0319

Axes → eps Clicking this produces an encapsulated postscript file of the current plot.

The allocated filename is time-tagged to prevent accidental overwriting.

Reset This clears all tracks from the gui and sets various other quantities to sensible
values. Use this when a new set of flight paths is required to be drawn. If we just add

more waypoints to a plot without hitting Reset first, they will be added to the existing
flight paths.

Emitter position estimation This button implements the work of Kim Brown as

outlined in Section 3.2. Clicking on it brings up a separate window for parameter input.
The scenario it is considering, described comprehensively in [4], is that of a plane flying a
great circle over Earth, taking bearings of a stationary emitter. The numbers to be input
relate to Figure C2:

Broadside angle (degrees) As in Figure C2.

Emitter range (km) The units of km are purely arbitrary.

Bearing error (degrees)

Number of points This is the number of points along the receiver flight path, at each of
which the receiver takes a bearing measurement.

Receiver speed (km/h)

Time (s) between bearing measurements The unit of seconds is arbitrary. The length
of the receiver path flown depends on this time and the number of points specified
along the path.

Clicking the Emitter position estimation button calculates the Cramér–Rao lower bound

in such a way as to draw an uncertainty ellipse, which is really meant to be superimposed
on the emitter position. This is a measure of the most optimistic error we can hope for in
the specified situation.

This emitter position estimation theory has also been implemented in the main geolo-
cation routines, provided we are modelling the emitter as stationary there. If we are, then
the same theory is used to draw a Cramér–Rao error ellipse, this time superimposed on
the actual position of the emitter. This is useful, because it allows us to compare the ge-
olocated position with the Cramér–Rao error ellipse. However, note that the Cramér–Rao
theory applies to unbiased techniques, and the techniques used in the gui are not neces-
sarily unbiased—as is demonstrated whenever a spread of Monte Carlo emitter estimates
does not cluster about the true emitter position.

Plotting the ellipse is governed by an edit field in the main gui: What-sigma ellipses

to plot. If set to e.g. 2, then the ellipse resulting is really a contour of the probability
distribution at two standard deviations. For accurate geolocation scenarios, the 1σ ellipse
is usually too small to see, so raising the value of σ is equivalent to magnifying the ellipse

to make it visible. The Draw ellipses button must be checked to switch this facility on,

since plotting the ellipses can be computationally expensive.

61

DSTO–RR–0319

North

East

Receiver path with
bearing observations
noted Broadside angle

Emitter range

Emitter

Figure C2: Emitter position estimation scenario

Display tracks slowly Checking this button draws the tracks point by point, as a

visual aid only. It’s only enabled for the recursive routines, to emphasise the fact that
these routines operate by updating the emitter estimate as each bearing-capture point
of the flight path is reached. Depending on which routine has been chosen, only certain

combinations of this button together with the Draw ellipses button are enabled. This is

a coding choice, due to the practicalities of calculating the posterior Cramér–Rao bound
for the recursive routines.

How many runs? If we want to do a Monte Carlo run, enter a number greater than 1
here. In principle, after each run the resulting estimate of the emitter path will be drawn
to the screen, as well as the current run number being printed on the Matlab command
line; but in practice, Matlab only draws its graphical buffer at the end of the entire Monte
Carlo set. Next to this box, two values for the circular error probable will be printed,
for 50% and 95%. That is, the 50% number is the distance out from the emitter’s final
position that we must go in order to encompass 50% of the estimates to that position.
Similarly for the 95% number.

Here’s how the routine performed After every run, several performance indicators
are printed into this rectangle in the gui. These are:

Angle subtended by the emitter path in receiver frame (degrees) This only has
real use if the receiver is not following an overly convoluted path. The label is worded
in this way to take into account the fact that the emitter might be moving. In the
simplest case of a stationary emitter, this angle is identical to the angle subtended
by the receiver path at the emitter.

62

DSTO–RR–0319

Final rel. cross-range error Refer to Figure 2 for the definition of cross-range error.
The relative cross-range error is the cross-range error divided by the range. This
quantity is really the answer to the more specific question: at the final position of
the receiver, what is the relative cross-range error in the final estimated position of
the emitter?

Final rel. down-range error This is analogous to the relative cross-range error.

Elapsed cpu time for this simulation (s) The elapsed cpu time in seconds is a good
parameter to compare the speed of the different routines.

