

Information Fusion for Natural and Man-Made Disasters

AFOSR Grant F49620-01-1-0371

Final Report

 January 31, 2007

Submitted to:

U.S. Air Force Office of Science and Research

875 N. Randolph St. Room 3112

Arlington, VA 22203-1954

Principal Investigator:

Dr. Peter D. Scott

Department of Computer Science and Engineering

University at Buffalo

Buffalo NY 14260-2000

Approved for public release; distribution is unlimited

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

31-01-2007 Final Technical Report 4/2001 to 10/2006

Information Fusion for Natural and Man-Made Disasters N/A

F49620-01-1-0371

N/A

6609

N/A

N/A

Scott, Peter D. PhD.

CUBRC
4455 Genesee St.
Buffalo, NY 14225

6609-01

U.S. Air Force Office of Science and Research
875 N. Randolph St. Room 3112
Arlington, VA 22203-1954

AFOSR

Prompt effective response to emergencies created by major natural and man-made disasters requires highly coordinated efforts from
emergency responders and decision-makers across multiple disciplines, jurisdictions, and hierarchical levels of responsibility and
authority. A critical task is creation of coherent, comprehensive and accurate situation assessment which can guide decision-making
and resource allocation. The raw materials for this situation assessment are prior domain knowledge, incoming reports from sensors
and human observers, a situational assessment logic, and a disciplined data fusion paradigm. To date, data fusion research in this
domain has focused on the levels of data fusion below the critical situation assessment level, namely signal and object assessment.
This project studies the use of comprehensive data fusion, including situation and impact assessment, in the response to natural and
man-made disasters. In particular, the early response phase is emphasized, in which casualty mitigation is the core goal. New
methodological approaches and their deployment in an earthquake simulator test bed are the products of this research.

Information Fusion, Emergency Management, Disaster, Situation Assessment, Models, Optimization, Casualty Management

UNCLAS UNCLAS UNCLAS UU

Mr. Michael D. Moskal

716-631-6923

- 1 -

AFOSR F49620-01-1-0371

Acknowlegments

I gratefully acknowledge the efforts of the team of faculty, consultants and graduate students

from CUBRC, the University at Buffalo, the University of Virginia and beyond who worked on

this project. Over its five year lifetime, these scholars gave unstintingly of their time and

expertise to support a common vision of scientific excellence and technical relevance. Whatever

achievements may be noted in this work are theirs, wherever we came up short I take

responsibility. I am particularly indebted to Dr. James Llinas, the original Principal Investigator

for the project, who gave me the opportunity to carry on this important work. I also acknowledge

the support given us by our sponsor AFRL, and the guidance of our program director Dr. John

Tangney.

Many sections of this final report were distilled from reports and publications authored by

project team members cited in Section 4 Personnel Supported by the Grant, and I thank them for

the opportunity to use their work here. All should be considered co-authors of this report.

Peter D. Scott January 31, 2007

- 2 -

AFOSR F49620-01-1-0371

1. Table of Contents

 Page

Acknowledgments 1

1. Table of Contents (this page) 2

2. Program Goals and Achievements 3

3. Personnel Supported by the Grant 5

4. Theses/Dissertations Produced 8

5. Publications Produced Under the Grant 18

6. Technical Summary of Results 23

 6.1 Overview 23

 6.2 The DIRE Test Bed 28

 6.3 Work analysis and domain ontology 64

 6.4 Hospital Modeling 91

 6.5 Dispatch & Routing Modeling 116

 6.6 Visualization Modeling 136

 6.7 Secondary Incident Modeling 149

 6.8 Distributed L0/L1 Fusion 158

 6.9 Higher Level Fusion 177

 6.10 Layered Hybrid System Architecture 220

 6.11 Testing and Evaluation 237

 6.12 Track Confidence and Adjudication 251

7. References 296

Appendix A: DIRE Source Code A-1

Appendix B: Sample Data Sets A-107

- 3 -

AFOSR F49620-01-1-0371

2. Program Goals and Achievements

Here an executive summary of the principal goals, objectives, achievements and new findings is

presented. Extended technical development of each item can be found in Section 6 of this report.

2.1 Goals

The primary goals and program objectives of this project have remained unchanged since their

initial articulation in the project proposal presented by Dr. James Llinas to the AFOSR in

February 2001 [6.10-20]. The three-fold primary objectives consist in: 1. Development,

validation and documentation of a quantitative engineering methodology for L2-L3 fusion; 2.

Design and implemention of DIRE (acronym designating our DIsaster Response Environment), a

scalable reusable digital simulation test bed for studying higher level fusion the in the context of

response to natural and man-made; and 3. Production of work products with transition paths to

high priority Air Force problem domains.

Secondary objectives include formal problem encoding and the production of a domain-specific

disaster ontology; design of a centralized fusion node and distribution of centralized fusion

functionality to a hierarchical distributed fusion network. Additional secondary objectives

developed as the project evolved include the incorporation of disaster-response-specific

cognitive work analysis taxonomies within the fusion ontology, formulation of architectural

specifications, and the discovery and response to secondary heterogeneous disaster events within

the primary scenario (such as a toxic chemical spill event within the initial response phase to an

earthquake with damage and casualties).

2.2 Achievements

The dual thrusts by which these goals were pursued were: 1. The development of a

comprehensive methodological framework whose scope ranged from broad design issues such as

fusion architecture and reasoning scheme to implementation issues such as visualization and

asssociation algorithms; 2. The development of a test bed in which to explore the properties of

the methods described.

2.2.1 New Methodologies

- 4 -

AFOSR F49620-01-1-0371

New frameworks presented in a problem domain as inherently multi-layer and extended as data

fusion have many interrelated elements. Here we list only those we consider the most notable.

The details of these findings, and many others, are contained in Section 6 of this report.

1. A new belief-based argumentation system logical framework for abductive reasoning in high

level fusion. This method is an extension of the Probabilistic Argumentation System of Kohlas

and colleagues in which a belief representation of uncertainty is employed.

3. A disaster ontology (DisReO) is defined and delineated.

4. A cognitive work analysis of the distster response scenario is delineated, and employed jointly

with a disaster ontology to define a user-centric approach to data fusion system design.

5. A new logistic hospital model is developed which bypasses previous limitations in accurately

predicting residual future capacity during an early-phase emergency response.

6. A new dispatch algorithm for transportation resources is developed in which aggregates of

targets are employed to partition the service space, leading to more effective dispatch service in

the presence of a high degree of uncertainty.

7. A new routing approach and related algorithms for transportation resources in presented. The

novelty is the combination of mutliple disparate solutions and routing efficiency, a suitable

approach in scenarios in which the fastest routes may prove to be blocked or slowed.

8. A visualization scheme based on the new principle of dynamic iconography is developed for

situation awareness in scenarios where low latency is required such as disaster response.

9. Adjudication and track confidence updating are integrated into the data fusion system design,

the significance of these mechanisms and the procedure for doing this is detailed.

10. A new three-layer general fusion architecture is presented. This flexible scalable hybrid

scheme integrates layers of the Dual Node, Blackboard and Intelligent Agent schemes in a

natural way.

- 5 -

AFOSR F49620-01-1-0371

2.2.2 The DIRE Test Bed

1. An HLA/RTI-compliant distributed simulation environment for earthquake scenarios has been

designed and tested. This system is suited to the testing and evaluation of data fusion schemes,

and testing and evaluation of the phenomenological models for constituent objects such as

hospitals and emergency personnel behaviors.

2. A secondary incident generator has been implemented within DIRE. The current focus is on a

secondary Hazmat incident, but other secondary incidents such as fire or flood could be easily

implemented.

3. The principal methodological recommendations of this project have been coded into DIRE.

4. Results from the test bed suggest that high level fusion is critical to realizing significant

benefit from incorporating data fusion in the emergency response environment. Use of L0/L1

fusion without L2/L3 fusion may in fact degrade overall emergency response effectiveness

compared to no fusion at all.

3. Personnel Supported by the Grant

3.1 Faculty

Dr. Aidong Zhang, Computer Science and Engineering Dept, University at Buffalo

Dr. Ann Bisantz, Industrial Engineering Department, University at Buffalo

Dr. Don Brown, Systems Engineering Department, University of Virginia

Dr. Henry Hexmoor, Computer Science Department, University of Arkansas

Dr. T. Kesavadas, Mechanical Engineering Department, University at Buffalo

Dr. George Lee, MCEER Earthquake Center, University at Buffalo

Dr. Eric Little, Depts. of Education and Philosophy, D’Youville College

Dr. James Llinas, Industrial Engineering Department, University at Buffalo

- 6 -

AFOSR F49620-01-1-0371

Dr. Chris Rump, Industrial Engineering Department, Bowling Green University

Dr. Peter Scott, Computer Science and Engineering Dept., University at Buffalo

3.2 Post-Doctoral Fellows

Dr. William Frank, Industrial Engineering Dept., University at Buffalo

Dr. Michael Tong, Industrial Engineering Dept., University at Buffalo

3.3 Consultants

Dr. Chris Bowman, Data Fusion and Neural Networks

Dr. Ron Eguchi, Imcat Inc.

Dr. Galya Rogova, Encompass Consulting

3.4 Professional staff

Justin Stile, Systems Engineering Department, University of Virginia Charlottesville

Mike Moskal, CUBRC

James Scandale, CUBRC, University at Buffalo

Adam Stotz, CUBRC

Dorothy Tao, MCEER, University at Buffalo

3.5 Graduate Students

Rajendra Agrawal, Dept. Mechanical Engineering, University at Buffalo

Santosh Basapur, Dept. Industrial Engineering, University at Buffalo

Jae Young Choi, Industrial Engineering, University at Buffalo

Zhaofan Ding, Dept. Computer Sci. and Eng., University at Buffalo

- 7 -

AFOSR F49620-01-1-0371

Rucha Gokhale, Industrial Engineering, University at Buffalo

Santosh George, Dept. Industrial Engineering, University at Buffalo

Rucha Gokhale, Dept. Industrial Engineering, University at Buffalo

Qiang Gong, Industrial Engineering, University at Buffalo

Venkatraghavan Gourishankar, Dept. Mechanical Engineering, University at Buffalo

Arun Jotshi, Dept. Industrial Engineering, University at Buffalo

Ameya Kamerkar, Dept. Mechanical Engineering, University at Buffalo

Jae-Jun Kim. Industrial Engineering, University at Buffalo

Young-Seok Kim, Dept. Mechanical Engineering, University at Buffalo

Feng Lin, Industrial Engineering, University at Buffalo

Carlos Lollett, Dept. Computer Sci. and Eng., University at Buffalo

Naveen Manchikatla, Industrial Engineering, University at Buffalo

Matthew Mandiak, Dept. Mechanical Engineering, University at Buffalo

Natalia Mazaeva, Industrial Engineering, University at Buffalo

Nishant Mishra, Industrial Engineering, University at Buffalo

Rashmi Mudiyanur, Dept. Computer Sci. and Eng., University at Buffalo

Jomon Paul, Industrial Engineering, University at Buffalo

Sanjay Rawat, Industrial Engineering, University at Buffalo

Jay Robertson, Dept. Systems Engineering, University of Virginia

Daniel Robinson, Dept. Systems Engineering, University of Virginia

- 8 -

AFOSR F49620-01-1-0371

Charles Shah, Dept. Mechanical Engineering, University at Buffalo

Pengfei Yi, Dept. Industrial Engineering, University at Buffalo

4. Theses and Dissertations Produced Under the Grant

4.1 MS Theses

4.1.1 Basapur, Santosh Suresh, The effect of display modalities on decision making under

uncertainty. A thesis presented to the faculty of the Industrial Engineering Department of the

University at Buffalo in partial fulfillment of the requirements for the MS Degree. Abstract

available by request from the University at Buffalo Libaries, Capen Libray Thesis Collection.

4.1.2 George, Santhosh K., Diffusion based FEM simulation and free-form surface

characterization for sequential MEMS fabrication processes. A thesis presented to the faculty of

the Industrial Engineering Department of the University at Buffalo in partial fulfillment of the

requirements for the MS Degree. Abstract available by request from the University at Buffalo

Libaries, Capen Libray Thesis Collection.

4.1.3 Kamerkar, Ameya V., Touch based interactive nurbs modeler using a force/position input

glove. A thesis presented to the faculty of the Mechanical and Aerospace Engineering

Department of the University at Buffalo in partial fulfillment of the requirements for the MS

Degree. Abstract available by request from the University at Buffalo Libaries, Capen Libray

Thesis Collection.

4.1.4 Lollett, Carlos, Sensor fusion for mobile robots, A project presented to the faculty of the

Mechanical and Aerospace Engineering Department of the University at Buffalo in partial

fulfillment of the requirements for the MS Degree.

Abstract: Mobile robot is a concept that is usually intuitive understood. A mobile robot should be

able to interact autonomously with its environment. It means that a mobile robot should be aware

of its environment. Robots can know about its environment through devices called sensors.

- 9 -

AFOSR F49620-01-1-0371

A sensor is a device that transforms an energy that come from the environment to a useful form

that provide environment information, like the case where an infrared sensor detect infrared

radiation coming from the environment using it to measure distance.

Human being as a system is also capable to get information from his environment through his

senses. We get information from our environment seeing, hearing, touching, smelling and

tasting. Sometimes, the same kind of information can be derived from two or more sense. If it is

possible to combine the information from several sensors in a synergic way, it is also possible to

enhance the environment understanding. That process is called sensor fusion.

In the field of robotics, sensor fusion is a technique for interpreting data from disparate robot

sensors to form a unified “picture” of what is happening in the robot’s world [2].

In this project a simple setup of three ultrasound sensor was used to implement a robot

navigation algorithm. Ultrasound sensors were used to measure distance to obstacles. Having

different spatial orientation, the information from several sensors can be use to estimate the angle

of regular walls.

In order to obtain the orientation of a straight line, at least two points P1(x1,y1) and P2(x2,y2) as

shown in Fig. 1. The robot faces the line with an angle alpha.

P1(x1,y1)

P2(x2,y2)

alpha

Mobile
Robot

Figure 1. Mobile Robot faces an obstacle.

- 10 -

AFOSR F49620-01-1-0371

The alignment between the robot and the wall can be used in the decision making process. In

order to avoid the obstacle the robot should try to align its path parallel to the wall. Once the

obstacle is cleared it can resume its original goal.

Two approaches to the problem were used: Wall Orientation and Progressive Clearing. In Wall

Orientation, the robot goes as close as it can to the wall and then aligns itself to a parallel

direction to the wall axis. In Progressive Clearing, the robot tends to stop earlier and then check

for the sensor that shows the clearest path, rotating accordingly.

4.1.5 Mandiak, Matthew Haptics enabled virtual assembly application for enhanced product

design, A thesis presented to the faculty of the Mechanical and Aerospace Engineering

Department of the University at Buffalo in partial fulfillment of the requirements for the MS

Degree.

Abstract: The use of virtual environments offers en dless possibilities to an engineer in a

manufacturing setting. This thesis deals w ith the development of a virtual assembly package to

aid in the product development cycle. A framew ork for a user interface is described which

will allow e ngineers to design, manufactur e and assemble in a virtual environment. Therefore,

prototypes can th en be created virtua lly without expending significant resources or money. In

this wo rk, a haptic interface was implemented to allow for assembly to take place with fo rce

feedback. In ad dition, manufacturing statistics were provided through a custom bu ilt interface

to guide a user on how well the parts they were assembling were produced. Experiments were

then carried out in order to prove that haptics could be used to distinguish assemb ly amongst

parts of varying assembly parameters. These experiments th en serve to validate the use of

virtual assembly in product design.

4.1.6. Mishra, Nishant, Capacity and non-steady state generalizations to the dynamic MEXCLP

model for distributed sensing networks, A thesis presented to the faculty of the Mechanical and

Aerospace Engineering Department of the University at Buffalo in partial fulfillment of the

requirements for the MS Degree. Abstract available by request from the University at Buffalo

Libaries, Capen Libray Thesis Collection.

- 11 -

AFOSR F49620-01-1-0371

4.1.7 Rawat, Sanjay A frame work for performance evaluation of multi target tracking

systems, A thesis presented to the faculty of the Industrial Engineering Department of the

University at Buffalo in partial fulfillment of the requirements for the MS Degree. Abstract

available by request from the University at Buffalo Libaries, Capen Libray Thesis Collection.

4.1.8 Robinson, Daniel Assessing Casualty Densities Based on Sensor Reports Pursuant to a

Large-Scale Disaster, A project presented to the faculty of the Systems Engineering Department

of the University of Virginia Charlottesville in partial fulfillment of the requirements for the MS

Degree.

Abstract: One of the newest innovations which is making its way more prevalently into the field

of emergency response is information technology. Information technology (IT), in this sense,

seeks to turn relevant data into usable information to aid in an emergency response. One of the

key elements to useful beneficial IT is to quickly, accurately, and dynamically turn incoming

data into usable information.

This project presents a way to statistically analyze incoming casualty reports at specific time

intervals to not only estimate casualty densities, but also assess whether or not the casualty

densities being observed are within some confidence interval of an expected number of

casualties. Simple models of the searching process are developed and used to dynamically

analyze an incoming report stream. If the number of casualties is sufficiently different than the

expected number, then one might conclude either a secondary event has occurred or the initial

estimates were simply wrong.

To test the method a simulation is developed where the region in question will be a 10X10 grid.

The total casualty population in the model will be 30,000 and the total number of sensors

searching for casualties will be 500. The simulation will go for 10 time steps representing 10

hours of searching. Additionally, for all testing the 80% confidence level will be used to

determine error rates.

The largest number of casualties in any one grid location is 764. This is not a fixed parameter but

rather a result of the random layout. To assign a number of man hours to search in each region

at each time step, the total number of sensors was randomly distributed in each region according

- 12 -

AFOSR F49620-01-1-0371

to a uniform distribution. Thus, for the purposes of testing, there is no inherent method to

assigning search patterns.

The probability of finding a casualty is a function of the damage in an area. Damage was

assigned randomly in the same fashion as the casualty layout with the sum of all damage being

30,000. A function for assigning the probability of finding a casualty is

()











































∑
=









−=

ti
P

i
ti

P

Di

D
p i

ti

,

100

1
,

max10
exp,

This function is simply a way to map the damage and man hour values into an appropriate

probability space.

To test the simulation it was run 1000 times on a casualty distribution which was exactly what

is expected. A hypothesis test result of not being from the expected distribution will be referred

to as an area of interest. A contour plot of the hypothesis test results, or rather the percentage of

the time that the simulation classified the search region as an area of interest, is given in figure 2.

Figure 1 represents the actual distribution of casualties.

4.2 Ph.D. Dissertations

4.2.1. Choi, Jae Young, Stochastic scheduling problems for minimizing tardy jobs with

application to emergency vehicle dispatching on unreliable road networks, A dissertation

presented to the faculty of the Industrial Engineering Department of the University at Buffalo in

partial fulfillment of the requirements for the Ph.D. degree. Abstract available by request from

the University at Buffalo Libaries, Capen Libray Thesis Collection.

4.2.2 Gong, Qiang, Responding to casualties in a disaster relief operation: Initial ambulance

allocation and reallocation, and switching of casualty priorities, A dissertation presented to the

faculty of the Industrial Engineering Department of the University at Buffalo in partial

fulfillment of the requirements for the Ph.D. degree.

Abstract: This research is concerned with models for response to casualties in a disaster relief

operation. Three problems are analyzed. The first is that of initial ambulance allocation to

- 13 -

AFOSR F49620-01-1-0371

casualty clusters. The second is that of ambulance reallocation between casualty clusters. The

third is that of switching casualty priorities. We briefly describe each contribution.

The first problem analyzes a deterministic ambulance allocation model for a post-disaster relief

operation. Casualties in a natural disaster, e.g., earthquake, tend to be numerous and distributed

in space, typically forming clusters. Due to the geographic separation of the clusters it is not

practical to switch ambulances between clusters frequently after the rescue starts. Thus it is

critical to allocate the correct number of ambulances to each cluster at the beginning of the

rescue process. We formulate a deterministic model which depicts how a cluster grows after a

disaster strikes. Based on the model and given a number of ambulances, we develop methods to

calculate critical time measures, e.g. completion time for each cluster. Then we present two

iterative procedures to optimize the makespan and the weighted total flow time, respectively.

Our methods are illustrated via a case study, which is based on an earthquake in Northridge,

California. The main conclusion is that the optimal ambulance allocation can be significantly

dependent upon the desired performance measure.

The second problem analyzes the ambulance reallocation problem on the basis of a discrete time

policy. The benefits of redistribution include providing service to new clusters and fully utilizing

ambulances. We consider the objective of minimizing makespan. The complication is that the

distance between clusters needs to be factored in when making an ambulance reallocation

decision. Our model permits consideration of travel distance between clusters.

The third problem is concerned with servicing casualties with different priorities. We formulate a

two-priority, preemptive, single-server queueing model. Each customer is classified into either a

high priority class or a low priority class. The arrivals of the two priority classes follow

independent Poisson processes and service time is assumed to be exponentially distributed. A

queue-length-cutoff method is considered. Under this discipline the server responds only to high

priority customers until the queue length of the other class exceeds a threshold L . After that the

server switches to handle only the low priority queue. Steady-state balance equations are

established for this system. Then we introduce two-dimensional generating functions to obtain

the average number of customers for each priority class. We then focus on the preemptive

resume case. We develop methodologies to obtain the optimal cutoffs for the situation when the

- 14 -

AFOSR F49620-01-1-0371

weights of both queues are constant (i.e., not a function of queue length) and the situation when

the weights change linearly with the queue lengths.

4.2.3 Jotshi, Arun, Search for Immobile Entities on a Network, A dissertation presented to the

faculty of the Industrial Engineering Department of the University at Buffalo in partial

fulfillment of the requirements for the Ph.D. degree.

Abstract: We consider the problem of searching for immobile friendly entities on an undirected

network. The time to search the entity is a random variable, whose probability density function (

pdf) depends upon the path and also upon any information we have regarding the location of the

entities on the network. The objective function that we consider is expected search time. We seek

a path choice that minimizes this objective. A specific application is a disaster scenario (natural

or man-made), in which the searcher is an ambulance and the entity is a casualty. Solving the

search game on a network with an arbitrary starting point for the searcher is an interesting

problem which, to our knowledge, has not yet been investigated. Minimizing the expected search

time differs from arc-covering problems, e.g. the Chinese Postman Problem (CPP), in the way

that here the objective is not to find the minimum length tour that covers all the links at least

once, but instead to minimize the expected time to find the entity. This problem is also different

from search problems considered in the literature, since the entity is neither an evader nor a

cooperator and there is no information regarding the location of the entity except for a region of

interest within which the entity is believed to be found. We plan to address several aspects of this

particular class of search problems. In our analysis we assume that the entity is of infinitesimal

size, i.e., it is only found when the searcher is directly over it. The number of entities is given by

a Space Poisson random variable. The number of entities we are trying to find is driven by the

capacity of the searcher, which in our case is the ambulance.

The dissertation is divided into two parts. Part 1 is dedicated to the problem of optimal search for

the first entity. Part 1 assumes that the searcher capacity is one. We introduce a heuristic

algorithm to deal with the search process given that there is exactly one entity on the network

and it is equally likely to be at any point on the network. We later prove that this path is also

optimal for the situation when a number of entities are present and these entities are uniformly

distributed. We also show that the search process given non-uniform distribution of entities

- 15 -

AFOSR F49620-01-1-0371

across the network is a special case of the uniformly distributed entities. Finally, the case with re-

optimization is briefly considered.

4.2.4 . Kim, Young-Seok, Fingertip digitizer A real-time, fingertip-mounted haptic sensing

system for active, dynamic, and viscoelastic touch. A dissertation presented to the faculty of the

Mechanical and Aerospace Engineering Department of the University at Buffalo in partial

fulfillment of the requirements for the Ph.D. degree.

Abstract: The capability of human beings to perform skilled tasks often depends on their ability

to touch, grasp, and manipulate tools and control objects. An example where this is especially

true is in the 3D digitizing industry, where a stiff probe has to make contact with the object under

study. However, this tool-based interface has a major drawback---the outcome excludes the

benefits of the unique feeling that comes from the direct finger contact on an object. This

dissertation introduces a new approach to finger touch interface. Based on the sensing

methodology for dynamic human touch, called Active Touch paradigm, a sensory-enhanced

virtual environment is proposed where both man and machine perfectly share the haptic stimuli.

With this interface, overall work performance can be enhanced by the machine’s digital power

and the human’s instinctive exploratory capability. In the present work, this concept is

implemented through the invention and validation of a new dynamic fingertip digitizing device

called the Fingertip Digitizer . The unique approach presented here adds a new perspective to the

science of conventional passive human touch by adding active and dynamic aspects to it. The

specific aims of the present work are as follows: (1) develop a fingertipmounted hardware

capable of tactile digitizing, (2) investigate dynamic features of fingertip characteristics in tactual

tasks, and (3) develop touch-based applications of multimodal sensory feedback using the new

Fingertip Digitizer. All of the above aims were successfully completed. First, a fingertip-

mounted digitizer, capable of capturing both static and dynamic phenomena at the finger tip, was

developed. Second, the fingertip behavior during the dynamic tactual activities was investigated

with the consideration of the fingertip’s dynamic and viscoelastic behavior during active touch.

Finally, three applications of the Fingertip Digitizer were developed: (1) Touch Painter & Touch

Canvas : a 2D touch interface for intuitive drawing, (2) Tactile Tracer : a 3D touch interface for

object digitizing, and (3) Touch Model Verifier : a verification methodology for comparing the

- 16 -

AFOSR F49620-01-1-0371

haptic stimuli from the real physical objects and its corresponding virtual object through a haptic

device.

4.2.5. Kim, Jae-Jun, Design of hardware/algorithm for enhancement of driver/vehicle

performance using a virtual environment. A dissertation presented to the faculty of the

Mechanical and Aerospace Engineering Department of the University at Buffalo in partial

fulfillment of the requirements for the Ph.D. degree. Abstract available by request from the

University at Buffalo Libaries, Capen Libray Thesis Collection.

4.2.6 Paul, Jomon, Study of effects of facility damage on hospital capacity estimates and

location-allocation planning for management of natural disasters, A dissertation presented to the

faculty of the Industrial Engineering Department of the University at Buffalo in partial

fulfillment of the requirements for the Ph.D. degree.

Abstract: Estimation of the impact of damage to the hospitals due to a natural disaster is very

important since it allows for planning prior to and shortly after the disaster strikes. These

estimates could also be used to plan new facilities and capacity reallocation between existing

facilities. The dissertation is divided into three parts.

In the first part, the impact from facility damage due to a natural disaster like an earthquake or

hurricane to the hospital capacity estimates is estimated. A recent paper by Yi et al. (2005)

contains a generic hospital simulation model. This model is extended to incorporate a facility

damage component and estimate the corresponding effect on patient waiting times and capacity

estimates. A hospital, unlike many other service organizations, is more affected by non structural

damage than structural damage. Non structural components in the hospital like power, water and

medical resources, if damaged, can render the hospital useless.

In the second part the effect of capacity reductions on planning of the hospital facility location

and capacity allocation in a region prone to natural disaster is incorporated. Two basic models

are developed and analyzed for hospital location and capacity allocation. The focus is on an area

prone to natural disasters. The first model seeks to locate hospitals and allocate capacities so that

the mean travel distance for patients to hospitals is minimized over a variety of disaster

- 17 -

AFOSR F49620-01-1-0371

scenarios. The second model seeks to reallocate capacity among hospitals so as to maximize the

system's effectiveness to the forthcoming disaster event.

In the third part the effect of damage to the transportation network on the hospital location and

capacity allocation problem is studied. Various scenarios of road damage are simulated for the

earthquake and hurricane disaster. The results are demonstrated via examples and case studies.

Once a disaster strikes, people tend to move out of their current location so as to reach a better

and safer location. This displaced population is mainly the noninjured and low severity people.

The Roads become congested leading to increased travel times. This directly affects the disaster

relief meted out to the casualties. This factor is incorporated in the capacity reallocation model

via a simulation model.

4.2.7 Yi, Pengfei, Real-time Generic Hospital Capacity Estimation under Emergency Situations

A dissertation presented to the faculty of the Industrial Engineering Department of the University

at Buffalo in partial fulfillment of the requirements for the Ph.D. degree.

Abstract: Hospitals are an integral part of a society’s readiness to respond to man-made and

natural disasters. Capacity planning greatly enhances the capability and effectiveness of

treatment provided to the injured resulted from a disaster. The real-time capacity estimates for

the hospitals presented in the disaster region can be used for patient/ambulance routing, resource

planning and emergency operations management. Clearly case-specific models based on average

or steady-state conditions are insufficient in such dynamic environment. Hence, a methodology

to handle the generic, real-time, and dynamic phenomena has been developed to provide accurate

capacity estimation.

This research has addressed three major requirements that are not mentioned in previous

research. First, the methodology needs to be generic so that it can represent a large range of

hospitals with various sizes and capabilities. Second, in addition to long-term performance, the

dynamic nature of both hospital operations and patient arrivals in a disaster needs to be captured.

Third, the capacity estimation has to be made accurately in real time to ensure its usefulness for

disaster relief efforts.

- 18 -

AFOSR F49620-01-1-0371

All of the above issues are critical for rescue management, however, none has been addressed

before. To meet this challenge, several steps are taken. First of all, a generic parametric

simulation model is developed to take into account the hospital resources, capability, operational

efficiency, and types of injuries. The model is capable of representing a variety of hospitals by

their characteristics. Then factorial simulation experiments are designed to cover a large range of

hospitals. To ensure real-time applications, the simulations are executed off-line and the steady-

state performances are regressed into a parametric response surface model by using both linear

and non-linear regression.

Based on steady-state regression models, a double exponential parametric metamodel is

developed to capture hospitals’ dynamic performance during the transient period. This

metamodel is further improved to a continuous metamodel that is capable of utilizing the

continuous patient arrival rate function. As a reinforcement of the metamodel, a sequential

estimation methodology is developed to estimate the dynamic patient arrival rate in real-time.

Finally, the capacity estimation methodology is illustrated in an earthquake setting. Results show

viability of the approach and demonstrate promising potential for further analysis of hospitals’

dynamic behavior under other emergency situations. More importantly, the developed

methodology can be easily applied to other industries such as manufacturing and service.

5. Publications Produced Under the Grant

1. Rajan Batta, Qiang Gong and Arun Jotshi, “Dispatching and Routing of Emergency

Vehicles on Large Scale Networks,” Proceedings of the Industrial Engineering Research

Conference, Atlanta, GA, 2005.

2. Ann Bisantz, Galina Rogova and Eric Little, “On the Integration of Cognitive Work

Analysis within a Multisource Information Fusion Development Methodology,” Proceedings of

the 48th Human Factors and Ergonomics Society Annual Meeting, New Orleans, LA, 2004.

3. C.L. Bowman, The Dual Node Network (DNN) Data Fusion & Resource Management

(DF&RM) Architecture, Proceedings of the AIAA 1
st
 Intelligent Systems Technical Conference,

Chicago IL, September 20-22, 2004,.

- 19 -

AFOSR F49620-01-1-0371

4. C.L. Bowman, Unifying Data Fusion & Resource Management (DF&RM) Software

Development Approaches Using the Dual Node Network (DNN) Architecture, in Unification of

Fusion Theories,.

5. J-Y. Choi, and C.M. Rump, Maximizing the Number of 'Early Enough' Jobs: A Chance-

Constrained Stochastic Scheduling Problem. UB Dept. IE Technical Report 2002.

6. J-Y. Choi, C.M. Rump and G. Rogova, A Dynamic Program for Minimizing the

Expected Number of Tardy Jobs with Distinct Exponential Due Dates. Under review by IIE

Transactions on Scheduling and Logistics

7. Q. Gong and R. Batta, "A Queue-Length Cutoff Model for a Preemptive Two Priority

M/M/1 System". Submitted to Operations Research.

8. Q. Gong and R. Batta, "A Allocation of Ambulances to Casualty Clusters in a Disaster

Relief Operation". IIE Transactions.

9. Q. Gong and R. Batta, “A M/M/1 Queue-Length Cutoff Model with Two Priorities,”

Institute for Operations Research and the Management Sciences Annual Meeting, Denver CO,

2004.

10. Q. Gong, A. Jotshi and R. Batta, “Dispatch-Routing of emergency vehicles in a disaster

environment using data fusion concepts,” Proceedings of the 7th International Conference on

Multisource Information Fusion, Stockholm, Sweden, 2004.

11. Joshi, N. Mishra, R. Batta, R. Nagi, Ad Hoc Sensor Network Topology Design for

Distributed Fusion: A Mathematical Programming Approach, Proceedings of the 7th

International Conference on Information Fusion (ISIF 2004), Stockholm Sweden, June 2004, pp.

836-841.

12. Jotshi, Q. Gong and R. Batta, “Dispatching and routing of emergency vehicles in disaster

mitigation using data fusion,” Socio Economic Planning Sciences Journal, accepted for

publication, to appear 2006

- 20 -

AFOSR F49620-01-1-0371

13. Jotshi and R. Batta, “Optimum Search for a Target on a Network,” Proceedings of the

Industrial Engineering Research Conference, Atlanta, GA, 2005, to appear.

14. Jotshi and R. Batta, “Finding robust paths for routing ambulances in a dynamic disaster

environment,” Proceedings of the Industrial Engineering Research Conference, New Orleans,

LA, 2004.

15. T. Kesavadas, Y. Kim, Automated Dynamic Symbology for Level 2 and 3 Fusion,

Proceedings of the Conference on Visualization and the Common Operational Picture (VizCOP),

September 14-17 2004, Canadian Forces College, Toronto, Canada to appear.

16. Y. Kim, T. Kesavadas, Automated Dynamic Symbology for Visualization of High Level

Fusion, Proceedings of the 7th International Conference on Information Fusion (ISIF 2004),

Stockholm Sweden, June 2004, pp. 944-950.

17. E. Little, G. Rogova, Formal ontology and Higher Level Fusion, submitted to

Information fusion, Elsevier.

18. E. Little, A Proposed Methodology for The Development of Application-Based Formal

Ontologies, Proceedings of the 2003 Hamburg Symposium on Ontologies

19. Eric Little. “A Proposed Methodology for Application-Based Formal Ontologies,”

Proceedings of the Workshop on Reference Ontologies vs. Application Ontologies, 15-18 Sept.,

University of Hamburg, CEUR-WS, 2004.

20. Eric Little,Galina Rogova, A. Boury-Brisset, “Theoretical Foundations of Threat

Ontology (ThrO) for Data Fusion Applications”, TR-2005 -269, 2005.

21. Eric Little, Galina Rogova. “Ontology Meta-Model for Building A Situational Picture of

Catastrophic Events,” in Proceedings of the 8th International Conference on Multisource

Information Fusion, Philadelphia, PA, 2005.

22. Eric Little and Galina Rogova, “Ontology Meta-Model for Building A Situational Picture

of Catastrophic Events,” Proceedings of the 8th International Conference on Information

Fusion, Philadelphia, PA, 2005, to appear.

- 21 -

AFOSR F49620-01-1-0371

23. J. Llinas, C.L. Bowman, G. Rogova, A. Steinberg, E. Waltz, F. White, Revisions and

Extensions to the JDL Data Fusion Model, Proceedings of the 7th International Conference on

Information Fusion (ISIF 2004), Stockholm Sweden, June 2004, pp. 1218-1230.

24. Q. Lu, P. Scott, Active model-based object recognition employing foveal imagery and

multiresolution feature sets, Proceedings of the 2001 IEEE Conference on Artificial Neural

Networks in Engineering, November 2001, St. Louis MO. pp. 608-613.

25. Y. Kim and T. Kesevadas, “Automated dynamic symbology for visualization of high

level fusion,” Proceedings of the 7th International Conference on Multisource Information

Fusion, Stockholm, Sweden, 2004.

26. J. Llinas, “Information Fusion for Natural and Man-Made Disasters,” Proc. 5th

International Conference on Information Fusion, Annapolis, MD, USA, 2002.

27. J. Llinas, E. Hansen, Updates, Issues and Questions, Third Workshop on Critical Issues

in Information Fusion, Java Center N.Y., September 29- October 1 2004

28. Qiang Lu and Peter Scott, "3-D View-based active object recognition employing foveal

imagery," International Journal of Intelligent Systems, invited paper, 2005, to appear.

29. Q. Lu, P. Scott, Active model-based object recognition employing foveal imagery and

multiresolution feature sets, Proceedings of the 2001 IEEE Conference on Artificial Neural

Networks in Engineering, November 2001, St. Louis MO. pp. 608-613.

30. M. Mandiak, P.P. Shah, Y. Kim and T. Kesavadas, “Development of an integrated GUI

framework for post-disaster data fusion visualization,” Proceedings of the 8th International

Conference on Information Fusion, Philadelphia, PA, 2005, to appear.

31. J. Paul, P. Yi, S. George,., and L. Lin, “Transient modeling in simulation of hospital

operations for emergency response,” Prehospital and Disaster Medicine, 21(4) 223-236, 2006.

32. J. Robertson, D, Brown, Developing a Modular Simulation for the Assessment of

Response to Manmade and Natural Disasters, Proceedings of the 22nd Annual Systems

Dynamics Conference, Keble College, Oxford, England , July 25 - 29, 2004.

- 22 -

AFOSR F49620-01-1-0371

33. G. Rogova, Reliability in Information Fusion: Literature Survey, Proceedings of the 7th

International Conference on Information Fusion (ISIF 2004), Stockholm Sweden, June 2004.

34. Galina Rogova, Peter Scott, Carlos Lollett, Rashmi Mudiyanur, “Reasoning about

situations in the early post-disaster response environment,” Proceedings of the 9th International

Conference on Information Fusion, Florence, Italy, 2006.

35. Galina Rogova, Peter Scott and Carlos Lollett, "High level fusion for post-disaster

casualty mitigations operations," Proceedings of the 8th International Conference on Information

Fusion, Philadelphia, PA, 2005.

36. Galina Rogova, Peter Scott and Carlos Lollett, "Distributed Fusion: Learning in multi-

agent systems for time critical decision making," in E. Shabazian, G. Rogova, and P. Valen, Data

Fusion for Situation Monitoring, Incident Detection, Alert and Response Management, FOI

Press, 2005, pp.123-152.

37. Galina Rogova, “Higher Level Fusion: Issues and Design Approaches, in: Data Fusion

Technologies for Harbor Protection, E. Shahbazian, M. DeWeert, G. Rogova, (eds), Springer

Verlag Publishers, Berlin

38. Peter Scott and Galina Rogova, “Data fusion framework for early-phase disaster

response,” invited paper, Proceedings of the National Academy of Sciences Workshop on Using

Information Technology to Enhance Disaster Management, 2005, Washington, DC.

39. P. Scott and G. Rogova, “Crisis Management in a Data Fusion Synthetic Task

Environment,” in: Proceedings of the 7th Annual Conference on Multisource Information

Fusion, Stockholm, Sweden, 2004.

40. Peter Scott and Galina Rogova, “Data fusion framework for early-phase disaster

response,” invited paper, Presented at the National Academy of Sciences Workshop on Using

Information Technology to Enhance Disaster Management, 2005, Washington, DC.

- 23 -

AFOSR F49620-01-1-0371

41. P.P. Shah, M. Mandiak, Y.S. Kim and T. Kesavadas “Runtime simulation for post-

disaster data fusion simulation,“ Submitted to The Simulation Journal.

42. G. Srimathveeravalli, N. Subramanian and T. Kesvadas, “A scenario generation tool for

the DDF simulation testbeds,” Proceedings of the Winter Simulation Conference, Washington

DC, 2004.

43. Steinberg, C.L. Bowman, “Rethinking the JDL Data Fusion Levels”, Proceedings of the

National Symposium on Sensor and Data Fusion, Johns Hopkins Applied Physics Lab, June

2004, to appear.

44. P. Yi, . George, J. Paul, and L. Lin, "Hospital Capacity Planning for Emergency

Management in Disaster Mitigation," Socio Economic Planning Sciences, accepted for

publication, to appear 2006..

45. Yi, P., George, S. and Lin, L. 2004: "Real-time Hospital Capacity Estimation by Off-line

Simulation and Metamodeling," Proceedings of the 2004 Industrial Engineering Research

Conference (IERC), May 15-17, 2004, Houston, TX.

46. Yi, P., George, S. and Lin, L. 2005: Sequential kernel estimation on dynamic patient

arrival rates at hospitals after an earthquake,” under review by Computers and Industrial

Engineering.

6. Technical Summary of Results

6.1 Overview

Prompt effective response to emergencies created by major natural and man-made disasters

requires highly coordinated efforts from emergency responders and decision-makers across

multiple disciplines, jurisdictions, hierarchical levels of responsibility and authority. A critical

task is creation of coherent, comprehensive and accurate situation assessment which can guide

decision-making and resource allocation. The raw materials for constructing this situation

assessment are prior domain knowledge, incoming reports from sensors and human observers, a

situational assessment logic, and a disciplined data fusion paradigm. To date, data fusion

research in this domain has focused on the levels of data fusion below the critical situation

- 24 -

AFOSR F49620-01-1-0371

assessment level, namely signal and object assessment. This project is concerned with the

integration of comprehensive data fusion, including situation and impact assessment, in the

response to natural and man-made disasters. In particular, the early response phase is

emphasized, in which casualty mitigation is the central goal. New methodological approaches

and their deployment in an earthquake simulator test bed called DIRE (DIsaster Relief

Environment) are the products of this research. Here we briefly highlight some of the principal

themes in the work to be be discussed in more detail in the following subsections.

Fusion of information from disparate sources and sensors can only proceed effectively witin the

framework of a lingua franca, a common ontology with which to calibrate meaning and

value.This report includes results of research into a metaphysically-based ontology for improved

understanding of post-earthquake disaster environments, with extended applications to other

kinds of urban disaster environments containing significant numbers of casualties (e.g., terrorist

attacks and conventional or unconventional urban warfare activities). Significant attention has

been paid to designing the ontology’s uppermost levels as well as domain-specific (i.e., lower)

levels in order to produce the framework for an overarching model of disaster environments,

which can positively impact on the functions of decision-makers who are observing and

managing those environments. In particular, our attention has been focused on methods for

using ontologies to detect and model the dynamic properties of casualty clusters and their

relations to other items in the environment such as the earthquake event itself, hospital and

ambulatory services, building, road and bridge damage, and tertiary disaster events. Given the

daunting complexity of earthquake disaster environments, it was necessary to focus our

methodologies on items such as these, in order to provide a manageable problem space within

which to work.

User-centric data fusion system design requires a common ontology, but not an arbitrarily

extended one, rather one focused on the key domain processes to be served such as rescue

operations. WIthout embedding the ontology into a work domain framework to formulate scope

and constraint, the essential elements of information those processes require will not be exposed

and the fusion system left without deep roots in user needs. This research explored the means by

which methods in cognitive engineering, namely, work domain analyses, could provide input to

the development of advanced information processing, or multisensor information fusion,

- 25 -

AFOSR F49620-01-1-0371

algorithms. Specifically, a work domain analysis of an emergency management environment (in

a post-earthquake context) was performed, and linked abstraction hierarchy models representing

the emergency management and response system, the physical environment (e.g., buildings,

transportation systems, civilians), and other goal directed agents (e.g., civilian responders and

volunteers) were created. Outputs from that analysis (information requirements) were input to

the design of the information processing algorithms, providing guidance as to the nature of

information required by decision makers, which could be computed through fusion capabilities.

This ongoing work thus presents an example of an integrated cognitive engineering/multisensor

fusion methodology. One focus within cognitive systems engineering is the systematic

description of aspects of the work domain comprising the environment in which human operators

must act and make decisions. Specifically, models and techniques in work domain analysis have

been developed which capture the complexities and constraints of the work domain that serve to

shape and constrain the behavior of domain practitioners. An important output from such an

analysis is the provision of information requirements for system controllers and decision makers.

Hospitals are an integral part of a society’s critical functions to respond to man-made and natural

disasters. Effective hospital capacity planning can significantly enhance the capability and

effectiveness of treatment for emergency patients with injuries resulting from a disaster. This

information can be used for patient/ambulance routing, resource planning, and emergency

operations management. Here we develop a generic simulation model that is capable of

representing the operations of a wide range of hospitals in an earthquake disaster situation. From

results of our simulations, generalized regression equations are fitted to obtain steady-state

hospital capacities. A parametric metamodel is then developed to predict transient capacity for

multiple hospitals in the disaster area in a timely manner, as demanded by emergency operations

management.

The Dispatcher-Router is a simulation model of the two functions of dispatching ambulances ─

picking up casualties and the subsidiary one of calculating the best route (to either a casualty or a

medical treatment center). The dispatcher is also a decision point in the simulation where an

improved estimate of casualty location and severity, derived from the information fusion

module(s) is injected back into the simulation. Thus the simulation can be run either with or

without the aid of fusion, providing one rough measure of the effect of the availability of fused

- 26 -

AFOSR F49620-01-1-0371

estimates. The only function of the Router is to provide the quickest route from a source location

to a destination. This calculation must take into account the effects of the disaster (such as

damaged transportation infrastructure or geographic areas which must be avoided due to

chemical or biological hazard). Here we present a new algorithms for the dispatch of ambulances

to clusters of casualties determined hy high-level fusion, and their routing by an novel approach

in which the possibility of severe roadway damage and congestion dictates the need for multiple

alternative routes as distinct from one another as possible within the constraint of short travel

time.

 The L0/L1 signal and object level data fusion scheme must take into account key properties of

the emergency response problem domain: multiple distributed reporting jurisdictions, multiple

heirarchical distributed decision-makers, high uncertainty due to the large volume of reports

from untrained observers, high error rates due to stressful reporting circumstances, compromised

communications systems, damaged and congested transport system. Key elements in the

proposed solution are distributed fusion nodes, online track confidence estimation and updating,

and a flexible adjudication process which permits the backflow of corrective information in order

to maintain consistency of the situation assessment among the decision-makers.

In order to use the data fusion products, decision-makers must be presented with a graphical user

interface permitting them to grasp the essential elements of information, rapidly put them in

context in a process called sense-making, and candidate various alternative courses of action.

Maintaining a large amount of highly dynamic post-disaster fused data is a daunting task, and its

visualization is even more difficult to achieve with the paradigm of common geo-referencing

systems. In this project we have developed a post-disaster monitoring interface that runs in a

fusion-based simulation with High Level Architecture/Run Time Infrastructure (HLA/RTI). In

our visualization system, damage and recovering activities are presented in a fast GIS vector map

with convenient data and display manipulation. All data that comes from the data fusion

federates is displayed at run-time and stored for further analysis. In addition, the pattern of time-

aggregated data has enabled dynamic visualization, which includes the morphing of the casualty

clusters. This feature provides an effective way to keep track of a region so that a user can easily

be aware of the emerging trends. A unique approach to multiple views by the integration of 2D

and 3D displays of the fused data is also described.

- 27 -

AFOSR F49620-01-1-0371

Finally we turn to L2/L3 fusion, ie. situation and impact assessment. The process of building a

situational picture comprises dynamic generation of hypotheses about the states of the

environment and assessment of their plausibility via reasoning about situational items, their

aggregates at different levels of granularity, relationships between them, and their behavior

within a specific context. In some cases, assessment of plausibility of more complex hypotheses

may require hierarchical processing, which includes not only reasoning about situational items

and relationships between them but also includes relationships between hypotheses and

assessments of plausibility of lower level hypotheses. An important component of situation

assessment is causal inference aimed at discovery of underlying causes of observed situational

items, their attributes and their behavior. Discovery of underlying causes of observed situations

is the goal of abductive reasoning or “inference for best explanations”. For example, in the early

post-earthquake response phase, reasoning about situations is contingent on the assumption that

most reported casualties and structural damage are the results of the primary earthquake shock

incident and reported subsequent secondary incidents such as fire, flood, aftershocks and Hazmat

events. However some secondary incidents such as toxic spills may not be known for a long

period of time. At the same time rapid discovery of such incidents is very important since they

may have devastating consequences if not responded to quickly. These unknown secondary

incidents are usually manifested by unexpected properties and behavior of situational items

inconsistent with the current set of beliefs about the state of the world and therefore belief update

may be required. Usually belief update methods give priority to this new information and its

consequences and abandon some old beliefs to preserve consequences. In the post disaster

environment observations and knowledge about situational items, their behavior and

relationships are uncertain and, therefore it is necessary to account for this uncertainty while

updating the current set of beliefs. In the uncertain environment the principle of priority of new

information may not work even in a highly dynamic environment. In the uncertain dynamic

environment belief update can be carried out by first seeking some explanations or underlying

causes of these inconsistent observations and incorporating these explanations, if found, into a

new set of beliefs. Possible explanations can be found as the result of abduction comprising

generation of hypotheses about the underlying causes of these inconsistent observations and

reasoning about plausibility of such hypotheses. In this project we have developed a method for

- 28 -

AFOSR F49620-01-1-0371

belief-based argumentation incorporating these features and applied it to the earthquake

simulator DIRE.

6.2 The Disaster Response Environment (DIRE) Test Bed

The Northridge earthquake of January 17 1994 struck the San Fernando Valley at 4:30AM.

Classed as a moderate earthquake of magnitude 6.7, this event caused severe casualty and

property damage due to the high population density of this area, which is located within the Los

Angeles CA city limits. 72 died and over 1,000 were admitted to hospital, with an additional

9,000 treated and released [6.2-9]. Over 12,000 structures were severely damaged, 11 major

roadways were closed due to bridge collapses and other structural failures [6.2-10].

This historic event was selected as the basis for the test bed constructed to exercise and test our

emergency response data fusion methodology. The disaster domain topology is available in

detailed geographic files, the event is well documented, and there is a wealth of data concerning

the consequences of the earthquake: casualties and structural damage. Thus the ground truth for

our synthetic task environment DIRE is derived from HAZUS using initialization data that

reference this Northridge earthquake. Attributes reported as probability distributions by HAZUS

are made definite by performing the indicated probability experiments in order to establish a

deterministic ground truth.

The overall software architecture chosen for implementation of this environment is the High

Level Architecture (HLA) developed by the Defense Modeling and Simulation Office. HLA is a

widely adopted standard for distributed heterogeneous simulation in both the military and

civilian communities, and its choice is intended to facilitate reusability.

An HLA-compliant simulation system consists of federates, or separate code modules,

interacting via a Runtime Infrastructure (RTI) functional interface. The federates in our synthetic

task environment include a ground truth generator, report generator, fusion federate, hospital,

dispatch/routing, walk-in and visualization federate. Each models actions critical to simulating a

mode of activity in the FRP relevant to casualty outcomes. Report generator collects

observations and creates reports which are sent to the fusion federate, which implements all data

fusion algorithms and publishes the results to subscribing federates. The hospital federate

- 29 -

AFOSR F49620-01-1-0371

models the dynamics of hospital medical services, walk-in the dynamics of casualties who

choose to seek hospital service without waiting for an ambulance, and dispatch/routing models

the assignment of ambulances to casualties and hospitals together with route selection.

Visualization delivers visual representations to a human observer or decision maker. Thus for

instance ground truth may lay down two casualties at Main and Maple, both of high severity. An

observer in the area may incorrectly perceive one severely injured and one lightly injured at that

location. A report is sent to fusion, which associates that report with others and perhaps judges

there to be two severely injured there. Dispatch/routing then determines how to service these

casualties, dispatching an ambulance and directing it to use a specific route (with alternatives) to

the casualty and then on to a specific hospital.

6.2.1 Domain knowledge

In order to realistically simulate an earthquake event and nominate a particular data fusion

system to operate within it, two categories of domain knowledge are necessary. First, the data,

models and consequences corresponding to the ground truth of the earthquake itself are needed.

How many casualties are created, of what severities and with what geographic distribution? How

many hospitals are damaged and to what degree, how many bridges and gas lines? Second, the

assets and operational procedures of, and relationships between, the emergency response

organizations must be known. Without the first there is no disaster state to be understood, and

without the second there is no awareness possible of what the responders need to understand, no

knowledge of what constitutes situation awareness for those users.

Domain knowledge concerning the human and structural damage created by the earthquake is

derived from HAZUS, a GIS-based natural hazards estimation tool developed by FEMA. By

specifying a geographical region, epicenter and severity corresponding to the Northridge

earthquake, we can produce a disaster state resembling that event. The input and lay down

distributional parameters can be varied to produce a range of earthquake states based on that real

world event.

The phenomena of interest to a data fusion system, which processes need to be understood, what

constitutes knowledge, must be defined in terms of the user goals and constraints. The end-user

of a data fusion capability in this crisis management setting is the first response command

- 30 -

AFOSR F49620-01-1-0371

network. Domain knowledge of the first response system, how it is structured and how it works,

is essential to the fusion design process and realistic modeling of the synthetic environment in

which it runs.

Surprisingly, the history of organized multi-agency multi-jurisdictional response to natural

disasters is rather short. Following a series of devastating wildfires in 1970 Firescope was

formed in California to address the lack of coordination, information sharing or communication

standards in wildfire-fighting. There followed the Incident Control System ICS and Multi-

Agency Control System MACS, further extending common standards for agencies across the

state for a range of natural disasters [6.2-6]. In 1994 the state created the Standard Emergency

Management System SEMS, organizing all California's emergency offices into a single

hierarchical, modular response team [6.2-7]. The organizational structure, operational

procedures and goals of SEMS inform our synthetic environment and form the framework for

defining higher level data fusion hypotheses.

6.2.2 Objects in the synthetic environment

Rescue and medical management of existing casualties, together with efforts to mitigate risk of

additional casualties, are the dominant goals of early stage disaster response. The objects we

model in the synthetic environment are those necessary for these activities to unfold, and the

modeled attributes of those objects are those instantiating capabilities linked to the casualty-

reduction goals and determining their effectiveness. This does not constitute a comprehensive

earthquake simulation in the sense of [6.2-4]. Only those objects and attributes most relevant to

the FRP goals, and thus most useful in gauging data fusion effectiveness, are represented in the

synthetic environment.

Human objects include casualties, police, emergency medical personnel (EMPs) and Hazmat

teams. Casualties are attributed by their ID number, physical description, severity and location.

Severities are determined from HAZUS data, as are locations (HAZUS reports location at the

granularity of census tract, casualties are then randomly placed within the tract as part of our

ground truth lay down). Police serve as observers, cruisers moving from initial lay down

locations according to a SEMS-based predetermined damage survey plan. EMPs drive

ambulances and deliver medical services as they pick up and transport casualties to hospitals.

- 31 -

AFOSR F49620-01-1-0371

They also serve as observers. Hazmat teams respond to hazardous chemical spills caused by

rupture of a Hazmat transporter vehicle in a roadway accident secondary to the earthquake, or

rupture of a Hazmat storage vessel in the damage zone.

Structural objects include hospitals, roadways, bridges and tunnels. Each is attributed by ID

number and location. Damage level is associated with hospitals, bridges and tunnels, and link

travel times with roadways. Hospital damage, for instance, degrades capacity of that facility.

Other structural objects, such as commercial and residential buildings, are not included in the

environment. Their damage effects are seen indirectly through the distribution of casualties,

which is sufficient for the FRP.

Hazmat objects include ruptured Hazmat roadway transporters and ruptured stationary Hazmat

storage tanks. They are attributed by ID number, location, type of hazardous material, and spread

of that material.

6.2.3 Reports and Level 1 fusion

Immediately after the primary shock, ground truth is laid down for all objects in the

environment. Casualties are characterized and situated, structures tagged by damage level,

ambulance and police cruiser initial numbers and locations set.

Initially none of this information is available to the responders. Over logical time reports begin

arriving at regional Emergency Operations Centers (EOCs) from observers in the environment:

police, EMPs and civilians. Report types include casualty reports and structural damage reports.

For instance, an ambulance driver might report a group of casualties at a certain location as the

ambulance heads towards hospital with a full load. A civilian may report that a bridge appears to

be severely damaged. Note that civilians are not objects in the environment per se. They simply

serve as the implied sources of certain reports. Locations and times are selected randomly and

casualties or structural damage nearby reported by these civilian reporters.

As in the real world, in this environment reports are uncertain and no observers are completely

reliable. The report generation process utilizes confused elements of ground truth to model

reports. Each element of ground truth being reported on is subject to a confusion matrix before it

is enters a report.

- 32 -

AFOSR F49620-01-1-0371

The communications links are also assumed unreliable. Associated with each report is

probability of reporting failure and probability of reporting delay. These reports are fused to

determine the probabilities of the corresponding object-oriented hypotheses. Association is done

through ID numbers, physical descriptions and locations. Associated reports are fused using

Bayes algorithms. Theses results are then used by the situation assessment module discussed in

the next 2 sections.

6.2.4 Design of situation assessment process

The purpose of dynamic situation assessment is to develop probable explanations of the situation

based on prior knowledge and incoming transient information. A Situation Assessment (SA) is a

stored representation of relations between objects obtained through fusion [6.2-12]. The result of

situation assessment is a coherent composite picture of the current situation along with a short

prediction of the situation (estimated risk in the case of SA for man-made and natural disasters)

to be used by decision makers. In the case of multiple decision makers the situation assessment

processes have to deliver a consistent situational picture relevant to each decision maker.

Assessment of the post-disaster situation has specific characteristics, which define requirements

for situation assessment architecture and processes. Among these characteristics are:

1. Noisy and uncertain dynamic environment with insufficient a priori statistical

information

2. Geographically distributed damage

3. Geographically distributed uncertain sources of information often of low reliability .

4. Large amount of heterogeneous information

5. Resource and time constraints

6. High cost of error

7. Multiple decision makers with multiple goals and information requirements

8. Multiple agencies in multiple jurisdictions

- 33 -

AFOSR F49620-01-1-0371

These specific domain characteristics call for a multi-agent distributed dynamic situation

assessment process, which has to be adaptive to resource and time constraints, new and uncertain

environments and reactive to uncertain inputs. This process also has to accommodate

heterogeneous information (both symbolic and numeric).

The situation assessment process exploits reports on casualties and damage of essential facilities,

databases, maps, information on prior similar situations, preliminary risk assessment based on

historical data and event modeling, and results of domain-specific simulations and models

(hospital model, walk-in model, etc.) for creating a dynamic situation picture. The produced

situation picture provides the critical characteristics of the state in relation to particular goals,

capabilities and policies of the decision makers to serve their ultimate goals, which are to serve

the maximum number of casualties, save the maximum number of lives , and reduce risk of

additional casualties.

There are three essential components of situation assessment process design. The first

component is the Cognitive Work Analysis (CWA) [6.2-13], which is a systems-based approach

to the analysis, design and evaluation of systems allowing a description of the set of relationships

between generic decision tasks, generic activities and available resources. CWA methodology is

designed for evaluation of the decision makers' needs to provide understanding of what content

various decision makers require from a situation picture and what information should be

represented and formulate possible hypotheses about relevant states of the environment.

The second essential component of the situation assessment process is ontological analysis of the

specific problem, which denominates the elements of the situation assessment process in terms

specific for the disaster domain: objects, attributes, inter-relations, and the dynamic

transformations among these objects and relations occurring over time [6.2-14].

The third component is a formal situation assessment ontology for catastrophic events, which

studies what exists, what can be categorized, and whose goal is to capture the most basic

structures of relevant objective reality by developing accurate and comprehensive formal

systems that transparently model existing places, times, entities, properties, and relations [6.2-

15]. The formal ontology framework is necessary to provide a formal structure for ontological

- 34 -

AFOSR F49620-01-1-0371

analysis of specific type of post-disaster situation, and to assure a certain level of reusability of

the designed domain-specific ontology in a different application domain.

The combination of CWA and ontological analysis within the framework of a formal situation

assessment ontology is intended to provide sufficient information about the goals, hypothesis,

types of objects, relations between them, and processes to support domain specific generation of

situational hypotheses and high-level reasoning about these situational hypothesis. The choice of

any particular reasoning methods is defined by the domain requirements, the amount of

information available, and the level and type of uncertainty of this information. Figure 1 shows

the process of situation assessment design.

Situation in the first phase post-earthquake scenario consists of a set of elementary situations and

their compositions. Elementary situation nominations are based on the results of the CWA and

correspond to essential elements of information required by decision makers for taking actions.

Among elementary situations to be considered are Communication system situation,

Transportation system situation, Hazmat situation (secondary threat), Casualties situation at

different levels of aggregation, Hospital situation at different levels of aggregation, Ambulance

situation, and Resource situation. Each elementary situation, when considered at a certain point

of time (current or future), is an event, represented by a set of hypothesis with confidence levels,

by risk associated with this situation, and a set of attributes with their values characterizing this

situation. Over time, each situation is also a process, which is characterized by behavior of its

attributes.

6.2.5 Situation assessment node

The situation assessment design process architecture is presented in Fig 1. Information is

evaluated to produce a consistent decision state estimate, which is presented for the system

application (either the next automated steps or for presentation to a user).

6.2.5.1 Preprocessing

Situation assessment further processes and aggregates information about objects obtained as the

result of level 1 fusion of reports on casualties and facilities damage. The results of situation

assessment depend heavily on the quality of results of the Level 1 fusion processes. Although

- 35 -

AFOSR F49620-01-1-0371

report fusion runs constantly, fused information on each particular casualty or structure cannot

enter the situation assessment process until the quality of this information is sufficient to ensure

the quality of the resulting situation assessment. At the same time the situation assessment

process cannot wait until the stream of reports about a certain casualty or structure is complete.

Waiting may result in unacceptable decision latency, leading to either wasted resources or lost

lives.

This situation calls for preprocessing, which can be implemented as decision making under a

time constraint. Report fusion on a certain object should be stopped and the results passed to the

situation assessment process either when the quality of the level 1 process is acceptable or a

certain deadline has been reached. The quality of the level 1 estimation can be assessed, for

example, by comparing the confidence level of estimates with a time-varying threshold.

6.2.5.2 Situational state estimation

Formally, let Ω be a set of possible states of the environment, Ω⊂Ω k a set of possible states of

the environment relevant to decision maker k, and kk
tS Ω⊆)}({ is a situational picture relevant to

decision maker k at time t. Set)}({ tS
k is represented by a set of pairs)},(),({ tBeltH k

i
k
i where

)}({ tH k
i are hypotheses of decision maker k at time t and)}({ tBel k

i are corresponding levels of

confidence into each hypothesis.

- 36 -

AFOSR F49620-01-1-0371

CWA

Understanding Uses’
information needs

CWA

Understanding Uses’
information needs

Situational Picture
A set of situational

hypotheses with a level of

confidence

Situational Picture
A set of situational

hypotheses with a level of

confidence

Reasoning
•Reasoning about objects, hypothesis, relations
and their behavior over time

•Discovery of unreported events

•Short prediction of consequences (risk)

Reasoning

•Reasoning about objects, hypothesis, relations
and their behavior over time
•Discovery of unreported events

•Short prediction of consequences (risk)

Actions

Domain specific

ontological

analysis

Domain specific

ontological
analysis

Formal Ontology of Disaster
Formal Ontology of Disaster

Figure 1. Situation assessment design process

CWA

Understanding Uses’
information needs

CWA

Understanding Uses’
information needs

Situational Picture
A set of situational

hypotheses with a level of

confidence

Situational Picture
A set of situational

hypotheses with a level of

confidence

Reasoning
•Reasoning about objects, hypothesis, relations
and their behavior over time

•Discovery of unreported events

•Short prediction of consequences (risk)

Reasoning

•Reasoning about objects, hypothesis, relations
and their behavior over time
•Discovery of unreported events

•Short prediction of consequences (risk)

Actions

Domain specific

ontological

analysis

Domain specific

ontological
analysis

Formal Ontology of Disaster
Formal Ontology of Disaster

CWA

Understanding Uses’
information needs

CWA

Understanding Uses’
information needs

Situational Picture
A set of situational

hypotheses with a level of

confidence

Situational Picture
A set of situational

hypotheses with a level of

confidence

Reasoning
•Reasoning about objects, hypothesis, relations
and their behavior over time

•Discovery of unreported events

•Short prediction of consequences (risk)

Reasoning

•Reasoning about objects, hypothesis, relations
and their behavior over time
•Discovery of unreported events

•Short prediction of consequences (risk)

Actions

Domain specific

ontological

analysis

Domain specific

ontological
analysis

Formal Ontology of Disaster
Formal Ontology of Disaster

Figure 1. Situation assessment design process

6.2.5.3 Modeling framework

The modeling framework selected for our system represents a combination of domain specific

models such as a hospital model and a dynamic dispatch/routing model, with time-dependent

belief networks. Time-dependent belief networks (BN) are graphical models representing causal

and belief relations among random variables and give an option to update those beliefs upon

arriving new information. Belief networks provide intuitive and causal representations of real-

world applications, and are supported by a rigorous theoretical foundation [6.2-16]. They allow

expert knowledge and empirical observations to be combined (fused reports in our case), and to

provide efficient uncertainty representation, which make them applicable for situation

assessment. BNs consist of two parts: a directed acyclic graph representing qualitative relations

between random variables, and a set of a priori and conditional beliefs which quantify these

dependencies. Building the graphical representation and modeling a priori and conditional beliefs

present the major challenges of BN. In our system, the graphical representation is derived from

the situation assessment ontology [6.2-17].

- 37 -

AFOSR F49620-01-1-0371

A priori and conditional beliefs in BNs in most cases are expressed in the framework of

probability theory (as Bayesian Networks) and learned from historical data and from expert

knowledge and databases. In the natural and man-made disaster context, numeric historical data

is sparse, the uncertainty, vagueness, and imprecision of attributes, properties, and relations are

high, and many relations are represented in vague symbolic linguistic ways (high, close, soon,

etc). All this makes the task of deriving useful model probabilities very difficult. One of an

attractive ways of dealing with this highly uncertain and incomplete environment is to consider

here a combination of a qualitative belief network with a Bayesian network. [6.2-18] This

combination provide probabilistic reasoning in a qualitative way when numerical probabilities

are not available.

6.2.5.4 Belief change

An important component of situation assessment is checking consistency of the situation picture

in a Belief Change process. Situational state estimation at time t consists of updating the

estimates obtained at t-1. It starts at t=1 with updating and revising the a priori situation

estimation, which is based on domain knowledge about initial risk. For example, in the case of

the earthquake, the initial situation assessment is based on modeling, seismic and geophysical

information about the severity of the earthquake, knowledge about building structure and

vulnerabilities, population densities, and other specific and relevant information concerning the

disaster zone.

New information obtained at time t drives changes to the state estimates obtained at time t-1.

Traditionally, the nature of information combination in such cases is considered non-symmetrical

and new information is given priority to existing information while accounting for reliability of

this new information (see, e.g. [6.2-19], [6.2-20], [6.2-21]). However, in the distributed case, we

need to consider separately two process, belief revision and belief update, which treat priority of

incoming information differently [6.2-22].

The belief revision process modifies existing estimates at t-1 based on new information obtained

at time t to refine the situation assessment at time t-1. i.e., belief revision refers to a static

situation, although it can be used in a dynamic situation when referred to locally stable

conditions. The belief update process, on the other hand, modifies existing estimates at t-1 based

- 38 -

AFOSR F49620-01-1-0371

on new information obtained at time t to build a new situation assessment at time t. Belief

revision decides what beliefs (old or new) should be discarded to accommodate new information.

Revision in the static case is based on conditioning while reliability of all beliefs have to be

taken into account (see, e.g.[6.2-23]). New information may be discarded if it contradicts either

domain knowledge or totally reliable previous information.

In dynamic situations, incoming information describes the changed situation and the nature of

belief combination is not symmetrical. In such situations belief update has to be considered. In

belief update an agent’s beliefs should be adjusted to be consistent with a priori knowledge as

well as knowledge concerning new events which occurred in the changing problem environment.

Belief update attempts to decide what changes in the world led to this new information. Here

incoming information is given higher priority provided that its reliability is taken into account.

Transition from Bel(t-1) to Bel(t) should obey the principle of minimal change of previous

beliefs to make it compatible with the new information. In dynamic situations, a Kalman-like

approach to belief update can be adopted (“model-based” BR) [6.2-24]. In this case revision

consists of a prediction step based on a selected model of the evolution of the world and a

revision step, in which predicted state of the world is modified based on incoming information

while taking into account its reliability. Incoming information can be rejected if this new state

deviates too far from the predicted state. In our system the consistency check will be based on a

priori risk estimation, relation between fused reports of different types and database information,

and may be different for different elementary situations.

