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ABSTRACT 
 

Smoothed Particle Hydrodynamics (SPH) is a computational technique for the numerical 
simulation of the equations of fluid dynamics without the use of an underlying numerical 
mesh. Although originally developed for use in astrophysical gas dynamics, SPH has recently 
been applied to many other areas of numerical fluid dynamics and materials modelling, 
several of which have particular relevance to defence problems of interest to the DSTO. In this 
report we review the basics of the method and then describe a simple two-dimensional SPH 
code for the simulation of incompressible fluid flow. The code is then applied to simple 
problems such as a dam break, the sloshing of water and wave breaking over ships. These 
examples illustrate both the capabilities of the technique and the relative ease with which the 
method can treat problems which have previously been considered difficult to solve using 
traditional methods such as finite difference, finite volume or finite element grid based 
methods. Further applications of the method are then reviewed, concentrating in particular on 
the utility of the technique in solid mechanics modelling, and then current applications of 
SPH within Maritime Platforms Division are described.  
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Smoothed Particle Hydrodynamics: 
Applications within DSTO 

 
 

Executive Summary 
 
Smoothed Particle Hydrodynamics (SPH) is a computational technique for the 
numerical simulation of the equations of fluid dynamics without the use of an 
underlying numerical mesh. Although originally developed for use in astrophysical 
gas dynamics, SPH has recently been applied to many other areas of numerical fluid 
dynamics and materials modelling, several of which have particular relevance to 
defence problems of interest to the DSTO. In this report we review the basics of the 
method and then describe a simple two-dimensional SPH code for the simulation of 
incompressible fluid flow. The code is then applied to simple problems such as a dam 
break, the sloshing of water and wave breaking over ships. These examples illustrate 
both the capabilities of the technique and the relevant ease with which the method can 
treat problems which have previously been considered difficult to solve using 
traditional methods such as finite difference, finite volume or finite element grid based 
methods.  

We then review the applications of SPH in solid mechanics modelling. Examples of this 
type of work which are of interest to the defence community include deformation due 
to high-velocity impact, the fracture and fragmentation of cased explosives, the 
formation and penetration of shaped charge jets, and debris cloud dynamics due to 
hypervelocity impact. SPH offers a new method with unique capabilities for the 
solution of such problems. We first discuss the application of SPH itself to these 
problems, then a hybrid approach which combines the best features of a Lagrangian 
finite element approach with the SPH method. This combined approach offers a 
significantly improved capability for the simulation of problems such as ballistic 
impact on confined and unconfined ceramic targets and transparent armour. 

A summary is then given of relevant areas of work in Maritime Platforms Division 
where SPH methods are currently being used. These include the relative motion of a 
landing craft and the mother ship in a well dock scenario, sloshing within hulls, 
underwater explosion events, the deployment and retrieval of autonomous vehicles, 
and ballistic impact on ceramic targets.    

 
 
 
 
 



 

  

Authors 
 
 
 

David A. Jones  
Maritime Platforms Division 
 
Dr. David A. Jones obtained a B.Sc. (Hons) and Ph.D. in Theoretical 
Physics from Monash University in 1973 and 1976 respectively. He 
joined the then Materials Research Laboratories in 1983 after 
postdoctoral positions at the University of Strathclyde, Glasgow; 
Queen Mary College, London University, and the University of New 
South Wales, Sydney. During 1987/88 he was a visiting scientist at 
the Laboratory for Computational Physics and Fluid Dynamics at the 
Naval Research Laboratory, Washington, DC. He has authored 80 
journal articles and technical reports and given more than 60 
presentations at scientific meetings. His research has covered a variety 
of areas including polymer dynamics, the application of chaos theory to 
atomic and molecular physics, laser-plasma interaction theory, 
warhead design, air blast, detonation physics and computational fluid 
dynamics.  

____________________ ________________________________________________ 
 

 
Daniel Belton 
Maritime Platforms Division 
 
Daniel Belton graduated from Monash University, Clayton, in 2004 
with a Bachelor of Science (Hons) and Bachelor of Engineering (Hons) 
degree. He completed a Science Honours thesis on applying SPH to 
tsunami inundation on a vegetated coast under Prof. Joe Monaghan, 
and an engineering final year project on; “Stochastic analysis of 
vehicle crash performance.” Daniel joined the Maritime Platform 
Division of DSTO in 2005, working in areas of structural mechanics 
and engine control systems. 

____________________ ________________________________________________ 
 
 
 
 
 
 
 
 



 
 

 
2 

Contents 
 

1. INTRODUCTION............................................................................................................... 1 

2. SPH – THE BASICS............................................................................................................ 2 
2.1 Integral Interpolants................................................................................................. 2 
2.2 Choice of kernel function........................................................................................ 4 
2.3 Equations of motion in SPH form ......................................................................... 5 
2.4 Inclusion of viscosity ............................................................................................... 7 
2.5 Treating incompressible fluids ............................................................................ 10 
2.6 Inclusion of boundaries......................................................................................... 11 
2.7 Time stepping considerations .............................................................................. 13 
2.8 Variable smoothing length ................................................................................... 15 
2.9 SPH coding details.................................................................................................. 16 

3. ILLUSTRATIVE EXAMPLES FOR FLUID SIMULATIONS ................................... 17 
3.1 Classical dam break................................................................................................ 17 
3.2 Sloshing .................................................................................................................... 21 
3.3 Wave breaking over ships ..................................................................................... 23 

4. APPLICATIONS TO SOLID MECHANICS MODELLING .................................... 27 

5. CURRENT SPH WORK IN MPD .................................................................................. 30 
5.1 Surface Platform Systems Branch........................................................................ 30 
5.2 Undersea Platform Systems Branch .................................................................... 33 
5.3 Advanced Materials and Sensors Branch........................................................... 34 

6. DISCUSSION AND CONCLUSION............................................................................ 34 

7. ACKNOWLEDGEMENTS .............................................................................................. 36 

8. REFERENCES .................................................................................................................... 37 
 



 
DSTO-TR-1922 

 
1 

1. Introduction 

Smoothed Particle Hydrodynamics (SPH) was developed independently by Gingold and 
Monaghan [20] and Leon Lucy [45] in 1977 to simulate astrophysical gas dynamics 
problems. The many techniques available at that time for the numerical solution of the 
compressible fluid dynamic equations were often unsuitable for astrophysical 
applications. There were several reasons for this; astrophysical problems often involve 
large changes in spatial, temporal and density scales over many orders of magnitude. Such 
problems are also often inherently asymmetric and have no definite boundaries. A typical 
example from astrophysics which illustrates these problems is the numerical simulation of 
the fission of a rapidly rotating star.  

Traditional techniques for the numerical solution of hydrodynamic equations first involve 
the creation of a computational mesh which is used to discretise the partial differential 
equations describing the flow. The partial derivatives can be approximated by a number of 
different methods including finite difference, finite volume, or finite element schemes. The 
computational mesh can be either fixed in space and cover the entire fluid domain (the 
Eulerian method), or can be fixed to the fluid and move with the flow (the Lagrangian 
method). The Eulerian method often requires the construction of a very fine mesh over the 
whole flow domain because the location of the interesting features of the flow is not 
known a priori. Hence the method is often computationally expensive. Fixed grid methods 
can also suffer from excessive numerical diffusion due to the non-linear convective terms 
which arise in the Eulerian description of the flow. 

Lagrangian meshes overcome these problems by attaching the mesh points to the fluid 
itself and allowing the points to move with the flow. The non-linear terms then no longer 
appear and the mesh need only be defined in the regions of space occupied by the fluid. If 
the motion of the fluid becomes geometrically complex however then the mesh undergoes 
severe distortion and the underlying numerical methods become unstable and the 
computation stops.  

Neither of these approaches is particularly suited to astrophysical fluid problems due to 
the lack of symmetry, complex rotational behaviour and range of spatial scales inherent in 
many of these problems. SPH was developed to provide a computational scheme for the 
solution of the fluid equations which did not rely on the use of a computational mesh. This 
is achieved by defining a set of moving interpolation points which follow the fluid motion. 
In this sense SPH is a Lagrangian method, although the points are never linked together to 
create a computational mesh. Each of the fluid dynamic variables is expressed as an 
integral interpolant using a smoothing function and the integral is then approximated by a 
summation over the interpolation points. By using this approach, the derivatives of the 
fluid variables can then be evaluated by calculating the derivatives of the smoothing 
function.  

Although originally developed for use in astrophysical gas dynamics, the many 
advantages inherent in the absence of a computational mesh have resulted in SPH being 
adapted and applied to many other areas of numerical fluid dynamics and materials 
modelling. Typical applications include, free surface flow, high velocity impact, material 
fracture, detonation physics, plasma dynamics, marine fluid-structure interactions, and 
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geophysical fluid flows. Many of these areas of application are relevant to research 
currently undertaken by scientists in both the Maritime Platforms Division (MPD) and the 
Weapons System Division (WSD) of DSTO. 

The extent of development and application of SPH to the many diverse areas of fluid flow 
and solids modelling is such that no review of SPH can hope to cover each area of 
application in detail. The purpose of this report is to provide a simple introduction to the 
basics of SPH, to review in some detail those areas of application of most relevance to 
MPD and WSD, and to report simulation results from selected two-dimensional 
calculations which were performed to emphasize the attractiveness and simplicity of the 
method when applied to problems which have previously been considered difficult to 
solve using traditional techniques such as finite difference, finite volume or finite element 
grid based methods.  

 

2. SPH – The Basics  

In this section we briefly outline the basis of the SPH method and illustrate the derivation 
of the fluid dynamic equations in SPH form. A number of review articles which describe 
the foundations of the method have already been written. A relatively short paper written 
by Monaghan in 1988 gives a clear derivation of the SPH equations and describes their 
application to a wide variety of problems in compressible flow [51]. A more detailed and 
lengthy review of the method in connection with astrophysical gas dynamics appeared 
several years later [53]. More recently, Monaghan has written a very comprehensive 
review which details the theory and application of SPH since its inception in 1977 [55]. As 
well as a detailed review of the foundations of the subject Monaghan also describes recent 
applications of SPH in areas such as incompressible fluid flow, fluid-structure interactions, 
turbulence, heat conduction, elasticity and fracture. Benz has also written several review 
articles which outline the basis of the method and its applications in astrophysics [2,3] and 
brittle solids modelling [4]. The recent book by Liu and Liu [43] provides a very extensive 
review of the foundations of the subject as well as providing many illustrations of the 
application of the method to the simulation of detonation, underwater explosion shocks, 
and the hydrodynamics of material strength. 