Centroid displacement from true position Whether we are running in Monte Carlo
mode (in which case a set of emitter paths will be plotted), or not (in which case just
one emitter path will be plotted), there will be one or more estimates for the final
emitter position. This set has a centroid. The displacement of this centroid from
the true emitter position is a good indicator of how well the geolocation routine is
performing.

In the case of running Gauss–Newton, the centroid placement might be cause for
confusion in that one might ask: why is the emitter placement error (output after
the calculation) sometimes greater than the tolerance that we have specified? This
is because: in specifying the tolerance, we are telling the algorithm to stop when the
distance between successive estimates to the emitter position becomes smaller than
the tolerance, so that it doesn’t keep iterating unnecessarily for no real improvement
in its estimate. On the other hand, the emitter placement error is the distance
between the last point and the actual emitter position. It might be that G–N has
done a bad job, and converged on a point far from the actual emitter position. In
that case the emitter placement error will be large, even though the iteration steps
have reduced to the step size required to stop the algorithm.

Running manyRuns.m (Batch Mode)

The file manyRuns.m contains code that runs a batch of geolocation scenarios. The basic
layout is covered in Section 6.2, and shown in Figure 12 on page 46. The emitter is at rest
on the y-axis, while the emitter has a constant velocity at some angle α to the x-axis. It
sweeps out a path of angle θs as seen by the emitter, in a time ∆t, and it makes bearing
observations at the rate of one per second. The code is run by typing manyRuns at the
Matlab prompt, at which we then supply values for the various parameters used to control
the runs, as arrays. These are the bearing error, θs, α, and ∆t. So to enter an array of
values 0, 5, 10, 15, . . . , 80, we just enter 0:5:80, while to enter an array with a changing
increment, we enter the array explicitly: [2 3 5 7 11]

The number of Monte Carlo runs and the routine used must also be specified at the
prompt. All runs, apart from when using the CPLE routine, are automatically seeded by
first running CPLE (which needs no initial conditions). The chosen routine is then run as
many times as entered for the Monte Carlo number.

manyRuns.m produces two files. The main one is a .mat file whose name we supply
when prompted by manyRuns.m. This name is time-tagged to prevent any accidental
write-over: if we specify the name fred at time 2:02:41 pm, the actual name will be

63

DSTO–RR–0319

fred 23 Mar 2005 14 02 41.mat

The second file produced is a “diary file” fred 23 Mar 2005 14 02 41.diary containing
a history of the runs, in case this is needed for checking in the event of a computer crash;
this can be deleted when manyRuns.m finishes.

The .mat file is then read by PlotMatrixCurves.m, which reads its data and plots
various graphs. (PlotMatrixCombined.m also does a similar job, but is a little less evolved.
It puts all of its plots onto one page, in the event that they are to be included this way in
a report.) PlotMatrixCurves.m asks for several inputs:

Name of input file. That is, the above .mat file containing the plot data.

What to plot on y-axis. Refer to Section 6.2. Choices are relative down- and cross-
range errors, and circular error probable. Choosing e.g. relative down-range error,
the relevant choice is presented as “Relative down-range error and sigma R/R”.
What this indicates is that the relative down-range error (the statistical error output
from geolocationGui.m run one or more times through manyRuns.m) will be plotted
on the same graph as the “rule of thumb error” from (6.1).

Bearing error values. Here we are presented with a range of bearings (in degrees) that
have been used to create the data now held in the .mat file. For example, a line
saying 0:0.1:0.5 means that all the values 0, 0.1, 0.2, . . . , 0.5 have been used as
bearing errors. Either enter one of these, or enter nothing at all (just hit return).
Entering a specific number means we wish to plot a slice through the matrix of data
at this value of bearing error. If nothing is entered, all of the bearing errors will
become the x-axis. Note that if only ever one bearing error was already stipulated
in manyRuns.m, then we will not be asked to specify that bearing again.

theta s values. Similarly we enter a value for the swept angle θs in degrees. Note that
if we enter nothing here as well as for the bearing error, PlotMatrixCurves.m will
crash as it tries to put two sets of values along the x-axis. (This nonrobustness is
not crucial.) As above, if only one θs value was originally stipulated, then we are
not asked for it again here.

alpha. We also enter a value for α (degrees) if it’s asked for (as for bearing and θs).

delta tReceiver values. Here, if asked, we enter the time ∆t taken to fly the receiver
flight path, in seconds. Bearing measurements will be taken at one second intervals.

