
 
 
 
 

 
 
 

HPAC (Hazard Prediction and Assessment Capability) 
<> jSWAT (Joint Seminar Wargaming  Adjudication 

Tool) Integration; A Technical Solution  
 
 

Matt Brennan1 , Alex Skvortsov  and Ralph Gailis 
 

Human Protection and Performance Division 
Defence Science and Technology Organisation 

 
DSTO-TN-0721 

 
 

ABSTRACT  
 
This paper provides an outline of the technical solution to be adopted when integrating the 
Hazard Prediction and Assessment Capability (HPAC) with DSTO's Joint Seminar 
Wargaming Adjudication Tool (jSWAT). Opportunities to conduct "least path of resistance" 
integration between the two applications are explored to support an eventual Proof of 
Concept demonstration. The report concludes with some observations on achievable longer 
term integration goals. 
 
 

 
 

                                                      
1 classForge PTY LTD 

RELEASE LIMITATION 

Approved for public release 
 



 

 

Published by 
 
Human Protection and Performance Division 
DSTO  Defence Science and Technology Organisation 
506 Lorimer St 
Fishermans Bend, Victoria 3207   Australia 
 
Telephone:  (03) 9626 7000 
Fax:  (03) 9626 7999 
 
© Commonwealth of Australia 2006  
AR-013-759 
September 2006 
 
 
 
 
APPROVED FOR PUBLIC RELEASE 
 



 

 

 
HPAC (Hazard Prediction and Assessment 

Capability) <> jSWAT (Joint Seminar Wargaming  
Adjudication Tool) Integration; A Technical Solution  

 
 

Executive Summary 
 
The transformation of general military strategy and planning guidance to specific 
Defence Capability Strategy is where major future war fighting concepts are explored.  
The type of issues explored include Joint Operational concepts, Australian Indicative 
Planning Scenarios (AIPS), Force Options testing and NCW concepts using such tools 
and discriminators as wargaming and measures of effectiveness.  Insertion of CBR 
scenarios or challenges into the future operating concept exploration studies would 
provide some tests of the robustness of concepts to realistic threats. This Technical 
Note investigates the integration of an existing Chemical Biological Radiological and  
Nuclear (CBRN) hazard prediction tool (HPAC) into the Army Experimental 
Framework’s seminar wargaming environment (jSWAT) via a Proof of Concept (POC) 
demonstration. 
 

• Ability to start/stop HPAC client and server in the background, control it from 
jSWAT and run it invisibly to jSWAT users. No knowledge of HPAC is required 
from jSWAT users. 

• Ability to use full HPAC functionality in the jSWAT application through the 
Advanced Programming Interface (API) provided, resulting in mutual 
information exchange and data feed between jSWAT and HPAC functional 
modules. 

• Ability to display HPAC data in jSWAT in industry standard format 
(OpenMap) . 

 
What has been delivered: 

• An environment to assist the adjudication of CBRN effects by displaying 
contoured data associated with an incident release. No automation is provided 
of casualties or manoeuvre effects as a result of exposure to a CBRN release or 
the need to adopt protective (MOPP) measures. 

• Sensors and detectors allow the non-adjudicating players to effectively interact 
with the physical model of the plume. However, an adjudicator may intervene 
to shape the player's awareness of the source term in any manner desired. 

 
 The price and/or availability of this code (or an API that eases the task of integrating 
with the HPAC toolset) must be weighed in a cost/benefit analysis when considering 
any further development beyond POC for the HPAC<>jSWAT integration. 
 
The HPAC<>jSWAT product is expected to provide a valuable tool for use in the Army 
Experimental Framework.  This is timely, given the heightened importance that CBRN 
issues have now received in the ADF. The tool will be used to test concepts of 
operation in a CBRN threat environment, and guide future capability development, 



 

 

both in terms of the impact of CBRN incidents on general ADF capability, as well as 
specific CBRN capability development and acquisition. 
 
 
 
 
 



Contents 
 

1. INTRODUCTION ............................................................................................................... 1 

2. HPAC ARCHITECTURE.................................................................................................... 2 
2.1 SCIPUFF Server......................................................................................................... 2 
2.2 HPAC Clients............................................................................................................. 3 
2.3 HPAC Project Editor................................................................................................. 4 
2.4 The HPAC Project File ............................................................................................. 5 

3. BRIDGING THE ARCHITECTURES.............................................................................. 5 
3.1 The jSWAT Server as Middleware Bridge........................................................... 6 
3.2 A User Interface to Define Incidents and Releases............................................ 7 
3.3 Samplers, Detectors and Effects........................................................................... 10 

4. ARCHITECTURAL FINDINGS MAPPED TO COMPONENT DEVELOPMENT11 
4.1 jSWAT Server to ICE.............................................................................................. 11 
4.2 jSWAT Server .......................................................................................................... 12 
4.3 jSWAT Client to Server ......................................................................................... 13 
4.4 jSWAT Server to Client ......................................................................................... 13 
4.5 jSWAT Client (1) ..................................................................................................... 14 
4.6 Samplers (1).............................................................................................................. 14 
4.7 Software Release ..................................................................................................... 15 
4.8 ICE Jar ....................................................................................................................... 15 

APPENDIX A: DEVELOPMENT MAP AND PRIORITISATION............................. 17 

APPENDIX B: STARTING HPAC COMPONENTS IN DISTRIBUTED FASHION19 
B.1. Introduction..................................................................................... 19 
B.2. Starting ICE ..................................................................................... 19 
B.3. Starting the SCIPUFF server ........................................................ 20 
B.4. Starting the HPAC Project Editor................................................ 20 
B.5. Recovering from Failure ............................................................... 20 

APPENDIX C: ICE EXAMPLES ........................................................................................ 23 
C.1. Introduction..................................................................................... 23 



C.1.1 Example 1.......................................................................... 23 
C.1.2 Example 2.......................................................................... 23 
C.1.3 Example 3:......................................................................... 23 
C.1.4 Example 4.......................................................................... 23 
C.1.5 Example 5.......................................................................... 23 
C.1.6 Example 6.......................................................................... 23 
C.1.7 Example HPAC757 .......................................................... 23 

APPENDIX D: CBR DETECTOR ICONS ....................................................................... 25 

 

 
 



 
DSTO-TN-0721 

 
1 

1. Introduction 

This paper canvasses a sample technical solution to rapidly integrate the Hazard 
Prediction and Assessment Capability (HPAC) with DSTO's Joint Seminar Wargaming 
Adjudication Tool (jSWAT). The intent of the process is to demonstrate a Proof of Concept 
(POC) level of operation and analyse the suitability of the architectures for deeper 
integration. 
 