2.1 Integral Interpolants 

The basis of SPH is the expression of each of the fluid dynamic variables as an integral 
interpolant. This allows any function to be expressed in terms of its values at a set of 
disordered points. Consider a general function A(r) expressed in the form 

( ) ( ) ( )∫ ′′−′= rdrrrr δAA                                               (1) 

where ( )r-r ′δ  is the Dirac delta function and the integral is taken over the entire three-
dimensional space. Equation (1) is exact, but not particularly useful. The basic idea of SPH 
is to approximate the delta function by a suitable continuous function. In SPH this 
function is called the kernel, and the choice of a suitable kernel is of central importance to 
the success of the SPH method.  
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The integral interpolant 〉〈 )(rA of any function A(r) is defined as 

( ) ( ) ( )∫ ′′−′=〉〈 rd,rrrr hWAA                                               (2) 

where the function W has the two properties: 

( ) ( ) 1=′′−′∫ rd,rrr hWA                                               (3) 

( )rr,rr ′−=′−
→

δ)(lim
0

hW
h

                                            (4) 

Lucy [45] referred to the function W as a broadening function because it spreads the 
influence of A on r to the surrounding region. The length scale h is effectively the half-
width of the kernel and determines the amount of broadening, or the spatial extent over 
which the function W smoothes the variable A. This half-width is the resolution length 
scale of SPH and is referred to as the smoothing length. It is equivalent to the width of a 
grid-cell in finite difference methods.  

Consider a fluid with density ρ(r) defined by a set of points ri initially distributed in a 
regular manner throughout the body of the fluid. At any time the velocity and any other 
fluid dynamic variables are also known at these points. We can imagine the fluid to be 
divided into N small volume elements with masses m1, m2, ….., mN, where the "centres" of 
these small volumes are located at the ri. Evidently ρ(ri)dr = mi, hence for numerical 
simulations the integral interpolant 〉〈 )(rA can be approximated as follows: 

( ) ( ) ( )∫ ′′′−
′
′

=〉〈 r)dr(,rr
)r

rr ρ
ρ

hWAA
(

 

( ) ∑
=

′−≈〉〈
N

i i

i
i hW

A
mA

1
)( ,rrr

ρ
                                               (5) 

where the summation index i denotes a particle label and the summation is over all N 
particles. Particle i has mass mi, position ri, density ρi and velocity vi. The value of any 
variable A at ri is denoted by Ai.  

The particular advantage of the SPH formulation becomes apparent when we consider the 
integral interpolant expression for the gradient of a function  

( ) ( ) ( )∫ ′′−′∇=〉∇〈 rd,rrrr hWAA                                               (6) 

Integrating by parts, equation (6) becomes 

( ) ( ) ( ) ∫∫ ′′−′+′′−∇′=〉∇〈 dSnWAhWAA rrrrrd,rrrr )()(           (7) 

The first integral on the right side of equation (7) is taken over the volume of the domain, 
while the second integral is over the boundary of the domain. In most applications this 
surface integral can be neglected because either the function or the kernel itself goes to 
zero at the boundary of the domain. Equation (7) therefore becomes  
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( ) ( ) ( )∫ ′′−∇′=〉∇〈 rd,rrrr hWAA                                                 (8) 

which in numerical terms becomes  

∑ −∇=∇
i

i
i

i
i hW

A
mA ),()( rrr

ρ
                                                (9) 

Equation (9) displays the fundamental advantage of the SPH method; that the derivatives 
of any function A(r) can be found by differentiating the kernel, rather than by using finite 
difference, finite volume or finite element expressions calculated from a grid.  

The error involved in approximating the function A(r) by the summation given by 
equation (5) has been studied in detail by Monaghan [49]. It depends on the degree of 
disorder of the particles, but generally is of O(h2) or better. Monaghan has discussed this 
point in more detail in his most recent review [55], where he notes that it is not easy to 
estimate the errors in the SPH equations from first principles because the particles get 
disordered during motion. The degree of disorder is not complete however, as would be 
described by a probability distribution proportional to the mass density for example, 
because the particles are still constrained by the dynamics. Consequently, SPH simulations 
have been found to be much more accurate than the interpolation of quantities from 
randomly disordered particle arrays would suggest. It should also be noted that although 
the summation in equation (5) is formally over all the particles, only a small number 
actually contribute because W can be chosen so that it falls off rapidly for |r - ri| ≥ h.  

From a mathematical point of view the points ri with associated masses mi are simply 
interpolation points from which the properties of the fluid can be calculated. From a 
physical point of view however the points can be regarded as material particles with 
masses mi which can be treated like any other particle system. It is this physical 
interpretation of the SPH equations which is most universally adopted and allows SPH to 
provide a conceptually simple formulation in which the inclusion of more complicated 
physics is a relatively straightforward procedure.  

2.2 Choice of kernel function 

The original calculations of Gingold and Monaghan [20] used a Gaussian kernel, while 
those of Lucy [45] used a bell-shaped function constructed from a third order polynomial. 
Many other functions are possible however, and Liu and Liu [43] give a detailed 
discussion of the main properties which any kernel function should satisfy, and also 
provide a comprehensive list of some of the most frequently used functions in the SPH 
literature.  

By far the most popular kernel function is the one devised by Monaghan and Lattanzio 
[60] based on cubic spline functions:  

 
⎭
⎬
⎫

⎩
⎨
⎧ +−= 32

4
3

2
31)h,( qq

h
σqW ν   if 0 ≤ q ≤ 1 
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 { }32
4
1 q

h
σ

−= ν   if 1 ≤ q ≤ 2 

 0=   if q > 2       (11)  
 
where ν is the number of dimensions and σ is a normalisation constant which takes the 
values 2/3, 10/7π and 1/π in one, two and three dimensions respectively. This function 
closely resembles the original Gaussian function used by Gingold and Monaghan [20], but 
has the advantage of having compact support (meaning that the interactions are exactly 
zero for r > 2h) and a continuous second derivative. The vanishing of the kernel for r > 2h 
is particularly important because it means that the summation in equation (5) needs to be 
carried out only for particles within a radius of 2h of the point of interest. 

Some of the other functions described in the literature include both quartic and quintic 
spline expressions introduced by Morris [61], which more closely approximate a Gaussian 
shape and are more stable. Johnson et al. [36] used a quadratic smoothing function because 
it was found to overcome a compressive instability problem which occurs in high velocity 
impact problems. Liu and Liu [43] recently introduced a new kernel based on a fourth 
order polynomial expression which gives excellent results in the standard shock tube 
problem and in two-dimensional heat conduction simulations.  

2.3 Equations of motion in SPH form 

The original SPH equations were derived to simulate astrophysical gas dynamic problems. 
The momentum equation, in Lagrangian form, neglecting the effects of viscosity and 
gravity therefore takes the form 

P∇−=
ρ
1

dt
dv

                                                    (12) 

It is assumed that the fluid has an equation of state in which the pressure P is a function of 
the density ρ only. From equation (5) we can then express the pressure gradient as 

∑ −∇=∇
b

b
b

b
b hW

P
mP ),( rr

ρ
                                     (13) 

where we now denote a particle label by the summation index b. Hence equation (12) can 
be written in SPH form as  

∑ ∇−=
b

aba
b

b
b

a

a W
P

m
ρρ

1
dt

d v
                                     (14) 

where we now employ the standard SPH practice of referring to the interpolation points as 
particles and equation (14) is interpreted as the force on particle a due to all other particles 
b in the region of particle a. a∇ implies taking the gradient with respect to the coordinates 

of particle a. and we have now introduced the standard notation Wab = W(ra – rb, h). 

To this we need to add an equation describing the motion of the particles at each time step 
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a
a v

r
=

dt
d

                                                                    (15) 

From equation (5) it is also obvious that the equation for the density at any point is given 
by 

∑=
b

abba Wmρ                                                           (16) 

Whilst the above equations look reasonable and are the forms used in the original papers 
by Gingold and Monaghan [20] and Lucy [45], they are usually modified slightly to 
produce better results. Equation (14) for example does not conserve linear and angular 
momentum exactly because the force on particle a due to particle b is not equal to the force 
on particle b due to particle a. The forces can be made symmetrical by first writing ∇P/ρ in 
the form 

ρ
ρρρ

∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇=

∇
2

PPP
                                                      (17) 

and then applying the SPH interpolation rules so that the momentum equation becomes 

∑ ∇+−=
b

aba
a

a

b

b
b

a W
PP

m )(
dt

d
22 ρρ

v
                                     (18) 

This form of the momentum equation conserves linear and angular momentum exactly. It 
was first derived by Gingold and Monaghan using a different approach [22,23,24]. 

Two further modifications are particularly relevant when SPH is used to simulate the 
motion of fluids, which is the case in the simulations described in this report. Instead of 
moving the particles according to equation (15), their motion is described by  

ab
ab

ba

b
ba

a Wm ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑ ρ
ε

v
v

r
dt

d
                                                 (19) 

where =abρ (ρa + ρb)/2, vba = vb - va, and ε is a constant with a value normally of ½. 
Equation (19) is known as the XSPH variant and was introduced by Monaghan [52] to 
prevent penetration when particle methods are used to simulate streams of fluid 
impinging on each other. The additional term in equation (19) ensures that a particle 
moves with a velocity that is close to the average velocity in its neighbourhood. For the 
simulation of nearly incompressible fluids such as water it has been found to keep the 
particles orderly in the absence of viscosity. 

For many SPH simulations the density is calculated from equation (16). For nearly 
incompressible flow with a free surface however, such as water sloshing in a tank, use of 
equation (16) produces incorrect results. In these types of problems the density falls 
discontinuously to zero at the surface. If equation (16) is used to find the density then the 
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particles near the surface will have their densities smoothed over a length 2h, hence the 
density will not drop discontinuously as it should. The resulting smoothing of the density 
discontinuity produces incorrect pressures and hence poor results near the surface, which 
in some applications is the main feature of interest. To overcome this problem, the 
continuity equation, i.e. 

( ) 0=⋅∇+
∂
∂ vρρ

t
                                                   (20) 

can be expressed in SPH form as follows 

∑ ∇⋅=
b

abaabb
a Wm

dt
d

v
ρ

                                         (21) 

By using equation (21) instead of equation (16) the initial density can be set and then it will 
only change when particles move relative to each other. There is also a computational 
advantage to using equation (21) in place of equation (16) since the rate of change of all 
physical variables can then be computed in one computational loop.  