6.2.5.5 Decision state estimation

First response phase casualty mitigation operations are under severe time and resource

constraints, and timely decision making and swift action are required. At the same time the cost

of false alarms can be very high since valuable resources might be diverted from the location

where it later becomes clear that they are critically needed. The cost of waiting for additional

information, or cost of additional computation delay, has to be justified by the benefits of

achieving a more accurate situation assessment. Therefore, as in the preprocessing step described

in Section 3.1, the result of aggregation and situation assessment should be determined to be of a

minimum threshold quality before being allowed to be used by other processes or passed on to

- 39 -

AFOSR F49620-01-1-0371

decision makers. The state of acceptable quality is known as a “decision state”. The process of

decision state estimation requires criteria for defining situation quality. One of the ways of

dealing with this problem is to select a set of pivotal situational hypothesis and then to define a

quality of the situation containing this hypothesis by a time-dependent confidence level

associated with this hypothesis. The nomination of the pivotal hypotheses and a time-dependent

confidence level can be obtained as the result of CWA. In certain situations, when decisions

based on the resulting decision state estimations have very serious consequences, a sensor

management process can be employed. For example, a highly reliable sensor, perhaps a

policeman or structural engineer, can be tasked to observe the situation in question. The situation

assessment processing logic is illustrated in Figure 2.

Facility damage

Road damage

Casualties

…

Fused
Reports Quality?

t? t+1

Preprocessing

Aggregation

Relational props
Certainties

Situation map formation

Situation map predictions
Event detection, prediction

Aggregation logic

Fusion and belief update methods

Databases

Modeling and Simulations
- Hospital model
- Walk-in model
- Routing/Dispatch
- Survivability model

- Communication model

Quality?

Domain knowledge

Policies

Delay | SM
Estimated

world

D

Objects,

Attributes

Y

N Y

N

Facility damage

Road damage

Casualties

…

Fused
Reports Quality?

t? t+1

Preprocessing

Aggregation

Relational props
Certainties

Situation map formation

Situation map predictions
Event detection, prediction

Aggregation logic

Fusion and belief update methods

Databases

Modeling and Simulations
- Hospital model
- Walk-in model
- Routing/Dispatch
- Survivability model

- Communication model

Quality?

Domain knowledge

Policies

Delay | SM
Estimated

world

D

Objects,

Attributes

Y

N Y

N

Figure 2. Situation assessment processing

To conclude, a synthetic task environment in the context of natural and man-made disasters has

been constructed to explore data fusion system design and performance. Specifically, the first

response phase of an event similar to the Northridge CA 1994 earthquake is modeled. Secondary

Hazmat spills caused by the primary earthquake shock are included. Key features of the

environment include incorporation of higher-level and distributed fusion capabilities, and

- 40 -

AFOSR F49620-01-1-0371

surveillance for secondary incidents, which may need to be inferred rather than directly reported

to the fusion nodes.

6.2.6 DIRE initialization parameters

A DIRE simulation run is initiated by setting scenario parameters which determine the root of

the random seed tree that determines all probabilitistic realizations, the selected intensity and

location of the earthquake epicenter, the fraction of casualty reports which do not include

positive casualty ID, etc. For ease in setting and checking, these initialization parameters are

gathered in a single initialization file. A sample initialization file is listed below:

[general] // first section of ini-file

RandomSeed = 9763 // RandomSeed Dimensionless Number

SimLength = 3600 // SimLength seconds

ZoomLevel = 0.09 // zoomlevel Dimensionless Number

ShowDisplay = false // showdisplay flag

ScreenLog = ScreenLogFile.txt // filename

Juris3Pol = 0.1 // OtherPercent percent

StudyAreaEastingMin = 899724.72 // UTM coord

StudyAreaEastingMax = 926972.03 // UTM coord

StudyAreaNorthingMin = 3784930.26 // UTM coord

StudyAreaNorthingMax = 3806621.68 // UTM coord

MaxPolSpeed = 20 // policespeed mph

MaxAmbSpeed = 40 // ambspeed mph

CasSeenPol = 1.0 // probpolicesee probability

CasSeenAmb = 0.8 // probambsee probability

ModCasLaydown = false // resetcas flag

[PreCalculation]

PreCalcWalkin = true // bcalcwalkins filename

PreCalcPolCasRept = polreports.mdb // brecalcpolice filename

PreCalcCivCasRept = civreports.mdb // bcivcalls filename

[PositionReporting]

IntervalPolGPS = 0 // PolTimeInterval seconds

IntervalAmbGPS = 0 // AmbTimeInterval seconds

[Shapefiles]

AmbShapefile = Ambulances // AmbFileName ASCII

PolShapefile = OrigAppPolice // PolFileName ASCII

CasShapefile = OrigAppCasualty // CasFileName ASCII

RoadLayerShapefile = nridgelatlong // Roadfile ASCII

[DeniedReports]

NoPolAmbCasualtyID = 0.75 // NoIDPercent percent

NoCivReporterID = 0.75 // NoCivIDPercent percent

NoPolAmbReporterID = 0.05 // NoAgentIDPercent percent

[Limits]

PolAmbErrStdDevLocRept = 0.1 // STDErrOnLoc meters

- 41 -

AFOSR F49620-01-1-0371

CivErrStdDevCasLocRept = 50 // STDErronCivRepLoc meters

PolAmbErrStdDevCasLocRept = 25 // STDErronRepLoc meters

PercentDelayedRepts = 0.3 // RpDlPercent percent

ReportDelayMean = 120 // RpAvrgDelay seconds

ReportDelayStdDev = 10 // STDErronDelay seconds

CivCallLimitMean = 200 // UpperLimitCiv calls/sim-interval

CivCallLimitStdDev = 20 // LimitCivStdDev calls/sim-interval

PolAmbCallLimitMean = 65000 // UpperLimitEmerg calls/sim-interval

PolAmbCallLimitStdDev = 1 // LimitEmergStdDev calls/sim-interval

[Reporting]

PolViewDistance = 50 // polviewdistance meters

AmbViewDistance = 50 // ambviewdistance meters

RoadDlTime = 1800 // RoadDlTime

RoadDelayGain = 1.15 // RoadDlScale percent

RoadDelayStdDev = 0.01 // roaddelaystddev percent

PolFalseRepts = 0.1 // PercentpolfalseReps percent

AmbFalseRepts = 0.1 // Percentambfalsereps percent

CivFalseRepts = 0.2 // Percentcivfalsereps percent

[WalkinCalculation]

Sev2Walkin = 0.35 // Percent2walkin percent

Sev3Walkin = 0.003 // Percent3walkin percent

[HazmatPlume]

Origin_X = 908539 // plumeoriginx UTM coords

Origin_Y = 3795823 // plumeoriginy UTM coords

WindDirection = 45 // winddir right-hand degrees from north

WindVelocity = 2 // windspeed mph

SpillType = 2 // spilltype 1-bolus | 2-gradual

StartPlume = 15000 // startplume seconds

PlumeInterval = 150 // plumeinterval seconds

NewCasThreshold = 1 // newcasthresh hazmat concentration

NewCasScale = 2 // newcasmult new cas scaling factor

[Shelters]

ShelterStart = 30 // shelterstart

ShelterInterval = 600 // shelterinterval

ShelterDistance = 300 // shelterdist

[ToBeDeleted]

bResetRoads = false // bResetRoads

Resetdatabases = true // Resetdatabases

ResetPolsent = true // ResetPolsent

ResetCivsent = true // ResetCivsent

AmbShpfile = XYAmbulance // AmbShpfile

DelayFile = Delay.mdb // DelayFile

ShapesDatabase = shapes.mdb // Shapesdb ASCII

CasInfo = CasInfo.mdb // CasInfo ASCII

JurisShapefile = jurisdiction // JurFileName ASCII

WindVelocityX = 5 // windvelx mph

WindVelocityY = 5 // windvely mph

SpillRate = 2 // spillrate

ReleaseDuration = 7200 // duration seconds

Dispersion_X = 1 // dispersionx Dimensionless Number

Dispersion_Y = 1 // dispersiony Dimensionless Number

- 42 -

AFOSR F49620-01-1-0371

Brief descriptions of these parameters:

 RandomSeed 'integer declaring what the random seed should be. Zero means

choose a random seed

 bcalcwalkins 'boolean telling whether to calculate walkins

 polreps 'string that contains the filename of the police reports that were

precalculated. If NULL then make new reports and save in

polreports.mdb

 civreports 'string of the filename for precalculated civilian reports. If NULL

then recalculate civilian calls and save in civreports.mdb

 PolTimeInterval 'number giving the time interval between police location reports

 AmbTimeInterval 'number giving the time interval between ambulance location reports

 SimLength 'number giving the total length of the simulation

 CasFileName 'casualty shapefile base name

 PolFileName 'police shapefile base name'

 AmbFileName 'ambulance shapefile base name

 RoadFile 'road shapefile base name

 NoIDPercent 'percent of reports containing no casualty id

 UpperLimitCiv 'upper bound on the number of reports civilians can report

 LimitCivStdDev 'standard deviation on upper bound of civilian reports

 UpperLimitEmerg 'upper bound on the number of reports emergency personnel can

report

 LimitEmergStdDev 'standard deviation on upper bound of emergency personnel reports

 RpDlPercent 'percent of reports delayed by a certain amt

 RpAvrgDelay 'average time of report delay

 STDErronDelay 'standard deviation of report delay

 STDErronRepLoc 'standard deviation of location given in reports

 STDErronCivRepLoc 'standard deviation of location field in civilian reports

 STDErrOnLoc 'standard deviation of spatial error

 OtherPercent 'percent of police from other juris

 ambviewdistance 'distance ambulances can view

 polviewdistance 'distance police can view

- 43 -

AFOSR F49620-01-1-0371

 RoadDlScale 'scale factor for road delay each 'roadtimeinterval'

 roaddelaystddev 'standard deviation for random noise in road delay changes (mean is

zero)

 RoadDlTime 'time interval between which road delay scales

 PercentpolfalseReps 'percentage of police reports that are false

 Percentambfalsereps 'percentage of ambulance reports that are false

 Percentcivfalsereps 'percentage of civilian reports that are false

 Percent2walkin 'percentage of severity 2 that walkin

 Percent3walkin 'percentage of severity 3 that walkin

 NoAgentIdPercent 'percentage of reports that are sent without the police or ambulance

ID

 NoCivIDPercent 'percentage of civilian reports sent with casualty ID missing

 zoomlevel 'level for zooming into movement (smaller is closer in)

 showdisplay ' tells whether or not to show the display. To show the display input

‘true’, else input ‘false’

 probpolicesee 'the probability a policeman sees a casualty

 probambsee 'the probability an ambulance sees a casualty

 policespeed 'maximum speed a policeman can travel

 ambspeed 'maximum speed an ambulance can travel

 plumeoriginx 'x coordinate in UTM of plume origin

 plumeoriginy 'y coordinate in UTM of plume origin

 winddir 'direction of the wind for the plume

 windspeed 'wind speed of the plume

 spilltype '1-bolus spill and 2-gradual release

 startplume 'this is the time, in seconds, after the onset of the disaster that the

plume begins

 plumeinterval 'this is the time between plume updates in seconds

 shelterstart 'this is the time when the shelters start affecting travel delays around

them

 shelterinterval 'this is the time between shelter updates of road link delays around

them

- 44 -

AFOSR F49620-01-1-0371

 shelterdist 'roads within this distance from a shelter have their delay affected

(meters)

6.2.7 DIRE message formats

In this section are listed all message formats governing interactions within the DIRE federation.

They are grouped by message source: which federate is publishing the message. Each distinct

message format is also identified by its destination, ie. which federate is subscribed to that

message.

A – Message Source: ReportGenerator

Destination: L1Fusion

Casualty observation

SourceDestination // "RGtoDF01:Casualty Observation"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

CensusTractID // Tract where found std::string

NearestNode // Roadway intersection ID std::string

Casualty_ID // injured person std::string

Casualty_Age // 1 digit integer unsigned int

Casualty_Race // 1 digit integer unsigned int

Casualty_Sex // 1 digit integer unsigned int

InjuryType // 1 digit 0..4 unsigned int

Severity // 1 digit integer unsigned int

Medical facility damage

SourceDestination // "RGtoDF02:Medical Facility Damage"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

Facility_ID // Medical facility std::string

Severity // 1 digit integer unsigned int

- 45 -

AFOSR F49620-01-1-0371

Roadway damage

SourceDestination // "RGtoDF03:Roadway Damage"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

BridgeID // Bridge std::string

LinkID // road section std::string

Severity // 1 digit integer unsigned int

--

Casualty pickup

SourceDestination // "RGtoDF04:Casualty Pickup"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection ID std::string

Casualty_ID // injured person std::string

Casualty_Age // 1 digit integer unsigned int

Casualty_Race // 1 digit integer unsigned int

Casualty_Sex // I digit integer unsigned int

InjuryType // 1 digit 0..4 unsigned int

Severity // 1 digit integer unsigned int

Casualty delivery

SourceDestination // "RGtoDF05:Casualty Arrival"

Report_Type // 2 digit integer unsigned int

Reporter_ID // also hospital ID unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection ID std::string

Casualty_ID // injured person std::string

Casualty_Age // 1 digit integer unsigned int

Casualty_Race // 1 digit integer unsigned int

- 46 -

AFOSR F49620-01-1-0371

Casualty_Sex // I digit integer unsigned int

InjuryType // 1 digit 0..4 unsigned int

Severity // 1 digit integer unsigned int

Police location

SourceDestination // "RGtoDF06:Police Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

Ambulance Location

SourceDestination // "RGtoDF07:Ambulance Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

Medical Facility Capacity

SourceDestination // "RGtoDF08:Medical Facility - Capacity"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Severity_1 // 2 digit integer unsigned int

Severity_2 // 2 digit integer unsigned int

Severity_3 // 2 digit integer unsigned int

Casualty Treatment Delay

SourceDestination // "RGtoDF09:Casualty Treatment Delay"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

- 47 -

AFOSR F49620-01-1-0371

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Delay_1 // 4 digit integer unsigned int

Delay_2 // 4 digit integer unsigned int

Delay_3 // 4 digit integer unsigned int

Ambulance Idle

SourceDestination // "RGtoDF10:Ambulance Idle"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection ID std::string

Position_ID // Location ID std::string

OnBoard_2 // number of patients – Sev 2 unsigned int

OnBoard_3 // number of patients – Sev 3 unsigned int

Ambulance Stuck

SourceDestination // "RGtoDF11:Ambulance Stuck"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection ID std::string

LinkID // road section std::string

OnBoard_2 // number of patients – Sev 2 unsigned int

OnBoard_3 // number of patients – Sev 3 unsigned int

Travel Delay

SourceDestination // "RGtoDF12:Travel Delay"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

- 48 -

AFOSR F49620-01-1-0371

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

LinkID // road section std::string

Severity // 00..100 unsigned int

Cluster Ident

SourceDestination // "RGtoDF13:Cluster Ident"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

ClusterID // integer unsigned int

CellSide // length of cell (meters) unsigned long

CellCount // number of cells in cluster unsigned int

 CellType // 1 => Non-boundary unsigned int

 // 2 => Boundary

CellCenter_X // X-Coord of cell center unsigned long

CellCenter_Y // Y-Coord of cell center unsigned long

Sev2CasCount // Cas severity 2 Cell Count unsigned long

Sev3CasCount // Cas severity 3 Cell Count unsigned long

B – Message Source: L1Fusion

Destination: EstimateDirector

Casualty Observation

SourceDestination // "DFtoED01:Casualty Observation"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

CensusTractID // Tract where found std::string

LocErrCovX // Location Error Covariance double

LocErrCovY // Location Error Covariance double

NearestNode // Roadway intersection ID std::string

Casualty_ID // injured person std::string

- 49 -

AFOSR F49620-01-1-0371

Casualty_Age // 1 digit integer unsigned int

Casualty_Race // 1 digit integer unsigned int

Casualty_Sex // I digit integer unsigned int

Severity // 1 digit integer unsigned int

SevProbVect // Severity probabilities double[4]

ReportCountP // Police unsigned int

ReportCountA // Ambulance unsigned int

ReportCountC // Civilian unsigned int

CumAssocProb // Cumulative Association double

Medical Facility Damage

SourceDestination // "DFtoED02:Medical Facility Damage"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

Facility_ID // medical facility std::string

Severity // 1 digit integer unsigned int

Roadway Damage

SourceDestination // "DFtoED03:Roadway Damage"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

BridgeID // bridge std::string

LinkID // road section std::string

Severity // 1 digit integer unsigned int

Casualty Pickup

SourceDestination // "DFtoED04:Casualty Pickup"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection ID std::string

Casualty_ID // injured person std::string

Casualty_Age // 1 digit integer unsigned int

- 50 -

AFOSR F49620-01-1-0371

Casualty_Race // 1 digit integer unsigned int

Casualty_Sex // I digit integer unsigned int

Severity // 1 digit integer unsigned int

Casualty Delivery

SourceDestination // "DFtoED05:Casualty Arrival"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection ID std::string

Hospital_ID // hospital std::string

Casualty_ID // injured person std::string

Casualty_Age // 1 digit integer unsigned int

Casualty_Race // 1 digit integer unsigned int

Casualty_Sex // I digit integer unsigned int

Severity // 1 digit integer unsigned int

Police Location

SourceDestination // "DFtoED06:Police Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

Ambulance Location

SourceDestination // "DFtoED07:Ambulance Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

- 51 -

AFOSR F49620-01-1-0371

Medical Facility Capacity

SourceDestination // "DFtoED08:Medical Facility Capacity"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Severity_1 // 2 digit integer unsigned int

Severity_2 // 2 digit integer unsigned int

Severity_3 // 2 digit integer unsigned int

Casualty Treatment Delay

SourceDestination // "DFtoED09:Casualty Treatment Delay"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Delay_1 // 4 digit integer unsigned int

Delay_2 // 4 digit integer unsigned int

Delay_3 // 4 digit integer unsigned int

Ambulance Idle

SourceDestination // "DftoED10:Ambulance Idle"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection ID std::string

Position // location ID std::string

OnBoard_2 // number of patients – Sev 2 unsigned int

OnBoard_3 // number of patients – Sev 3 unsigned int

Ambulance Stuck

SourceDestination // "DFtoED11:Ambulance Stuck"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

- 52 -

AFOSR F49620-01-1-0371

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection ID std::string

LinkID // road section std::string

OnBoard_2 // number of patients – Sev 2 unsigned int

OnBoard_3 // number of patients – Sev 3 unsigned int

Travel Delay

SourceDestination // "DFtoED12:Travel Delay"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

LinkID // road section std::string

Severity // 00..100 unsigned int

Cluster Ident

SourceDestination // "DFtoED13:Cluster Ident"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

ClusterID // integer unsigned int

CellSide // length of cell (meters) unsigned long

CellCount // number of cells in cluster unsigned int

 CellType // 1 => Non-boundary unsigned int

 // 2 => Boundary

CellCenter_X // X-Coord of cell center unsigned long

CellCenter_Y // Y-Coord of cell center unsigned long

Sev2CasCount // Cas severity 2 Cell Count unsigned long

Sev3CasCount // Cas severity 3 Cell Count unsigned long

C – Message Source: EstimateDirector

Destination: DispatcherRouter

- 53 -

AFOSR F49620-01-1-0371

Casualty Observation

SourceDestination // "EDtoDP01:Casualty Observation"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection std::string

Casualty_ID // injured person std::string

Severity // 1 digit integer unsigned int

SevProbVect // Severity probabilities double[4]

Roadway Damage

SourceDestination // "EDtoDP04:Roadway Damage"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

LinkID // road section std::string

Severity // 1 digit integer unsigned int

Medical Facility Capacity

SourceDestination // "EDtoDP05:Medical Facility Capacity"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Severity_1 // 2 digit integer unsigned int

Severity_2 // 2 digit integer unsigned int

Severity_3 // 2 digit integer unsigned int

Travel Delay

SourceDestination // "EDtoDP06:Travel Delay"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

- 54 -

AFOSR F49620-01-1-0371

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

LinkID // road section std::string

Severity // 00..100 unsigned int

--

Casualty Treatment Delay

SourceDestination // "EDtoDP07:Casualty Treatment Delay"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Delay_1 // 4 digit integer unsigned int

Delay_2 // 4 digit integer unsigned int

Delay_3 // 4 digit integer unsigned int

Ambulance Idle

SourceDestination // "EDtoDP08:Ambulance Idle"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection std::string

Position // Location ID std::string

OnBoard_2 // number of patients – Sev 2 unsigned int

OnBoard_3 // number of patients – Sev 3 unsigned int

Ambulance Stuck

SourceDestination // "EDtoDP09:Ambulance Stuck"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

NearestNode // Roadway intersection std::string

LinkID // road section std::string

- 55 -

AFOSR F49620-01-1-0371

OnBoard_2 // number of patients – Sev 2 unsigned int

OnBoard_3 // number of patients – Sev 3 unsigned int

Cluster Ident

SourceDestination // "EDtoDP10:Cluster Ident"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

ClusterID // integer unsigned int

CellSide // length of cell (meters) unsigned long

CellCount // number of cells in cluster unsigned int

 CellType // 1 => Non-boundary unsigned int

 // 2 => Boundary

CellCenter_X // X-Coord of cell center unsigned long

CellCenter_Y // Y-Coord of cell center unsigned long

Sev2CasCount // Cas severity 2 Cell Count unsigned long

Sev3CasCount // Cas severity 3 Cell Count unsigned long

D – Message Source: EstimateDirector

Destination: MedicalFacility

Medical Facility Damage

SourceDestination // "EDtoMF01:Medical Facility Damage"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

Facility_ID // medical facility std::string

Severity // 1 digit integer unsigned int

Casualty Delivery

SourceDestination // "EDtoMF02:Casualty Delivery"

Report_Type // 2 digit integer unsigned int

- 56 -

AFOSR F49620-01-1-0371

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Hospital_ID // hospital std::string

Casualty_ID // injured person std::string

Casualty_Age // 1 digit integer unsigned int

Casualty_Race // 1 digit integer unsigned int

Casualty_Sex // I digit integer unsigned int

Severity // 1 digit integer unsigned int

Hospital Location

SourceDestination // "EDtoMF03:Hospital Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

LocCount // Number of hospLocs unsigned int

HospLocs:

 Hospital_ID // Medical facility std::string

 Location_X // UTM - easting value std::string

 Location_Y // UTM - northing value std::string

 BedCount // Size of Facility std::string

F – Message Source: MedicalFacility

Destination: ReportGenerator

Medical Facility Capacity

SourceDestination // "MFtoRG01:Medical Facility Capacity"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Severity_1 // 2 digit integer unsigned int

Severity_2 // 2 digit integer unsigned int

Severity_3 // 2 digit integer unsigned int

Casualty Treatment Delay

- 57 -

AFOSR F49620-01-1-0371

SourceDestination // "MFtoRG02:Casualty Treatment Delay"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Delay_1 // 4 digit integer unsigned int

Delay_2 // 4 digit integer unsigned int

Delay_3 // 4 digit integer unsigned int

G – Message Source: DispatcherRouter

Destination: ReportGenerator

Ambulance Route

SourceDestination // "DPtoRG01:Ambulance Route"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Ambulance_ID // ambulance std::string

Casualty_ID // injured person std::string

Hospital_ID // Hospital ident number std::string

RouteType // to cas (0), to hosp (1) unsigned int

SegCount // number of segments unsigned int

Segment[SegCount] // Array of segments array

Segment:

 LinkID // link (8-10 digits) std::string

 NodeID // node following link std::string

H – Message Source: L1Fusion

Destination: L2Fusion

Casualty observation

SourceDestination // "DFtoL201:Casualty Observation"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

- 58 -

AFOSR F49620-01-1-0371

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

CensusTractID // Tract where found std::string

LocErrCovX // Location Error Covariance double

LocErrCovY // Location Error Covariance double

Casualty_ID // injured person std::string

Casualty_Age // 1 digit integer unsigned int

Casualty_Race // 1 digit integer unsigned int

Casualty_Sex // I digit integer unsigned int

InjuryType // 1 digit 0..4 unsigned int

Severity // 1 digit integer unsigned int

SevProbVect // Severity probabilities double[4]

ReportCountP // Police unsigned int

ReportCountA // Ambulance unsigned int

ReportCountC // Civilian unsigned int

CumAssocProb // Cumulative Association double

FalseAlarmProb // False Alarm Probability double

Casualty Pickup

SourceDestination // "DFtoL202:Casualty Pickup"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM easting std::string

Location_Y // UTM northing std::string

Casualty_ID // injured person std::string

NearestNode // Roadway intersection std::string

InjuryType // 1 digit 0..4 unsigned int

Severity // 1 digit integer unsigned int

J – Message Source: L2Fusion

Destination: ReportGenerator

Cluster Ident

SourceDestination // "L2toRG01:Cluster Ident"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

ClusterID // integer unsigned int

CellSide // length of cell (meters) unsigned long

- 59 -

AFOSR F49620-01-1-0371

CellCount // number of cells in cluster unsigned int

 CellType // 1 => Non-boundary unsigned int

 // 2 => Boundary

CellCenter_X // X-Coord of cell center unsigned long

CellCenter_Y // Y-Coord of cell center unsigned long

Sev2CasCount // Cas severity 2 Cell Count unsigned long

Sev3CasCount // Cas severity 3 Cell Count unsigned long

K – Message Source: ReportGenerator

Destination: MedicalFacility

Hospital Location

SourceDestination // "RGtoMF01:Hospital Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

LocCount // Number of hospLocs unsigned int

HospLocs: // hospital locations vector

 Location_X // UTM - easting value std::string

 Location_Y // UTM - northing value std::string

 Hospital_ID // Medical facility std::string

 BedCount // size of facility std::string

L – Message Source: EstimateDirector

Destination: Visualization

Casualty Observation

SourceDestination // "EDtoVZ01:Casualty Observation"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

LocErrCovX // Location Error Covariance double

LocErrCovY // Location Error Covariance double

- 60 -

AFOSR F49620-01-1-0371

NearestNode // Roadway intersection ID std::string

Casualty_ID // injured person std::string

Casualty_Age // 1 digit integer unsigned int

Casualty_Race // 1 digit integer unsigned int

Casualty_Sex // I digit integer unsigned int

Severity // 1 digit integer unsigned int

SevProbVect // Severity probabilities double[4]

ReportCountP // Police unsigned int

ReportCountA // Ambulance unsigned int

ReportCountC // Civilian unsigned int

CumAssocProb // Cumulative Association double

Ambulance Location

SourceDestination // "EDtoVZ02:Ambulance Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

Medical Facility Capacity

SourceDestination // "EDtoVZ03:Medical Facility Capacity"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Severity_1 // 2 digit integer unsigned int

Severity_2 // 2 digit integer unsigned int

Severity_3 // 2 digit integer unsigned int

Cluster Ident

SourceDestination // "EDtoVZ04:Cluster Ident"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

ClusterID // integer unsigned int

CellSide // length of cell (meters) unsigned long

CellCount // number of cells in cluster unsigned int

 CellType // 1 => Non-boundary unsigned int

 // 2 => Boundary

- 61 -

AFOSR F49620-01-1-0371

CellCenter_X // X-Coord of cell center unsigned long

CellCenter_Y // Y-Coord of cell center unsigned long

Sev2CasCount // Cas severity 2 Cell Count unsigned long

Sev3CasCount // Cas severity 3 Cell Count unsigned long

Medical Facility Damage

SourceDestination // "EDtoVZ05:Medical Facility Damage"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

Facility_ID // medical facility std::string

Severity // 1 digit integer unsigned int

Roadway Damage

SourceDestination // "EDtoVZ06:Roadway Damage"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

BridgeID // bridge std::string

LinkID // road section std::string

Severity // 1 digit integer unsigned int

Police Location

SourceDestination // "EDtoVZ07:Police Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

- 62 -

AFOSR F49620-01-1-0371

Location_X // UTM – easting value std::string

Location_Y // UTM – northing value std::string

Cluster Ident

SourceDestination // "EDtoVZ08:Cluster Identification"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

ClusterID // integer (0-based) unsigned long

PrevCount // previously-related clust unsigned int

PrevClusters // IDs of prev clusters vector

 ClusterID // ID of related cluster unsigned long

Association // type = 0 – same unsigned int

 // 1 – merge

 // 2 – split

CellSide // length of cell (meters) unsigned long

CellCount // number of cells in cluster unsigned int

VizCells // cells in cluster vector

 CellType // 1 => Non-boundary unsigned int

 // 2 => Boundary

 CellCenter_X // X-Coord of cell center unsigned long

 CellCenter_Y // Y-Coord of cell center unsigned long

 Sev1CasCount // Cas severity 1 Cell Count unsigned long

 Sev2CasCount // Cas severity 2 Cell Count unsigned long

 Sev3CasCount // Cas severity 3 Cell Count unsigned long

 Sev4CasCount // Cas severity 4 Cell Count unsigned long

 AvgSeverity // average casualty severity double

M – Message Source: ReportGenerator

Destination: DispatcherRouter

Hospital Location

SourceDestination // "RGtoDP01:Hospital Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

LocCount // Number of hospLocs unsigned int

HospLocs:

- 63 -

AFOSR F49620-01-1-0371

 Location_X // UTM - easting value std::string

 Location_Y // UTM - northing value std::string

 Hospital_ID // Medical facility std::string

 BedCount // size of facility std::string

N – Message Source: ReportGenerator

Destination: Visualization

Hospital Location

SourceDestination // "RGtoVZ01:Hospital Location"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

LocCount // Number of hospLocs unsigned int

HospLocs:

 Location_X // UTM - easting value std::string

 Location_Y // UTM - northing value std::string

 Hospital_ID // Medical facility std::string

 BedCount // size of facility std::string

P – Message Source: ReportGenerator

Destination: L2Fusion

Casualty Counts

SourceDestination // "RGtoL201:CT Casualty Counts"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

TractCount // Number of Census Tracts unsigned int

CTinfo:

 Tract_ID // Census Tract ID std::string

 Severity1Count // Expected # Casualties unsigned int

 Severity2Count // Expected # Casualties unsigned int

 Severity3Count // Expected # Casualties unsigned int

 Severity4Count // Expected # Casualties unsigned int

 Severity0Count // Expected # Casualties unsigned int

- 64 -

AFOSR F49620-01-1-0371

Q – Message Source: L2Fusion

Destination: EstimateDirector

Cluster Ident

SourceDestination // "L2toED01:Cluster Identification"

Report_Type // 2 digit integer unsigned int

Reporter_ID // 5 digit integer unsigned long

JurisdictionID // 1 digit integer unsigned int

Time // seconds unsigned long

SrcDstCount // counter for this Int-name unsigned long

TrackID // recnum * 100 + FileID unsigned long

ClusterID // integer (0-based) unsigned long

PrevCount // previously-related clust unsigned int

PrevClusters // IDs of prev clusters vector

 ClusterID // ID of related cluster unsigned long

Association // type = 0 – same unsigned int

 // 1 – merge

 // 2 – split

CellSide // length of cell (meters) unsigned long

CellCount // number of cells in cluster unsigned int

VizCells // cells in cluster vector

 CellType // 1 => Non-boundary unsigned int

 // 2 => Boundary

 CellCenter_X // X-Coord of cell center unsigned long

 CellCenter_Y // Y-Coord of cell center unsigned long

 Sev1CasCount // Cas severity 1 Cell Count unsigned long

 Sev2CasCount // Cas severity 2 Cell Count unsigned long

 Sev3CasCount // Cas severity 3 Cell Count unsigned long

 Sev4CasCount // Cas severity 4 Cell Count unsigned long

 AvgSeverity // average casualty severity double

6.3 Work Analysis and domain ontology

Effective high-level data fusion for emergency response demands an intimate integration of

domain knowledge, sensor models and their data, goal heirarchies, human perception and

judgment. Where in this varying terrain is the fusion system designer to find a foothold? What

are useful organizing principles of the design process?

An important observation is that a successful data fusion system should be designed from a user-

centric perspective [6.3-1]. However effective technically, any decision support system which is

not grounded in the realities of the users, their goals, constraints, and their practices will fail in

significant ways. For instance, an emergency communication system covering multiple

- 65 -

AFOSR F49620-01-1-0371

jurisdictions whose design does not pay careful attention to interoperability issues will be of

limited value. The difficult part of the interoperability problem may not be technical, but

something as basic as the use of the same key term differently in different jurisdictions, or the

lack of a common communications protocol among the emergency responders in separate areas.

The author recalls hearing an interesting story at a workshop, in which the communications and

information processing coordinator of a regional emergency response task force told of his

experience with a new multi-million dollar system he had just installed. It was designed to permit

police, fire personnel, hazmat teams, radio equipment technicians, city and county field

engineers from many distinct jurisdictions, some 80 jurisdictions in all, to talk to one another

seamlessly during an emergency. The first time it was turned on, during an incident of multiple

wild fires propogating in the area, responders in zones unaffected thusfar made frequent calls to

operators in affected areas to find out what was going on. Their curiosity overloaded the system,

preventing critical communications from getting through. The system was turned off shortly after

its first turn-on. Interoperability without thorough work domain analysis to guide its use can be a

detriment rather than a benefit.

A second related observation is that to be user-centric, the requisite domain knowledge must

include a thorough understanding of the work environment of the users of the system. The

activities and environments that support their goal-seeking determine the essential elements of

information that data fusion need supply, and the requisite properties of that information: its

required resolution, confidence, and timeliness.

These considerations lead to a emergency response data fusion design philosophy anchored on

deployment of an explicit domain ontology, and on the products of that branch of human factors

engineering referred to as cognitive work analysis. In the subsections which follow, this

approach will be developed.

6.3.1 Cognitive Work Analysis in Information Fusion System Design

Consider the means by which methods in cognitive engineering, namely, work domain analyses,

could provide input to the development of advanced information processing, or multisensor

information fusion, algorithms. Specifically, a work domain analysis of an emergency

management environment (in a post-earthquake context) was performed, and linked abstraction

- 66 -

AFOSR F49620-01-1-0371

hierarchy models representing the emergency management and response system, the physical

environment (e.g., buildings, transportation systems, civilians), and other goal directed agents

(e.g., civilian responders and volunteers) were created. Outputs from that analysis (information

requirements) were input to the design of the information processing algorithms, providing

guidance as to the nature of information required by decision makers, which could be computed

through fusion capabilities. This work thus presents an example of an integrated cognitive

engineering/multisensor fusion methodology.

6.3.1.1 Work Domain Models

One focus within cognitive systems engineering is the systematic description of aspects of the

work domain comprising the environment in which human operators must act and make

decisions. Specifically, models and techniques in work domain analysis have been developed

which capture the complexities and constraints of the work domain that serve to shape and

constrain the behavior of domain practitioners. Thus, work domain models serve as purposeful,

albeit bounded, descriptions of a portion of reality the system of interest. Work domain models,

such as the abstraction hierarchy (AH) [6.3-2] , [6.3-3] can be used to identify information

relevant to display design (e.g., information requirements and relevant constraints) regardless of

which tasks or activities are being carried out within the context of the intended purposes of the

system. In AH models, higher levels of abstraction represent the system in terms of its purpose

and functions, whereas lower levels represent the system in terms of its physical implementation.

An important output from such an analysis is the provision of information requirements for

system controllers and decision makers.

6.3.1.2 Multisensor Information Fusion

Multisensor information (data) fusion, is an engineering discipline which uses techniques from

signal processing, statistics, numerical methods, and artificial reasoning to formally combine

information (numeric data) from numerous, disparate, and uncertain sources (sensors), in order

to provide information for higher level reasoning (i.e., human decision making; [6.3-5]).

Information processed through data fusion algorithms typically provides an improved estimate

(i.e., one with less statistical uncertainty) than can be ascertained from a single sensor or source.

- 67 -

AFOSR F49620-01-1-0371

A classic problem in multisensor data fusion is the tracking of a moving object (e.g., an aircraft)

based on data coming from multiple sensors such as radar and infrared imaging [6.3- 4] .

A framework for classifying data fusion problems is contained with the data fusion process

model created by the Joint Directors of (Military) Laboratories working group on data fusion.

Briefly, this process model describes four hierarchical levels of data fusion. Level 1 (L1-"object

refinement") processing focuses on producing estimates of an entities position, velocity,

attributes, and identity; Level 2 processing (L2-"situation refinement") develops descriptions of

relationships among entities and events in context; Level 3 processing (L3-"threat refinement")

predicts information about future states; and Level 4 processing provides meta control over the

other levels of fusion processing [6.3-5]. Although focused on computational and processing

methods, rather than human perception and awareness of such states, the first three levels have a

loose correspondence to the three levels of situation awareness described by [6.3-6]: perception

of the elements in the environment, including the status, attributes, and dynamics of relevant

elements (Level 1 SA); comprehension of the current situation, through synthesis of disparate

level 1 elements in terms of their relationship to operator goals (Level 2 SA); and projection of

the future actions or states of the elements (Level 3 SA). Certainly, the products of fusion

processes can provide operators with information relevant to multiple levels of situation

assessment.

Within the field of data fusion, L1 algorithms have been well studied, particularly within the

military domain. However, challenges in developing higher level algorithms which can exploit

the estimates produced by L1 algorithms still remain, particularly in identifying the parameters

which define a "situation" of interest, and are considered key problems for the field. There is

current interest in developing processing algorithms which address the challenge of L2 fusion.

Our current project has explored the means by which modeling techniques such as work domain

analysis can be used as input to the development of L2 and L3 fusion algorithms. One approach

to the development of such algorithms is to formally study and define the nature of situational

and impact estimates, based on normative theories regarding what constitutes a "situation." A

complementary approach would be to seek within a given domain of interest for information

needs which can be nominated as potential higher level fusion problems. Aspects of these

- 68 -

AFOSR F49620-01-1-0371

information needs, as well as data fusion algorithms developed to produce the implied estimates,

could then be inspected to identify classes of higher level fusion problems and algorithms, which

could be understood within a normative framework of situations.

In our project, formal methods in ontological reasoning (see Section 6.3.3 below) are being

applied with the goal of producing logically defensible situational constructs. An ontology is a

logically structured, conceptual representation of all independently existent items (e.g., physical

objects, relations, processes, events) that make up the fabric of reality. At the same time, work

domain models are being constructed in order to understand the information needs of decision

makers, including needs which could be classified as Level 2 fusion estimates. While the

methodologies and contributions of the ontological modeling are beyond the scope of this report,

it should be noted that concepts identified in the ontological modeling are being mapped onto

concepts identified in the work domain modeling to insure consistency across and within the two

modeling constructs. The goals of the work domain modeling are thus primarily to indicate what

information products needed to be created, rather than to directly influence display design. This

outcome is consistent with recommendations regarding the use of work domain modeling in

supporting the identification of information that needs to be obtained, or sensed. The remainder

of the report documents the results to date of this approach.

6.3.2 Case Study

The potential role of work domain analysis in informing the development of L2 estimates were

explored within the context of a multi-year applied project in the emergency management

domain. Essentially, a post-disaster emergency management for an earthquake disaster context

was used as a complex and realistic testbed within which a variety of multisource data fusion

challenges could be addressed, including the development of methodologies and algorithms

related to L2 fusion.

6.3.2.1 The Emergency Management Domain

Post-disaster emergency management is a complex environment poses challenges both to human

decision makers which operate within it, as well as attempts to provide automated support

- 69 -

AFOSR F49620-01-1-0371

through methodologies such as information fusion. In particular, the following complexities are

present:

1. Noisy and uncertain dynamic environment with insufficient a priori statistical

information

2. Geographically distributed damage

3. Large amount of heterogeneous information

4. Resource and time constraints

5. High cost of error

6. Multiple decision makers with multiple goals and information requirements

7. Heterarchic-hierarchic organization of decision makers

8. Multiple agencies in multiple jurisdictions, at different hierarchical levels (e.g., federal,

state, county, locality)

Emergency management and response is an environment in which teams of operators in the field

(e.g, fire fighters, building inspectors) utilize skills and local resources to address problems (e.g.,

trapped civilians, traffic re-direction), and provide status information as well as resource requests

to higher level operational response centers (e.g., fire department or city emergency operations

centers). The role of these higher level centers is to monitor the current state of the situation,

coordinate and provide requested resources, and plan for future resource needs and overall action

plans. In the event that local (e.g., city) resources are or will likely be unable to meet the needs of

those in the field, requests are made (based on mutual aid agreements and other disaster

management agreements and plans) to other municipalities (e.g., other city fire departments, the

county). Likewise, if county resources are over committed, requests are made to the state, and so

on.

6.3.2.2 Work Domain Model

- 70 -

AFOSR F49620-01-1-0371

The work domain model was constructed based on a variety of information sources, including

documents detailing emergency management plans; accounts based on data collected during and

following two major earthquakes in California; interviews with emergency management

personnel at various jurisdictional levels in California (state, county, city) as well as an official

with the Federal Emergency Management Agency; and observations of a full scale emergency

management exercise at the city level (conducted over four hours in a fully staffed, city

emergency operations center). Nodes in the work domain model were annotated with citations,

quotes, and explanatory notes based on the information sources used in their development, to

support traceability and justification of the model. In emergency management, as in many

complex systems, there are multiple domains of interest to be modeled. Similar to work domain

models in of military domains [6.3-7], there are domains to be represented: the controlled system

(e.g., that of emergency management and response), the environment (e.g., the earth, weather,

building, civilians); and other intentional agents (in this case, civilian responders and volunteers

who are only loosely linked to the emergency management system). As with most published

work domain models, five levels of abstraction were represented. For the emergency

management system, at the highest level, goals such as casualty management (recovery of

injured, and prevention of further injuries) were represented. At the level of abstract function,

balances of economic resources, physical resources, authority, and risk vs. benefit were

represented. Nodes at the general function level represented the emergency management

functions of planning and intelligence; operations; logistics; management, and finance. Nodes at

the physical function level included entities which support the generalized functions, both mobile

(e.g., police cars, fire engines, locations), fixed location (e.g., hospitals, dispatch centers), and

human (physicians, building inspectors). Nodes at the physical form level represent the physical

attributes of these entities (e.g., their locations, operational states, and capacities).

For the environment model, no functional purpose was modeled. At the abstract function level,

laws of physics relevant to earth shaking and building stability would be represented. At the

general function level, processes of earthquakes, structural stability/collapse, as well as weather

processes, and combustion were noted. At the physical function level, nodes represented the

functioning of the civil, transportation, and communications infrastructures, as well as the

population, earth, and atmosphere. Finally, at the physical form level nodes included the location

and operation status of communication systems, building, utility systems, and transportation

- 71 -

AFOSR F49620-01-1-0371

networks; location and status hazardous materials, location and state of the civilian population,

and the state of geographical features (e.g., hillsides, fault lines) & vegetation; and the wind,

humidity, moisture, and temperature conditions. Interactions between nodes at the level of

physical form (both within and across domains) were modeled explicitly as links between the

nodes. For instance, there was a link between the environmental node "state of utility systems"

and the emergency responses system node "location, state, and load on fixed resources" because

the capacity and capabilities of hospitals can be impacted by the operational status of water and

electricity [6.3-8].

Modeling Outcomes

Information needs were identified and associated with nodes and interactions in the work domain

model. For instance, information needs associated with the physical form node "mobile human

resources" correspond to the locations, assignments, and instance specific capabilities of the

resources (e.g., the location and response status of an ambulance, information regarding its

ability to care for pediatric patients). At the abstract function level, information was required

regarding the state of resource balances (e.g., for medical, fire/rescue, and police resources).

While many of the needs identified correspond more closely to L1 concepts (e.g., the location

and severity of casualties) other needs identified could be classified as L2 or L3 fusion problems,

because they involve interpretation and projection of data. Examples of these information needs

identified to date include:

1. Regions of causalities with input both from casualty reports and predictive models based

on earthquake parameters, time of day, and building construction types

2. Risks for secondary hazards (e.g., hazardous materials spills, fires) based on utility

locations, earthquake parameters & damage/spill reports

3. Areas of impeded transportation based on predicted traffic patterns, road configurations,

earthquake parameters, and damage reports

4. Resource balance assessments (e.g., available vs. potentially required medical personnel,

building inspection teams, search and rescue equipment) based on predicted needs and

availabilities within each operational area

- 72 -

AFOSR F49620-01-1-0371

These information needs are being provided to researchers involved with the design of the L2

algorithms.

In summary, methodologies in multisource fusion may provide the means to produce important

information for the consumption of human decision makers. Particularly, L2 and L3 fusion

processes can support processes of higher level situation awareness, if the needs of human

decision makers, and the outputs from the fusion processes, can be aligned. Methodologies in

cognitive work analysis, namely, work domain analysis, may provide a means for systematically

identifying such information needs which can then be supplied through fusion processes.

6.3.3 Disaster Ontology

As noted in the preceeding section, the codex for assessing user goals, needs and practices is

built on an understanding of the work dynamics and the domain ontology. Having discussed the

use of work domain analysis, we turn our attention to the construction of an effective and

efficient ontology. This work was aimed at producing a metaphysically-based ontology for

improved understanding of post-earthquake disaster environments, with extended applications to

other kinds of urban disaster environments containing significant numbers of casualties (e.g.,

terrorist attacks and conventional/unconventional urban warfare activities). Significant attention

has been paid to designing the ontology’s uppermost levels as well as domain-specific (i.e.,

lower) levels in order to produce the framework for an overarching model of disaster

environments, which can positively impact on the functions of decision-makers who are

observing and managing those environments.

In particular, our attention has been focused on methods for using ontologies to detect and model

the dynamic properties of casualty clusters and their relations to other items in the environment

such as the earthquake event itself, hospital and ambulatory services, building, road and bridge

damage, and tertiary disaster events. Given the daunting complexity of earthquake disaster

environments, it was necessary to focus our methodologies on items such as these, in order to

provide a manageable problem space within which to work.

6.3.3.1 Existing Ontology Tools and Their Applicability to Higher-Level Fusion Processing

in Disaster Environments.

- 73 -

AFOSR F49620-01-1-0371

This section will discuss the general issues surrounding ontology construction for improved

situation and threat assessment (STA) of complex states of affairs such as disaster environments.

The section will address current ontology tools being used for situation assessment and some of

the concerns and pitfalls these tools must overcome to provide a sufficient framework for

reasoning about disaster environments. In doing so, we will begin to consider certain theoretical

and methodological issues that are important in ontology construction for STA applications.

Situation and Threat Assessment (STA).

The purpose of situation and threat assessment (STA) processing in higher-level fusion

applications is to infer and approximate the critical characteristics of the state of an uncertain

environment in relation to particular goals and information requirements of decision-makers

[6.3-22] . The process of building current and predicted situational pictures involves reasoning

about various relationships between objects of interest within a particular context. Some of these

relations will be relatively simplistic in nature (e.g., spatial relations such as ‘next to’, ‘located

at’, ‘near’) and can therefore be handled appropriately using L1 techniques associated with

common metrics for object identification, object location, individual object tracking, etc.

Ontological modeling at this level of fusion has been quite successful, since one is primarily

concerned with individuated and discreet objects, whose properties and behaviors can be

measured and understood with relative ease and utilized through existing technologies [6.3-5].

However, other kinds of threat items, especially those kinds of natural and man-made threats

important for situation and threat assessment processing, will be complex in nature and will

therefore require a sufficiently complex ontological model to understand their composition,

organization, inter- and intra-relationships, behaviors, temporal unfoldings, etc. It is here where

the focus of fusion processing shifts from observing discreet objects and their immediately

discernable properties and behaviors, at L1, to inferring relations between these objects, which

are seldom immediately observable, but rather require understanding a plethora of abstract and

concrete relationships that exist between L1 objects.

In earthquake environments, for example, it will be of use to understand basic L1 items such as

where discreet items such as casualties, hospitals, ambulances, police, and fire/rescue personnel

are located, how they are moving, what they are reporting, etc. It is equally important, however,

- 74 -

AFOSR F49620-01-1-0371

to understand related information that must be inferred from the knowledge of these discreet

items. Important questions necessary for disaster management can include examples such as:

1. Where do emergency personnel need to be dispatched in the near future?

2. What is the status of related disaster victims, such as casualty clusters?

3. Is there inferential evidence of tertiary disasters in a given area?

4. Can one predict certain kinds of injuries/fatalities due to certain features of the disaster

environment such as damage to certain building/bridge/road types due to features such as

their construction materials, time of day of the event, or other extenuating circumstances?

In these cases, it is not enough to understand discreet objects, their particular properties and

behaviors. Instead, it is necessary to understand their existence as members of collections or

wholes, which often possess a certain structured set of characteristics, leading to the parts or

members to act in concert with one another and share spatial, temporal, intentional, or causal

relations with one another, to name a few. Ontologies are capable of providing an understanding

of items as relational entities, which amount to the general subject matter of higher-level fusion

processing.

Ontology and STA.

Understanding the complexities of disaster environments amounts to understanding complex

kinds of relations including spatial relations, temporal relations, causal relations, etc. The value

of ontologies (particularly of the realist ilk) is that, if constructed accurately and consistently,

they can provide a priori information on complex relational states of affairs in the world, by

providing a logically structured model of normal, or known, portions of reality as they stand to

one another. In turn, an ontological model of a given domain would then provide a backdrop for

reasoning within dynamic and uncertain situations where knowledge is imperfect, items are

unknown, reports are unclear or unreliable. The framework of an ontology can then be utilized

by reasoning systems to produce new information from a situation by comparing purported

epistemological states of the world as they appear at a given time, under varying conditions of

- 75 -

AFOSR F49620-01-1-0371

uncertainty, with the ontological description of the world as it stands independent of the

epistemic constraints of the given environment.

Information fusion systems represent the world via several distinct levels of information

processing aimed at understanding items such as: individuated objects (as bare particulars),

collections of objects, relations between objects, and psychological (i.e., intentional, goal-

directed) states of agents responsible for subsequent behaviors and activities (see Fig. 1), all of

which, in turn, correspond to different levels of ontological granularity, meaning the distinctions

Figure 1: JDL Fusion Model

between coarse- or fine-grained levels of reality, including contextual features. Ontologies

provide a formal way of capturing the kinds of informal everyday items over which fusion

systems can subsequently reason. Examples include the distinctions between existentially

independent physical objects, existentially dependent non-physical objects (attributes,

properties), spatial relations, temporal relations, and the like.

DATA FUSION DOMAIN

SOURCES

HUMAN

COMPUTER

INTER-

ACTION

SOURCE

PREPROCESSING

LVL 1

OBJECT

REFINEMENT

LVL 2

SITUATION

REFINEMENT

LVL 3

THREAT

REFINEMENT

LVL 4

PROCESS

REFINEMENT

DATABASE MANAGEMENT SYS

SUPPORT

DATABASE

FUSION

DATABASE

DATA FUSION DOMAIN

SOURCES

HUMAN

COMPUTER

INTER-

ACTION

SOURCE

PREPROCESSING

LVL 1

OBJECT

REFINEMENT

LVL 2

SITUATION

REFINEMENT

LVL 3

THREAT

REFINEMENT

LVL 4

PROCESS

REFINEMENT

DATABASE MANAGEMENT SYS

SUPPORT

DATABASE

FUSION

DATABASE

- 76 -

AFOSR F49620-01-1-0371

Because the items within higher-level fusion (and situation assessment) are relational by nature

(i.e., are not

Figure 2: Relation-Types of Interest for Higher Level Fusion.

singular, discreet units), it is increasingly important to perform a rigorous ontological analysis of

the kinds of entities, entity attributes, events, behaviors, and contextual settings which compose

the subject matter of situation assessment. situation assessment can be enhanced through an

ontological decomposition of threats that includes: designing a meta-model for threat, one which

captures the integrated part-whole relations between its components, understanding the

distinctions between viable (i.e., real, immediate) and potential (i.e., possible, contingent)

threats, and understanding the ways in which vulnerability is related to threat components [6.3-

25], [6.3-28], [6.3-36].

An ontology of situation assessment must be able to present a description and elucidation of

complex relation-types needed for reasoning about the kinds of dynamic entities treated by

higher-level fusion. Significant work is currently being done in this regard [6.3-9], [6.3-22],

[6.3-25]. The methodology herein varies somewhat from other research this research, in that the

Taxonomy of Relations

Existential

Intentional

Grounded

External

Internal Identity

Founded

Unfounded

Logical Relations

Fictional

Real

Representational

Presentational

Not Satisfied

Satisfied

Not Satisfied

Satisfied

Mutually Dependent

1-Sided Dependence
A is Constituted by B

A & B are Founded on
Each Other

A & B Constitute Each Other

A is Founded on B

Efficient Causality

Relation

Taxonomy of Relations

Existential

Intentional

Grounded

External

Internal Identity

Founded

Unfounded

Logical Relations

Fictional

Real

Representational

Presentational

Not Satisfied

Satisfied

Not Satisfied

Satisfied

Mutually Dependent

1-Sided Dependence
A is Constituted by B

A & B are Founded on
Each Other

A & B Constitute Each Other

A is Founded on B

Efficient Causality

Relation

- 77 -

AFOSR F49620-01-1-0371

goal here is to present a metaphysically-based ontology that can describe and enumerate the

hosts of relation-types that are found in disaster environments, while not succumbing to the

current constraints of given ontology languages such as Protégé, the varieties of OWL, or other

such approaches that treat common sense spatio-temporal objects in peculiar and non-common

sense ways. Little and Our group has produced a candidate list of such items and their

corresponding relationtypes, some of which can be directly perceived via processing of data

provided by sensors (e.g., internal and external spatial relations) (See Fig. 1). Other types of

more complex items and relations, however, require further inferential processing activities,

since they often contain abstract information that is not directly perceivable by sensors.

The taxonomy of relations above provides a glimpse of the kinds of complex relations needed for

higher level fusion processing. The categories of ‘internal’ and ‘external’ relations can be

understood relatively well through L1 processing of discreet items and events, as they encompass

information, which can be provided by L1 sensing capabilities that can measure things such as

distances between discreet items, their discernable independent (i.e., stand-alone, physical) parts,

their dependent attributes/properties (angular trajectory, shape, size), etc. Many of the other

relations, however, are not so easily processed, since they involve complex relational

information, which must be inferred from a given state of affairs. For example, intentional

relations, which are those kinds of psychological relations between an agent and their

surroundings, which in turn form perceptions, beliefs, goals, etc., are composed of many kinds of

nested and intertwined sub-relations between physical and nonphysical components. Causal

relations present another kind of complex relation, where two items (i.e., a cause and a resulting

effect) stand to one another in nested spatio-temporal relations, which must often be inferred

based on inferential evidence when there is no directly perceived spatial or temporal connection

between items. For these reasons, the ontology must be capable of treating these kinds of items

in a thorough and consistent fashion, so as to provide an a priori model of certain basic formal

relations between spatial, temporal and spatio-temporal items, which can then be used as the

backdrop for a posteriori models, which arise out of, and depend upon, human experience,

thereby including uncertainty, perspective, reliability, etc.

6.3.3.2 The Trade-off Between Ontological Languages (Expressivity) and Quality of

Inferencing Capabilities (Descriptive Robustness).

- 78 -

AFOSR F49620-01-1-0371

A large challenge facing the ontology community centers around the relationship between formal

expressivity and descriptive robustness. Ontologies are meant to be comprehensive depictions of

reality, including all such necessary items required for an understanding of a given domain.

They must therefore contain a plethora of things such as: objects, properties, relations, and

events, taken from some particular set of domains. However, a problem arises when one

attempts to fit a large, complex ontology into a computational framework designed for producing

results expeditiously or within a given logical framework. Given the ways in which many

contemporary computational systems work, often build upon description logics or frame-based

systems, it can pose significant challenges in capturing the kinds of robust ontological relations

found within complex situations such as disaster environments. This results in a problem of fit

between ontologies as metaphysical constructs and the computational languages used to express

rules, axioms, or propositions of the ontology. Often, one is forced to accept a trade-off between

the complexity and quality of the inferencing (i.e., both the computational aspects of executing

the logic, and the “usual” qualities ascribed to logic systems such as completeness, soundness)

and the expressivity of the formal language used to describe items within the ontology . For

example, the choice of a given species of OWL (Lite, DL, Full) has a direct implication on the

underlying nature of the consequent inferencing power that results, because the choice of

language expressiveness directly implies a style of inferencing and thus the inherent qualities

that come with it.

Considering OWL, there is an obvious trade-off when one moves from OWL Full to OWL-DL,

or from OWL-DL to OWL Lite. The restrictions placed on each subsequent sublanguage in

OWL are such that one sacrifices the ability to express certain important relations between

classes, individuals, and properties for the sake of computational efficiency. Since information

used by computational systems exists in, and subsequently has limited interactions with, certain

formats (e.g., XML), there is a legacy to those existing systems that cannot be overlooked.

Description logics have been developed to quickly and effectively run computational systems in

ways that more robust first-order logic systems cannot. However, ontologies have traditionally

been developed within the context of those robust first-order systems (e.g., KIF), because they

possess the kind of desired formal machinery capable of capturing complex kinds of

relationships between things. Transforming that ontological information from first-order logics

- 79 -

AFOSR F49620-01-1-0371

into description logics often results in the loss of information pertaining to relation types, deep

semantic content, etc.

In essence, this is no small issue, since high-level fusion systems seek to understand situational

complexes in robust ways. This means that they would require an ontology capable of providing

the kind of robust relational descriptions of the world necessary for actually understanding states

of affairs within the real world. Watering down the ontological description of the world for the

sake of computational efficiency could prove disastrous for fusion systems, as entire segments of

a domain may not be included within such a limited ontological description. Yet, fusion systems

also need to produce real-time results for decision-makers. This means that they cannot be

bogged down by significant time-delays caused by inefficient computational systems.

Researchers on this project were concerned more with providing a sufficiently robust ontology

for high-level fusion design, and less interested in applying weak forms of computational tools

which would undercut the sophistication of the ontology just to increase processing speed.

Doing so would only result in future problems, since another system would be designed which

would be incapable of actually doing higher-level fusion applications, but would, instead, be

constrained to more basic L1 problems, such as the Protégé, OWL and SAW examples

mentioned above. Large-scale ontologies, like those needed for fusion, should not be designed

solely in regards to computational efficiency. Instead of building ontologies under the constraint

of today’s current computational abilities, we should build them to be accurate depictions of the

world, somewhat independent of computational constraints. Doing so can set new standards for

the computer science community to invent new logics or computational languages that can

capture, and process, the kinds of things, processes, relations, attributes, etc., found in complex

metaphysically-based formal ontologies.

6.3.3.3 Amending Existing Tools With A Metaphysically-based Upper Ontology for Higher-

Level Fusion Processing in Disaster Environments.

This section will report upon specific approaches taken on this project for designing an ontology

model that can more effectively treat the kinds of complex relational items found within disaster

environments, ultimately providing for improved higher-level fusion processing and situation

assessment.

- 80 -

AFOSR F49620-01-1-0371

Basic Formal Ontology.

The ontology constructed for this project is part of a larger research agenda entitled the Basic

Formal Ontology (BFO). The BFO is an ongoing research project being conducted at both The

University at Buffalo and The Institute for Formal Ontology in Medical Information Sciences

(IFOMIS) at the University of Saarbrücken, Germany [6.3-24], [6.3-13], [6.3.14], [6.3-15].

 Upper- vs. Domain-specific Ontology.

The BFO represents an approach to building large-scale, reusable ontologies for applications in

any domain whatsoever, since it is a metaphysically-based approach to ontology design that

attempts to faithfully capture both the physical and phenomenological aspects of the world. In

this sense, the BFO is designed from both a top-down as well as a bottom-up approach, ensuring

that it is metaphysically comprehensive and consistent, while at the same time, being accurate

and computationally tractable at the domain-specific levels. It has been argued by Little [6.3-24]

that the formal, upper-ontology levels of an ontology are produced by logical reasoning about the

metaphysical structure of the world, whereas, in contrast, the domain-specific levels of an

ontology are produced by empirical means taken directly from a particular domain of interest

(see Fig. 4). By getting the metaphysics correct at the upper-most levels, the ontology can

guarantee certain successes which other computationally-based systems could not, since often

times computationally-based systems are initially constrained by a specific logic, rule language,

or other such computational concern. While computational matters are very important for

implementation, it is equally important that the ontology be able to capture all of the relevant

data supplied by the domain, and not be overly constrained in its ability to categorize or conceive

of a situation, based on the limitations of the system’s capabilities. This topic will be covered in

more detail later in this report. By getting the domain-specific levels of the ontology correct, one

is guaranteed an accurate representation of a particular domain based upon domain expertise in a

given field. By conjoining the upper and domain-specific levels, one is able to construct a

comprehensive ontology that is both logically, as well as empirically, comprehensive and

consistent.

- 81 -

AFOSR F49620-01-1-0371

Figure 3: Combining Formal & Domain-Specific Ontological Levels [6.3-26]

SNAP and SPAN.

The BFO is composed of two orthogonally-related sub-ontologies called SNAP and SPAN.

SNAP is used to represent spatial objects, independent of their temporal characteristics or

attributes (see Fig. 5). SPAN is used to represent temporal objects, independent of their spatial

characteristics. SNAP ontological entities represent items that are continuants, meaning they

endure over time and maintain their identity, in spite of changes. Examples of such items are: a

person whose cellular structure undergoes numerous changes, a body of water whose shoreline

can grow or shrink, a nation whose members are continuously gained and lost. At any given

point in time, one can gain a “snapshot” of such an object, or group of objects, that exhibits all of

its spatial properties in one go. All such items will appear as complex existent (and identifiable)

entities, complete with their static properties and numerous kinds of spatial relations (e.g., next

to, at location ‘x’, possessing size ‘y’, etc.).

Conversely, SPAN items exist as occurrents, meaning they occur only within time, or exist as

items that temporally unfold over time (see Fig. 6). Examples of such items are: the function of

a person gaining or losing their cells over time, the expansion or contraction of a body of water’s

shoreline over time, the gaining or losing of members within a nation. SPAN entities cannot be

understood in a “snapshot” approach, since at no given point in time are all of its attributes or

properties present. The attributes or properties of SPAN items exist over numerous time frames

(See Fig. 4).

Formal

Ontology
(Rational)

Application-Based
Formal Ontology

Collection of Non-Formal

Information Needs
(Empirical)

Formal

Ontology
(Rational)

Application-Based
Formal Ontology

Collection of Non-Formal

Information Needs
(Empirical)

- 82 -

AFOSR F49620-01-1-0371

Figure 4: SNAP BFO Upper Ontology Model.

SNAP and SPAN represent an artificial way of parsing the world, since all real objects in the

world, particularly those of interest to multisensor information fusion systems, exist as spatio-

temporal items. SNAP and SPAN were designed to avoid errors in modeling complex spatio-

temporal items, where entities and processes can become confused, resulting in an improper and

fallacious formal model of part-whole relations. Confusing entities and processes can result in

improper ontological categorization, which in turn, leads to poor inferencing capabilities in

corresponding knowledge representation (KR) systems or in ontological queries. An example of

the distinction between SNAP and SPAN is between an object and its function.

Enduring Item

No Temporal parts]

Enduring Item

No Temporal parts]

Spatial RegionSpatial Region Dependent ItemDependent Item Independent Items, their

Parts and Aggregates

Independent Items, their

Parts and Aggregates

Fee Portion of

Space

Fee Portion of

Space

Physically Bound

Portion of Space

Physically Bound

Portion of Space

StationaryStationary MobileMobile

Quality, State, PowerQuality, State, Power

Quasi-Quality, Quasi-State, Quasi-

Power

Quasi-Quality, Quasi-State, Quasi-

Power

SubstanceSubstance

Aggregate of Substances Aggregate of Substances

Fiat Part of SubstanceFiat Part of Substance

Boundary of a SubstanceBoundary of a Substance

Quasi-SubstanceQuasi-Substance

Enduring Item

No Temporal parts]

Enduring Item

No Temporal parts]

Spatial RegionSpatial Region Dependent ItemDependent Item Independent Items, their

Parts and Aggregates

Independent Items, their

Parts and Aggregates

Fee Portion of

Space

Fee Portion of

Space

Physically Bound

Portion of Space

Physically Bound

Portion of Space

StationaryStationary MobileMobile

Quality, State, PowerQuality, State, Power

Quasi-Quality, Quasi-State, Quasi-

Power

Quasi-Quality, Quasi-State, Quasi-

Power

SubstanceSubstance

Aggregate of Substances Aggregate of Substances

Fiat Part of SubstanceFiat Part of Substance

Boundary of a SubstanceBoundary of a Substance

Quasi-SubstanceQuasi-Substance

- 83 -

AFOSR F49620-01-1-0371

Figure 5: SPAN Upper-Ontology in the BFO

6.3.3.4 Six-Step Methodology for Ontology Construction.

A six-step methodology has previously been outlined by Little [6.3-24]. It is a methodology

which addresses ontology construction from both the upper- (i.e., top-down) and the domain-

specific (i.e., bottom-up) approach. The six steps are as follows:

Step 1. Develop a sufficiently large and representative lexicon of terms.

Step 2. Develop a set of metaphysically-grounded upper-level (abstract) categories (SNAP &

 SPAN).

Step 3. Develop a sufficiently large set of domain-specific (lower-level) categories under 2.

Step 4. Diagram complex formal relations between SNAP-SPAN terms/categories.

Step 5. Develop an ontology management tool for knowledge representation and reasoning

 (KRR).

Step 6. Examine methods for ontology evaluation.

Enduring Item

[Exists in Time, has no

spatial parts]

Temporal Region

Instances

Scattered

Intervals

Connected

Processural

Entities

Processes

Fiat Parts

Aggregates

Settings

Instantaneous

Temporal Boundaries

Events

Enduring Item

[Exists in Time, has no

spatial parts]

Temporal Region

Instances

Scattered

Intervals

Connected

Processural

Entities

Processes

Fiat Parts

Aggregates

Settings

Instantaneous

Temporal Boundaries

Events

- 84 -

AFOSR F49620-01-1-0371

Step 1 involves finding and structuring lexical data from a given domain of interest. This step

involves a careful examination of relevant literature, parsing out any and all terms relevant to the

description of that domain. All terms are alphabetized into a domain-specific lexicon, which will

provide the terminology for the domain-specific construction of the ontology’s lower levels.

Definitions are then further dissected in order to extract all relevant terms contained within each

one. These terms are then divided (and normally color-coded) into SNAP-specific, SPAN-

specific and SNAP-SPAN-relational items. To date, this work has been done by hand, but

current thought is being given to using text-mining software to facilitate easier construction of

the domain-specific lexicon. The issue concerning the use of automated text-mining tools at this

phase is that it is unclear how effective these tools will be in capturing all of the relevant terms.

One must be cautious that the lexicon’s construction, which ultimately winds up representing the

domain-ontological terminology, does not rest on faulty ontological assumptions within the text-

mining software itself. The lists generated by text-mining tools, at least in the initial trials,

would have to be checked by hand to ensure that all relevant terms were captured and

subsequently placed into appropriate SNAP and SPAN categories.

Step 2 is a philosophical exercise that involves the general construction of the BFO’s upper-level

segment. This is an on-going research agenda that involves a lot of reasoning on the part of the

ontologist to ensure a proper upper-ontology that is capable of categorizing all of the necessary

information within the ontology according to logical laws.

Step 3 amounts to applying the lexicon from step 1 to the upper-ontology segment designed in

step 2. Many of the items within the lexicon will share certain class, sub-class, and attribute

relations which can be gleaned from their definitions. By applying the lexical items to the

BFO’s upper-ontology segment, one can build a-cyclical species trees for both SNAP and SPAN

items independent of one another.

Step 4 involves drawing transcategorical relations between the independent SNAP and SPAN

species trees (which again represent the orthogonal nature of the BFO’s ontological structure).

These relation-types will represent more complex relation-types than can be shown within the

structure of a tree diagram, since tree diagrams normally can only present simple relations such

- 85 -

AFOSR F49620-01-1-0371

as is-a or part_of. A list of these kinds of more complex transcategorical relations will be

described below.

Step 5 is an implementation-minded step, which involves the trade-off of ontological robustness

versus computational tractability. While this topic will be discussed more thoroughly later in

this report, it is worth noting the importance of this issue in the ontology’s over-all development.

Too often in the computer science community, ontologies are constrained by the computational

limits of current ontology development tools (e.g., work on structured vocabularies, frame-based

or description logic systems, etc.), resulting in ontologies that do not perform adequately in terms

of their abilities to structure and draw connections between numerous kinds of complex

relational items, such as those in disaster environments. The methodology described here argues

that the ontology should be designed with an eye to the state of the art in terms of software

applications, but at the same time, the ontology’s construction should also be carried out in line

with a certain metaphysical and logical robustness, perhaps exceeding immediate

implementation in existing software tools. In this sense, the ontology can be a quality theoretical

product, which would serve to prompt new and innovative design methodologies in terms of its

application in a computationally-tractable software product. This approach seeks to form a more

synergistic and productive relationship between the community of formal ontologists and the

community of computer scientists than currently exists.