After entering these values the relevant graph is plotted. We can also plot relative down-
and cross-range errors and CEPs as functions of two variables, using PlotMatrixSurfaces.m.

64

DISTRIBUTION LIST

Numerical Calculations for Passive Geolocation Scenarios

Don Koks

Number of Copies

DEFENCE ORGANISATION

Task Sponsor

Director General Aerospace Development 1 (printed)

S&T Program

Chief Defence Scientist 1

Deputy Chief Defence Scientist Policy 1

AS Science Corporate Management 1

Director General Science Policy Development 1

Counsellor, Defence Science, London Doc. Data Sheet

Counsellor, Defence Science, Washington Doc. Data Sheet

Scientific Adviser to MRDC, Thailand Doc. Data Sheet

Scientific Adviser Joint 1

Navy Scientific Adviser Doc. Data Sheet
and Dist. List

Scientific Adviser, Army Doc. Data Sheet
and Dist. List

Air Force Scientific Adviser 1

Scientific Adviser to the DMO Doc. Data Sheet
and Dist. List

Deputy Chief Defence Scientist Platform and Human Systems Doc. Data Sheet
and Exec. Sum.

Len Sciacca, CEWRD Doc. Data Sheet
and Dist. List

Alasdair McInnes, RL EWS, EWRD Doc. Data Sheet
and Dist. List

Simon Rockliff, Head AS group, EWRD 1 (printed)

Anthony Schellhase, Head MS group, EWRD Doc. Data Sheet

Sanjeev Arulampalam, MOD 1 (printed)

Mark Rutten, ISRD 1 (printed)

Don Koks, EWRD 5 (printed)

DSTO Library and Archives

Library, Edinburgh 2 (printed)

Defence Archives 1

Capability Development Group

Director General Maritime Development Doc. Data Sheet

Director General Capability and Plans Doc. Data Sheet

Assistant Secretary Investment Analysis Doc. Data Sheet

Director Capability Plans and Programming Doc. Data Sheet

Director General Australian Defence Simulation Office Doc. Data Sheet

Chief Information Officer Group

Head Information Capability Management Division Doc. Data Sheet

AS Information Strategy and Futures Doc. Data Sheet

Director General Information Services Doc. Data Sheet

Strategy Group

Assistant Secretary Strategic Planning Doc. Data Sheet

Assistant Secretary Governance and Counter-Proliferation Doc. Data Sheet

Navy

Deputy Director (Operations) Maritime Operational Anal-
ysis Centre, Building 89/90, Garden Island, Sydney

Deputy Director (Analysis) Maritime Operational Anal-
ysis Centre, Building 89/90, Garden Island, Sydney

Doc. Data Sheet
and Dist. List

Director General Navy Capability, Performance and Plans,
Navy Headquarters

Doc. Data Sheet

Director General Navy Strategic Policy and Futures, Navy
Headquarters

Doc. Data Sheet

Air Force

SO (Science), Headquarters Air Combat Group, RAAF Base,
Williamtown

Doc. Data Sheet
and Exec. Sum.

Army

ABCA National Standardisation Officer, Land Warfare Devel-
opment Sector, Puckapunyal

Doc. Data Sheet
(pdf format)

J86 (TCS Group), DJFHQ(L), Enoggera QLD Doc. Data Sheet

SO (Science), Land Headquarters (LHQ), Victoria Barracks,
NSW

Doc. Data Sheet
and Exec. Sum.

SO (Science), Special Operations Command (SOCOMD), R5-
SB-15, Russell Offices Canberra

Doc. Data Sheet
and Exec. Sum.

SO (Science), DJFHQ(L), Enoggera QLD Doc. Data Sheet

Joint Operations Command

Director General Joint Operations Doc. Data Sheet

Chief of Staff Headquarters Joint Operation Command Doc. Data Sheet

Commandant, ADF Warfare Centre Doc. Data Sheet

Director General Strategic Logistics Doc. Data Sheet

COS Australian Defence College Doc. Data Sheet

Intelligence and Security Group

Assistant Secretary, Concepts, Capabilities and Resources 1

DGSTA, DIO 1

Manager, Information Centre, DIO 1

Director Advanced Capabilities, DIGO Doc. Data Sheet

Defence Materiel Organisation

Deputy CEO, DMO Doc. Data Sheet

Head Aerospace Systems Division Doc. Data Sheet

Head Maritime Systems Division Doc. Data Sheet

Program Manager Air Warfare Destroyer Doc. Data Sheet

Guided Weapon and Explosive Ordnance Branch GWEO Doc. Data Sheet

CDR Joint Logistics Command Doc. Data Sheet

OTHER ORGANISATIONS

National Library of Australia 1

NASA (Canberra) 1

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy Library 1

Head of Aerospace and Mechanical Engineering, ADFA 1

Hargrave Library, Monash University Doc. Data Sheet

INTERNATIONAL DEFENCE INFORMATION CENTRES

US: Defense Technical Information Center 1

UK: Dstl Knowledge Services 1

Canada: Defence Research Directorate R&D Knowledge and
Information Management (DRDKIM)