2.4 Inclusion of viscosity 

Although Lucy [45] was the first to introduce a viscosity term in the SPH equations, the 
most widely used expression for viscosity in SPH simulations was introduced by 
Monaghan and Gingold [57]. It should be noted that any numerical simulation of the 
hydrodynamic equations which involve supersonic motions and the formation of shocks, 
whether grid based or not, requires some form of viscosity to stabilize the shock. The 
viscosity term introduced by Monaghan and Gingold [57] has the advantage of containing 
a term linear in velocity, which produces a representation of the classical shear and bulk 
viscosities, as well as a quadratic velocity term which handles high Mach number shocks 
and is the SPH equivalent to the Von Neumann-Richtmeyer artificial viscosity used in 
finite-difference methods.  

To understand the form of the viscosity term as introduced by Monaghan and Gingold we 
first consider the Navier-Stokes equation for viscous fluids 

vv 21
∇+∇−=

ρ
μ

ρ
P

dt
d

                                                 (22) 

where μ is the coefficient of viscosity. Note that the addition of viscosity adds a second 
derivative term to the equation. In principle this is not a problem, as second derivatives 
can be estimated by differentiating the SPH interpolant twice. In practice however the 
expression can be very sensitive to particle disorder. To avoid this potential problem 
Monaghan and Gingold took a different approach. Equation (22) can be written in the 
following form 

{ }vv
∇−∇−= μ

ρ
P

dt
d 1

                                                 (23) 
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which shows that the viscosity can be regarded as an extra pressure term. Using this 
analogy, Monaghan and Gingold took the SPH version of the Navier-Stokes equation to 
have the form 

∑ ∇Π++−=
b

abaab
a

a

b

ba W
PP

)(
dt

d
22 ρρ

v
                                    (24) 

where Πab  is the additional "viscous pressure" term. Comparing equations (22) and (23) it 
is obvious that Π should have the form 

v∇≈Π 2ρ
μ

                                                             (25) 

Now for a gas, the coefficient of viscosity μ is given approximately by 

cρλμ ≈                                                                   (26) 

where λ is the mean-free path length of the gas molecules and c is the speed of sound in 
the gas. The logical extension of this form of the coefficient of viscosity to SPH is simply to 
replace λ with h. Consider the case of one-dimensional motion first for simplicity. The 
need to take a second derivative of the interpolant can be overcome by expressing the 
velocity derivative in equation (25) by a simple finite difference form 

ba

ba

d
d

xx
vv

x
v

−
−

≈                                                           (27) 

Combining equations (25), (26) and (27) the expression for Πab  (in one-dimension) 
becomes 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Π

ba

ba

a

a
ab

hc
xx
vv

ρ
α

                                              (28) 

where α is a dimensionless coefficient which can be used to fine tune the expression for a 
particular simulation. To conserve momentum however Πab needs to be symmetric, so ca 
and ρa are replaced by the symmetrised forms abc  and abρ , where ( ) 2/baab ccc +=  and 

( ) 2/baab ρρρ += . To avoid a problem when |vab| ≠ 0 and xab approaches zero vab/xab 
is replaced as follows 

22

xv
x
v

η+
=

ab

abab

ab

ab

x
                                                             (29) 

where η2 = 0.001h2. Generalizing to three dimensions the expression for Πab then becomes 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
•

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Π 22 ηρ
α

ab

abab

ab

ab
ab r

ch rv
                                                  (30) 

Equation (30) successfully reproduces the linear shear and bulk viscosity of fluids and was 
also found to stabilize shocks of moderate strength [57]. For astrophysical problems 
involving colliding gas clouds however problems still persisted and so an extra term was 
added. The additional term is quadratic in velocity and is the SPH equivalent of the Von 
Neumann-Richtmeyer artificial viscosity used in finite-difference methods. The complete 
expression for the general viscosity term Πab then takes the form 

ab

ababab
ab

c
ρ

βμμα 2+
−=Π                                                      (31) 

where 

22 η
μ

+
•=

ab

abab
ab r

h rv
 

When simulating high Mach number compressible gas flows where the real viscosity is 
negligible then equation (31) only applies when the fluid is being compressed, i.e. when 
particles are approaching one another, which is the condition abab rv • < 0. When abab rv • > 

0 the gas is expanding and then Πab = 0. In many applications to high speed flow it has 
been found that the choice of α = 1 and β = 2 produces excellent results.  

In the opposite extreme of low Mach number flows where the fluid has significant real 
viscosity then equation (31) can be used with β = 0. The value of α  is then chosen so that 
the simulated fluid has a viscosity and Reynolds number similar to that of the real fluid 
being modelled. By performing a more careful analysis of equation (31) Monaghan and 
Kos [58] have shown that it leads to a shear viscosity of the form 

ραμ hc
8
1

=                                                                 (32) 

Monaghan [54] has used equation (31) with β = 0 and α = 0.01 to simulate the evolution of 
an elliptical water drop, the bursting of a dam, and the formation of a bore and in each 
case has found excellent agreement with experimental results. Monaghan and Kos [58] 
also used equation (31) with β = 0 and α = 0.001 to simulate the run-up and return of a 
solitary wave travelling over shallowing water and then onto a dry beach backed by a 
vertical wall. The simulations accurately reproduced the experimental results. Equation 
(31) was used to reproduce the effects of viscosity in all the simulations reported in Section 
3 of this report.  

Whilst equation (31) has been shown to give accurate results in many scenarios, including 
typical fluid flows of interest in MPD, Morris et al. [62] found that it gave inaccurate 
velocity profiles in their simulations of Couette and Poiseuille flow when the Reynolds 
number was O(10-2). They overcame this problem by using an expression similar to the 
first term in equation (31) but based on an SPH estimation of viscous diffusion which is 
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similar to an expression used to model heat conduction. Their hybrid expression still 
combined a standard SPH first derivative with a finite difference approximation of a first 
derivative. Takeda et al. [74] were the first to use second-order derivatives of the kernel to 
represent the second-order derivatives in the expression for the viscous term in the 
Navier-Stokes equation. They calculated isothermal viscous flow around a cylinder for 
Reynolds numbers in the range 6 ≤ Re ≤ 55 and found excellent agreement with results 
calculated using standard finite difference methods. Watkins et al. [76] have shown how to 
use standard SPH expressions for first derivatives to calculate accurate expressions for the 
viscous term in the Navier-Stokes equation using only first derivatives of the kernel. They 
conducted a series of tests on problems for which analytical solutions exist and found 
excellent agreement with the theoretical solutions.  

Balsara [1] has noted that the use of equation (31) leads to substantial spurious entropy 
generation in regions of strong shear. He solved this problem by multiplying μab by a 
suitably devised function of the local compression and vorticity which approached unity 
in regions of strong compression and zero in regions of strong vorticity. Calagrossi and 
Landrini [11] slightly modified Balsara’s correction term and used it in a number of 
simulations of the classical dam break problem. They found that this improved the quality 
of the solution both for free surface and interfacial flows, and also improved total energy 
conservation.  

For SPH simulations involving two or more fluids with very different viscosities Cleary [8] 
has used a more sophisticated viscous term than that given by equation (31) which allows 
the viscosity to be variable and ensures that stress is automatically continuous across 
material interfaces. Cleary et al. [9] have shown that this form of the viscosity allows 
multiple materials with densities and viscosities varying by up to three orders of 
magnitude to be accurately simulated 

2.5 Treating incompressible fluids 

The development of SPH outlined so far assumes that the fluid is compressible. Since 
water is an almost incompressible fluid some modifications are required if SPH is to be 
used for hydrodynamic simulations. Monaghan showed how this could be achieved in 
1994 [54]. Since the speed of sound in water is of the order of 103 m/s the Mach number in 
typical simulations is extremely small. It is therefore customary in typical finite difference, 
finite volume or finite element grid based methods to approximate the fluid by an artificial 
fluid which is exactly incompressible. In SPH simulations the opposite approach is taken; 
the real fluid is approximated by an artificial fluid which is more compressible than the 
real fluid. The artificial fluid will still provide a valid approximation to the motion of the 
real fluid provided that the speed of sound is still much larger than the speed of the bulk 
flow. Because relative density fluctuations are proportional to M2 (where M is the Mach 
number), density fluctuations can be limited to ∼ 1% provided M ∼ 0.1. This means that the 
standard SPH formulation described above can still be used. The only modification 
required is to change the equation of state of the (nearly incompressible) fluid so that the 
material becomes more compressible, while retaining sufficient incompressibility so that 
the speed of sound is large enough to keep the relative density fluctuations small.  
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A standard equation of state which is used for water in many hydrodynamic simulations 
is the one due to Cole [12], which can be written in the form  
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⎟
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ρ

                                                        (33) 

where P and the constant B are measured in atmospheres and  ρ0 is the density at 
atmospheric pressure. When n and B take the values 7 and 3,000 respectively this equation 
agrees with the data for water to within a few percent for pressures less than 105 

atmospheres. Monaghan has used this equation of state to successfully simulate the flow 
of elliptical drops of water, bursting dams, the formation of bores, and waves on a beach 
[58]. The only modification to the equation of state required was to change the value of the 
constant B. With the equation of state given by equation (33) the speed of sound c at the 
reference density ρ0 is given by 

0

2 B
ρ
nc =                                                                    (34) 

Therefore, if B = 100ρ0 v2/n, the relative density fluctuations should be ∼ 0.01. This simply 
requires that an estimate of the maximum flow speed needs to be made for each new 
problem. A simple example is a dam of height H collapsing. An approximate upper bound 
on the speed of the water is then given by v2 = 2gH, where g is the strength of the 
gravitational constant.  

2.6 Inclusion of boundaries 

Most boundary methods in SPH involve the use of boundary particles which apply forces 
on the fluid particles. The general form of this force is to treat the boundary force as if it 
were a molecular force. The force is then directed centrally between the particles and has 
the Lennard-Jones form 
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but is set to zero if r > r0 so that the force is purely repulsive. The constants p1 and p2 must 
satisfy the condition p1 > p2 and typically have the values p1 = 4 and p2 = 2, although 
similar results are found using p1 = 12 and p2 = 6. The length scale r0 is taken to be the 
initial spacing between the particles and the coefficient D (which has dimensions of 
velocity squared) is again chosen by considering a typical speed in the problem. For 
example, for problems involving dams, bores or weirs with fluid of depth H Monaghan 
has used D = 5gH, but has also shown that simulations using D = 10gH or D = gH give 
similar results [54].  