Step 6 is perhaps one of the most challenging steps to fulfill, since it is tied to the question of:

“how does one know when they have a quality, or even useful, ontology product?”. This

question could be approached form numerous angles, but the idea in this methodology is to

approach the issue from both the rational as well as empirical position. A good ontology on the

rational level would admit of consistency, metaphysical robustness, sound theoretical

(philosophical) structure, and a proper logical framework (set theory, mereology, topology,

mereotopology, etc.). A good ontology on the empirical level would be the product of testing the

system in experimental applications, where one could produce higher-level fusion state estimates

for a specified task both with and without the ontology. If the thesis that ontologies are useful

for higher-level fusion is correct, there should be a significant gain in both the construction, and

implementation, of fusion algorithms for state estimation, belief revision, and the like. It has

been argued [6.3-24] that an ontology’s success or failure should be determined within the

- 86 -

AFOSR F49620-01-1-0371

guidelines of traditional systems engineering methodologies, where there are sets of feedback

loops set up from the initial design phase, through the prototyping and construction phase, to

termination and disposal. In this sense, the design of the ontology is scrutinized throughout both

its development and implementation, leading to an evolving and increasingly better end product

in terms of both its internal design, as well as it external (i.e., implemented) behaviors.

6.3.3.5 Inter- and Intra-Relations Needed for Domain Specificity.

The SNAP/SPAN Basic Formal Ontology constructed for this project required a significant

amount of research into not only the various kinds of relation-types mentioned in Fig. 2, but the

order and structure of those basic relation-types in terms of the kinds of nested sub-relations

contained within them. As stated earlier, other ontology attempts such as the SAW Ontology do

not appropriately partition their relation-types into suitable sub-classes, capable of treating the

kinds of complex situated items in disaster environments. Each relationship characterizing a

situation falls into one of two basic categories: inter-class relations and intra-class relations (see

Figure 8). Intra-class relations can be thought of as a subclass of internal relations whereas inter-

class relations can be thought of as a subclass of external relations (see Fig. 8). In this sense, we

are especially concerned with both the part-relations that exist within a given item or set of items

as well as the part-relations that exist between various items, since these kinds of relations will

be crucial to proper reasoning about items such as casualty clusters, whose part-relations,

members, and spatio-temporal attributes can change over time.

Figure 6: Inter- and Intra-Relations in Dis-ReO.

Single Physical Obj.

Ambulance
•Characteristics
•Attributes
•Properties

Aggregate of Physical Objs.

Hospitals
•Locations

•Capacities
•Damage Status
•Special Care Facilities

Single Physical Obj.

Earthquake Victim
•Casualty Attributes/Props

•Injury Type
•Injury Severity

Aggregate of Physical Objs.

Casualty Clusters
•Location

•Size
•Shape
•Changes over time

Single Physical Obj.

Ambulance
•Characteristics
•Attributes
•Properties

Aggregate of Physical Objs.

Hospitals
•Locations

•Capacities
•Damage Status
•Special Care Facilities

Single Physical Obj.

Earthquake Victim
•Casualty Attributes/Props

•Injury Type
•Injury Severity

Aggregate of Physical Objs.

Casualty Clusters
•Location

•Size
•Shape
•Changes over time

- 87 -

AFOSR F49620-01-1-0371

Intra-relations (i.e., internal relations) are spatial, temporal, or functional relations that exist

between the following:

1. physical objects and their respective attributes

2. various attributes of the same object or set of objects

3. individual physical objects and their overarching aggregates

4. sub-groups of related physical items of the same aggregate at different levels of

granularity (i.e., macro or micro considerations)

5. aggregates of related events.

Inter-class relations (i.e., external relations) are spatial, temporal, or functional relations that

exist between the following:

1. individuated objects of different types

2. individuated objects and aggregates of different types

3. individuated aggregates of different types at the same level of granularity

4. individuated aggregates of different types at different levels of granularity.

The most basic situations can be treated as collections of context-dependent relations between

physical items within the same category (e.g., casualties, buildings, ambulances, etc.) or between

similar temporal events of the same category (e.g., settings, time periods, discrete events). These

basic situations can be defined as either aggregates (clusters), or as wholes, depending upon their

metaphysical structure (i.e., the specific ordering of their parts). Structured items, whose part-

relations form certain metaphysical connections such as dependence (either one-sided or

reciprocal) represent wholes , which can possess an intrinsic put-togethered-ness, thereby

resisting conventional modeling as sets (whose members do not form such intrinsic connections).

Sets of items represent loose aggregates, where the intra-part relations are not necessary for the

- 88 -

AFOSR F49620-01-1-0371

existence of the aggregate. Lists, piles, or collocations of items, which possess no inherent part-

structure, but merely co-exist in some space or time, are examples of these. An understanding of

basic situations and their aggregates can be obtained by applying a similarity metric in the

feature space. The types of features used for aggregation depend on the information needs of a

certain user or a group of users. At each subsequent level of granularity, situations are localized

situations described by either a clique of aggregates, or more simply by a set of aggregates in a

certain region. Events related to aggregates are represented by a significant change of the

parameters of the aggregates, discovery of a new aggregate, or the splitting/merging of

aggregates at a higher level of granularity.

Figure 7: Individuals and Aggregates of Various Kinds.

Derived intra-class situations are created by a composition of basic intra-class situations at

specific levels of granularity. These are called elementary situations. Among elementary

situations to be considered are:

1. Communication system situations (capacity vs. demand, location, boundary, dynamics,

possible causes of the problems, predicted problems)

2. Transportation system situations,

3. hazmat situations (secondary threat, location, type, dynamics),

4. Casualty situations (location, boundary, severity, injury types, dynamics and causes)

Interclass

Intraclass

Temporal
Spatial

Interclass

Intraclass

Temporal
Spatial

Events-Events

(event aggregation)

Events-Events
(event aggregation)

PO- Aggregates of PO
PO- Aggregates of PO

Elementary Situation

-Elementary situation
(ES-ES)

Elementary Situation
-Elementary situation

(ES-ES)

Physical objects –

Physical objects (PO-PO)

Physical objects –

Physical objects (PO-PO)

Aggregates-
Aggregates

Aggregates-

Aggregates

CES-ES
CES-ES

Combinations of ES (CES) –

Combinations of ES

Combinations of ES (CES) –
Combinations of ES

Processes-Processes
(process aggregation)

Processes-Processes

(process aggregation)

Relations

Interclass

Intraclass

Temporal
Spatial

Interclass

Intraclass

Temporal
Spatial

Events-Events

(event aggregation)

Events-Events
(event aggregation)

PO- Aggregates of PO
PO- Aggregates of PO

Elementary Situation

-Elementary situation
(ES-ES)

Elementary Situation
-Elementary situation

(ES-ES)

Physical objects –

Physical objects (PO-PO)

Physical objects –

Physical objects (PO-PO)

Aggregates-
Aggregates

Aggregates-

Aggregates

CES-ES
CES-ES

Combinations of ES (CES) –

Combinations of ES

Combinations of ES (CES) –
Combinations of ES

Processes-Processes
(process aggregation)

Processes-Processes

(process aggregation)

Relations

- 89 -

AFOSR F49620-01-1-0371

5. Hospital situations (capacity, accessibility, possible damage, capacity prediction)

6. Building situations (location, level of damage, predicted damage)

7. Ambulance situations (location, capacity vs. demand)

Relations between spatial aggregates at various levels of granularity (SNAP relationships) are

represented by the mereological categories of direction, size, and distance. Relations between

events and processes (SPAN relationships) are defined by time-point and time-interval

relationships (Tables 1 and 2). Examples of such relations in disaster situation assessment are:

1. Close to a hospital,

2. Cluster A is larger then before,

3. Cluster B is along the west wind direction

4. Distance between Clusters A and B is smaller than before,

5. Casualty cluster A overlaps with building cluster C.

- 90 -

AFOSR F49620-01-1-0371

Figure 8: Domain-Specific SNAP and SPAN Relations for Disaster Evvironments.

6.3.4 Ontology and Cognitive Work Analysis (CWA).

Determining the kinds of domain-specificity needed for a quality fusion ontology rests on

meeting the needs of decision-makers in terms of their goals and the allocations of

tasks/resources to meet those goals. For this reason, a significant portion of work was performed

to merge the Dis-ReO Upper-Ontology with an Abstraction Hierarchy, which is a task-related

hierarchical model used by cognitive systems engineers to structure information relevant to

domain-specific tasks carried out by domain experts and other key personnel working within

disaster environments. The merger of the ontology with CWA considerations allowed for an

enhancement of both the ontology and the given abstraction hierarchy, in that ontology served as

a means to formally categorize elements in the abstraction hierarchy, while the abstraction

hierarchy served to provide a consistent and comprehensive amount of domain-specific

information relevant to disaster environments. An exemplary segment of the conjoined model

Table 1. SPAN relations

Disjoint, Joint, Overlap,

Inside, Equal

Relation between time

intervals

Before, At the same time,

Start, Finish, Soon, Very

soon, Resulting in,

Initiating, value of time

interval

Relation between time

points

Disjoint, Joint, Overlap,

Inside, Equal

Relation between time

intervals

Before, At the same time,

Start, Finish, Soon, Very

soon, Resulting in,

Initiating, value of time

interval

Relation between time

points

Table 2. SNAP relations

Not far

Far

Very far

Close

Very close

distance

between

clusters

centroids

Smaller

Larger

size

difference

Along

Towards

East

West

South

North

Similar

Opposite

Disjoint

Joint

Overlap

Cover

Reachable

Unreachable

Contain

A part of

DistanceSizeDirection

Topology/

mereology

Not far

Far

Very far

Close

Very close

distance

between

clusters

centroids

Smaller

Larger

size

difference

Along

Towards

East

West

South

North

Similar

Opposite

Disjoint

Joint

Overlap

Cover

Reachable

Unreachable

Contain

A part of

DistanceSizeDirection

Topology/

mereology

- 91 -

AFOSR F49620-01-1-0371

provided for a large categorical structuring of information, which can be further decomposed and

utilized for extended understandings of disaster domains (see Fig. 11).

Figure 9: Small Segment of SNAP Dis-ReO Merged With CWA.

This research improves even further on the complexity of relation-types between items in

CWA’s (yellow boxes in Fig. 11) and the ontology. Utilizing this model within an appropriately

sophisticated KRR tool, as previously discussed, would allow for not only an understanding of

the disaster domain in terms of objects, object attributes, processes, etc., but also the functions

and activities of human agents operating in a goal-directed manner within that environment.

More work needs to be done on this to implement it into a software tool for disaster personnel

management, but indications appear favorable that this approach will provide for ever improved

ontological capabilities for treating the kinds of complex items (including those of human

intentions and tasks) involved within disaster environments.

6.4 Hospital Modeling

The principal interest in this project is to explore the role of, and define suitable methods of, data

fusion in emergency response. A simulation test bed named DIRE was designed and

- 92 -

AFOSR F49620-01-1-0371

implemented to support this purpose, and is described in Section 6.2 of this report. In order to

define MOP’s and MOE’s by which to measure the efficacy of various data fusion choices and

sensitivity to variations of simulated ground truth parameters, it is necessary to implement

certain activities within DIRE which do not directly contribute to data fusion per se, but use the

products of data fusion to mitigate casualties and achieve other goals related to emergency

response.

One such activity is the routing to appropriate hospitals of casualties which data fusion

determines to require hospital care. This is a resource management rather than a data fusion

activity, one which permits metrics such as casualty service time and fraction of truly critical

casualties served to be measured. In order to choose the appropriate hospital to which to route a

given patient who has been picked up by an ambulance, the ambulance routing agent should

anticipate the ability of each candidate hospital to serve a new patient of the given injury type at

the time the patient would be arriving, as well as the expected transit time. The ability of a

hospital to serve this patient depends on several factors, including the current level of hospital

capacity utilization and a dynamic model for how this will evolve between now and the time the

patient in question could arrive there. This is the hospital modeling problem.

In this section we develop a generic hospital simulation model that is capable of representing the

operations of a wide range of hospitals in an earthquake disaster situation. From results of our

simulations, generalized regression equations are fitted to obtain steady-state hospital capacities.

A parametric metamodel is then developed to predict transient capacity for multiple hospitals in

the disaster area in a timely manner, as demanded by emergency operations management. Given

transient capacity predictions for each hospital, the routing agent can select an appropriate target

hospital.

6.4.1 Functioning of the hospital in a disaster

Following a disaster, a hospital emergency room (ER) can expect an increase of three to five

times the normal patient volume [6.4-15]. This could easily overwhelm the hospital resources.

Hospitals should thus be prepared. As vital community resources, hospitals should thus be

prepared in terms of the following requirements resulting from a disaster:

- 93 -

AFOSR F49620-01-1-0371

1. To have numbers of personnel, including physicians, registered nurses and other

practitioners, that are sufficient to meet resulting needs for emergency care.

2. To meet the sudden surge of emergency patients with temporary additional capacity.

(This requires integration of emergency services with other departments of the hospital.

For example, in a disaster situation, it is common to convert some available in-patient

areas, and even hallways, to ERs, and to use labs in other departments to test ER patients.

Close coordination within the hospital will help in the timely treatment of large numbers

of new patients.)

3. To conduct resource planning and coordination between the emergency operation center

(EOC, normally set up and operated by federal, state and local emergency management

agencies) and hospitals in the disaster area.

4. To continually treat those patients who are already under care prior to the disaster.

 In order to meet these requirements, well-coordinated relief efforts, in addition to emergency

preparedness, are essential functions.

6.4.2 Hospital capacity estimates

Although we cannot predict a disaster with appreciable certainty, emergency preparedness is

essential to minimize resulting damage. In a disaster, the EOC generally supervises relief

operations. If the damage can be predicted, or estimated immediately after the disaster, relief

efforts can be planned and coordinated accordingly. In the case of earthquakes, software tools

such as HAZUS [6.4-13] developed by the Federal Emergency Management Agency (FEMA)

are helpful in predicting the extent of loss/damage based on geographic location and severity of

the earthquake.

Another effort that could greatly assist the EOC is hospital capacity planning. By estimating the

available hospital capacity, EOC would be able to make well-informed decisions on where to

send patients and how many. Such decisions are based on the proximity of the hospital to the

disaster site and its available capacity, as well as the amount of time within which a patient’s

injuries must be treated. Furthermore, capacity estimates are also useful in the dispatching of

- 94 -

AFOSR F49620-01-1-0371

ambulance/rescue vehicles, deploying medical staff, and securing external help and equipment

for the hospitals.

Despite the importance of hospital capacity in emergency management, there lacks the research

effort. Except for a few reported applications (e.g. [6.4-10], [6.4-21], [6.4-26], [6.4-28]) where

simulation was used in hospital studies in general, we found no applications to hospital capacity

planning in disaster management. Further, little research has been done to study the hospital

functions in a disaster.

Motivated by the needs of hospital capacity estimates in a disaster, this research had the

following goals:

1. To model hospital operations in a disaster situation. Since it is important for the EOC to

know the status of all hospitals in their disaster area, the proposed model should be capable

of representing all such facilities. We use an earthquake as the disaster for this purpose..

2. To develop a methodology for capacity estimates of hospitals. For purposes of capacity

estimations, we define hospital capacity as the number of injured patients the hospital can

accept in a given time period that the patients must be treated for theire injuries to avoid loss

of lives.

A wide range of modeling methods is reported in the literature for representing hospital

operations. Deterministic mathematical programming models, such as linear programming (LP)

and dynamic programming (DP) were used to optimize resource allocation in hospitals and

healthcare systems [6.4-31]. Queuing models can capture the stochastic nature of patient arrivals

[6.4-5, 6.4-18]. System dynamics model can describe the dynamic relationships among different

hospital sectors [6.4-19]. Discrete event simulations were widely used for modeling the detailed

functioning of an individual hospital or a specific section of a hospital [6.4-27], [6.4-29], [6.4-

44]. In addition, metamodels are useful for describing a set of similar systems and have been

used to evaluate hospitals’ efficiency [6.4-6].

Almost all existing hospital operational modeling research directed at capacity estimation has

focused on bed capacity. Hill Burton [6.4-38] projected five-year bed demand based on

population on accupancy factors. Roemer and Shain [6.4-39] concluded that beds beget patients,

- 95 -

AFOSR F49620-01-1-0371

in the sense that beds will ultimately be occupied at approximately the same rate in any hospital

even if bed number is increased. Trye et al. [6.4-41] constructed a mathematical model for

estimating future bed demand based on two years of inpatient data. Mouza [6.4-42] projected

hospital bed requirements based on forecasts of the admission rates after accounting for the

structure of the admitted population by gender and age.

In the current context, the challenge lies in the real-time estimation of hospital capacity during

disasters. In addition, when studying disaster management, it is important to employ a generic

model of all hospitals in the disaster area. Clearly, the time-consuming simulation of individual

hospitals will not suffice.

6.4.3 Modeling Methodology

Discrete event simulation is a valuable tool for hospital modeling, lengthy execution is required

for obtaining statistically meaningful results . Further, in disaster mitigation all available

hospitals in the area need to be modeled, which may vary vastly in number and specification.

Most importantly, capacity estimates are required near real time to be useful. Real-time

simulation runs are thus infeasible.

Another serious challenge in disaster modeling is the sudden surge of patient arrivals after the

disaster, rendering the system a transient behavior. As patient arrival rate significantly affects

patient flow time. [6.4-10], high arrival rates leads to excessively long waiting due to

overwhelmed hospital resources and facilities. A new methodology is thus needed to obtain

capacity estimates that are not only transient in nature, but also applicable for all hospitals in

real time.

Such a generic simulation can represent any hospital of interest, with a model that varies ER

patient volumes, hospital size and operating efficiency. The simulation is run off-line.

According to Giraldo et al. [6.4-14], using a factorial simulation experimental design, one can

develop parametric models of hospitals by constructing regression equations that relate hospital

performance measures to hospital’s characteristics, which are the independent variables.

- 96 -

AFOSR F49620-01-1-0371

While parametric regressions can model long-term system performance, transient behavior is

captured by a metamodel based on system dynamics. The two sets of models are then combined

to determine the temporal behavior of the hospital(s), thus allowing for capacity estimations.

We consider patient waiting times as the response variable of interest. Since they represent how

busy the system is, allowable waiting times for treating the injuries of various severities, i.e.,

survivability of the injury, indicate the hospital’s available capacity.

6.4.3.1 Characteristics of hospitals for simulation modeling

The hospitals of interest in an earthquake are those that treat all general types of injury and have

ERs and operating rooms. Specialty hospitals such as cancer institutes, psychiatric centers, etc.,

are not seen as significant contributors to the treatment of earthquake related injuries. Only non-

specialty hospitals are thus included in this study.

Number of beds

Table 1 shows the statistics for all US hospitals [6.4-1]. Although hospitals with less than 100

beds constitute 47% of all hospitals in numbers, they only account for 17% of ER visits and 12%

of surgeries. Furthermore, they have less than 20% of all the beds and staff. Therefore, if we

focus on hospitals that have more than 100 beds, we will include more than 80% of hospitals in

terms of capacity. After studying more than 50 hospitals randomly selected from different states

across the country, we consider a typical large hospital to have about 500 beds, a medium-sized

one to have 300 beds, and a small one with about 100 beds. Knowing these facts, we categorize

hospitals into three sizes with 100, 300, and 500 beds. Hospitals within the range can be

interpolated from the obtained results.

- 97 -

AFOSR F49620-01-1-0371

Number of operating rooms (OR)

In an emergency situation, a patient is expected to go through the ER, any required Lab testing

and, if necessary, the OR. To simplify the model, we only included one lab, which is capable of

all tests such as CAT scan, MRI, X-Ray, blood tests, etc., instead of modeling individual labs.

Since the OR capacity is fixed, OR becomes the most critical resources in an emergency

situation. Our study of over 50 hospitals across the country showed that most hospitals have five

to 15 ORs. Therefore we chose 5, 10, and 15 OR’s to define this characteristic of the hospitals.

OR efficiency

Even for hospitals with the same number of beds and ORs, the number of patients treated varies

widely with various degrees of OR efficiency. Given the number of ORs, we can estimate the

hospital’s surgical capacity by multiplying the number of surgeries per OR. Thus, a logical

measure of efficiency is the number of surgeries a hospital can perform per OR per year. The

more surgeries an OR can perform, the more efficient the hospital. By comparing the American

- 98 -

AFOSR F49620-01-1-0371

Hospital Association (AHA) hospital data for more than 50 hospitals across the country [6.4-1,

6.4-2, 6.4-3], we found that the number of surgeries per OR in a year ranges from 600 to 1200,

with an average around 900. We denote this OR efficiency index with a value of 600, 900, or

1200.

By compiling the recent national hospital data [6.4-1], we found in Fig.1 that annual ER visits

are directly proportional to the number of beds. Therefore, it is not necessary to specify ER

capacity once the number of beds is known.

6.4.3.2 Regression approach and metamodel

By assuming a constant patient arrival rate before the earthquake, the system stabilizes to a

steady state.. However, increasing the arrival rates to a higher value after the earthquake will

result in either a steady state after a certain transient state or system inequilibrium, depending on

the patient volume. By using different patient arrival rates in the simulation, we obtained the

corresponding post-EQ [EQ = Earthquake] patient waiting times. Regression equations are

obtained for these pre-EQ and post-EQ steady-state waiting times. When patient arrival rate is

- 99 -

AFOSR F49620-01-1-0371

higher than the service rate, the waiting time will increase continuously in an inequilibrium

system. The waiting time will soon exceed the acceptable limits, i.e., the survivability.

Immediately after the earthquake, the system goes through a transient stage to gradually stabilize

to the post-EQ steady state. Since we are interested in short-term estimates, the transient state is

of utmost importance. In capturing the dynamic behavior of first-order systems, Cochran and Lin

[6.4-8] showed that the transient state of a manufacturing system resulting from dynamic events

such as machine breakdowns and parts supply shortage can be approximated satisfactorily by an

exponential function. We believe the transient state, starting from pre-EQ waiting time to post-

EQ waiting time in the hospital due to the sudden patient volume surge in the volume may have a

similar exponential behavior due to the similarities of hospitals and manufacturing systems and

the fact that both have limited resources. The exact shape of the exponential function depends on

hospital parameters and patient arrival rates.

Any earthquake situation is well represented by an initial pre-EQ steady state, the intermediate

transient state and the final post-EQ steady state. Combining the steady state regression

equations and transient state models, the patient waiting time at any time for any hospital for a

given patient arrival rate can be found. The available capacity, then, is indicated by the

difference of maximum allowable waiting time, i.e., survivability, and current waiting time. That

is, if the waiting time exceeds the survivability, the hospital does not have the necessary capacity

to treat the injured patients. Since the patient arrival rate changes during an earthquake, it is

necessary to update the arrival rate periodically. Therefore, the capacity estimate is dynamically

updated in specified time intervals based on the most recent arrival update.

6.4.4 A generic simulation model of hospitals

Using the simulation software ProModel, we developed a generic hospital model with the partial

factorial design described earlier. In a disaster situation, all staff will be called on duty. The

efficiency in ER/Lab tends to improve and mostly lab tests of a preliminary nature for faster

result will be used. Labs from other departments may also be used. Therefore, the model assumes

that Lab and ER do npt restrict capacity. Similarly, human resource and equipment constraints

are not considered in this study.

- 100 -

AFOSR F49620-01-1-0371

We performed the initial set of simulation experiments with a large number of replications (300

replications) to achieve small variances so that we could validate our model. Then a power

analysis [6.4-46] was used to determine the number of replications. The significance level, α, is

set to 0.05; power (1-β) is 0.80; effect sizes for the factors (Bed, OR, Efficiency) is 0.25 and all

two factor interactions is 0.10, by assuming that the main effects have more significance than

interactions. We calculated the number of replications using the method of independent

replications to ensure small variances, with the following formula:

 [(Zα/2)
2
 (C.V.)

2
] / ∆2

where ∆ is the desirable relative error in percentage (we have assumed a relative error of 2% in

our calculations), C.V. is the coefficient of variation obtained from the pilot run (46 replications).

After computing the number of replications required for each of the 21 hospital combinations,

we chose the largest as the number of replications for all hospital combinations to ensure a

narrower confidence interval. The largest value obtained from the above formula is slightly

smaller than 100. For simplicity, we used 100 replications for all experimental studies.

A warm-up period is used for the system to stabilize to its steady state. The transient and steady-

state outputs are extracted from simulations. The outputs are average waiting times of the

patients in the queues of ER, Lab and OR before they receive required medical attention.

Fig. 3 shows the static and dynamic components of a hospital simulation model and the

relationship between the simulation model and the metamodel.

- 101 -

AFOSR F49620-01-1-0371

6.4.4.1 Pre-EQ simulation model

As ORs are the most critical resource, we classify patients as either OR patients who require

surgeries or non-OR patients. For routing these patients we needed define a treatment path based

on clinical guidelines. The route i.e., the sequence of locations that a patient goes through within

the hospital is determined by patient type and procedure types. In the simulation model, we used

the service times required to treat the specified injuries provided by Mercy Hospital and the Erie

County Medical Center in Buffalo, New York [6.4-22, 12].

In a real dynamic situation, the rate of patient arrivals changes constantly. However, it is

impractical to obtain detailed arrival patterns of all possible hospitals. We assumed that

throughout our simulations, for any hospital, there is a constant arrival rate before the

earthquake. Therefore, we used national statistics to calculate pre-EQ average daily patient

arrivals. The arrivals are assumed to follow a Poisson process. Since annual ER visits are directly

proportional to bed size (Fig. 1), it provides the basis to calculate the ER patient arrival rate

- 102 -

AFOSR F49620-01-1-0371

before the earthquake. In addition, there are scheduled surgical patients and inpatients who

require surgery. The inpatient volumes, though small in proportion, are modeled along with the

scheduled surgical patients.

We verified the simulation model by using available historic data to compare the simulated OR

utilization with the real utilization for a few hospitals. The results differed by only about 2%.

6.4.4.2 Post-EQ simulation model

Although the post-EQ simulation model does not differ from the pre-EQ model in the physical

elements, patient volumes are changed to post-EQ volumes. Therefore, in the post-EQ model,

only serious inpatient patients and surgical patients from the ER are assumed to go to the OR.

6.4 4.3 Patient types

Injuries from an earthquake can be broadly classified into injuries directly attributed to the

earthquake and those that are not. Patients use varying types of hospital resources for different

durations. Therefore, it is necessary to identify patient types in an earthquake.

In an emergency situation such as an earthquake, documentation of patient/treatment data is

usually a low-priority activity. Therefore, few injury data are available for analysis. The

Northridge, CA earthquake on Jan 17, 1994 and the Loma Prieta, CA earthquake, Oct 17, 1989

are two well documented recent earthquakes [6.4-21, [6.4-7, [6.4-11, [6.4-25, [6.4-4, [6.4-23].

However, due to different criteria and definitions, the data are inconsistent, which makes it

difficult to analyze the injuries.

Cheu [6.4-7] reported that during the first day of the Northridge earthquake, approximately 2,400

patients were treated at hospitals. Of these patients, 39% of the injuries were lacerations, 12%

were minor cuts, 1-2% were head injury, 8-9% were orthopedic and 1% were burns. In other

words, 62% of all emergency room cases were injuries due to the earthquake.

Although physical injuries contribute to a large portion of total ER visits, patients not related to

earthquakes also occupy ER resources. Durkin [6.4-11] listed the distribution, by general types,

of injuries and medical problems seen by four hospitals’ emergency rooms for the first 24 hours

after the Northridge earthquake. From Table 2, we can see that the percentage of soft

- 103 -

AFOSR F49620-01-1-0371

tissue/orthopedic injuries (58.4%) is consistent with the overall injury percentage (62%) for all

hospitals during the earthquake [6.4-7]. The average can be considered approximately 60%.

One week’s injury data after the Northridge earthquake is available for Northridge Hospital in

[6.4-26]. The percentages of respiratory and OB/GYN patients were 6.5% and 4.9%,

respectively, which support the distribution in Table 2. Based on these two sources, the average

of respiratory and OB/GYN is computed as 6.55% and 4.58%, respectively.

The soft tissue/orthopedic patients can be further divided into several subclasses. Table 3 shows

a general breakup of these injuries [6.4-7], [6.4-11], [6.4-25], [6.4-4], 8[.4-23].

- 104 -

AFOSR F49620-01-1-0371

Since these data are from five different earthquakes and are not consistent, the total of the

averages exceeds 100%. Since fracture, burn, and head injuries are usually more severe than

those other patients, they require more hospital resources, particularly OR. Therefore, as a

conservative estimate, we kept the percentages of these patients, and adjusted the other patients’

percentage, so that their total is 100%. The result is shown in Table 4.

- 105 -

AFOSR F49620-01-1-0371

The patients who have similar medical needs and go through the same treatment procedure were

grouped into six categories:

Type 1: Laceration, Abrasion, Contusion, Minor Cuts, Muscle Strain, and Sprains. With minor

injuries, these patients do not need the OR, and are released after ER treatment.

Type 2: Fractures, Orthopedic. This type of patient requires Lab (X- ray in general) after ER

treatment. Depending on lab results, some of them go to the OR; the others are discharged.

- 106 -

AFOSR F49620-01-1-0371

Type 3: Head injury and Burns. These types of patients require immediate treatment. Therefore,

they are considered to be the highest severity type. They are routed through ER, Lab, OR, (then

ICU when required) and to the “Inpatient” area (also called “beds”).

Type 4: Neuro/Psychiatric, Respiratory, Gastrointestinal and Others. These patients go through

the same route in hospitals as Type 1 patients. However, they have different processing times

compared to Type 1 patients.

Type 5: Cardiovascular. These patients go through the ER and Lab. After diagnosis, some go to

the OR, then ICU/CCU and finally to the inpatient area; the rest of them are discharged.

Type 6: OB/GYN. These patients go through the ER, Lab, OR and then the inpatient area.

The percentages of these six types are shown in Table 5.

Physical injuries (Types 1, 2 and 3) occupy 60% of total ER visits, and of these only 10% are

hospitalized (Inpatient) [6.4-20], [6.4-10]. Therefore we can assume that only 6% (Types 1, 2

- 107 -

AFOSR F49620-01-1-0371

and 3) of patients require surgery. Since all Type 3 patients require surgery (3.7% overall), the

proportion of Type 2 patients who go to the OR is 2.3% (6-3.7=2.3).

Durkin [6.4-11] also reported that within one week after the Northridge earthquake, 7,192

patients had been treated and released from hospital emergency rooms and 1,419 patients had

been admitted to hospitals for further treatment. These patients result in a 16.5% admission rate

for all ER visits. Therefore, the proportion of Type 5 patients who go to the OR is:

16.5 - 2.3 - 3.7 - 4.6 = 5.9%. In addition, we have to consider inpatients who require surgery due

to an emergency medical condition:

Type 7: Emergency inpatients. They are inpatients who must undergo surgery due to an

emergency medical condition such as cardiac arrest. Their percentage is relatively small. After

the OR, they usually go to ICU/recovery rooms and then return to the inpatient area.

Since waiting times differ significantly between surgical and non-surgical patients, these seven

patient types are further classified into OR and non-OR patients. OR patients: Type 3, Type 6

and part of Type 2 and Type 5 who go to the OR. Non-OR patients: Type 1, Type 4 and part of

Type 2 and Type 5 who do not go to the OR. Routing of these types of patients within the

hospital is shown in Fig. 4.

- 108 -

AFOSR F49620-01-1-0371

The non-OR patients are taken on a first-come-first-served basis. After the necessary lab tests,

they are discharged from the ER. The OR patients follow the same route but after receiving lab

tests they go to the OR. Type 2 and Type 6 patients coming out of the OR go to the inpatient

area. Due to their medical needs from specific injuries, Types 3, 5 and normal patients go

through ICU, then the inpatient area. We have not explicitly modeled medical-surgical and

telemetry units, but the time it takes the patients from when they first receive medical attention to

their discharge includes time at the important units based on data collected from hospitals.

- 109 -

AFOSR F49620-01-1-0371

6.4.4.4 Post-EQ service times and service logic

Based on discussions with hospital ER staff [6.4-24], we assume that the service times in the ER

and lab will accelerate by a minimum of 30% after a disaster. In addition, emergency

management directives require the hospitals to cancel all regularly scheduled surgeries except

medical emergencies. However, surgical times in the OR are unchanged. Therefore, if the patient

arrival rate is unchanged and if there is no facility damage, the hospital capacity is virtually

expanded.

Although the simulation experiment used a constant patient arrival rate both before and after the

earthquake, they were not necessarily the same. The inter-arrival time is considered to be

exponentially distributed, i.e., the arrival assumes Poisson process. The service times of the

patients follow different distributions also based on the data collected from hospitals. Further, the

percentages of all patient types are considered to be constant regardless of patient volume

change, and patients are assumed to undergo treatment in a FIFO (First In First Out) order.

6.4.5 Capacity prediction model

After the simulation is run for each hospital in the partial factorial design (Fig. 2), we obtain both

OR and non-OR patients’ waiting times. As mentioned before, this includes all the waiting time

and is thus closely related to survivability. From our interviews with hospital ER staff, a

survivability of one hour is allowed for OR patients. Since OR patients’ waiting time is generally

more critical than that of non-OR patients, we focus on OR patients in the following steps.

6.4.5.1 Pre-EQ steady-state waiting time equation

For each of the 21 different hospital settings in the partial factorial design, we obtain the steady-

state pre-EQ waiting time from simulation. Then, a metamodel in regression of these 21 sets of

results relates pre-EQ steady-state waiting time to number of beds, number of ORs, and

efficiency:

EOEBOBE OB 6543210 ⋅⋅+⋅⋅+⋅⋅+⋅+⋅+⋅+=Τ CCCCCCC (1)

where Τ = steady-state waiting time before the earthquake

- 110 -

AFOSR F49620-01-1-0371

 B = number of beds in the hospital

 O = number of OR’s

 E = efficiency index

C0, C1, C2, C3, 4C , 5C and 6C are constants. The R-square value is 94.5%, indicating a good fit.

The resulting equation also validates the effect sizes selected during the power analysis for the

main factors and only two factor interactions.

6.4.5.2. Post-EQ steady-state waiting time equation

Post-EQ waiting time regression equations have the same form as the pre-EQ waiting time

equation. The patient volumes after the earthquake that can be treated may vary from a zero

volume of patients from the earthquake to a threshold maximum volume.

If after the earthquake, no EQ patients arrive, there would only be a minimum arrival rate of

regular ER patients, resulting in a large capacity available. This patient volume is a hypothetical

base case. When any disaster takes place the incoming patient volume would be greater than or

equal to this base case.

Using the same regression approach, we obtain the steady-state base case waiting time for any

given hospital. The regression of the experimental design showed an R-square value of 90%.

By experimenting on various post-EQ arrival rates, the critical arrival rate is determined. That is,

any sustained rate greater than this critical rate would push the system into inequilibrium. We

call this situation the critical case, where the system is on the threshold of becoming over-

capacitated. We are able to obtain critical patient arrival rates for any hospital, in a regression,

with the R-square value being 95%.

In addition to the critical case patient arrival rate, we can also obtain the steady-state critical case

waiting time. Then, regression will give us this value for any given hospital. The R-square value

for this regression is 85%.

- 111 -

AFOSR F49620-01-1-0371

6.4.5.3 Arrival rates between the base case and the critical case

In order to find the relationship between patient arrival rate and the steady-state waiting time

under situations between the base case and the critical case, we perform a series of simulations

with different arrival rates for each hospital. As an example, results for the 500-Bed, 15-OR and

1,200-efficiency index combination are shown in Fig. 5.

From Fig. 5 (a), waiting time increases exponentially with patient arrival rate. Fig. 5 (b) shows

the logarithmic scaled steady-state waiting time. There is a good log-linear relationship between

waiting time and patient arrival rate.

Therefore, for any given hospital, the following relationship holds:

Log (sΤ) = a + b*λ (2)

where a and b are constants, sΤ = Steady-state waiting time and λ = Patient arrival rate

For any given hospital combination, the above equation corresponds to a straight line in a two-

dimensional space of Log (Steady-state waiting time) and Patient arrival rate. Therefore, the

- 112 -

AFOSR F49620-01-1-0371

constants a and b can be uniquely determined by two points known to lie on the line. These

points correspond to the base case and the critical case. It is important to note that a and b

depend on the three basic hospital factors only, which strongly supports our research objective

on developing generic hospital models to represent all hospitals in the disaster area.

To further verify this approach, we chose another hospital setting and ran a simulation under a

different set of patient arrival rates. The results were fitted into a straight line, and then compared

with the calculated line. These two lines are nearly coincident, indicating a general validity of the

log-linear model.

The typical transient waiting time behavior between the pre-EQ steady state and post-EQ steady

state is shown in Fig. 6, for a hospital with 500-beds, 15-ORs and 1200-efficiency index, when

patient arrival rate changes from 132 to 396 per day after an earthquake hits at time 2,000

(simulated minutes).

The hospital transient behavior is described by the weighted sum of two exponential functions.

The two exponential functions take into account all arrival rates from the base case to the critical

case and any state in between. The time earthquake strikes is teq; the transient waiting time at

- 113 -

AFOSR F49620-01-1-0371

clock time t is Tr (t); the steady state waiting time before earthquake is Ti; and the steady-state

waiting time corresponding to the patient arrival rate after the earthquake is Tf. Assuming static

but different pre-EQ and post-EQ arrival rates, the following equation is obtained,

)1()()1()()1()(
)()(

21 ττ αα

tt

if

tt

ifir

eqeq

eetT

−−

−⋅Τ−Τ⋅+−⋅Τ−Τ⋅−+Τ=

For dynamic post-EQ arrival rates, the relation can be generalized as follows. If at time t1 the

waiting time is T1, the patient arrival rate λ during the transient (within a time interval from t1 to

t2) is a constant, and the steady-state waiting time corresponding to λ is T2, then the transient

waiting time Tr(t) is given by

)1)(()1)()(1()(2

1

1

1

12121

ττ αα
tttt

r eTTeTTTtT

−−

−−+−−−+= for 21 ttt <≤

where τ1 and τ2 are two time constants corresponding to the base case and critical case,

respectively. They are approximately linearly related to the time it would take to reach from a

pre-EQ steady state to the post-EQ steady state. The higher the value of τ, the longer it would

take to reach a new steady state from the previous steady state and vice-versa. Weighting factor

α is between 0 and 1. In the base case, α = 0, and in the critical case, α = 1.

We determined τ1 and τ2 from the simulations of the base case and the critical case. After a

regression for these two time constants, we were able to compute τ1 and τ2 for any given hospital

within the range of our experimental design.

Next, we needed to determine the value for α. We performed several simulations with different

post-EQ patient arrival rates for selected hospital combinations. We fitted these transient results

according to equation (4) and estimated the α value. Again, the logarithmic scaled α value was

found proportional to patient arrival rate. An example is shown in Fig. 7. The relationship is:

)()(λα ⋅+= dcLog

- 114 -

AFOSR F49620-01-1-0371

where c and d are constants for a particular hospital, λ = patient arrival rate. For the base case, α

= 0, λ = base case patient arrival rate. For the critical case, α = 1 and λ = critical case patient

arrival rate.

Therefore, we can determine c and d for any hospital. Notice that when α = 0, Log(α) does not

exist. From actual data, we can use Log (0) = -3.2 as an approximation.

6.4.5.4 Temporal waiting times and verification

The dynamic nature of the arrivals is captured by continuously calculating the average arrival

rate within a 30-minute window. This rolling time window approach is able to capture the trend

while smoothing the fluctuations in arrival rates. The waiting time is estimated continuously with

the updated arrival rate.

- 115 -

AFOSR F49620-01-1-0371

To verify the capacity estimation methodology, we simulated a dynamic patient arrival rate. The

response is shown in Fig. 8. From time 0 to 2,000, patient waiting time at the hospital stabilizes

at 16 minutes. The earthquake strikes at minute 2,000, which results in an increase in patient

volume from 132 to 166 per day. Yet, because ER and lab speed up their processing, there is a

decrease of waiting time immediately after the earthquake. Then at time 2,400, the patient arrival

rate is again changed from 166 to 362 per day. The waiting time increases from that point

onwards.

 6.4.5.5 Capacity estimation

Since our ultimate objective is to estimate hospital capacity in terms of the number of patients

that the hospital can accept with a acceptable waiting time not exceeding the survivability, it is

necessary to convert the waiting times into capacity estimates.

Assuming the maximum permitted waiting time is Tm, from equation (2), in steady state, this

waiting time corresponds to a maximum patient arrival rate (λm) given by

baTmm /))(ln(−=λ

- 116 -

AFOSR F49620-01-1-0371

Assuming the current waiting time (transient waiting time from double exponential curve) to be a

steady-state waiting time for a certain patient arrival rate, this arrival rate (λs) can be calculated

as

batTrs /))(ln(−=λ

where Tr(t) = current waiting time. Then the available capacity is equal to the difference between

the maximum capacity and the used capacity

tC sm ∆−=).(λλ

where ∆t = length of time, C = available capacity. If the length of time is one hour, then the

available hourly capacity (Ch) is

smhC λλ −=

6.5 Dispatch & Routing Modeling

In this section we review the Dispatcher-Router simulation model and its strategies. Included are

both testable requirements and design details. We briefly present in chronological order about

some of the solution methodologies developed. Some of them did not make through to the

implementation stage as more quick and efficient strategies were developed with time that

clearly had some advantage over others in case of a disaster environment. The aim was to

develop a robust methodology for dispatching and routing of emergency vehicles (EVs) in a

post-disaster environment with the support of data fusion for decision-making. In this work we

considered an earthquake scenario with a large number of casualties needing medical attention.

In the immediate aftermath of an earthquake, Emergency Response Centers (ERCs) might have

to deal with collapsed buildings, fires, and hazardous material spills. Management of emergency

service resources in such an environment requires efficient dispatch and routing strategies that

provide rapid response for casualty pick up and delivery. The goal is to service the maximum

number of the highest priority casualties with minimum service times.

- 117 -

AFOSR F49620-01-1-0371

6.5.1 Context: the DIRE Simulation Environment

The Center for Multisource Information Fusion (CMIF) has implemented a test bed to address

Information Fusion in support of crisis-center decision-makers dealing with post-event situations

for both earthquakes (a natural disaster) and chemical attacks (a man-made disaster). The thrust

of this simulation is to provide realistic data that simulates the chaotic flow of both information

and misinformation in the immediate aftermath of a disaster and to process this data,

emphasizing level-2 and level-3 data fusion techniques. The result is an improved situation

awareness that can be directed back into the simulation at (simulated) decision points in order to

improve the management of the disaster according to certain measures of performance and

effectiveness.

A scenario as complex as this one, comprised of many, disparate information sources, of varying

reliability and timeliness, in a large urban landscape, dictated that its simulation be

correspondingly complex. To that end it was decided to implement it as a number of independent

simulation models, focusing on the limited perspective of the reporting and treatment of human

casualties (see figure 1.) The requirement for implementing several independent but cooperating

models necessitated the use of a framework under which the various models can cooperate, each

adhering to its own time-line and yet not encounter causality problems such as would be

generated if each model ran to completion without some synchronization with the models on

which it depends. Such a framework is the High-Level Architecture / Run-Time Infrastructure or

HLA/RTI, developed under the leadership of the Defense Modeling and Simulation Office of the

United States government. The High Level Architecture (HLA) is general purpose architecture

for simulation reuse and interoperability. The HLA was developed to support reuse and

interoperability across the large numbers of different types of simulations developed and

maintained by the United States Department of Defense. While the HLA is an architecture (not

software) the use of runtime infrastructure (RTI) software is required to support operations of a

multiple-model execution. The RTI software provides a set of services used by independent

models to coordinate their operations and data exchange during a runtime execution. The entire

agglomeration of models is called a “federation” and the individual models are called “federates”

in this context. The sole communication among federates is a series of time-stamped messages or

- 118 -

AFOSR F49620-01-1-0371

“interactions” which carry all inputs and outputs to and from each federate. There are almost 60

types of interactions, each of which has a fixed source-federate, destination-federate and format.

A federate has three points of contact with the remainder of the federation; (a) the message-

receipt function, (b) the message-sending function, and (c) an “update” point which is called

periodically and during which call, the state of the federate is updated to the next time increment

value. Typically a federate will set a time interval value which dictates how often the federate

will be activated at the update function.

Ground

Truth

database

L1

Data

Fusion

Medical

Facility

Dispatcher Router

ambulance initial positions

casualty reports

hospital capacity reports

casualty deliveries

building damage

& casualty deliveries

capacity

changes

Estimate

Director

roadway

network

ambulance

roster

route

ambulance

routes

Ground Truth

Initiator

static info

Hazus

dynamic info

medical facility

locations

and

ambulance

counts

Simulates:

 ambulance progress

casualty walkin

sensor movement

casualty

locations

known-

casualty

list

route

request

L2

Data

Fusion

casualty-

cluster

estimates

roadway

network

Report Generator

fused

estimates

Walkin

Model

casualty

moving

roadway damage

traffic congestion

Ground Truth

Interface

Report Generator

Ground Truth

Generator

monitors Ground Truth

for reportable changes

Fused

Casualty

reports

Data Fusion

raw

reports

Dispatcher Router

Figure 6.5.1. Interfederate Interactions

Between updates messages or interactions will be received and may be either processed

immediately or saved till the next update, the choice depending on the complexity of the

processing and the interdependence of the messages. At the update activation, the received

- 119 -

AFOSR F49620-01-1-0371

messages may be processed, the state of the federate (simulation model) advanced to the next

time value and any outgoing messages generated and emitted.

6.5.2 D&R in DIRE

 The Dispatcher-Router is a simulation of the two functions of dispatching ambulances ─

picking up casualties and the subsidiary one of calculating the best route (to either a casualty or a

medical treatment center). The dispatcher is also a decision point in the simulation where an

improved estimate of casualty location and severity, derived from the information fusion

module(s) is injected back into the simulation. Thus the simulation can be run either with or

without the aid of fusion, providing one rough measure of the effect of the availability of fused

estimates.

The Dispatcher and the Router are two parts of the same federate; however if the necessity arose,

the Router could be easily packaged as a separate federate for use by facilities other than a single

ambulance dispatcher. The only function of the Router is to provide the quickest route from a

source location to a destination. This calculation must take into account the effects of the disaster

(such as damaged transportation infrastructure or geographic areas which must be avoided due to

chemical or biological hazard).

The Dispatcher receives both reports of casualties (fused by a level-1 fusion facility), and later,

reports of casualty-clusters (developed by a level-2 fusion facility) where the probability of

finding severely injured casualties is high. The (simulated) dispatcher receives reports of

ambulances waiting for dispatch, moving toward either a casualty or a hospital and even

ambulances stopped at a previously unknown impassible obstacle (such as a collapsed bridge or

tunnel) and awaiting either rerouting to their destination or a possible decision on dispatch to a

new location.

- 120 -

AFOSR F49620-01-1-0371

Figure 6.5.2. High-Level Data Flow

Figure 6.5.2 depicts the high-level information flow. Message receipt brings updates to the

database from other simulation federates (e.g., casualty reports, casualty cluster reports,

ambulance becoming free etc.). During the periodic updates, the dispatching strategy is

implemented for all ambulances that currently have reached their destination (casualty pickup or

hospital drop-off) and hence labeled ‘idle’. This is the trigger for ambulance routes to be

generated and emitted as interactions to be sent to the model that generates the simulated

ambulance movement. The message receipts are asynchronous and can come at any time but the

messages that are to be sent can be generated only during the update processing.

6.5.3. D&R Design Assumptions and Interactions

6.5.3.1 Assumptions:

(1) The area chosen for study is the Los Angeles basin with the earthquake simulating rather

closely the Northridge event of 1994.

- 121 -

AFOSR F49620-01-1-0371

(2) The Ground Truth, from which much of the simulated phenomenology is derived, has been

generated by the HAZUS
1
 software and includes both human casualties and building damage.

(3) The simulation is not intended to represent activity beyond 24 hours post-event (typically

much less time).

(4) The simulation is a time-based model that is updated on a regular basis.

(5) Receipt of an Ambulance Idle message will indicate that that ambulance has no destination

and is a candidate for dispatch.

(6) Receipt of an Ambulance Idle message with a casualty count of 0 will indicate a dispatch of

that ambulance to a location that has a high probability of containing at least 3 casualties.

(7) Receipt of an Ambulance Idle message with a casualty count of 1 or 2 will indicate a dispatch

of that ambulance to a location that contains casualties. The choice of destination will depend on

the number and severity of casualties already on-board.

(8) Receipt of an Ambulance Idle message with a casualty count of 3 will indicate a dispatch of

that ambulance to a hospital that has a high probability of having available capacity to treat the

casualties.

(9) If on the occasion of a dispatch to a hospital, even if no hospital has any available capacity,

the hospital with the best result from the attractiveness computation will still receive the

dispatch.

(10) Dispatcher Router will receive reports of casualty clusters. Such reports will present a

cluster as a list of cells, each containing a count of reported casualties of both severity 2 and

severity 3.

1
 For more information on HAZUS please see http://www.fema.gov/hazus.

- 122 -

AFOSR F49620-01-1-0371

(11) There is no persistence in the reporting of clusters. Thus a cluster is considered to exist only

from the time that it is reported until the next time the clusters are reported. Subsequent cluster

reports will be considered to refer to independently-defined clusters. It is assumed that whenever

higher level fusion reports clusters, it considers all the present and past information and gives

estimates about the most recent state of the scenario.

(12) Casualties will be picked up by an ambulance at a dispatch location from the casualties

closest to the destination node without regard for cell membership in case of a dispatch to a

cluster (which the simulated ambulance driver knows nothing about).

(13) In case of dispatch to a casualty, an ambulance will pick up a casualty regardless of its ID

from the node closest to the destination node specified to it.

(14) Ambulances can travel a link in any direction.

(15) The maximum capacity of each ambulance is 3.

(16) The ambulance will always try to pickup the maximum number of casualties.

(17) Type 4 casualties are mortally injured and hence not considered for pickup and delivery for

obvious reasons of facilitating the service of those casualties that can still be saved.

(18) Type 1 casualties are the ones that do not need immediate medical attention and hence can

be ignored.

(19) Data about road damages, traffic conditions and congestion on the roads is already available

(from data fusion center). This data is summed up as a delay factor for each link.

(20) The capacities of the disaster area hospitals are reported as the numbers of injuries that can

be treated in a given time window.

(21) There exists a model of disaster area hospitals that can provide such capacity estimates.

Interested readers please refer to the paper by Yi et al [6.5-3].

- 123 -

AFOSR F49620-01-1-0371

(22) The condition of a patient may deteriorate while he/she is waiting in queue and hence such

casualties have to be upgraded to higher casualty types. Hence a casualty can be reported more

than once.

(23) The Dispatcher-Router federate is an independently-executing part of the larger simulation

and has the usual three contact points (discussed above in section 2) with the other federates.

(24) The goal of this federate is to develop an awareness of the locations of (simulated) human

casualties and to dispatch ambulances to those casualties (and thereafter to a hospital or a

treatment center) in such a manner as to support the effort of the Data Fusion federates to

improve the choosing and transportation of casualties over that of an unimproved, manual

system.

6.5.3.2 Interactions

Here RG is Report Generator (that generates the reports), ED is Estimate Director (that fuses

these reports and gives an estimate of the entity) and DP is Dispatcher/Router. Input:

(1) RGtoDP01 -Hospital locations

This message is received as initialization information and is used to build a list of all hospitals

that are available for dispatch.

(2) EDtoDP01 -Casualty Observation

This message carries information about a single casualty. It is used to build a catalog of

casualties to be used as dispatch targets in the event that no casualty clusters are known. The

road node nearest to each hospital is not contained in the message and must be computed by

Dispatcher Router.

(3) EDtoDP02 -Casualty Pickup

This message indicates that a casualty has been picked up by an ambulance. The message will be

ignored and probably dropped from this list.

(4) EDtoDP03 -Casualty Delivery

- 124 -

AFOSR F49620-01-1-0371

This message indicates that a casualty has been dropped off at a hospital. The message will be

ignored and probably dropped from this list.

(5) EDtoDP04 -Roadway Damage

This message contains reported information concerning physical damage to road links. It

represents debris on the road or actual damage to a bridge or a tunnel. This information will be

used to compute the average speed with which vehicles can traverse links.

(6) EDtoDP05 -Hospital Capacity

This message reports a capacity for treatment at a specific hospital, for each of three casualty

severities, 1, 2 and 3.

(7) EDtoDP06 -Travel Delay

This message carries a reported delay for a specific road link. The delay will change over time

and is due to traffic congestion, vehicle accident, large numbers of pedestrians etc.

(8) EDtoDP07 -Treatment Delay

This message reports an anticipated treatment delay at a specific hospital, for each of three

casualty severities, 1, 2 and 3.

(9) EDtoDP08 -Ambulance Idle

This is a report from an ambulance that indicates that the ambulance has no destination and is

available for dispatch. Also reported is the number of severity 2 and severity 3 casualties

onboard the vehicle (if any). Different dispatching schemas are used depending on the numbers

and severities of onboard casualties.

(10) EDtoDP09 -Ambulance Stuck

This report is similar to EDtoDP08 but it further represents the situation where an ambulance has

followed its dispatched route, only to find that it is blocked byroad link damage that was

- 125 -

AFOSR F49620-01-1-0371

unknown to the dispatcher at the time of dispatch. The action to be taken will be a re-dispatch

that will route the vehicle around the damaged link.

(11) EDtoDP10 -Cluster Identification

This is the report from high-level fusion processes of the location where a cluster of casualties

has been detected. This cluster and its component cells will be used as dispatch targets because

the probability of finding enough casualties (3) to fill an ambulance is high.

Output:

DPtoRG01 -Ambulance Route

This message contains the route from a source (ambulance present location)to a destination

(casualty location or hospital).It consists of a series of road nodes interleaved with road links

such that there is no ‘untraversable’ gap in the road map.

6.5.3.3 Casualty Cluster Generation

A cluster report will contain list of cells with an accompanying indication of Boundary ||

Non-boundary. These may be interpreted geometrically as referring to members of one or more

two-dimensional groups of casualties where:

• Boundary delimits the cluster extent such that the remainder of the cluster lies on only

one side of the boundary.

• Non-boundary refers to cells that “belong” to the group but are not boundary cells.

There will be cells marked “Boundary” in every cluster report. A boundary cell:

• Has at least one contiguous boundary cell.

• Has at least one contiguous cell that is not an element of the cluster.

- 126 -

AFOSR F49620-01-1-0371

Each reported cell will contain at least one casualty. Reports will be generated on each

cluster/sub-cluster periodically. These reports will contain no historical information about the

cluster but will reflect the casualty population as of the time of reporting.

Casualty clusters are reported periodically but there is no necessary identification between

clusters of one report group and those of the next group. It is only guaranteed that the period

between reports of one group will be shorter than the period between groups. After a cluster is

reported ambulances will be dispatched as they become idle and as the cluster’s attractiveness

index dictates. This process will continue throughout the period until the next report group is

delivered. At that time, the previous cluster definitions will be discarded and the new definitions

will be used.

During this “inter-group” period, ambulances dispatched to a cluster cell will result in the

maintenance of a local inventory of casualties “to be picked up”. These will deter from the

attractiveness of those cells that have been dispatched to so that ambulances are always

dispatched, based on the latest information.

6.5.4 Router

6.5.4.1 Initial Router Design

The objective is to have the pickup and delivery of the casualties in the shortest possible time

and to the appropriate hospitals to optimize the overall survivability rate. A simple (i.e. static)

routing algorithm cannot be applied, since an earthquake can disrupt the road network due to

damaged road segments, damaged buildings that block roads, damaged bridges and tunnels, etc.

In such a case we need a set of routes that share the minimum number of links between them and

are within a set percentage of the optimal shortest distance between the origin and destination

(O-D). This will ensure that even if some of the links in the route for an O-D pair are damaged,

we still have some useable (i.e. undamaged) backup routes available. Furthermore, we do not

want to simultaneously traverse the same links as this situation increases the risk of damaged

ambulances if this shared link collapses due to an aftershock. Hence we strive simultaneously for

spatial dissimilarity between the alternative routes for each individual ambulance, and for

temporal dissimilarity between routes for each pair of ambulances. The basic premise of our

- 127 -

AFOSR F49620-01-1-0371

work is that by considering temporal and spatial dissimilarity in the routing procedure we can

ensure robustness.

The selection process of a path involves three stages: Generation of a large number of candidate

paths for each ambulance, selection of a small set of paths for each ambulance, and selection of a

single path for each ambulance, while considering all ambulance routes simultaneously.

To generate a large number of spatially dissimilar candidate paths we use the following methods:

k-Shortest Path Method

Yen [6.5-4] presented an algorithm to find k loopless paths that have the shortest lengths from

one node to another node in a network. But, the paths tend to share a large number of links,

implying that a very large value of k has to be used to get spatially dissimilar alternatives.

Iterative Penalty Method (IPM)

The IPM, due to Johnson et al. [6.5-5], is based on a repetitive application of an appropriate

shortest path algorithm and after each application imposing a penalty on all the links in the

resulting shortest path that use the same links as the previous one. Hence dissimilar paths are

generated, since the sharing of links is discouraged.

Gateway Shortest Paths (GSPs)

Proposed by Lombard and Church [6.5-6] this method tries to find the shortest path by forcing

the paths to go through a series of specific nodes called “gateways” and thus generate a set of

spatially distinct paths by constraining them to go through different nodes. But the paths might

contain loops and also might be similar.

Minimax Method

Proposed by Kuby et al. [6.5-7], this method aims to generate a set of dissimilar paths by

selecting a subset of large set of paths. First k- shortest paths are generated and then a Dissimilar

Subset (DS) is constructed iteratively. A dissimilarity index is defined as

- 128 -

AFOSR F49620-01-1-0371

where, d(P1) is the length of the first shortest path, ds(Pj,Pi) is the length shared by Pi and Pj, dn(

Pj,Pi) is the length not shared by Pi and Pj, and β is a parameter which is a constant (generally

taken = 1). We try to minimize this index. For the subsequent paths we try to minimize the

maximum of the indices between the candidates and the previous paths. The formulation can be

written as:

Generally the Iterative Penalty Method and k-shortest Path method give the best results for

generating a candidate set of paths. To generate a small set of paths, we seek a subset of the

routes generated at the previous stage. We want this smaller set of routes to be both spatially and

temporally dissimilar. This can be posed as a ‘p-dispersion problem’. The classical form of p-

dispersion problem is to select p out of m given candidate points, such that the minimum

distance between pairs of selected points is maximized. The objective is to have a dispersed set

of points in space. Erkut [6.5-8] described this problem in detail. He gave two IP formulations,

two Branch and Bound methods, and a two stage heuristic procedure to solve the problem. Erkut,

Iksal and Yenicerioglu [6.5-9] compared 10 different heuristics available for solving the p-

dispersion problem. The p-dispersion problem has been used in various contexts like military

installations to avoid enemy attack, location of fast food franchise in an urban area, etc.

For our problem, we have used the two-stage heuristic to solve the p-dispersion problem given in

[6.5-8]. In the classical p-dispersion problem, p out of m given points (1< p< m) are selected in

some space, where the objective is to maximize the minimum distance between any two of the

selected points. If M is the set of candidate points (|M|= m), and P ⊆ M (|P| = p) and Wij is the

distance between the candidates i and j, the p-dispersion problem can be presented as:

- 129 -

AFOSR F49620-01-1-0371

 In our case, Wij is the dissimilarity between two paths. Hence, given m paths, p paths are chosen

in such a way so as to maximize the minimum dissimilarity between any two paths. The basic

idea of using the two-phase heuristic is to construct an initial solution in a semi-greedy fashion

and then to perform a local search to improve the initial solution [6.5-8].

The p-dispersion heuristic described above is used to get a set of paths for a single O-D pair.

Since in our problem we are having n different O-D pairs, we need to apply the p-dispersion

heuristic n times. After we get a small set of paths for each O-D pair then we try to address the

issue of temporal dissimilarity by defining a similarity index between two O-D pairs as

Hence Dissimilarity is, Wij = 1-S (Pi, Pj). This is the dissimilarity index considering just the

spatial dissimilarity. To account for temporal dissimilarity we modify this index as,

θ is a model parameter (needs to be calibrated), and t is the difference between the two start

times of the ambulances for which we are calculating dissimilar routes. Since we know the start

time of the ambulance from its current location and the expected travel time to the destination,

we know the expected arrival time also. Therefore, care is taken so that too many ambulances do

not reach the same destination at the same time. This is done by varying θ by say 30 minutes, 60

minutes or 90 minutes and then seeing which one is giving the best dissimilarity index. Also,

sometimes, we might not want to consider this temporal dissimilarity in the route generation

process. This is the case where we have to send a number of ambulances to the same spot given

that a cluster of patients have been located and they need to be taken to a hospital.

6.5.4.2 Final Router Design

The coding of the routing methodology in C++ is described in detail in [6.5-3] and prepared it as

a stand alone federate which could be called upon by any other federates to come up with routes

between any origin and destination pair. Later it was integrated with the dispatching federate for

all practical purposes in the whole simulation.

- 130 -

AFOSR F49620-01-1-0371

6.5.5 Dispatcher

The dispatcher logic is described in detail elsewhere [6.5-3] and is summarized here in

pseudocode.

For Each Update

 For Each Ambulance

 if idle

 switch (onboard casualty count)

 cas == 3 // ambulance is full

 Dispatch-to-most-attractive-hospital

 generate route message (DPtoRG01)

 update state-variables

 break // go to next ambulance

 cas == 2 // room for 1 more

 cas == 1 // room for 2 more

 Step size = 800 (metres)

 if(On-Board ==2)

 Multiplier = 4

 if(On-Board ==1)

 Multiplier = 6 or 8 (Depending on severity)

 Dispatch-to-neighborhood

 if dispatch successful

 generate route message (DPtoRG01)

 update state-variables

 break // go to next ambulance

 Dispatch-to-most-attractive-hospital

 generate route message (DPtoRG01)

 update state-variables

 break // go to next ambulance

 cas == 0 // no casualties onboard

 if clusters exist

 For Each cluster

 calculate attractiveness

 pick most attractive cluster

 if amb loc is inside a cell of the cluster

 Dispatch-to-neighborhood

 if dispatch successful

 generate route message (DPtoRG01)

 update state-variables

 break // go to next ambulance

 // no neighboring casualty is attractive

 // or amb is outside all clusters

 Dispatch-to-cluster-boundary-cell

 if dispatch successful

 generate route message (DPtoRG01)

 update state-variables

 break // go to next ambulance

 else // boundary cells unusable

 mark cluster "unusable"

 break // repeat this ambulance

 else // no clusters exist

 Multiplier = 40

 Dispatch-to-neighborhood

- 131 -

AFOSR F49620-01-1-0371

 end of switch

 else // this ambulance is moving.

// Dispatch-to-neighborhood

 for i = 1 to Multiplier

 neighborhood = i * Step size

 For Each casualty in neighborhood

 calculate attractiveness

 pick max attractiveness

 if max > some minimum attractiveness

 calculate fastest route

 report dispatch successful

 else

 report dispatch unsuccessful

// Dispatch-to-cluster-boundary-cell

 find closest cluster

 For Each boundary cell in this cluster

 calculate attractiveness

 pick max attractiveness

 if max > some minimum attractiveness

 calculate fastest route

 report dispatch successful

 else

 report dispatch unsuccessful

// Dispatch-to-most-attractive-hospital

 For Each hospital

 calculate distance from ambulance loc

 calculate attractiveness

 pick most attractive hospital

 calculate fastest route

 report dispatch successful

The code was tested (stand alone) to check for bugs and other necessary fixes. It was then

integrated with Router code where in the Dispatcher uses a function call to ask Router to

generate routes.

6.5.6 Effect of Shelters on Transportation System

Here we tried to model the effect of displaced population in case of a disaster situation on the

traffic system situation. Traffic system situation is defined by the reduced road capacity and the

consequent increase in travel times. This capacity deduction can be due to the debris on road, due

to damage of the road segment itself or due to displaced population. Our aim is to deduce the

effects of displaced population over road capacity deduction. The inaccessible hospitals and

clusters are a direct result of reduced road capacities. We assume that we have been given an

area of study wherein the effects of population displaced from their homes on the traffic system

situation has to be evaluated. As a case study we will work on the Northridge region in LA. We

assume in our analysis that a disaster like an earthquake has struck this region. Data regarding

each census tract like –population, number of casualties and their severities, and the damage is

- 132 -

AFOSR F49620-01-1-0371

provided by HAZUS. For each census tract the number of displaced population is directly

proportional to the number of casualties and the proportionality constant is given by HAZUS.

For each census tract we can assume that only a small fraction of the population is injured and a

large fraction is the potential displaced population that will be displaced from their homes to

other places. It is due to this displaced population that the roads get congested contributing

significantly to the problems faced by the rescue workers and ambulances to serve the casualties

in the affected area. The displaced population is the one that has been displaced form their homes

and are trying to get somewhere, hence in the process congesting the roads since the magnitude

of displaced population can be enormous (it is much more than the number of casualties). We

have data coming in form Level 2 Fusion about the cluster of casualties. We assume that L2

Fusion provides us with casualty clusters that are a set of contiguous cells and each cell consists

of a certain minimum number of casualties. In order to use this cluster information, we can think

of the census tracts to be made up of such cells. Some of the cells of the census tract will be part

of the clusters and some of them will lie outside the cluster.

We assume for our analysis that a member of the population of a cell is likely to displace from its

parent cell depending on whether the cell is a part of the cluster or it is outside a cluster. When

the cell is outside a cluster, this likelihood is inversely proportional to some power of the

distance (say square of distance) between its current location and the closest cluster boundary

and is given by:

a
d

k
tisplacemend 1)Pr(=

where k1 is the constant of proportionality. When the cell is part of a cluster, this likelihood is

directly proportional to the fraction of casualties in the cell and is given by:

injured people of Fraction ktisplacemend .)Pr(2= ;

where k2 is the constant of proportionality.

- 133 -

AFOSR F49620-01-1-0371

To explain the behavior of the displaced population, how they will move and which places they

will try to go in order to reach safer location, a Gravity Model was used. The gravity model

offers a good application of the spatial interaction method. It is named that way because it uses a

similar formulation than Newton’s gravity model, which implies that the attraction between two

objects is proportional to their mass and inversely proportional to their respective distance.

Consequently, the general formulation of spatial interactions can be adapted to reflect this basic

assumption to form the elementary formulation of the gravity model:

 ij

ji

ij
d

PP
kT

=

• Pi and Pj : Importance of the location of origin and the location of destination.

• In our case we can assume that:

o Pi = Number of casualties in the cluster, and

o Pj = Number of beds available in the hospital.

• dij : Distance between the location of casualty and the location of hospital.

t

C(t)

Link inside a cluster

Link outside a cluster

- 134 -

AFOSR F49620-01-1-0371

• k is proportionality constant. Related to the rate of the event. For instance, if the same

system of spatial interactions is considered, the value of k will be higher if interactions

were considered for a year comparatively to the value of k for one week.

Thus, spatial interactions between locations i and j are proportional to their respective

importance divided by their distance.

There is a simple and much more flexible formulation of the gravity model:

β

αλ

ij

ii
ij

d

PP
kT =

1. β (beta) : Transport friction. Related to the efficiency of the transport system between two

locations. Rarely linear in space as the further the movement the greater the friction of

space. For instance, a highway between two locations will have a weaker beta index than

a road. This is useful and hence similar parameter can be used in our case.

2. λ (lambda) : Potential to generate movements (emissiveness). For movements of people,

lambda is often related to an overall level of welfare. For instance, it is logical to infer

that for retailing movements an equal population, a location having higher income levels

will generate more movements. In our case it can be assumed that the cluster having

higher number of casualties will generate more movements.

3. α (alpha) : Potential to attract movements (attractiveness). Related to the nature of

economic activities at the destination. For instance, with an equal population, a center

having important commercial activities will attract more movements. In our case it can be

assumed that the hospital having higher number of beds will attract more casualties.