HPAC models the release of Chemical Biological Radiological and  Nuclear (CBRN 
)materials to the atmosphere and the associated dispersion using detailed meteorological 
information [1].  It provides an estimate of effects on the physical environment and to a 
lesser extent the resulting impact of that environment on exposed population.  Developed 
in the US by the Defence Threat Reduction Agency (DTRA), this counterproliferation / 
counterforce tool “assists warfighters in destroying targets containing weapons of mass 
destruction and responding to hazardous agent releases” [1, 4, 5]. It employs integrated 
source terms, high resolution weather forecasts and particulate transport algorithms to 
rapidly model hazard areas and human collateral effects.     
 
The Joint Seminar Wargaming Tool is an LOD developed software package (programmed 
in Java) that aims to facilitate the seminar wargaming process that Army currently uses to 
explore new concepts. Seminar wargaming is applicable to the way in which the CBRN 
exercises are conducted, and the use of jSWAT enables control of scenarios and the capture 
of required data in an automated fashion. 
 
jSWAT’s design philosophy is based around the transparent map overlays that are used as 
part of the Military Appreciation Process (MAP). Different levels of tactical or strategic 
information are laid over the underlying terrain image to provide different insights into 
the planning process. jSWAT utilises this idiom in its layout, with different layers of 
information being able to be switched on and off at will. HPAC’s CBRN information is 
displayed as another overlay. It provides information related to which CBRN sensors are 
activated and allows the operators to plot the spread of the plume 
 
While the term “integration” sounds straightforward, it needs to be clearly specified in the 
current context of wargaming tools integration. On the functional level we needed to 
evaluate two options 
 

• Duplex information exchange and display, 
• Mutual models influence (i.e. output of one model may impact result of the other). 

 
For the POC, the first option was adopted, i.e. HPAC data is displayed in jSWAT, but it 
has no direct influence on model entities. Thus as a result of models integration, we 
provided in jSWAT: 

• An environment to assist the adjudication of CBRN effects by displaying contoured 
data associated with an incident release. No automation is provided of casualties or 
manoeuvre effects as a result of exposure to a CBRN release or the need to adopt 
protective (MOPP) measures. 



 
DSTO-TN-0721 

 
2 

• Sensors and detectors allow the non-adjudicating players to effectively interact 
with the physical model of the plume. However, an adjudicator may intervene to 
shape the player's awareness of the source term in any manner desired. 

 
The integration methods may vary depending upon their level of coupling between 
components and the amount of internal modifications required to enable them. We also 
evaluated two extreme options 

• Strong coupling (each model uses shared components of each other and makes 
direct functional calls)  

• Loose coupling (each model has no detailed knowledge of the other, and only 
receives / sends broadcasted messages). 

 
The second option was adopted for POC since it is less dependent on model source code 
and more flexible in terms of deployment and version control.  This report aims to explain 
the details of implementation behind these broad concepts. 
 
 

2. HPAC Architecture 

2.1 SCIPUFF Server 

At the heart of HPAC is Second-order Closure Integrated Puff (SCIPUFF), a Lagrangian 
puff dispersion model developed in Fortran for the US Defence Threat Reduction Agency 
(DTRA). Detailed descriptions of material releases, meteorology, terrain, and other inputs 
are fed to SCIPUFF, which calculates the transport and dispersion and tracks material 
concentrations, depositions, and doses.  
 
HPAC 4.0 is designed as a networked application. The foundation of the system is a set of 
services designed to be accessed from a variety of clients (not only the client application 
built for HPAC). The HPAC 4.0 server application is exclusively available for execution on 
MS Windows (although various porting activities are mentioned in the HPAC design 
literature [1]). 
 
Central to the application's functionality is the atmospheric dispersion engine and a layer 
of services wrapped around this engine. These receive detailed descriptions of releases 
and materials and calculate their dispersion. They also contains facilities for generating 
output in terms of dose and deposition contours, vertical and horizontal plume slices, 
tabular output, and other forms.  
 
In addition, several models provide a more abstract or operational description of events, 
referred to as incidents. These models include conventional attacks on biological and 
chemical facilities, accidents at nuclear facilities, nuclear weapon incidents, nuclear 
weapon detonations, chem-bio weapons, missile intercepts, smoke and obscurants. 
Applications and systems may access HPAC functionality by interacting with HPAC 
services, linking with HPAC libraries, or instantiating Java HPAC components. For remote 
access, these services are defined using the Object Management Group (OMG) Interface 



 
DSTO-TN-0721 

 
3 

Definition Language (IDL [2]), part of the Common Object Request Broker Architecture 
(CORBA) specification [3]. 
 
Adhering to the notion of a Single Thread Model, HPAC servers provide a singleton 
factory service which is registered in the CORBA1 naming service for discovery. The 
factory is responsible for providing a per-client server object to perform work on behalf of 
the client. These per-client instances are relatively short-lived but provide a critical 
limitation in terms of jSWAT integration: it is not possible for two clients to 
simultaneously access a running server2. The intention here is that clients open a session 
with the server, perform a calculation, request output and then release the session. 
 
Finally, it is of note (for firewalling purposes for example), that RMI3 is used to transport 
larger files from client to/from server bypassing the CORBA linkage to avoid problems 
with implementation fragility when passing large objects via the CORBA Object Request 
Broker (see reference [1] for complete details).  
 
2.2 HPAC Clients 

Client applications may be written in any language and targeted for any platform capable 
of communicating with the server via TCP/IP and the Common Object Request Broker 
Architecture (CORBA). The server is designed to support many clients communicating to 
the server at one of several levels including a CORBA interface. In standalone mode, the 
Server and the Project Editors effectively bypass the CORBA interface and communicate 
directly. When starting HPAC from a clean installation, this “standalone” mode is 
expedited by executing most server objects in the same Java Virtual Machine (JVM) as 
client objects, thereby bypassing CORBA object transport [4]. 