Equation (35) was used by Monaghan in his initial free surface flow simulations [54] and 
favourable results were obtained. The method is not ideal however as it produces the 



 
DSTO-TR-1922 

 
12 

equivalent of a corrugated boundary containing ripples on the scale of the particle spacing. 
Monaghan and Koss [58] developed a better approach which uses an interpolation 
procedure so that the forces from neighbouring boundary particles produce a force normal 
to the boundary. In this method boundary particles are assigned both a position and a 
local unit normal vector n that points from the boundary into the fluid. The force per unit 
mass f on a fluid particle from a boundary particle is computed using the components of 
their separation along the normal (denoted by y) and along the tangent (denoted by x), 
where the distances x and y are taken to be positive. The force then takes the form  

f = R(y) P(x) n                                                                        (36) 

where R(y) is designed to fall to zero within a few particle spacings of the wall. In terms of 
the variable q, where q = y/(2Δp) (where Δp is the initial particle spacing), R(y) is defined 
by  

)1(1)( q
q

AyR −=     if q < 1                                                     (37) 

else R(y) = zero. The parameter A in equation (37) is given by the expression  

( )babcc
h

A nv •+= β201.01
                                                   (38) 

where the fluid particle is a and the boundary particle is b. β is 1 if the particles are 
approaching; otherwise it is zero. The second term in equation (38) helps damp-out the 
motion perpendicular to the boundary. The function P(x) is defined by  
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1)(   if x < Δp                                            (39)  

otherwise P(x) = zero. The function P(x) ensures that as a fluid particle moves between two 
boundary particles the contribution from the particles combines to make the boundary 
force constant if the fluid particle moves parallel to the boundary. 

More recently Monaghan, Kos and Issa [59] have used different expressions for the 
functions R(y) and P(x). If q is now defined as q = y/h, the function R(y) is defined by  

 β
3
2)( =yR   if 0< q < 2/3 

 ⎟
⎠
⎞

⎜
⎝
⎛ −= 2

2
32 qqβ   if 2/3 < q < 1     

 ( )22
2
1 q−= β    if 1 < q < 2            (40)  

and is zero for q > 2. The constant β = 0.02c2/y and is an estimate of the maximum force 
per unit mass necessary to stop a particle moving at the estimated maximum speed. The 
factor 1/y ensures that a particle moving faster than this can also be stopped. This new 
form for R(y) was chosen because the boundary force opposes the pressure gradient and 
R(y) has the form of the gradient of the kernel. The function P(x) is now simply defined by  
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and is zero otherwise. Monaghan et al. [59] have used the form of the boundary force 
defined by equations (40) and (41) in a study of the impact between a rigid body and water 
but have found that there is little difference between the results obtained using these 
expressions and the results obtained from equations (36) and (38). In Section 3 we describe 
the results obtained from SPH simulations using both versions of the boundary force and 
show that the results obtained are independent of the assumed form of this force. 

Other approaches to the problem of specifying realistic boundary conditions are possible. 
Both Takeda et al. [74] and Morris et al. [62] performed simulations for low Reynolds 
numbers where the no-slip condition was the appropriate boundary condition. To achieve 
this they used "imaginary particles" outside the boundary surface. Libersky and Petschek 
[41] have used a similar approach where the additional particles are referred to as "ghost 
particles". Randles and Libersky [69] extended this approach to more general boundary 
conditions. These schemes work by regarding the boundary as a symmetrically reflecting 
interface, so that the imaginary particles have the same density and pressure as the 
corresponding real particles, but opposite velocity.  

Liu and Liu [43] use two types of virtual particles to treat solid boundary conditions. 
Virtual particles of the first type are located right on the solid boundary and are similar to 
those used by Monaghan and described above. Virtual particles of the second type are 
similar to those used by Libersky and Petschek [41]. Liu and Liu found that both particle 
types were needed; the virtual particles of the first type ensured that the real particles 
were prevented from penetrating the boundaries, while the virtual particles of the second 
type were needed to impose the correct boundary conditions. The various schemes differ 
from one another in the exact methods used to calculate the velocities of the image 
particles, the degree to which these particles are carried along by the flow and are 
included in the summation process, and by the way in which the kernel sum is 
normalized.  

In the simulations presented in Section 3 we have not used ghost particles nor any form of 
virtual or imaginary particles outside the boundary surface. We have used boundary 
particles as defined by Monaghan and Koss [58] and have included the boundary particles 
in the density calculation by solving the continuity equation in the form of equation (21). 
We note that if fluids of very different densities were present in the simulation then a 
different form of the continuity equation would be required.  

2.7 Time stepping considerations 

The SPH formulation of the equations of fluid dynamics reduces them to a set of ordinary 
differential equations for the motion of each of the particles within the simulation. Hence 
any numerical technique for the solution of coupled ordinary differential equations can be 
used for their solution. In practice however, the right hand side of the momentum 
equation for each particle, equation (14) or equation (18), is generally quite expensive in 
terms of computer time to evaluate and this tends to exclude schemes such as high order 
Runge-Kutta methods which require several evaluations of the force term at each time 
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step. Most SPH codes use either an improved Euler method (a mid-point predictor-
corrector method) [50] or a leapfrog predictor-corrector algorithm for time stepping [51]. 
Each of these methods requires only one evaluation of the force term per time step.  

In the code used to generate the results shown in the next section we used the predictor-
corrector leapfrog algorithm for time stepping. If we write the set of equations describing 
the change in velocity, position and density in the following form 

a
a F=

dt
vd

                                                                   (42) 

a
a v

dt
rd

=                                                                    (43) 

a
a D
t
=

d
dρ

                                                                  (44) 

and denote the values of the variables at the beginning of a time step Δt by va0, Fa0, ra0, ρa0 
and Da0 then the predictor step is given by  

00 tvv aaap FΔ+=                                                       (45) 

( ) 0200

2
1vt aaaa Ftrr Δ+Δ+=                                    (46) 

00 t aaap DΔ+= ρρ                                                      (47) 

New values of Fa and Da are calculated using the predicted quantities and then corrected 
values of va and ρa are calculated according to  

( )0t
2
1vv aapapa FF −Δ+=                                     (48) 

( )0t
2
1

aapapa DD −Δ+= ρρ                                    (49) 

The time step is limited by the familiar CFL condition, which basically restricts the 
physical rate of propagation of information to be less than that of the numerical 
propagation rate. In SPH terms this becomes Δt ≤ h/c. If viscosity is present however this 
leads to an additional diffusive limitation on the time step and the two effects are usually 
combined in the following expression 

)max(6.0mint v
abba

c cc
h

μβα ++
=Δ                                   (50) 
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A further limitation on the time step applies if external body forces are present. This 
implies that the time step should be less than ftΔ , where 2/1)/(t fhf =Δ  and f is the 
external force per unit mass on each of the SPH particles. A suitable time step for the 
scheme therefore has the form 

( )fc tt ΔΔ=Δ ,min
4
1t v                                                        (51) 

The coefficient in equation (51) can be increased slightly whilst still maintaining stability 
and various possibilities are suggested in the literature [23, 62].  

Because of the way in which the symmetrical nature of the particle-particle interactions 
were maintained in the derivation of the basic SPH equations it is possible to ensure exact 
linear and angular momentum conservation if either a predictor-corrector or leapfrog 
method is used when solving the equations. Monaghan has also noted [53] that, with a 
correctly chosen time step, total energy is conserved to within 0.5% over 400 time steps. 
Both integration methods are second order accurate in time although only one force 
evaluation per time step is required. 

2.8 Variable smoothing length  

The smoothing length h represents the effective width of the kernel and its value 
determines the number of particles with which a given particle interacts. The accuracy of 
an SPH simulation depends on having a sufficient number of particles within the 
smoothing length to ensure that the replacement of an integral by a summation is valid. 
The speed of the computation however decreases as the number of such particles 
increases. The optimum number of particles has been discussed by Morris [61] and 
depends on the number of dimensions in the problem. In one, two and three-dimensional 
problems these are approximately 5, 21 and 57 respectively. These numbers are based on 
the number of neighbours on a cubic lattice with a smoothing length of 1.2 times the 
particle spacing and a kernel which extends out to 2h.  

If the fluid being modelled does not undergo substantial compression or refraction then a 
constant value for h is sufficient. However, if the density changes substantially during the 
course of a computation then h should be changed accordingly to maintain sufficient 
resolution. In the original formulations the resolution was constant in space but allowed to 
evolve in time, h = h(t). A method to allow spatially varying resolution was introduced by 
Benz [3] and this resulted in enhanced accuracy and speed. In such schemes each particle 
has its own h depending on the local density in the particle's neighbourhood and the rate 
of change of the particle's density. For the simulation of incompressible fluids such as 
water for example, which are the main interest of this report, the density changes are 
restricted to be of the order of 1% and so a constant value of h was used in all the 
simulations described in the next section. 
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2.9 SPH coding details 

There are a number of sites on the internet which provide access to free SPH codes. These 
include Joe Monaghan's home page at Monash University1, which includes a number of 
sample FORTRAN codes for the simulation of both astrophysical and fluid dynamics 
problems, as well as a site at the National University of Singapore2, which contains a 
FORTRAN code which was used to perform many of the simulation results discussed in 
the book by Liu and Liu [43].  

Any SPH code basically solves a many-body problem in which, in principle, every particle 
interacts with every other particle in the problem. In practice, by using a kernel with 
compact support, such as that described by equation (11), each particle interacts with only 
a relatively small number of neighbouring particles confined within a radius of 2h. Finding 
the nearest neighbours of any given particle is a major part of any SPH code. The simplest 
method of doing this is to calculate, for a given particle i, the distance rij from i to each 
particle j, where j = 1,2, …, N. If the distance rij is smaller than 2h then particle j is one of 
the nearest neighbours of particle i. The problem with this very simple all-pair search 
approach is that the time taken to perform this search is of order N2, and for problems 
with more than a few thousand particles the computational time taken is simply too 
excessive. 