A part of the difficulties related to the usage of spatial interaction models, notably the gravity

model, is related to their calibration. Calibration consists in finding the value of parameters

(constant and exponents) to insure that the estimated results are similar to the observed flows. If

it is not the case, the model is almost useless. It is impossible to know if the process of

calibration is accurate without comparing estimated results with empirical evidence.

- 135 -

AFOSR F49620-01-1-0371

In the two formulations of the gravity model that has been presented, the simple formulation

offers a good flexibility for calibration since four parameters can be modified. Altering the value

of beta, alpha and lambda will influence the estimated spatial interactions. Furthermore, the

value of the parameters can change in time due to factors such as technological innovations and

economic development. For instance, improvements in transport efficiency generally have the

consequence of reducing the value of the beta exponent (friction of space). Economic

development is likely to influence the values of alpha and lambda.

Often, a value of 1 is given to the parameters, and then they are progressively altered until the

estimated results are similar to observed results. Calibration can also be considered for different

O/D matrices according to age, income, gender, type of merchandise and modal choice. A great

part of the scientific research in transport and regional planning aims to find accurate parameters

for spatial interaction equations. This is generally a costly and time consuming process, but a

very useful one. Once a spatial interaction model has been validated for a city or a region, it can

then be used for simulation and prediction purposes.

Figure 6.5.3. Effects of beta, alpha and lambda on Spatial Interactions

Variations of the beta, alpha and lambda exponents have different impacts on the level of spatial

interactions. For instance, the relationship between distance and spatial interactions will change

according to the beta exponent. If the value of beta is high (higher than 0.5), the friction of

- 136 -

AFOSR F49620-01-1-0371

distance will be much more important (steep decline of spatial interactions) than with a low

value of beta (e.g. 0.25). A beta of 0 means that distance has no effects and that interactions

remain the same whatever the concerned distance. Alpha and lambda exponents have the same

effect on the interaction level. For a value of 1, there is a linear relationship between population

(or any attribute of weight) and the level of interactions. Any value higher than 1 implies an

exponential growth of the interaction level as population grows.

Another way of using a gravity model is to estimates the distance customers (casualties) will be

willing to travel to go to a hospital after comparing quality, capacity and other factors. A rule of

thumb is referred to as Reilly’s Law of Retail Gravitation. The law assumes that people want to

shop in larger towns, but their desire declines the farther and the longer the time they must travel

to get to those places. Thus, larger towns draw customers from a larger trade area than smaller

towns. The following formula estimates the maximum distance customers will travel to shop in a

smaller town.

(Y) town smallerof Importance

(X) town larger of Importance
1

(Y) and (X) towns

between distance Road

(Y) town smallerto distance Maximum

+

=

Similar analogy can be used in our case. Smaller town can be assumed to be a hospital and the

larger town can be assumed to be a cluster. Then the maximum distance to a smaller town will

depict the maximum distance a casualty from a cluster will be willing to travel to go to a

particular hospital.

6.6 Visualization Modeling

The time immediately following a natural or man-made disaster can be a chaotic experience to

any individual or community. This is evident with regards to the natural and man-made disasters,

which have occurred, in recent years. A prior study has shown that in an earthquake situation, the

information collected and dispersed in the first 72 hours is the most crucial, since most people

still severely injured after this time are not likely to survive [6.6-1]. When a disaster spreads over

an area, and causes thousands of casualties in a short time, it is nearly impossible to manage the

disaster by human observation alone because of the massive amount of incoming information. In

- 137 -

AFOSR F49620-01-1-0371

fact, for large-scale disaster management, the first and most imperative step is the awareness of

the situation in order to optimize the allocation of available resources. Therefore, the situation

awareness is an essential role of a disaster monitoring or visualization system. With the paradigm

of conventional geo-referenced display, this is difficult to achieve because its implementation is

limited to the positioning of the corresponding graphic images. This usually results in thousands

of scattered and cluttered icons on the display. The present research provides a monitoring

environment through efficient data management and a user-friendly graphics interface that deals

with the massive influx of data from the data fusion process. Furthermore, our technology adds

time-aggregated data management that contributes to the visualization of more abstract and

comprehensible graphics. This approach encourages tactical thinking and strategic control for a

severely attacked area [6.6-2].

6.6.1 Previous Visualization Work in the Emergency Setting

Recently, researchers have been involved in data fusion for dealing with complex natural

phenomena or algorithmic problems. A few visualization projects exist involving information

fusion, such as a weather visualization application for emergency planning [6.6-3], NASA’s

wind tunnel simulation [6.6-4], and seismic activity visualization by the University of California

at Irvine [6.6-5]. A research team from the University at Buffalo has also been working to create

a battlefield visualization scenario using fused data [6.6-6].

Without fused data, there have been studies on emergency response, such as decision making

aids by interaction through voice/gesture recognition completed by Pennsylvania State

University [6.6-7], a framework for incorporating the many emergency response models for a

simulation by Jain and McLean [6.6-8], and satellite/airborne image or video processing for the

Kocaeli earthquake in Turkey by Ozisik and Kerle [6.6-1]. The works mentioned above

implemented data processing and mapping in a two or three dimensional space, but do not

provide abstract information from which a user could comprehend a situation. The work of Kim

and Kesavadas considered effective icon/symbol generation regarding the viewer’s visual

recognition, which has been a cognitive issue in the military community since the advent of the

digital display in the 1960’s [6.6-9]. They have suggested Automated Dynamic Symbology by

parameterization of graphic components connected to fused data. Their methodology was

- 138 -

AFOSR F49620-01-1-0371

considered as an appropriate feature for visualization of strategic information and remote-

networked implementation, and served as a basis in the current research.

6.6.2 Issues and Our Approach

The present work is an achievement of a large scale fusion-based post-disaster simulation

project. For simulation test, it specifically takes the post-earthquake situation data which

occurred in Northridge, California on January 19, 1994. This was considered to be one of the

worst earthquakes in the Los Angeles area in recent memory [6.6-10]. Our simulation model

relies on the output from HAZUS [6.6-11] developed by the Federal Emergency Management

Agency (FEMA). The fused data is currently being produced by a multidisciplinary group at our

institution [6.6-12], [6.6-13]. The fusion output includes data of low-level fusion (identification)

which covers roadway damage, casualties, hospitals, and ambulance routing and police

information. As mentioned earlier, this approach usually causes information overflow to a

viewer, such as different types of icons cluttering and overlapping on top of each other.

Therefore, our system includes high-level fusion data (situation awareness and threat

assessment), such as casualty clusters and its trends and prediction.

A challenge for the visualization of a post-disaster simulation is to deal with the substantial and

complex data interface so a user can manipulate and retrieve desired information. Unlike the

previous works, our application provides a visual display of emergency response data at run-time

and through a networked simulation environment. The advantage is that it displays information

as it is received and without delay. Commercially available Geographic Information System

(GIS) software has been used for the data construction of urban terrain and traffic network.

However, they are only capable of low-level fusion output, which is the functionality of location

and identification. They do not have the functionalities for high-level fusion that demands many

complicated tasks, such as large data-set manipulation, dealing with time aggregated data, and

the capability of putting depth and height cues to the display.

To deal with such enormous and complicated data, we have developed the common class

interface for sharing and synchronization of 2D and 3D graphics. It allows a user to see what

resources are available, and where casualties are located in 2D, as well as 3D, which give a better

understanding of the spatial relation amongst the resource objects. Each visual mode adopts

- 139 -

AFOSR F49620-01-1-0371

different application programming interfaces (API) and rendering environment, Windows MFC

and OpenGL for example. Our work achieved implementation of both in one application

combined in sync, which is described in the following sections.

6.6.3 Run-time Federation Interface

In this project, information communication is implemented with the HLA/RTI composed of

several federates. A federate simply being one piece of the RTI which carries out a specific task,

such as information regarding walk-in casualty or medical facility. The RTI allows for common

variables to be changed by one federate and then updated in another based on the concept of

“publishing” and “subscribing” to variables [6.6-14]. The following section explains the

interface of the post-disaster simulation and describes how the data is passed to the visualization

system.

The importance of HLA/RTI in the current simulation is that all simulation data is being

generated at run-time. It should also be noted that for each federate it is crucial to know the

current state of the situation at all the times. This is achieved through the report flow, or

exchange interface, between federates (Fig. 6.6-1).

Figure 6.6-1. Post-earthquake simulation data flow in the HLA/RTI network.

The Report Generator federate (RG) generates all reports for the simulation based on the output

from the HAZUS earthquake model [6.6-10]. Data Fusion (DF, also called Level-1 fusion), then

decides which reports are not repeated and fuses them into one report. This information provides

the core to the simulation which the rest of federates use to carry out their own tasks. Level-2

- 140 -

AFOSR F49620-01-1-0371

fusion (L2) determines the time-stamped formation of casualty clusters from the casualties

reported by RG. The figure shows the interaction between other federates, such as Walk-in

Casualty (WC), Medical Facility (MF), Dispatcher and Router (DR), and Visualization (VZ).

Unlike the data relay in other federates, the visualization federate currently only takes

information from the rest of the federation via Report Generator/Estimate Director. To create a

highly abstract and robust runtime performance, we adopted the C# (C sharp) programming

language on the Microsoft .NET platform [6.6-15]. Because the HLA/RTI is designed to support

only C++ objects, it was critical to come up with a technique in order to integrate the two

different programming codes. A solution was found for bridging the two executions not on the

programming level, but the OS level. A system was devised for a directory to be setup where the

C++ process stores all the report messages in ASCII format which can then be read by the C#

process. Running in a call back loop, the directory watcher notifies the parser immediately after

it gets the reports from the estimate director federate. The stored ASCII text is then parsed and

stored in a shared memory for synchronization of the 2D and 3D graphics (Fig. 6.6-2).

Figure 6.6-2 Data interface of the visualization federate between the HLA/RTI architecture.

6.6.4 Modeling of Visualization framework

The following section addresses how we achieved efficient data manipulation of a large data set

and integration of two different kinds of graphics (2D and 3D) to provide sufficient options to a

viewer.

- 141 -

AFOSR F49620-01-1-0371

6.6.4.1 Data Layers: The Visualization Pipeline

Layering is a useful way to organize massive GIS data. The United States Geological Survey

(USGS) [6.6-16] offers an accurate depiction of the Northridge area which was used for our

vector map. In addition to map viewing capabilities, a monitoring capability has also been

developed. All the GIS data is layered at the bottom of the pipeline and rendered first. Built on

top of this information is the federate data from the HLA/RTI. Placed on top of the federate

information is the graphical user interface (GUI) developed for the simulation (Fig. 6.6-3). Data

layering and implementation not only provided an easy-to-debug environment to programmers,

but also produced better rendering performance.

Figure 6.6-3 Data layers of the software architecture

Map Layer: Generation of Fast Vector Map

Two C# namespaces were created to handle the generation of the GIS map database for the

display (Fig. 6.6-4). First, the Geometry namespace deals with the definition of all geometrical

entities in a hierarchical structure. Another namespace, GIS, stores structured information of GIS

objects for display. It uses a primitive class definition from the Geometry namespace with real

GIS data. While all other GIS data was used from *.dxf files, a detailed road network is

generated from a Tele-Atlas database file [6.6-17] which is helpful in determining ambulance

routes and retrieving street information. Each of the links is represented by a 256 character line

containing information like Link ID, Length, Street Name etc., which is further divided in a

database of start and end points. Each end point is known as a node, which is stored with a

- 142 -

AFOSR F49620-01-1-0371

unique ID and Universal Transverse Mercator (UTM) geographic coordinate in the database. A

road link class then stores all the information in runtime memory. Finally this map is stored in

the Common Container class structure for further process.

Figure 6.6-4. Pipelines to Map Data Generation.

Raw Data Layer: Data Extraction from Incoming Reports

The Disaster-RTI defines all types of federate class definitions including casualties, police,

ambulance, medical facility, roadway damage, ambulance route etc., in terms of their properties

and functions (Fig. 6.6-5). Dynamic arrays have been built on top of this information to store

their objects and reports in a hierarchical order. A separate class called Visualization is then

defined for automatic generation of different color data which is used for each zip-code region in

the Northridge area. This class is also used for identifying proper symbols for each federates’

database which is stored in a symbol database.

The directory watcher class and its functions are defined in the WinGUI namespace which keeps

a track of new reports in the directory folder. For every report from the RTI, raw data is

generated for display by combining these files and having the data stored in the Common

Container class for further processing.

GUI Layer: User Interface for Data Manipulation

- 143 -

AFOSR F49620-01-1-0371

Figure 6.6-6. Linear clock and track bar for the manipulation of time-aggregated data.

What is controlled by the GUI is directly related to what is being captured in the federate layer

underneath. The GUI includes a menu and tool bar control system with the capabilities of mouse

and keyboard interactions. Since the simulation has been designed to run over a period of time, it

is important to store accumulated federate data for further usage. The track bar shown in the GUI

pane gives the user the ability to go back in time (Fig. 6.6-6). This way a person can see what

progress is being made in specific areas over a period of time. It also has an option for time

scope expansion, which allows for a longer duration of time to be rendered at once [6.6-18].

6.6.4.2 Integrated Simulation Architecture

Figure 6.6-7 Integrated simulation architecture for multiple and different display of 2D and 3D.

We took advantage of multiple windows of two different graphics modes: two dimensional

Windows MFC-based graphics, and three dimensional OpenGL-based graphics. For the

synchronization in these multiple windows, display variables in either the 2D or 3D window

need to be updated in the other window. Since it is impossible to swap references on two files

due to restriction on circular dependency in C#, we developed a common class to access the

shared memory and update the value (Fig. 6.6-7). All the corresponding objects for the federate

report database (raw data) and map data are stored in the Common Container which can be

- 144 -

AFOSR F49620-01-1-0371

passed to the 2D and 3D windows for display as needed. Using the Graphical Device Interface

Plus (GDI+) library for creating graphics in C#, all 2D graphics could be created in an effective

manner [6.6-19]. The 3D display objects and navigation controls were then defined in the 3D

display class using the CsGL graphics library, which is simply an OpenGL wrapper for the C#

programming language.

6.6.5 Run-Time Fusion Data Visualization

The following subsections report on the user interface and visual displays for low level fusion

functionality (position and identification) and high level fusion functionality (situation

awareness).

6.6.5.1 Multiple Display: 2D Fast Vector Map & 3D Visualization

The present research includes graphics controls and data manipulation found in common geo-

referencing system. The zip code areas, road data and even the colors used, can be altered as

needed by the user. This allows for the simulation to be viewed in a way that is least visually

distracting so more attention can be focused on the resources (Fig. 6.6-8).

Figure 6.6-8 Manipulation of map environment: color (left), grayscale (middle), and single

color.

The image of Fig. 6.6-9 (left) shows raw data from the report generator, such as casualties, police

and ambulances. The image in the middle shows the corresponding view in 3D space. Even

though 3D simulation has some disadvantages, such as unfamiliar interface and viewpoint

control, the height and depth cues are an invaluable source of knowledge to a user [6.6-20]. This

is especially true in a natural or man-made post-disaster simulation for an urban area. Height and

- 145 -

AFOSR F49620-01-1-0371

depth cues are crucial for buildings or other volumetric spaces. As mentioned, this 3D view

works in sync with the 2D graphics, so that viewers can easily switch their attention at their own

preference. In the future the 3D view could be integrated with 3D building, structures and

landmarks and to provide more comprehensive urban casualty visualization.

Figure 6.6-9 2D view of Northridge Area (left), corresponding 3D view (middle), and actual

implementation of multiple display visualization system.

6.6.5.2 Display Control

The requirement of fast identification is essential for visualization of low level fusion. In order to

be able to view only federate data which is desirable, a menu bar system was developed to switch

certain data layers ‘on’ and ‘off’. As mentioned, this avoids the problem of cluttering that occurs

if too many reports are coming into the visualization federate at one time. A context menu has

been included which can be accessed by right clicking in the display window and performs the

same function as the menu bar (Fig. 6.6-10, left). In the 3D view, an independent viewing

position was created to allow for an outside viewer to navigate throughout the 3D environment to

give a better sense of realism. We took advantage of the ability to change the scale and size of

the icons in 3D, so based on the size of the data, a user can get a better understanding of the

disaster scenario.

- 146 -

AFOSR F49620-01-1-0371

Figure 6.6-10 Fast data manipulation and identification: resource context menu (left), and pop-

up window for object identification and the visualization of its trend (right).

6.6.5.3 Quick Identification

The information specific to each casualty is stored over time and is available to the user by

simply hovering over a casualty icon on the screen. A pop-up window then appears which shows

the pertinent information (Figure 6.6-10, right). Since it would be impossible to track each

casualty if thousands were present the information regarding casualty clusters will be more

useful for time aggregation analysis (section 4.4). Therefore, specific areas can be monitored

during the simulation.

All ambulance route reports in the simulation come with road links Id’s, which define the routes

for the ambulances. It is possible to store all road link Id’s in a report database and use that Id

with a search algorithm to retrieve all related information by accessing a link database. However,

this will increase runtime computation, which further lowers the performance. An easy and

compatible solution to the problem is to store the object index in a container of road links

objects. In this way, a search algorithm only needs to be run once when a report is received. The

data can then be retrieved very quickly by just accessing the container by object index. We have

used the binary search algorithm to find index of road link object in a large container. This

algorithm needs)(log NO iterations in worst case to find an object in a container, which is

acceptable for database of about 30,000 objects. To make efficient use of runtime computer

memory it is desired that all the information regarding road link data be stored only once so that

it can be retrieved as needed by accessing its unique Id (Fig. 6.6-11). Each file from the RTI

contains multiple routes at a time which show a separate route for each ambulance. A

hierarchical dynamic array structure has been created to store a report time and multiple route

information at that time for each report. Each route can then be accessed by road link index in

that array database.

- 147 -

AFOSR F49620-01-1-0371

Figure 6.6-11 Database design for information storage.

As shown in Fig. 6.6-12, ambulance paths can then be highlighted on the screen by merely

hovering over them with the mouse. This allows a user to get a clearer understanding of the path

and the specific road it may be located on. In order to optimize performance for graphical output,

only the current path with the mouse tip is refreshed during mouse hovering. Therefore, the

entire display does not have to be refreshed which can distract the user. To catch this mouse

event, a small rectangular region is defined around each road link by considering its spatial

orientation in the 2D window. As soon as any region catches the mouse tip the searching

algorithm will exit with the current route index from the main report index. Based on the current

ambulance route index a graphical region is created by joining small oriented rectangular regions

of road links which will make the ambulance route. Finally, the system invalidation function is

called to refresh only that region in the graphical output window. A backup route index is also

stored in run-time memory which is helpful in refreshing the same route region again when the

mouse tip moves out of that region.

- 148 -

AFOSR F49620-01-1-0371

Figure 6.6-12 Ambulance route display in an urban area of Northridge region.

6.6.5.4 Clusters: Regional Information

A cluster can be defined as the extraction of large amounts of data and displaying it as a group in

a vast database system. In a post-disaster simulation the need for dealing with large sets of data

and comprehending abstract information is a key to understanding situation awareness. Work on

clustering with fused data can be found in applications for a battlefield [6.6-21] and the

visualization of large datasets [6.6-20]. In our simulation, the casualty cluster information is

produced by the Level – 2 fusion federate [6.6-22].

Formulation of Cluster and Boundary Formation

As an approach to cluster visualization, the entire Northridge area was divided into cells with

horizontal and vertical grid data. Fig. 6.6-13 (1) shows a cluster with a group of cells which

defines the cluster. The outlier information is helpful in the identification of the area the cluster

covers, as well as, interpolating intermediate shape information while morphing. Cell

information is also effective in the quick identification of areas with the highest emergency

- 149 -

AFOSR F49620-01-1-0371

within a cluster. In the figure, the opacity of a cell represents the number of casualties present

and allows for quick identification of the most troubled spots. It is also possible to see clusters

when only considering one level of severity by using the context menu. In addition to the cluster,

a boundary can help a viewer recognize the shape of the cluster. With only boundary

information, the trend of the regional shape can easily be comprehended (Fig. 6.6-13, right).

Figure 6.6-13 Situation awareness by cluster morphing. The casualty clusters between two

discreet time steps (1 & 3) are generated by interpolation (2). The expanding trend of such

cluster boundary is shown for better understanding of the situation over time (right).

Dynamic Visualization by Morphing

It is difficult to capture the trend of a situation from one specific time to another. In most cases,

the user has to depend on his/her memory to relate the states. In order to provide a way of seeing

how the clusters change with respect to time, we incorporated morphing into the simulation. All

the visualization elements, such as position, color and shape were stored at each discrete time

step. Corresponding discrete states were then interpolated to create the morphing. However, the

associated cluster ID may change from one point to the next which makes it difficult to morph

the clusters directly. Therefore, morphing was carried out on a cellular level. This way

individual cells, which comprise the clusters, may appear and disappear from subsequent states

to help inform the user. Using the morphing interface, a user can keep track of a cluster and cells,

comprehend the trend, and have effective awareness of the situation (Fig. 6.6-13).

6.7 Secondary incident modeling

High level data fusion is the process of filtering multiple data streams through a reasoning

process informed by domain knowledge in order to construct a deep understanding of a given

- 150 -

AFOSR F49620-01-1-0371

situation. This requires estimating and then mapping its current configurational properties and

predicting their future implications. The main task of the reasoning process is to parse the set of

all feasible hypotheses to discover those most consistent with the data and with prior knowledge.

These hypotheses take the form of assertions about the current situational state, such as the

identities and attributes of significant objects and relationships, together with assertions about the

uncertain future evolution of these objects and relationships, the likelihoods of these scenarios

and their relevance to the decision-makers.

A fundamental issue in the design of a high level data fusion system is the range of hypotheses it

is willing to entertain. If the hypothesis set is tightly constrained a priori, the computational

complexity of the search for hypotheses matching a given data set is reduced, as are the system

hardware requirements, network bandwidth and data fusion product report latency. On the other

hand, a decision support system cannot discover what it is unwilling to entertain. So if

unexpected events occur, those which were deemed too unlikely to be considered at design time,

they will not be discovered and properly identified.

The most important class of such unlikely but potentially significant events in the context of

data fusion for emergency response are secondary incidents [6.7-1]. Secondary incidents have

three defining attributes:

1. They are caused or facilitated by the primary disaster event

2. They create an additional hazard to life and/or property

3. They have implications for future decision-making

For instance, a gas line rupture secondary to an earthquake, a fire secondary to a plane crash, or

the Khamisiyah release during Desert Storm [6.7-2].

6.7.1 Secondary events in emergency response

The primary disaster event will engender its own chain of likely events requiring emergency

response. For these a tightly bounded universe of discourse of plans, hypotheses, rules, events

and entities can be enumerated in advance and managed as the scenario unfolds. The danger in

- 151 -

AFOSR F49620-01-1-0371

this strategy is that events narrowly interpreted will be misinterpreted, with the real nature of the

situation hidden until the consequences are unacceptable.

The secondary incident challenge is considered in this project in two settings. With respect to the

general design principles of data fusion systems for emergency response which are “secondary

incident aware,” methodological considerations and the choice of a compatible reasoning system

are discussed in Section 6.9.

In order to exercise the selected approach, a secondary incident generator was built into the

earthquake test bed DIRE. That generator is the subject of this section. The scenario simulated is

one of a secondary hazmat incident caused by the rupture of a stationary chemical storage tank,

or the crash of a hazmat transporter and the rupture of its tank. It is assumed that the subsequent

hazmat plume is relatively odorless and colorless, but potentially lethal.

The challenge in this scenario is to correctly identify the occurrence of a secondary incident

subsequent to the primary earthquake event, and to estimate its most important attributes such as

location and time of release, quickly enough to save lives. The problem is that many individual

casualties, and clusters of casualties, which are consequent to the the primary earthquake event

will be being reported at the same time. It is not clear how to discriminate the secondary

casualties from the primary in order to discover the occurrence of the secondary incident, how to

reason about this event in the confusing context of the primary event.

The use of data warehousing techniques [6.7-3] or data mining [6.7-4] in this process can be of

considerable value. In either case, a principal question to be answered is whether the reasoning

process is based on representations of uncertainty that are symbolic or numeric. Non-monotonic

logics and rule-based architectures are typical choices on the symbolic side, and Bayes Nets,

connectionist approaches or genetic algorithms on the numeric. Here we choose to employ a

hybrid of the two approaches: a belief-based argumentation scheme. This is an abductive

reasoning approach employing rules to define evidentiary elements (arguments), and quantitative

beliefs to assess the strength of these arguments. For a given hypothesis all arguments

corroborating or refuting that hypothesis are marshalled, and using the Dempster-Shafer rule of

combination, combined to determine belief in that hypothesis. This approach is detailed in [6.7-

- 152 -

AFOSR F49620-01-1-0371

5] and is discussed in Section 6.9 of this report. In the remainder of this section, the instantiation

of this scenario in the secondary event generator in DIRE will be discussed.

6.8 Secondary incident modeling

The model for fluid dynamical atmospheric dispersion of toxic material we chose is the basic

Gaussian model [6.7-6]. Given mass M of the toxic material entering the atmosphere at

(x,y,z)=(0,0,0) at time t=0, and given a constant wind with components vx and vy, the

concentration of the material at (x,y,z,t) is approximated as

The E’s are dispersion coefficients which are determined empirically. This model predicts that

the mean (point of highest concentration) of the plume propogates from the release point (0,0,0)

with the wind, and the variance (spread) of the plume in all directions increases linearly with

time.

There are obvious shortcomings of this model. There is no ground plane at z=0 to prevent

diffusion below the ground. The rate at which the plume spreads out in this model does not

depend on the wind velocity (vx, vy), ie. turbulent mixing is not taken into account. Removal of

material by condensation, chemical or photoconversion is not considered. Atmospheric layering,

for instance inversions or stratification, is not modelled. Nor is the topology of the ground over

which the plume propogates, a factor of particular concern in urban settings. But the goal of this

generator is not to produce a highly resolved and accurate model, rather to generate a plume

generally consistent with first-order fluid-dynamical and meteorological laws.

Since we are only interested in the concentration at ground level, the form of this model

employed is the 2-d version of the above,

]1[}
44

)(

4

)(
exp{

)()(8
),,,(

222

2/12/3 tE

z

tE

tvy

tE

tvx

EEEt

M
tzyxC

zy

y

x

x

zyx

−
−

−
−

=
π

]2[}
4

)(

4

)(
exp{

)()(8
),,(

22

2/12/3 tE

tvy

tE

tvx

EEEt

M
tyxC

y

y

x

x

zyx

−
−

−
=

π

- 153 -

AFOSR F49620-01-1-0371

where we have set z=0, and overloaded the definintion of the concentration function C.

Preparing to discretize the problem, define the concentration C at (x,y,t) due to a mass M

released at (xo,yo,to), assuming that no additional material has been or will be released.

]3[}
)(4

))((

)(4

))((
exp{

)()(8
),,;,,(

22

2/12/3

oy

yo

ox

xo

zyx

ooo
ttE

tvyy

ttE

tvxx

EEEtot

M
tyxtyxC

−

−−
−

−

−−

−
=

π

Again we are overloading the C-function definition. Now let t-to = ∆t, x-xo = i∆x, y-yo=j∆y.

Then the concentration in a grid cell one time step ∆t later due to the dispersion of a unit

concentration worth of material from the grid cell (i,j) cells away is

]4[}
4

)(

)(4

)(
exp{

)(8
),(

22

2/12/3 tE

tvyj

tE

tvxi

EEEt

zyx
jih

y

y

x

x

zyx ∆

∆−∆
−

∆

∆−∆
−

∆

∆∆∆
=

π

Here we have used the fact that M is the product of the volume of the grid cell and its

concentration.

Next suppose at time k the current concentration map is C(i,j,k) given by [2] with discretizations

t=k∆t, x=i∆x, y=j∆y. Then the concentration at grid cell (m,n) at time k+1 can be found by

convolving the concentration map at time k by the impulse response [4],

]5[),,(),()1,,(∑∑ −−=+
i j

kjiCjnimhknmC

The sum in [5] is taken over all grid cells (i,j), and [5] is evaluated for each grid cell (m,n). In

computing [5], the impulse response h(i,j) is precomputed and stored, it is the same for each k.

Note that the wind velocity (vx, vy) can change arbitarily over time. The assumption is that over a

single timestep ∆t it is constant over the entire grid and over the entire time step, but not that it is

necessarily constant time step to time step.

- 154 -

AFOSR F49620-01-1-0371

Concerning the model limitations, the lack of a ground plane and the removal of material simply

scale the concentrations, and since we are going to set injury thresholds we can accomodate that

easily. The lack of turbulent mixing does lead to oversimplified results, but if we limit ourselves

to low wind speeds this is not a serious problem. Test runs show that in the case of a continuous

point release, a plausible “teardrop” shaped plume is formed which is aligned with the

prevailing wind direction, and this plume spreads and dissipates with time.

6.7.2. Creating secondary incident casualties

The primary earthquake event casualties are laid down in DIRE as the simulation run begins,

based on HAZUS casualty estimates. A secondary Hazmat event occurs at a random time and

location within the first 4 hours following the primary earthquake event. The basic premise of

adding secondary incident casualties is that it is done on a dose-response basis. The

concentration profile is integrated over time to create a spatially distributed dosage. A fraction of

the total population which will sustain related injury within a given census tract is then

determined based on the dose and the response to that toxic material. That fraction is multiplied

by the population of that census tract and that number of new casualties is laid down randomely

within the census tract.

Specifically, the entire Northridge area is divided into grid squares that cover the 121 square

miles of the disaster area. The gridpoints are about 100 meters from one another. The

concentration at each gridpoint is updated according to the precomputed text files in the plume

folder determined by the dispersion model [5]. Casualties are added only around each gridpoint

being created.

If the scaled average concentration of the current grid cell since the plume began is greater than

a threshold value specified in the .ini file, then there are new casualties added. The value of

pernew is the percentage of non-casualties within the region around the gridpoint that will

become casualties. This percnew is calculated using a logistic transform. The basic premise of

the model is that the percentage of non-casualties that become casualties increases as the average

concentration increases above the threshold set in the .ini file. The average concentration was

used as the basis for adding casualties so as to smooth out the additions over time. For example if

a gridpoint suddenly had a higher concentration, then the number of casualties would gradually

- 155 -

AFOSR F49620-01-1-0371

increase over time, not necessarily all at once. One other parameter in calculating the percnew is

newcasmult. This is a multiplier in the .ini file that determines a base rate of adding casualties.

The next lines for searchrect and newpt are determined for the placement of new casualties. I

then calualte the total number of new casualties to add. This is done with the line around 2628

Numnew is then calculated by taking the population of the 100 meter by 100 meter square

around each gridpoint. This is the population of the census tract divided by the census tract area

times the area of the square (.01). The population that is already casualties (casrecs.count) is then

subtracted. This number is multiplied by the percentage that become new casualties, producing

the number of new casualties. The next loop adds the casualties into the casualty layer of the

database. The last main part of the update plume routine, updates all of the casualties around the

current grid point with the new concentration.

6.7.3 Example plume illustrating extended source release and wind shift

The following sequence of images were acquired from the visualization federate during a DIRE

run in which a toxic release occurred near the center top of the field of view and the wind

initially blew at 5 Km/h from the north. The human figure icons represent reported primary

event casualties of various severities.

- 156 -

AFOSR F49620-01-1-0371

- 157 -

AFOSR F49620-01-1-0371

- 158 -

AFOSR F49620-01-1-0371

6.8 Distributed L0/L1 Fusion

In this section the detailed design of the Disaster Assessment Level 0/1 Distributed Fusion

processing will be presented. The inputs are the Main Reports data stream which contains reports

from each jurisdiction communications center and a mutual aid jurisdiction (MAJ) in a different

order due to communications and processing delays. The outputs are the consistent tactical

pictures (CTP) from each jurisdiction each containing the 5 data base files, one for each Level 1

entity type. The performance metrics are the accuracy, timeliness, and consistency of these

jurisdiction CTPs.

Section 6.8.1 defines the distributed fusion node network for 2 jurisdiction communications

centers and the intelligence preparation for each source to generate the attribute class confidence

vectors given an attribute declaration. Section 6.8.2 defines the fusion node processing for each

of the 5 fusion node types for each jurisdiction center in the distributed fusion network.

- 159 -

AFOSR F49620-01-1-0371

6.8.1 Distributed Fusion Node Network Design

The distributed fusion node network design is shown in Figure 6.8-1. For each communications

center (CC) this is a Level 1 sequential fusion network that fuses call for service and first

responder data with the “global” CTP as it is received. The dispatchers at each communications

center restrict their view of the CTP to within their own jurisdiction boundaries as desired. The

Figure shows the separate police location data input fusion nodes that will be implemented with

replacement in since police reporting rates are not sufficient for filtering. The same will be done

for ambulance location inputs, though not shown. The other police and ambulance report types

pass through one type at a time into the CC sequential fusion node process as shown.

In both communications centers (i.e., Jurisdiction ID = 1 or 2) and the mutual aid jurisdiction

(MAJ) (i.e., Jurisdiction ID = 3) will be integrated from the beginning of the scenario(s). The

communications center reporting assets will be the police, ambulance, civilian, and hospital

sources described above. The only MAJ reporting assets will be its shared officers and

ambulances. will fuse data from one jurisdiction that is reported to another jurisdiction (e.g., a

civilian on the boundary reporting on an incident across the street boundary) to remove

duplicates and update with improved information.

All centers will share and fuse all of the police, civilian, ambulance, and hospital simulated

report data. This architecture presumes that the bandwidth of the communications between

Communications Centers and computational power is sufficient to enable all calls for service

report sharing.

- 160 -

AFOSR F49620-01-1-0371

Figure 6.8-1: Selected Distributed Fusion Node Network

The pre-scenario processing of confusion matrices and a priori class vectors will be performed as

described next. The approximation to the a posteriori severity class vectors from the confusion

matrix will be made as follows:

P(C|S)= P(D|C) P(C)/ ΣK { P(DK |C) P(C) }

for each class C where P(D|C) are the elements in the confusion matrix column for the given

declaration. Before making this calculation the elements of the column vector are perturbed by

the “confusion perturbation factor” listed in the DAUpdate.ini file. The factor is multiplied by

the confusion matrix element to determine the bounds around the column elevation over which a

uniform draw is made. The baseline perturbation is ±10% of each of the values (i.e., baseline

confusion matrix perturbation factor (CMAPertFactor) = .1) which is then normalized to sum to

one. These calculations are done once when each confusion matrix is loaded for a scenario. The a

priori vector, P(C), will also be perturbed in the same way (i.e., baseline a priori perturbation

factor (APPertFactor) = .1) once when each a priori matrix is loaded. If a class 0 is received, then

the a priori vector is used.

CC1D Police

CC1DF

Civilian

CC1DF

Amb Police MAJ

CC1DF

MAJ

Other

● ● ●

Comm
Police Civilia

n

 Ambulanc

e

Shared

Police Police
● ● ●

Police

T=p + δt

Shared

MAJ

Shared

CC2 Officer

Shared

CC2

Officer
CC2 CAD

CC2D Police

CC2DF

Civilian

CC2DF

Amb Police MAJ

CC2DF

MAJ

Other

Comm
Police Civilia

n

 Ambulanc

e

Shared

Police Police
● ● ●

Police

T=p + δt

Shared

MAJ

Shared

CC1 Officer

Shared

CC2

Officer
CC2 CAD

- 161 -

AFOSR F49620-01-1-0371

For example, with the police casualty severity confusion matrix in Figure 6.8-2 and a police

report of severity 3, the a posteriori class severity class vector for the a priori casualty severity

class vector = [.3, .3, .2, .2] is as follows:

P(C=1|S) = P(D=3|C=1)/ ΣK{ P(D =K |C=1) P(C=1)} = .03 * .3/ [.03*.3 + .07*.3 +

.8*.2 + .38*.2] = .009/[.009+.021+.16+.076] = .009/.266 = .034

So, P(C|S) = (.034, .079, .601, .286). Since these values are very rough to begin with, this rough

approximation should be sufficient. Note for comparison that if the a priori was uniform a

sample perturbation would be P(C|S) = (.02, .06, .62, .3).

In summary, all the confusion matrices will be preprocessed using the scenario a priori class

vector to generate these a posteriori severity class vectors. Perturbations will be added to these a

priori and a posteriori vectors before each scenario is run.

Truth

Declaration

Class

Declaration

Class

Declaration

Class

Declaration

Class

Declaration

Unknown

Class 1 2 3 4 5

Total

Prob.

1 0.75 0.07 0.03 0 0.15 1

2 0.15 0.60 0.07 0.03 0.15 1

3 0 0.05 0.8 0.05 0.10 1

4 0 0.02 0.38 0.50 0.10 1

Figure 6.8-2: Sample Severity Confusion Matrix

6.8.2 Fusion Node Processing

The data fusion processing will follow the Data Fusion and Resource Management (DF&RM)

Dual Node Network (Dual Node Network) architecture. The distributed fusion call for service

- 162 -

AFOSR F49620-01-1-0371

data base (CDB) will be generated at each of the 2 jurisdiction sites. Each jurisdiction fusion

network will consist of 5 level 1 fusion segments corresponding to casualties, emergency vehicle

location (i.e., police and ambulance), facility (i.e., hospital and emergency facilities),

transportation link delays, and bridge damage. Figure 6.8-3 describes each of the fusion node

component functions. The tailoring of the fusion node networks for each of these segments at

each jurisdiction site and the tailoring of each of the 5 fusion node types for in each segment is

described below. The three general fusion processes in each fusion node are as follows:

1. Data Preparation: Propagate the current CTP to the current time.

2. Data Association: This function is composed of hypothesis generation, hypothesis

evaluation, and hypothesis selection. Hypothesis generation determines all the feasible

report to CTP associations using gating schemes on location, ID/attributes, and

parameters. Hypothesis evaluation computes the score for each feasible association as the

product of the location score, parameter score, attribute score, and a priori score.

Hypothesis selection searches through the feasible association matrix to select, in this

case, the highest scoring of all report association hypotheses.

3. State Estimation: The CTP entity location, parameters, and attribute (e.g., injury severity)

states are updated.

- 163 -

AFOSR F49620-01-1-0371

Figure 6.8-3: Description of Data Fusion Node Functions in Dual Node Network Architecture

6.8.2.1 Casualty Fusion Segment Fusion Node Processing

The casualty fusion network will receive the police, ambulance, and civilian casualty reports as

available. The data will be processed one source type and one report at a time. The casualty

fusion segment is composed of a sequence of such fusion nodes as reports arrive over time as

described in Section 2. The processing in each casualty fusion node is described next.

Casualty Report Data Preparation

The attribute declarations will be converted to attribute confidences using a table look-up of the

vectors computed prior to running the current scenario as described at the end of Section 2. No

coordinate transformations are used since the data is already in a common coordinate system and

there are no misalignments. Also, no time propagation is done since casualty and other entity

motion is not modeled here.

Casualty Report Data Association

During data association the casualty fusion node will associate each report from a civilian,

police, or ambulance with the existing active casualty data base (CDB) and then in state

estimation update the CDB. The location, CASID, severity, age, race, sex elements of each

• DETECT AND RESOLVE
DATA CONFLICTS

• CONVERT DATA TO
COMMON TIME AND
COORDINATE FRAME

• COMPENSATE FOR
SOURCE
MISALIGNMENTS

• OUTPUT RECONCILED
SENSOR DATA

• ESTIMATE/PREDICT
ENTITY STATES
- KINEMATICS, ATTRIBUTES,

ID, RELATIONAL STATES

• ESTIMATE SENSOR/SOURCE
MISALIGNMENTS

• FEED FORWARD SOURCE/
SENSOR STATUS

• OUTPUT ENTITY & AGGREGATE
STATE ESTIMATES

• GENERATE FEASIBLE &
CONFIRMED ASSOCIATION
HYPOTHESES

• SCORE HYPOTHESIZED DATA
ASSOCIATIONS

• SELECT, DELETE, OR FEEDBACK
DATA ASSOCIATIONS

• OUTPUT SELECTED DATA
ASSOCIATIONS & CONFIDENCES

USER
OR NEXT
FUSION
NODE

STATE
ESTIMATION

&
PREDICTION

DATA ASSOCIATION

DATA FUSION NODE

HYPOTHESIS
EVALUATION

HYPOTHESIS
GENERATION

HYPOTHESIS
SELECTION

DATA
PREPARATION

PRIOR
DATA FUSION
NODES &
SOURCES

RESOURCE MGT CONTROLSSOURCE SENSOR STATUS

• DETECT AND RESOLVE
DATA CONFLICTS

• CONVERT DATA TO
COMMON TIME AND
COORDINATE FRAME

• COMPENSATE FOR
SOURCE
MISALIGNMENTS

• OUTPUT RECONCILED
SENSOR DATA

• ESTIMATE/PREDICT
ENTITY STATES
- KINEMATICS, ATTRIBUTES,

ID, RELATIONAL STATES

• ESTIMATE SENSOR/SOURCE
MISALIGNMENTS

• FEED FORWARD SOURCE/
SENSOR STATUS

• OUTPUT ENTITY & AGGREGATE
STATE ESTIMATES

• GENERATE FEASIBLE &
CONFIRMED ASSOCIATION
HYPOTHESES

• SCORE HYPOTHESIZED DATA
ASSOCIATIONS

• SELECT, DELETE, OR FEEDBACK
DATA ASSOCIATIONS

• OUTPUT SELECTED DATA
ASSOCIATIONS & CONFIDENCES

USER
OR NEXT
FUSION
NODE

STATE
ESTIMATION

&
PREDICTION

DATA ASSOCIATION

DATA FUSION NODE

HYPOTHESIS
EVALUATION

HYPOTHESIS
GENERATION

HYPOTHESIS
SELECTION

DATA
PREPARATION

PRIOR
DATA FUSION
NODES &
SOURCES

RESOURCE MGT CONTROLSSOURCE SENSOR STATUS

• DETECT AND RESOLVE
DATA CONFLICTS

• CONVERT DATA TO
COMMON TIME AND
COORDINATE FRAME

• COMPENSATE FOR
SOURCE
MISALIGNMENTS

• OUTPUT RECONCILED
SENSOR DATA

• ESTIMATE/PREDICT
ENTITY STATES
- KINEMATICS, ATTRIBUTES,

ID, RELATIONAL STATES

• ESTIMATE SENSOR/SOURCE
MISALIGNMENTS

• FEED FORWARD SOURCE/
SENSOR STATUS

• OUTPUT ENTITY & AGGREGATE
STATE ESTIMATES

• GENERATE FEASIBLE &
CONFIRMED ASSOCIATION
HYPOTHESES

• SCORE HYPOTHESIZED DATA
ASSOCIATIONS

• SELECT, DELETE, OR FEEDBACK
DATA ASSOCIATIONS

• OUTPUT SELECTED DATA
ASSOCIATIONS & CONFIDENCES

USER
OR NEXT
FUSION
NODE

STATE
ESTIMATION

&
PREDICTION

DATA ASSOCIATION

DATA FUSION NODE

HYPOTHESIS
EVALUATION

HYPOTHESIS
GENERATION

HYPOTHESIS
SELECTION

DATA
PREPARATION

PRIOR
DATA FUSION
NODES &
SOURCES

PRIOR
DATA FUSION
NODES &
SOURCES

RESOURCE MGT CONTROLSRESOURCE MGT CONTROLSSOURCE SENSOR STATUSSOURCE SENSOR STATUS

- 164 -

AFOSR F49620-01-1-0371

report will be used as available to gate and associate the casualty with a CDB call for service.

Data association is composed of hypothesis generation, evaluation, and selection.

Hypothesis Generation

Hypothesis generation will use simple gates to eliminate numerous CDB casualty track as not

feasibly associated with the given casualty report. These gates will use all available elements of

the report and CDB entries to include

1. If the report has a CASID, search the CDB for the matching non-zero CASID. If find a match

then this CDB call for service is the only feasible and go to state estimation to update the CDB

call for service

2. Gate out all CDB call for service marked as “picked-up”, “walk-in”, or “dropped-off”

3. time: gate out user selected old CDB calls for service (baseline: 10,000 seconds)

4. casualty location: distance (i.e., Euclidean) between the report and the CDB track in meters

must be less than user selected number of standard deviations where the distance sigma = [Px +

Rx]
.5
 using the independence of the errors and Px = Py & Rx =Ry (baseline: gate is 5 sigma where

civilian the Rx = Ry square root (i.e., measurement sigma) is 20 m and the responder

measurement sigma is 10 m)

5. casualty severity: gate out CDB calls for service whose casualty severity confidence is below

user specified threshold for reported casualty severity declaration (baseline: .01)

6. casualty age: gate out CDB calls for service whose casualty age confidence is below user

specified threshold for reported casualty age (baseline: .01)

7. casualty race: gate out CDB calls for service whose casualty race confidence is below user

specified threshold for reported casualty race (baseline: .01)

8. casualty sex: gate out CDB calls for service whose casualty sex confidence is below user

specified threshold for reported casualty sex (baseline: .01)

- 165 -

AFOSR F49620-01-1-0371

The attribute gates are not applied if a 0 (i.e., no report) is received nor if an unknown type is

received. The output from hypothesis generation is the set of feasibly associated CDB calls for

service that pass all the above gates. Go through data base one time.

Hypothesis Evaluation

The process will apply a MAP a posteriori Bayesian approach to evaluate the association

confidence of each feasible CDB call for service with the given report. For reports where CASID

is available only it will be used for association. When the CASID is not available, these

deterministic MAP scores for each the feasible CDB call for service are based upon casualty

location, injury severity, race, sex, age and will be compared to the no association score. The no

association score contains 2 terms. Namely, the probability that the report should initiate a call

for service in the CDB and the probability that the highest confidence CDB call for service is not

the given report and should be retained.

The MAP score for association is the expansion of the following:

max P(H|R) = max {P(R|H) P(H)} = max {P(Y|H) P(A|Y,H) P(H)}

= max [ΠT {P(Y(S)|Y(T),H) P(C(S)|C(T),Y(T),Y(S),H) P(Z(S)|Y(S), Y(T), C(T),C(S), H)

ПA {ΣK[P(KA|Z(T),Y(T),C(T),H) P(KA|Z(S),Y(S),C(S),H) / P(KA|Y(T),Y(S),C(T),C(S),H)]}

P(H)}]

such that

1. the maximization is are over all association hypotheses H,

2. H is the set of feasible association (or non-association) hypotheses,

3. R are the source report and CDB calls for service track data, Y is the set of all kinematics,

A is the set of all attributes from both,

4. the first product is over all independent track-to-truth hypotheses,

5. the second product is over all the noncommensurate independent attributes,

- 166 -

AFOSR F49620-01-1-0371

6. the sum is over all the possible classes of each attribute,

7. Y(T) are the call for service kinematics & Y(S) are the report kinematics,

8. C(T) & C(S) are commensurates from the call for service and report data

9. K are the elements of the disjoint casualty attribute class tree,

10. Z(T) & Z(S) are noncommensurate attributes (i.e., independent when conditioned on the

object class K) from the call for service and report, respectively,

11. P(H) is the a priori confidence in the association hypothesis.

The P(A|Y,H) noncommensurate attribute term is expanded as follows for each casualty attribute

(i.e., severity, age, race, sex):

P(A|Y,H) = P(severity, age, race, sex| Y,H)= P(severity| age, race, sex, Y,H) P(age| race,

sex, Y,H) P(race| sex, Y,H) P(sex| Y,H) = P(severity| Y,H) P(age| Y,H) P(race| Y,H)

P(sex| Y,H)

Thus the noncommensurate term is the product of the summation terms for each of the 4

attributes as shown.

The total scene hypothesis score is the product of the individual hypothesis scores for 5 types of

report, S, to track, T, associations of kinematics, Y, & attributes, Z:

1. Association Hypotheses

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = {|V|
-1/2

} exp[-1/2{I
T

V
-1

I

}] •

ПA{ΣK[P(KA|Z(T),Y(T), H) P(KA|Z(S),Y(S), H)/P(KA|Y(T),Y(S), H)]} • [1-PFA (S)] [1-

PFA(T)] PD (S) PD (T)

2. Pop-up (i.e., Track Initiation) Hypotheses

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = {E(|V|
-1/2

)} exp[-1/2{µ}] • [1-

PFA (S)] [1- PD(T)] PD (S)

- 167 -

AFOSR F49620-01-1-0371

3. False Alarm (FA) Hypotheses

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = {E(|V|
-1/2

)} exp[-1/2{µ}] • PFA

(S) PD (S) = 0

4. Propagation Hypotheses

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = [1-PFA (T)] [1- PD(S)] PD (T)

5. Track Drop Hypotheses

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = PFA (T) PD (T) = 0

such that

1. I = (xT , yT) - (xS , yS) which is the difference of the report and feasible CDB call for

service locations

2. V = P + R for each feasible association where

3. P is the 2x2 matrix for the feasible CDB with x and y variances along its diagonal and

zero otherwise

4. R is the 2x2 matrix with the user selectable source x and y variances along its diagonal

(baseline: 100 m
2

for police and ambulance reports and 400 m
2
 for civilian reports

5. |V|
-1/2

 = {1 / [square root of the determinant of V]} where the determinant of V is the

product of the diagonal terms for diagonal matrices

6. E(|V|
-1/2

) is computed using the V matrix from the highest scoring association

7. the normalization term in the pop-up hypothesis, µ = 1.39 for 2 DOF that we have

8. The probability of false report (i.e., PFA (S)) and false track (i.e., PFA (T)) are zero for all

sources due to the risk in dropping a call for service

- 168 -

AFOSR F49620-01-1-0371

9. The probability of reporting a casualty in the CDB (i.e., PD(S)) for civilian, police, and

ambulance (i.e., all) sources is a user specified parameter (baseline: = .8)

10. The probability of a gated call for service in the CDB (i.e., PD(T)) being the reported

casualty is also a user specified parameter (baseline: = .8)

Thus the association score for each feasible CDB call for service is #1 above. The non-

association score is the product of equations #2 and #4.

A numerical example of an association score (i.e., equation #1 above) is given next. For a current

police report at (100m, 100m) with the x and y standard deviations = 10m associating with a

CDB call for service that was initiated last update time with a civilian report at (150m, 150m)

with standard deviations in x and y of 20m, the innovations, I = (150, 150) – (100,100) = (50,50)

which is a 2x1 matrix. The innovations covariance, V has 400 + 100 = 500 along the diagonal of

the 2x2 matrix. The |V|
-1/2

 = (500 * 500)
-1/2

 = 1/500 = .002. (I
T

V
-1)

I = (50/500, 50/500) (50, 50)
T

= (50/10) + (50/10) = 10. Thus, the probability of association term due to the location data match

is as follows:

P(Y(S: police location report)|Y(T: CDB track),H) = {|V|
-1/2

} exp[-1/2{I
T

V
-1

I

}] =

.02 exp(-1/2 {10}) = .02 * .0067 = .00135

Let P(C|S: police casualty severity report) = (.03, .08, .60, .29), let the only associated CDB call

for service have the a posteriori severity class vector is (.1, .2, .6, .1), and let the a priori casualty

severity class vector = [.3, .3, .2, .2], then the probability of association term due to the casualty

data match is as follows:

P(casualty severity match) = ΣK[P(KA|Z(T),Y(T), H) P(KA|Z(S),Y(S),

H)/P(KA|Y(T),Y(S), H)] =

 {[.03 x .1]/.3} + {[.08 x.2]/.3} + {[.6 x.6]/.2} + {[.29 x.1]}/.2} = .01+.05+1.80+.15

= 2.01

Let P(C|S: police race report) = (.03, .08, .60, .29), let the only associated CDB call for service

have the a posteriori race class vector is (.1, .2, .6, .1), and let the a priori race class vector = [.3,

.3, .2, .2], then the probability of association term due to the casualty data match is as follows:

- 169 -

AFOSR F49620-01-1-0371

P(race match) = ΣK[P(KA|Z(T),Y(T), H) P(KA|Z(S),Y(S), H)/P(KA|Y(T),Y(S), H)] =

 {[.03 x .1]/.3} + {[.08 x.2]/.3} + {[.6 x.6]/.2} + {[.29 x.1]}/.2} = .01+.05+1.80+.15

= 2.01

Let P(C|S: police age report) = (0, .03, .08, .60, .29), let the only associated CDB call for service

have the a posteriori race class vector is (0, .1, .2, .6, .1), and let the a priori race class vector =

[.01, .29, .3, .2, .2], then the probability of association term due to the casualty data match is as

follows:

P(age match) = ΣK[P(KA|Z(T),Y(T), H) P(KA|Z(S),Y(S), H)/P(KA|Y(T),Y(S), H)] =

 {[.0 x .0]/.01} + {[.03 x .1]/.29} + {[.08 x.2]/.3} + {[.6 x.6]/.2} + {[.29 x.1]}/.2} =

.01+.05+1.80+.15 = 2.01

Let P(C|S: police sex report) = (.9, .1), let the only associated CDB call for service have the a

posteriori race class vector is (.9, .1), and let the a priori race class vector = [.5, .5], then the

probability of association term due to the casualty data match is as follows:

P(sex match) = ΣK[P(KA|Z(T),Y(T), H) P(KA|Z(S),Y(S), H)/P(KA|Y(T),Y(S), H)] =

 {[.9 x.9]/.5} + {[.9 x.9]}/.5} = 1.62 + 1.62 = 3.24

The association score for all 4 casualty attributes is the product of these as follows:

ПA{ΣK[P(KA|Z(T),Y(T), H) P(KA|Z(S),Y(S), H)/P(KA|Y(T),Y(S), H)]} =

2.01*2.01*2.01*3.24 = 26.3

The overall association score for the police report and CDB call for service is as follows:

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = {|V|
-1/2

} exp[-1/2{I
T

V
-1

I

}] •

ПA{ΣK[P(KA|Z(T),Y(T), H) P(KA|Z(S),Y(S), H)/P(KA|Y(T),Y(S), H)]} • [1-PFA (S)] [1-

PFA(T)] PD (S) PD (T) = .00135 * 26.3 * .8 * .5 = .014

- 170 -

AFOSR F49620-01-1-0371

Since in this example, this is the only feasibly associated CDB call for service it is compared to

the nonassociation hypothesis. The score is the product of equations 2 and 4 above. The result is

as follows:

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) * P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S),

Y(T), H) P(H) = {E(|V|
-1/2

)} exp[-1/2{µ}] • [1-PFA (S)] [1- PD(T)] PD (S) * [1-PFA

(T)] [1- PD(S)] PD (T) = .02 exp[-1/2{1.39}] * .5 * .8 * .2 * .5 = .02 *.5 * .04 = .004

For this example, the association score =.014 > .004 = the nonassociation score, thus the

association will be selected in the hypothesis selection function described next.

Hypothesis Selection

In the hypothesis selection the CDB call for service with the highest association score is

compared to the non-association score (i.e., the product of #2 and #4). The highest score between

the 2 is selected.

Casualty State Estimation

If the non-association is selected a new entry (i.e., call for service) is initiated in the CDB with

the reported information. Otherwise the report is used to update the highest scoring association

call for service. The following elements of the selected CDB call for service will be updated

during state estimation:

1. last associated CDB report type (if =27 has been picked-up, if 25 dropped-off, if 61

walked-in)

2. jurisdiction ID

3. casualty ID (CASID) (=0 if unknown)

4. last update time in seconds

5. casualty location (x,y) = (east, north) in meters

6. casualty location covariance (i.e., P)

7. casualty severity vector

8. casualty age vector

- 171 -

AFOSR F49620-01-1-0371

9. casualty race vector

10. casualty sex vector

11. number of times this call for service has been updated

12. cumulative correct association probability (for track initiation it is 1, then for each

subsequent update multiply by the current association probability which is approximated

as the association score divided by sum of all the feasible association scores including the

non-association score.

The location will be updated with a standard Kalman filter assuming no casualty movement until

a drop-off or walk-in report is received. When either of these 2 types are associated, then a

replacement will be used for all state updates. The Kalman filter update here is applied as

follows:

(xT, yT) (updated) = (xT, yT) + K [(xS , yS) -(xT , yT)]

where K = P [P+R]
-1

P(updated) = [I – K] P

Ambulance pick-up and drop-off reports will contain a CASID. This is also true of walk-in

reports. These states in the CDB will be 0 until these reports are received for each casualty. The

ambulance pick-up report will be used in a Kalman update the casualty location (e.g., since its

position has not changed yet), whereas the drop-off and walk-in locations will be updated with

replacement.

The attribute update for these 3 report types will be by replacement. The current report time,

type, and reporter ID will be added to the updated CDB call for service or to the file it points to.

The attribute update for all other associated casualty reports (e.g., injury severity, age, race, sex)

will be Bayesian. The attribute confidence update equation for each of the 4 attributes uses the

attribute confidence vectors attached in data preparation above as follows:

P(class C| S, T, Y, H) = [P(C|S, Y, H) P(C|T, Y, H)/P(C|Y, H)]/ ΣK [P(K|S, Y, H)

P(K|T, Y, H)/P(K|Y, H)] if P(C|H)≠0 [= 0 if P(C|H)=0]

where

- 172 -

AFOSR F49620-01-1-0371

1. C is the element of the a posteriori severity class vector being updated,

2. P(C|S, Y, H) is the element of the a posteriori severity class tree from the source report

3. P(C|T, Y, H) is the element of the a posteriori severity class tree from the associated data

base track entity

4. P(C|Y, H) is the a priori probability of a casualty of type C given only entity location &

H, the association hypothesis. This is a user input. If the a priori has a uniform

distribution, then we can ignore this term.

5. K is the index over the disjoint classes for each attribute (i.e., severity, age, race, sex)

[summed over for normalization],

These confidences will improve with additional confirming reports and reduce otherwise. If a

conflict is obtained in the attribute update (i.e., all confidences are 0), then flag and use the next

associated report to initiate a new attribute confidence vector.

Below is an example for a given a severity class ontology with 4 elements [severity 1, severity 2,

severity 3, severity 4]. Given a police casualty severity report = 3 then the a posteriori severity

class vector as derived above is P(C|S)= (.03, .08, .60, .29). If the associated CTP casualty a

posteriori severity class vector is (.1, .2, .6, .1) and the a priori casualty severity class vector =

[.3, .3, .2, .2], then the fused casualty severity class vector update becomes the following:

P(severity 1) = {[.03 x .1]/.3}/ {.01+.05+1.80+.15} =.01/2.01 = .005

P(severity 2) = {[.08 x.2]/.3}/ {.01+.05+1.80+.15} =.05/2.01 = .025

P(severity 3) = {[.60 x.6]/.2}/ {.01+.05+1.80+.15} =1.8/2.01 = .895

P(severity 4)= {[.29 x.1]}/.2}/ {.01+.05+1.80+.15} =.15/2.01 = .075

6.8.2.2 Emergency Vehicle Fusion Segment Node Processing

This fusion network processes police and ambulance vehicle location reports one at a time as

they arrive in a sequential network of fusion nodes. Each node does no data preparation since no

- 173 -

AFOSR F49620-01-1-0371

propagation and no attribute vector insertion is needed. Data association is by unique police or

ambulance ID. The emergency vehicle or police location update is by replacement since the 5

minute update rate is not sufficient to track the police vehicles using velocity. The Emergency

Vehicle Data Base (EVDB) entries to be updated during state estimation are as follows:

1. EVDB report type

2. Police Vehicle ID

3. Jurisdiction ID

4. Last updated time in seconds

5. Last updated location (x,y) = (east, north) in meters

6. ambulance idle attribute set when that report type is received (i.e., 0 or 1)

7. ambulance stuck set when that report type is received (i.e., 0 or 1)

6.8.2.3 Facility Fusion Segment Node Processing

The facility fusion node network processes police hospital/emergency facility and hospital status

reports one at a time as they arrive in a sequence of nodes each treating a single observer report.

Data preparation converts the facility damage declaration to a severity confidence vector using a

table look-up of the vectors computed prior to running the current scenario as described at the

end of Section 2. Each report contains a unique hospital/emergency facility ID that enables

unique association with the facility data base (FDB). The elements of each entry (i.e., track) in

the FDB to be updated during state estimation are as follows:

1. FDB report type

2. Facility ID

3. Jurisdiction ID

4. Last updated time in seconds

- 174 -

AFOSR F49620-01-1-0371

5. facility location (x,y) = (east, north) in meters

6. facility damage severity vector

7. associated damage report types, reporter IDs, and update report times since beginning of

scenario (can be a pointer to a file)

8. Number of total beds (when hospital status report received)

9. Number of beds occupied (when hospital status report received)

10. Percentage of operation level (when hospital status report received)

The hospital status attributes are updated with replacement as received. The severity attribute

confidence update equation using the confusion matrix and a priori data is the same as above.

P(class C| S, T, Y, H) = [P(C|S, Y, H) P(C|T, Y, H)/P(C|Y, H)]/ ΣK [P(K|S, Y, H)

P(K|T, Y, H)/P(K|Y, H)] if P(C|H)≠0 [= 0 if P(C|H)=0]

1. C is the element of the a posteriori severity class vector being updated,

2. P(C|S, Y, H) is the element of the a posteriori severity class tree from the source report

3. P(C|T, Y, H) is the element of the a posteriori severity class tree from the associated data

base track entity

4. P(C|Y, H) is the a priori probability of an entity of type C given only entity location & H,

the association hypothesis. This is a user input. If the a priori has a uniform distribution,

then we can ignore this term.

5. K is the index over the severity disjoint classes [summed over for normalization],

If a conflict is obtained in the attribute update (i.e., all confidences are 0), then flag and use the

next associated report to initiate a new attribute confidence vector.

- 175 -

AFOSR F49620-01-1-0371

6.8.2.4 Transportation Link Delay Fusion Node Processing

The transportation fusion node network is a sequence of nodes each treating a single observer set

of reports at a single time, just as the casualty and other 3 fusion node segment networks. The

road link delays are reported by police or ambulances (e.g., not civilians, nor hospitals). Since

link delays can change unexpectedly, the fusion node will associate using the unique link ID and

replace the delay information. The transportation link data base (TLDB) states are as follows:

1. TLDB report type

2. Transportation Link ID

3. Jurisdiction ID

4. Last updated time in seconds

5. link delay severity factor between [0,1] (i.e., this factor times vehicle speed is link speed

so 1 is no delay and .5 is half speed)

6.8.2.5 Bridge Fusion Node Processing

The bridge fusion node network is a sequence of nodes each treating a single observer set of

reports at a single time, just as the casualty and other 3 fusion node segment networks. The

bridge damage is reported by police, ambulances, or civilians (type 38). Data preparation

converts the facility damage declaration to a severity confidence vector using a table look-up of

the vectors computed prior to running the current scenario as described at the end of Section 2.

The fusion node will associate using the unique bridge ID and update the bridge damage

information. The bridge data base (BDB) states are as follows:

1. BDB report type

2. Transportation Link ID

3. Jurisdiction ID

4. Last updated time in seconds

- 176 -

AFOSR F49620-01-1-0371

5. bridge location (x,y) = (east, north) in meters

6. bridge damage severity vector

The bridge damage severity attribute confidence update equation using the confusion matrix and

a priori data is the same as above. Namely,

P(class C| S, T, Y, H) = [P(C|S, Y, H) P(C|T, Y, H)/P(C|Y, H)]/ ΣK [P(K|S, Y, H)

P(K|T, Y, H)/P(K|Y, H)] if P(C|H)≠0 [= 0 if P(C|H)=0]

1. C is the element of the a posteriori severity class vector being updated,

2. P(C|S, Y, H) is the element of the a posteriori severity class tree from the source report

3. P(C|T, Y, H) is the element of the a posteriori severity class tree from the associated data

base track entity

4. P(C|Y, H) is the a priori probability of an entity of type C given only entity location & H,

the association hypothesis. This is a user input. If the a priori has a uniform distribution,

then we can ignore this term.

5. K is the index over the severity disjoint classes [summed over for normalization],

If a conflict is obtained in the attribute update (i.e., all confidences are 0), then flag and use the

next associated report to initiate a new bridge damage attribute confidence vector.

6.8.3 Confusion Matrices

The approximation to the a posteriori severity class vectors from the confusion matrix will be

made as follows:

P(C|S)= P(D|C) P(C)/ ΣK { P(DK |C) P(C) }

for each class C where P(D|C) are the elements in the confusion matrix column for the given

declaration. The resulting class confidence vector for each scenario run will then be perturbed.

The perturbation will be a uniform distribution over ±10% of each of the values divided by the

sum of these perturbed values. The a priori vector, P(C), will also be perturbed in the same way.

- 177 -

AFOSR F49620-01-1-0371

For example, with the police casualty severity confusion matrix below and a police report of

severity 3, the a posteriori class severity class vector for the a priori casualty severity class vector

= [.3, .3, .2, .2] is as follows:

P(C=1|S) = P(D=3|C=1)/ ΣK{ P(D =K |C=1) P(C=1)} = .03 * .3/ [.03*.3 + .07*.3

+ .8*.2 + .38*.2] = .009/[.009+.021+.16+.076] = .009/.266 = .034

So, P(C|S) = (.034, .079, .601, .286). Since these values are very rough to begin with, this rough

approximation should be sufficient. Note for comparison that if the a priori was uniform P(C|S) =

(.02, .06, .62, .3). All confusion matrices will be processed for the given a priori class vector to

generate these a posteriori severity class vectors and perturbations will be added for each before

each scenario is run.

6.9 Higher Level Fusion

As stated in Section 2 Objectives, a principal focus of this project was the elucidation of a

framework for application of higher level fusion processing in the emergency response phase of

a man-made or natural disaster. In this section the relationship of L2/L3 fusion to this

circumstance is discussed, and the processing of fusion inputs consistent with this relationship

described. Attention is given to both the general problem, and the application of the resulting

design principles in the DIRE test bed.

It is widely agreed that the great majority of successful data fusion methods to date have focused

on low level (Level 0 and Level 1) fusion related to processing information about a single object

of interest (see, e.g. [6.9-1]). While effective fusion at the attribute and object levels producing

object identification and characterization offers real performance gains in many applications, it

does not provide for user situation awareness essential for effective decision making [6.9-1].

Situation awareness requires contextual understanding and interpretation of the events and

behaviors of interest, which can be achieved by utilizing higher level fusion processes (situation

assessment and impact prediction).

The purpose of higher level fusion (HLF) processes is to infer and approximate the critical

characteristics of the environment in relation to particular goals, capabilities and policies of the

decision makers. HLF utilizes fused data about objects of interest and relationships between

- 178 -

AFOSR F49620-01-1-0371

them, their behavior, dynamic databases, expert experience, knowledge, and opinion for context

processing. The result of HLF is a coherent composite picture of the current situation along with

prediction of consequences, which provides decision makers with essential information to help

them to understand and control the situation and act effectively to mitigate its impact. Disaster

response invariably engages several distinct organizations each with different tasking,

competencies, technologies and scope of operation. Situation and impact assessment (SIA) has to

deliver consistent current and predicted situational pictures, which are relevant to each decision

maker’s goals and functions.

The main goals of the crisis management in post-disaster environment are to save lives, to

control the situation, and to minimize the effects of the disaster. “Multiple distributed decision

makers are searching for the answers to the following questions: where the problems are, what

kind of problems they are, and what the impact of this problem is” [6.9-2]. HLF is essential for

answering these questions since identification, recognition, and attribution of individual objects

are not sufficient for an effective coordinated disaster response. There is a need to convert the

fused data about individual objects such as damage of individual buildings, roads, bridges,

facilities, fires, and casualties into usable knowledge about current and predicted disaster scene

[6.9-3, 6.9-4].

The process of building a situational picture comprises dynamic generation of hypotheses about

the states of the environment and assessment of their plausibility via reasoning about situational

items, their aggregates at different levels of granularity, relationships between them, and their

behavior within a specific context. In some cases, assessment of plausibility of more complex

hypotheses may require hierarchical processing, which includes not only reasoning about

situational items and relationships between them but also includes relationships between

hypotheses and assessments of plausibility of lower level hypotheses [6.9-6]. An important

component of situation assessment is causal inference aimed at discovery of underlying causes of

observed situational items, their attributes and their behavior. Discovery of underlying causes of

observed situations is the goal of abductive reasoning [6.9-6, 6.9-7] or “inference for best

explanations”. For example, in the early post-earthquake response phase, reasoning about

situations is contingent on the assumption that most reported casualties and structural damage are

the results of the primary earthquake shock incident and reported subsequent secondary incidents

- 179 -

AFOSR F49620-01-1-0371

such as fire, flood, aftershocks and Hazmat events. However some secondary incidents such as

toxic spills may not be known for a long period of time. At the same time rapid discovery of such

incidents is very important since they may have devastating consequences if not responded to

quickly.