                                                      
1 CORBA is the acronym for Common Object Request Broker Architecture, OMG's open, vendor-
independent architecture and infrastructure that computer applications use to work together over 
networks. Using the standard protocol IIOP, a CORBA-based program from any vendor, on almost 
any computer, operating system, programming language, and network, can interoperate with a 
CORBA-based program from the same or another vendor, on almost any other computer, operating 
system, programming language, and network. 
2 Although it might be fun to try. 
3 Java Remote Method Invocation (Java RMI) enables the programmer to create distributed Java 
technology-based to Java technology-based applications, in which the methods of remote Java 
objects can be invoked from other Java virtual machines. 



 
DSTO-TN-0721 

 
4 

 

Figure 1: Client Server Communications via CORBA [5] 

 
2.3 HPAC Project Editor 

The standard Graphical User Interface (GUI) to the server is the HPAC client application 
known as the “Project Editor”. Currently, OpenMap [6] is used for the bulk of map data 
display. Many National Imagery and Mapping Agency (NIMA) raster and vector mapping 
products are displayable in the Project Editor, including CADRG and CIB imagery as well 
as tiled data and VMAP data4.  jSWAT shares the same capacity as the HPAC Project 
Editor for map display through the OpenMap toolkit allowing a common visual baseline 
in defining and exploring incidents and their extent of effects. 

An instance of an incident is created by dragging the icon in the Incident Definition Palette 
onto the map Project Editor display. A typical sequence of user actions involves: 

1. Creating the incident, 

2. Setting the weather, 

3. Calculating the effects using the Dispersion Server, 

4. Display one or more output contour plots via the Output button. 

A high degree of user interaction is supported. Icons representing releases may be dragged 
on the map to relocate them, or detailed coordinates may be entered via release edit 
dialogs. The map display is highly configurable, and overlays representing plumes, points 
of interest, and other features on the map display may be toggled on and off and order-
adjusted.  

The facilities and parameterisations offered via the Project Editor provide a useful 
reference when developing the client application as they offer a great deal of insight into 
the data that the server will accept for an incident, plot or export. 

The complex and fully featured JavaBeans and OpenMap layers developed for the Project 
Editor are available for reuse in 3rd party products[4]. The existence of this capability 
proves the concept of being able to display HPAC outputs within the jSWAT tool which is 
also OpenMap based. The price and/or availability of this code (or an API that eases the 
task of integrating with the HPAC toolset) must be 
                                                      
4 More descriptions of these data formats available at: 
http://en.wikipedia.org/wiki/GIS_file_formats or from the NIMA website. 



 
DSTO-TN-0721 

 
5 

weighed in a cost/benefit analysis when considering any further development beyond 
POC for the HPAC<>jSWAT integration5. 
 
 
2.4 The HPAC Project File 

A project is a collection of files needed for input and output by HPAC.  Project files fall 
into two categories:  ASCII (text-based) and binary (machine-readable).  Generally, all 
project files begin with a project name followed by different extensions to indicate their 
purpose. A collection of project files may be “jarred” (collated and compressed in the 
familiar “zip” file format) into a single file to ease file management and transfer. 
 
Project files hold the parameters (such as hazard type and environmental data) that define 
the hazard and store the processed outputs.  For as long as project files are retained, one 
can reopen them, edit them, and rerun them.  
 
The Project File is HPAC’s principal mechanism to save incident/release and plot data to 
disk. As such, it presents one option in saving HPAC related data in association with a 
jSWAT scenario – and also a mechanism of transfer.  
 
 

3. Bridging the Architectures 

At runtime, the HPAC application can be thought of for development purposes as 
comprising three key elements: 

- The SCIPUFF server, 

- The Project Editor, and 

- The Interface for Consequent Effects. 

For deployment, each of these components may execute on a separate machine and are 
networked through the agency of a CORBA middleware layer. A NameService provides a 
namespace context to resolve the names of desired factory services and create instances via 
the ICE service “factory”. 
 
When considering jSWAT integration with HPAC, we add two elements:[7] 

- The jSWAT Server, and 

- One or many jSWAT Clients. 

The jSWAT Server and Clients are networked via a JavaSpace [7] with Jini6 providing a 
mechanism for the Clients to discover instances of the Server running on the network. The 

                                                      
5 There may be an opportunity to canvas deeper access to the HPAC toolset in discussion with 
international stakeholders at the beginning of 2007. 
6 Jini™ (pronounced like genie) is a network architecture for the construction of distributed 
systems. 



 
DSTO-TN-0721 

 
6 

JavaSpace in this case functions as a middleware layer providing a simple network 
paradigm for sharing objects between Server and Client analogous to the CORBA 
middleware layer. 
 
The jSWAT Server acts as the mediator of the JavaSpace and controls the “truth” of the 
active wargame. That is, the Server populates the space with objects representing the 
current game state and is the sole author of objects written to the space. 
 
3.1 The jSWAT Server as Middleware Bridge 

In order to integrate the two applications with their differing middleware layers, it is 
sufficient to create a linkage between the jSWAT Server and the ICE. This linkage acts as a 
bridge between the two middleware layers and suffices to translate between the object 
structure of HPAC on the one hand and the representation of the world in the jSWAT 
space on the other. 
 
 

 

Figure 2:  jSWAT Server bridging JavaSpace and CORBA middleware layers 

 
Figure 2 illustrates the role of the jSWAT server in an architectural “block diagram” view 
of the integrated application. Conceptually, or in fact, each of the blocks may be started in 
a separate Java Virtual machine on separate workstations and intercommunicate using 
TCP/IP (and the layered middleware services of CORBA and Jini/JavaSpaces). Figure 3 
displays the top level Java classes7 that comprise the building blocks for a widely 
distributed application. 

                                                                                                                                                                  
 
7 For display, the jSWAT package name has been truncated from “com.classforge.jswat”. Similarly, 
the actual client and server classes instantiated at runtime are: ClientRowanWizard  and 
ServerRowanWizard respectively.  