Most SPH codes overcome this problem using either a tree search algorithm or a linked list 
algorithm. The tree search algorithm is popular in astrophysical SPH codes, particularly 
those including the effects of self-gravity, and works particularly well in problems in 
which h varies either in space or time. This reduces the computational time to O( N log N ). 
The linked list algorithm works well for simulations in which h is spatially constant. 
Monaghan [53] has described the procedure for carrying out a nearest neighbour particle 
search using linked lists in the context of an SPH code. More details can be found in the 
paper by Riffert et al. [70] and the book by Hockney and Eastwood [30]. In essence, an 
auxiliary spatial grid is used to sort the particles into cells and then restrict the search to 
neighbouring cells. For example, if the kernel has compact support of length 2h then the 
mesh spacing should be set to 2h. Then for a given particle i the nearest neighbouring 
particles can only be in the same grid cell or the immediately adjoining cells. Hence, in 
three dimensions, the search is confined to a maximum of 27 cells. The linked list 
algorithm allows each particle to be assigned to a cell and then all the particles in a given 
cell are linked together for easy access. The computational cost of this algorithm is 
approximately O (N × Nneigh), where Nneigh is the average number of contributing 
neighbours per particle.  

Another technique used in SPH codes to reduce the computational time is to use the 
symmetry (or antisymmetry) inherent in the particle-particle interactions. Given that the 
force on particle a due to particle b is equal in magnitude (but opposite in direction) to the 
force on particle b due to particle a, the time to perform summations such as those shown 
in equation (18) can be halved. The technique is to change the range of the indices in 
nested DO loops. The symmetry of the interactions allows nested loops where both a and b 
                                                      
1  http://www.maths.monash.edu.au/~jjm/Teaching/welcome.html 
2  http://www.nus.edu.sg/ACES/software/SPH%20code/sph_code_in_the_sph_book.htm 
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go from 1 to N to be replaced by summations where a goes from 1 to N while b goes from a 
+ 1 to N. Additional computational time can be saved by calculating the value of the 
kernel and its derivate over an appropriate spatial range at the start of the computation 
and then storing the values in a look-up table.  

 

3. Illustrative examples for fluid simulations 

In this section we illustrate the basic SPH formulation outlined above by applying it to 
some two-dimensional problems of interest to Maritime Platforms Division. The 
simulations were performed using software obtained from Joe Monaghan's website at 
Monash University and modified slightly by ourselves. All simulations were performed on 
a Pentium IV processor with 640 MB RAM running at 1.80 GHz. All programs are written 
in Fortran and a Compaq Visual Fortran 6 compiler was used to run the software. Typical 
run-times were no more than 30 minutes using up to 20,000 particles. 

3.1 Classical dam break 

Monaghan [54] used a simplified bursting dam problem as one of several examples to 
illustrate the ability of SPH to accurately model free surface flows. He performed two-
dimensional simulations of the collapse of a liquid column and compared the results with 
the experiments of Martin and Moyce [46]. Both the height of the dam and the length of 
the surge front as a function of time were found to agree well with experiment, although 
the simulated position of the surge front was found to be slightly ahead of the 
experimental results in all the simulations. Monaghan attributed this to the effect of drag 
between the fluid and the bottom boundary particles. The boundary was simulated using 
a line of boundary particles and the force between the boundary particles and the fluid 
particles had the Lennard-Jones form given by equation (35). Monaghan noted that when 
the Lennard-Jones force was replaced by a gaussian force similar results were obtained.  

Doring et al. [16] used both SPH and the Volume of Fluid (VOF) method of Nichols and 
Hirt [63] to simulate the experiments of Martin and Moyce [46] and found similar results; 
both the SPH and VOF simulations accurately reproduced the height of the dam as a 
function of time but the surge front was again slightly ahead of the experimental results. 
They suggested that this difference was probably due to the wall slip condition used in the 
calculations. Colagrossi and Landrini [11] used SPH, a boundary-element method, and a 
Level Set method to simulate the same experiments and again found similar results; all the 
numerical solutions agreed very well, but the surge front was again slightly ahead of the 
experimental results. They attributed the disagreement to experimental uncertainties in 
the early part of the experiment and to the neglect of important physical effects on the 
longer time scale. They suggested that an important effect which was not included in their 
modelling was the bottom-induced drag which altered the propagation velocity and 
triggered the development of turbulence near the water front. Liu and Liu [43] also 
simulated these experiments using the SPH code described in their book and obtained 
results which are more accurate than those calculated by Monaghan [54].  
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Figure 1: Particle configuration for the collapsing water column at t = 0.031 α = 0.001 and total 
number of particles = 15,440. Lengths are measured in metres 

 

 
Figure 2: Particle configuration for the collapsing water column at t = 0.506 α = 0.001 and total 

number of particles = 15,440. Lengths are measured in metres 

 
Figure 3: Particle configuration for the collapsing water column at t = 0.822 α = 0.001 and total 

number of particles = 15,440. Lengths are measured in metres 
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They claim that this is due to their use of type II boundary virtual particles in addition to 
the type I boundary particles used by Monaghan; their use of these additional virtual 
boundary particles in the summation process increases the drag force for the particles near 
the bottom.  

We have simulated the experiments of Martin and Moyce [46] using a two-dimensional 
implementation of the SPH formulation outlined in Section 2. Figures 1, 2 and 3 show the 
particle configuration for the collapsing water column at representative times. Boundary 
particles were used to form the left-hand boundary, the base, and the right-hand 
boundary. Three different types of boundary force expressions were tried. Each of these 
had the form given by equation (36) in Section 2.6 with the function P(x) given by equation 
(39). The function R(y) had three different forms, depending on the parameter potsw. If 
potsw = 1 then R(y) is an integral repulsive force having the form given by equation (37). If 
potsw = 2 then R(y) is logarithmically singular and has the functional form A(1/q – 1). If 
potsw = 3 then R(y) is based on the derivative of the kernel and has the form given by 
equation (40).  

The particles are initially set up on a cartesian lattice and the smoothing length is defined 
as h = 1.2 Δp, where Δp is the initial particle spacing. In all the simulations described here h 
is constant in space and time and has the same value for each particle. Due to the manner 
in which the particles are initially placed in the domain the system is not in equilibrium at 
t = 0 and so a damping force is applied to the particles for the first few hundred time steps. 
This has the effect of settling the system down to an equilibrium state and is an important 
part of the calculation. 

 
Figures 4 and 5 show the simulated height and surge front position as a function of time. 
All lengths are scaled by the initial height of the water column (H0) and time is scaled by 
the factor (H0/g)1/2. Three different runs are shown, corresponding to potsw = 1, 2 and 3. 
In each run α = 0.001 and the total number of particles was 15,440. Figure 4 shows 
excellent agreement between the experimental results and the simulated results for the 
height of the water column as a function of time. In Figure 5 the agreement with 
experiment is excellent for early times, but the simulated surge front position leads the 
experimental values at later times. This behaviour is the same as that found by Monaghan 
[54], Doring et al. [16], and Colagrossi and Landrini [11] and is caused by the lack of rigour 
in the specification of the exact boundary condition at the water/boundary interface. The 
effect is most pronounced at the tip of the surge front because the water layer is very thin 
at this location and the boundary forces provide the controlling influence. Both Figures 4 
and 5 show that the assumed form of the boundary force has negligible effect on the 
accuracy of the simulated results.  
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Figure 4: Height of water column as a function of time. α = 0.001 and the number of particles = 
15,440 

 

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4
Scaled time

Sc
al

ed
 s

ur
ge

 fr
on

t

Z (expt)
Z (potsw =1)
Z (potsw =2)
Z (potsw =3)

 

Figure 5: Position of surge front as a function of time. α = 0.001 and the total number of particles 
= 15,440 

 
Figure 6 shows the effect of changing both the resolution of the calculation and the 
assumed value of α on the height of the water column as a function of time. In the figures 
ny represents the number of water particles initially placed next to the left hand boundary 
of the container. For ny = 80, 120 and 160 the total number of particles in the calculation is 
7,120, 15,440 and 26,960 respectively and the corresponding value of h is 1.5 cm, 1.0 cm and 
0.75 cm. As can be seen, the simulated results are virtually independent of the resolution 
for the range considered here. Also, changing α between α = 0.001 and α = 0.01 has little 
effect on the calculated values. Similar conclusions can be drawn from Figure 7, which 
shows the effect of the above changes in computational parameters on the simulated surge 
front position as a function of time.  
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Figure 6: Height of water column as a function of time. α = 0.01 and the number of particles 
varies between 7,120 and 26,960 
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Figure 7: Position of surge front as a function of time. α = 0.01 and the total number of particles 
varies between 7,120 and 26,960 

 
3.2 Sloshing 

Sloshing is defined as the relative motion of a fluid with a free surface confined inside a 
tank caused by the motion of the tank itself. It is a highly non-linear resonant phenomenon 
appearing in all marine structures containing liquids and is of critical concern in the 
design process because its occurrence can lead to excessively high dynamic loads on the 
tank walls. The simplest method to simulate the effects of sloshing is to use an analogy 
with a coupled mass and spring system, but this does not allow the pressure on the 
container wall to be calculated. Solaas and Faltinsen [71] analysed the sloshing problem 
using the potential flow hypothesis by decomposing the free surface into a sum of periodic 
modes. This method works well if the deformations of the free surface are not extreme, but 
is unable to cope with events such as wave breaking and roof impacts, both of which are 
common phenomenon in ship tanks.  
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The availability of commercial finite element and finite volume software packages such as 
LS-DYNA, FIDAP, Fluent and CFX over the past twenty years provides a more accurate 
method of simulating sloshing phenomena. Tracking the free-surface of the fluid over the 
computational mesh is still a difficult problem however and some of the methods which 
have been created to overcome this problem include the Marker and Cell (MAC) method 
of Harlow and Welsh [28], the Level Set technique of Osher and Sethian [67] and the 
Volume of Fluid (VOF) method due to Nichols and Hirt [63]. Whilst each of these methods 
works well in particular situations they are computationally involved and expensive. SPH 
offers a much more natural way of dealing with free-surface problems and it is natural to 
turn to this method when attempting to simulate sloshing phenomena.  

Delorme et al. [14] used a two-dimensional SPH method to calculate the sloshing pressure 
for LNG tankers and found good agreement with results calculated using a MAC code. 
Souto Iglesias et al. [72] have used SPH to simulate sloshing in passive roll-damper tanks 
for fishing vessels. They compared their results against experimental data and found good 
agreement, both for quantitative physical magnitudes such as moment phase lags, as well 
as more qualitative ones such as free surface shapes. Doring et al. [16] have performed 
two-dimensional SPH simulations of sloshing in a test tank and compared the computed 
free surface shapes with the experiments of Corrignan [13]. Excellent agreement is 
obtained between the simulated and experimental surface profiles, even though 
considerable non-linearity is observed.  