These unknown secondary incidents are usually manifested by unexpected properties and

behavior of situational items inconsistent with the current set of beliefs about the state of the

world and therefore belief update may be required. Usually belief update methods give priority

to this new information and its consequences and abandon some old beliefs to preserve

consequences. In the post disaster environment observations and knowledge about situational

items, their behavior and relationships are uncertain and, therefore it is necessary to account for

this uncertainty while updating the current set of beliefs. In the uncertain environment the

principle of priority of new information may not work even in a highly dynamic environment. In

the uncertain dynamic environment belief update can be carried out by first seeking some

explanations or underlying causes of these inconsistent observations and incorporating these

explanations, if found, into a new set of beliefs. Possible explanations can be found as the result

of abduction comprising generation of hypotheses about the underlying causes of these

inconsistent observations and reasoning about plausibility of such hypotheses. This report

presents a general approach to designing higher level fusion processing as applied to dynamic

post-disaster environment.

6.9.1 General approach

The post-disaster environment has specific characteristics, which define requirements for HLF

architecture and processes. These characteristics comprise:

1. Noisy and uncertain dynamic environment with insufficient a priori statistical

information.

2. Geographically distributed damage, casualties, and resources of first responders.

3. Geographically distributed uncertain sources of information often of varying significance,

low fidelity, contradictory and redundant.

- 180 -

AFOSR F49620-01-1-0371

4. Large amount of heterogeneous information.

5. High probability of secondary incidents such as after shocks and tsunami in the case of

earthquakes, hazmat events, flood, fire, etc.

6. Resource and time constraints.

7. High cost of error.

8. Multiple decision makers with different goals, functions, and information requirements.

Some of them have tactical missions calling for decisions on direct response to a situation

while the others have strategic missions calling for higher level estimation of the

situation, impact prediction, and analysis.

9. Multiple agencies in multiple jurisdictions.

These specific domain characteristics call for a multi-agent distributed dynamic HLF processes,

which have to be scalable, adaptive to resource and time constraints, new and uncertain

environments, and have to be reactive to uncertain inputs. These processes also have to

accommodate heterogeneous information (both symbolic and numeric), allow for complex

distributed system modeling, efficient information sharing, and incorporating qualitative experts’

opinions. It is necessary to note that the post-disaster environment characteristics and HLF

processing requirements mentioned above are very common for various applications dealing

with unintended threat, which makes an approach to building such processing quite generic.

In the disaster environment, the HLF processes exploit continually associated and fused

information on single entities such as casualties, road, building, and facility damage obtained

from multiple observer reports, domain knowledge, and the results of domain-specific

simulations and models to produce a consistent estimate of the current and predicted state of the

environment, which is presented to users. Figure 6.9-1 shows a notional architecture of the HLF

processing.

There are several essential components of the fusion processing required for building current and

predicted situational pictures:

- 181 -

AFOSR F49620-01-1-0371

1. Formally structured and computationally tractable domain representation capturing the

basic structures of relevant objective reality and users’ domain knowledge and

requirements, which further serves as a basis for reasoning about the states of the

environment.

2. Dynamic reasoning procedures about objects, attributes, aggregates, relationships and

their behavior over time within a specific context.

3. Domain specific simulations and models such as earthquake consequences model (e.g.

HAZUS), dispatch and dynamic routing model, plume model, hospital model, model of

usual behavior, etc

4. Inter- and intra-fusion level decision state estimation (quality control models).

5. Belief update under uncertainty

- 182 -

AFOSR F49620-01-1-0371

6. The remainder of Section 6.9 comprises a description of the processes presented in Figure

6.9-1 in greater detail.

Figure 6.9-1. Notional architecture of the HLF processing.

6.9.3 Domain representation

One of the major challenges of designing the HLF processes is a problem of providing a

consistent, comprehensive, and computationally tractable representation of phenomenology of

the domain under consideration. A combination of Cognitive Work Analysis (CWA) and formal

ontological analysis of a specific domain is designed to overcome this problem and provide

sufficient information about decision maker’s goals, functions, information needs, types of

Reasoning About Situations and Threat

•Goals

•functions

•Information needs (EEI)

•Hypotheses

•Actions

•Domain Knowledge

Quality

?

•Objects

•Attributes

•Credibility

•Quality

Decision state

estimation(Quality

Check of Level 1

Estimations)

Current and predicted

situational pictures

Level 1

Fusion

processes

•Aggregation at various levels

of granularity

•Temporal and spatial

correlation of aggregates

•Aggregates and relationships

properties

• Behavior

Inconsistency ,

Unusual

behavior

?

Real World

Formally

structured and

computationall

y tractable

domain

representation

•Domain specific

models:

- Dispatch and

routing

- Hospital model

- Communications

model

- Plume model

- Model of normal

behavior

- etc.

Delay

vs.

Sensor

Mng

Observations:

•Police, ambulance,

hospital reports

•Civilian observers

•Aral photographs

•Chemical Sensors

• Traffic sensors

Environmental

parameters:

•Time of the day

•Weather

•Geospatial

parameters

• etc

•Fused

information

about items

of interest:

•Objects

•Attributes

•Beliefs

•Quality

Dynamic Situational Picture formation

Belief change via abduction (Discovery of

possible causes of detected events)

Impact (threat) assessment

Quality

?

Delay

Decision state estimation(Quality Check of STA)

- 183 -

AFOSR F49620-01-1-0371

objects, relations between them, and processes to support the domain-specific generation of

situational hypotheses and high-level reasoning about these situational hypotheses [6.9-8]. This

approach permits decomposition of the complex highly interacting scenario into a set of basic

and derived situations as will be next considered.

Users’ goals, functions, and information needs are identified by the means of CWA [6.9-9],

which is a systems-based approach to the analysis, design and evaluation of an emergency

management environment in a post-disaster context. It provides understanding of what content

various decision makers require from a situational picture and what information should be

represented, possible hypotheses about relevant states of the environment. The work domain

model is derived from a variety of information sources, including documents detailing

emergency management plans; data collected during and following similar historic disasters (two

major earthquakes in California); interviews with emergency management personnel at city,

county and state jurisdictional levels, interviews with personnel from the Federal Emergency

Management Agency; and observations of a full scale emergency management exercise at the

city level [6.9-8]. More details about CWA in the project are given in Section Y

The result of CWA provides answers to the following questions

A. What are the decision makers expecting from a situational picture?

B. What information is required for making decisions?

C. What active alternative hypotheses about the environment can be expected?

Examples of these essential elements of information identified include:

1. Regions of causalities (e.g., location, boundaries, severity of injury).

2. Risks of secondary hazards (e.g., hazardous materials spills, fires).

3. Areas of impeded transportation (e.g., location, boundaries).

4. Resource balance assessments (e.g., available vs. potentially required medical personnel,

building inspection teams, search and rescue equipment)

- 184 -

AFOSR F49620-01-1-0371

5. Status of critical facilities (e.g. hospitals, bridges, shelters)

6. Status of communications systems (e.g. regions of impeded wire or cell service)

Emergency management in the post-disaster environment has hierarchical organization, in which

decisions at certain levels of hierarchy have a tactical character (e.g. activities in direct response

to casualties reported at a specific location), while decisions at higher levels have the strategic

character of understanding situations related to a larger region or over a longer period of time.

This hierarchical structure of emergency management and likely existence of several regional

jurisdictions within the disaster area define a hierarchical structure of essential elements of

information. For example, tactical decision makers may be interested in location of regions of

casualties within a small area, ambulances available within a short time interval, and nearby

hospitals with adequate residual capacity. Strategic decision makers may want to know the

distribution of casualties within a much larger region and the balance of medical resources over

the whole initial response period.

The role of a formally structured domain-specific ontology of the environment under

consideration is to provide a comprehensively large, and metaphysically accurate model of

situations, through which specific tasks such as situation assessment, knowledge discovery, or

the like, can be more effectively performed, since the information necessary for these decision-

making aids is contained within the ontology’s structure. [6.9-10]. The formal ontology

framework is necessary to provide a formal structure for ontological analysis of the specific

environment and to assure a certain level of reusability of the designed domain-specific ontology

in a different application domain.

Formal ontology of situations comprises two types of items: spatial (situational items) and

temporal (processes), together with the relations between and among them. Spatial items,

elements of the embedded snap ontology, and relations between them are defined by a set of

spatial and mereological attributes. The values of these attributes define the state of these items

and a corresponding state of the environment. Temporal items, i.e. processes, are elements of the

related span ontology, which describe the temporal behavior of the situational items and

dynamics of attributes and relations. Important characteristic of processes are events representing

transition between states of the environment defining situations. They are manifested by

- 185 -

AFOSR F49620-01-1-0371

significant (as measured by a selected threshold) changes in attributes and behavior of physical

and abstract situational objects [6.9-11]. Events related to a particular situational item could

trigger events related to other situational items. Events are always context dependent since

“significance” is always context specific. Event discovery is a very important element of the

HLF process, which can lead to knowledge discovery about underlying causes of events and the

states of the environment.

Each relationship characterizing a situation falls into one of two basic categories: inter-class

relations and intra-class relations. Intra-relations (i.e., internal relations) are spatial, temporal, or

functional relations that exist within a given set of ontologically similar items while inter-class

relations (e.g., external relations) exist between various items. A more detailed description of a

formal ontology of catastrophic events is presented in Section Y.

The hierarchical structure of the essential elements of information dictates categorization of

situations at various levels of granularity. Consideration of situations at different level of

granularity also helps to reduce complexity of the reasoning process.

Each relationship characterizing a situation is context specific and falls into one of two

categories: inter-class or intra-class. Intra-relations (i.e., internal relations) are spatial, temporal,

or functional relations that exist between:

1. physical objects of the same types

2. aggregates of similar situational items at different levels of granularity

3. events of the type

4. aggregates of similar events

5. similar processes

6. aggregates of similar processes

7. events and processes characterizing similar situational object

- 186 -

AFOSR F49620-01-1-0371

8. Inter-class relations (i.e., external relations) are spatial, temporal, or functional relations that exist

between the following:

9. objects of different types

10. objects and aggregates of different types

11. aggregates of situational items of different types at the same level of granularity

12. individuated aggregates of different types at different levels of granularity

13. events of different types

14. aggregates of events of different types

15. processes of different types

The basic situations (the building blocks of situations) are described by context dependent

relationships between physical items of the same category such as casualties, buildings, and

ambulances, or similar events such as discovery of casualties of a certain type of injury at a

certain time. These basic situations are defined as aggregates (clusters) and are obtained by

applying a similarity metric in the feature space. The type of features used for aggregation

depends on the information needs of a certain user or a group of users. Context dependent

relationships between aggregates at a certain level of granularity define derived situations at the

next level of granularity. Events related to aggregates are represented by significant change of

the parameters of aggregates, discovery of a new aggregate, or split/merging of aggregates at a

higher level of granularity.

Derived intra-class situations created by the composition of basic intra-class situations at specific

levels of granularity is called elementary situations. Relationships between elementary situations

within a selected spatio-temporal setting and overall context comprise a composite situational

picture.

Relationships between items at various levels of granularity are represented by mereological

primitives [9], direction, size, and distance (Table 6.9-1). Relations between events and

processes (span relationships) are defined by time point and time interval relationships (Table

- 187 -

AFOSR F49620-01-1-0371

6.9-2). Examples of such relations important for reasoning bout current and predicted situations

in the post disaster environment are presented in Tables 6.9-1 and 6.9-2.

Table 6.9-1. Temporal relationships

Relation between time points Before, At the same time, Start, Finish,

Soon, Very soon, Resulting in, Initiating,

value of time interval

Relation between time intervals Disjoint, Joint, Overlap, Inside, Equal

Table 6.9-2. Spatial relationships

Topology/mereology
Direction Size Distance

Disjoint

Joint

Overlap

Cover

Reachable

Unreachable

Contain

A part of

Along

Towards

East

West

South

North

Similar

Opposite

Smaller

Larger

Size difference

Not far

Far

Very far

Close

Very close

Distance between clusters

Distance between centroids

Specific contextual examples are:

Close to a hospital,

- 188 -

AFOSR F49620-01-1-0371

Cluster A is larger than before,

1. Cluster B is along the west wind direction

2. Distance between Clusters A and B is smaller than before,

3. Casualty cluster A overlaps with building cluster C.

The value assigned to each relation depends on a specific context and a specific user, for which a

situation defined by this relation is considered. For example, for an ambulance dispatcher certain

Figure 6.9-2 Structured domain representation

hospital can be considered far away from a particular cluster due to heavy congestion on the

roads surrounding the cluster. The same distance can be small for a helicopter.

- 189 -

AFOSR F49620-01-1-0371

It is necessary to note that all relationships mentioned above are uncertain and vague and can be

both numeric and symbolic and, therefore, reasoning about these relationships has to deal with

uncertainty and accommodate both types of information. Figure 6.9-2 presents structured domain

representation (the result of combination of CWA and ontology).

One of the most important types of situations is an elementary situation defined by intra-class

relationships between certain situational items of various levels of granularity. Thus, for

example, casualty situations may be defined by temporal or spatial relationship between casualty

clusters and casualties of certain characteristics or between two casualty clusters.

The most important elementary situations to be considered are

1. Communication system situation

2. Transportation system situation

3. Hazmat situation.

Situational Hypotheses

• current situation

• a priori predicted risk

• consequences (risk)

• Unknown events

Dispatch

•Where are the

casualties?

•Where are the clusters?

•What are the injury

severity levels?

•What types of injury?

Where are the casualties?

(Casualty clusters attributes and relations)

Spatial

attributes

and relationships

Temporal

attributes

and relationships

Essential elements

of information

Goals

Goals

Routing:

What are the

shortest routes?

Which areas to

avoid?

Backup routes in

case of trouble

Transportation system

monitoring

Hospital capacity

monitoring

Taxonomy

Of Users

Distributed,

hierarchical

Taxonomy of tasks

Goals

Functions and EEIs*

Service the maximum

number of casualties of

highest priority with

minimum time

- 190 -

AFOSR F49620-01-1-0371

4. Casualty situation.

5. Hospital situation.

6. Building situation.

7. Ambulance situation.

While there are many essential elements of information, which can be obtained from basic

situations there are even more important essential elements of information, which can be

obtained only by considering interclass relationships between physical items and aggregates and

between different classes of aggregates at various level of granularity. Such interclass situations

are called derived situations. One of the most important types of interclass relationships is

represented by event relationships “resulting in”. Value of this relationship may be qualitative

such as increase/decrease, increase/decries with a certain confidence as well as quantitative such

as increase decrease by a certain value, increase/decries with a certain confidence. Establishing

such relationships on a qualitative and if possible quantitative basis gives a foundation for

reasoning about causes and consequences of such events. Figure 6.9-3 shows an example of

“Resulting in” relationship between events affecting casualty situation.

Figure 6.9-3. “Resulting in” relationship between events affecting casualty situation

The processes of assessing current and future situations are presented in Section 6.9-.5?

Hospital Event:

•Significant capacity reduction

•Lack of essential personal

Casualty Cluster Event:

•New cluster

•Significant increase of the number of casualties

•Increased severity

•New injury typeResulted in

Transportation event:

•New Impassible area

•New Congestion area

•New connectivity problem

•Significant change in travel time

Hazmat event

Essential facility damage event:

•Hospital damage event

•Major bridge serious damage

event

Communication system

event:

•Damage

•Overload

- 191 -

AFOSR F49620-01-1-0371

6.9.3 Quality control procedure

The success of dynamic SIA greatly depends on the quality (e.g. uncertainty, vagueness,

reliability, and relevance) of individual and integrated in level 1 fusion data as well as

information resulting from all interim steps of higher level fusion processing. The information

quality considerations play an important role in transferring information within fusion levels as

well as between levels [6.9-12]. The strategies for quality control within as well as between

fusion levels can include eliminating information of low quality from consideration,

incorporating information quality into fusion processing, utilizing process refinement by sensor

management, and/or delaying the transferring the results to the next processing level or to

decision makers until information of better quality can be obtained as the result of more

observations and/or additional computations (anytime processing).

Quality control is highly context specific since the notion of “good”, “poor”, or “satisfactory”

quality greatly depends on context. Incorporation of information quality into SIA processing is a

difficult task since it is generally not clear how to measure the quality of the result of many

processes and how different dimensions defining information quality are interrelated. Usually

the quality criteria and quality factors to be consider depend of the context and in many cases

may be defined by users.

Utilization of anytime processing has to take into account the fact that responders in the early

post-disaster environment are under severe time and resource constraints, and timely decision

making and swift action are required. At the same time the cost of false alarms can be very high

since valuable resources might be diverted from the location where it later becomes clear that

they are critically needed. The cost of waiting for additional information, or cost of additional

computation delay for obtaining results of better quality, has to be justified by the benefits of

obtaining better results. This can be achieved by either implicitly modeling expected utility of

making decision at a certain moment by accepting the information current quality or by

comparing the quality of information achieved at a certain time with a time varying threshold

[6.9-13]. The state, in which information to be transferred to the next processing level or to the

decision makers is known as a “decision state”.

- 192 -

AFOSR F49620-01-1-0371

In the current system the level 1 results as well as the results of any interim SIA steps, e.g. of the

process of dynamic aggregation, are allowed to be used by other processes or passed on to

decision makers if they are of a minimum threshold quality. These processes requires quality

criteria and the function defining the time varying threshold, which in some cases can be can be

obtained as the result of expert knowledge elicitation. The specifics of the quality control

procedures for the level 1 fusion results (preprocessing) will be described in Subsection 6.9-.4.1

while the quality control methods for current and predicted state estimation will be included in

the description of the SIA processes. In certain situations, when decisions based on the resulting

decision state estimations have very serious consequences, a sensor management process can be

employed. For example, a highly reliable sensor, perhaps a policeman or structural engineer, can

be tasked to observe the situation in question.

6.9.3.1 Preprocessing

The goal of preprocessing is to define when reports fused by lower level fusion processes are

ready to be used by SIA. The quality test for fused reports on casualties or building/essential

facility damage is based on:

1. the compound reliability of the associated and fused reports about track ID i at time t

(()
i

R t).

2. location uncertainty (max((), ())
i i

x y
t tσ σ) provided by the Level 1 fusion module, where

(), ()i i

x yt tσ σ are the x and y location standard deviations

3. Time-varying thresholds for false alarm and location uncertainty ((), ()
R

Th t Th tσ),

monotone decreasing functions of time which guarantee that each casualty will be

accepted by SIA before a certain deadline .

The compound reliability tR is computed as a function of reliability of all reports fused for

particular track ID and is computed within the formalism of the Dempster-Shafer theory of

evidence [6.9-14].

- 193 -

AFOSR F49620-01-1-0371

Let 1 2{ , }θ θΘ = is a frame of discernment, where 1θ is the hypothesis that the fused report is

reliable and 2θ that it is not. Let ()n

i
r t be reliability of reporter n at time t and ()

i
N t is the number

of reports fused by and including time t to obtain characteristics of track ID i. The report is true if

a report source is reliable and it can be either true or false if the report source is unreliable. Then

()n

i
r t is a measure of support for hypothesis 1θ and yields a basic probability assignment:

 1() (), () 1 () 1,..., ()n n

n i n i i
m r t m r t n N tθ = Θ = − ∀ = .

6.9.3.2 Decision rule

The result of combination of these basic probability assignments represents the total reliability of

the characteristics of the track ID i:

()

1

() 1 (1 ()
N t

n

i i

n

R t r t
=

= − −∏ ,

The reliability of reported of various classes (police offices, ambulance drivers, and civilians) is

provided by domain knowledge, e.g. statistics obtained by the 911 centers. The resulting decision

rule is: use track ID for SIA is the proposition for which the following is true.

 (() ()) (max((), ()) ())i i

i R x yR t Th t t t Th tσσ σ≥ ∧ ≤

6.9.4 Situation and impact assessment processing

In this section the data transformations producing the higher-level fusion products are described.

Brief justification of the reasoning strategies are provided.

6.9.4.1 Reasoning about situations

Let Ω be a set of possible states of the environment, Ω⊂Ωk be a subset of possible states of the

environment relevant to decision maker k, and Ω be a plausibility structure on Ω . At each time t,

a situational picture relevant to decision maker k can be described as a set of the plausible states

of environment: () { () | (()) 0)k k k k

i i
S t t Pl tω ω= ∈Ω > [6.9-15]. Thus situation and threat

assessment can be defined as a process of identifying and predicting a subset of plausible states

- 194 -

AFOSR F49620-01-1-0371

of the environment along with plausibility assigned to each state. It is assumed here that

decision makers do not have complete knowledge about all relevant states of the environment

and do not exclude the existence of an unknown hypothesis (the open world assumption).

The process of building a situational picture comprises dynamic generation of hypotheses about

current and predicted states of the environment and assessment of their plausibility via reasoning

about situational items at different levels of granularity and relationships between them within a

specific context. These hypotheses include hypotheses about characteristics and behavior of

situational items as well as hypotheses about the states of the environment, which explain these

characteristics and behavior.

As it was mentioned in the introduction assessment of plausibility of more complex hypotheses

may require hierarchical processing, which includes not only reasoning about situational items

and relationships between them but also includes relationships between hypotheses and

assessments of plausibility of lower level hypotheses [6.9-6]. Such lower level hypothesis may

include hypotheses about the properties and behavior of situational items at any even lowest

granularity satisfying certain information needs, for example, properties and behavior of basic

situations (aggregates at the lowest level of granularity). Higher level hypotheses may include

hypotheses about underlying causes of observed situational items. Automatic hypotheses

generation is the most difficult part of SIA and it is not discussed in this report, in which it is

assumed that hypotheses are generated by the users. Assessment of plausibility of hypotheses

about situational items may include assessments of relationships between hypotheses at lower

levels of granularity and plausibility of these hypotheses. Figure 6.9-4 shows the process of

reasoning and predicting situations.

- 195 -

AFOSR F49620-01-1-0371

Figure 6.9-4. Processes of assessing current and predicted situations

6.9.4.2 Aggregation (Dynamic anytime clustering)

 The process of aggregation is a core situation assessment task, the drawing together of

selected objects into a common set. While the criterion for aggregate set membership can in

general be perfectly arbitrary, aggregation is most frequently accomplished through the process

of clustering, in which a quantitative similarity metric is applied to a population of candidate

objects and their relationships, and sets (clusters) selected such that their intra-cluster similarity

metric is in some chosen sense greater than the inter-cluster metric. Clusters abstract and

summarize the distribution of entities in a selected space, suggesting useful generalization at the

cluster level of granularity. Here we describe the clustering procedure implemented for

aggregation in high level fusion for DIRE.

Desiderata for clustering schemes in the present application include multiple-resolution, speed,

anytime calculation, flexibility and robustness. Clustering over a scale of resolutions is required

to support the multiple levels of decision makers to be assisted in the disaster response context.

•Aggregation at various levels

of granularity

•Temporal and spatial

correlation of aggregates

Inconsistency ,

Unusual

Dynamic Situational Picture formation

Belief change via abduction (Discovery of

possible causes of detected events)

Impact (threat) assessment

 Dela

Decision state estimation(Quality Check of STA)

Learnin

- 196 -

AFOSR F49620-01-1-0371

What a local precinct commander might consider a casualty cluster relevant to his decision

making, and what the state emergency operations center commander might, differ widely in scale

and resolution yet both determinations must be supported. Speed is a basic consideration in a

real-time response environment in which decision aid latency is an important measure of fusion

system performance. Since clustering will be applied over various spaces and with different

similarity metrics in the varied tasks internal to situation assessment and impact prediction,

flexibility of the clustering scheme is required. Finally, given the uncertainties in the physical

and reporting environments, robustness of the clustering in the face of noise, delay, reporting and

instrumental error is essential.

An acceptable level of each of these four criteria was achieved by employing a dynamic anytime

clustering scheme based on Shi, Song and Zhang’s Shrink Clustering approach [6.9-16]. Using

relaxation dynamics evoking the law of gravitational attraction, individual candidate points

scattered about an n-dimensional Euclidean space drift together into clumps, each clump

ultimately representing a gravitationally collapsed cluster. The cluster-labeled points are then

cast back to their original positions to form the cluster sets. The relaxation algorithm is

implemented in parallel on multiple rectilinear lattices in which all candidate points in a lattice

cell move as a single rigid body. Multiple lattices at various scales are employed and combined

into a single multiresolution array of clusters. As discussed in [6.9-16] the results of this

procedure compare favorably in speed, accuracy and robustness to more computationally

demanding schemes.

Having identified clusters at each level of resolution using the Shrink Clustering approach, we employ a

somewhat different cluster evaluation and cluster set selection process than they advocate. They choose a

definition of cluster quality, which is based on compactness measures [6.9-16]. This quality measure may

be computationally more intensive than suitable for the large datasets, which must be processed rapidly in

the present application, is not monotonic with cluster density, and does not yield identification of a unique

overall cluster set that best characterizes the state of entity aggregation at that time.

The cluster quality measure we employ is

min

i i

i

j i j

n
Q

σ

µ µ
=

−
,

- 197 -

AFOSR F49620-01-1-0371

where ni is the population of the ith cluster,
i

σ the unbiased estimate of its variance measured in

the feature subspace,
i

µ the estimated centroid, and the minimum is taken over all clusters

identified at the same level of resolution. Assigning each cluster its quality
i

Q , the set of all

clusters at all levels of resolution is searched to determine the cluster set *Σ with the highest

average quality. The search is constrained such that the cluster sets considered partition the data

with minimal overlap. In general *Σ contains clusters from different lattices of the original

Shrink Clustering procedure, and no other set of clusters has higher average quality.

Dynamic anytime clustering at time t can be accomplished either by reclustering at each time de

novo, or by updating the previous cluster set *(1)tΣ − . The updating approach offers potential

computational savings, and has the advantage, within a prediction-correction framework, of

being informed by past cluster results. This promises a more stable picture of the cluster

dynamics to the decision maker, an important consideration in the disaster response context. We

update *(1)tΣ − to the current cluster set in two steps. First, data newly arrived in the update

interval [t-1,t) is used to correct the previous clustering, yielding an intial estimate of the

clustering at t. Assuming that the update data is a small set of additions, deletions and changes

relative to the existing database, a perturbational approach is used. The distribution of centroids

of the shrunk clusters from t-1 determine the cluster labels (if any) for new datapoints, deleted

data reduce the “mass,” or attractiveness, of their previous clusters, and small changes in

attributes are assumed not to affect a datapoint’s cluster label. Second, the corrected clustering is

combined with the predicted using an alpha-beta filter. The resulting cluster set)(* tΣ tends to

evolve smoothly over time, with strong changes to the pattern of clusters and their properties

only when the predictions based on past cluster results are significantly inconsistent with the

most current data. Full reclustering to eliminate errors introduced by the perturbation model is

done when the cumulative new data since the previous full reclustering exceeds a selected

fraction of the total database at that time.

Depending on user needs aggregations can be performed based on similarity of features

belonging to any feature subspace. For example, some decision makers may want to know the

pattern of casualty location and therefore, aggregation for obtaining this information can be

performed based on casualty location. Other decision makers may want to know the pattern of

- 198 -

AFOSR F49620-01-1-0371

location of a certain type of injuries. In this case aggregations will be based not only on x,y

coordinates of the casualties but also on the type of injury. Aggregations can be also based on

relationship characteristics or time intervals. The aggregation results depend heavily on the

quality of results of the Level 1 fusion processes.

6.9.4.3 Correlation of situational items

Temporal reasoning about behavior of situational objects (aggregates at different levels of

granularity) requires an association process, which correlates the situational objects identified at

a certain time or time interval with situational objects identified at a different time or within a

different time interval. This association process corresponds to reasoning about the identity of

aggregates. Aggregates in the early post-disaster environment may be vaguely defined due to

uncertainty associated with characteristics of objects obtained at the Level 1 fusion or

characteristics of aggregates at lower level of granularity. The reasoning about aggregate identity

is complicated by the fact that the information on the identity of members of aggregates is not

known with certainty, and their characteristics and therefore cluster characteristics are also

uncertain.

Following [6.9-17], in which the author was concerned about relationships between vague spatial

regions, we conduct temporal association of aggregates (temporal reasoning about aggregates

identity) by reasoning about such topological relationships as disjoint, touch, overlap (strong and

weak), covers, covered by, contains and contained by. Unlike the authors of [6.9-17], we define

these relationships not in the physical space but in the aggregate characteristic space, which

includes such features as area and distribution of the members of aggregates. As in [6.9-17] we

call two aggregates identical if they are disjoint, touch, or weakly overlap, and distinct otherwise

(see Figure 6.9-5).

- 199 -

AFOSR F49620-01-1-0371

Figure 6.9-5. Spatial relationships between aggregates (from [6.9-17])

The temporal association thus requires a criterion for distinction between the weak and strong

overlap, which is defined in [6.9-17] by the ratio of the area of the regions intersection to the area

of the smallest region. We use the following criterion to classify overlap as weak or strong.

Let 1(,....,)N

t t t
Cl Cl Cl= be a set of aggregates identified at time t and 1

1 1 1(,....,)M

t t t
Cl Cl Cl− − −= be a

set of aggregates identified at time t-1. n

t
Cl∀ a set of clusters 1 1() (|)i im mn n

t t t t
O Cl Cl Cl Cl− −= ∩ ≠ ∅

contains all aggregates at time t-1, which overlap with aggregate n

t
Cl .

Aggregate 1

m

t
Cl − discovered at time t-1 and aggregate n

t
Cl discovered at time t strongly overlap if

1

m n

t t
Cl Cl− ∩ ≠ ∅ and 1(,)n m

t t
F Cl Cl α− > .

α (0.5 1α< <) is a selected threshold and

 1
min

1

1 1

() || |
min(,),

min(| |,| |) min((), ())

m n
t t

m n
Cl Clt t

m n m n

t t t t

P ClCl Cl
F

Cl Cl P Cl P Cl

− ∩−

− −

∩
=

DistinctDistinct

TouchTouch

Weak Overlap

Strong overlap

CoversCovers Covered by

Contains
Contained

by

EqualEqual

- 200 -

AFOSR F49620-01-1-0371

where ()P Cl is the expected number of members in aggregate Cl given all fused data reported

for that cluster (cluster population), min 1arg(min((), ())),m n

t t
Cl P Cl P Cl−=

1
min() | m n

t tCl Cl
P Cl

− ∩
is the

expected number of members of cluster minCl in 1
im n

t t
Cl Cl− ∩ , | Cl| the volume of cluster Cl in the

feature space. If aggregation is conducted in 2-dimentional space (x,y) |Cl| is the area of

aggregate Cl. If 1 1,n m m

t t t
Cl Cl Cl− −∩ = ∅ ∀ , n

t
Cl is a new aggregate. If 1

m n n

t t t
Cl Cl Cl− ∩ = ∅ ∀ ,

aggregate 1

m

t
Cl − is said to have terminated by time t.

Aggregate identity, and the behavior of its characteristics along with spatial relationships

between clusters and their behavior, are used for casualty and damage assessment, resource

allocation, discovery of possible underlying causes for assessed behavior, and impact prediction.

6.9.4.4 Characteristics and behavior of situational item

As it was mentioned in section 6.9-.5.1 the process of building a situational picture includes

dynamic generation of hypotheses about characteristics and behavior of situational items at

different levels of granularity. These characteristics and behavior characterize situations and

represent essential elements of information for users at each level of the hierarchy. For instance,

information about the location of a damaged bridge and the expected level of reduced capacity

of this bridge would be of interest to an ambulance dispatcher, while a list of hospitals

inaccessible within a reasonable time from certain clusters due to the reduced capacity of this

bridge have to be reported to the overall incident commander.

Below we present the description of characteristics of the casualty situation. The

characteristics of cluster situation provides the answer to one of the most important users’

question: where are the casualties, and supports optimal ambulance dispatching, prediction of

change of the transportation system capacity, prediction of required hospital capacity, and

possible existing of hazardous events, etc. At the same time the special attention paid to this

elementary situation is explained not only by the fact that this is one of the key elementary

situations but also by the problems related to estimating characteristics of casualty aggregations.

Aggregates of casualties may lose and gain members due to a certain percentage of casualties

being picked up by ambulances, a certain percentage of unidentified casualties being transported

by private vehicles and others moving off on foot. Building blocks for casualty situations are

- 201 -

AFOSR F49620-01-1-0371

aggregations of casualties obtained as the result of clustering in the feature space of associated

and fused casualty reports produced by the lower level fusion modules. There is the following

uncertain information characterizing each casualty:

1. probability of false alarm,

2. location coordinates with an uncertainty ellipse and a jurisdiction designator,

3. casualty ID if known,

4. last update time and the type of the last associated report (e.g. report that the casualty has

been picked up, delivered to hospital, or simply observed),

5. a vector of probabilities of injury severity level (the description of severity levels are

presented in table 3),

6. vectors of probabilities for the casualty reported age, race, and sex,

7. the number of reports associated with this casualty and reporter class for each report.

Detailed description of how these characteristics are obtained is presented in Section 6.2. Major

cluster characteristics providing a subset of essential elements of information are discussed

below. Casualty clusters characteristics (clustering is based on various features, such as x,y

coordinates, level of injuries, type of injury, etc or a combination of these features):

1. Location

2. Boundaries

3. Area

4. Expected level of injuries,

5. Distribution of injury types

6. Survivability,

7. Density

- 202 -

AFOSR F49620-01-1-0371

8. Expected number of casualties of certain type

Expected number of casualties in a cluster

Expected number of casualties is computed by taking into account information obtained from Level 1

fusion and domain knowledge about behavior of casualties of various severities. The literature

summarizing the experience of a previous earthquake suggests that within first 4 hours after the initial

shock 100% of severity 1 casualties, 33.5% of severity 2 and 2.6% of severity 3 can be expected to walk

away from their place of injury.

Let
j

α be the total fraction of “walk-outs” of severity j, Pr
i

j
be the probability of casualty i to

have severity j,
i

T is the time, at which casualty i was reported the first time, and ()
i

R t be the

reliability of the associated and fused reports about track ID i at time t. If ()
j

f t is a probability

density function for “walk-out” casualties of severity j (assumed to be uniformly distributed in

our simulations over the first four hours following the earthquake event) then the expected

number of casualties to walk-out from cluster n by time t is
3

1()

() () Pr ()
n

n i

i j j

ji cl t

W t R t tβ
=∈

= ∑ ∑ ,

where ()

i

t

j j j

T

f x dxβ α= ∫ , Then the expected number of casualties in cluster n at time t is

()

(()) () () ()
n

n n n

i

i cl t

E N t R t t W tδ
∈

 
= − ⋅ 
  
∑ ,

where () 0n tδ = if cluster n is a new cluster at time t, and 1 otherwise.

 The ratio
()

() / | () |
n

n

i

i cl t

R t cl t
∈

∑ , where ()ncl t is cluster n at time t, is an important measure of

reliability of cluster characteristics.

Expected level of injury severity of cluster n at time t can be approximated

 (()) / (()),n n

sl
E S t E N t= Σ

- 203 -

AFOSR F49620-01-1-0371

where
sl

Σ is computed as follows:

4 3

4

1 1() () ()

(1)

Pr ((1) Pr 4 Pr).
n n n

n

i i i

sl i j j

j ji cl t i cl t cl t

i cl t

j i
τ

β
= =∈ ∈ ∩ −

∉ −

Σ = ⋅ + − +∑ ∑ ∑ ∑

Cluster area

 is computed as a number of cells of the highest resolution considered.

Cluster location

is the center of gravity calculated by taking into consideration uncertainty of casualty location

(i

jσ) and expected level of injury of each casualty ()i

jE S .

2

()

2

()

()

()

()

()

n

n

i n

j i

i

i cl t jn

j n

i

i

i cl t j

r E S

r
E S

σ

σ

∈

∈

=

∑

∑
.

Cluster density

 () () / (()).n n nD t A t E N t=

Cluster distribution

Spatial (in the features space) cluster distribution at different level of granularity and resolution,

e.g. area building damage, area injury level, area survivability level.

Cluster behavior

(at different levels of granularity). Cluster behaviors are presented by the change of cluster

characteristics.

- 204 -

AFOSR F49620-01-1-0371

Examples of characteristics and behavior of other important elementary situations (aggregations of similar

situational items based on location similarity at a certain time and a certain space resolution) are presented

in Table 6.9-3.

Table 6.9-3. Examples of characteristics and behavior important elementary situations

Situational items Characteristics Behavior

Hazardous Situation

(secondary threat)

Where (location, area,

 boundaries)

What kind, level

Boundaries of affected area

Affected area

Area (increased/decreased)

Change of Boundaries

 (contained, spreading)

Speed of spreading

Direction of spreading

- 205 -

AFOSR F49620-01-1-0371

Transportation system

situation

Regional road damage estimation:

Lost of Connectivity between

certain areas due to damage (e.g.

essential bridge + other roads

damage)

Impassible areas

• Regional road capacity

estimation: current and behavior

Congestion areas

Impassible areas

Lost of connectivity between certain

areas due to congestion

• States of the access points

to the disaster area and critical

points within the disaster area:

location, capacity, condition (level

of damage if any)

Regional road damage behavior:

Regained Connectivity between

certain areas due to damage

• Regional road capacity

estimation:

Congestion areas

(increased/decreased)

Regained connectivity between

certain areas due to eased

congestion

• States of the access points

to the disaster area and critical

points within the disaster area:

Change in capacity and condition

Ambulance situation
Number of available ambulances in

a certain area

Location and the number of

ambulances with casualties,

Number of ambulances are on the

way to the hospital/hospitals in a

certain area

Pick-up/delivery time

Change in the number of available

ambulances in a certain area

(increased/decreased)

Change in the number of

ambulances on the way to the

hospital/hospitals in a certain area

- 206 -

AFOSR F49620-01-1-0371

Building damage situation
Characteristics of clusters of

damaged buildings at different

levels of granularity

Location

Boundaries

Area

Expected level of damage,

Distribution of damage types

Density

Characteristics of regional building

damage

- change of area (

increase/decrease)

change of boundary

change of density

(increase/decrease)

Change of the expected level of

damage

Change of characteristics of regional

building damage

Hospital situation
Characteristics of hospital

aggregations (clustering is based on

various features, such as location,

level of hospital damage, type of

hospital damage (structural,

electricity, water), etc or a

combination of these features)

Level of damage if any

Available capacity

Location

Patients in OR, ER

Unreachable from certain locations

Hospital resource situation (doctors,

supplies)

Behavior of characteristics of

hospital aggregations:

Change f the level of damage

change in capacity

Change of unreachable locations

Change of resource situation

- 207 -

AFOSR F49620-01-1-0371

Derived situations

Derived Situations are defined by inter-class relationships between various situational items.

Examples of derived situations and their characteristics are:

1. Derived situation defined by spatial relationships between hospitals, clusters of casualties

and transportation situation. Examples of characteristics:

2. Location, ID, and characteristics of clusters unreachable from a certain hospital

3. Location, ID, and characteristics of a hospital unreachable from a certain clusters

4. Situation defined by spatial relationship of hazmat area boundary and clusters of

casualties. Example of characteristics

5. IDs of clusters within hazmat boundaries

6. Situation defined by spatial relationship of ambulance situation, transportation situation,

and clusters of casualties. Examples of characteristics:

7. A cluster of free ambulances close to a certain clusters (distance)

8. Number of casualties exceeds the overall capacity of ambulance available in a certain

jurisdiction.

Examples of possible predicted impact of current elementary situations on other elementary

situations are presented in Table 6.9-4.

Table 6.9-4. Predicted impact

Casualty situation (pattern of

casualty clusters and their

characteristics)

Predicted hospital situation (predicted arrival rate and change in

capacity)

Predicted resource situation (predicted amount of resources

required)

Predicted transportation situation (congested areas, impassible

- 208 -

AFOSR F49620-01-1-0371

areas)

Predicted area of overwhelmed communication system

Hazardous situation (toxic spill)
Predicted affected area

Predicted casualty situation (new casualties clusters)

Predicted shelter situation (change in capacity)

Predicted transportation systems situation (e.g., impassible areas,

congestion die to evacuation)

Predicted hospital situation (predicted casualty arrival rate and

change in capacity)

Predicted area of overwhelmed communication system

Transportation situation

(transportation facility damage,

congestion area)

Predicted impassible areas

Unreachable hospitals (helicopter is needed)

Unreachable casualty clusters

Unrealistic hospital-casualty cluster pair (travel time is too long)

Change in hospital capacity

Change in shelter capacity

Unrealistic hospital-casualty cluster pair (travel time is too long)

Characteristics and behavior of situation items provide a basis for dynamic reasoning about

current and predicted plausible states of the environment. Under the assumption that that the

underlying causes of the estimated characteristics and behavior of situational items is known, the

reasoning about current and predicted situations can be performed by determining the patterns of

relationships and behavior of these characteristics and behavior in the context under consideration.

At the same time if situational items exhibit some abnormal characteristics and behavior

- 209 -

AFOSR F49620-01-1-0371

inconsistent with domain knowledge and characteristics and behavior of situation items within

current context, a set of beliefs about the environment may need to be updated. The next section

will describe the method of detecting inconsistency and the abductive reasoning method for

belief update under uncertainty introduced in this report.

6.9.4.5 Belief update

Characteristics and behavior of situational items are constantly updated by newly processed

observations. The current set of plausible states is constantly updated and new hypotheses about

the plausible state of the environment (new context) capable of explaining new characteristics

and changes in the behavior of situational items are regularly generated and evaluated. These

unknown new situations are usually manifested by unexpected properties and behavior of

situational items inconsistent with the current set of beliefs about the state of the world and

therefore belief update may be required. Many belief update methods give priority to this new

information and its consequences and abandon some old beliefs to preserve consequences. In the

post disaster environment observations and knowledge about situational items, their behavior and

relationships are uncertain and, therefore it is necessary to account for this uncertainty while

updating the current set of beliefs. In the uncertain dynamic environment belief update can be

carried out by first seeking some explanations or underlying causes of these inconsistent

observations and incorporating these explanations, if found, into a new set of beliefs. Possible

explanations can be found as the result of abduction comprising generation of hypotheses about

the underlying causes of these inconsistent observations and reasoning about plausibility of such

hypotheses.

This abductive process of reasoning from effect to cause requires [6.9-6, G18]:

1. constructing or postulating possible hypotheses and the states of the world explaining

observations

2. computing plausibility of these hypotheses

3. selecting the most plausible hypothesis from among these.

- 210 -

AFOSR F49620-01-1-0371

The process of hypothesis evaluation has to take into account the following considerations [8.9-

18]: to what degree is the hypothesis to be selected better than alternatives? How credible is the

hypothesis by itself, independently of considering the alternatives, i.e. one should be cautious

about accepting a hypothesis even if it is clearly the best one we have if it is not sufficiently

plausible in itself. Finally, what is the reliability of incoming data, which requires explanations.

Abductive inference starts with discovery of characteristics inconsistent with the current state of

knowledge and behavior of attributes and relationships between the associated situational items.

In the present model this anomalous behavior, or data inconsistency is detected by significant

deviation in the behavior of attributes and relationships of situational items from expected, given

the current state of knowledge. Examples of such behavior may include discovery of a new

aggregate or situation, a specific pattern of spatial and/or temporal relationships between

aggregates, or a significant deviation of the behavior of one or several characteristics of an

aggregate or a situation from the expected average behavior of the characteristics of similar

aggregates or situations. Classes of similarity of aggregates can be defined by clustering of the

environmental features related to aggregate formation. For example, the expected number of

casualties in a cluster depends on the severity and type of damage in the area, time of the day and

the rate of casualty discovery, which in turn depends on the possible number of civilians, police,

and ambulances reporting the casualties (density of roads, proximity to the hospital or density of

population in the area).

Discovery of a deviation from the expected is followed by construction of a set of hypotheses

(possible causes of the discovered deviation) about the situation. Then beliefs in each of these

hypotheses are evaluated. Resulted beliefs are used to decide whether there is enough

information to select one of the hypotheses and which hypothesis to be selected.

Automatic hypothesis generation is the most difficult process to implement within SIA and is not

assumed here, so that hypotheses are assumed to be generated by human experts. Below is a set

of possible secondary incidents, which may be considered in the early earthquake environment:

1. Aftershocks

2. Unreported facilities damage (e.g., bridges)

- 211 -

AFOSR F49620-01-1-0371

3. Hazardous incidents (Toxic spills due to road and bridge damage, damaged hazardous

facilities, ruptured gas pipelines)

4. Fire

5. Delayed severe building damage

6. Act of sabotage or bad judgment

After hypotheses are generated and the belief supporting all the hypotheses is estimated, the

decision is made on whether we should consider characteristics and behavior of situational items

in the context of earthquake only but in the context of earthquake along with a secondary

incident. Considering situational items, behavior, and relationships between them allows for

better prediction of situational impact and more appropriate and swift actions on mitigating the

consequences.

A reasoning framework introduced in this report for SIA in the post-disaster environment is

Belief Based Argumentation System (BAS), a generalization of the Probabilistic Argumentation

System (PAS) (see, e.g. [8.9-19]), augmented with the set of relevant domain specific models

such as hospital models and dynamic dispatch/routing models. Following [6] PAS can be

described as an approach to non-monotonic reasoning under uncertainty, combining symbolic

logic with probability theory for judging hypotheses about the unknown or future world by

utilizing given knowledge. Logic is used to find arguments in favor of and against a hypothesis

about possible causes or consequences of the current state. An argument is a defeasible proof

built on uncertain assumptions, that is, a chain of deductions based on assumptions that make the

hypothesis true, or false. Every assumption is linked to an a priori probability that the

assumption is true. The probabilities can be understood in the traditional Kolmogorov-

axiomatized way but also can represent subjective probabilities. The probabilities that the

arguments are valid are used to compute the credibility of the hypothesis, which can then be

measured by the total probability that it is supported by the totality of supportive and refuting

arguments. The resulting degree of support corresponds to belief of the theory of evidence and is

used to make a decision whether a hypothesis should be accepted, rejected, or whether the

available knowledge is insufficient to form a satisfactory judgment at this time.

- 212 -

AFOSR F49620-01-1-0371

In the post-disaster environment accurate a priori probabilities that the assumptions are true are

rarely available and expert subjective beliefs have to be used. Moreover, due to the high

uncertainty characterizing the post disaster environment ()P A , expert subjective belief that

assumption A is true, is not in general, equal to 1 ()P A− ¬ and therefore PAS has to be

generalized to utilize sub-additive subjective belief measures: () () 1Bel A Bel A+ ¬ ≤ . These

subjective beliefs can be expressed in linguistic form, e.g., very high, high, low, very low with

subsequent quantization of these linguistic values. The belief measures can be also represented

numerically and be approximated by a function of the values assigned to attributes and

relationships characterizing the state of environment and related to the assumptions. In some

cases these belief measures can be the result of a combination of beliefs based on different

characteristics with the Dempster rule. Beliefs in assumptions are combined to obtain beliefs in

arguments, which favor and refute the hypotheses. These beliefs in turn are used to gauge the

overall credibility of the hypothesis, measured by the total belief that is supported by arguments.

of a set of hypotheses (possible causes of the discovered deviation) about the situation. Then

beliefs in each of these hypotheses are evaluated by identifying and combining with the

Dempster rule of combination pro and contra arguments for them. Resulted beliefs are used to

decide whether there is enough information to select one of the hypotheses and which hypothesis

to be selected.

Let 1{ ,..., }
K

θ θΘ = be a set of hypotheses under consideration. Given the open world

assumption, this hypothesis set is not exhaustive and () 0.Bel ∅ ≠ BAS is a tuple (, , ,),A P Bξ in

which as in PAS, { }
i

P p= is the set of propositions, { }
j

A a= is a set of uncertain

assumptions,
P A

Lξ ∪∈ is a knowledge based representing a set of rules (certain and uncertain). At

the same time unlike to PAS { }
j

B bel= is a non-additive dynamic beliefs associated with

{ }
j

A a= . Argument
mk

Arg supporting (or refuting) each hypothesis
k

θ are derived from the

knowledge base and is a conjunction of propositions and assumptions for which
k

θ becomes true

(or false): ()
j kn k n n

j k
Arg a pθ = ∧ ∧ . The support of each hypothesis

k
θ is defined as the

disjunction of all minimal arguments supporting
k

θ : ()
k n m

n m
Arg ArgP ArgCθ = ∨ ∨ , where

- 213 -

AFOSR F49620-01-1-0371

n
n

ArgP∨ is a disjunction of all arguments supporting hypothesis
k

θ and
m

m
ArgC∨ is a disjunction

of all arguments refuting hypothesis
k

θ .

Beliefs in support of each hypothesis
k

θ can be computed by utilizing beliefs in arguments the

following way. Beliefs in support of and against of each assumption
jn

a invoke simple support

functions on a frame of discernment { , }
jn

T FΩ = , with a single focal element (assumption i is

true or false). Let us consider a mapping
1

: ...
Nn n

M Ω × ×Ω → Θ . Than simple support function

k
µ with focus

1
θ in support of argument

n
ArgP :

rg rg rg

rg

() (), () 1 ().
n n n nj

n n jj

A P k a A P A P k

A P a

bpa Tµ θ µ µ θ
=∧

= Θ = −∏

 Similarly, a direct sum of the simple support functions over the set { | rg , }
j jm m m

j
a A C mΩ ∧ = ∀

is mapped into a simple support function
j

ν :

rg rg rg

rg

() (), () 1 ().
m m m mj

m m jj

A C k a A C A C k

A C a

bpa Fν θ ν ν θ
=∧

= Θ = −∏

 Then belief in each hypothesis, based on arguments pro and contra this hypothesis computed as

a combination of
k

µ and
j

ν for all k and j with the Dempster rule of combination. The result of

this combination is used for decision state estimation.

6.9.4.6 Decision state estimation (Quality control)

As it was mention before, decision making on situation assessment requires consideration of

decision quality, which has to be evaluated against time required for additional

observations/computations. In addition, decision process on any hypothesis under consideration

has to take into account that something totally unexpected and not included in he possible causes

of the observed situational elements can happened.

Then the decision rule is as follows: If () max(()),t tBel Bel A A∅ ≥ ∀ ⊆ Θ (the level of support for

an unknown hypothesis exceeds the level of support for any hypothesis under consideration) then

- 214 -

AFOSR F49620-01-1-0371

an expert is engaged to revaluate a set of hypotheses considered and/or a sensor management

process is initiated. For example an expert observer can be dispatched to verify the incoming

information. Otherwise, if () max(()),t tBel Bel A AΘ ≥ ∀ ⊆ Θ (the of ignorance exceeds beliefs in

any hypothesis) then no decision is made until the next time step when additional information

arrives. Otherswise, if () () ()t t

k n
BetP th t BetP n kθ θ≥ ∀ ≠ than select

k
θ . Otherwise wait, Here

()t

k
BetP θ is the pignistic probability [6.9-20] of hypothesis

k
θ at time t and th(t) is a time

varying threshold.

The form of the threshold th(t) is context specific. It is considered within the class of decreasing

convex functions and is equal to zero when it achieves a certain maximum value (a deadline). In

certain situations, when decisions based on the resulting decision state estimations have very

serious consequences, a sensor management process can be rapidly employed. Section 6.9.5.7

will illustrate the reasoning approach described above by applying it to discovery of a Hazmat

incident.

6.9.4.7 Identifying unreported hazmat spill

DIRE is configured to model a Hazmat incident in which a colorless, odorless toxic gas is vented

to the atmosphere as the result of the accidental or malicious rupture of a chemical storage tank.

Dispersion of the material is modeled by a Gaussian plume driven by the wind field, resulting in

primarily respiratory casualties. An excess of respiratory casualties in a given cluster, and its

growth with the prevailing wind, is supportive of a hypothesis of a secondary Hazmat incident

not yet discovered. Discovery of such an incident, as described below permits impact prediction

and may drive targeted evacuations as well as additional constraints to the ambulance and police

movement.

At fixed time intervals, shrink clustering (Section 6.9-.5.2) is used to identify the current set of

casualty clusters Each cluster consists of a connected set of cells, which are used for the

hierarchical cluster routine. Discovery of an unreported toxic spill is invoked by detection of

unusually high percentage of respiratory injuries within certain casualty clusters at time t, and

corroborated by reports of new respiratory casualties in spatial progression downwind of the

discovered but unexplained respiratory cluster. In the absence of uncertainty, this new

- 215 -

AFOSR F49620-01-1-0371

information calls for update of the current belief that an expected percentage of respiratory

injuries due to building damage are not higher than an a priori known value. In our case we

select this value to be 10%, the number characterizing the fraction of non hazmat-related

respiratory injuries reported during the 1994 Northridge earthquake. Due to uncertainty of

observations and the current knowledge base it is advantageous to look for a possible underlying

reason for this unusually high level of respiratory injuries before updating the current beliefs. We

do not ignore the possibility that this high level of respiratory injury is due to building damage as

a result of the earthquake.

We consider a two hypothesis frame of discernment 1 2{ , }θ θΘ = , where 1θ is a hypothesis that a

toxic spill occurred and 2θ is a hypothesis that the excessive respiratory injuries are the result of

structural damage only. We also assume that there might be an unknown cause (open world

assumption) and that the plausibility that there is more than one toxic spill within a certain time

interval is negligible.

The arguments used to compute beliefs supporting or rejecting a hypothesis represent a

conjunction of propositions and uncertain assumptions about characteristics and behavior of

“suspicious subclusters” and spatio-temporal relationships between such subclusters as well as

between such subclusters and other clusters. Suspicious subclusters at time t are subclusters

comprising connected cells with the expected number of respiratory injuries in each cell above

the threshold defined by the expected value and the deviation of respiratory injuries (7% in our

case).

A set of suspicious subclusters at time t , { }i
t t

SC SCl= , is represented as a union of 3 subsets:

1 2 3

t t t t
SC P P P= ∪ ∪ , where 1

t
P is a set of subclusters formed at time t , 2

t
P is a set of subclusters

formed before time t but not suspicious at time 1t − , and 3

t
P is a set of suspicious subclusters,

which were suspicious at 1t − .

Below are definitions of the relationships “between”, “close”, and “neighbors” used in the

reasoning processes. These relationships can describe intra relationships between subclusters,

between clusters as well as inter relationships between clusters and subclusters of other clusters

[3]:

- 216 -

AFOSR F49620-01-1-0371

1. Clusters i

t
Cl and j

t
Cl are considered neighbors at time t if the line connecting their

centroids does not intersect any other clusters. Relationship neighbors is reflexive,

symmetric but not transitive. i

t
N denotes a set of neighbors of cluster i (i

t
Cl) at time t.

2. Clusters i

t
Cl and j

t
Cl are called “close” if the distance between the centroids of these

clusters is less then a threshold: max(, max(,))
ij i i

ij
Dist W t a D D< ⋅ ∆ ⋅ , where W is the wind

speed, t∆ is the time step considered, ,
i j

D D are maximum diameters of i

t
Cl and j

t
Cl ,

respectively, and a is a constant.

3. Cluster k

t
Cl is said to be between clusters i

t
Cl and j

t
Cl if k i j

t t t
Cl N N∈ ∩ and k

t
Cl is within

the box around both i

t
Cl and j

t
Cl , and clusters i

t
Cl and j

t
Cl are close.

Specific propositions considered for Hazmat spill discovery include propositions characterizing

wind direction as well as cluster topology and topology temporal behavior (e.g., new,

disappearing clusters and subclusters):

 1P : wind direction

 12() :j j

t t t
P SCl SCl P∈

 23() :j j

t t t
P SCl SCl P∈

 34() :j j

t t t
P SCl SCl P∈

 5(,) :n m n m

t t t t
P Cl SCl Cl N∈ (cluster n is a neighbor of suspicious subcluster m at time t)

 6() :j j

t t t
P Cl Cl SC∉ (cluster j is discovered at time t)

It is necessary to note that in the uncertain environment cluster topology and topology behavior

declarations are uncertain and represent assumptions. In our pilot study we assume that their

truth is known with certainty and consider them propositions.

Assumptions about suspicious subcluster characteristics and their behavior

- 217 -

AFOSR F49620-01-1-0371

 A1: The expected fraction of respiratory injuries in a subcluster indicate Hazmat (how

“suspicious” is this subcluster?)

 A2: The expected fraction of respiratory injuries in a subcluster is increasing.

 A3: Subcluster area is growing.

 A4: Subcluster center is moving downwind.

 A5: Subcluster center is moving upwind.

 A6: Subcluster centroid is moving downwind.

 A7: Subcluster centroid is moving upwind.

 A8: Cluster i

t
Cl (subcluster i

t
SCl) is located downwind from subcluster j

t
SCl .

 A9: k

t
SCl is between clusters i

t
Cl and j

t
Cl .

 A10: k

t
Cl is between subclusters i

t
SCl and j

t
SCl .

Each assumption is assigned a belief measure, which represents expert belief that this assumption

is true. In our example these belief measures are modeled as functions of the behavior of values

of suspicious cluster characteristics and mereotopological intra relationships between

neighboring subclusters and inter relationships between subclusters and neighboring clusters. Let

1 2{ , }Al Alω ωΩ = , where 1

lω is a hypothesis that assumption l is true and 2

lω is a hypothesis that

assumption l is not true. Then for each assumption we model the measures of belief as follows.

For assumptions 1 3A A− :

 1 2() , () 0
1

l
l t

Al All

X

l

bpa bpa
e

β

λ
ω ω

α − ⋅
= =

+
,

 where , ,
l l l

α β λ are parameters, l=1,2,3,9,10. For 1 l

t
l X= is the fraction

of respiratory injuries and belief is based on the ”level of suspiciousness”. For 2,3
l

l X= is the

relative difference between the change of the subcluster characteristics under consideration

- 218 -

AFOSR F49620-01-1-0371

(l

t
Y∆) at time t and the absolute value of an average change of magnitude of these characteristics

(1t
avg −) up to and including time t-1:

1

1
| |

t t

l ll

t t

l

Y avg
X

avg

−

−

∆ −
= ,

where l

t
Y is the fraction of respiratory injuries, if l=2 and the suspicious subcluster area if l=3.

For 9 l

t
l X= is the distance between the centroid of k

t
SCl and the line connecting centroids of i

t
Cl

and j

t
Cl . For 10 l

t
l X= is the distance between the centroid of k

t
Cl and the line connecting centroids

of i

t
SCl and j

t
SCl .

For assumptions 4 8A A− :

1 2

1 (1) cos()
() , () 0,

2
l l

l
A Al

lbpa bpa
φ

ω χ ω
+ −

= = n .

where
l

φ is the angle between the wind direction and the direction of movement of the

geometrical center (4,5l =), or the center of gravity (6,7l =), or the vector from the center of

gravity of j

t
SCl to the center of gravity of i

t
Cl (8l =) and

l
χ is a scaling parameter.

Finally, arguments built from these propositions and assumptions corroborating and refuting the

toxic spill hypothesis are composed. Sets of arguments differ slightly for 1 2, ,
t t

P P and 3P because

of the temporal difference in behavior of their characteristics. Below are assumptions considered

for subclusters 2i

t t
SCl P∈ (P2).

Corroborative arguments (
k

ArgP) include:

 1ArgP : The expected fraction of respiratory injuries in subcluster 2i

t t
SCl P∈ indicate a

toxic spill, this cluster is a neighbor of subcluster 3j

t t
SCl P∈ and is located downwind from

3j

t t
SCl P∈ : 1() 8(,) Pr 2() Pr 3() 5(,).i i j i j i j

t t t t t t t
A SCl A SCl SCl SCl SCl P SCl SCl∧ ∧ ∧ ∧

- 219 -

AFOSR F49620-01-1-0371

 2ArgP : A suspicious subcluster area is growing downwind:

 3() 4() 2()i i i

t t tA SCl A SCl P SCl∧ ∧

 3ArgP : Respiratory injuries are growing downwind: 2() 6() 2()i i i

t t tA SCl A SCl P SCl∧ ∧

Arguments refuting the toxic spill hypothesis (
j

ArgC) include:

 1ArgC : A suspicious subcluster area is growing upwind:

 3() 5() 2()i i i

t t tA SCl A SCl P SCl∧ ∧

 2ArgC : Respiratory injuries are growing upwind: 2() 7() 2()i i i

t t tA SCl A SCl P SCl∧ ∧

 3ArgC : A suspicious subcluster 2i

t t
SCl P∈ is between clusters n

t
Cl and m

t
Cl , which are

located along the wind direction and do not contain suspicious subclusters:

 Pr 2() 9(, ,) 8(,)i i n m n m

t t t t t tSCl A SCl Cl Cl A Cl Cl∧ ∧

 Beliefs in support of each assumption i invoke simple support functions on a frame of

discernment 1 2{ , }
i i i

ω ωΩ = , with a single focal element 1i
ω (assumption i is true). A direct sum

of the simple support functions over a set { | rg , }t

i k
i

Ai A P kΩ ∧ = ∀ is mapped then into a simple

support function
k

µ with focus 1θ (pro Hazmat):

 1 1 1

: rg

() (), () 1 ().
k

i

k i k k

i Ai A P

bpaµ θ ω µ µ θ
∧ =

= Θ = −∏

Similarly, a direct sum of the simple support functions over the set { | rg , }t

i j
i

Ai A C jΩ ∧ = ∀ is

mapped into a simple support function
j

ν with focus 2θ (contra toxic spill). :

 2 1 1

: rg

() (), () 1 ().
j

i

j i j j

i Ai A C

bpaν θ ω ν ν θ
∧ =

= Θ = −∏

 Then belief in each hypothesis, based on arguments built for each suspicious

subcluster is computed as a combination of
k

µ and
j

ν for all k and j with the Dempster rule of

combination. The final decision is based on the combination of beliefs obtained for subclusters

- 220 -

AFOSR F49620-01-1-0371

belonging to clique of neighboring subclusters. Selection of a certain hypothesis is based on the

decision process described in Section 6.9.5.6.

Discovered at time t Hazmat clusters are used for prediction of consequences of identified

hazmat incidents. First a geometry of the Hazmat clusters, a vector field of the wind direction,

and speed direction allow for identifying the affected region and for predicting the region, which

will be affected within an hour.

The location and the area of identified current and predicted affected regions provide decision

makes with information necessary to make swift decisions on evacuation and closing the affected

area for non-necessary traffic. This information with also allows for prediction of new casualties,

new congested regions, and change of capacity of hospitals and shelters.

6.10 Layered Hybrid System Architecture

The CUBRC/UB PRET proposal [6.10-20] of February 2001 which was approved for funding by

the AFOSR and which asserts the goals and research plan of this project, includes the following

language:

A body of knowledge has been acquired that provides a a generalized methodological foundation

for the design and development of Level 1 fusion processes across a range of operational

requirements and applications. Fusion, however, embodies two other inference-generating

levels, Level 2 and Level 3, associated with Situation Estimation and Threat or Impact

Estimation. However, research on the technologies and techniques necessary to achieve an

automated capability to produce such estimates, the result of associating and fusing

considerably larger amounts and wider varieties of data and knowledge, has been much less

than for Level 1. The complexity of architecting such systems as well as defining and designing

each of the subprocesses is much higher than for Level 1. The dilemma with the research and

capability shortfall at Levels 2 and 3 is that mid-level to upper-level Air Force commanders, as

distinct from tactical decision-makers, lack the necessary automated tools to deal with the

evolving new world risk environment.

The overall objective of the proposed research is to develop, evaluate and document an overall

engineering methodology with which to approach these higher level problems; such

- 221 -

AFOSR F49620-01-1-0371

methodology will be an important part of a cost-effective, reusable approach to these problems

for the fusion community. The combined results of relevant and transitionable techniques

grounded in theory and quantitatively evaluated offer the potential to overcome a major shortfall

in information fusion science.

In light of the above, the project team considered the general problem of architecture for high

level fusion in the emergency response context. The following section presents a relevant and

transitionable architectural framework for high level fusion systems. The framework includes

general architectural recommendations, analysis of the performance envelopes for the

recommended architectural configurations with respect to major problem space attributes, and

selection matrices for major categories of fusion application scenarios. Such scenarios include

battlespace applications, natural and man-made disasters, intelligence gathering and evaluation,

robotics and autonomous vehicles, maintenance of complex systems, patient monitoring systems,

air traffic control, intelligent transportation systems and other relevant application areas of

information fusion. Less relevant applications domains, such as data fusion for agricultural or

land-use management, are not considered.

6.10.1 Background and architectural dimensions

While there have been many data fusion and information fusion papers written, and systems

built, there is not a lot of useful relevant literature on architectures and architectural

specifications for high level fusion. As pointed out by Kokar [6.10-19], the architectural models

which have been presented have not been specific enough to determine how to design systems

that comply with their guidelines or whether a given existing system does so. He identifies three

interesting informaton fusion architectures: the JDL model, the NBS model, and his own Formal

Systems Architecture. The first two are process-flow architectures, his is a system architecture.

6.10.1.1 Process-flow vs. system architectural specifications

The architectures described in the literature are mainly of two categories: process-flow

architectures and system architectures. By a process-flow architecture we mean architectures

which partition the system in terms of what is done, while the system architectures dictate where

it is done, in which software/hardware modules. If we understand these terms as ordinarily used

- 222 -

AFOSR F49620-01-1-0371

correctly, for instance, the JDL model is a process-flow architecture, while a blackboard is a

system architecture. In order to accomplish our goals, we believe we need to specify both: the

process-flow, or partition of functions to be performed and connectivity among those functions,

as well as a system architecture, or partition of hardware/software modules and their data links.

In our understanding, neither architectural specification, the what or the where, goes to how the

processes or objects are to be computed. That is the issue of implementation. Implementation

involves the selection of algorithms, data structures, communications protocols, etc. and does not

have to be part of the architectural discussion. Except for the issue of flexibility: is a given

architecture suffiiently flexible to support the preferred implementation choices?

6.10.1.2 informaton fusion models

The literature cites dozens of informaton fusion models. Most of them are oriented toward data

fusion rather than informaton fusion, that is, they do not adequately support the abstraction of

individual tracks and entities to represent the relationships among them, or the understanding of

the situations and likely consequences these relationships produce in light of domain knowledge

and doctrine. Important examples are Ah-Dhaher’s multi-sensor data fusion architecture [6.10-

1], Aude’s robot contoller [6.10-4], Broder’s spatial reasoning system [6.10-6], Kejun’s L1

system architecture [6.10-18] and Yang’s intelligent transportation system data fusion model

[6.10-32]. Gorodetski’s system [6.10-15], while capable of high level fusion, is optimized for

L1, as is the toolkit they produced. Their basic operation is decision fusion (DEI-DEO in

Dasarathy’s taxonomy).

Of the models that are relevant for high level fusion, there are four that merit the most

consideration:

1. The JDL model [6.10-35]

2. Dasarathy’s model [6.10-10]

3. OODA model [6.10-33]

4. Endsley’s model [6.10-34]

- 223 -

AFOSR F49620-01-1-0371

Three of the four are similar: the JDL, OODA and Endsley model. In each case there is a data-

gathering phase (L0/L1, Observe, Perception), an understanding phase (L2, Orient,

Comprehension) and a prediction phase (L4, Orient, Projection). Dasarathy’s model breaks out

three phases as well: data, features, and decisions, and creates a model taxonomy based on which

of these phases are the inputs and output of the data fusion system.

Since they are similar, in our architectural choices we can afford to be agnostic among the JDL,

OODA and Endsley model. Due to its history and wide acceptance, for most purposes these

recommendations are based on the JDL model. Note that selection of this process-flow model

does not specify a process-flow architecture, since there are many ways to instantiate the model

in an architecture. But it allows us to name and locate the processes that the architecture we

select specifies.

6.10.2 Architectural dimensions

Following Allouche [6.10-3], a useful way to characterize informaton fusion architectures is as

points in a design space in which the coordinates are architectural dimensions. Three classes

comprising 8 such dimensions are suggested:

1. Decentralization

a. of control

b. of processing

c. of data

2. Autonomy

a. of control

b. of processing

3. Socialization

a. degree of social reasoning (eg. aggression, persuasion)

b. of organization (eg. command heirarchy, democracy)

- 224 -

AFOSR F49620-01-1-0371

c. of communication (eg. speech acts, KQML)

In addition we add these additional dimensions of the architectural problem:

4. Flexibility

a. Of implementation

b. Of control

5. Reconfigurability

6. Scalability

The use of these dimensions is to develop metrics with which to measure similarities and

divergences among architectures, and identify problem domains favorable to regions of the

architectural space. For instance a plain-vanilla blackboard architecture has low decentralization

of control and data but high processing decentralization. There is low autonomy of processing

and high autonomy of control. Low socialization on all dimensions. Moderate implementation

flexibility, low control flexibility. High reconfigurability. High scalability. These attributes

promote blackboard solutions for certain specific distributed problem-solving applications in

which data are naturally centralized, the solution can be worked in small increments each

requiring little domain knowledge or judgment.