 
DSTO-TN-0721 

 
7 

 

 
Figure 3: Starting jSWAT+HPAC as several Virtual Machines 

 
3.2 A User Interface to Define Incidents and Releases 

The HPAC Project Editor is a rich and fully featured user interface to create the description 
of some event that releases NBC material into the environment (an “incident”). HPAC 
cleverly characterises each incident as “Where”, “What” and “When” and allows an 
incident to transform to a “release” (being a detailed physical description of the NBC 
material that is released into the environment). 
 
In addition to defining the source term for the release, the Project Editor GUI provides the 
user with the ability to address a wealth of detailed information covering weather, terrain 
and external factors that will affect the release.  
 
The programming effort to recreate the GUI components available in HPAC within in 
jSWAT is outside of the terms of the POC development. Indeed, such an effort would be 
entirely wasted whilst code exists for each of these panels as easily incorporated Swing8 
components[8].  
 
For Proof of Concept then, we will rely on the Project Editor GUI to define in detail each of 
the incidents to be bridged to the jSWAT world. The ICE API goes so far as to suggest this 
approach as viable and provides the ability to copy extant incidents from a reference copy 
within an HPAC Project. 
 
Because each client in the HPAC architecture does not share the server but rather is 
allocated its own short-lived server process, there is no capacity in the HPAC architecture 

                                                      
8 Swing is Java’s prime toolkit for the development of Graphical User Interfaces and underlies 
almost all Java client applications including the HPAC Project Editor and jSWAT. 



 
DSTO-TN-0721 

 
8 

for two clients to share a project at runtime. This key finding, mentioned in section 2.1, 
drives the POC integration towards the following user process using the saved Project file 
as the mechanism to transfer incidents from HPAC Project Editor to jSWAT Client : 
 

1. A skilled user creates incidents with the HPAC Project Editor including source 
term, terrain and weather conditions. 

2. The user saves the incident definition as an HPAC Project in a well known 
location. 

3. The jSWAT server is started and pointed to the HPAC Transfer Project.  

4. The Project is loaded to the SCIPUFF server using the ICE API. 

5. The jSWAT JavaSpace is populated with objects corresponding to incidents for 
display on the jSWAT Client. 

6. Periodically or at the culmination of the game, the Project file is saved to disk. 

 
The process flow described above can be visualised (with some alternative potential 
pathways) per Figure 4. This figure highlights the critical issue of the separate “per client” 
process space for the HPAC Server and illustrates the necessity of a file based transfer 
between process spaces in the situation where the Project Editor is used to characterise the 
release.  



 
DSTO-TN-0721 

 
9 

Start jSWAT Server 
(upload to SCIPUFF)

Map objects from 
HPAC to jSWAT

Move Incident or 
Detector

Recalculate
HPAC 

“Transfer” 
Project

Create New HPAC 
Transfer Project

Define “reference” 
incidents, terrain, 

weather and contour 
plots

New/Open

Save

Load

HPAC
START

jSWAT
START

Project Editor Process Space

jSWAT Bridge Process Space
 

Figure 4: Workflow transferring HPAC Project to jSWAT 

A further refinement on this process would allow the HPAC user to save the Transfer 
Project during a running jSWAT game allowing automatic (or, more likely, manual) 
reloading and remapping of the transferred releases into the jSWAT object space. This 
idea, while technically feasible, falls outside the brief of the Proof of Concept 
demonstration. A further development that relied on the Project Editor to tweak a jSWAT 
mapped release might rely on the ability to: 



 
DSTO-TN-0721 

 
10 

1. load or reload the Transfer Project in the Project Editor, and 

2. reload and remap a changed Transfer Project. 

 

3.3 Samplers, Detectors and Effects 

The SCIPUFF server is able to take a range of named samplers and compute (at least) 
concentration values as a time series at these static points. Little information has been 
available on the format of inputs and outputs necessitating a degree of effort to reverse 
engineer this process. Beyond the POC, direct contact with the developers of this element 
of the SCIPUFF codebase may substantially enhance our usage of the sampler interface.  
 
The input samplers are a formatted ASCII file/string illustrated by this example of the first 
two lines of a sample file followed by coloured annotations: 
 
HPAC SENSOR UTM 14   

preamble preamble UTM flag UTM Zone   

634.476     3925.550     3.0       CONC SF6 FRD_CBD003 

easting       northing       alt  (meters?) measurement agent sampler name 

 
The above example places a sulphur hexafluoride sensor in the continental US.  
 
To place Sarin samplers on Kangaroo Island we might use the following string: 
 

HPAC SENSOR  UTM 53 
727.538      6019.455      10.0      CONC   GB     VAN1 
727.738      6026.422      10.0      CONC   GB     VAN2 

 
Once a sampler is placed(Loading a sampler file or dynamically editing information in the 
Project Editor), it is necessary to run the dispersion computation (a matter of seconds, 
minutes or more depending on the current configuration of the Project). Intuitively we 
might expect that these sample points will occur off the grid of points (i.e. interior to 
calculation cells) used by the dispersion server for calculation. Thus, an exact 
characterisation for any given point requires a rerun of the dispersal calculation. 
 
While it has been possible to vary most of the fields listed above to say, change UTM zone 
and the agent, it has not been possible to determine whether any measurement but 
“CONC” (concentration) is possible.  
 
Beyond the POC, it is conceivable that the Sampler interface be used to determine effects 
on personnel inside a plume. In this case some investigation might be made into other 
possible measurement values that may be elicited from the Sampler interface. One could 
conceive of using the Sampler interface to accumulate/integrate probability of 
casualty/mortality by MOPP level over time and reflect this directly on vulnerable game 
entities. 



 
DSTO-TN-0721 

 
11 

 
The Sampler input is further limited in being able to accept just 200 input points. 
 
Finally, output from this process is returned as a file or string. For each sampler point a 
time series of Concentration, Variance (inferred) and Time Correlation (inferred)9. The 
value of concentration is assumed to be in units of mg/m³. 
 

 

4. Architectural Findings Mapped to Component 
Development 

The findings of the previous section allow decomposition of the jSWAT application 
development to support the specific needs of the interface to the SCIPUFF Server via the 
ICE. The following section provides a few brief notes on design and architectural 
considerations during integration. 
 