In this section we have modified the SPH code described in Section 2 and used in Section 
3.1 to simulate the dam breaking problem by allowing the boundary particles which form 
the liquid container to oscillate horizontally. This allows us to simulate the free surface 
shapes obtained in the experiments of Corrignan [13]. In these experiments a rectangular 
tank 40 cm wide and 20 cm high containing water to a height of 12 cm is forced to oscillate 
horizontally with a time dependence given by  

x (t) = A0 [ sin (2πf1t) - sin (2πf2t) ]                                      (52) 

where A0 = 0.75 cm, f1 = 1.598 Hz and f2 = 1.307 Hz. The only changes to the code required 
to do this are to prescribe the motion of the boundary particles in both the predictor and 
corrector parts of the time integration routine. Initially we forced both the position and 
velocity of these particles according to equation (52), but found that this lead to 
instabilities in the code and resulted in some particles being forcefully ejected from the 
fluid domain. Stable behaviour was obtained by specifying the velocity only, and then 
calculating the position from the equation 

00 vt aaa rr Δ+=                                                               (53) 

Equation (53) was only applied during the predictor step, whilst the velocity was 
prescribed during both the predictor and corrector step. This small change in the 
computational procedure lead to remarkably stable behaviour and the code was well 
behaved over many tens of thousands of time steps. We are uncertain as to why this 
particular procedure works as well as it does, although we note that it is similar to the type 
of instability which occurs in many CFD codes when certain boundary conditions are over 
prescribed. 
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It is interesting to note that Gomez-Gesteira et al. [26] found similar behaviour in their 
two-dimensional SPH code. They used SPH to model wave overtopping on the decks of 
offshore platforms and ships and used moving boundary particles to create the initial 
waves. They externally imposed both position and velocity on the boundary particles and 
found that this gave rise to instabilities and very high instantaneous accelerations and 
forces. They solved this problem by imposing a smoothing function on both the prescribed 
position and velocity.  

Figures 8 and 9 show computed free surface shapes at selected times for a calculation 
using 15,440 particles. Figure 10 shows the comparison between the computed surface 
shapes and the experimentally measured profiles. The agreement is remarkably good, 
especially considering the relative simplicity of the code employed. A similar calculation 
using either a finite difference, finite volume or finite element code would involve far 
more computational complexity and hence significantly increased computational time. The 
increased computational effort when using a grid-based code results from both the need to 
use specialised algorithms to locate or track the interface, as well as the extra coding 
involved to keep track of the moving mesh. The amount of coding required to implement 
either of these features in a grid-based code is often greater than that used to solve the 
basic fluid equations. In an SPH simulation, however, no extra coding is required to locate 
the interface and in the two-dimensional calculation shown here only a few extra lines of 
coding were needed to effectively simulate the moving boundaries. 
 
The accuracy of the comparison between the computed and experimental surface shapes 
shown in Figure 10 is typical of the accuracy of SPH simulations. Other examples of this 
type of simulation are easily found. Next Limit Technologies provide several examples on 
their website3. These simulations are conducted using their particle simulation code called 
XFLOW, which is based on the SPH method, and show two-dimensional simulations of 
sloshing flow and comparisons with the experimental results by overlaying the simulated 
results on the real video footage of the experiment. The simulations run for extended 
periods of time and show no degradation in the accuracy of the simulated surface shapes 
as the length of the simulation time increases.  
 
3.3 Wave breaking over ships 

Water impact loading on offshore structures is a subject area which is now becoming 
amenable to detailed study using sophisticated computational fluid dynamics codes. Both 
Neilson [64] and Kleefsen [38] have recently studied the green water problem, where large 
masses of water can invade a ship's deck in rough seas and cause considerable damage to 
the ship, or to equipment or personnel on the deck. Both these authors used finite volume 
CFD codes and variations of the VOF method to capture the free surface motion of the 
breaking waves and obtained good agreement with experimental results, where available 
for comparison.  

 

                                                      
3 http://www.nextlimit.com/xflow/index.htm 



 
DSTO-TR-1922 

 
24 

 

Figure 8: Simulated free surface shape for sloshing tank at t = 1.94 seconds. Lengths are measured 
in metres 

 

 

Figure 9: Simulated free surface shape for sloshing tank at t = 2.409 seconds. Lengths are 
measured in metres 
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Figure 10: Comparison between computed and experimental surface shapes. Blue = 1.65 seconds, 
red = 2.0 seconds. The solid curves are the SPH results while the symbols represent the 
experimental results 
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The use of an Eulerian grid to model both the bulk of the sea water and the ship itself 
however inevitably results in restrictions on the amount of the ship structure which can be 
included in the simulation. The success of SPH demonstrated so far in accurately 
simulating free surface motion naturally leads to the idea of combining SPH to model the 
fluid motion with either a finite volume or finite element code to model the ship structure. 
A number of authors have already addressed this problem and encouraging results are 
being obtained. Gomez-Gestiera et al. [26] have used SPH to simulate a simplified model 
of the green water problem. They found that the wave profiles generated by the method 
were in good quantitative agreement with the experimental ones and that the simulation 
successfully reproduced the main features observed when a wave hits a horizontal 
platform. Gomez-Gesteira and Dalrymple [25] have used a three-dimensional SPH code to 
model wave impact on a tall structure and found that the velocities and forces obtained 
from their numerical code were in excellent agreement with model laboratory 
measurements. Fontaine [19] has also used SPH to model extreme waves and their 
interaction with a structure and Oger et al. [65] have used SPH to simulate wave-body 
interactions in extreme seas. In this section we present a very simplified model of a ship 
sinking in rough seas to illustrate the capability of SPH to handle this scenario. The model 
is similar to one recently presented by Doring et al. [17]. It should be noted that the 
simulation shown here has been constructed to illustrate the capabilities of the SPH 
technique in a simplified situation; hence there is no experimental data for comparison.  

Figure 11 shows a sequence in which our model ship (a rectangular box with a slit in the 
side to allow ingress of water) is initially placed above the surface of the water and then 
allowed to fall under gravity. The box then oscillates in a vertical plane until the buoyancy 
force balances the gravitational force and the box comes to a stable equilibrium floating on 
the water surface. At time t = 2.335 seconds the tank containing the water is oscillated 
horizontally to induce strong wave motion. Between t = 5.0 seconds and t = 5.4 seconds the 
action of the waves breaking over the box results in considerable ingress of water and the 
box eventually sinks to the bottom of the tank after 7 seconds.   

The code used to perform this simulation was the same one which was used to calculate 
the results shown in sections 3.1 and 3.2. To perform the current simulation additional 
boundary particles were added to create the floating box. A subroutine was then written 
which took the total force on the box due to all the fluid particles and then moved the 
centre of mass of the box in accordance with this force. The boundary particles forming the 
box were then moved in relation to the centre of mass of the box to simulate the motion of 
a rigid body. The additional coding required to perform this simulation was again 
minimal, partly because we did not allow the box to rotate about its centre of mass. This 
would have involved some complicated geometry to calculate the new positions of the 
normals to the boundary particles and time constraints on the work did not allow this 
level of complexity. Nevertheless, this example clearly illustrates the ability of the SPH 
method to cope with quite complicated fluid-structure interactions using relatively simple 
coding. A comparable simulation using a grid-based code would involve an order of 
magnitude increase in the level of complexity of the coding and the simulation time, for 
reasons similar to those mentioned in the previous section. As well as the need to use 
specialised algorithms to locate the interface and move the mesh additional coding is also 
required for the fluid-body interaction.  
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Figure 11: Sequence showing the sinking of an empty container due to ingress of water via wave 
motion. Lengths are measured in metres 
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May and Monaghan [47] have recently performed a similar two-dimensional SPH 
calculation to investigate the possibility that a large bubble of methane gas released by the 
ocean floor could capsize a floating body. In their simulation the model ship was also 
constructed from additional SPH boundary particles and was allowed to rotate as well as 
move in the horizontal and vertical directions. Their simulations showed that when the 
radius of the bubble is comparable to the length of the ship’s hull that it is possible for the 
bubble to cause the ship to sink. This is due to the mound of water which is raised above 
the rising bubble and the subsequent flow of water from the mound which creates a deep 
trough either side of the mound, which can then carry the boat into the trough. 

A more sophisticated approach to the sinking of ships due to either rough seas or bubble 
dynamics produced by underwater explosions or natural methane gas eruptions would be 
to couple the SPH code to a fully fledged finite element code. Considerable progress along 
these lines has already been made by Cartwright et al. [5], [6] and [7]. These authors have 
used an SPH model embedded in the commercial finite element code PAM-SHOCK to 
simulate the non-steady motion of various vessels in varying sea conditions. The 
simulations to date have used rigid finite element models for the vessels so that accurate 
force magnitudes could not be obtained. Nevertheless, the simulated vessel motion 
displays qualitatively correct behaviour for all of the vessels studied. A simulation of the 
Incat 91 metre Wave Piercing Catamaran showed that dynamic lift from the under body 
shape of the hull was developed as the correct cruise speed was approached [5], while in a 
further application the method was shown to account for the correct dynamic loads on a 
34 metre catamaran sailing yacht [6]. The most advanced application of this method to 
date has been to the simulation of the motion of a landing craft within the flooded well 
dock of a parent ship [7]. Very encouraging preliminary results have been obtained and 
this example will be discussed in more detail in Section 5. 
 

4. Applications to solid mechanics modelling 

Problems involving large scale material deformation have always been of interest to the 
defence community. Examples include deformation due to high-velocity impact, the 
fracture and fragmentation of cased explosives, the formation and penetration of shaped 
charge jets, and debris cloud dynamics due to hypervelocity impact. The simulation of 
these problems has traditionally been conducted using large computer programs known 
as hydrocodes, which solve the continuum equations for the conservation of mass, 
momentum and energy in combination with sophisticated equations of state which 
describe material behaviour.  

During the 1980s and 1990s WSD used a number of these codes to assist in the design of 
various warheads and the analysis of their behaviour. The Lagrangian finite element code 
DYNA2D was used to model the formation of Explosively Formed Projectiles (EFPs) [32], 
Shaped Charge jets [33], the investigation of limpet mine damage effects against ship hulls 
[75], and the design of an EFP to be used as a stand-off sea mine neutralisation device [40]. 
The use of Lagrangian codes to simulate material response is limited to cases where the 
amount of deformation is small. When the deformation is large, Eulerian codes must be 
used and WSD used the finite volume Eulerian codes HELP [27] and HULL [18] in these 
situations. These codes can handle arbitrarily large material deformations but require 



 
DSTO-TR-1922 

 
28 

sophisticated coding techniques to model material interfaces. Difficulties can also occur 
when simulating problems with fracture, void formation, and fragmentation. 