6.10.2 Alternative architectural framemworks

Here the most successful current approaches to data fusion architecture are briefly reviewed.

Elements of several will be employed in the subsequent recommendations.

6.10.2.1 Blackboards

The blackboard architecture is a popular choice for data fusion and has been used for informaton

fusion. Llinas [6.10-16] reviewed 13 major systems using blackboard architectures in a paper

published in 1993. Since then the intial blackboard conception has grown and been extended to

include multiple blackboards, paired data-control blackboards, and networks of blackboards.

[6.10-16] generally advocates looking at blackboards for informaton fusion because of their

simplicity and low communications bandwidth compared to alternatives. Since then they

- 225 -

AFOSR F49620-01-1-0371

continue to be widely used. Valin [6.10-29] and Shabazian [6.10-25] report on the use of a

blackboard for informaton fusion in a surveillance aircraft application. The CORTEX software

development describe by Macieszczak [6.10-22] and Shabazian [6.10-24] is a knowledge based

system whose system architecture is a blackboard which supports a knowledge based system.

Engelmore [6.10-11] is the basic resource for information on blackboard theory and practice at

the end of the first generation of blackboard systems, benchmarked by HEARSAY II. Perhaps

the most interesting blackboard model we have seen is Sutton’s Bayesian blackboard, an

architecture advocated for intelligence gathering and processing. Network-fragment theory is

used to “quantify” the symbol search system through the construction of Bayes’ Net fragments as

the basic knowledge representaiton.

A key limitation for blackboard systems is the requirement for centralization of data. If the data

is naturally spatially distributed, this can be forced by establishing datapaths to a central location.

But this incurs costs: bandwidth, transmission error rates and QOS requirements, robustness,

complexity.

A second key limitation is that the knowledge sources (KS) not communicate except via the

blackboard. While most other original architectural specifications of the blackboard have been

generalized over the years, this has not. This presents, in our opinion, a major inefficiency for

certain kinds of what we call interactive dialogs. These concern exchanges of information

between KSs in which KS1 communicates a small amount of information to KS2, who operates

on that and returns it to KS1, who repeats. This can occur when 2 KSs need to interact intimately

in order to produce a partial result. When this occurs in a blackboard setting, the blackboard

controller is required to structure each communication act to get in on the blackboard and bring it

to the other KSs attention. This may require many more cycles than the dialog itself.

A third key limitation is that the KSs not exercise any serious degree of autonomy. The

blackboard controller is delegated that authority. Thus the KSs cannot use independent judgment,

act intelligently, learn or otherwise behave in ways the blackboard controller did not predict.

6.10.2.2 Multi-agent systems

- 226 -

AFOSR F49620-01-1-0371

Intelligent agents (IA) are software objects with goals, intentions, communications capabilities,

and some degree of autonomy. In this way they are distinguished from the KSs of blackboard

systems, and from ordinary software objects. They can behave in non-transparent ways, and

communicate what they choose to other agents or software modules. Multiagent systems are

systems incorporating two or more intelligent agents.

There are various types of IAs: reactive, logical, Belief-Desire-Intention, Layered, etc. Of

particuar interest for informaton fusion are the 2-pass layered agents [6.10-30]. Their process-

flow naturally maps onto common informaton fusion process-flow models such as JDL. There is

considerable current R&D community interest in applying IAs to informaton fusion problems.

An imporant limitation in the use of multi-agent systems architectures is the bandwidth

requirements associated with messages and message-passing protocols. Languages like KQML

are needed to rectify communications among IAs.

Another limitation of multi-agent systems is their opacity. The degree of autonomy of each IA

means that its behavior in some situations will be difficult or impossible to predict. This means

QOS guarantees will be at best probabilistic and their might be long tails on performance

distributions.

There are various multi-agent system design methodologies that are in common use:

1. Gaia: determine agent roles, then interactions. Roles mapped into agent types. Then

select service models and interaction models.

2. Wood and DeLoach’s MA Sys Eng MASE: first capture goals, then use cases, refine

roles, create agent classes, create conversations, assemble agent classes, system design.

3. UML based schemes and extensions

4. Daimler-Chrysler: model the task environment, analyze the model to extract roles,

specify interactions, specify agents.

A main attraction of multi-agent systems is that it does not require centrality of data, and is thus

consistent with distributed fusion. With heirarchical fan-in system architectural topologies such

- 227 -

AFOSR F49620-01-1-0371

as that in Dual Node Network, the natural I/O bandwidth reduction per fusion node makes load-

balancing of computation and communication possible.

Brenner [6.10-5] finds blackboards and multi-agent systems the only real general alternatives for

general distributed problem-solving. Gatepaille’s general multi-agent system data fusion

framework makes direct associations between data fusion functions and IAs, partitioning the

situation assessment database among the IAs local memory stores. The first is a good idea

(which we will adopt in our proposal below), but the memory partition does not distinguish

between data that is needed by multi-agent interest groups vs. private data of individual agents.

The T-10 demonstrator was built along her recommended lines.

6.10.2.3 Dual-node network [6.12-1]

A limitation is the recursive use of the same tripartite node decomposition for all levels of fusion

and for all levels of resource management. It is arguable that as entities assume higher levels of

abstraction, so must their transformations.

It appears the Dual Node Network properties should be explored for more general topologies. It

may be that a regular fan-in topology becomes a more general network due to faults in the

system, for instance, or due to ad hoc comm links established during emergency use. It is not

clear what happens to the duality properties in more general network topologies than, for

instance, acyclic trees. A strength is the reusability of processes among fusion nodes and

between fusion nodes and resource management nodes. A strength is that the Dual Node

Network has some of the useful properties of both a system architecture and a process-flow

architecture.

6.10.2.4. Pattern-seeking systems

 These systems are characterized by the extensive use of methods from pattern recognition,

particularly template matching, graph theory and statistical classifiers. The programming style is

imperative, with little or no autonomy to the functional units as in multi-agent systems nor a

need for a single central data store as in blackboards.

- 228 -

AFOSR F49620-01-1-0371

Fountain’s scheme [6.10-12] for an L1-L2 high-performance system is of this type, based on the

NEAT template-matching paradigm. Clark [6.10-9] describes a cockpit system of this type,

giving considerable detail to the systems software aspects as well as the process description.

They define, for instance a “friendly force refinement object” in the OOP CORBA context.

Svensson’s IFD 03 demonstrator is based on fusion nodes producing tracks and aggregates,

clusters, force identities, etc. For high level fusion functions such as force identification and

aggregation, template-based behavioral methods are used.

Salerno’s L2+ Fusion System [6.10-23] divides the input datastream into real-time, near-real-

time and non-real-time (archival) data, each processed differently. Using graph models and

graph matching, patterns are discovered, validated, and models constructed and validated. These

models are used to make predictions and understand the current situation. L2+ has been most

extensively developed in the global terrorism framework using global databases.

6.10.2.5 Hybrids

According to Akita [6.10-2] there are only three distinct architectures for informaton fusion:

centralized data store, partitioned data store with fusion on demand, and hybrids between these

two. This is too coarse a characterization we think, here we mean hybrids between and among

blackboards, multi-agent systems, Pattern-seeking systems and Dual Node Networks. Many such

have been proposed, notably Gad’s maritime surveillance system [6.10-13] and Henrich’s data

fusion system for the German F124 frigate.

6.10.2.6 Other informaton fusion architectures

Lots of other things have been proposed, of course. Systems built around neural net

architectures, for instance Talle [6.10-28] and Chadhuri [6.10-8]. Josephson’s six generations of

Abductive Machines [6.10-17] which employ Ohio State’s Compositional functional modeling

language CFML to make predictions and test both models and hypotheses. Carvalho’s UML

based general architectural framework [6.10-7] is consistent with the JDL model.

6.10.3 The recommended new hybrid architecture

- 229 -

AFOSR F49620-01-1-0371

All of these architectures, and many more besides, have demonstrated their usefulness in

cooperative or distributed problem-solving. A fundamental question is: what is the unique nature

of our informaton fusion environment within the general class of distributed problem-solving?

To us it is that we are not doing general problem-solving, our system processes should be

decision-directed. The goal of informaton fusion is decision support, and the architecture should

be oriented towards decision-making.

From that perspective, we choose the Dual Node Network as the high-level architecture. Nodes

are inherently dualistic: they fuse to choose. The same node that fuses data can immediately

execute decision processes based on that (and other) information. And the same node that makes

resource allocation decisions within its domain based on its local (and other) resources knows

what information is needed to make those decisions effectively.

6.10.3.1 High level system architecture

So, at the highest level of architectural abstraction, a Dual Node Network is the choice, but in a

form that emphasizes full topological complexity and degrees of freedom. The network of dual

- 230 -

AFOSR F49620-01-1-0371

nodes should be cast as a general directed graph. It may be acyclic or cyclic, it may be connected

or contain disjoint subgraphs. And the full Dual Node Network should instantiate two subgraphs

with the same node set but distinct links: a fusion graph and a RM/adjudication graph.

An example generalized Dual Node Network is shown below. Note that each node has its own

designated local sensor suite and local resource deployment. Adjudication can only flow with

fusion, adjudication without fusion makes little sense. But the link between nodes can be fusion-

only.

Figure 1: Generalized Dual Node Network HLA

The baseline Dual Node Network configuration is fusion fan-in, RM-fan-out, acyclic tree

topology for both fusion and RMA sub-graphs. Here are some other data fusion

“commmunities”:

• Nearest-neighbor web

• Ad-hoc network formed on an as-available basis

• Censored adjudication links due to unreliable node behavior

Fusion sub-graph RM/Adjudication (RMA) sub-graph

Local

Sensor

Local

Resource

- 231 -

AFOSR F49620-01-1-0371

• dynamic reconfiguration in the face of network damage

Different informaton fusion applications will require different topologies for fusion, adjudication

and resource management. But the duality of the nodes and the dispersion of local sensors and

resource deployment will be in common.

6.10.3.2 Node architecture

Within each node a great variety of processes at different levels of abstraction will be taking

place. These processes must execute with a high degree of autonomy, asynchronously, and in

parallel. This seems to be a natural setting for a multi-agent system.

The first design step in a multi-agent system is the specification of goals and processes the agents

must execute, ie. a process flow model. Here we think the JDL model is perfectly well suited,

particularly since it does not differ greatly in principle from its related OODA and Endsley PCP

models. The next step is partitioning the process space into agent roles. Here again the choice

we think is easy: use a human organizational model. How would (are) these same processes

partitioned among human agents in organizations tasked with the same decision-oriented goals?

This results in a natural decomposition, well oriented towards human decision support. Of course

there may be some scaling required in associating human agency and intelligent system agency.

In general, machines operate faster and more to rule, while humans operate smarter and more to

the current realities.

So the inventory of agents populating each node might include:

• For each fusion level

o A matrix of update agents, one for each entity type and Region of Responsibility

(ROR). These are the agents that update the Situation Awareness Map and the

impact prediction database.

o An input reification agent

o An input quality agent

o An input distribution manager

- 232 -

AFOSR F49620-01-1-0371

o A product quality manager

o An intra-level link manager

o An output quality agent

o An output distribution manager

o An adjudication agent

• An inter-node link manager

• A human interface manager

• An RM decision agent

• A resource manager

As an example of the first class of agents in our earthquake scenario, one agent could be assigned

responsibility for maintaining that portion of situation awareness which corresponds to the

locations, properties and behaviors of all clusters of patients in the northwest quadrant of a

specified jurisdiction.

In addition to the usual population of agents and speech act protocols which permit them to

communicate, we would propose for the node architecture that a blackboard be instantiated, but

that there be no constraint upon communication between the blackboard cognizants, ie. the IAs.

That blackboard would contain the current Situation Awareness Map. This map actually

constitutes several layers of entities corresponding to the L1-L4 fusion layers, each populated

with their own entities and relations. The SAM is required by almost all agents for almost all

purposes and should be given universal facilitated access. The blackboard controller in this case

would be rather simple, amounting mainly to a scheduler and a publish-subscribe service

identifying which areas of the SAM are of interest to what special interest groups of IAs. For

instance a L1 casualty agent is only interested in reading and posting on L1 in his ROR, while a

L3 evacuation planning agent would have much broader interests and needs to be notified when

new information is posted by any L2 agent that operates in the same ROR or related L3 agents in

adjacent RORs.

- 233 -

AFOSR F49620-01-1-0371

Figure 2: SAM blackboard: component of node architecture for each node

6.10.3 Agent architecture

To make explicit agents we offer five guiding principles. First, agents are entities in the problem

domain as opposed to models of functional abstractions. More specifically, agents encapsulate

computational units that determine plans and actions as well as the process of exhibiting acting.

Second, agents are properly sized so they model entities that are rather modest in mass and time.

We are not suggesting to model midgets. Rather, we are arguing to consider acting units in such

a way that the system being modeled will map to a finite number of agents in order to allow us

to meaningfully focus on modeling interesting interactions and relationships. If the agent

granules are fairly large we would not have the opportunity to examine intricacies of interagent

interface. Since an aim in designing agent-based systems is distributed intentionality, our third

principle is that agents should be considered to own their local intentionality. System

intentionality should be properly divided into a series of proper sets so they can be mapped to

intentionality of agent communities and the smallest units map to individual agent intentionality.

Our fourth agent design principle is coherent dissemination of information, knowledge, and

wisdom. Agents should be provided with methods for caching and sharing results of individually

Level 3

Level 2

Level 1
COS (tracks)

Relations,
SAM

IP database

L2 casualty agent

Level 3

L3 evac agent

- 234 -

AFOSR F49620-01-1-0371

(i.e., locally) processed and fused data. Properly designed dissemination methods will offer

cohesion so that the set of agents will act as a whole, i.e., a hive-mind. Although it is beyond the

scope of this article, we need to point out the need for shared or disparate ontologies among

groups of agents (NCOR). A more elaborated consideration needs to account for delineate

ontology mediation by agents themselves or designated agents. Our fifth principle suggests to

consider agents operating in sufficient independence as if they operate in parallel. Despite the

obvious need for interdepedendence among agents in any complex system and hence models of

relationships and interactions suggested herein, agents need to be designed to operate

concurrently as opposed to sequentially. The large number of agent architectures in existence

does not imply maturity in the discipline. Instead, it reflects a rush to capture and document

features of interest. In the following section we will review agent architectures and propose a

need for parsimony and a return to original conceptions of modeling agents.

6.10.3.1 Review of Agent Architectures

One of the earliest and the most influential agent architectures is the BDI paradigm. The Stanford

group of researchers in mid-1980s suggested capturing mentalistic notions such as belief, desire,

intention [6.10-19]. There was a heavy leaning toward grounding BDI in formal modal logics

partly to inherit the properties of soundness and completeness and partly to gain expressive

power of treating BDI as modalities. The expressive power gained came at the expense of lack of

tractability. Along with many researchers we have implemented a limited form of BDI in our

labs with partial satisfaction. The best known implementation is often attributed to Kinney and

Georgeff, 1991). BDI shortcomings are well-documented and we will avoid repeating them here.

Instead, we point to the need to preserve Bratman’s claim that rational agents strive to adopt and

maintain conflict-free intentions. All rational agent reasoning will service for avoid detraction

from adopted intentions and on methods for manifesting desired objects of intention. We wish to

explicate the primacy of intention with the need for attention as we will see in the following

section. A more pragmatic agen t architecture is MaSE [8-11-21]. Rooted in BDI, DeLoach has

not only provided expressive power of modeling roles and communication in MaSE but also

provided a blow by blow methodology that was lacking in BDI. Tropos is a recent agent

architecture that offers both a methodology and rich expressivity [6.10-24].

- 235 -

AFOSR F49620-01-1-0371

Figure 3. OARCL Components

6.10.3.2 OARCL Reference Architecture

OARCL is comprised of Observe, Attend, Reason, Communicate, and Learn (OARCL)

components. Similar to the OODA loop concept proposed by Col. John Boyd [6.10-31], it is

complex and involves many internal loops and nontrivial processes that supervise and keeps the

system inline with various measures of effectiveness and performance. There are abundant

asynchronies and nonlinearities (see Figure 3). One of our aims in introducing OARCL is to urge

a return to the original conceptions of agents, which were anthropomorphic modeling of a sense

of acting. Another aim is to put in the spotlight the salient properties of agency by OARCL

components. At a metaphorical level, an OARCL agent is a cognitive entity with functionalities

suggested by pre-attentive functions captured in the module Observe, attention generation and

maintenance in the module Attend, inferential capabilities in the component Reason, intentional

message generation in the module Communicate, and abilities to modify perception, attention,

and reasoning processes in the component we call Learn. Next we provide general description

for each component.

In order to coarsely filter out irrelevant data, the Observe component performs agent input data

distribution management functions. Agent who live in a highly distributed environments need to

control the volume and the nature of input they process. We choose to consider the tasks of what

kind and how much data to process as a pre-attentive function of an agent. The best example is

human visual processing where visual input is rapidly and automatically filtered. Supported by

recent findings in human visual processing that suggests attention plays an important cueing role

even in early, preattentive visual stage we have selected that as our next component [6.10-25] .

Observe Attend Reason Communicate Learn

Human Analyst

- 236 -

AFOSR F49620-01-1-0371

Attend receives references from the human supervisor, all agent requests from the Observe

component as well as from the Communicate module. References might be associated with

specific sensory-identified objects or targets or it might be in terms of features, patterns, and

conditions. The selection process, which includes nontrivial reasoning is modeled in this

component. We will deliberately leave out discussion of the obvious connection between

attention to awareness and consciousness [6.10-20]. Despite this omission, we point out that this

connection is the most elusive, intriguing, yet essential character of agency. There is an

inextricable relationship between defining characteristics of independence and pro-activity of

computational agents and self-awareness encapsulated in attention. The notion of individuality in

attention plays a crucial role in guiding as well as controlling inference and logical reasoning.

The rationality principles of Allen Newell and Nick Jennings are addressed in our reason module

[6.10-18]. The reason component performs the primary inference in OARCL agents.

Communicate performs external information management including the speech act using

standard agent communications language (ACL) for outputs (e.g., requests) and input

information and requests from other agents.

Finally, the Learn component generates performance assessment that drives its process

management of all agent components. Next, we will discuss applications that lead to

development of our reference architecture.

One of the problems that motivated OARCL was the SIGINT man on the loop with the aim to

design an agent-based software that aids and automates intelligence analysis, technically known

as SIGINT analysis [6.10-23]. The SIGINT activity encompasses all of command, control,

communications, human intelligence, surveillance, and reconnaissance. The second motivating

problem was modern disaster response with the aim to design an agent-based software that fuses

information at varying levels of abstraction in order to rapidly assess situations at a high level.

Our approach preserved the highly distributed and disparate loci of information gathering and

synthesis.

- 237 -

AFOSR F49620-01-1-0371

Finally, we review OARCL modules and briefly discuss the software engineering tasks therein.

For Observe one must broadly gather techniques for selecting data sources and channels with

details beyond the scope and interest of this report. Attend for both problems must be flexible to

allow for changes in the human analyst’s goals and targets. Generically, a human analyst will set

and revise conditions and targets of interest for the remainder of the system (shown in Figure 3).

The reference points selected in attend will be used to place filters on data gathered by Observe.

Reason will need to identify threats and opportunities of interest n the command and control,

which is the core function of a typical human analyst. Communicate will consist of (a) all

conditions for triggering messages to other system functions in support of SIGINT as well as

disaster response, and (b) types and formats of messages corresponding to triggering conditions.

Learn will embody metrics and sets of adjustments for internal functions as well as interactions

among OARCL modules.

6.11 Testing and Evaluation

To explore the performance of the L0/L1 fusion scheme described in Section 6.8 and the higher

level fusion in Section 6.9, a set of Monte Carlo runs of the simulation environment DIRE were

performed. The test parameters, results and discussion of these tests are contained in this section.

The platform for all DIRE tests described here consisted of a network of multiple Pentium 3 and

4 Windows machines variously running NT, Windows 2000 and Windows XP, all located in the

CMIF Lab at the University of Buffalo. Clock rates of the Pentium 3 cpu’s is 700 MHz – 1 GHz,

the single Pentium 4 is rated 3 GHz. The simulation database was located on the University of

Buffalo’s Fluids server two floors beneath the CMIF Lab in Bell Hall and connected via high-

speed ethernet cable. Typically six machines would run simultaneously in each federation run,

exchanging messages and maintaining consistency via the Run Time Interface protocol as

described in Section 6.2.

For the first set of DIRE runs which employed the final forms of all the federates, the

simulation’s temporal ratio, defined as the ratio of simulated (logical) time to wall-clock

execution time, was approximately 0.05. In other words, each hour of simulated time in the

DIRE environment required approximately 20 hours of run time on these machines to produce it.

In order to improve the temporal ratio, sections of the code were rewritten to permit maximum

- 238 -

AFOSR F49620-01-1-0371

pre-compilation and pre-execution of that code which could be shared among multiple machines

and multiple runs without changing the logic or statistical design of the runs. For example, a set

of templates of the spatio-temporal evolution of plume material concentration were pre-

computed for several wind speeds and source release temporal profiles using canonical wind

direction and source strength. In a given DIRE run containing a secondary Hazmat incident, the

appropriate template sets were laid down on the Hazmat source location which was randomly

selected for that run, rotated according to the initial wind direction specified in the ini file, and fit

to the spatial grid using bilinear interpolation. These concentrations were then scaled by the

randomly selected source strength initialization parameter for that run. The result of several code

modifications of this type was improvement of the temporal ratio to about 0.25, ie. fifteen

minutes of logical time per hour of wall-clock execution time.

This final temporal ratio was still considerably lower than planned, substantially lower than that

necessary to complete the full planned set of T&E simulation runs, following the performance

evaluation design presription of Rawat et al [6.11-1], within the time period which remained

available to the project after these code improvements. There are two principal causes for this

circumstance. Early in the project, choices were made for the software environment (languages

and compilers, data base management software, graphical information system) in which to

produce the ground truth, generate the reports, and drive the dynamic objects such as ambulances

and walk-in casualties forward. The resulting code executed less efficiently than anticipated.

Even after spending considerable time to optimize this code, the choices, in particular the initial

selection and use of Visual Basic 6, limited the execution efficiency more than anticipated.

Rewriting the code using a language producing faster compiled code was considered, but there

was not time within the scope of this project for the complete re-write of thousands of lines of

code and re-testing this would requre. The second reason was the fact that the final versions of

all federates were not available for integration into DIRE and acceptance testing until later than

planned, leaving insufficient time after “code lock-down” for the full planned suite of testing and

evaluation runs.

The tests completed and the evaluation of those tests, while less than a full suite, do permit

observations to be made concerning the appropriateness of the L0/L1 and L2/L3 fusion schemes

- 239 -

AFOSR F49620-01-1-0371

advocated here, and their performance in the DIRE emergency response environment. In

addition, they suggest ways in which further work may be of benefit.

6.11.1 Test suite

1. Base tests

Test No. L0/L1 L2/L3 Plume start time Pr(CivFlsRept)

01_001_01 Y Y 1500 0.20

01_001_02 Y Y 1500 0.20

01_001_03 Y Y 1500 0.20

01_002_01 Y N 1500 0.20

01_002_02 Y N 1500 0.20

01_002_03 Y N 1500 0.20

01_003_01 Y N 1500 0.20

01_003_02 Y N 1500 0.20

01_003_03 Y N 1500 0.20

01_004_01 Y Y 600 0.20

01_004_02 Y Y 600 0.20

01_004_03 Y Y 600 0.20

01_005_01 N N 600 0.20

01_005_02 N N 600 0.20

01_005_03 N N 600 0.20

01_006_01 N N 600 0.20

01_006_02 N N 600 0.20

01_006_03 N N 6000 0.20

2. Full Fusion False Report Sensitivity Tests

Test No. L0/L1 L2/L3 Plume start time Pr(CivFlsRept)

02_004_01 Y Y 600 0.00

- 240 -

AFOSR F49620-01-1-0371

02_004_02 Y Y 600 0.10

02_004_03 Y Y 600 0.20

02_004_04 Y N 600 0.30

02_004_05 Y N 600 0.40

02_004_06 Y N 600 0.50

3. Fusion Level-False Report Interactions Tests

Test No. L0/L1 L2/L3 Plume start time Pr(CivFlsRept)

03_001_01 Y Y 1500 0.05

03_001_02 Y Y 1500 0.05

03_001_03 Y Y 1500 0.05

03_002_01 Y N 1500 0.05

03_002_02 Y N 1500 0.05

03_002_03 Y N 1500 0.05

03_003_01 Y N 1500 0.05

03_003_02 Y N 1500 0.05

03_003_03 Y N 1500 0.05

03_004_01 Y Y 600 0.05

03_004_02 Y Y 600 0.05

03_004_03 Y Y 600 0.05

03_005_01 N N 600 0.05

03_005_02 N N 600 0.05

03_005_03 N N 600 0.05

03_006_01 N N 600 0.05

03_006_02 N N 600 0.05

03_006_03 N N 6000 0.05

- 241 -

AFOSR F49620-01-1-0371

All tests were run for logical times exceeding one hour. Some were run for multiple hours, but in

order to establish a common basis, all results shown here are for the first hour following the

initial earthquake event (logical time 3600 seconds).

6.11.2 Report profiles

Immediately following the initial earthquake event, casualties are laid down according to the

Hazus statistical estimates for casualty counts in each census tract given the selected geo-spatial

earthquake parameters. Within DIRE, reports begin to flow. Civilians phone in reports of

casualties down. Police and ambulance drivers radio in reports. These reports include varying

amounts of information, which may include the victim’s reported location, estimated severity of

injury, age, sex and race, and in some cases name identification. These report attributes are

related to the ground truth by a confusion matrix as described in Section 6.2, and also by a false

report probability. By a false report we mean a report not based on observation of a ground truth

casualty. This is distinguished from a confused true report. The attributes reported in all true

reports, those based on observation of a ground truth casualty, are subject to confusion matrices

reflecting the limited ability of reporters to accurately assess what they see. This is particularly a

problem for data fusion in the emergency response scenario, in which stress increases the

probability of error for all reporters, whether civilian, police, ambulance EMT personnel, or

other emergency responders.

6.11.2.1 Casualty report profiles

Figure 1 shows the accumulated number of casualty reports received from all sources over time.

A Monte Carlo average of 9 runs for the Base Case 01_001_01 – 01_003_03 was used.

- 242 -

AFOSR F49620-01-1-0371

Over the first hour following the the earthquake event, there is an average of 11,021 casualty

reports received. The sources of these reports are 10,614 civilian reports (mostly phoned reports)

and 407 emergency responder reports (mostly radio). All these reports are confused, and some

are false. The false reports amounted to 2,381, almost entirely from civilian calls. Of the average

number of total casualties laid down in ground truth, which was 16,766 distributed throughout

the earthquake zone according to Hazus statistics, 6,622 were reported in one or more report.

Thus in the first hour following the earthquake, some information was available on 39.5% of the

casualties. In the case of many casualties, more than one report was received. The number of

repeats is 2,018, ie. there were on average 2,018 reports on casualties who had already been

reported. Since all information in these reports is confused, this presented both an opportunity

and a challenge to L1 fusion to determine which reports to associate into unified tracks, and with

what attributes such as location and severity. If each report is treated as a separate track, resource

decisions would not be made correctly.

The constant rate of casualty reports (for all but the last few minutes) shown in Figure 1 reflects

the modeled capacity of the phone system. It was saturated with calls for most of this first hour,

All casualty reports

Distinct casualties reported

False casualty reports

Repeats

11,021

6,622

2,018

2,381

- 243 -

AFOSR F49620-01-1-0371

thus there were delays in many reports. Towards the end of this first hour, on average at the 51

minute mark, the telephone system was no longer overused and the backlog of calls was actively

reduced. The rate of first report of a new casualty dropped steadily over the first hour, as an

increasing fraction of the reports received were repeats.

6.11.2.2 Hospital arrival report profiles

Among the 54 distinct report types listed in Section 6.3 which were being exchanged within the

federation during this first hour, perhaps the most important are the casualty reports summarized

above. The casualty reports drive the low level fusion casualty track creation and maintenance

process, which is a key input to the higher level fusion dynamic aggregation, situation

assessment and impact assessment processes. Perhaps the second most important class of reports

are the hospital arrival reports. The core goal for early-phase emergency response operations is

the saving of lives. The principal life-saveing tool modeled in DIRE is the intelligent dispatch

and routing of ambulances to casualties with a critical need for hospital services, and their

subsequent dispatch and routing to the most appropriate hospital. Along with dispatch decisions,

the determination of the most effective routes to pickups and thence to hospitals for the

ambulance to take is important. An efficient hospital delivery system requires these primary

factors:

1. Accurate L0/L1 fusion specification of casualty tracks;

2. Accurate L0/L1 estimation of casualty track attribute uncertainties

3. Accurate L2/L3 assessment of dynamic casualty clusters

4. Accurate L2 assessment of dynamic casualty cluster attribute uncertainties

5. Effective dispatch algorithm based on clusters, tracks and dynamic hospital capacitites

6. Effective routing algorithm based on road damage reports and dynamic traffic conditions

Thus the hospital delivery metric is a useful indicator of the accuracy and effectiveness of the

combined fusion elements operating in a given test run.

- 244 -

AFOSR F49620-01-1-0371

Figure 2 shows the arrival time of each casualty of severity 1 and severity 2. There are 20 local

hospitals included in the DIRE data base, this graph represents the Monte Carlo average sum of

all arrivals at all hospitals.

Severity 1 and 2 Hospital Arrivals

0

500

1000

1500

2000

2500

3000

3500

4000

1 55 109 163 217 271 325 379 433 487 541 595 649 703 757 811 865 919 973

Arrival number

T
im

e
 (

s
e

c
)

Sev 1

Sev 2

Figure 2: Arrival time of all severity 1&2 hospital arrivals

This Figure shows a relatively constant arrival of casualties of both severities during this first

hour, with an average of 878 of severity 1 received in that hour, and 1002 of severity 2. Severity

1 casualties are characterized as not actually requiring hospital treatment. Severity 2 casualties

require hospital care, but not surgery or bottleneck lab tests such as blood work or x-rays which

limit hospital service capacity. Examples of severity 1 include bruising and pain, severity 2

would include stitches or severe psychological complaints. Since the dispatch decision rules

employing fusion require that neither severity 1 nor severity 2 patients be ambulanced during this

critical intial phase, the time profile of hospital arrival reports for these low-severity casualties is

largely independent of the type or level of fusion done, or whether fusion is done at all. The

sensitivity to data fusion is contained in the dynamics of the more severely injured casualties.

- 245 -

AFOSR F49620-01-1-0371

Figure 3 shows the first-hour hospital arrival time of each casualty of severity 3 under three sets

of Monte Carlo averages: runs in which no data fusion is used, where only the low-level data

fusion scheme of Section 6.8 is used, and where all levels of fusion as detailed in Sections 6.8

and 6.9 are employed.

Severity 3 Hospital Arrivals

0

500

1000

1500

2000

2500

3000

3500

4000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231

Arrival number

T
im

e
 (

s
e

c
)

No DF

L1 only

L1+L2

Figure 3: arrival time of all severity 3 hospital arrivals

When no fusion is used, then as they come free, ambulances are dispatched to the nearest

reported casualty 3 location and this action repeated until they are full or they time-since the

initial pickup, thence to the nearest hospital with anticipated residual capacity to service those

casualties at the estimated time of arrival. With lower level fusion only, tracks are used instead of

reports. With full fusion, account is taken of the clustering of patients and the anticipated

elementary hospital situation, elementary road situation, and their relationships. As described in

Section 6.5, ambulances are dispatched to the rim of a near-by cluster containing multiple

casualty 3’s, if such is available. When the first casualty 3 is found and picked up, the ambulance

searches locally for other casualty 3’s to capacity. If this is not discovered in a limited period of

- 246 -

AFOSR F49620-01-1-0371

time, the crew radios for further instructions. In any case, when departing, they are given either a

hospital target and a route to that hospital by the dispatcher, or a second nearby cluster rim

location to search.

Figure 3 shows the dependence of the number of severely injured hospital arrivals on the level of

implementation of fusion in the system guiding dispatch and routing. In the case of no fusion, on

average 106 such patients are treated in the first hour. Where only low level fusion is

implemented, the average number is 95. Thus, with respect to this imporant measure of

effectiveness, using only low-level fusion (of the type recommended) is worse than using no

fusion at all. Examination of the log files for these runs shows that the track association accuracy

may be inadequate in this highly uncertain environment, with many false reports, universal

report attribute confusion, and the movement of casualties from their reported locations.

Ambulances are frequently dispatched to locations where in ground truth there are no severity 3

casualties to pick up, nor any to be discovered nearby. Thus the efficiency of that ambulance’s

service is compromised in two ways: increase in the average time from dispatch to arrival at the

hospital, and decrease in the average number of casualties on-board upon arrival.

The situation is quite different for the full-fusion trace shown in Figure 3. On average 232

severity 3 patients are delivered to the hospital when both low and high level fusion are

implemented. This is more than double the number of severely injured patients served by the

system during this first hour. It is difficult to estimate the number of lives that might be saved

among the 126 severely injured casualties that arrive in the first hour when fusion is employed,

as opposed to arriving at some undetermined later time when it is not, but it suggests that the

saving of lives in such a scenario as the Northridge 1994 Earthquake by the used of the form of

high level fusion recommended here would be significant.

6.11.3 Other metrics

Here we include calculations of other measures relevant to system evaluation which were

derived from the test data noted in Section 6.11.1. As detailed by Blasch [6.11-2] there are five

classes of metrics: confidence, accuracy, timliness, throughput, and cost which should each be

represented in a comprehensive test and evaluation scheme. While cost has not been modeled in

DIRE and thus cannot be measured here, we present results in each of the remaining categories.

- 247 -

AFOSR F49620-01-1-0371

6.11.3.1 Measures of Performance

MOP Metric No fusion L0/1 L0/3

Positional

uncertainty

Max Cov

matrix Eval
1.000 1.072 1.072

Cas Sever

uncertainty

P(3|<3)

1.000 1.153 1.153

Identification

Accuracy
Pc 1.000 1.033 1.033

Dimensional

reduction

Trace/Rept

(Clust/Trace)
1.000 (1.000)

1.414

(NA)

1.414

(133.7)

Report Ass’n

accuracy
Pc NA 0.61 0.61

Cluster

detection
PD (PFA) 1.000 (1.000) 0.866 (1.012) 3.811 (2.665)

Table 1. Dimensionless Performance Gain for three levels of data fusion

The mechanics of most of these calculations are self-explanatory. The Positional Uncertainty

Gain is determined, for instance, by the ratio of the average of the maximum x-ycovariance

matrix eigenvalue of a casualty track to average of the maximum covariance matrix eigenvalue

of a casualty report. When reports are fused, positional uncertainty is reduced as errors are

reduced by averaging. The identification accuracy is only increased by 3.3%, reflecting the fact

that most of the casualties are not reported with positive ID’s and thus correct data association in

most cases does not help identification. The large Cluster/Trace dimensional reduction of 276.9

with the use of high level fusion is explained by the fact that on average, over time and Monte

Carlo runs, there are only 25.13 clusters but 3361 traces. The report association accuracy is

relatively low (61%) because the threshold of association confidence required to declare an

association has been set high. In the emergency response setting there is high cost in

underestimating the number of distinct severe casualties in a given area, since it may result in

delays in supplying the transport needed to get them to the hospital. It was felt that it was better

- 248 -

AFOSR F49620-01-1-0371

to err on the side of caution, starting a new track where there was reasonable doubt whether the

given report was a repeated report on an existing track. For cluster detection, the comparisons

were between the shrink algorithm operating on reports, the shrink algorithm operating on tracks,

and the full L2 cluster detection scheme, which uses topological relationships and dynamics.

6.11.3.2 Measures of Effectiveness

MOE Metric No fusion L0/1 L0/3

Enrollment

latency
Time 1.000 1.043 1.091

Ambulance

util factor

Occupancy

ratio
1.000 1.161 1.142

Hazmat

detection
PD (PFA) NA NA 1.000 (0.133)

HAZ detec

latency

600/Time

(sec)
NA NA 0.699

HAZ cluster

detection
PD, PFA NA NA 0.803 (0.221)

Table 2. Dimensionless Effectiveness Gain for three levels of data fusion

Enrollment latency is defined as the duration of time between that when a given ambulance

patient arrives at the hospital and the (earlier) receipt of the first report on that patient. In cases in

which a report had never been received for that casualty, he/she was not counted. The average

occupancy of the ambulances upon arrival at the hospital reduced slightly with the addition of

higher level fusion (Effectiveness Gain of 1.142 vs. 1.161). This is an unexpected result and at

this point we can offer no clear cause. Perhaps the manner in which the ambulance searches its

locale after finding the first casualty in a cluster needs tuning.

- 249 -

AFOSR F49620-01-1-0371

Secondary Hazmat incidents were always detected, with a false-alarm rate of 13.3%. The

average latency between the initial release of hazardous material and detection of the hazmat

incident was 858.1 seconds, about 14 minutes. The maximum acceptable latency was taken to be

10 minutes, thus the Effectiveness Gain was less than unity, in fact 0,699. What was not modeled

in DIRE were direct reports on Hazmat, such as sighting a burst storage tank or smelling a

burning odor in the air. To test our methods, we assumed a worst-case secondary Hazmat

scenario, in which the toxic material was colorless and odorless, and the rupture of the storage

vessel was unreported for the first hour (eg. a tank in a tank field ruptures with no tank

inspections for a period of time after the earthquake). The clues that the abductive reasoning

system could use to declare a Hazmat incident were, roughly, an overabundance of respiratory

injuries reported in one or more clusters, and those clusters growing downwind as described in

detail in Section 6.9.

6.11.4 Hazmat plume propogation zonal estimates

The graphs below demonstrate the manner in which the belief-based argumentation system

forming the core of the high-level fusion module operates to detect a Hazmat incident and

determine the geographic zone which should be immediately evacuated, and that zone which

should be warned to prepare to evacuate.

A stand-along simulation distinct from DIRE was implemented in which there were four

stationary Gaussian sources of casualty reports. Each had difference locations and covariance

matrices, but the same fraction of respiratory injuries, 0.10. Then a fifth source was started,

modeled as a Gaussian plume generating additional casualties, all of which were respiratory.

Figures 4(a) depicts the casualties at the time the Hazmat incident began, 4(b) the first detection,

4(c) the estimated state some minutes later and 4(d) next status an equal interval later.

- 250 -

AFOSR F49620-01-1-0371

 Figure 4(a) Before detection Figure 4(b) At detection

In each Figure, the left graph represents the L2/3 estimates of the situation and the impact of that

situation, while the right graph represents the ground truth. The red dots are respiratory casualties

and yellow ellipse the ground truth respiratory cluster. The blue region indicates estimates of the

geographic zone already above toxic dosage, and the magenta region the area likely to sustain

toxic dosages over the next hour. In this simulation the wind was blowing from the southwest

(200
o
 and the site of the Hazmat spill was at (0.1,0.1). Blue dots are newly discovered clusters,

which are under consideration as evidence for or against the Hazmat hypothesis, and which are

governing the approximation of the actual source location and sector of toxic threat for possible

evacuation order.

 Figure 5(a) After detection Figure 5(b) Well after detection

- 251 -

AFOSR F49620-01-1-0371

Note that the existence of the Hazmat secondary casualty cluster is confirmed by the growth of

the red cluster upwind, and that none of the other clusters are misidentified as Hazmant clusters.

6.12 Track Confidence and Adjudication

In this section design strategies for the support of online update of track confidence estimates

and adjudication management are presented within the framework of the Dual Node Network

architecture [6.12-1]. Both track confidence and adjudication processes are necessary to assess

and maintain the reliability of fused reports for the distributed lower-level and belief-based

higher level fusion methods presented in Sections 6.8 and 6.9 of this report.

On-line track confidence estimation is the real-time process for propagation and updating the

probability that each output track is false and the probability that the detectable entities in each

coverage area are represented in the fused picture (i.e., a tracker “Receiver Operating Curve

(ROC)). On-line track confidence estimates enable a rigorous basis for scoring track initiation,

propagation, and deletion versus input data association. On-line track confidence estimation

enables the users of fused track files to better combine these tracks with other information. The

payoff is the trustworthiness of each fused track and completeness of the fused picture being

recursively maintained. The role for track confidence estimation in distributed fusion is

described by applying the Dual Node Network (Dual Node Network) Architecture to the

distributed fusion problem. No fusion systems have been developed with on line track

confidence estimation capability. Some fusion systems use track birth & death statistics and track

association confidences in place of this capability. The problem is how to propagate & estimate

these confidences on line based upon the current sensor ROC curve statistics and data fusion

decisions.

The Baseline approach described herein is an approximate solution that includes the following:

1. uses Pd and Pfa a priori information from each source to initiate track Pd and Pfa

2. propagates track Pd and Pfa for each source update

3. generates track Pd and Pfa to support track association

4. updates track Pd and Pfa based upon source ROC curve and association confidences

- 252 -

AFOSR F49620-01-1-0371

Augmentations to this approach considered include use of a priori track birth and death Poisson

statistics and use of data mining of fusion experimental results.

Alternative approaches considered include:

1. Ad Hoc: table lookup of performance based upon exhaustive testing and all foreseeable

operational conditions (e.g., sources fused, environment, etc.)

2. Possibilistic: evidential or fuzzy knowledge combination to treat the uncertainty in the-

uncertainty

3. Logic/Symbolic: rules or scripts to yield track confidences based upon the each

operational situation

4. Neural Networks: nonlinear pattern recognition of approximate track confidences based

upon simulations and exhaustive testing

Specific Bayesian equations for CTP track confidence have been derived and will be presented.

The objective of Adjudication Management (AM) is to maintain consistency of the call for

service data bases across distributed jurisdictions. The role for adjudication in Disaster

Assessment (DA) and the baseline approach are described. The tasks to achieve this capability

are then explained. The baseline approach for distributed AM is hierarchical where the EOC

local commander reconciles all the incoming track related information to improve upon his

subordinate jurisdiction’s Consistent Tactical Picture (CTP). AM evaluates and selects

significant changes in each jurisdiction call for service data base for adjudication across

supporting the jurisdictions. Each jurisdiction fusion network creates 5 level 1 fusion call for

service data bases corresponding to casualties, emergency vehicle location (i.e., police and

ambulance), facility (i.e., hospital and emergency facilities), transportation link delays, and

bridge damage. AM resolves conflicts among these inputs and generates directives to the

jurisdictions to maintain the CTP. AM also determines the advisements necessary to be sent from

each jurisdiction to the EOC commander to keep him informed of relevant and significant new

information to him. This prioritization and culling of the real-time CTP changes to determine

commander and subordinate-specific call for service track set modifications to enable bandwidth

- 253 -

AFOSR F49620-01-1-0371

efficient updating of the relevant CTP’s to support all levels of decision making. The commander

adjudicates these inputs to maintain the jurisdiction CTP track set so as to support higher levels

of fusion and coordinated operations.

6.12.1 Track Confidence Estimation

On-line track confidence estimation is the real-time process for propagation and updating the

probability that each output track is false and the probability that the detectable entities in each

coverage area are represented in the fused picture (i.e., a tracker “ROC” curve).

On-line track confidence estimates enable a rigorous basis for scoring track initiation,

propagation, and deletion versus input data association.

 On-line track confidence estimation enables the users of fused track files to better combine these

tracks with other information. The payoff is the trustworthiness of each fused track and

completeness of the fused picture being recursively maintained.

The reliability in each fused track needs to be recursively maintained to support decision making,

so track confidence estimation provides the probability that each fused track is false in real time.

In addition the probability that the fused picture will contain a track on each detectable entity in

each coverage area is updated after each batch of input data is fused. As a result track confidence

estimation provides a rigorous basis to updating the completeness of the fused picture for track

maintenance and resource management decisions. In general these track confidences vary with

each track’s location, report association history, entity type, etc.

No operational distributed fusion systems have been developed with a rigorous on-line track

confidence estimation capability although some fusion systems use track birth & death statistics

and track association confidences in place of this capability. The problem is how to propagate &

estimate these confidences on-line based upon the current sensor roc curve statistics and data

fusion decisions. The baseline approach defined herein is an approximate solution that includes

the following:

1. uses Pd and Pfa a priori information from each source to initiate track Pd and Pft

2. propagates track Pd and Pft for each source update

- 254 -

AFOSR F49620-01-1-0371

3. generates track Pd and Pft to support track association

4. updates track Pd and Pft based upon source ROC curve and association confidences

The track confidence estimation equations are given for each updated, propagated, and pop-up

initiated track. These equations provide track file confidences for distributed users much like

those needed when using data directly from sensors. As a result sources with lower confidence

reporting thresholds (e.g., providing more timely kinematics, ID, and their own probability of

detection and false alarm statistics) can now be rigorously associated [or not] with distributed

site track files, maintaining their own coverage and individual track confidence statistics. Such

lower threshold source reporting is needed, so as to provide on-line situation awareness to the

commander for a clear and actionable picture of his area of interest. The resulting data fusion

product also drives retrospective analysis and collection management to fill information gaps in

real-time, so as to continuously improve upon the situation estimate. The progress in track

confidence estimation for fusion extends to support solutions to the fusion performance

evaluation (PE) problem, since PE is another fusion problem. Namely, the development of PE

software entails designing a PE network of fusion nodes that solve the track-to-truth data

preparation and association as well as measures of performance (MOP) estimation problems.

Track confidence estimation is applicable to achieve more accurate track-to-truth association and

MOP estimation. In summary, just as the sensor ROC curve (i.e., the measurement Pd & Pfa) is

required to determine if a sensor report should associated or not, the tracker ROC curve (i.e., the

track Pd & Pft) is required to determine if a track should be associated or not.

6.12.1.1 Role for Distributed Data Fusion

The distributed integration of information and distributed management of a timely response to

the situation is the objective of distributed data fusion (DF) and resource management (RM).

Automated DF is needed to extract the significant information from the tremendous volume of

diverse data. The distributed DF process should include a balance between centralized situation

assessment and coordination and fast reaction distributed solutions to enable effectively

integrated and timely responses. The accelerating tempo of the situation will force

interoperability of netted C
4
I systems with automated DF and RM software. The role for

automated DF and RM is depicted in Figure 1. The driving requirements are affordability and

- 255 -

AFOSR F49620-01-1-0371

mission robustness. To be affordable, the solution must capitalize on recent advances in

telecommunications, computers, and standardized software architectures.

Figure 1: Track Confidence Estimation Is Needed to Support Distributed Data Fusion and

Resource Management (DF&RM) Nodes in Dual Node Networks

The distributed fusion parts of the network specify how the data is to be batched (e.g., by sensor,

time, and report/data type) and the order in which the batches are to be processed by applying the

fusion node paradigm of the Dual Node Network architecture. The fusion and management

network is selected to divide-and-conquer the problem so as to achieve the knee-of-the-curve in

performance versus complexity/cost. The typical fusion part of the network is a “fan-in tree”

that is interlaced with a dual “fan-out tree” for resource management. The result provides local

more accurate feedback at higher rates as well as slower and broader situational awareness and

coordinated management of the resources [6.12-8], [6.12-11]. The criteria for network

optimization include: performance communication bandwidth, processor load, flexibility, fault

tolerance, and cost.

Mobile Data

Computers

Communications

Center #1

Emergency

Operations

Center

(EOC)
Disaster

Support
Assets &

FEMA

Teams

reports, assessments, requests
consistent tactical picture (CTP)

external reports & adjudicated

CTP updates plus tasking

C3I

C3I

C3I

C3I

Communications Center #1

Shared Incident

Information

C3I

C3I

RPs

RPs

Communications

Center #2

RPs

RPs

RPs

RPs

Communications Center #2
Mobile Data

Computers

Mutual Aid Jurisdiction (MAJ) MAJ

C3I

External

Sources

C3I

Mobile Data

Computers

Communications

Center #1

Emergency

Operations

Center

(EOC)
Disaster

Support
Assets &

FEMA

Teams

reports, assessments, requests
consistent tactical picture (CTP)

external reports & adjudicated

CTP updates plus tasking

C3I

C3I

C3I

C3I

Communications Center #1

Shared Incident

Information

C3I

C3I

RPs

RPs

Communications

Center #2

RPs

RPs

RPs

RPs

Communications Center #2
Mobile Data

Computers

Mutual Aid Jurisdiction (MAJ) MAJ

C3I

External

Sources

C3I

- 256 -

AFOSR F49620-01-1-0371

The track confidence equations for fusion are organized using the DF&RM Dual Node Network

(Dual Node Network) technical architecture to allow reuse of their implementation patterns via

the Dual Node Network toolbox. The baseline approach defined herein enables a priori source

probability of detection and false alarm data, to be used for data association scoring (i.e., more

accurate report-to-track association) and for the update of the track probability of detection and

false track confidence. This allows the reporting confidence thresholds from each of the sources

to be reduced (i.e., with higher probability of false alarm albeit at faster update rates and/or

higher probability of detection) and for these confidences to be accounted for in the association

scoring and state update. As a result, higher confidence fused tracks can be more rapidly

presented to the user and with a higher probability of detection in the coverage area. The values

of the track kinematics, entity ID, as well as track confidence for all tracks, are updated in the

state estimation function in each fusion node. However, the track confidence probability of

detection (Pd) and probability of false track (Pft) estimates are mediated and propagated in data

preparation and then used in data association to improve the accuracy of the 5 association

hypothesis scores. These track confidence equations will need to be tailored to each fusion node

and to support higher fusion levels and resource management within the distributed Dual Node

Network design.

6.12.1.2 Distributed Fusion Node Processing

The objectives of the track confidence propagation and update techniques are the following:

1. to propagate and update the probability that each track is not a valid entity of interest based

upon the current input source a priori statistics and how the current source reports were

associated to the track file.

2. to propagate and update the probability that the fused track file is missing a true entity in the

current input source field of view (FOV).

Track confidence computations are needed in each of the fusion node components (i.e., data

preparation, data association, and state estimation). The probability of detection and probability

of false alarm performance statistics initially available from the sources are used to initiate the

track confidences at a common time in data preparation. These track confidences are then used

- 257 -

AFOSR F49620-01-1-0371

for association scoring in data association. Based upon the association of the source data to the

track file, the track confidences are updated in state estimation. The track confidences are then

propagated as needed to support the fusion of the next set of tracks or source data in the data

preparation of the next fusion node or in state estimation for the user. The Bayesian mathematics

necessary to derive the rigorous equations to accomplish this requires an area of mathematics

that has not been solved yet. However, useful the approximations that can be used in hypothesis

evaluation portion of data association are specified below. The full derivation will be given in the

detailed track confidence derivations in Section 3.4.

The most widely used rigorously-based association scoring approaches are the max a posteriori

(MAP) criteria for data association and state estimation. The most common of these is the MAP

deterministic data association criterion used to select the ‘best’ hypothesis, which then used to

generate the MAP estimate of the system state. Another MAP approach updates the track state

confidence for each report based upon its relative association confidence score. This has been

termed probabilistic data association. A third criterion is a joint hypothesis and state optimization

(JHSO) criterion [6.12-6], [6.12-10]. A comparison of various Bayesian association hypothesis

scoring approaches is described in [6.12-5], [6.12-6].

To ease the development of track confidence estimation the Bayesian max a posteriori (MAP)

scoring is selected as the baseline approach. This overall MAP report-to-track score is the

product of the following 3 report-to-track score components:

1. kinematics and commensurate scoring: P(Y), usually a product of Gaussian density points,

2. noncommensurate sensor attribute scoring: P(Z), a sum of class confidences, P(K), times the

priors for the attributes,

3. a priori hypothesis scoring: P(H) as a product of association hypothesis types.

These 3 scores are defined as follows:

max P(H|R) = max {P(R|H) P(H)} = max {P(Y|H) P(Z|Y,H) P(H)}

 = max [ΠT {P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H)}] (1)

- 258 -

AFOSR F49620-01-1-0371

where

1. the maximization’s are over all association and non-association hypotheses, H,

2. H is the set of feasible association or non-association hypotheses,

3. R are the track and source report data,

4. Y is the set of kinematics from the tracks, Y(T) and the source reports, Y(S)

5. Z is the set of all parameters & attributes from both which are not available,

6. the product is over all independent labeled track hypotheses (i.e., of all 5 types),

7. the P(Y(T)|H) term is dropped as constant with respect to the maximization,

8. Z(T) & Z(S) are the parameters and attributes from the track & source reports, and

9. P(H) is the a priori confidence in the hypothesis.

The total scene hypothesis score is the product of the individual hypothesis scores for how all the

given batch of reports and the CTP tracks are associated (i.e., for each of the 5 types of

hypotheses). These scores are summarized below using the 0
th

 order approximation for the P(H)

term as follows:

1. Association Hypotheses

P(Y(S)|Y(T),H)P(Z(S),Z(T)|Y(S),Y(T),H) P(H) = {|V|
-1/2

}exp[-{I
T

V
-1

I

}/2] {ΣK[P(K|Z(T),Y(T),

H)P(K|Z(S),Y(S), H)/P(K|Y(T),Y(S), H)]}[1-PFA (S)][1- PFA(T)]PD (S)PD (T) (2)

2. Pop-up Hypotheses

P(Y(S)|H)P(Z(S)|Y(S),H)P(H) = {|E(V)|
-1/2

}exp[-{µ}/2]·[1-PFA (S)] [1- PD(T)] PD (S) 








J

UR
 (3)

3. False Alarm (FA) Hypotheses

- 259 -

AFOSR F49620-01-1-0371

P(Y(S)|H) P(Z(S)|Y(S), H) P(H) = {|E(V)|
-1/2

} exp[-{µ}/2]·PFA (S) PD (S) 








F

M
 (4)

4. Propagation Hypotheses

P(H) = [1-PFA (T)] [1- PD(S)] PD (T) 








L

UT
 (5)

5. Track Drop Hypotheses

P(H) = PFA (T) PD (T) 








D

N
 (6)

1. the first term after the sum is the class K element of the entity track ID disjoint class tree

2. the second term after the sum is the class K element of the source report ID tree

corresponding to that entity since the conditioning on Y(T) can usually be dropped due to

Y(S),

3. the third term after the sum (i.e., in the denominator) is the a priori probability of that class K

PD (S) is the probability of detection of this object reported by the source, which is determined

by source testing. Its primary use is in scaling the probability of track propagation, since it

appears in all of the report hypotheses. It is estimated as the probability of redetection for the

association hypothesis, and as a result is usually high (e.g., >.9). In the hypothesized case of an

initial detection by a source, the term in the pop-up, FA, and propagate hypotheses is the

probability of detection of a new object.

PFA (S) is the probability of false alarm (FA) of the source for this type of report, which is also

determined by source testing. It can be approximated as the expected number of false alarms

(i.e., under these report conditions) divided by the number of detected objects plus this expected

number of false alarms over the field of view (FOV),

PD (T) is the probability of detection of this object in the central track file, which is the

combined probability of detection of this object by any of the sources contributing to the track

- 260 -

AFOSR F49620-01-1-0371

file multiplied by [1- P(new object appearing during this time interval)]. If this is very near one,

then this term is dominated by the [1- P(new object appearing during this time interval)] term.

This term is where Poisson arrival statistics can be used. Equations for the propagation and

update of this term will be tailored to the fusion node.

PFA (T) is the probability that this track is a false alarm, which can be estimated by maintaining

the track existence confidences over time plus considering the probability of track death during

this time interval. The former FA probability will usually decrease over time due to increased

tracking confidences. If this resulting track confidence is very near one, then this term is

dominated by the probability of track death (i.e., dying in the FOV or moving out of the FOV).

This is where Poisson track death statistics can be used. The propagated and updated value for

this term from the last fusion node will also be tailored to this fusion node.

To achieve a 0th order approximation to the P(H) term the binomial combinatorics terms can be

dropped. This is sufficient for most applications. For the 1st order approximation the values in

the combinatorial expressions are:

1. UR (UT) = # uncorrelated reports (# tracks) in H

2. J (L) = # new tracks (# propagated tracks) in H

3. M (N) = # reports (# tracks) in H

4. F (D) = # false alarms (# dropped tracks) in H

For the non-association report hypotheses (i.e., pop-up initiation, and false alarm) the expected

value of the kinematics score is used. Namely, the kinematics score equation is used except that

the chi-square statistic (i.e., {IT V-1 I }) is replaced with its mean, µ.

For the non-association report hypotheses the innovations covariance is the report covariance, R,

for which the inverse square root of the determinant is taken for the up-front multiplier in the

kinematics equation above. The noncommensurate term for the non-association report

hypotheses is constant with respect to the maximization, since the class tree term sums to one. So

it is ignored here. Thus, the non-association report hypothesis score is the product of their (i.e.,

- 261 -

AFOSR F49620-01-1-0371

pop-up and false alarm) a priori score given above and their kinematics term with the above two

values used in its “V” innovations terms.

For the non-association track hypotheses (i.e., propagation, and drop track), the kinematics,

P(Y(T)), and noncommensurate terms are all constant with respect to the maximization. The

non-association report hypotheses (e.g., the pop-up and the report false alarm) scores have the a

priori terms plus an additional expected value report kinematics multiplicative term. The report

noncommensurate term expected value is assumed constant (e.g., using the a priori class tree as

the expected type the constant is unity). Each association hypothesis has all three of the terms

defined above, where the noncommensurate term is unity whenever either the report or the track

does not provide an entity type tree.

The scene with the highest association score (i.e., product of each of its hypotheses scores), as

found in Hypothesis Selection, is selected for use in state estimation. The values for the track

probability of detection and false alarm terms (i.e., PD (T) and PFA (T)) are those maintained by

the track confidence equations defined herein and when the source is a multi-source fusion node

the track confidence values are used for the PD(S) and PFA (S) terms as well.

6.12.1.3 Baseline Track Confidence Fusion Node Equations

The track confidence equations will be defined herein using the standard fusion node processing

functional flow described above. The inputs to the fusion node are described in terms of the

current distributed Consistent Tactical Picture (CTP) track set and a source report batch. Each

has a header and a list of contents. The CTP track set header contains summary descriptors

common to all tracks in the track set to include the following:

1. track set name and number of tracks contained in CTP track set.

2. track set state time and coordinate system (e.g., geometric and angular axis center vectors)

For the Baseline there is only one 3-d coordinate system center.

3. CTP track file probability of detection and false alarm (e.g., average or parameterized by area

of interest (AOI)).

- 262 -

AFOSR F49620-01-1-0371

For the baseline there is an average probability of detection and false alarm for the CTP track

file. A similar computation can be made for the different source coverage areas as needed. A

track dependent probability of false alarm is associated with each track number as defined below.

Also, the track birth and death statistics (i.e., probability of a new entity pop-up and an entity

death over a delta time) are assumed constant over a scenario, and

1. a priori entity ID trees, as available in IPB for mission

The components of each CTP track state are described as follows:

1. track number and false alarm confidence

2. track continuous parameters (kinematic, length, etc.)

3. track discrete attributes (entity ID tree, relationships, etc.)

Common Referencing: Time and Detection & False Alarm Propagation

After the ID/attributes and kinematics/parametrics data are put into a common time frame and

known misalignments compensated for, the CTP track file average probability of detection and

false alarm, as well as each track probability of being false is propagated to the current source

report time. The average probability of detection for the track file is propagated as follows:

P(inclusion of a true entity of interest in the CTP track file at t + ∆t) ≡ PD (at time t+ ∆t) = 1 -

P(true entity not in track file at t + ∆t) (1)

where

P(true entity not in track file at t + ∆t) = P(true entity not in track file at t + ∆t | entity is a new

arrival over ∆t) P(entity is a new arrival over ∆t) + P(true entity not in track file at t + ∆t | entity

is not a new arrival over ∆t) P(entity is not a new arrival over ∆t)

= 1.0 ∗ (expected # of new / [expected # of new + # of tracks at t]) + [1 - P(detection at t)] ∗

[1 - (expected # of new / [expected # of new + # of tracks at t])]

- 263 -

AFOSR F49620-01-1-0371

= P(new) + [1 - PD (at time t)] ∗ [1 - P(new)]

 (2)

This P(new) term is where Poisson arrival statistics, if available, are used. This computation can

be done per AOI (i.e., maintain a PD per AOI selected by source coverage or entity type (e.g., air,

ground, sea, and signature))

The probability that each CTP track is false is propagated separately (i.e., per track) as follows:

P(track is false at t + ∆t) ≡ PFA (track at time t+ ∆t)

= PFA (track at time t+ ∆t| false at time t) PFA (track at time t) + PFA (track at time t+ ∆t| not

false at time t) [1 - PFA (track at time t)]

 (3)

= PFA (track at time t) + P(track death from time t to t + ∆t) ∗ [1 - PFA (track at time t)]

The average probability of false alarm is propagated in the same way. This P(track death from

time t to t + ∆t) term is where Poisson track death statistics, if available, are used. This term can

vary per entity type, time, and source.

Hypothesis Generation

This function performs the ID/attributes and kinematics/parametrics gating to determine the

feasible association hypotheses. No track confidence computations are performed here.

However, the size of these gates around the CTP tracks (e.g., 5 sigma gates) are partially based

upon the track confidences, since these confidences imply a gate beyond which a report is not

feasibly associated with a track. This is due to the probability that the CTP track file may not

have the reported entity in track.

Hypothesis Evaluation

Bayesian max a posteriori (MAP) scoring is the Baseline approach, since it provides a rigorous

combination of kinematics, attributes, and a priori data. For the Baseline this overall MAP

report-to-track score is the product of the following 3 report-to-track score components:

- 264 -

AFOSR F49620-01-1-0371

1. kinematics & commensurate scoring: P(Y), usually a product of Gaussian density

points,

2. noncommensurate attribute scoring: P(Z), a sum of class confidences, P(K), times the

priors for the attributes,

3. a priori hypothesis scoring: P(H) as a product of association hypothesis types.

These 3 scores are defined as follows:

max P(H|R) = max {P(R|H) P(H)} = max {P(Y|H) P(Z|Y,H) P(H)}

 = max [ΠT {P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H)}] (4)

where

1. the maximization’s are over all association and non-association hypotheses, H,

2. H is the set of feasible association or non-association hypotheses,

3. R are the CTP track and source report data,

4. Y is the set of kinematics from both,

5. Z is the set of all parameters & attributes from both which are not available,

6. the product is over all independent labeled track, T, hypotheses (i.e., of all 5 types),

7. Y(T) are the track kinematics, the P(Y(T)|H) term is dropped as constant with respect to the

maximization,

8. Y(S) are the source report kinematics,

9. K are the elements of the disjoint class tree,

10. Z(T) are the parameters and attributes from the track,

11. Z(S) are the parameters and attributes from the source report,

- 265 -

AFOSR F49620-01-1-0371

12. P(H) is the a priori confidence in the hypothesis.

The track confidences developed herein are applied in the last of these association score

components (i.e., the P(H) a priori scoring). Before deriving the P(H) score it is useful to define

the other scores, so that the relationships can be understood. These 3 scores are defined in more

detail below.

Kinematics Association Scoring

The association hypothesis kinematics scoring for a new incoming source report, Y(S) to an

existing track, Y(T) assumes a Gaussian distribution [ellipsoid], with a CTP track covariance P

which models the error in the track location due to possible motion. Then the kinematics score is

computed as follows:

 P(Y(S)|Y(T), H) = {1/ (2π)
d/2

|V|
1/2

} exp[-1/2{I
T

V
-1

I

}] (5)

where

1. Y(S) are the source report Gaussian kinematics with covariance R,

2. Y(T) are the track Gaussian kinematics with covariance P,

3. H is the hypothesis that the report and track are associated,

4. d is the dimension of the Gaussian kinematics state,

5. |V| is the determinant of the innovations covariance, V=[φPφT
+ Q] + R,

6. is state transition matrix, Q is the noise covariance, and the measurement matrix, H, is the

identity,

7. I is the innovations vector, I = Y(S) - Y(T).

When all the covariances remain constant then the first term can be dropped. This yields the

classic Mahalanobis distance measure in the exponent after taking the log and multiplying by (-

2). When doing so these conversions also need to be applied to the noncommensurate and a

- 266 -

AFOSR F49620-01-1-0371

priori scores given below. In general the covariances are not constant and the MAP scoring used

here is not equivalent to Mahalanobis or the integral of the tail of the chi-square.

Noncommensurate Attributes ID Association Scoring

To use noncommensurate scoring requires the attributes and parameters, Z, in the report and

track data to be independent when conditioned on the feasible entity ID classes. Namely,

information about Z(T) does not help estimate Z(S) when the entity class K is known for each

class K. Under this assumption for each report and track pair, the second term scores an entity

track ID tree with a source report ID tree as follows:

P(Z(S),Z(T)|Y(S),Y(T),H)=P(Z(S)|Y(S), H) P(Z(T)|Y(T), H) {ΣK[P(K|Z(T),Y(T), H) P(K|Z(S),Y(S),

H)/P(K|Y(T),Y(S), H)]} (6)

where

1. the first two terms in front of the sum are constant with respect to the maximization when

they appear in every hypothesis (i.e., as they do in this option, so they are ignored here), also

the kinematics conditioning has been restricted to each report and track, respectively,

2. the first term after the sum is the class K element of the entity track ID disjoint class tree,

since the conditioning on Y(S) can usually be dropped due to Y(T),

3. the second term after the sum is the class K element of the source report ID tree

corresponding to that entity since the conditioning on Y(T) can usually be dropped due to

Y(S),

4. the third term after the sum (i.e., in the denominator) is the a priori probability of that class K

[note: when denominator is 0 for an ID class K, then whole term in the equation sum is 0],

and

5. the term components are as described above.

Note that inclusion of the a priori term enables for example a higher score for the association of a

rare entity with its corresponding track rare entity (i.e., when the denominator is small then a

- 267 -

AFOSR F49620-01-1-0371

match in ID in the numerator terms will increase the score for association). The class tree for

each source and each report is conditioned on only its own kinematics and attributes. Thus, it is

derivable from each source individually. Also, when either the report or track noncommensurate

attributes do not contribute to the ID, these noncommensurate terms in the equation sum to one

(i.e., the class K terms in the tree are disjoint and cover all possibilities).

Also, note that this term only rigorously applies when the current source report attributes are

noncommensurate with the track attributes. If previous report attributes have already been fused

(i.e., integrated) with the track attributes, then these previous attributes would implicate

corresponding attributes in the current report even given the entity class K. Thus the report and

the track attributes would be commensurate. When such attributes are available, it is better to

use the commensurate scoring in both the report and track (e.g., entity length, pulse descriptors,

IR signatures, etc.). Commensurate scoring is data dependent, but is usually performed like the

kinematics scoring defined above. In many applications these source attributes are not available.

Thus, for the case of previously fused source reports generating an ID the approximate pedigree

methods described later in this document are used to generate noncommensurate ID trees that are

used in the term defined above.

A Priori Association Hypothesis Scoring

The a priori hypotheses terms, P(H), use the following 1
st
 order approximate scoring equation

for each source report S and track T hypothesis.

[][]
[][]{ }

[]

[][]{ }

[] 





=







−−=







=







−−=−

−−=

D
N

TPTPdropP

K
UT

TPSPTPpropagateP

F
M

SPSPFAP

J
UR

SPTPSPuppopP

TPSPTPSPnassociatioP

DFA

DDFA

DFA

DDFA

DDFAFA

)()()(

)()(1)(1)(

)()()(

)()(1)(1)(

)()()(1)(1)(

 (7)

where

1. PD (S) is the probability of detection of this object reported by the sensor, which is

determined by sensor testing. Its primary use is in scaling the probability of track

- 268 -

AFOSR F49620-01-1-0371

propagation, since it appears in all of the report hypotheses. It is estimated as the probability

of redetection for the association hypothesis, and as a result is usually high (e.g., >.9). In the

hypothesized case of an initial detection by a sensor, the term in the pop-up, FA, and

propagate hypotheses is the probability of detection of a new object.

2. PFA (S) is the probability of false alarm (FA) of the sensor for this type of report, which is

also determined by sensor testing. It can be approximated as the expected number of false

alarms (i.e., under these report conditions) divided by the number of detected objects plus

this expected number of false alarms over the field of view (FOV),

3. PD (T) is the probability of detection of this object in the central track file, which is the

combined probability of detection of this object by any of the sensors contributing to the

track file multiplied by [1- P(new object appearing during this time interval)]. If this is very

near one, then this term is dominated by the [1- P(new object appearing during this time

interval)] term. This term is where Poisson arrival statistics can be used. Equations for the

propagation and update of this term will be tailored to the fusion node.