In general, each of the headings below refer to a development roadmap found at 
Appendix A:  Only those items feasible for implementation during the POC Phase are 
enumerated below. 
 
4.1 jSWAT Server to ICE 

The interface to the ICE allows products (for example Plots) from the SCIPUFF Server to 
be saved as files for export. The jSWAT Server (“the Server” hereafter) will be responsible 
for making these exported products available to the jSWAT clients (“the Clients” hereafter) 
for display.  
 
It is suggested but not necessary that the ICE instance and Server share a  common 
filespace - a simple mechanism for this is to run both ICE and Server on the same machine 
(although a network file system would also suffice). 
 
The Server will use a scratch directory within the data path of the HTTP Server sharing 
data content to the Clients to save and re-export file based outputs such as plots. 
 
This directory will be of the format: 
 
  data/scenarios/<scenario>/output/<game name>/<run>/hpac-output/ 
 

                                                      
9 No information was available on the structure of the sampler files for the majority of the time 
period available in the POC study.  Information on this became available in July 06, but this was 
unfortunately too late for implementation in the POC contract. 



 
DSTO-TN-0721 

 
12 

4.2 jSWAT Server 

The jSWAT Server will include a Pluggable Model to dynamically include the HPAC 
interface at startup. In the absence of this user selection, the jSWAT application will 
perform as currently specified. 
 
Where the HPAC Pluggable Model is specified for inclusion during Server startup a model 
object will be created and provided with the location of the NameServer by address:port. 
Initially this will be via a properties file with an option to have these details edited in the 
startup wizard. 
 
The model will open the Transfer Project (again determined by a properties file with an 
option for browse and select at a later date) and, after determining a reference to the 
SCIPUFF Server via the ICE Factory Service, upload the transfer project into a “per client” 
space on the SCIPUFF Server.  
 
All communications with the ICE will be conducted via a separate thread under timeout to 
prevent the condition where a failure in HPAC will cascade into a jSWAT game. Note that, 
in practice, the highly variable nature of dispersal duration means that this time out must 
be impracticably long! 
 
Thereafter, the model will search the loaded project for Incidents and corresponding Plots. 
The model will maintain a mapping between HPAC Ids and jSWAT UniqueIds10 so that 
changes in one or the other can be reflected either by an update to the HPAC object and 
recalculation or an update to the corresponding jSWAT object and publication via the 
GameSpace to the jSWAT clients. 
 
The mapping table to be maintained by the Server is (roughly) described at Figure 5. 
 

                                                      
10 Objects of the type UniqueId provide an object reference system within the jSWAT JavaSpace 
(GameSpace).   



 
DSTO-TN-0721 

 
13 

-id : string(idl)
IRelease

translationIdMap

-Release 1

*

-name : string(idl)
IPlot

1
*

-samplerName : string(idl)
Sampler String

1

*

-uniqueId
Incident

-incident

1

*

-uniqueId
PlotSet

-plotSet

1
*

-uniqueId
SampleSeries

-sampleSeries1

*

0..1

1

-uniqueId
PlotTimeSeries

1 *

-uniqueId
Detector

1 1  
Figure 5: Translation Id Mapping maintained by jSWAT Server 

  
4.3 jSWAT Client to Server 

The jSWAT Client will be able to request the repositioning or change in start time of a 
given incident11. These operations will be accomplished via the extant jSWAT change 
request mechanism as a result of user action on the Client. The Server shall be responsible 
for detecting these changes, and queuing the need to recalculate the releases via the 
dispersion Server and regenerating Plots based on new time and space information. 
 
Recalculation shall occur in a specific “recalculation” phase. That is, the Clients may make 
several changes to the location of Incidents and, only when a Master White Client requests 
will the recalculation be made.  
 
The Client may also request new/moved/deleted detectors via the same mechanism and 
with the same recalculation proviso. 
  
4.4 jSWAT Server to Client 

The jSWAT Server will publish to the Client object mapped from the HPAC Transfer 
Project to the corresponding object time in the jSWAT GameSpace (JavaSpace). 
 

                                                      
11 Note that in the POC implementation, it is necessary to conduct repositioning via the HPAC 
Project Editor. 



 
DSTO-TN-0721 

 
14 

The Server will correlate all available plots for a give release and associate them with the 
initiating release. The plots will be presented as a time series of viewable items where 
multiple plots of the same type exist for a release. The Plots will be available as shapefiles 
or similar for display on the jSWAT Client using the OpenMap facilities. 
 
4.5 jSWAT Client (1) 

The jSWAT client will display one Icon per Incident on the White clients (only). 
 
The Client will allow drag and drop of an Incident to reposition the incident. A reposition 
event will pend recalculation of all contour data. 
 
The Client should provide the ability to set the initiation time of a dragged incident to 
“time now”. 
 
The icons used to represent the Incident will be per the HPAC Project Editor to facilitate 
easy comparison of the tactical picture between applications (though note that the Project 
Editor view will “age” as location and times are changed on the jSWAT Client. 
 
One Layer per Plot Series will be created with the ability for the user to choose (mutually 
exclusively) which time in the plot series will be displayed (via radio button grouping in 
the jSWAT Client properties panel. 
 
The legend associated with each selected plot will be displayed in the properties panel 
(this may be beyond the scope of the POC effort). 
 
4.6 Samplers (1) 

The jSWAT Client will allow detectors to be placed in the environment by Blue or White 
players. On creating or moving a sensor, the Server will map the Sensor into a collated list 
for calculation of concentration time series data. This recalculation will pend until initiated 
by the White player. 
 
Display on map of non zero concentration is subject to discussion (i.e.: how will the 
players rapidly see which Detectors have registered some concentration on a CBR agent. 
 
The facility will be provided for White players to overrule HPAC generated concentration 
data to simulate false positives, failed sensors, detector jitter and meander of the plume. 
This situation hopes to provide a more realistic and White controlled picture to Blue (vice 
HPAC’s integrated, averaged sensor readings). 
 
Detector icons shall be per 0 
 
 



 
DSTO-TN-0721 

 
15 

4.7 Software Release 

The jSWAT release will provide a modified batch file to start SCIPUFF/ICE separately 
(i.e.: not in “standalone” mode). 
 