During the period 1990-1996 defence scientists in both the USA and UK became aware of 
the unique capabilities of the SPH method and began to adapt it to the solution of solid 
mechanics problems relevant to the defence community. Although the name Smoothed 
Particle Hydrodynamics might be thought to imply that only hydrodynamic problems 
could be addressed by the method, material strength can in fact be added in a fairly 
straight forward manner. Libersky and Petschek [41] were the first to show how this could 
be done by incorporating an elastic-perfectly-plastic material strength model into the SPH 
framework and applying it to the simulation of the impact of an iron rod with a rigid 
surface. Early results were quite encouraging and the method was quickly extended into 
the three-dimensional shock and material response code MAGI [42], which was based 
entirely on the SPH method. The code was used to model additional cylinder impact tests 
and the debris cloud resulting from the hypervelocity impact of a copper disc on an 
aluminium plate. A companion paper using two-dimensional calculations [68] (therefore 
achieving a significantly finer resolution) of the same hypervelocity impact problem 
showed superb agreement between the SPH particle plot and the X-ray photographs of the 
debris cloud.  

An excellent summary of the early work of Libersky, Petschek and co-workers can be 
found in the paper by Randles and Libersky [69]. This paper also highlights the significant 
advantages of the SPH method for simulating the dynamic response of materials involving 
fracture and fragmentation. Several simulations of the detonation of cased explosives are 
given, including a simulation of the detonation of a MK82 general purpose bomb out to 
280 μs. The fragment distribution data was found to compare remarkably well with the 
experimental data. 

It should be stressed that a very important property of the SPH method is that it allows a 
totally seamless transition between a fully continuum description of matter and the 
transformation of the material into any number of fragments produced by impact. At least 
one noted authority in this area believes that it is definitely the best method for dealing 
with the fragmentation of brittle solids by impact [56]. The only underlying problem with 
the application of SPH in this area is that the normal SPH elastic equations do not conserve 
angular momentum. This has been noted by Monaghan [56] and discussed by Hoover et 
al. [31], who have shown that by using strong XSPH smoothing the loss in angular 
momentum of a rotating elastic wheel can be considerably reduced. 

A more common approach to the use of SPH methods in the simulation of problems 
involving large scale material deformation and fracture is to couple the SPH method with 
a standard Lagrangian finite element code. The Lagrange method (where the mesh distorts 
with the material) has the advantage of being fast and providing excellent definition of the 
material interfaces. When the deformation becomes too large however the grid becomes 
entangled and the calculation stops. Lagrangian codes try to overcome this problem by 
using an erosion algorithm, where elements which have reached a specified value of strain 
(typically 150%) are simply removed from the grid. This is obviously a non-physical 
process however and results in energy being artificially removed from the calculation.  

SPH provides the perfect solution to this problem; as the elements become highly strained 
they are simply converted to SPH nodes. This immediately removes the problem of grid 
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entanglement as the SPH particles are never required to have any connectivity. Johnson et 
al. [34] were the first to show how this could be achieved using the Lagrangian finite 
element code EPIC. A two-dimensional axisymmetric version of the code was used and 
simulation results were shown for both cylinder impact and hypervelocity impacts with a 
variety of different material models including copper, iron, steel, aluminium and concrete. 
Comparison with experimental results was excellent. More details of the method, and 
more simulation results for high velocity impact problems, are provided in Johnson [35] 
and Johnson et al. [36].  

Shortly after the work of Johnson appeared Swegle and Attaway [73] coupled the SPH 
method into the transient dynamics finite element code PRONTO and used it to simulate a 
number of underwater explosion problems involving fluid-structure and shock-structure 
interactions. Their results showed that this combined method was well-suited to model the 
transmission of loads from underwater explosions to nearby structures. Bubble formation 
and collapse was also modelled effectively, although the authors noted that the method 
still had difficulty (like all previous methods) in calculating the late time effects due to the 
acceleration of gravity and bubble buoyancy.  

Following on from the work of Johnson et al. [34] and Swegle and Attaway [73], Hayhurst 
et al. [29] implemented an SPH module in the two-dimensional axisymmetric version of 
the AUTODYN hydrocode for the simulation of ballistic impact problems. AUTODYN is a 
fully integrated suite of codes incorporating Lagrange, Shell, ALE (Arbitrary Lagrange 
Eulerian) and Eulerian solution techniques which can be coupled in several ways in space 
and time. Previous numerical simulations of ballistic impact problems using AUTODYN 
used either the Lagrange or Euler processors, both of which have significant failings in 
certain areas. As noted, the Lagrangian method suffers from grid entanglement problems 
when the material deformation becomes large. This problem can be overcome using the 
Eulerian approach, where the grid remains fixed in space, but the codes are considerably 
more expensive to run due to the complicated algorithms required to resolve material 
interfaces, and the method is also ill-suited to the implementation of sophisticated fracture 
mechanics models, which require the complete history of the material to be followed 
(which is the case with the Lagrangian approach).  

Hayhurst et al. [29] tested their SPH version of AUTODYN-2D by simulating the impact of 
an iron cylinder on a rigid wall, a steel projectile impacting a ceramic target backed by 
aluminium, and the penetration of a tungsten long rod into a thick steel target. In each case 
the SPH simulation performed as well or better than simulations using either the Euler or 
Lagrange processors. They concluded by noting that the combination of an SPH algorithm 
with a Lagrangian processor maintained all the advantages of the Lagrangian method, 
such as the efficient tracking of material interfaces and the ability to incorporate 
sophisticated material models, while removing the problem of grid tangling in a 
physically realistic manner. 

Clegg et al. [10] further pursued this approach by using the SPH capability in AUTODYN-
2D to simulate kinetic energy penetrator impacts on multi-layered soil and concrete 
targets. The advantages of the technique were clearly highlighted in this series of 
simulations because the extent of cracking in the concrete was far more realistically 
simulated using the combined Lagrangian/SPH method. Neither the Eulerian nor 
Lagrangian calculations were as effective in predicting spall from both the front and back 
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sides of the target. The use of the Lagrangian/SPH technique allowed sophisticated 
constitutive models to describe the concrete behaviour, such as hydrostatic compaction, 
yielding, damage and cracking, which are extremely difficult to implement in Eulerian 
codes, while overcoming the problem of mesh tangling. The method proved to be so 
successful that the SPH method was implemented in AUTODYN-3D and was used to 
simulate the formation of an Explosively Formed Penetrator (EFP), a Shaped Charge Jet, 
and hard penetrator impact onto ceramic armour [66]. This version of the code has also 
been used to model the impact of stainless steel and tantalum projectiles onto transparent 
targets at speeds which are sufficiently high enough to result in the shattering of the 
projectile.  

In the discussion regarding wave breaking over ships in Section 3.3 it was noted that the 
finite element code PAM-SHOCK contained an SPH module and that the code had been 
used to simulate the non-steady motion of vessels in varying sea conditions. In that 
application of the code the SPH module was used to model the bulk motion of the water. 
Kamoulakos et al. [37] have used the SPH module in PAM-SHOCK for a completely 
different application. They conducted a number of space debris impact simulations on 
Whipple shields using both the SPH option and the finite element version of the code and 
found good agreement with experiment using both methods.  

The Livermore Software Technology Corporation software LS-DYNA is another example 
of a commercial finite element code which has recently been coupled with an SPH module. 
Details of the implementation can by found in the paper by Lacome [39], which also 
contains examples of the application of the combined finite element/SPH solver to the 
simulation of bird impacts on turbine blades and various types of ballistic impact.  

De Vuyst et al. [15] have recently implemented an SPH algorithm in the public domain 
version of the DYNA code. Their method of implementation uses a contact force vector to 
treat the finite element nodes as SPH particles. This is different to the earlier 
implementations of SPH in finite element codes, which typically used a master-slave 
algorithm to couple the two techniques. The performance of their algorithm is illustrated 
by the simulation of three diverse impact problems: a plate impact, water impact and rod 
penetration. Excellent agreement was found between the simulation results and the 
experimental or numerical results for each of these problems.  
 

5.  Current SPH work in MPD 
Several research groups within MPD are currently using, or planning to use, the SPH 
technique for the simulation of a number of different problems. These include the relative 
motion of a landing craft and the mother ship in a well dock scenario, sloshing within 
hulls, underwater explosion events, the deployment and retrieval of autonomous vehicles, 
and ballistic impact on ceramic targets. This section briefly describes each of these areas of 
application. 

5.1  Surface Platform Systems Branch  
The examples described in Section 3 of this report show that SPH provides a convenient, 
simple and robust method for the study of free surface fluid motion. It is this aspect of 
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SPH which makes it a particularly useful tool with several areas of application within the 
Surface Platform Systems (SPS) Branch.  

One of the current major projects for the ADO is the acquisition of two large amphibious 
Landing Helicopter Dock (LHD) ships containing well docks. In order for DSTO to be able 
to provide advice to minimise the risk associated with potential operational constraints 
during the selection of the final design there is a need to be able to simulate the relative 
motion between the LHD and the landing craft within the well dock. Using conventional 
finite element, finite difference or finite volume codes this would be a problem of 
considerable difficulty and limited application. The combination of a finite element code to 
model the LHD and the landing craft with an SPH module to model the fluid motion 
however makes this problem much more amenable to simulation.   

Considerable progress in this area has already been made by Cartwright and McGuckin of 
Pacific ESI in collaboration with Stuart Cannon and Terry Turner from the SPS branch. 
They used the Pacific ESI finite element code PAM-SHOCK, which contains an embedded 
SPH module, to simulate the motion of two generic landing craft models within the well 
dock of a parent ship [6]. Figure 12, an illustration of the capability of the code, shows a 
landing craft about to enter the flooded well dock of a parent ship. 

Simulations were run for two scenarios. In the first the landing craft was tethered in a 
fixed position, while in the second the landing craft was moving forward within the well 
dock. The results showed that this method provided a viable simulation tool for the 
prediction of the relative motion between the LHD and the landing craft, although it was 
noted that several research challenges needed to be solved and experimental validation 
was required before the method could be considered ready for application to a specific 
problem.  