4. PFA (T) is the probability that this track is a false alarm, which can be estimated by

maintaining the track existence confidences over time plus considering the probability of

track death during this time interval. The former FA probability will usually decrease over

time due to increased tracking confidences. If this resulting track confidence is very near

one, then this term is dominated by the probability of track death (i.e., dying in the FOV or

moving out of the FOV). This is where Poisson track death statistics can be used. The

propagated and updated value for this term from the last fusion node will also be tailored to

the fusion node.

5. UR (UT) = # uncorrelated reports (# tracks) in H

6. J (K) = # new tracks (# propagated tracks) in H

7. M (N) = # reports (# tracks) in H

8. F (D) = # false alarms (# dropped tracks) in H

- 269 -

AFOSR F49620-01-1-0371

Hypothesis Selection

Hypothesis selection (HS) searches the scored association hypotheses to select a consistent set

(i.e., a consistent scene) to be used for state estimation (i.e., scene update). In Baseline fusion

nodes where more than one report can associated with a given track, but one report or track

cannot be used in two distinct hypotheses, HS becomes a labeled set partitioning problem (a

subclass of set covering problems which are a subclass of 0-1 integer programming problems).

For problems where for example one call for service cluster report can be associated with two

distinct call for service tracks, the problem would become one of set covering (i.e., that is

allowing multiple track associations per report). The labeling arises from the association

hypotheses being declared as true or false (i.e., associations, propagations, and initiations versus

deletions and false alarms). Since the field of operations research has developed numerous

hypothesis search algorithms, this function will not be emphasized herein. All these hypothesis

selection search functions rely upon the association scores that are influenced by the track

confidence measures derived above.

State Estimation

The kinematics, ID, and track detection and false alarm confidences are updated each time. The

kinematics state and its covariance are updated using a Kalman filter. Namely,

Y(T) (k) = Y(T) (k-1) + K[Y(S) (k) - H Y(T) (k-1)] (13)

P(k) = [I - KH] P(k-1)

where

• K is the Kalman gain, K = P(k-1) H
T

[HP(k-1)H
T

 + R]
-1

• I is the identity matrix

• P(k) is the covariance of the track kinematics state Y(T) at time k

Entity ID State Update

- 270 -

AFOSR F49620-01-1-0371

The entity ID is only updated when a new set of attributes is associated with a CTP track and

other requirements are met. The ID update applies another pedigree method to prevent double

counting. The Baseline ID update tests include tests for uniqueness and independence that will

be described later.

The equation for updating each ID class, C, in the disjoint track class tree with the current entity

sensor report class tree (i.e., two ID trees) is given as follows:

P(class C|T, S, H) = [P(C|T,H) P(C|S,H) /P(C|Y(S), H)] / ∑K [P(K|T,H)

 P(K|S,H)/P(K|Y(S), H)] if P(C|H) ≠ 0 (14)

= 0 if P(C|H)=0

The track detection and false alarm confidences are updated in Baseline as defined below. The

CTP track probability of detection, PD (T), is approximated as follows:

PD (T) = 1 - P(track missed after source fusion) (15)

where

P(track missed after fusion) = P(track missed after fusion| detected before) P(detected before) +

P(track missed after fusion| not detected before) P(not detected before)

= P(track dropped and source detection not declared a pop-up| detected before) P(detected

before) + P(source missed detection or source detected but report called false| not detected

before) P(not detected before)

= P(dropped track| detected before) P(source missed detection or source detected but report

called false| detected before) P(detected before) + [P(source missed detection | not detected in

track before) + P(report called false| source detected and not detected in track before) P(source

detected| not detected in track before)] P(not detected in track before)

In many cases false alarms are rare enough that the following hold:

1. the probability of false alarm for the source is low enough that a detection starts a track, and

- 271 -

AFOSR F49620-01-1-0371

2. the probability of false alarm for the CTP track file is low enough that no tracks are dropped.

In these cases the first assumption makes the second term in the second part of the sum above

zero (i.e., P(report called false| source detected and not detected in track before) = 0) and the

second assumption makes the first term zero (i.e., P(dropped track| detected before) = 0). Thus

the update for the CTP track probability of detection, PD (T), is approximated as follows:

PD (T updated) = 1 - [P(source missed detection| not detected in track before) P(not detected in

track before)]

= {1- [1- PD (T propagated from t-∆t)] [1- PD (current S)]} (16)

= PD (T propagated from t-∆t) + PD (current S) - PD (current S) PD (T propagated from t-∆t)]

where the first term in the product is one minus the probability that the track was not detected

before (i.e., at t-∆t) after being propagated to the current time, and the second term in the product

is one minus the average probability that the track was not detected by the current source during

the current source time interval.

Probability of Detection without Propagations and Pop-Ups

When the probability of false alarm is higher, then the probability of detection decreases since

true tracks may be dropped or true reports may be labeled as false alarms. More specifically,

when both the following hold:

PFA (S) > [1 - PFA (S)] [1 - PD (T)], so that unassociated reports are declared to be false alarms,

PFA (T) > [1 - PFA (T)] [1 - PD (S)], so that unassociated tracks are dropped, (17)

then the probability of detection is updated using the P(track missed after fusion) computed from

the equation above where,

P(source missed detection or source detected but report called false| detected in track before) =

1,

- 272 -

AFOSR F49620-01-1-0371

[P(source missed detection | not detected in track before) + P(report called false| source

detected and not detected in track before) P(source detected| not detected before)] = 1

Also, the P(dropped track | detected in track before) (i.e., not given the reports/tracks) can be

approximated by the current P(drop)/[P(drop) + P(propagate) + P(associate)] from the current

P(H) statistics. So, for this high probability of false alarm case the PD (T) is updated as follows:

 PD (T updated) = 1 - P(track missed after fusion) (18)

 = 1 - {P(dropped track | detected in track before) P(detected in track before)

+P(not detected in track before) }

= 1 - {[PFA (T) / {PFA (T) + [1 - PFA (T)] [1 - PD (S)] + [1 - PFA (S)] [1 - PFA (T)] PD (S) }] PD (T)

+ [1 - PD (T)] }

= PD (T) {1 - [PFA (T) / {PFA (T) + [1 - PFA (T)] [1 - PD (S)] + [1 - PFA (S)] [1 - PFA (T)] PD (S) }]

}

Note, this results in a reduction in the probability of detection due to unassociated tracks being

dropped and unassociated reports being labeled as false alarms. A better estimate for the track

file probability of detection can be achieved by estimating P(dropped track | detected in track

before, current reports and tracks) from the hypothesis selection significant candidate scene

scores. The equations for this estimate remain to be derived.

Probability of Detection with Propagations and Without Pop-Ups

If condition #2 above does not hold (i.e., unassociated tracks are propagated) and condition #1

still does (i.e., unassociated reports are declared false), then PD (T) does not change in the update.

In the case where there are a mixture of track propagations and track droppings, then the

proportion of these is used to weight between this and whichever of the alternatives above or

below applies (i.e., both of these alternatives cannot hold since pop-up criterion is all or none).

Thus, once the track file probability of detection gets high enough, the probability of pop-up

approximation equation yields no more pop-ups which will stop increases in track file

probability of detection. The track probability of detection will remain high until report false

alarms are declared. If the number of these false alarms exceeds expectations, then the track file

- 273 -

AFOSR F49620-01-1-0371

probability of detection is estimated (i.e., reduced) from the current statistics. Namely, if # of

false report declarations, NFA , is greater than PFA (S) x total # of reports, NR , (i.e., NFA > PFA (S)

x NR), then the new estimate for PD (T) is:

PD (T new) = 1 - { [NFA - PFA (S) x NR] / [NT + NFA - PFA (S) x NR] }

and the update equation is:

PD (T updated) = PD (T) + KD [PD (T new) - PD (T)]

where

1. # of false report declarations in fusion node = NFA

2. total # of current source reports = NR

3. total # of current tracks in track file = NT

4. prior track file probability of detection propagated to current time is PD (T)

5. KD is the gain for how much weight to give the new estimate. KD could be fixed (e.g., at 1 or

.5) or could be estimated (e.g., using the running total of previous updates in this mode

divided by the total number of times in this mode). For Baseline, KD = .5 should be

sufficient.

Probability of Detection Without Propagations and With Pop-Ups

If the reverse happens (i.e., unassociated tracks are dropped, but unassociated reports are

declared pop-ups), then

PD (T updated) = 1 - P(track missed after fusion) (19)

= P(dropped track| detected before) P(source missed detection| detected before) P(detected

before) + P(source missed detection| not detected in track before) P(not detected in track

before)

- 274 -

AFOSR F49620-01-1-0371

= 1 - { [PFA (T) / {PFA (T) + [1 - PFA (T)] [1 - PD (S)] + [1 - PFA (S)] [1 - PFA (T)] PD (S) }] ∗ [1 -

PD (S)] ∗ PD (T) + [1 - PD (S)] [1 - PD (T)] }

Note, in this case the potential of dropping a valid track reduces the track file probability of

detection, whereas the initiation of non-associated current source reports increases the track file

probability of detection. In all of these cases the average probability of false alarm for the track

file computed as described below can be used for PFA (T).

Probability of False Alarm for Associated Tracks

The individual track confidences depend upon whether the track was associated, propagated, or

declared a new pop-up track as described below. First, if the track was just associated with a

report, then the confidence that the track is a false alarm can be approximated as follows:

P(associated track is false)

= P(associated track is false| track was false before) P(track was false before) + P(associated

track is false| track was true before) P(track was true before) (20)

= P(associated report is false| track was false before) P(track was false before)

 = PFA (Source) PFA (Track)

1. PFA (Source) is the probability of false alarm for the source report,

2. PFA (Track) is the probability of false alarm for the associated track before update, and

3. an associated track that was true before (i.e., as an input to the fusion node) is not false even

if it has been associated with a false report or with the wrong valid report. Thus the second

term in the sum above is zero.

Probability of False Alarm for Propagated Tracks

Second, if the track was just propagated (i.e., not associated, but kept in the track file), then the

confidence that the track is a false alarm can be approximated as follows:

P(propagated track is false) = 1 - P(propagated track is true)

- 275 -

AFOSR F49620-01-1-0371

= 1 - P(propagated track is true| true before) P(true before)

(21)

= 1 - {P(propagated track is true| not detected and true before) P(not detected| true before) +

P(propagated track is true |detected and true before) P(detected| true before)} P(true before)

Where P(propagated track is true | not true before) = 0 and P(propagated track is true| not

detected and true before) = 1.

The value of P(propagated track is true| detected and true before) is essentially the probability of

the detected entity report being nonassociated with this track (e.g., due to its being statistically to

far away) or misassociated to another track (e.g., due to missed detections, misalignments, and

other errors). If we let this probability of nonassociation or misassociation be equal to ℘, then

the P(propagated track is false) is computed as follows:

P(propagated track is false) = 1 - { [1 - PD (Source)] + ℘ PD (Source) } [1 - PFA (Track)]

= PFA (Track) + (1 - ℘) PD (Source) - (1 - ℘) PD (Source) PFA (Track) (22)

where

1. PD (Source) is the probability of detection of the source,

2. PD (Track) is the probability of detection of the track file before update,

3. PFA (Track) is the probability of false alarm for the propagated track before update, and

4. P(propagated track is true | detected and true before) = ℘

℘ is estimated by the product of the probability of the track propagation with the sum of the

probability of the propagated track’s report detection either being incorrectly associated to

another track or its being declared a pop-up track (i.e., in the low PFA (source) case) versus its

being declared a false alarm (i.e., in the high PFA(source) case). As such the ℘ term can be

approximated as the probability of correct track propagation from the candidate scene

probabilities in hypothesis selection. This is done by adding all the track propagation scenes

- 276 -

AFOSR F49620-01-1-0371

scores and dividing by these plus all the remainder of the candidate (e.g., significant) scene

scores (i.e., with the track associated). .

If non-associated reports are declared pop-ups, then for the propagated track to be true the

detected report must be declared to be a pop-up, so based upon the a priori statistics the

approximation becomes:

P(propagated track is true| source detected and true before) = P(track propagation) P(report

pop-up) / [P(report-to-track association) + P(track propagation) P(report pop-up)]

= [1 - PD (Track)] [1 - PD (Source)] / {1 + [1 - PD (Track)] [1 - PD (Source)]}

Thus P(propagated track is false) is approximated from a priori data as follows:

P(propagated track is false) = 1 - { [1 - PD (Source)] + ([1 - PD (Track)] [1 - PD (Source)] PD

(Source) / {1 + [1 - PD (Track)] [1 - PD (Source)]}) } [1 - PFA (Track)] (23)

where

1. PD (Source) is the probability of detection of the source,

2. PD (Track) is the probability of detection of the track file before update,

3. PFA (Track) is the probability of false alarm for the propagated track before update, and

4. P(propagated track is true | not true before) = 0

5. P(propagated track is true| not detected and true before) = 1

6. P(propagated track is true| detected and true before) = [1 - PD (Track)] [1 - PD (Source)] / {1 +

[1 - PD (Track)] [1 - PD (Source)]} which is an approximation for the a priori probability of a

propagation and a pop-up.

For the case of high source probability of detection and low probability of false alarm the

following assumption is made:

P(track propagation) P(report pop-up) << P(report-to-track association)

- 277 -

AFOSR F49620-01-1-0371

In the case where the non-associated reports are declared to false alarms (i.e., PFA (Source) > (1 -

PFA (Source)) (1 - PD (Track)) then

P(propagated track is true| detected and true before) = P(track propagation) P(report false

alarm) / [P(report-to-track association) + P(track propagation) P(report false alarm)]

= [1 - PD (Source)] PFA (Source) / (1 - PFA (Source) + [1 - PD (Source)] PFA (Source) = [1 - PD

(Source)] PFA (Source) /[1 - PD (Source)PFA (Source)] (25)

In this non-associated report false alarm case the P(propagated track is false) is approximated as

follows:

P(propagated track is false) = 1 - { [1 - PD (Source)] + ([1 - PD (Source)] PFA (Source) PD

(Source) / [1 - PD (Source)PFA (Source)]} [1 - PFA (Track)]

(26)

where the variables are defined as described above. Note that when PFA (Source) = 1, this last

equation reduces to P(propagated track is false) remaining unchanged. Also note that for the case

of no current reports (i.e., PD (source) = 0), P(pop-up track is false) also remains unchanged. Of

course, the current propagated individual track probabilities of false alarms are used in the track

association and propagation hypothesis updates.

Probability of False Alarm for Pop-Ups

If a report was just declared to be a pop-up (i.e., not associated with any tracks, and used to

initiate a track in the CTP track file), then the confidence that the pop-up track is a false alarm

can be approximated as follows:

P(pop-up track is false) = 1 - P(pop-up track is true) =

= 1 - P(pop-up track is true| true report) P(true report) (27)

= 1 - {P(pop-up track is true| not detected before and true report) P(not detected before| true

report) + P(pop-up track is true | detected before and true report) P(detected before| true

report)} P(true report)

- 278 -

AFOSR F49620-01-1-0371

Where P(pop-up track is true | not true report) = 0 and P(pop-up track is true| not detected before

and true report) = 1.

The value of P(pop-up track is true| detected before and true report) depends upon the probability

of the prior track being non-associated with this report (e.g., due to its being statistically to far

away) or misassociated to another report (e.g., due to prior missing tracks, misalignments, and

other errors). If we let this probability of nonassociation or misassociation be equal to ℜ, then

the P(pop-up track is false) is computed as follows:

P(pop-up track is false) = 1 - { [1 - PD (Track)] + ℜ PD (Track) } [1 - PFA (Source)]

= PFA (Source) + (1 - ℜ) PD (Track) - (1 - ℜ) PD (Track) PFA (Source) (28)

where

1. PD (Source) is the probability of detection of the source,

2. PD (Track) is the probability of detection of the track file before update,

3. PFA (Source) is the probability of false alarm for the source report, and

4. P(pop-up track is true| detected before and true report) = ℜ

ℜ is estimated by the product of the probability of the track pop-up with the sum of the

probability of the prior track either being misassociated to another report or its being declared a

propagated track (i.e., in the low PFA (track) case) versus its being declared a false alarm (i.e., in

the high PFA(track) case).

If non-associated tracks are propagated, then for the pop-up track to be true the prior detected

track must be propagated, so based upon the a priori statistics the approximation becomes:

P(pop-up track is true| detected and true before) = P(track propagation) P(report pop-up) / P(

report-to-track association) + P(track propagation) P(report pop-up)

= [1 - PD (Track)] [1 - PD (Source)] /{1 + [1 - PD (Track)] [1 - PD (Source)] } (29)

- 279 -

AFOSR F49620-01-1-0371

In this track propagation case the P(pop-up track is false) is computed as follows:

P(pop-up track is false) = 1 - { [1 - PD (Track)] + ([1 - PD (Source)] [1 - PD (Track)] PD (Track)

/{1 + [1 - PD (Track)] [1 - PD (Source)] }) } [1 - PFA (Source)] (30)

 = PFA (Source) + PD (Track) { PD (Source) +PD (Track) - PD (Track) PD (Source)} [1 - PFA

(Source)]

where

1. PD (Source) is the probability of detection of the source,

2. PD (Track) is the probability of detection of the track file before update,

3. PFA (Source) is the probability of false alarm for the source report, and

4. P(pop-up track is true | not true report) = 0

5. P(pop-up track is true| not detected before and true report) = 1

6. P(pop-up track is true| detected before and true report) = [1 - PD (Track)] [1 - PD (Source)] /{1

+ [1 - PD (Track)] [1 - PD (Source)] } which is an approximation for the a priori probability

of a propagation and a pop-up

In the case where the non-associated tracks are declared to be false alarms (i.e., PFA (Track) > (1

- PFA (Track)) (1 - PD (Source))), then

P(pop-up track is true| detected and true before) = P(pop-up track) P(track false alarm) / P(

report-to-track association) + P(pop-up track) P(track false alarm)

= [1 - PD (Track)] PFA (Track) / (1 - PFA (Track) + [1 - PD (Track)] PFA (Track) = [1 - PD

(Track)] PFA (Track) / [1 - PD (Track) PFA (Track)]

 (31)

In this non-associated track false alarm case the P(pop-up track is false) is computed as follows:

- 280 -

AFOSR F49620-01-1-0371

P(pop-up track is false) = 1 - { [1 - PD (Track)] + ([1 - PD (Track)] PFA (Track) PD (Track) / [1 -

PD (Track) PFA (Track)])} [1 - PFA (Source)] (32)

where the variables are defined as described above. Note that when PFA (Track) = 1, P(pop-up

track is false) remains unchanged. Also note that for the initialization case of no prior tracks

(i.e., PD (Track) = 0), the above expression for pop-ups reduces to the PFA(S) as expected (i.e., ,

P(pop-up track is false) remains unchanged in this case also). Of course, the current propagated

individual track probabilities of false alarm are used in the track association and propagation

hypothesis updates.

The average track file probability of false alarm is computed as follows:

PFA (T) = PFA (T | propagated track) P(propagated track) + PFA (T | associated track) P(

associated track) + PFA (T | pop-up track) P(pop-up track)

 (33)

= { PFA (Track) + PD (Track) PD (Source) - PFA (Track) PD (Track) PD (Source)} P(propagated

track) + {PFA (Source) PFA (Track)} P(associated track) + { PFA (Source) + PD (Track) PD

(Source) - PFA (Source) PD (Track) PD (Source)} P(pop-up track)

 where

1. P(propagated track) = the # of propagated tracks divided by total # tracks in updated CTP

track file

2. P(associated track) = the # of associated tracks divided by total # tracks in updated CTP

track file

3. P(pop-up track) = the # of pop-up tracks divided by total # tracks in updated CTP track file

6.12.2 Adjudication Management

The role for data fusion, as depicted in Figure 2, is to combine sensor and source data as directed

by the resource manager to assess the situation and predict its impacts for the user. Data fusion is

- 281 -

AFOSR F49620-01-1-0371

not responsible for how its outputs are interfaced to the user, but does update the CTP and

enables adjudication flagging of significant CTP information for the user interface function.

E

n

v

i
r

o

n

m

e

n

t

H

M

I

I/
O

Data

Fusion

Sensors

& Sources

Resources

Level

2/3

RM

RESOURCE MANAGEMENT

Management

Adjudication

Figure 2: Adjudication under the Direction of the L2/3 RM Manages the Consistency of the

Distributed Fusion Track Files via Directives and Advisements within the Communications

Bandwidths

To achieve a Consistent Tactical Picture (CTP) requires distributed fusion and adjudication

management processes. Adjudication management is a subfunction of Resource Management

that is the process of planning/controlling response capabilities to meet mission objectives.

Figure 3 depicts a sample distributed fan-in fusion network and fan-out resource management

network design that contains adjudication management functions for DA.

The distributed adjudication management node design is based upon the Dual Node Network

(Dual Node Network) DF&RM Architecture. The Dual Node Network architecture provides

standard components, interfaces, and engineering guidelines for its application. Adjudication can

involves Human Machine Interface (HMI) and automated processes and is impacted by

organizational guidelines, communications, disaster planning, and other factors. The baseline

approach focuses on automated adjudication management processing and makes simplifying

assumptions about these and other factors.

- 282 -

AFOSR F49620-01-1-0371

Figure 3: Distributed Fusion Creates Situation Picture and Adjudication Maintains Consistency

6.12.2.1 Adjudication Management Needs

Adjudication management needs to maintain a tactical picture that is consistent across

jurisdictions to within the communication and processing time delays by sending adjudication

messages between the jurisdictions and the EOC. In future operations this can be extended to

include mobile data computers on first responders (e.g., police), jurisdiction communications

centers, and the EOC such as depicted in Figure 4.

The tactical pictures of two or more jurisdictions are considered consistent if they have

consistent information on entities in their overlapping area of interest (AOI). Information is

considered consistent if the following hold:

Mobile Data

Computers

Communications

Center #1

Emergency

Operations

Center

(EOC)
Disaster

Support
Assets &

FEMA

Teams

reports, assessments, requests
consistent tactical picture (CTP)

external reports & adjudicated

CTP updates plus tasking

C3I

C3I

C3I

C3I

Communications Center #1

Shared Incident

Information

C3I

C3I

RPs

RPs

Communications

Center #2

RPs

RPs

RPs

RPs

Communications Center #2
Mobile Data

Computers

Mutual Aid Jurisdiction (MAJ) MAJ

C3I

External

Sources

C3I

Mobile Data

Computers

Communications

Center #1

Emergency

Operations

Center

(EOC)
Disaster

Support
Assets &

FEMA

Teams

reports, assessments, requests
consistent tactical picture (CTP)

external reports & adjudicated

CTP updates plus tasking

C3I

C3I

C3I

C3I

Communications Center #1

Shared Incident

Information

C3I

C3I

RPs

RPs

Communications

Center #2

RPs

RPs

RPs

RPs

Communications Center #2
Mobile Data

Computers

Mutual Aid Jurisdiction (MAJ) MAJ

C3I

External

Sources

C3I

- 283 -

AFOSR F49620-01-1-0371

1. there is a mapping between the pictures (e.g., enabling entity designations at one site to

be indicated at the other sites).

2. the errors between the corresponding entity kinematics and attributes are within an

acceptable error range (e.g., due to measurement errors, misalignments, and time delays),

3. entities in the picture at one site are represented within an acceptable time delay (e.g., due

to communications and processing delays) at other sites

Figure 4: Fusion Updates the CTP with New Data and Adjudication Management Maintains

Consistency of Each Commander’s Subordinates

Level 4 fusion (i.e., Process Assessment) is applied to compare consistency of the kinematics

(position, velocity) and attributes of the given CTP (e.g., the subordinate’s CTP) against the

commander’s CTP. The adjudication process then needs to determine the significant and

generate the adjudication directive and advisement response tasks. The measures of performance

for this process include the following:

Emergency

Operations
Center

Communications
Center (CC)

Mobile Data

Computer (MDC)

Emergency Svcs
Personnel &

Civilian RPs

low-latency

information path

high-latency

information path

intermediate-latency
information path

Note: Updates to/from Mutual
Aid Jurisdictions Enter & Exit

at Communications Center
Level

Disaster Support Systems

RP
Reports

CTP

CTP

CTP

Updates

Mutual Aid &
RP Reports

Updates

UpdatesOther
Sources

Adjudication

Disaster Observables

Reporting

Parties

(RPs)

Incident Reports

RPs

Adjudication

RPsRPs

Emergency

Operations
Center

Communications
Center (CC)

Mobile Data

Computer (MDC)

Emergency Svcs
Personnel &

Civilian RPs

low-latency

information path

high-latency

information path

intermediate-latency
information path

Note: Updates to/from Mutual
Aid Jurisdictions Enter & Exit

at Communications Center
Level

Disaster Support Systems

RP
Reports

CTP

CTP

CTP

Updates

Mutual Aid &
RP Reports

UpdatesUpdates

UpdatesUpdatesOther
Sources

AdjudicationAdjudication

Disaster Observables

Reporting

Parties

(RPs)

Incident Reports

RPs

AdjudicationAdjudication

RPsRPs

- 284 -

AFOSR F49620-01-1-0371

1. Consistency accuracy will be measured by average percentage of non-matching CTP

tracks after a suitable time communications delay and the error in the matching CTP

tracks.

2. AM performance will trade-off the consistency accuracy of the CTP versus the number of

adjudications made, the bandwidth used, and its processing load averaged over a range of

scenarios as described by event sequence diagrams such as shown in Figure 5

Figure 5: Event Sequence Diagrams Describe Test Scenarios

Adjudication management needs to be able to perform in user selectable modes such as the

following:

1. Independent Mode – wherein a network node only maintains the CTP locally based upon its

fusion of all available input data (e.g., the current PRET distributed L1/2/3 fusion software).

Adjudication is primarily performed by the EOC commander or jurisdiction user. No

automated adjudication is performed unless commanded by the EOC. The bandwidth

Hospital

Reporting &

Management

Walk-in

Model

Performance

Evaluation &

Visualization

Road &

Patient

Report

Generator

Report

Fusion

HAZUS &

Entity

Generator

Vehicle

Dispatch

Start

Patient & Bridge & Hospital

External Damage Reports

Category 3 Patients

Hospital Patient

Arrival, Damage, &

Capacity Update
COPicture:

Patients, vehicles,

Hospital capacity
Vehicle Route Location

Dispatch

Performance
Ambulance Patients

Hospital Performance

Category 1&2 Walk-in Patients

Ambulance Routing of Category 3 Patients

Reporting Vehicle Location & ID,

Hospital & Bridge Damage Status

Patients: Location,

ID, Category

Hospital Damage & Bed Impact

COPicture:

Patients, vehicles,

Hospital status

Ground Truth

Hospital

Reporting &

Management

Walk-in

Model

Performance

Evaluation &

Visualization

Road &

Patient

Report

Generator

Report

Fusion

HAZUS &

Entity

Generator

Vehicle

Dispatch

Start

Patient & Bridge & Hospital

External Damage Reports

Category 3 Patients

Hospital Patient

Arrival, Damage, &

Capacity Update
COPicture:

Patients, vehicles,

Hospital capacity
Vehicle Route Location

Dispatch

Performance
Ambulance Patients

Hospital Performance

Category 1&2 Walk-in Patients

Ambulance Routing of Category 3 Patients

Reporting Vehicle Location & ID,

Hospital & Bridge Damage Status

Patients: Location,

ID, Category

Hospital Damage & Bed Impact

COPicture:

Patients, vehicles,

Hospital status

Ground Truth

- 285 -

AFOSR F49620-01-1-0371

available for adjudication messages will be assessed to determine which mode should be

selected during a disaster.

2. Commander Mode - wherein the EOC node has been designated as responsible for

maintaining consistency of a group of jurisdictions in the network and achieves this by

sending CTP management directives to subordinate jurisdictions and by fusing CTP track

files from subordinate jurisdictions. Significant changes to the CTP may be sent up echelon

(e.g., to FEMA or State) as advisements.

3. Participant Mode - wherein each jurisdiction will accept the received CTP management

directives of an EOC commander to faithfully modify its CTP and send significant CTP

advisements up to the EOC.

4. Hybrid Mode - the system element will function across the network as a participant and as a

commander simultaneously, with the objective of maintaining consistent tracks.

Under bandwidth limited operations, the AM function needs to be capable of evaluating the

feasible adjudications and to score the significance of the changes in call for service data base

states. The AM function needs to include the capability to automatically select adjudications

based upon these scores as compared to their respective thresholds derived from the

communications resource manager inputs. For a command process this includes the ability to

select directives that add, remove, and modify information in a subordinate’s CTP track data

(e.g., change a previously reported kinematics, identity, track number, or confidence value). For

a subordinate process this includes the ability to select advisements that suggest improvements or

modifications to the EOC commander’s CTP track data.

The AM Function needs to provide adjudication command prioritization to assist in priority-

based utilization of available communication assets. Through generating advisements and

directives, the AM Function will support the sharing of information with higher and lower levels

in the command hierarchy. The output of the AM Function will be adjudication messages (i.e.,

directives and advisements as well as flagging of mission significant changes) sent to the

communications management function. The AM Function will be able to adapt to current

operating conditions by increasing or reducing the processing throughput and memory required

- 286 -

AFOSR F49620-01-1-0371

and by increasing or decreasing the amount of bandwidth needed. The AM will be able to

resume based upon a saved internal state from persistent storage as needed.

6.12.2.2 Blackbox Role Design for Adjudication Management

Adjudication management alternatives that have been considered include the
following:

1. Hierarchical Adjudication (Baseline) – ‘commanders’ maintain consistency of their

subordinates via COP advisements from subordinates and directives to their subordinates

2. Centralized Adjudication – one network node performs all adjudication and shares global

adjudicated CTP file

3. Organic Data Sharing Self-Adjudication – each node generates its picture based on each

node sharing only its organic data

4. Like-Process Adjudication – relies on common fusion algorithmic processing of a fast

flat broadcast of all reports

5. Internet-Like Adjudication – sharing of CTP data with all subscribers relying on user

initiative for adjudication

6. Hybrid Adjudication – wherein different components of the system use variations of the

above approaches.

Of these, Hierarchical Adjudication has been selected as the baseline for this PRET Disaster

Assessment effort since it most conducive to the overall DA needs. For this approach

adjudication management is distributed over the DA space according to the EOC DA command

echelons. The CTP is created at each site by its fusion engine, which combines all available

sensor reports at the jurisdictions or tracks at the EOC (i.e., from the jurisdictions) into a picture

of the site’s AOI. The tactical picture consistency for each jurisdiction is maintained by the

adjudication management process located at the EOC. The adjudication process at the EOC

sends directives to the jurisdictions to update and correct their CTP’s. It also sends advisements

to higher commander(s) (e.g., FEMA or State), if there have been any mission significant

changes made to the local CTP. This approach to adjudication uses a reduced amount of

- 287 -

AFOSR F49620-01-1-0371

bandwidth for large echelons (as opposed to broadcasting the entire CTP or a centralized

approach), supports flat dissemination for rapid information dispersal (e.g., by adjudicating

duplicates away), and results in a consistent tactical picture. Missing directives can be detected

by the system (e.g., using a protocol) and requests for resending can be made. Missing

advisements can also be detected and in addition can be compensated for by the adjudication

process recognizing that there is still a significant difference between its local CTP and the

advisements sent from its subordinates. This process causes another directive to be sent

downward. Adjudication management is a subfunction of resource management function that

also includes mission, sensor, process, communications, vehicle, and other management

functions.

The inputs to Adjudication include the following:

1. CTP tracks just prior to state estimation in fusion and associated CTP track updates due to

fusion for each batch of data fused.

2. Adjudication commands from the resource manager (RM) (e.g., threshold values, mission

mode commands, adjudication mode management, reassignment of jurisdictions and

adjudication commanders) and implementation status from communications manager (e.g.,

bandwidth mode, link availability, significance level mode)

3. A priori information (e.g., adjudication significance parameters, command structure,

communications capability)

4. Saved internal state from persistent storage to reinitialize Adjudication.

The CTP for each update contains a header and information on each track to include the

following:

1. CTP header: jurisdiction name/number, time, CTP update number, coverage area changes

with probability of detection for each (e.g., due to communications outages)

2. CTP updates per track

Outputs from Adjudication include the following:

- 288 -

AFOSR F49620-01-1-0371

1. Adjudication directives to the subordinate jurisdictions via the communications manager

2. Adjudication advisements to the EOC commander via the communications manager

3. Mission significant changes to the CTP that need to be considered for highlighting to the

users

4. Prior adjudication decisions that impact the current or future adjudication decisions

5. Self adjudications to modify own CTP

6. Adjudication implementation status to RM (e.g., which can be passed on to the commander

per his dictates)

7. Saved internal state to persistent storage

6.12.2.3 The Distributed Fusion and Adjudication Management Network Design

To achieve the requirements described above for adjudication management will require an

interlaced network of Level 4 Fusion (i.e., Process Assessment) and Level 1 Management (i.e.,

Adjudication Management) nodes. The network provides a batching of the functions by

management level, site, input type, time, adjudication task type, and entity type such as depicted

in Figure 6. A sample management network partitioning by management level and role is shown

in Figure 7.

- 289 -

AFOSR F49620-01-1-0371

Figure 6: Representative Management Network Partitioning Schemes

Figure 7: Sample Management Node Network Batched over Management Levels

ObjectivesObjectives RelationshipsRelationships Individual
Responses

Individual
Responses

(etc.)

EM PersonnelEM Personnel SensorsSensors CallsCalls (etc.)

Time Window 1Time Window 1 Time Window 2Time Window 2 Time Window 3Time Window 3

(etc.)

EM PersonnelEM Personnel CivilianCivilian InfrastructureInfrastructure (etc.)

• Management
Level

• Platform

• Sensor Type

• Time

• Task Type

• Object Type

• Partitioning Method (Management Network) is Tailored to Given System Needs

• Hybrid Methods are Often Appropriate

FEMAFEMA EOCEOC JurisdictionJurisdiction

(etc.)

LocationLocation Attributes/IDAttributes/ID ClassificationClassification

ObjectivesObjectives RelationshipsRelationships Individual
Responses

Individual
ResponsesObjectivesObjectives RelationshipsRelationships Individual
Responses

Individual
Responses

(etc.)

EM PersonnelEM Personnel SensorsSensors CallsCalls (etc.)

Time Window 1Time Window 1 Time Window 2Time Window 2 Time Window 3Time Window 3

(etc.)

EM PersonnelEM Personnel CivilianCivilian InfrastructureInfrastructure (etc.)

• Management
Level

• Platform

• Sensor Type

• Time

• Task Type

• Object Type

• Partitioning Method (Management Network) is Tailored to Given System Needs

• Hybrid Methods are Often Appropriate

FEMAFEMA EOCEOC JurisdictionJurisdictionFEMAFEMA EOCEOC JurisdictionJurisdiction

(etc.)

LocationLocation Attributes/IDAttributes/ID ClassificationClassificationLocationLocation Attributes/IDAttributes/ID ClassificationClassification

Multiple Jurisdiction

Objective Management
Collaborative Jurisdiction

Resource Management

Jurisdiction Response

Objective Management

Ownship Resource

Relationship Management

Adj
Mgr

Route
Mgr

Med
Mgr

Fire
Mgr

Vehicle
Mgr

Bldg
Mgr

Commands,
Resource Status,

Fused CTP, Current

Plans

Jurisdiction

Objectives

Jurisdiction
Tasking

Collaborative

Jurisdiction
Objectives

Coordinated
Response

Prioritized
Needs

Commands, Resource Status,

Fused CTP, Current Plans

Coordinated Response, Information, Sensor,

Vehicle, Medical, Communications, & Process
Management Network

HMI
Mgr

Process
Mgr

L3 Management
Nodes

L2 Management
Nodes

L1 Management
Nodes

Multiple Jurisdiction

Objective Management
Collaborative Jurisdiction

Resource Management

Jurisdiction Response

Objective Management

Ownship Resource

Relationship Management

Adj
Mgr

Route
Mgr

Med
Mgr

Fire
Mgr

Vehicle
Mgr

Bldg
Mgr

Commands,
Resource Status,

Fused CTP, Current

Plans

Jurisdiction

Objectives

Jurisdiction
Tasking

Collaborative

Jurisdiction
Objectives

Coordinated
Response

Prioritized
Needs

Commands, Resource Status,

Fused CTP, Current Plans

Coordinated Response, Information, Sensor,

Vehicle, Medical, Communications, & Process
Management Network

HMI
Mgr

Process
Mgr

L3 Management
Nodes

L2 Management
Nodes

L1 Management
Nodes

- 290 -

AFOSR F49620-01-1-0371

As the DF&RM node networks partition the functions into smaller batches the resulting

complexity and optimality is reduced. Thus the goal in the DF&RM network design is to achieve

the knee-of-the-curve in DF&RM mission performance versus cost and complexity. A sample

distributed consistency assessment node network is shown in Figure 8 that batches the

jurisdiction CTP’s over time to achieve a better estimate of truth upon which to base the

consistency assessment.

Figure 8: Sample Distributed Consistency Assessment Node Network that Batches CTP’s over

Time

The baseline distributed consistency assessment and adjudication management node network

contains fusion and management nodes tailored to each site (i.e., jurisdiction CC or EOC. The

Baseline Adjudication Management network processing is partitioned into nodes that operate on

the Consistency Assessment Fusion node anomalous inconsistencies, as depicted in Figure 9.

The fusion and management network at each site is also sequential over the CTP updates

received at each site. The track updates output by Fusion are stored in the Consistent Tactical

Picture (CTP) database for use by the next Fusion node and are used by the Consistency

Assessment along with the most current CTP being compared for consistency (e.g., a subordinate

CTP). So each time a set of reports is fused, it is used to update the CTP and the update is used

Jurisd iction 2 CTPs over T im e

Jurisdiction 3 CTPs over T im e

Jurisdiction 1 CTPs over T im e

Jurisd iction 1 Consistency Assessm ent C TP Batching over T im e

Jurisdiction 2 Consistency Assessm ent CTP Batching over T im e

Jurisd iction 2 CTPs over T im e

Jurisdiction 3 CTPs over T im e

Jurisdiction 1 CTPs over T im e

Jurisd iction 1 Consistency Assessm ent C TP Batching over T im e

Jurisdiction 2 Consistency Assessm ent CTP Batching over T im e

- 291 -

AFOSR F49620-01-1-0371

to detect any significant differences that need to be adjudicated across users. Adjudication

Management can also receive directives and advisements via an RM node from others. AM

generates, evaluates, and selects the adjudication plan and then creates the prioritized

adjudication tasks that are sent to the communications manager (CM) for delivery. Examples of

these output adjudication tasks for improved CTP locations, attributes (e.g., medical and damage

severity), missing and false tracks that support higher level fusion and RM includes the

following:

1. Track Initiation and Drop Adjudications: generated for missing and duplicate tracks

2. Kinematics State Adjudications: generated when a track has fallen outside of the prescribed

kinematics accuracy constraints or confidences not sufficiently correct based on track type.

3. ID/Attribute State Adjudications: generated when a track has incorrect ID or attributes state

or confidences based on the track type (e.g., medical condition or damage severity).

4.

Figure 9: Baseline Distributed Consistency Assessment and Adjudication Management Node

Network

Consistency

Assessment

Adjudication

Mgmt Node

Advisements RM

Commander

Consistency

Directives RM

Assessment

RM

Time t+1Time t Time t+2

DF

Anomalies

CTPCTP CTP

Anomalies

DF

Adjudication

Mgmt Node

Adjudication

Mgmt Node

Near-Peer

Adjudication

Mgmt Node

Assessment

CTP

Anomalies

Subordinate

Consistency

CTP

CTPCTP CTP

CTP

DF

Adjudication

Mgmt Node

Adjudication

Mgmt Node

Advisements

Cmds Cmds Cmds

Updates Updates Updates

Fusion Node
Fusion Node Fusion Node

Consistency

Assessment

Adjudication

Mgmt Node

Advisements RM

Commander

Consistency

Directives RM

Assessment

RM

Time t+1Time t Time t+2

DF

Anomalies

CTPCTP CTP

Anomalies

DF

Adjudication

Mgmt Node

Adjudication

Mgmt Node

Near-Peer

Adjudication

Mgmt Node

Assessment

CTP

Anomalies

Subordinate

Consistency

CTP

CTPCTP CTP

CTP

DF

Adjudication

Mgmt Node

Adjudication

Mgmt Node

Advisements

Cmds Cmds Cmds

Updates Updates Updates

Fusion Node
Fusion Node Fusion Node

- 292 -

AFOSR F49620-01-1-0371

For the Baseline DA Fusion and Adjudication Management network outputs (e.g., the

advisements and directives) are considered for tasking for CTP implementation by the

information management RM node each site. These RM nodes include the algorithms for

complying with directives, determining if advisements have already been updated, and resolving

conflicts in advisements or between late directives with the current CTP.

This final Adjudication Management network design needs to be selected to achieve the knee-of-

the-curve in performance versus cost for Adjudication. The performance of this network will be

measured by how well it meets the derived requirements with minimum cost and complexity.

The primary accuracy and performance drivers are how consistent the user CTP’s are and how

much power and bandwidth adjudication requires, while cost will be driven by the life-cycle cost

of the software. As more optimality is needed in the adjudication decisions, the Consistency

Assessment and Adjudication Management network can take into consideration larger batches of

Fusion updates (e.g., over a sliding time window as described above). In this way the

adjudication decision on the significance of an update and which adjudications to send can be

based upon improved CTP track update histories, instead of just the current CTP track updates.

This will result in a combination of improved consistency and/or reduced power/bandwidth at a

higher complexity cost per Adjudication node.

6.12.2.4 Adjudication Management Node Processing

According to the Dual Node Network technical architecture the major component functions

performed in each Consistency Assessment and Adjudication Management node have a ‘dual’

correspondences, as described in Figure 10. Namely, each consistent assessment fusion node first

determines prepares the data for fusion (e.g., by converting the given CTP’s to a common

format, time, and reference frame for association decisions as shown in Figure 11. Secondly, the

overlapping information is used to generate, evaluate, and select associations of the site’s best

estimation (e.g., its CTP) with the current comparison (e.g., subordinate) CTP as depicted in

Figure 12. Thirdly, the association decisions and the information are used to update the CTP

consistency estimates,. These Consistency Assessment Fusion nodes are tailored to the CTP’s

that are assessed. A detailed explanation of how this is performed as a Level 4 Fusion process is

- 293 -

AFOSR F49620-01-1-0371

described in the Appendix: Performance Evaluation Methods for Data-Fusion Capable Tactical

Platforms.

ADJUDICATION
TASKING

ADJUDICATION RESPONSE

ADJUDICATION MANAGEMENT

Adjudication
Evaluation

Adjudication
Selection

Adjudication
Generation

TASK
PREPARATION

CTP Updates
& Prior CTP
Estimates

Adjudication Process CommandsPrior Adjudication Data

Adjudication
Requests

CTP
Updates

STATE
ESTIMATION
& PREDICTION

DATA ASSOCIATION

CONSISTENCY ASSESSMENT

HYPOTHESIS
EVALUATION

HYPOTHESIS
GENERATION

HYPOTHESIS
SELECTION

DATA
PREPARATION
(Common
Referencing)

CTP &
Sensor’/Source
or Adjudication
Messages

Fusion Process CommandsSource/Sensor Information

Figure 10: Each Fusion Node and Dual Adjudication Management Node Is Tailored from a Dual

Set of Functional Components

Figure 11: Performance Assessment (Evaluation) (PA) Nodes According to DF&RM Dual Node

Network Technical Architecture

Fusion
Nodes

(Subordinate
CTP &

Commander
CTP)

Data
Preparation

MOP’s
State

Estimation

Hypothesis Generation

Data Association

Hypothesis Evaluation

Hypothesis Selection

Next PA and

Fusion &
Mgmt.
Nodes

Prior PA

Nodes

Fusion
Nodes

(Subordinate
CTP &

Commander
CTP)

Fusion
Nodes

(Subordinate
CTP &

Commander
CTP)

Data
Preparation

MOP’s
State

Estimation

Hypothesis Generation

Data Association

Hypothesis Evaluation

Hypothesis Selection

Next PA and

Fusion &
Mgmt.
Nodes

Prior PA

Nodes

Fusion
Nodes

(Subordinate
CTP &

Commander
CTP)

- 294 -

AFOSR F49620-01-1-0371

Figure 12: Consistency Assessment Determines the Association of the Local Commander’s Best

CTP to Each of the CTP’s for which Consistency Estimates Are Desired (e.g., a Subordinate’s

CTP)

In a corresponding manner as per the Dual Node Network architecture, the Adjudication

Management nodes perform three ‘dual’ subfunctions. Namely, each management node performs

Task Preparation, Response Task Planning, and Response Tasking as described in Figure 13.

Task Preparation determines which subordinate (or higher commander) CTP track

inconsistencies need to be considered (e.g., due to mission significant differences) for

adjudication tasking along the chain of command. For these Task Preparation defines and scores

or ranks the candidate adjudication tasks. This includes CTP track initiation, track drop, and

location plus attributes state changes.

Response Task Planning generates, evaluates, and selects the adjudication response plan that

balances the need for adjudication tasking (e.g., directives and advisements based upon the

significance of the CTP differences) against the available bandwidth. Task planning also needs to

consider latency constraints and the dynamic problem to include how often similar adjudication

tasks are sent. Most generally, response task planning is a dynamic labeled set covering decision

problem with a set of tasks allocated to each resource having currently assigned or not labels. For

V

V

V

VV

V

VV

V

V

V V
V

V

Correspondence Between CTP’s Yields Consistency Anomalies

Performance is measured in terms of MOPs:

number missing & false states and errors in matching track states

Commander’s CTP:

25 Objects of Interest

Subordinate’s CTP:

27 Objects of Interest

V

V

V

VV

V

VV

V

V

V V
V

V

Correspondence Between CTP’s Yields Consistency Anomalies

Performance is measured in terms of MOPs:

number missing & false states and errors in matching track states

Commander’s CTP:

25 Objects of Interest

Subordinate’s CTP:

27 Objects of Interest

- 295 -

AFOSR F49620-01-1-0371

the baseline adjudication task planning each subordinate, near-peer, and higher commander will

be assigned a set of candidate adjudication tasks labeled as active or not to be tasked

Based upon the response plan Adjudication Tasking creates the prioritized adjudication task

messages to be output to the communications manager for dissemination. In addition the CTP

adjudication status is fed back to the RM as needed. As with Fusion, the Adjudication nodes are

tailored to the data types being adjudicated. Examples of cases for which tailored adjudication

node processing may be needed include Commander CTP inconsistency advisement,

Subordinate or own CTP update directive, and Significant CTP event advisement.

Figure 13: The Dual Node Network Architecture Resource Management Node Functional

Partitioning

• DETERMINE CANDIDATE

TASKS THAT MEET NEEDS

• MEDIATE RESOURCE TASKS

(E.G., COMMON
REPRESENTATION &
UTILITY)

• COMPENSATE FOR

RESOURCE MISMODELING
AND FAULTS

• OUTPUT CANDIDATE
RESOURCE TASKS

• MANAGE RESOURCE OBJECTIVES &
RELATIONSHIPS

• TASK/CONTROL RESOURCES

– HW/SW MODES, CUES, & SIGNALS

– RESOLVE RESOURCE SCHEDULING
CONFLICTS

• FEEDBACK RESOURCE MGMT. STATUS

• OUTPUT L0/1/2/3 RESOURCE

TASKING/CONTROLS

• GENERATE FEASIBLE

RESOURCE TASK PLANS
(E.G., TASK SCHEDULES)

• SCORE FEASIBLE
RESOURCE PLANS

• SELECT, DELETE, OR
INITIATE RESOURCE PLANS

• OUTPUT SELECTED

RESOURCE PLAN(S)

RESOURCE
TASKING/
CONTROL

RESPONSE TASK PLANNING

RESOURCE MANAGEMENT NODE

PLAN
EVALUATION

PLAN
SELECTION

PLAN
GENERATION

TASK
PREPARATION

USER
OR PRIOR

RM
NODE

RESOURCE STATUSRM NEEDS & DATA FUSION ESTIMATES

Resources
& Other

RM Nodes

• DETERMINE CANDIDATE

TASKS THAT MEET NEEDS

• MEDIATE RESOURCE TASKS

(E.G., COMMON
REPRESENTATION &
UTILITY)

• COMPENSATE FOR

RESOURCE MISMODELING
AND FAULTS

• OUTPUT CANDIDATE
RESOURCE TASKS

• MANAGE RESOURCE OBJECTIVES &
RELATIONSHIPS

• TASK/CONTROL RESOURCES

– HW/SW MODES, CUES, & SIGNALS

– RESOLVE RESOURCE SCHEDULING
CONFLICTS

• FEEDBACK RESOURCE MGMT. STATUS

• OUTPUT L0/1/2/3 RESOURCE

TASKING/CONTROLS

• GENERATE FEASIBLE

RESOURCE TASK PLANS
(E.G., TASK SCHEDULES)

• SCORE FEASIBLE
RESOURCE PLANS

• SELECT, DELETE, OR
INITIATE RESOURCE PLANS

• OUTPUT SELECTED

RESOURCE PLAN(S)

RESOURCE
TASKING/
CONTROL

RESPONSE TASK PLANNING

RESOURCE MANAGEMENT NODE

PLAN
EVALUATION

PLAN
SELECTION

PLAN
GENERATION

TASK
PREPARATION

USER
OR PRIOR

RM
NODE

RESOURCE STATUSRM NEEDS & DATA FUSION ESTIMATES

Resources
& Other

RM Nodes

- 296 -

AFOSR F49620-01-1-0371

7. References

[6.2-1] John F. Tangney. Programs in Higher Levels of Information Fusion. IEEE Aerospace and

Electronics Systems Society Magazine, pages 21-25, Nov. 2003.

[6.2-2] James Llinas. Information Fusion for Natural and Man-Made Disasters. In Proc. Fifth Int.

Conf. Information Fusion, pages 570-574, Annapolis, MD, USA, 8 July–11 July 2002. Int. Soc.

Information Fusion, Sunnyvale, CA 2002.

[6.2-3] U.S. Air Force Scientific Advisory Board Committee on Building the Joint Battlespace

Infosphere. Building the Joint Battlespace Infosphere. Report SAB-TR-99-02. Washington D.C.,

7 December 2000. U.S. Air Force Scientific Advisory Board, 2002.

[6.2-4] Ikuo Takeuchi, Shigeru Kakumoto and Yozo Goto. Towards and Integrated Earthquake

Disaster Simulation System. Proc. First Int. Workshop on Synthetic Simulation and Robotics to

Mitigate Earthquake Disasters. Padova, IT, 5 July-8 July 2002, Universita di Roma 2002.

[6.2-5] John Salerno and Paul Bello. Information fusion. Information Institute General Workshop

II. Rome NY 10 June-11 June 2003.

[6.2-6] History of ICS. Incident Command System National Training Curriculum Report.

Washington DC, October 1994. National Wildfire Coordinating Group, 1994.

[6.2-7] Gray Davis and Dallas Jones. SEMS guidance for special districts. July 1999, Fresno CA.

Standardized Emergency System Advisory Board.

[6.2-8] Hiroaki Kitano et. al. Robo-Cup Rescue: search and rescue in large scale disasters as a

domain for autonomous agents research. IEEE Int. Conf. on Sys. Man and Cyb., pages 739-743,

Tokyo, October 1999.

[6.2-9] Michael E. Durkin. Fatalities, nonfatal injuries, and medical aspects of the Northridge

earthquake. Mary C. Woods and W. Ray Sieple (eds), The Northridge CA earthquake of 17 Jan

1994. California Dept. of Conservation Div. of Mines and Geol. Spec. Pub. 116. pages 247-254,

1994.

- 297 -

AFOSR F49620-01-1-0371

[6.2-10] Earl Aurelius, ed. The January 17 1994 Northridge CA earthquake. Houston TX 1994.

Tech rept of ABS Consulting Inc., 1994.

[6.2-11] Qiang Gong, Arun Jotshi and Rajan Batta. Dispatching/routing of emergency vehicles in

a disaster environment using data fusion concepts. submitted to the Seventh Int. Conf.

Information Fusion Stockholm SW 28 June–1 July 2004.

[6.2-12] D. Lambert. Grand Challenges of Information Fusion. Proc Sixth Int. Conf. Information

Fusion, pages 570-574, Cairns, Australia, pages 213-220, 8 July–10 July 2003. Int. Soc.

Information Fusion, Sunnyvale, CA, 2004.

[6.2-13] A. Rasmussen, J. Pejtersen, L. Goodstein. Cognitive Systems Engineering. Wiley, New

York, 1994.

 [6.2-14] Wayne Johnson, Ian D. Hall. From Kinematics to Symbolics for Situation and Threat

Assessment. Proc. Conf. on Information, Decision and Control. Adelaide, Australia, 8 Feb.-10

Feb. 1999. Defence Science and Technology Organization, 1999.

[6.2-15] Eric Little. Foundations of Threat Ontology (ThrO) for Data Fusion Applications.

Center for Multisource Information Fusion Technical Report, Buffalo NY, 2003.

[6.2-16] Finn. V. Jensen. An introduction to Bayesian Networks, Springer, New York, 1996.

[6.2-17] Eveline. M. Helsper, Linda. C. van der Gaag. Building Bayesian networks through

ontologies. F. van Harmelen (ed.). Proc. 15th Euro. Conf. on Art. Int. pages 680-684,

Amsterdam, the Netherlands, IOS Press, 2002.

[6.2-18] Thuong Doan, Peter Haddawy, TienNguyen, and Deva Seetharam. A Hybrid Bayesian

Network Modeling Environment. In The Nat. Comp. Sci. and Eng. Conf. NCSEC 1999.

[6.2-19] Peter Gärdenfors. Belief Revision. Cambridge University Press, Cambridge, U.K., 1992.

[6.2-20] Craig. Boutilier, Nir. Friedman, Joeseph. Halpern.. Belief Revision With Unreliable

Observations. Proc. of the Fifteenth Nat. Conf. on Art. Int. pages 127--134, Madison, WI, 26

July-30 July, 1998. American Assoc. for Art. Int. Menlo Park CA USA, 1998.

- 298 -

AFOSR F49620-01-1-0371

[6.2-21] Didier Dubois and Henri Prade. Introduction: Revision, Updating, And Combining

Knowledge. Handbook of defeasible reasoning and uncertainty management systems Vol. 3.

Kluwer Academic Publishers, London, U.K., 1998.

[6.2-22] Isabelle Bloch, Anthony Hunter, Introduction, Fusion: General Concepts and

Characteristics, International Journal Of Intelligent Systems, Vol. 16, 1107–1134, 2001 John

Wiley & Sons, Inc, 2001

 [6.2-23] Aldo Dragoni. Belief Revision: From Theory To Practice. The Knowledge Engineering

Review. Vol. 12(2), Cambridge University Press, 1997.

[6.2-24] Salem Benferhat, S., Didier Dubios and Henri Prade. Kalman-like Filtering in a

Possibilistic Setting. in the Proc. of the Euro. Conf. on Art. Int. 2000. Berlin GE, 20 Aug.-25

Aug. 2000. European Coordinating Committee for Art. Int., West Lothian, U.K., 2000.

[6.2-25] James Llinas, Christopher Bowman, Galina Rogova, Alan Steinberg, Edward Waltz,

and Frank White, Revisions to the JDL Data Fusion Model II, submitted to the. Seventh Int.

Conf. Information Fusion Stockholm SW 28 June–1 July 2004. Int. Soc. Information Fusion,

Sunnyvale, CA., 2004.

[6.3-1] E. Waltz, J. Llinas, Multisensor Data Fusion, Artech House, Norwood MA, 1990.

 [6.3-2] K. Vicente, Cognitive Work Analysis, Lawrence Erlbaum Associates, Mahwah NJ,

1999.

[6.3-3] A. Rasmussen, J. Pejtersen, L. Goodstein. (1994) Cognitive Systems Engineering.

Wiley, New York.

[6.3-4] J. K. Uhlmann, Efficient Data Association with Multivariate Gaussian Distributed States,

US Patent No. 6,239,740, 2001, 2001.

[6.3-5] D.L. Hall, J. Llinas, Handbook of Multisensor Data Fusion, CRC Press, New York,

2001.

- 299 -

AFOSR F49620-01-1-0371

[6.3-6] M.R. Endsley, Automation and Situation Awareness, in Automation and Human

Performance: Theory and Practice, Lawrence Erlbaum Associates, Mahwah NJ, 1996.

[6.3-7] C.M. Burns et al, Boundary Purpose and Values in Work-Domain Models, MILCOM

2002, pp. 448-454.

[6.3-8] Donald E. Brown, Justin R. Stile et al, Using Simulation to Produce a Data Fusion

Decision Support Tool for the Assessment of Manmade and Natural Disasters, 21
st
 Int. Conf. on

Modeling, 2003.

 [6.3-9] Anne-Claire Boury-Brisset, “Ontology-based Approach for Information Fusion”, CMIF

Workshop II on Ontology and Information Fusion, September 2003, Buffalo, NY (see

www.infofusion.buffalo.edu).

[6.3-10] Campbell, K. (1990) Abstract Particulars, Cambridge, MA: Basil Blackwell.

[6.3-11] Mark T. Elmore Thomas E. Potok and Frederick T. Sheldon. “Dynamic Data Fusion

Using An Ontology-Based Software Agent System” Proceedings of the 7th World

Multiconference on Systemics, Cybernetics and Informatics, 2003.

[6.3-12] Gomez-Perez, A., “Some Ideas and Examples to Evaluate Ontologies”, Proceedings of

the Eleventh IEEE Conference on Artificial Intelligence Applications. Editorial IEEE Computer

Society Press. 1995

[6.3-13] P. Grenon (2003) “Knowledge Management from the Ontological Standpoint,” in

Proceedings of WM 2003 Workshop on Knowledge Management and Philosophy, April, Luzern

Switzerland.

[6.3-14] P. Grenon (2003) “Spatiotemporality in Basic Formal Ontology: SNAP and SPAN,

Upper-Level Ontology and Framework for Formalization, IFOMIS Technical Report Series,

(http://ifomis.de).

[6.3-15] P. Grenon & B. Smith. (2003) “SNAP and SPAN: Towards Dynamic Spatial

Ontology,” Spatial Cognition and Computation (forthcoming).

- 300 -

AFOSR F49620-01-1-0371

[6.3-16] T. R. Gruber, (1993) “A Translation Approach to Portable Ontologies,” Knowledge

Acquisition, 5: 199-220.

[6.3-17] E. Husserl. (1900-01) Logische Untersuchungen, 2 Bde, Husserliana, Band XIX, Den

Haag: Martinus Nijoff, 1985 ed.

[6.3-18] Johansson, I. (1989) Ontological Investigations: An Inquiry into the Categories of

Nature, Man and Society, New York, Routledge.

[6.3-19] Kogut, P., Crane, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., and Smith, J.

(2002) UML for ontology development. The Knowledge Engineering Review, 17, 1:61–64.

[6.3-20] M. M. Kokar, J. A. Tomasik, and J. Weyman. Formalizing Classes of Information

Fusion Systems. Information Fusion: An International Journal on Multi-Sensor, Multi-Source

Information Fusion, Vol. 5(3), pp. 189-202, 2004.

[6.3-21] M. M. Kokar. Situation awareness: issues and challenges. In Proceedings of the

Seventh International Conference on Information Fusion, pages 533–534, 2004.

[6.3-22] M. M. Kokar and J. Wang. (2002) Using ontologies for recognition: An example. In

Proceedings of the Fifth International Conference on Information Fusion, pp. 1324 – 1343.

[6.3-23] Kokar, M., “Choices in Ontological Languages and Implications for Inferencing”,

Presentation at Center for Multisource Information Fusion 2004 Workshop III on Critical Issues

in Information Fusion, September 2004

[6.3-24] Little, E. (2003) “A Proposed Methodology for Application-Based Formal Ontologies,”

Proceedings of the Workshop on Reference Ontologies vs. Application Ontologies, 15-18 Sept.,

University of Hamburg, CEUR-WS.org.

[6.3-25] Little, E., Rogova, G., Boury-Brisset, A.C., (2005) “Theoretical Foundations of Threat

Ontology (ThrO) for Data Fusion Applications”, TR-2005 -269, Nov. 2005.

- 301 -

AFOSR F49620-01-1-0371

[6.3-26] Little, E. & Rogova, G. (2005) “Ontology Meta-Model for Building A Situational

Picture of Catastrophic Events,” in Proceedings of the FUSION 2005-8th International

Conference on Multisource Information Fusion, July 25-29, Philadelphia, PA.

[6.3-27] C. J. Matheus, M. M. Kokar, and K. Baclawski. (2003) “A core ontology for situation

awareness”. In Proceedings of the Sixth International Conference on Information Fusion, pages

545 –552.

[6.3-28] Chris Nowak. (2003). "On ontologies for high-level information fusion". In

Proceedings of the Sixth International Conference on Information Fusion. Cairns, Australia.

[6.3-29] Nowak, C. & Lambert, D. (2005) “The Semantic Challenge for Situation Assessment”

in Proceedings of the FUSION 2005-8th International Conference on Multisource Information

Fusion, July 25-29, Philadelphia, PA.

[6.3-30] A. Rasmussen, J. Pejtersen, L. Goodstein. (1994) Cognitive Systems Engineering.

Wiley, New York.

[6.3-31] Rescher, N. (1955) “Axioms for the Part Relation,” Philosophical Studies, 6, 8-11.

[6.3-32] Simons, P. (1987) Parts: A Study in Ontology, Oxford: Oxford Univ. Press.

[6.3-33] Smith, B. (forthcoming) “Against Fantology,” in J. Marek and E. M. Reicher (eds.),

Experience and Analysis, Vienna: öbv&hpt.

[6.3-34] Smith, B and Grenon, P., (2004) The Cornucopia of Formal Relations, in Dialectica

58: 279-296.

[6.3-35] Smith, B. (1996) “Mereotopology: A Theory of Parts and Boundaries,” Data and

Knowledge Engineering, 20 (1996), 287–303.

[6.3-36] Steinberg, A. (2005) “An Approach to Threat Assessment,” ,” in Proceedings of the

FUSION 2005-8th International Conference on Multisource Information Fusion, July 25-29,

Philadelphia, PA.

- 302 -

AFOSR F49620-01-1-0371

[6.4-1] Health Forum. AHA hospital statistics, 2001 edition, American Hospital Association,

Chicago, IL.

[6.4-2] Health Forum. AHA guide to the healthcare field, 2001-2002 edition, American Hospital

Association, Chicago, IL.

[6.4-3] Health Forum. AHA hospital statistics, 2003-2004 edition, American Hospital

Association, Chicago, IL.

[6.4-4] S. Aroni and M. Durkin. Injuries and occupant behavior in earthquakes. In Proceedings

of the Joint US-Romanian Seminar on Earthquakes and Energy, Washington (DC): Architectural

Research Centers Consortium, 1985:3-40.

[6.4-5] K. M. Bretthauer and M. J. Cote. A model for planning resource requirements in health

care organizations. Decision Sciences, 1998; 29(1): 243-270.

[6.4-6] H. H. Chang. Determinants of hospital efficiency: the case of central government-owned

hospitals in Taiwan. International Journal of Management Science, 1998; 26(2): 307-317.

[6.4-7] D. H. Cheu. Northridge earthquake, January 17, 1994: the hospital response. California

Seismic Safety Commission, Sacramento, 1994.

[6.4-8] J. K. Cochran and L. Lin. Compound dynamic event metamodels for electronic assembly

line systems. IIE Transactions, 1993; 25(2): 12-25.

 [6.4-9] D. M. Cohan. A hospital patient care flow model of stochastic structure. PhD

dissertation, Pennsylvania State University, University Park, PA, 1972.

[6.4-10] M. J. Cote. Patient flow and resource utilization in an outpatient clinic. Socio-Economic

Planning Sciences, 1999; 33(3): 231-245. [11] M. E. Durkin. Fatalities, nonfatal injuries and

medical aspects of the Northridge earthquake, Northridge, California earthquake of 17 January

1994. Edited by Woods MC, Seiple WR. California Department of Conservation, Division of

Mines and Geology, Sacramento, 1995: 247-254.

- 303 -

AFOSR F49620-01-1-0371

 [6.4-12] ECMC 2001. OR efficiency improvement study. Report by The Center for Excellence in

Global Enterprises Management - Department of Industrial Engineering, State University of New

York at Buffalo, Buffalo, NY, Dec 2001.

 [6.4-13] FEMA-366, HAZUS99 estimated annualized earthquake loss for the U.S., February

2001; http://www.fema.gov/hazus/dl_eqpub.shtm.

[6.4-14] B. F. Giraldo, P. Martinez and P. Caminal. Parametric modeling of the hospital activity

applied to the simulation of patients in waiting-list. Proceedings of the 22nd Annual EMBS

International Conference, Chicago IL, 2000; 3: 2334-2336.

 [6.4-15] A. K. Henderson, S. R. Lillibridge, C. Salinas, R. W. Graves, P. B. Roth and E. K. Noji.

Disaster medical assistance terms: Providing health care to a community struck by hurricane

Iniki. Annals of Emergency Medicine, 1994; 23(4): 726-730.

 [6.4-16] R. R. Jean. Staff allocation and cost analysis: Application of a hospital patient flow

model. M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1974.

 [6.4-17] J. B. Jun, S. H. Jacobson and J. R. Swisher. Application of discrete-event simulation in

health care clinics: A survey. Journal of the Operational Research Society, 1999; 50(2): 109-

123.

 [6.4-18] E. P. C. Kao and S. L. Chang. Modeling time-dependent arrivals to service systems: A

case in using a piecewise polynomial rate function in a non-homogeneous Poisson process.

Management Science, 1988; 34(11): 1367-1379.

 [6.4-19] M. Lagergren. ASIM-a system for monitoring and evaluation of the care of the elderly

and disabled in a municipality. Health Services Research, 1993; 28(1): 27-44.

[6.4-20] J. C. Lowery. Multi-hospital validation of critical care simulation model. Proceedings of

the 1993 Winter Simulation Conference, Los Angeles, CA, USA, 1993: 1207-1215.

[6.4-21] M. Mahue. Methodologies for comparing injury data - II: Impact of Northridge injuries

on emergency departments in Los Angeles County. Second National Workshop on Modelling

- 304 -

AFOSR F49620-01-1-0371

Earthquake Casualties for Planning and Response, Jesuit Retreat House, Los Altos, California,

February 5-7, 1996.

 [6.4-22] Mercy Hospital, August 2002. Operating room efficiency improvement study. Report by

The Center for Excellence in Global Enterprises Management - Department of Industrial

Engineering, State University of New York at Buffalo, Buffalo, NY, August 2002.

 [6.4-23] R. A. Olson and D. E. Alexander. Summary of proceedings, Second National Workshop

on Modeling Earthquake Casualties for Planning and Response, Jesuit Retreat House, Los Altos,

California, February 5-7, 1996.

 [6.4-24] Personal Communication with Michael Ford, ER Manager, Mercy Hospital of Buffalo,

NY, Nov 2002.

[6.4-25] G. Royston, A. Dost, J. Townshend and H. Turner. Using system dynamics to help

develop and implement policies and programmes in health care in England. System Dynamics

Review, 1999; 15(3): 293-313.

[6.4-26] C. Salinas and J. Kurata. The effects of Northridge earthquake on the pattern of

emergency department care. American Journal of Emergency Medicine, 1998; 16(3): 254-256.

[6.4-27] J. R. Swisher, S. H. Jacobson, J. B. Jun and O. Balci. Modeling and analyzing a

physician clinic environment using discrete-event (visual) simulation. Computers and

Operations Research, 2001; 28(2): 105-125.

 [6.4-28] B. Walker and T. Haslett. System dynamics and action research in aged care.

Australian Health Review: a Publication of the Australian Hospital Association, 2001; 24(1):

183-191.

 [6.4-29] M. L. Weng and A. A. Houshmand. Healthcare Simulation: A case study at a local

clinic. Winter Simulation Conference Proceedings 1999, Phoenix, AZ, 1999; 2: 1577-1584.

 [6.4-30] E. Wolstenholme. A patient flow perspective of U.K. health services: Exploring the

case for new “Intermediate Care” initiatives. System Dynamics Review, 1999;

- 305 -

AFOSR F49620-01-1-0371

 15(3): 253-271.