1

NZ: Defence Information Centre 1

ABSTRACTING AND INFORMATION ORGANISATIONS

Library, Chemical Abstracts Reference Service 1

Engineering Societies Library, USA 1

Materials Information, Cambridge Scientific Abstracts, USA 1

Documents Librarian, The Center for Research Libraries, USA 1

INFORMATION EXCHANGE AGREEMENT PARTNERS

National Aerospace Laboratory, Japan 1

National Aerospace Laboratory, Netherlands 1

SPARES

DSTO Edinburgh Library 5 (printed)

Total number of copies: 40; printed 16, pdf 24.

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Numerical Calculations for Passive Geolocation
Scenarios

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHOR

Don Koks

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, SA 5111, Australia

6a. DSTO NUMBER

DSTO–RR–0319
6b. AR NUMBER

AR–013-779
6c. TYPE OF REPORT

Research Report
7. DOCUMENT DATE

January, 2007

8. FILE NUMBER

E9505–25–199
9. TASK NUMBER

AIR 00/069
10. SPONSOR

DGAD
11. No. OF PAGES

64
12. No OF REFS

34

13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/corporate/
reports/DSTO–RR–0319.pdf

14. RELEASE AUTHORITY

Chief, Electronic Warfare and Radar Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,

EDINBURGH, SA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

geolocation tracking
Cramér–Rao bounds Kalman filters
least-squares method maximum-likelihood estimation
circular error probable time difference of arrival
Gauss–Newton

19. ABSTRACT

This report reviews work done in gaining some familiarity with methods of passive geolocation, and
a search for rules of thumb that might tell us how to optimise the geolocation for a given scenario.
We first cover the main approaches to collecting angle of arrival data and point out typical accuracies.
Following this is an account of the mathematics used to analyse this data to produce an estimate of an
emitter’s location. We then give an overview of some of the literature, and finish by demonstrating a
Matlab programme that runs several geolocation algorithms. Simple rules of thumb that specify how
to fly a baseline and take data, so as to maximise the accuracies of the different techniques, do not
appear to be readily derivable.

Page classification: UNCLASSIFIED

	ABSTRACT
	EXECUTIVE SUMMARY
	Contents
	Appendices
	1 Overview
	2 Direction-Finding Techniques
	2.1 Amplitude Response
	2.2 Time Difference of Arrival
	2.3 Interferometry
	2.4 Absolute Doppler
	2.5 Frequency Difference of Arrival
	2.6 Differential Doppler

	3 Statistical Processing of Bearing Data
	3.1 Layout of a Geolocation Problem
	3.2 Cramér--Rao Lower Bound
	3.2.1 Two Types of Cramér--Rao Bound

	3.3 Circular Error Probable and Range Errors as Ways of Quantifying Error
	3.4 Observability of the Emitter
	3.5 Producing an Estimate of the Emitter Position: The Stansfield Algorithm
	3.6 A Least Squares Primer
	3.6.1 Total Least Squares: When the Errors are More Complicated

	3.7 Cartesian Pseudo-Linear Estimator Approach (CPLE)
	3.7.1 Relating the CPLE to the Method of Maximum Likelihood

	3.8 Gauss--Newton/MLE Algorithm
	3.9 Recursive Least Squares (RLS)
	3.10 Kalman Filter

	4 Review of Selected Papers in the Field
	5 Geolocation For a Triangle of Receivers
	5.1 Calculating a Cramér--Rao Set of Bounds
	5.2 Long-Baseline TDOA

	6 Results of Running a Matlab Simulation
	6.1 Reproducing Some Known Results
	6.2 Checking an Old Suggested Rule of Thumb

	7 Concluding Remarks
	References
	Appendix A Posterior CRLB
	Appendix B Total Least Squares
	Appendix C Running the Matlab Geolocation Simulator
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