One of the problems with the SPH method, noted by Cartwright et al. in a previous paper 
[6], is that considerable loss of wave amplitude can occur in an SPH simulation if a wave is 
propagated over distances of more than several wavelengths. This problem is currently 
being addressed by Cannon and Turner in collaboration with Joe Monaghan (Monash 
University) and Paul Cleary (CSIRO). Experimental wave data obtained by Turner in the 
towing tank at the Australian Maritime College in Launceston is being used to benchmark 
simulations conducted by Monaghan and Cleary using in-house SPH codes. Once the 
cause of the energy loss is identified and appropriate solution strategies are implemented 
it is anticipated that these refined SPH methods will be implemented in future SPH-finite 
element code combinations and lead to more accurate predictive capabilities. Current 
work in this area recently reported by Monaghan [56] has shown that by using a different 
time stepping algorithm there was little decrease in amplitude over five wavelengths, but 
that wave heights had reduced to about 60% of the initial amplitude after propagating 
over ten wavelengths. This problem does not occur with the simulation of solitary waves 
generated by a numerical wavemaker.  

 



 
DSTO-TR-1922 

 
32 

 

Figure 12: Simulation of the docking of a landing craft within an LHD ship using the PAM-
SHOCK finite-element/SPH software 

 
Another problem of current interest within the SPS branch concerns sloshing within ship 
hulls. Interest in this area has been stimulated by the recent grounding of HMS 
Nottingham on Wolfe Rock near Norfolk Island. The ingress of water and the internal 
sloshing caused by the motion of the grounded ship due to the impact of the waves lead to 
significant weakening of the internal bulkheads. Initial simulation work in this area is 
currently being done using the LS-DYNA finite element code, which also contains a 
coupled SPH module for the simulation of fluid motion. As a precursor to the simulation 
of a complete hull DYNA is currently being used to simulate the sloshing experiments of 
Neilson [64]. Results to date show that the code can accurately calculate the shape of the 
fluid surface, but some problems are being experienced in calculating accurate pressure 
loadings on the tank walls.  

This is not an uncommon situation with current SPH calculations. The method works 
remarkably well in areas remote from boundaries, but special effort is required to 
accurately represent forces on boundaries. As mentioned in Section 3.3, Gomez-Gesteira 
and Dalrymple [25] have used a three-dimensional SPH code to model wave impact on a 
tall structure and found that pressure loadings obtained from their numerical code were in 
excellent agreement with model laboratory measurements. They achieved this result by 
treating the boundary particles as fixed fluid particles. The advantage of this approach is 
that it is unnecessary to make an a priori assumption about the nature of the force exerted 
by the boundaries, nor to utilize special computations there; a repulsive force normal to 
the boundary results without any additional considerations.  

Once the boundary force problems in DYNA have been overcome it is anticipated that the 
code will then be used to simulate loads on ship bulkheads. This information will then be 
used as input to short term damage assessment codes currently in use in MPD. This will 
give an assessment of the strength of the vessel in such situations and aid in the initial 
application of damage control procedures.  
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As mentioned in Section 4.0, SPH has already been applied to the simulation of 
underwater shock and bubble dynamics produced by the detonation of underwater 
explosives. An understanding of these events and an ability to predict their behaviour is 
vital for the prediction of warship survivability. DSTO has therefore been engaged in an 
experimental and computational study of underwater explosions for some years now, with 
the ultimate aim of developing a realistic simulation capability for their effects on naval 
vessels. To date this work has been carried out with both Lagrangian and Eulerian finite 
element codes. These mesh-based techniques have limited success in following the 
changing bubble geometry over the course of several bubble expansions and contractions 
however and so some preliminary work is being done on this problem using the SPH 
method. This is a collaborative project between Dr. Irene Penesis at the Australian 
Maritime College in Launceston and the group led by Dr. John Brett in MPD. Initial 
studies will be performed using the SPH code described in the book by Lui and Lui [43], 
suitably modified for the modelling of underwater explosives. The project will simulate 
the motion of explosive bubbles and compare the simulated results with experimental data 
obtained by the MPD group from experiments conducted in Epping quarry.  

5.2  Undersea Platform Systems Branch 

An ideal tool for maritime automation research has recently been developed in the UPS 
branch by John Wharington. The software is known as Odessa and provides an integrated 
simulation environment for vehicular and articulated systems. It simulates the motion of 
multiple rigid bodies interlinked by various types of joints and has applications in many 
maritime scenarios including simulation of AUV, ROV and UAV dynamics, payload 
drops, decoys and towed arrays. Odessa is based on ODE (Open Dynamics Engine), an 
open-source package used primarily for game development. The software uses the LCP 
(Linear Constraint Problem) formulation but makes various approximations in order to 
produce faster simulations with greater robustness.  

Odessa incorporates a special cable modelling package developed at RMIT University over 
the past decade which is specific to DSTO requirements. This specialized cable code is 
faster and more accurate than using primitive elements and is capable of explicit 
incorporation of bending, torsional stiffness, and hydrodynamic loads, thus making it 
ideal for the simulation of umbilical cables on ROVs and AUVs, multipart tow systems, 
and towed arrays.  

To extend the capabilities of Odessa to allow the code to model complex multibody 
interactions involving fluids, a new fluids simulation module has been written and 
integrated into the software by Royce Smart. Because the applications envisaged include 
highly non-linear free surface fluid motion the software uses the SPH method. The code is 
based on the SPH program contained in the book by Liu and Liu [43] but has been 
completely re-written in C++ to more easily interface with the Odessa code and the 
graphics software. The use of the SPH technique is also appropriate because the method is 
remarkably robust and can be adjusted to provide a trade off between speed and accuracy, 
which is also a feature of the underlying LCP method in Odessa. 

The incorporation of the SPH module in Odessa will allow the code to model well-dock 
scenarios and the deployment and retrieval of autonomous vehicles. This work is 
complementary to the well-dock simulations conducted in the SPS branch conducted by 
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Cannon and Turner using PAM-SHOCK because the sophisticated cable model in Odessa 
will allow more realistic simulations of the various methods of restraining the landing 
craft within the well-dock, while the finite element capabilities in PAM-SHOCK will 
allows more realistic simulations of individual types of landing craft. 

The current capability of the SPH module within Odessa is illustrated in Figure 13, which 
shows a sequence in the damn break problem at intervals of 0.5 seconds. The code is fully 
three-dimensional and the illustrations show an SPH fluid interacting with Odessa rigid 
body objects, which are the transparent walls of the container. The SPH particles are colour 
coded by velocity, with blue being the lowest velocity and red the highest velocity.  

5.3 Advanced Materials and Sensors Branch 

MPD has core responsibility for research into enhancing military vehicle survivability and 
has a long history of achievement in ballistic protection research in all areas of armour 
technology. Predictive modelling plays a significant role in evaluating the performance of 
various types of armour against ballistic impact and previous work in this area has been 
conducted using the Lagrangian finite element code DYNA.  

The prevalence of new composite armours containing ceramic layers however has lead to 
a need to upgrade current simulation capabilities to deal with the complicated fracture 
mechanics of these types of materials. Stephen Cimpoeru and his team in the AM&S 
branch are planning to use the SPH module in the AUTODYN software package to 
simulate the ballistic protection offered by confined and unconfined ceramic targets and 
transparent armour. As discussed in Section 4.0, the SPH module within AUTODYN has 
already displayed considerable success in simulations of this type. The combination of the 
finite element Lagrangian solver with the SPH module and the sophisticated materials 
models within AUTODYN, which includes constitutive models for metals, composites, 
ceramics, glass, concrete, soil, and explosives, currently provides the most appropriate 
tools for modelling ballistic impact events of this type. 
 

6. Discussion and Conclusion 

The use of the SPH technique for the simulation of hydrodynamic flows, gas dynamics 
and solids modelling has increased significantly during the past decade. The areas in 
which SPH has found application are now so diverse that no review can authoritatively 
cover each of these areas in significant detail. The simulations and applications discussed 
in this report have concentrated on those areas thought to be of most use to current 
defence science interests.  

A large body of work has now shown that SPH is a particularly useful tool for the 
prediction of bulk fluid motion with free surfaces. SPH is clearly the best numerical 
technique to apply to these types of problems if the simulated results for the fluid motion 
are not required to display extremely high levels of accuracy, which is typically the case in 
many defence applications. Examples of this type of application include the sloshing of 
water inside hulls, the well dock problem, and wave breaking over ships. 
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Figure 13: A sequence from a damn break problem at 0.5 second intervals calculated using the 
Odessa code and the three-dimensional SPH module 
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However, one area of hydrodynamics in which SPH does not offer any specific advantage, 
and in fact is definitely not the most appropriate solution technique, occurs in simulations 
where viscous forces are the dominant factors in determining the nature of the flow. 
Examples of this type of application include the calculation of lift and drag forces on 
submerged bodies in high Reynolds number flows. In these applications the flow is highly 
turbulent and the general features of the flow are determined by the detachment of the 
boundary layer. The dynamics of this are highly dependent on the viscosity of the fluid. 
SPH can model drag forces successfully, as the papers by Takeda et al. [74] and Morris et 
al. [62] have shown, but only for very low Reynolds number flows which are essentially 
laminar and where the boundary layer can be resolved by the SPH particles. In 
applications where the Reynolds number is of the order of a million or higher the 
thickness of the boundary layer is several orders of magnitude smaller than the typical 
length scale. This causes significant problems for any numerical solution technique 
because of the need to resolve length scales over several orders of magnitude. An SPH 
code with a variable smoothing length could certainly be applied to such problems, but 
would currently offer no specific advantages over traditional grid based methods. 

The other area where SPH has had a significant impact in an area of science relevant to 
defence is in the simulation of the brittle fracture of solids. This is because the 
sophisticated fracture mechanics models used to accurately simulate the behaviour of 
these materials requires the entire stress history of a given piece of material. This is easily 
done using Lagrangian codes because in this approach the frame of reference is attached to 
the material. Lagrangian methods however suffer from the problem of grid entanglement 
and become impractical to use in many applications of defence interest. The ability to 
replace entangled Lagrangian nodes with disconnected SPH particles, as discussed in 
section 4.0, means that the Lagrangian approach can now still be applied, even in cases of 
extreme material distortion. As noted in section 5.3, several commercial codes now contain 
this technique for fracture mechanics modelling and this offers a significantly improved 
capability for the simulation of ballistic impact on confined and unconfined ceramic 
targets and transparent armour. 
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