A modified batch file will be provided to start Project Editor in a manner that connects to 
the SCIPUFF server via the ICE interface (vice the normal HPAC “standalone” mode 
where both SCIPUFF and the Project Editor bypass the CORBA interface to communicate 
directly. 
 
The HPAC icons used to illustrate releases shall be bundled in the jSWAT application. 
Their use in the jSWAT application is assumed to be suitable and not contravene licensing 
of the HPAC software. 
 
4.8 ICE Jar 

In order to call the ICE API, it will be necessary to distribute the ICE “jar” file (compressed 
Java class files) with the jSWAT application. Once again, this is assumed to be in 
accordance with the licensing of the HPAC software.  
 
 
 
 



 
DSTO-TN-0721 

 
16 



 

 
 

D
STO

-TN
-0721 

 

17 

Appendix A:  Development Map and Prioritisation 

The following figure enumerates development tasks as part of POC development of HPAC <> jSWAT integration. Those areas 
marked as “(2)” are reserved for future development.  
 

 
Figure 6: Map of Development Areas and Priorities 



 
DSTO-TN-0721 

 
18 



 
DSTO-TN-0721 

 
19 

Appendix B:  Starting HPAC Components in 
Distributed Fashion 

B.1. Introduction 

This Appendix serves to record a number of lessons learned when integrating HPAC with 
jSWAT. The HPAC installation used was version 4.04 SP 3. 
 
B.2. Starting ICE 

The supplied ICE source code and examples were generally compatible with HPAC. 
However, the installation instructions applied to HPAC 4.04 without SP3 applied. 
 
For example, the install instructions suggested that: 
 

hpacserver.servers.16=\ 
ICEServerFactory,\ 
mil.dtra.hpac.ice.server.impl.ICEFactoryImpl 

 
should be added to the server.properties. While this worked for “SP0”, by SP3, the class 
structure and startup had changed such that the Factory class described no longer 
implemented the appropriate interface to be started. Instead, this ICE Factory seems to 
have been started anyway. 
  
To correctly start ICE, the supplied batch file needed modification to at least: 
 

# not start the SCIPUFF server and 
set JavaProperty=%javaProperty% -Dhpac.standalone=%Standalone% 
 
# point ICE at the naming server 
set IceProperty=%IceProperty% -
Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory 
set IceProperty=%IceProperty% -
Djava.naming.provider.url=iiop://%ServerHost%:%ServerPort%/ 

 
With these modifications, the invocation from HPAC 4.04 should be: 
 

 ice ice [port] [host]  
 
Where port and host are the address and port number of the naming service. 
 
Good information on the naming service can be found at: 
 
 http://java.sun.com/j2se/1.4.2/docs/guide/idl/tnameserv.html 
 



 
DSTO-TN-0721 

 
20 

Since the components rely on the ORB naming service for connectivity, ICE, SCIPUFF and 
any jSWAT components reliant on the naming service must thus be started after the 
naming server. 
 
B.3. Starting the SCIPUFF server 

Starting the SCIPUFF server with the supplied ICE batchfile implies starting the CORBA 
naming service as well. For correct operation, it seemed most robust to stop any extant 
name servers before starting the SCIPUFF and nameserver (though this wasn’t always 
necessary – and shouldn’t be required). 
 
The ice.bat file supplied needed no modifications and should be invoked as: 
 

ice scipuff [port] 
 

This starts the services on localhost with the nameserver at the given port. 
 
B.4. Starting the HPAC Project Editor 

Once the SCIPUFF server and ICE are running, it is possible to connect the HPAC Project 
Editor to the SCIPUFF instance using a modified batch file to ensure that the SCIPUFF 
server is not started with the Project Editor. 
 
The following should be considered in starting: 
 

# Don’t start the SCIPUFF server. 
set JavaProperty=%javaProperty% -Dhpac.standalone=false  
 
# Look for it via the ORB. 
set JavaProperty=%javaProperty% -
Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory 
set JavaProperty=%javaProperty% -
Djava.naming.provider.url=iiop://%ServerHost%:%ServerPort%/ 
 

B.5. Recovering from Failure 

On occasions, applications communicating with the ICE generate exceptions that either 
cause or reflect that fact that the ICE has failed. A restart of ICE is required – although no 
other components should need a restart. 
 
By changing the output files when starting ICE to: 

 
set JavaProperty=%javaProperty% -Dhpac.stderr="stderr-ice.txt"  
set JavaProperty=%javaProperty% -Dhpac.stdout="stdout-ice.txt" 

 
A log separate to the SCIPUFF server is created. 
 
Similarly, on occasion the SCIPUFF server fails. A separate log should be created vice: 
 



 
DSTO-TN-0721 

 
21 

set JavaProperty=%javaProperty% -Dhpac.stderr="stderr-scipuff.txt"  
set JavaProperty=%javaProperty% -Dhpac.stdout="stdout-scipuff.txt" 

 
allowing for post crash investigation. The SCIPUFF server can be restarted safely but 
obviously any per-client session information will be lost and the project must be reloaded. 
 
The SCIPUFF server can also be quite hungry for memory when supporting multiple 
clients. The HPAC_Getting_Started.pdf (distributed with the HPAC application) has good 
advice about this although the startup batch files are ambiguous in how they apply the 
properties to the started Virtual Machines. 



 
DSTO-TN-0721 

 
22 



 
DSTO-TN-0721 

 
23 

Appendix C:  ICE Examples 
C.1. Introduction 

This appendix serves as a brief reference to the functionality in the provided ICE 
examples. The examples are a patchy, poorly commented set relying on some unsupplied 
files. They provide some insight into the modes of calling the ICE with a little 
supplemental documentation to guess at the expected results. In the absence of other 
information, they are invaluable as a source of the basic calling patterns required for 
talking to the ICE server12. 
 
C.1.1 Example 1 

• Creates a radiological weapon and fetches a variety of properties.  
• Demonstrates retrieval of contour files and such. 
• Historical weather 

 
C.1.2 Example 2 

• Generates an Anthrax incident from the Analytical factory with continuous release. 
 
C.1.3 Example 3 

• Demonstrates use of the MissileIntercept factory and calculates Probability of 
Mortality for an Anthrax payload. 

 
C.1.4 Example 4 

• Nuclear weapon with fixed weather.  
• Demonstrates the difficulty in having to query the server for available choices 

before setting one vice referencing an extant constant. 
• Variety of plots including casualties and structures. 

 
C.1.5 Example 5 

• Nuclear incident. 
 
C.1.6 Example 6 

• Radiological weapon. 
 
C.1.7 Example HPAC757 

• Nuclear weapon from strike database. 
• Export of tab delimited tables. 

                                                      
12 Note that server.shutdown() kills the ICE Server and should be commented out where it appears. 

Formatted: Bullets and
Numbering



 
DSTO-TN-0721 

 
24 



 
DSTO-TN-0721 

 
25 

CBR Detector Icons 

The following CBR Detector symbols were provided by Major David Bergman 
SO2 Survivability and Sustainability, FDG: 
 

 
 

Where: 
 

A == Area 
P == Point 
U == UAV 

 
 



 
DSTO-TN-0721 

 
26 

Bibliography 
 
1. Lee, R.W., Moving the Hazard Prediction and Assessment Capability to a Distributed, 

Portable Architecture, in Oak Ridge National Laboratory. 2002. 
2. Object Management Group Inc., IDL to Java Language Mapping Specification (formal, 99-

07-03). 1999. 
3. Object Management Group Inc., The Common Object Request Broker: Architecture and 

Specification, Revision 2.3. 1999. 
4. HPAC 4.0 Architecture Reengineering 2003. 
5. Defence Threat Reduction Agency (DTRA), Interface Control Document (ICD) For the 

Hazard Prediction and Assessment Capability (HPAC) Version 4.0.1. 2002. 
6. BBN Technologies. OpenMap Open Systems Mapping Technology.   [cited; Available from: 

http://openmap.bbn.com. 
7. Sun Microsystems. Jini Network Technology.   [cited; Available from: 

http://www.sun.com/software/jini/. 
8. Defence Threat Reduction Agency (DTRA), HPAC Java Beans and Components: 

Application Programming Interface and Description. 2002. 



 
 

 
 

DISTRIBUTION LIST 
“As per the Research Library’s Policy on electronic distribution of official series reports (http://web-
vic.dsto.defence.gov.au/workareas/library/aboutrl/roles&policies/mission.htm) Unclassified 
(both Public Release and Limited), xxx-in-confidence and Restricted reports and their document 

data sheets will be sent by email through DRN to all recipients with Australian defence email 
accounts who are on the distribution list apart from the author(s) and the task sponsor(s). Other 

addressees and Libraries and Archives will also receive hardcopies.” 
 
 

HPAC (Hazard Prediction and Assessment Capability) <> jSWAT (Joint Seminar Wargaming  
Adjudication Tool) Integration; A Technical Solution 

 
Matt Brennan , Alex Skvortsov  and Ralph Gailis 

 
AUSTRALIA 

 
DEFENCE ORGANISATION  No. of copies 

Task Sponsor 

COMD LWDC 

 

1 Printed 
S&T Program 

 
Chief Defence Scientist 1 
Deputy Chief Defence Scientist Policy 1 
AS Science Corporate Management 1 
Director General Science Policy Development 1 
Counsellor Defence Science, London  Doc Data Sheet 
Counsellor Defence Science, Washington Doc Data Sheet 
Scientific Adviser to MRDC, Thailand  Doc Data Sheet 
Scientific Adviser Joint Doc Data Sht & Dist List 
Navy Scientific Adviser  Doc Data Sht & Dist List 
Scientific Adviser – Army  Doc Data Sht & Dist List 
Air Force Scientific Adviser Doc Data Sht & Dist List 
Scientific Adviser to the DMO  Doc Data Sht & Dist List 
  

Chief of HPPD Doc Data Sht & Dist List 
Research Leader Chris Woodruff 
Research Leader (HPPD), Nick Beagley 

Doc Data Sht & Dist List 
Doc Data Sht & Dist List 

Research Leader (AOD) , Bruce Fairlie,  
Research Leader (LOD) , Neville Curtis, , 
Research Leader (MOD) , Alan Theobald, 
Head CBR Hazard Management (HPPD), Ralph Leslie,  
Head Operations Research Capability (AOD), Simon Goss ,  
Head Task Force Modernisation (LOD), Dean Bowley,  

1 Printed  
1 Printed 
1 Printed 
1 Printed 
1 Printed 
1 Printed 



 
 

 
 

Head Littoral Operational Command Support (MOD), Dan Conley,  
Task Manager (HPPD), Ralph Gailis,  
L11 FRAC Coordinator David Bergman,  
DNCWI,  
 

1 Printed 
1 Printed 
1 Printed 
1 Printed 

Author(s):  
Matt Brennan, Alex Skvortsov  and Ralph Gailis 

3 Printed 

DSTO Library and Archives  

Library Fishermans Bend  Doc Data Sheet 
Library Edinburgh  1 printed 
Defence Archives 1 printed 

Capability Development Group  

Director General Maritime Development  Doc Data Sheet 
Director General Capability and Plans  Doc Data Sheet 
Assistant Secretary Investment Analysis  Doc Data Sheet 
Director Capability Plans and Programming  Doc Data Sheet 

Chief Information Officer Group  

Head Information Capability Management Division Doc Data Sheet 
Director General Australian Defence Simulation Office Doc Data Sheet 
AS Information Strategy and Futures  Doc Data Sheet 
Director General Information Services  Doc Data Sheet 

Strategy Group  

Assistant Secretary Strategic Planning  Doc Data Sheet 
Assistant Secretary International and Domestic Security Policy  Doc Data Sheet 

Navy  

Maritime Operational Analysis Centre, Building 89/90 Garden Island 
Sydney NSW 
Deputy Director (Operations)  
Deputy Director (Analysis)  

Doc Data Sht & Dist List  

Director General Navy Capability, Performance and Plans, Navy 
Headquarters  

Doc Data Sheet 

Director General Navy Strategic Policy and Futures, Navy 
Headquarters 

Doc Data Sheet 

Air Force   
SO (Science) - Headquarters Air Combat Group, RAAF Base, 
Williamtown NSW 2314 

Doc Data Sht & Exec 
Summary 

Staff Officer Science Surveillance and Response Group Doc Data Sht & Exec 
Summary 

Army  
ABCA National Standardisation Officer 
Land Warfare Development Sector, Puckapunyal  

Doc Data Sheet 



 
 

 
 

J86 (TCS GROUP), DJFHQ Doc Data Sheet  
SO (Science) - Land Headquarters (LHQ), Victoria Barracks NSW Doc Data Sht & Exec 

Summary 
SO (Science) - Special Operations Command (SOCOMD), R5-SB-15, 
Russell Offices Canberra 

Doc Data Sht & Exec 
Summary 

SO (Science), Deployable Joint Force Headquarters (DJFHQ) (L), 
Enoggera QLD 

Doc Data Sheet 

Joint Operations Command  
Director General Joint Operations  Doc Data Sheet 
Chief of Staff Headquarters Joint Operations Command  Doc Data Sheet 
Commandant ADF Warfare Centre  Doc Data Sheet 
Director General Strategic Logistics  Doc Data Sheet 

Intelligence and Security Group  
AS Concepts, Capability and Resources 1 
DGSTA , Defence Intelligence Organisation 1  
Manager, Information Centre, Defence Intelligence Organisation  1  
Director Advanced Capabilities Doc Data Sheet 

Defence Materiel Organisation  
Deputy CEO  Doc Data Sheet 
Head Aerospace Systems Division  Doc Data Sheet 
Head Maritime Systems Division  Doc Data Sheet 
Program Manager Air Warfare Destroyer Doc Data Sheet 
Guided Weapon & Explosive Ordnance Branch (GWEO) Doc Data Sheet 
CDR Joint Logistics Command Doc Data Sheet 
  

OTHER ORGANISATIONS  
National Library of Australia  1 
NASA (Canberra)  1 

UNIVERSITIES AND COLLEGES  

Australian Defence Force Academy 
Library  
Head of Aerospace and Mechanical Engineering  

 
1 
1 

Hargrave Library, Monash University  Doc Data Sheet 

OUTSIDE AUSTRALIA 

INTERNATIONAL DEFENCE INFORMATION CENTRES  

US Defense Technical Information Center  1  
UK Dstl Knowledge Services  1  
Canada Defence Research Directorate R&D Knowledge & 
Information Management (DRDKIM)  

1 

NZ Defence Information Centre  1 



 
 

 
 

ABSTRACTING AND INFORMATION ORGANISATIONS  
Library, Chemical Abstracts Reference Service  1 
Engineering Societies Library, US   1 
Materials Information, Cambridge Scientific Abstracts, US   1 
Documents Librarian, The Center for Research Libraries, US 1 
  
SPARES  
 

5 Printed 
 

Total number of copies:  39 Printed: 20 PDF: 19  

 
 
 
 
 
 



 

 

Page classification:  UNCLASSIFIED 
 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 
 
 

DOCUMENT CONTROL DATA 1.  PRIVACY MARKING/CAVEAT (OF DOCUMENT) 
 ,  

2.  TITLE 
 
HPAC (Hazard Prediction and Assessment Capability) <> 
jSWAT (Joint Seminar Wargaming  Adjudication Tool) 
Integration; A Technical Solution   

3.  SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS 
THAT ARE LIMITED RELEASE USE (L)  NEXT TO DOCUMENT 
CLASSIFICATION) 
 
 Document  (U) 
 Title   (U) 
 Abstract  (U)" 
 

4.  AUTHOR(S) 
 
Matt Brennan , Alex Skvortsov  and Ralph Gailis 
 

5.  CORPORATE AUTHOR 
 
DSTO Defence Science and Technology Organisation 
506 Lorimer St 
Fishermans Bend Victoria 3207 Australia 
 

6a. DSTO NUMBER 
DSTO-TN-0721 
 

6b. AR NUMBER 
AR-013-759 

6c. TYPE OF REPORT 
Technical Note 

7.  DOCUMENT  DATE 
September  2006 

8.  FILE NUMBER 
2006/1137153/1 
 

9.  TASK NUMBER 
05/181 

10.  TASK SPONSOR 
COMD LWDC 

11. NO. OF PAGES 
26 

12. NO. OF REFERENCES 
8 

13. URL on the World Wide Web 
 
http://www.dsto.defence.gov.au/corporate/reports/DSTO-TN-
0721.pdf 
 

14. RELEASE AUTHORITY 
 
Chief,  
Human Protection and Performance Division 

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT 
 

Approved for public release 
 
 
OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 
16. DELIBERATE ANNOUNCEMENT 
 
No Limitations 
 
17.  CITATION IN OTHER DOCUMENTS        Yes 
18. DSTO RESEARCH LIBRARY THESAURUS  http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.htm 
 
HPAC, jSWAT  Integration 
 
19. ABSTRACT 
This paper provides an outline of the technical solution to be adopted when integrating the Hazard Prediction 
and Assessment Capability (HPAC) with DSTO's Joint Seminar Wargaming Adjudication Tool (jSWAT). 
Opportunities to conduct "least path of resistance" integration between the two applications are explored to 
support an eventual Proof of Concept demonstration. The report concludes with some observations on 
achievable longer term integration goals. 
 

Page classification: UNCLASSIFIED 
  


	ABSTRACT
	Executive Summary
	Contents
	1. Introduction
	2. HPAC Architecture
	2.1 SCIPUFF Server
	2.2 HPAC Clients
	2.3 HPAC Project Editor
	2.4 The HPAC Project File

	3. Bridging the Architectures
	3.1 The jSWAT Server as Middleware Bridge
	3.2 A User Interface to Define Incidents and Releases
	3.3 Samplers, Detectors and Effects

	4. Architectural Findings Mapped to ComponentDevelopment
	4.1 jSWAT Server to ICE
	4.2 jSWAT Server
	4.3 jSWAT Client to Server
	4.4 jSWAT Server to Client
	4.5 jSWAT Client (1)
	4.6 Samplers (1)
	4.7 Software Release
	4.8 ICE Jar

	Appendix A: Development Map and Prioritisation
	Appendix B: Starting HPAC Components inDistributed Fashion
	Appendix C: ICE Examples
	CBR Detector Icons
	Bibliography
	DISTRIBUTION LIST