 [6.4-31] A. H. Zon and G. J. Kommer. Patient flows and optimal health-care resource allocation

at the macro-level: A dynamic linear programming approach. Health Care Management Science,

1999; 2(2): 87-96.

 [6.4-32] R. Sibbel and C. Urban. Agent-Based modeling and simulation for hospital

management. Kluwer Academic Publishers, Boston, 2001.

 [6.4-33] A. R. Mahachek. An introduction to patient flow simulation for health-care managers.

Journal of the Society for Health Systems, 1992; 3(3): 73-81.

[6.4-34] C. R. Standridge. A tutorial on simulation in health care: applications and issues.

Proceedings of the 1999 Winter Simulation Conference, Phoenix, AZ, 1999, 1:49-55.

 [6.4-35] Pan American Health Organization (PAHO). Establishing a mass casualty management

system, Washington, D.C., USA, 1995.

[6.4-36] G. E. Nacey. Maximizing hospital capacity, increasing patient through-put by

improving the patient flow continuum. Tele-Tracking Technologies, Inc, Pittsburg, PA, 2004.

 [6.4-37] W. McClure. Reducing excess hospital capacity. U.S. Department of Commerce, 1976.

[6.4-38] HEW, Bureau of Health Planning. Health care facilities existing and needed; Hill-

Burton State Plan Data as of January 1975, Washington, DC, 1977.

 [6.4-39] M. Roemer and M. Shain. Hospital utilization under insurance. American Hospital

Association, Chicago, IL, 1959.

[6.4-40] J. C. Bailey. Long term bed need projections. Indiana State Department of Health

Information Services Commission, Health Planning Division, Indianapolis, IN, 1994.

[6.4-41] P. Trye, N. Murray, I. Wolstencroft and A. Stewart. Health service capacity modeling.

Australian health review: a publication of the Australian Hospital Association, 2002; 25(4): 159-

168.

- 306 -

AFOSR F49620-01-1-0371

[6.4-42] A. M. Mouza. Estimation of the total number of hospital admissions and bed

requirements for 2011: the case for Greece. Health services management research, 2002; 15(3):

186-192.

[6.4-43] J. de Boer, B. Brismar, R. Eldar and W. H. Rutherford. The medical severity index of

disasters. The Journal of Emergency Medicine, 1989; 7(3): 269-273.

[6.4-44] P. R. Harper. A Framework for operational modelling of hospital resources. Health

Care Management Science, 2002; 5(3): 165-173.

[6.4-45] J. A. Rodger, D. J. Paper and P. C. Pendharkar. An empirical study for measuring

operating room quality performance attributes. The Journal of High Technology Management

Research, 1998; 9(1): 131-156.

[6.4-46] J. Cohen. Statistical power analysis for the behavioral sciences, 2
nd

 ed., Lawrence

Erlbaum Associates, City??Hillsdale, NJ, 1988.

 [6.4-47] September 11, 2001 attacks; http://en.wikipedia.org/wiki/September_11,_2001_attacks.

[6.4-48] Some of the deadliest natural disasters since 1900. Associated Press, New York,

[6.5-1] Zhan F. and Noon, C. Shortest Path Algorithms: An Evaluation using Real Road

Networks, Transportation Science 14:211-242, 1998.

[6.5-2] Chou, Y.,Romeijn, H., Smith R. Approximating Shortest Paths in Large Scale Networks

with an Application to Intelligent Transportation Systems, INFORMS Journal on Computing 10:

163-179, 1998.

[6.5-3] Yi, P., George S., Paul, J. and Lin, L. Hospital capacity planning for emergency

management in disaster mitigation. To appear in Socio-Economic and Planning Sciences, 2007.

[6.5-4] Yen, J. Finding the k shortest loop-less paths in a network. Management Science 17: 712-

716, 1971.

- 307 -

AFOSR F49620-01-1-0371

[6.5-5] Johnson, P.E., Joy, D.S., Clarke, D.B., Jacobi, J.M. HIGHWAY 3.01, An enhanced

highway routing model: program, description, methodology, and revised user manual. Technical

Report, ORNL/TM- 12124, Oak Ridge National Lab, Oak Ridge, Tennessee, 1992.

[6.5-6] Lombard, K., Church, R.L. The gateway shortest path problem: generating alternative

routes for a corridor location problem. Geographical Systems 1: 25-45, 1993.

[6.5-7] Kuby, M., Zhongyi, X., Xiaodong, X. A minimax method for finding the k best

differentiated paths. Geographical Analysis 29: 298-313, 1997.

 [6.5-8] Erkut, E. The discrete p-dispersion problem. European Journal of Operational Research

46: 48-60, 1990.

[6.5-9] Erkut, E., Iksal, Y., Yenicerioglu, O. A comparison of p-dispersion heuristics. Computers

and Operational Research 21: 1103-1113, 1994.

[6.5-10] Tyagarajan, K., Batta, R., Karwan, M.H., Szczerba, R. Routing aircraft to minimize the

chance of detection during mission ingress. Under review by Military Operations Research.

[6.5-11] http://www.people.hofstra.edu/geotrans/eng/ch5en/meth5en/ch5m2en.html

[6.5-12] Myles, A. Publication 2321: Extension Service of Mississippi State University,

cooperating with U.S. Department of Agriculture. Published in furtherance of Acts of Congress,

May 8 and June 30, 1914. JOE H. MCGILBERRY, Director (500-07-03)

[6.6-1] D. Ozisik and N. Kerle , Post-earthquake damage assessment using satellite and airborne

data in the case of the 1999 Kocaeli earthquake, Turkey. Proc. of the XXth ISPRS congress: Geo-

imagery bridging continents, Istanbul, Turkey, 2004, 686-691.

[6.6-2] J. Llinas, Information Fusion for Natural and Man-Made Disasters, Proc. 5th

International Conference on Information Fusion, Annapolis, MD, USA, 2002.

[6.6-3] L. A. Treinish, Visual Data Fusion for Applications of High-Resolution Numerical

Weather Prediction, Proc. of IEEE 2000 Visualization Conference, Salt Lake City, UT, USA,

2000 , 477-480.

- 308 -

AFOSR F49620-01-1-0371

[6.6-4] K. Severance, P. Brewster, B. Lazos, and D. Keefe, Wind Tunnel Data Fusion and

Immersive Visualization: A Case Study, Proc. of IEEE 2001 Visualization Conference, San

Diego, CA, USA, 2001.

[6.6-5] T.-J. Hsieh, F. Kuester, and T. C. Hutchinson, Visualization of Large-Scale Seismic Field

Data, Proc. of 2003 High Performance Computing Symposium, Orlando, FL, USA, 2003.

[6.6-6] G. Srimathveeravalli, N. Subramanian, and T. Kesavadas, A Scenario Generation Tool

for DDF Simulation Testbeds, Proc. of 2004 Winter Simulation Conference, Washington D.C.,

2004.

[6.6-7] I. Rauschert, P. Agrawal, S. Fuhrmann, I. Brewer, R. Sharma, G. Cai, A. MacEachren,

and H. Wang, Designing a Human-Centered, Multimodal GIS Interface to Support Emergency

Management, Proc. of ACM International Symposium on Advances in Geographic Information

Systems, McLean, VA, USA, 2002.

[6.6-8] S. Jain and C. McLean, A Framework for Modeling and Simulation for Emergency

Response, Proc. of 2003 Winter Simulation Conference, New Orleans, Louisiana, USA, 2003.

[6.6-9] Y. Kim and T. Kesavadas, Automated Dynamic Symbology for Visualization of High

Level Fusion, Proc. of 7th International Conference on Information Fusion, Stockholm, Sweden,

2004, 944-950.

[6.6-10] Northridge Earthquake, Southern California Earthquake Center. Retrieved on March 20,

2005 from http://www.data.scec.org/chrono_index/northreq.html.

[6.6-11] HAZUS, Multihazard Loss Estimation Methodology, FEMA. Retrieved on January 11,

2005 from http://www.fema.gov/hazus/.

[6.6-12] P. D. Scott and G. L. Rogova, Crisis Management in a Data Fusion Synthetic Task

Environment, Proc. of 7th International Conference on Information Fusion, Stockholm, Sweden,

2004, 330-337.

- 309 -

AFOSR F49620-01-1-0371

[6.6-13] Q. Gong, A. Jotshi, and R. Batta, Dispatching/Routing of Emergency Vehicles in a

Disaster Environment using Data Fusion Concepts, Proc. of 7th International Conference on

Information Fusion, Stockholm, Sweden, 2004, 967-974.

[6.6-14] S. Xiaoxia and Z. Quihai, "The Introduction on High Level Architecture (HLA) and

Run-Time Infrastructure (RTI)," Presented at SICE Annual Conference, Fukui, Japan, 2003.

[6.6-15] K. Watson, D. Espinosa, Z. Greenvoss, J. H. Pedersen, C. Nagel, J. D. Reid, M.

Reynolds, M. Skinner, and E. White, Beginning Visual C#. Indianapolis, IN: Wiley Publishing,

Inc., 2003.

[6.6-16] USGS, U.S. Geological Survey. Retrieved on January 11, 2005 from

http://www.usgs.gov.

[6.6-17] TeleAtlas. Retrieved on March 20, 2005 frm http://www.teleatlas.com.

[6.6-18] G. M. Karam, Visualization using Timelines, Proc. of the 1994 ACM SIGSOFT

international symposium on Software testing and analysis, Seattle, Washington, USA, 1994,

125-137.

[6.6-19] E. White, C. Garrett, and S. Robinson, GDI+ Programming: Creating Custom Controls

Using C#. Birmingham, UK: Wrox Press Ltd., 2002.

[6.6-20] A. Schilling and A. Zipf, Generation of VRML city models for focus based tour

animations: integration, modeling and presentation of heterogeneous geo-data sources, Proc. of

the eighth international conference on 3D Web technology, Saint Malo, France, 2003.

[6.6-21] C. M. Hoffman, Y. J. Kim, R. P. Winkler, J. D. Walrath, and P. J. Emmerman,

Visualization for Situation Awareness, Proc. of the 1998 workshop on New paradigms in

information visualization and manipulation, Washington D.C., United States, 1998.

[6.6-22] K. Chen and L. Liu, ClusterMap: Labeling Clusters in Large Datasets via Visualization,

Proc. of ACM Conference on Information and Knowledge Management, Washington D.C., USA,

2004, 285-293.

- 310 -

AFOSR F49620-01-1-0371

[6.7- 1] M. Turoff, Past and Future Emergency Response Information Systems,

Communications of the ACM, (45) 2002, pp. 29-32.

[6.7- 2] D. L. Westphal, T. R. Holt et al, Meteorological Reanalyses for the Study of Gulf War

Illnesses: Khamisiyah Case Study, Weather and Forecasting (14) 1999, pp. 214-221.

[6.7- 3] N. Belkin, C. Cool et al, The effect multiple query representations on information

retrieval system performance, ACM Conference on Research and Development in Information

Retrieval, 1003, pp. 339-346.

[6.7-4] Z. Zhang, J. Salerno et al, Using data mining techniques for building fusion models,

Data Mining and Knowledge Discovery: Theory, Tools, and Technology V. Edited by Belur V.

Dasarathy. Proceedings of the SPIE (5098) 2003, pp. 174-184.

[6.7- 5] J. Kohlas, R. Haenni et al, Assumption Based Reasoning and Probabilistic

Argumentation Systems, Tech. Rept 96-07, U. Fribourg, Theoretical Computer Science, 1996.

[6.7-6] D. B. Turner, Workbook of Atmospheric Dispersion Estimates, Lewis Publishers,

Washington D.C., 1994.

[6.9-1] M. L. Hinman, Some Computational Approaches for Situation Assessment and Impact

Assessment, Fusion 2002, Annapolis MD, July 8-11, 2002, pp 687-693

[6.9-2] State of California Emergency Plan, Governor’s office of emergency services, 1998.

[6.9-3] J. Llinas. Information Fusion for Natural and Man-Made Disasters. In Proc. Fifth Int.

Conf. Information Fusion, pages 570-574, Annapolis, MD, USA, 8 July–11 July 2002.

[6.9-4] P Scott, G. Rogova, Crisis Management in a Data Fusion Synthetic Task Environment,

in: Proc. of the FUSION’2004-7thConference on Multisource Information Fusion, 2004.

[6.9-6] P. Thagard, C. P. Shelley, Abductive reasoning: Logic, visual thinking, and coherence,

In M.-L. Dalla Chiara et al. (Eds.), Logic and scientific methods. Dordrecht: Kluwer, 413-

427,1997.

- 311 -

AFOSR F49620-01-1-0371

[6.9-.7] G. Harman, The Inference to the Best Explanation, Philosophical Review 64, 88-95,

1965.

[6.9-.8] A. Bisantz, G. Rogova, E. Little, On the Integration of Cognitive Work Analysis within

Information Fusion Development Methodology, in Proc. of the Human Factors and Ergonomics

Society Annual Meeting, New Orleans, 2004

[6.9-9] A. Rasmussen, J. Pejtersen, L. Goodstein. Cognitive Systems Engineering. Wiley, New

York, 1994.

[6.9-10] E. Little, G. Rogova, Ontology Meta-Model For Building A Situational Picture Of

Catastrophic Events, in: Proc. of the FUSION’2005-8th Conference on Multisource Information

Fusion, 2005.

 [6.9-11] A. E. Nicholson and J. M. Brady, Dynamic belief networks for discrete monitoring. IEEE

Transactions on Systems, Man, and Cybernetics 24(11), 1994

[6.9-12] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, and F. White, Revisions to

the JDL Data Fusion Model II, in: Proc. of the FUSION’2004-7th Conference on Multisource

Information Fusion, 2004.

 [6.9-13] G. Rogova, P. Scott, C. Lollett, Distributed Fusion: Learning in multi-agent systems

for time critical decision making, in Data Fusion for Situation Monitoring, Incident Detection,

Alert and Response Management, E. Shahbazian, G. Rogova, P. Valen (eds), FOI Press, 123-

152, 2005.

[6.9-14] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, 1976

[6.9-15] N. Friedman, J.Y Halpern, Modeling Beliefs in Dynamic systems, Part I, Foundations,

Artificial Intelligence, 95:257--316, 1997.

 [6.9-16] Y. Shi, Y. Song and A. Zhang, A shrinking-based approach for multi-dimensional data

analysis, Proceedings of the 29
th

 Very Large Data Bases Conference, Berlin Germany, 2003.

- 312 -

AFOSR F49620-01-1-0371

[6.9-17] Winter, Distances for uncertain topological relations, ESF-NSF Summer institute for

geographic information, Berlin, 1996.

[6.9-18] J. Josephson, On the Logical Form of Abduction, AAAI Spring Symposium Series:

Automated abduction, pages 140-144, 1990.

[6.9-19] R. Haenni, J. Kohlas, N. Lehmann. Probabilistic Argumentation Systems, in: J. Kohlas,

S. Moral (eds). Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol.

5, Kluwer, 2001.

[6.9-20] P. Smets and R. Kennes, The transferable belief model, Artificial Intelligence, 66,

1994, 191-243

[6.9-21] G. Rogova, Higher Level Fusion: Issues and Design Approaches, in: Data Fusion

Technologies for Harbor Protection, E. Shahbazian, M. DeWeert, G. Rogova, (eds), Springer, in

print.

[6.9-22] E. Little, G. Rogova, Formal ontology and Higher Level Fusion, under review,

Information fusion, Elsevier.

[6.9-23] G. Rogova, P. Scott, C. Lollett, R. Mudiyanur, Reasoning about situations in the early

post-disaster response environment, in: Proc. of the FUSION’2006-9th Conference on

Multisource Information Fusion, 2006.

 [6.9-24] G. Rogova, P. Scott, C. Lollett, Higher level fusion for post-disaster casualty

mitigation operations, in: Proc. of the FUSION’2005-8th Conference on Multisource Information

Fusion, 2005.

[6.9-25] E. Little, G. Rogova, Ontology Meta-Model For Building A Situational Picture Of

Catastrophic Events, in: Proc. of the FUSION’2005-8th Conference on Multisource Information

Fusion, 2005.

[6.9-26] P. Scott, G. Rogova, Crisis Management in a Data Fusion Synthetic Task

Environment, in: Proc. of the FUSION’2004-7thConference on Multisource Information Fusion,

2004.

- 313 -

AFOSR F49620-01-1-0371

[6.9-27] A. Bisantz, G. Rogova, E. Little, On the Integration of Cognitive Work Analysis within

Information Fusion Development Methodology, in Proc. of the Human Factors and Ergonomics

Society Annual Meeting, New Orleans, 2004.

[6.10-1] Ah-Dhaher AHG and Mackesy D, Multi-sensor data fusion architecture, Proc IEEE

HAVE 2003.

[6.10-2] Akita RM, User based data fusion approaches, Proc ISIF 2002

[6.10-3] Allouche MK, Getting over the edge between blackboard and multi-agent systems, Tech

Rept 2004-09-16, Lockheed Martin Canada, 2004.

[6.10-4] Aude EPL et al, CONTROLAB MUFA: a multi-level fusion architecture for intelligent

navigation of a telerobot, Proc IEEE Conf on Robotics and Auto, 1999.

[6.10-5] Brenner W et al, Intelligent SW agents, Springer (a book) 1998.

[6.10-6] Broder S et al, Robotic heterogeneous multi-sensor fusion with spatial and temporal

alignment, Proc Conf Dec & Contr, 1991.

[6.10-7] Carvalho H, A general data fusion architecture, Proc ISIF 2003.

[6.10-8] Chaudhuri SP and Das S, Neural networks for data fusion, 1990

[6.10-9] Clark V, Information fusion acrhitectures for next generation avionics systems, IEEE

NAECON 1996

[6.10-10] Dasarathy B, Sensor fusion potential exploitation – innovative architectures and

illustrative applications, Proc IEEE 1997.

[6.10-11] Engelmore R and Morgan T, Blackboard systems, Addison Wesley (a book) 1988.

[6.10-12] Fountain G and Drager S, High performance real-time fusion architecture, Proc ISIF

2002.

[6.10-13] Gad A and Farooq M, data fusion architecture for maritime surveillance, Proc ISIF

2002.

- 314 -

AFOSR F49620-01-1-0371

[6.10-14] Gatepaille S et al, Data fusion multi-agent framework, SPIE 4051, 2000.

[6.10-15] Gorodetski V et al, Multi-agent fusion systems: design and implementation issues,

ISIF 2003.

[6.10-16] Henrich W et al, Data fusion for the new German F124 frigate: concepts and

architecture, Proc ISIF 2003.

[6.10-18] M. Boman, M. and Van de Velde, W. Multi-Agent Rationality: Proceedings of the 8th

European Workshop on Modelling Autonomous Agents in a Multi-Agent World,

MAAMAW'97, Ronneby, Sweden, May 13-16, 1997.

[6.10-19] Bratman.M.E., Intentions, Plans, and Practical Reason. Harvard University Press:

Cambridge, MA, 1987.

[6.10-20] Crick, F. Visual perception: rivalry and consciousness. Nature 379:485-486, 1996

[6.10-21] DeLoach, S.A., Matson, E.T., Li, Y.. Exploiting Agent Oriented Software Engineering

in the Design of a Cooperative Robotics Search and Rescue System. The International Journal of

Pattern Recognition and Artificial Intelligence, 17 (5), pp. 817-835, 2003.

[6.10-22] Hollywood, J., Snyder, D., McKay, K. N., and Boon, J.E. Out of the Ordinary:

Finding Hidden Threats by Analyzing Unusual Behavior, Rand pub, ISBN: 0-8330-3520-7,

2004.

[6.10-23] Gazi, V., Moore, M.L., Passino, K.M., Shackleford, W.P., Proctor, F., Albus, J.S. The

RCS Handbook: Tools for Real Time Control Systems Software Development, Wiley, 2001.

[6.10-24] Giorgini, P., Kolp, M., Mylopoulos, J., and Pistore, M. The Tropos Methodology: an

overview. In F. Bergenti, M.-P. Gleizes and F. Zambonelli (Eds) Methodologies And Software

Engineering For Agent Systems, Kluwer Academic Publishing, 2004.

[6.10-25] Healey, C. G., Booth, K. S., and Enns, J. T. Harnessing preattentive processes for

multivariate data visualization. Proceedings Graphics Interface '93 (Toronto, Canada, 1993), pp.

107–117, 1993.

- 315 -

AFOSR F49620-01-1-0371

[6.10-26] Kinny, D. and M. Georgeff., M. Commitment and effectiveness of situated agents. In

Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91),

pages 82–88, Sydney, Australia, 1991.

[6.10-27] Muller, J.P. The Design of Intelligent Agents (LNAI Volume 1177). Springer-Verlag:

Berlin,

[6.10-28] Rao, A.S. and Georgeff, M. Decision procedures of BDI logics. Journal of Logic and

[6.10-29] Richards, C. Certain To Win: The Strategy Of John Boyd, Applied To Business,

Xlibris Corporation publisher, 2004.

[6.11-1] Sanjay Rawat, James Llinas, Christopher Bowman. Design of a Performance

Evaluation Methodology for Data-Fusion Based Multi-Target Tracking Systems, Proc. Of the

SPIE (5099), pp. 139-151, 2003.

[6.11-2] Erik Blasch, Fusion Metrics for Dynamic Situation Analysis, Proc. of the SPIE (5429)

pp. 428-438, 2004.

[6.12-1] Bowman, C. L., “The Dual Node Network (Dual Node Network) Data Fusion &

Resource Management (DF&RM) Architecture” AIAA Intelligent Systems Conference,

Chicago, September 20-22, 2004

[6.12-2] Steinberg, A, Bowman, C. “Rethinking the JDL Data Fusion Levels”, NSSDF

Conference, JHAPL, June, 04

[6.12-3] Steinberg, Bowman, and White F., “Revisions to the JDL Model”, Joint NATO/IRIS

Conference Proceedings, Quebec, October, 1998.

[6.12-4] Bowman C. L., “The Data Fusion & Resource Management Dual Node Network

(DF&RM Dual Node Network) Architecture: Application to Hercules MSF Distributed

Architecture Problems” Hercules Blue Team Advanced Concepts Panel Presentation, June, 2000

[6.12-5] Bowman C. L., and A. S. Steinberg, Data Fusion Handbook: Chapter 18: Data Fusion

Systems Engineering and Chapter 3: Revisions to the JDL Data Fusion Model, to appear in ’01.

- 316 -

AFOSR F49620-01-1-0371

[6.12-6] Bowman, “Data Fusion” International Seminar, H. Silver and Associates, September,

1997.

[6.12-7] Steinberg and C. L. Bowman, “ Development and Application of Data Fusion

Engineering Guidelines” Proceedings of the National Symposium on Sensor and Data Fusion,

MIT Lincoln Lab, Lexington, MA, April ‘97.

[6.12-8] Bowman, “Affordable Information Fusion Via an Open, Layered, Paradigm-Based

Architecture”, Proceedings of 9th NSSF, Monterey, CA, March ‘96.

[6.12-9] Llinas, B. Neuenfeldt, L. McConnell, D. Bohney, C. Bowman, D. Hall, et al, “Studies

and Analyses Within Project Correlation: An In-Depth Assessment of Correlation Problems and

Solution Techniques”, Proceedings of 9th NSSF, Monterey, CA, March ‘96.

[6.12-10] Bowman and C. Morefield, “Multi-sensor Fusion of Target Attributes and Kinematic

Reports”, 3rd ONR/MIT Conference on C31, June 1980.

[6.12-11] Bowman “The Data Fusion Tree Paradigm and It’s Dual” Proceedings of 7th National

Symposium on Sensor Fusion, invited paper, Sandia Labs, NM, March ‘94

-A-1-

AFOSR F49620-01-1-0371

Appendix A: DIRE Source Code

Source code listings for selected elements of the DIRE simulation test bed are given in Appendix A. These

listings include header .h and C++ .cpp files in two categories: Appendix A.1 contains the core source files

required to instantiate the system and are required across all federates. A.2 contains the additional module-

specific functional sources for one selected module, the Dispatch/Router Federate. Listing the complete source

code here would occupy perhaps an additional thousand pages, thus a single representative federate has been

selected. The goal of offering these listings is to illustrate how the interactive core of DIRE is configured, and

how each federate’s task-specific code is wrapped to interface with the federation and run properly within it.

The code has been set in small type to conserve space. Electronic copies of the complete DIRE source code

library is available from the authors upon request.

A.1 Common code

A.1.1 logParms.h

#ifndef h_PARAMETERSTOINDEPENDENTMESSAGELOGGINGTHREAD_001

#define h_PARAMETERSTOINDEPENDENTMESSAGELOGGINGTHREAD_001

#include <string>

#include <cassert>

#include "tsQueue.h"

// define a carrier-object to transmit the addresses of both

// the the tsQueue and the filename that have been created.

// if the filename * == NULL, display will be to the CRT only

struct logParms

{

 tsQueue *InteractionHighway;

 std::string logfileName;

 logParms(tsQueue *queue, const std::string &name)

 {

 assert(queue != NULL);

 assert(name.size() > 0);

 InteractionHighway = queue;

 logfileName = name;

 }

 logParms(tsQueue *queue)

 {

 assert(queue != NULL);

 InteractionHighway = queue;

 logfileName = "";

 }

 ~logParms(void)

 {

 delete InteractionHighway;

 }

};

-A-2-

AFOSR F49620-01-1-0371

#endif

A.1.2 timeStamp.h

#ifndef h_TIMESTAMPGENERATOR_0001

#define h_TIMESTAMPGENERATOR_0001

///////////////////////////////

// The debugger can't handle symbols more than 255 characters long.

// STL often creates symbols longer than that.

// When symbols are longer than 255 characters, the warning is issued.

#pragma warning(disable:4786)

///////////////////////////////

#include <string>

#include <ctime>

class timeStamp

{

public:

 timeStamp(void)

 { }

 ~timeStamp(void)

 { }

 std::string stamp(void)

 {

 time_t clock;

 struct tm *TimeDateStruct;

 char *TimeDateString;

 char dbNameString[26];

 time(&clock);

 TimeDateStruct = localtime(&clock);

 TimeDateString = asctime(TimeDateStruct);

 strncpy(dbNameString+0, TimeDateString+8, 2);

 strncpy(dbNameString+2, TimeDateString+4, 3);

 strncpy(dbNameString+5, TimeDateString+22, 2);

 *(dbNameString+7) = '_';

 strncpy(dbNameString+8, TimeDateString+11, 2);

 strncpy(dbNameString+10, TimeDateString+14, 2);

 strncpy(dbNameString+12, TimeDateString+17, 2);

 *(dbNameString+14) = '\0';

 return(dbNameString);

 }

};

#endif

A.1.3 tsQueue.h

#ifndef h_CRITICALREGIONINFO_0001

#define h_CRITICALREGIONINFO_0001

#include <vector>

#include <string>

#include <queue>

//#include "typedefs.h"

class tsQueue : public std::queue<std::string> // Threadsafe access to data

{

public:

 tsQueue() // Constructor

 {

-A-3-

AFOSR F49620-01-1-0371

 // Create the mutex which serializes all access to our data

 m_Mutex = CreateMutex(NULL, false, "SerializeAccess");

 if (m_Mutex == NULL)

 {

 // This will crash the program - what

else to do?

 exit(9);

 }

 }

 virtual ~tsQueue() // Destructor

 {

 CloseHandle(m_Mutex); // Clean up

 }

 void insert(const std::string & s) // Add a member at the end

 {

 getAccessToData(); // Check for non-destructive access

 this->push(s); // Add data-element to vector

 m_TotalMemberCount += 1; // add to total count

 if (m_HighWaterMark < this->queueSize())

 {

 m_HighWaterMark = this->queueSize();

 }

 releaseAccessToData(); // Give up control of data

 }

 std::string extract(void) // Pull a member from the front

 {

 std::string retValue; // What we'll return to caller

 getAccessToData(); // Check for non-destructive access

 if (!this->empty()) // make sure something is there

 {

 retValue = this->front(); // Grab requested element

 this->pop(); // remove element from queue

 }

 releaseAccessToData(); // Give up control of data

 return retValue; // Send removed value to caller

 }

 unsigned long queueSize(void) // How many members in queue

 {

 unsigned long retValue; // What we'll return to caller

 getAccessToData(); // Check for non-destructive access

 retValue = this->size(); // Get number of elements in vector

 releaseAccessToData(); // Give up control of data

 return retValue; // Send count to caller

 }

 unsigned long getHighWaterMark(void)

 {

 return m_HighWaterMark;

 }

 unsigned long getTotalMemberCount(void)

 {

 return m_TotalMemberCount;

 }

-A-4-

AFOSR F49620-01-1-0371

private:

 HANDLE m_Mutex; // Serialize access to this data

 unsigned long m_HighWaterMark; // instantaneous largest number of members

 unsigned long m_TotalMemberCount; // total number of insertions

 void getAccessToData(void) // Grab sole control

 {

 // Request access to data

 WaitForSingleObject(m_Mutex, INFINITE);

 }

 void releaseAccessToData(void) // Release sole control

 {

 ReleaseMutex(m_Mutex); // Release access to data

 }

 tsQueue(const tsQueue &dS) // copy constructor

 {

 // private member: cannot be copied

 }

 tsQueue &operator=(const tsQueue &dS)// assignment

 {

 // private member: cannot be assigned

 }

};

#endif

A.1.4 localFederate.h

#ifndef h_LOCALFEDERATE_0001

#define h_LOCALFEDERATE_0001

#if defined(_MSC_VER) // if we're using Microsoft VC6

#define RTI_USES_STD_FSTREAM

#endif // defined(_MSC_VER)

#include <windows.h>

#include <RTI.hh>

#include "AllInteractions.h" // All interaction classes are contained here

#include "interaction.h"

#include <iostream> // for printout

#include <fstream>

#include <vector>

#include <string>

#include <map>

#include "baseTypes.hh"

#include <fedtime.hh>

#include "tsQueue.h"

#include "logParms.h"

#include <cassert>

//---

// type definitions

//---

typedef std::vector<std::string> stringArray;

typedef stringArray::iterator pString;

typedef std::pair<unsigned long, unsigned long> twoCounts;

typedef std::pair<std::string, twoCounts> labeledTwoCounts;

typedef std::map<std::string, twoCounts> historyMap;

-A-5-

AFOSR F49620-01-1-0371

typedef historyMap::iterator pTwoCount;

void SyncReady(const unsigned long &duration);

void MessageLogger(LPVOID param);

//---

//

// CLASS:

// fedModel

//

// PURPOSE:

// This class is the definition of the local federate simulation.

//

//---

class fedModel

{

public:

 virtual ~fedModel() // default dtor

 { }

 // our calls to the RTI

 void setAmbAddress(RTI::RTIambassador* rtiAmb)

 {

 m_rtiAmb = rtiAmb; // initialize the pointer

 }

 void receiveInteraction(

 RTI::InteractionClassHandle theInteraction, // supplied C1

 const RTI::ParameterHandleValuePairSet &theParameters, // supplied C4

 const RTI::FedTime &theTime, // supplied C4

 const char *theTag, // supplied C4

 RTI::EventRetractionHandle theHandle); // supplied C1

 void Update(RTI::FedTime& newTime);

 //---

 // Accessor Methods

 //---

 RTI::FedTime const &getCurrentTime()

 {

 return m_CurrentTime;

 }

 RTI::FedTime const &getPreviousTime()

 {

 return m_PreviousTime;

 }

 RTI::FedTime const &getCurrentTimePlusLookahead()

 {

 m_TimePlusLookahead = m_CurrentTime;

 m_TimePlusLookahead += m_lookahead;

 return m_TimePlusLookahead;

 }

 const std::string getFederateName()

 {

 return m_FederateName;

 }

 RTI::FedTime &getLookahead()

 {

 return m_lookahead;

-A-6-

AFOSR F49620-01-1-0371

 }

 unsigned long const &getUpdateTimeStep(void)

 {

 return m_UpdateTimeStep;

 }

 unsigned long &getRunDuration(void)

 {

 return m_RunDuration;

 }

 bool getPauseStatus(void)

 {

 return m_StartupPause;

 }

 std::string getInitParm(const std::string &name)

 {

 return m_MessageRGtoALL02.getValue(name);

 }

 twoCounts getReceiptCounters(std::string &IntName)

 {

 return (*(m_ReceiptCounters.find(IntName))).second;

 }

 twoCounts getSentCounters(std::string &IntName)

 {

 return (*(m_SentCounters.find(IntName))).second;

 }

 //---

 // Mutator Methods

 //---

 void setCurrentTime(RTI::FedTime const & time)

 {

 m_CurrentTime = time;

 }

 void setPreviousTime(RTI::FedTime const & time)

 {

 m_PreviousTime = time;

 }

 void setUpdateTimeStep(const unsigned long &step)

 {

 m_UpdateTimeStep = step;

 }

 void setLookahead(RTI::FedTime& time)

 {

 m_lookahead = time;

 }

 void setFederateName(const std::string &name)

 {

 m_FederateName = name;

 }

private:

 unsigned long m_UpdateTimeStep;

 std::string m_FederateName; // Name of this federate

 RTI::RTIambassador *m_rtiAmb; // Pointer to RTIambassador

 RTI::FedTime &m_CurrentTime; // Time of current update

-A-7-

AFOSR F49620-01-1-0371

 RTI::FedTime &m_PreviousTime; // Time of previous update

 RTI::FedTime &m_TimePlusLookahead;

 RTIfedTime m_lookahead; // Minimum time for action

 char m_SeparaterChar;

 unsigned long m_RunDuration;

 bool m_StartupPause; // true -> duration read on-line

 logParms *m_MessageLoggerThreadParms;

 tsQueue *m_MessageLoggerQueue;

 DWORD m_MessageLoggerThreadID;

 HANDLE m_MessageLoggerThreadHandle;

 std::string m_MessageLoggerFileName;

 stringArray m_IntName;

 stringArray m_IntParm;

 stringArray m_CasualtyReport;

 RGtoALL01 m_MessageRGtoALL01;

 RGtoALL02 m_MessageRGtoALL02;

 RTI::InteractionClassHandle m_RGtoALL01_TypeId;

 RTI::ParameterHandle m_RGtoALL01_Parms_TypeId;

 RTI::InteractionClassHandle m_RGtoALL02_TypeId;

 RTI::ParameterHandle m_RGtoALL02_Parms_TypeId;

 std::map<std::string, RTI::InteractionClassHandle> m_TypeId;

 std::map<std::string, RTI::ParameterHandle> m_Parms_TypeId;

 stringArray m_PubNames; // names of publishable interactions

 stringArray m_SubNames; // names of subscribed-to interactions

 // These containers are for the purpose of counting interactions In and Out.

 // The counts are made available to the local federate for accounting purposes.

 // The key-type of the map is a string (containing the interaction name).

 // The value-type is a pair of unsigned long values;

 // pair.first is the count of receipts or sends of the named interaction

 // during the most recent inter-federateUpdate interval.

 // It is cleared to zero at the end of a federateUpdate (in preparation

 // for the ensuing inter-federateUpdate interval).

 // pair.second is the total count of receipts or sends of the named interaction

 // since the start of the simulation.

 // It is cleared to zero at the beginning of a federateUpdate (in preparation

 // for counting the sends during the federateUpdate).

 historyMap m_ReceiptCounters;

 historyMap m_SentCounters;

 // Type counts are used to supply values for SrcDstCount (in msgHeader.h)

 // values are initialized to 0 in fedModel::Init

 // values are assigned to SrcDstCount in fedModel::sendMsgs

 std::map<std::string, unsigned long> m_IntCount;

 //---

 // function prototypes

 //---

 stringArray getPublicationNames(void);

 stringArray getSubscriptionNames(void);

 void fedUpdate(const unsigned long &n);

 void fedMessage(const std::string &id, std::string &data);

public:

-A-8-

AFOSR F49620-01-1-0371

 //--

 //

 // METHOD:

 // void fedModel(void)

 //

 // PURPOSE:

 // This method is the constructor for an object of the

 // fedModel class.

 //

 // RETURN VALUES:

 // None.

 //

 //---

 fedModel(void) // Constructor

 : m_CurrentTime(*(RTI::FedTimeFactory::makeZero()))

 , m_PreviousTime(*(RTI::FedTimeFactory::makeZero()))

 , m_TimePlusLookahead(*(RTI::FedTimeFactory::makeZero()))

 , m_StartupPause(false)

 , m_lookahead(1) // minimum time in this federate

 , m_UpdateTimeStep(60)

 , m_SeparaterChar(',')

 {

 logMessage("Local ctor startup.");

 m_IntName.push_back("RGtoDF01"); // Casualty Observation

 m_IntName.push_back("RGtoDF02"); // Medical Facility Damage

 m_IntName.push_back("RGtoDF03"); // Roadway Damage

 m_IntName.push_back("RGtoDF04"); // Casualty Pickup

 m_IntName.push_back("RGtoDF05"); // Casualty Delivery

 m_IntName.push_back("RGtoDF06"); // Police Location

 m_IntName.push_back("RGtoDF07"); // Ambulance Location

 m_IntName.push_back("RGtoDF08"); // Medical Facility Capacity

 m_IntName.push_back("RGtoDF09"); // Casualty Treatment Delay

 m_IntName.push_back("RGtoDF10"); // Ambulance Idle

 m_IntName.push_back("RGtoDF11"); // Ambulance Stuck

 m_IntName.push_back("RGtoDF12"); // Travel Delay

 m_IntName.push_back("RGtoDF13"); // Cluster Ident

 m_IntName.push_back("DFtoED01"); // Casualty observation

 m_IntName.push_back("DFtoED02"); // Medical facility damage

 m_IntName.push_back("DFtoED03"); // Roadway damage

 m_IntName.push_back("DFtoED04"); // Casualty pickup

 m_IntName.push_back("DFtoED05"); // Casualty delivery

 m_IntName.push_back("DFtoED06"); // Police location

 m_IntName.push_back("DFtoED07"); // Ambulance location

 m_IntName.push_back("DFtoED08"); // Medical facility capacity

 m_IntName.push_back("DFtoED09"); // Casualty Treatment Delay

 m_IntName.push_back("DFtoED10"); // Ambulance Idle

 m_IntName.push_back("DFtoED11"); // Ambulance Stuck

 m_IntName.push_back("DFtoED12"); // Travel Delay

 m_IntName.push_back("DFtoED13"); // Cluster Ident

 m_IntName.push_back("EDtoDP01"); // Casualty Observation

 m_IntName.push_back("EDtoDP04"); // Roadway Damage

 m_IntName.push_back("EDtoDP05"); // Medical Facility Capacity

 m_IntName.push_back("EDtoDP06"); // Travel Delay

-A-9-

AFOSR F49620-01-1-0371

 m_IntName.push_back("EDtoDP07"); // Casualty Treatment Delay

 m_IntName.push_back("EDtoDP08"); // Ambulance Idle

 m_IntName.push_back("EDtoDP09"); // Ambulance Stuck

 m_IntName.push_back("EDtoDP10"); // Cluster Ident

 m_IntName.push_back("EDtoMF01"); // Medical Facility Damage

 m_IntName.push_back("EDtoMF02"); // Casualty Delivery

 m_IntName.push_back("MFtoRG01"); // Medical Facility Capacity

 m_IntName.push_back("MFtoRG02"); // Casualty Treatment Delay

 m_IntName.push_back("DPtoRG01"); // Ambulance Route

 m_IntName.push_back("DFtoL201"); // Casualty Observation

 m_IntName.push_back("DFtoL202"); // Casualty Pickup

 m_IntName.push_back("L2toRG01"); // Cluster Ident

 m_IntName.push_back("RGtoMF01"); // Hospital Location

 m_IntName.push_back("EDtoVZ01"); // Casualty Observation

 m_IntName.push_back("EDtoVZ02"); // Ambulance Location

 m_IntName.push_back("EDtoVZ03"); // Medical Facility Capacity

 m_IntName.push_back("EDtoVZ04"); // Cluster Ident

 m_IntName.push_back("EDtoVZ05"); // Medical Facility Damage

 m_IntName.push_back("EDtoVZ06"); // Roadway Damage

 m_IntName.push_back("EDtoVZ07"); // Police Location

 m_IntName.push_back("RGtoDP01"); // Hospital Location

 m_IntName.push_back("RGtoVZ01"); // Hospital Location

 m_IntName.push_back("RGtoL201"); // Casualty Estimates

 m_IntName.push_back("L2toED01"); // Viz Cluster Ident

 m_IntName.push_back("EDtoVZ08"); // Cluster Ident

 m_IntName.push_back("RGtoL202"); // Hospital Location

 std::string temp;

 for (pString i = m_IntName.begin(); i != m_IntName.end(); ++i)

 {

 temp = *i;

 temp += "Parms";

 m_IntParm.push_back(temp);

 }

 std::pair<std::string, RTI::InteractionClassHandle> it;

 std::pair<std::string, RTI::ParameterHandle> ip;

 for (pString iCount = m_IntName.begin(); iCount != m_IntName.end(); ++iCount)

 {

 it.first = *iCount;

 it.second = m_rtiAmb->getInteractionClassHandle((*iCount).c_str());

 m_TypeId.insert(it);

 ip.first = *iCount;

 ip.second = m_rtiAmb->getParameterHandle((*iCount).c_str(), m_TypeId[*iCount]);

 m_Parms_TypeId.insert(ip);

 }

 for (pString n = m_IntName.begin(); n != m_IntName.end(); ++n)

 {

 m_IntCount.insert(std::pair<std::string, unsigned long>(*n, 0));

 }

 logMessage("Local ctor complete.");

 }

 //---

 //

-A-10-

AFOSR F49620-01-1-0371

 // METHOD:

 // void Init(void)

 //

 // PURPOSE:

 // This method is reserved for the initialization of any

 // federate-specific variables placed into localFederate.h

 // by the user/federate-builder.

 //

 // RETURN VALUES:

 // None.

 //

 //---

 void Init(void)

 {

 }

 //---

 //

 // METHOD:

 // void Terminate(void)

 //

 // PURPOSE:

 // This method is reserved for end-of-run processing.

 // This function is called by modelMain and should NOT

 // be called by the localFederate.

 // This is where the modeler will clean up any allocated

 // data and prepare for termination of the localFederate.

 // The proper way for the local federate to terminate is

 // to throw an exception.

 //

 // RETURN VALUES:

 // None.

 //

 //---

 void fedModel::Terminate(void)

 {

 }// terminate

 //---

 //

 // METHOD:

 // void PublishAndSubscribe(void)

 //

 // PURPOSE:

 // This method conveys to the federation the names of the

 // interactions which this federate will receive.

 //

 // RETURN VALUES:

 // None.

 //

 //---

 void PublishAndSubscribe(void)

 {

 logMessage("Publish and Subscribe Starting.");

 m_SubNames = getSubscriptionNames();

-A-11-

AFOSR F49620-01-1-0371

 m_PubNames = getPublicationNames();

 try

 {

 if (m_rtiAmb)

 {

 m_RGtoALL01_TypeId = m_rtiAmb->getInteractionClassHandle("RGtoALL01");

 m_RGtoALL01_Parms_TypeId = m_rtiAmb->getParameterHandle("RGtoALL01Parms",

m_RGtoALL01_TypeId);

 m_rtiAmb->subscribeInteractionClass(m_RGtoALL01_TypeId);

 m_RGtoALL02_TypeId = m_rtiAmb->getInteractionClassHandle("RGtoALL02");

 m_RGtoALL02_Parms_TypeId = m_rtiAmb->getParameterHandle("RGtoALL02Parms",

m_RGtoALL02_TypeId);

 m_rtiAmb->subscribeInteractionClass(m_RGtoALL02_TypeId);

 for (pString pubName = m_PubNames.begin(); pubName != m_PubNames.end(); ++pubName)

 {

 m_rtiAmb->publishInteractionClass(m_TypeId[*pubName]);

 }

 for (pString subName = m_PubNames.begin(); subName != m_PubNames.end(); ++subName)

 {

 m_rtiAmb->subscribeInteractionClass(m_TypeId[*subName]);

 }

 }

 }

 catch(RTI::InteractionClassNotDefined &e)

 {

 std::string out = "Interaction Class Not Defined: ";

 out += e._reason;

 logMessage(out);

 throw;

 }

 catch(RTI::RTIinternalError &e)

 {

 std::string out = "RTI Internal Error: ";

 out += e._reason;

 logMessage(out);

 throw;

 }

 logMessage("Publish and Subscribe Ending.");

 }// PublishAndSubscribe

private:

 //---

 //

 // METHOD:

 // bool parse(stringArray &tokens,

 // char *rawData)

 //

 // PURPOSE:

 // Dissect the rawData char-array into text tokens separated by

 // the separaterChar character.

 //

 // RETURN VALUES:

 // void

 //

-A-12-

AFOSR F49620-01-1-0371

 //---

 void parse(stringArray &tokens, char *rawData)

 {

 tokens.clear(); // empty the container

 std::string catcher; // catch chars of token

 unsigned int tokenCounter = 0; // count tokens returned

 int index = 0; // count chars of input area

 while (rawData[index] != '\0') // skim the input area

 {

 if (rawData[index] == m_SeparaterChar)

 {

 tokens.push_back(catcher); // save the token

 catcher = ""; // clear the character-catcher

 if (rawData[index+1]==' ') // exclude leading blank-chars

 {

 while (rawData[++index]==' ');

 index -= 1;

 }

 }

 else

 {

 if ('"' != rawData[index]) // exclude VB quote-chars

 {

 catcher += rawData[index];// catch another character

 }

 }

 index += 1; // move to next character

 }

 if (catcher.size() > 0)

 {

 tokens.push_back(catcher); // save terminal token

 }

 }

 //---

 //

 // METHOD:

 // void sendMsgs(parmType *parmlist)

 // where parmlist is an interaction such as RGtoDF01

 //

 // PURPOSE:

 // Send sendInteraction to all subscribing federates.

 //

 // RETURN VALUES:

 // void

 //

 //---

 template<class parmType>

 void sendMsgs(parmType *parmlist)

 {

 std::string sourcedest = parmlist->getIntName();

 std::string msg = "Sending interaction - sourcedest = ";

 msg += sourcedest;

-A-13-

AFOSR F49620-01-1-0371

 logMessage(msg);

 interaction<parmType> *Interaction = new interaction<parmType>(*parmlist);

 RTI::ParameterHandleValuePairSet *pParams = RTI::ParameterSetFactory::create(1);

 RTI::InteractionClassHandle TypeID;

 try

 {

 TypeID = m_rtiAmb->getInteractionClassHandle(sourcedest.c_str());

 }

 catch(RTI::NameNotFound e)

 {

 throw "Name Not Found";

 }

 catch(RTI::RTIinternalError e)

 {

 throw "RTI Internal Error";

 }

 std::string IntParm = sourcedest;

 IntParm += "Parms";

 RTI::ParameterHandle Parms_TypeID;

 try

 {

 Parms_TypeID = m_rtiAmb->getParameterHandle(IntParm.c_str(), TypeID);

 }

 catch(RTI::InteractionClassNotDefined e)

 {

 throw "Interaction Class Not Defined";

 }

 catch(RTI::NameNotFound e)

 {

 throw "Name Not Found";

 }

 catch(RTI::RTIinternalError e)

 {

 throw "RTI Internal Error";

 }

 Interaction->setSrcDstCount(++(m_IntCount[sourcedest.c_str()]));

 try

 {

 pParams->add(Parms_TypeID, (char *)((Interaction->GetASCII()).c_str()),

 ((strlen(((Interaction->GetASCII()).c_str()))+1) * sizeof(char)));

 }

 catch(RTI::ValueLengthExceeded e)

 {

 throw "Value Length Exceeded";

 }

 catch(RTI::ValueCountExceeded e)

 {

 throw "Value Count Exceeded";

 }

// std::string msg = "--> Attaching parms ";

// msg += Parms_TypeID;

// msg += " to interaction";

// logMessage(msg);

-A-14-

AFOSR F49620-01-1-0371

 msg = "----> Parms text: ";

 msg += (char *)((Interaction->GetASCII()).c_str());

 logMessage(msg);

// std::string msg = "------> Now send ";

// msg += TypeID;

// logMessage(msg);

// std::string msg = "------> Timestamp = ";

// msg += this->GetLastTimePlusLookahead();

// msg += " to interaction";

// logMessage(msg);

 // make sure that timestamp isn't in the past

 char dummy[65];

 char *timeStamp = _ltoa(parmlist->getTime(), dummy, 10);

 RTI::FedTime &outTime = (*(RTI::FedTimeFactory::decode(timeStamp)));

 if (outTime < this->GetLastTimePlusLookahead())

 {

 outTime = this->GetLastTimePlusLookahead();

 }

 try

 {

 (void)m_rtiAmb->sendInteraction(TypeID, *pParams, outTime, NULL);

 }

 catch(RTI::InteractionClassNotDefined e)

 {

 throw "Interaction Class Not Defined";

 }

 catch(RTI::InteractionClassNotPublished e)

 {

 throw "Interaction Class Not Published";

 }

 catch(RTI::InteractionParameterNotDefined e)

 {

 throw "Interaction Parameter Not Defined";

 }

 catch(RTI::RTIinternalError e)

 {

 throw "RTI Internal Error";

 }

// logMessage("--------> Interaction Sent");

 logSend(parmlist);

 delete pParams;

 delete Interaction;

 } // sendMsgs

public:

 //---

 //

 // METHOD:

 // void logMessage(const std::string &txtMsg)

 //

 // PURPOSE:

 // Receives a text-message and sends it to a background thread

 // that displays it on the console screen.

 //

-A-15-

AFOSR F49620-01-1-0371

 // RETURN VALUES:

 // None.

 //

 //---

 void fedModel::logMessage(const std::string &txtMsg)

 {

 if (m_MessageLoggerQueue != NULL)

 {

 m_MessageLoggerQueue->insert(txtMsg);

 }

 else

 {

 std::cout << txtMsg << std::endl;

 }

 }

private:

 //---

 //

 // METHOD:

 // void logReceipt(msgHeader &msg)

 //

 // PURPOSE:

 // Logs the receipt of an interaction and sends the log to

 // a background thread that displays it on the console screen.

 //

 // RETURN VALUES:

 // None.

 //

 //---

 void fedModel::logReceipt(msgHeader *msg)

 {

 char dummy[65];

 std::string out = " Received ";

 out += (msg->getSourceDestination()).c_str();

 out += ", timestamp = ";

 out += _ltoa(msg->getTime(), dummy, 10);

 logMessage(out);

 }

 //---

 //

 // METHOD:

 // void logSend(msgHeader *msg)

 //

 // PURPOSE:

 // Logs the sending of an interaction and sends the log to

 // a background thread that displays it on the console screen.

 //

 // RETURN VALUES:

 // None.

 //

 //---

 void fedModel::logSend(msgHeader *msg)

 {

-A-16-

AFOSR F49620-01-1-0371

 RTI::FedTime *DisplayTime = RTI::FedTimeFactory::makeZero();

 *DisplayTime = this->getCurrentTimePlusLookahead();

 char Now[255];

 DisplayTime->getPrintableString(Now);

 std::string out = " Sending ";

 out += (msg->getSourceDestination()).c_str();

 out += " for delivery at ";

 out += Now;

 logMessage(out);

 delete DisplayTime;

 }

};

#endif

A.1.5. ModelMain.cpp

///////////////////////////////

// The debugger can't handle symbols more than 255 characters long.

// STL often creates symbols longer than that.

// When symbols are longer than 255 characters, the warning is issued.

#pragma warning(disable:4786)

///////////////////////////////

//#include <windows.h>

#include "localFederate.h"

#include "HwFederateAmbassador.hh"

#include "timeStamp.h"

#include <RTI.hh>

#include <fedtime.hh>

#include <sys/timeb.h> // for "struct _timeb"

#include <ctime>

#include <iostream> // for printout

#include <cassert>

using namespace std;

// Global Variables - used here and in HwFederateAmbassador.cpp

// - (NOT an example to be emulated)

RTI::Boolean timeAdvGrant = RTI::RTI_FALSE;

RTI::Boolean TimeRegulation = RTI::RTI_FALSE;

RTI::Boolean TimeConstrained = RTI::RTI_FALSE;

RTI::FedTime &grantTime = (*(RTI::FedTimeFactory::makeZero()));

static RTIfedTime endTime; // run-termination time

static bool WaitingForStart;

fedModel *localFederate = NULL; // pointer to our federate

timeStamp *clicker = NULL; // point to useful support-object

int hw_main(int argc, char *argv[]) // "main" is at the end of this module

{

 string out; // used for generating console messages

 WaitingForStart = true; // don't begin until "start" signal

 //--

 // localFederate construction

 //--

 localFederate = new fedModel(); // create our federate-object

 const string federationName = "IFD";// Name of the Federation

 string localName = localFederate->getFederateName();// Name of this federate

 try

-A-17-

AFOSR F49620-01-1-0371

 {

 //--

 // Create RTI objects

 //

 // The federate communicates to the RTI through the RTIambassador

 // object and the RTI communicates back to the federate through

 // the FederateAmbassador object.

 //--

 RTI::RTIambassador rtiAmbassador; // libRTI provided

 HwFederateAmbassador fedAmbassador; // defined by the federate

 RTI::FederateHandle federateId; // used for self-reference

 RTI::Boolean Joined = RTI::RTI_FALSE;

 int numTries = 0;

 //--

 // Here we loop around the joinFederationExecution call

 // until we try too many times or the Join is successful.

 //

 // The federate that successfully CREATES the federation

 // execution will get to the join call before the

 // FedExec is initialized and will be unsuccessful at

 // JOIN call. In this loop we catch the

 // FederationExecutionDoesNotExist exception to

 // determine that the FedExec is not initialized and to

 // keep trying. If the JOIN call does not throw an

 // exception then we set Joined to TRUE and that will

 // cause us to exit the loop and proceed in the execution.

 // The loop repeats only if a FederationExecutionDoesNotExist

 // exception was thrown. Since the RTI 1.3 specification

 // has the inherent race condition that another process

 // could have destroyed the federation after this process

 // calls create, we need to create the federation each

 // time through this loop.

 //--

 while(!Joined && (numTries++ < 20))

 {

 try

 {

 out = "Creating federation execution for ";

 out += federationName;

 localFederate->logMessage(out);

 string fedFileName = localName;

 fedFileName += ".fed";

 rtiAmbassador.createFederationExecution(federationName.c_str(),

fedFileName.c_str());

 localFederate->logMessage("Successful federation creation!");

 }

 catch (RTI::FederationExecutionAlreadyExists& e)

 {

 out = "Note: Federation ";

 out += federationName;

 out += " execution already exists.";

 out += e._reason;

 localFederate->logMessage(out);

-A-18-

AFOSR F49620-01-1-0371

 }

 catch (RTI::Exception& e)

 {

 out = "RTI Error: ";

 out += e._reason;

 localFederate->logMessage(out);

 throw 101; // don't continue local federate

 }

 try

 {

 out = localName.c_str();

 out += " joining federation execution.";

 localFederate->logMessage(out);

 // Join the named federation

execution

 federateId = rtiAmbassador.joinFederationExecution(localName.c_str(),

federationName.c_str(), &fedAmbassador);

 Joined = RTI::RTI_TRUE; // mark attempt successful

 }

 catch (RTI::FederateAlreadyExecutionMember& e)

 {

 out = "Error: ";

 out += localName;

 out += " already exists in Federation ";

 out += federationName;

 out += ".";

 localFederate->logMessage(out);

 out = e._reason;

 localFederate->logMessage(out);

 throw 201; // don't continue local federate

 }

 catch (RTI::FederationExecutionDoesNotExist&)

 {

 out = "Error: ";

 out += federationName ;

 out += " - Federation Execution does not exist.";

 localFederate->logMessage(out);

 rtiAmbassador.tick(2.0, 2.0);

 }

 catch (RTI::Exception& e)

 {

 out = "RTI Error: ";

 out += e._reason;

 localFederate->logMessage(out);

 throw 202; // don't continue local federate

 }

 } // end while

 // at this point we have joined the federation, one way or the other

 out = localName; // name of this federate

 out += " joined successfully to federation:";

 localFederate->logMessage(out);

 localFederate->setAmbAddress(&rtiAmbassador);

 //--

-A-19-

AFOSR F49620-01-1-0371

 // localFederate initialization

 //--

 try

 {

 localFederate->Init(); // perform federate initialization

 }

 catch(string e)

 {

 localFederate->logMessage(e);

 throw 301; // don't continue local federate

 }

 catch(...)

 {

 localFederate->logMessage("Federate cannot proceed due to initialization error.");

 throw 302; // don't continue local federate

 }

 //--

 // Publication/Subscription

 //

 // Declare my interests to the RTI for the object and

 // interaction data types I want to receive.

 //--

 try

 {

 localFederate->PublishAndSubscribe();

 }

 catch(...)

 {

 localFederate->logMessage("Federate cannot proceed due to Publish/Subscribe error.");

 throw 401; // don't continue local federate

 }

 const RTIfedTime timeStep(localFederate->getUpdateTimeStep());

 //--

 // local time advances only at the discretion of the RTI

 // timeAdvGrant will remain false until a requested advance

 // is granted

 //--

 timeAdvGrant = RTI::RTI_FALSE;

 TimeConstrained = RTI::RTI_FALSE;

 //--

 // Set the Time Management parameters

 //

 // This version of EstimateDirector operates as a time-stepped

 // simulation. This means that it should be constrained

 // and regulating.

 //--

 try

 {

 //--

 // Turn on constrained status so that regulating

 // federates will control our advancement in time.

 //--

 localFederate->logMessage("Enabling time-constrained.");

-A-20-

AFOSR F49620-01-1-0371

 rtiAmbassador.enableTimeConstrained();

 timeAdvGrant = RTI::RTI_FALSE;

 TimeConstrained = RTI::RTI_FALSE;

 //--

 // Tick the RTI until we get the timeConstrainedEnabled

 // callback with my current time. timeConstrainedEnabled()

 // will set both timeAdvGrant and TimeConstrained to true

 //--

 while (!TimeConstrained)

 {

 rtiAmbassador.tick(0.01, 1.0);

 }

 localFederate->logMessage("Time-constrained is enabled.");

 }

 catch (RTI::Exception& e)

 {

 out = "Error:";

 out += e._reason;

 localFederate->logMessage(out);

 throw 501; // don't continue local federate

 }

 try

 {

 out = "Enabling time regulation with lookahead = ";

 char *PrintableLookahead = new char [(localFederate-

>getLookahead()).getPrintableLength()];

 (localFederate->getLookahead()).getPrintableString(PrintableLookahead);

 out += PrintableLookahead;

 delete [] PrintableLookahead;

 localFederate->logMessage(out);

 //--

 // Turn on regulating status so that constrained

 // federates will be controlled by our time.

 //

 // If we are regulating and our local federate interactions

 // are specified with timestamp in the EstimateDirector.fed

 // file we will send Time Stamp Ordered (TSO) messages.

 //--

 out = "Attempt to enableTimeRegulation starting at time = ";

 char *PrintableRegulation = new char [grantTime.getPrintableLength()];

 grantTime.getPrintableString(PrintableRegulation);

 out += PrintableRegulation;

 delete [] PrintableRegulation;

 localFederate->logMessage(out);

 rtiAmbassador.enableTimeRegulation(grantTime, localFederate->getLookahead());

 //--

 // enableTimeRegulation is an implicit timeAdvanceRequest

 // so set timeAdvGrant to TRUE since we will get a

 // timeRegulationEnabled which is an implicit

 // timeAdvanceGrant

 //--

 timeAdvGrant = RTI::RTI_FALSE;

 TimeRegulation = RTI::RTI_FALSE;

-A-21-

AFOSR F49620-01-1-0371

 //--

 // Tick the RTI until we get the timeRegulationEnabled

 // callback with my current time.

 // timeRegulationEnabled will set

 // timeAdvGrant = true and

 // TimeRegulation = true

 //--

 while (!TimeRegulation)

 {

 rtiAmbassador.tick(0.01, 1.0);

 }

 }

 catch (RTI::Exception& e)

 {

 out = "Error:";

 out += e._reason;

 localFederate->logMessage(out);

 throw 601; // don't continue local federate

 }

 //--

 // Event Loop

 // ----------

 //

 // 1.) Calculate current state of local federate.

 // 2.) Ask for a time advance.

 // 3.) Tick the RTI waiting for the grant and process all

 // RTI initiated services.

 // 4.) Repeat.

 //--

 RTIfedTime requestTime(0); // time of first update

 string out;

 char dummy[65];

 clicker = new timeStamp();

 unsigned long counter = 0; // count the number of our updates

 endTime = grantTime;

 while (grantTime <= endTime)

 {

 out = "Event Loop Iteration #: ";

 out += _ltoa(counter, dummy, 10);

 out += " begin at time ";

 out += clicker->stamp();

 localFederate->logMessage(out); // log the time

 //--

 // Update current state of this federate at the local time

 //--

 char Now[255];

 grantTime.getPrintableString(Now);

 out = "(Line-";

 out += _itoa(__LINE__, dummy, 10);

 out += ")";

 out += "Begin local federate Update at time = ";

 out += Now;

 localFederate->logMessage(out);

-A-22-

AFOSR F49620-01-1-0371

 counter += 1; // count the iterations

 out = "Event Loop Iteration #: ";

 out += _ltoa(counter, dummy, 10);

 out += " start at time ";

 out += clicker->stamp();

 localFederate->logMessage(out); // log the time

 localFederate->Update(grantTime); // Perform the update

 out = "Update end at time ";

 out += clicker->stamp();

 localFederate->logMessage(out); // log the time

 //--

 // Ask for a time advance to the next event.

 //--

 requestTime = timeStep.getTime();

 requestTime += grantTime;// request the next tick

 out = "(Line-";

 out += _itoa(__LINE__, dummy, 10);

 out += ")";

 out += "Request time advance to ";

 out += _gcvt(((double)requestTime.getTime()), 16, dummy);

 localFederate->logMessage(out);

 timeAdvGrant = RTI::RTI_FALSE;

 try

 {

 rtiAmbassador.nextEventRequest(requestTime);

//cout << "Waiting for startup-signal.";

 while (WaitingForStart)

 {

 Sleep(2000);

 rtiAmbassador.tick(0.01, 1.0);

//cout << ".";

 }

//cout << endl;

 }

 catch (RTI::Exception& e)

 {

 out = "Error:";

 out += e._reason;

 localFederate->logMessage(out);

 throw 701; // don't continue local federate

 }

 //--

 // Tick the RTI waiting for the time-grant and process all

 // RTI initiated interactions.

 //--

 while(timeAdvGrant != RTI::RTI_TRUE)

 {

 //--

 // Tick will turn control over to the RTI so that it can

 // process an event. This will cause an invocation of one

 // of the federateAmbassadorServices methods.

-A-23-

AFOSR F49620-01-1-0371

 //

 // NOTE:

 // Be sure not to invoke the RTIambassadorServices from the

 // federateAmbassadorServices; otherwise, a ConcurrentAccess

 // exception will be thrown.

 //--

 rtiAmbassador.tick(0.01, 1.0);

 }//end while

 // we have been granted an advance to the next requested time

 {

 // this following code is special-purpose and enables the

 // test-scripter to request an orderly federate termination.

 string QuitFlag = "quitflag";

 ifstream *AbortFederate = new ifstream(QuitFlag.c_str(), ios::in);

 if (AbortFederate->is_open()) // if file exists

 {

 AbortFederate->close(); // close the file

 delete AbortFederate; // clean up

 AbortFederate = NULL; // clear the pointer

 system("DEL quitflag"); // clean up the drive

 break; // leave

execute-loop

 }

 }

 }//end while

 try

 {

 rtiAmbassador.disableTimeConstrained();

 TimeConstrained = RTI::RTI_FALSE;

 }

 catch(RTI::Exception& e)

 {

 out = "Error:";

 out += e._reason;

 localFederate->logMessage(out);

 }

 try

 {

 rtiAmbassador.disableTimeRegulation();

 TimeRegulation = RTI::RTI_FALSE;

 }

 catch(RTI::Exception& e)

 {

 out = "Error:";

 out += e._reason;

 localFederate->logMessage(out);

 }

 //--

 // Resign from the federation execution to remove this

 // federate from participation. The flag provided

 // will instruct the RTI to call deleteObjectInstance

 // for all objects this federate has privilegeToDelete

 // for (which by default is all objects that this federate

-A-24-

AFOSR F49620-01-1-0371

 // registered) and to release ownership of any attributes

 // that this federate owns but does not own the

 // privilegeToDelete for.

 //--

 try

 {

 localFederate->logMessage("Resign-federation execution called");

 rtiAmbassador.resignFederationExecution(RTI::DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES);

 localFederate->logMessage("Successful resign-federation execution called.");

 }

 catch (RTI::Exception& e)

 {

 out = "Error:";

 out += e._reason;

 localFederate->logMessage(out);

 }

 //--

 // Destroy the federation execution in case we are the

 // last federate. This will not do anything bad if there

 // other federates joined. The RTI will throw us an

 // exception telling us that other federates are joined

 // and we can just ignore that.

 //--

 try

 {

 localFederate->logMessage("Destroy federation execution called");

 rtiAmbassador.destroyFederationExecution(federationName.c_str());

 localFederate->logMessage("Successful destroy federation execution called.");

 }

 catch (RTI::FederatesCurrentlyJoined &e)

 {

 localFederate->logMessage(e._reason);

 }

 catch (RTI::FederationExecutionDoesNotExist &e)

 {

 localFederate->logMessage(e._reason);

 }

 catch (RTI::Exception& e)

 {

 out = "Error:";

 out += e._reason;

 localFederate->logMessage(out);

 }

 }// end try

 catch (RTI::ConcurrentAccessAttempted& e)

 {

 out = "Error: Concurrent access to the RTI was attemted.\n";

 out += " Exception caught in main() - PROGRAM EXITING.\n";

 out += "\n";

 out += "Note: Concurrent access will result from invoking\n";

 out += " RTIambassadorServices within the scope of\n";

 out += " federateAmbassadorService invocations.\n";

-A-25-

AFOSR F49620-01-1-0371

 localFederate->logMessage(out);

 out = "Error:";

 out += e._reason;

 localFederate->logMessage(out);

 throw 901; // don't continue local federate

 }

 catch (RTI::Exception& e)

 {

 out = "Error:";

 out += e._reason;

 localFederate->logMessage(out);

 throw 902; // don't continue local federate

 }

 catch(string e)

 {

 localFederate->logMessage(e);

 throw 903; // don't continue local federate

 }

 out = "Exiting ";

 out += localName;

 out += ".";

 localFederate->logMessage(out);

 localFederate->Terminate(); // do user-defined cleanup

 delete clicker;

 delete localFederate;

 localFederate = NULL;

 return 0;

}

void SyncReady(const unsigned long &duration)

{

 endTime = duration; // value received (in interaction) at localFederate

 WaitingForStart = false;

 char dummy[65];

 string out = "Synchronized execution-start beginning.";

 out += "\n";

 out += "Run duration = ";

 out += _ltoa(duration, dummy, 10);

 localFederate->logMessage(out);

}

int main(int argc, char** argv)

{

 int retcode = 0;

 try

 {

 hw_main(argc, argv);

 }

 catch(int abortCode) // get here if local federate aborted

 {

 retcode = abortCode;

 char dummy[65];

 if (localFederate != NULL)

 {

 string out = "Execution terminated; Code = ";

-A-26-

AFOSR F49620-01-1-0371

 out += _itoa(abortCode, dummy, 10);

 localFederate->logMessage(out);

 localFederate->Terminate(); // do user-defined cleanup

 delete clicker;

 delete localFederate;

 localFederate = NULL;

 }

 }

 // get here if local federate terminated normally

 return retcode; // either way, quit

}

6. localFederate.cpp

///////////////////////////////

// The debugger can't handle symbols more than 255 characters long.

// STL often creates symbols longer than that.

// When symbols are longer than 255 characters, the warning is issued.

#pragma warning(disable:4786)

///////////////////////////////

#include "localFederate.h"

//#include <winsock2.h>

#include <iostream> // for printout

#include <string> // for interactions

#include <vector> // for interactions

#include <climits> // for INT_MAX

#include <stdlib.h> // for _itoa

#include <stddef.h>

#include <stdio.h>

#include <cassert>

using namespace std;

//---

//

// METHOD:

// void fedModel::Update(RTIfedTime& newTime)

//

// PURPOSE:

// Update the state of the federate based on the new time

// value. The deltaTime is calculated based on the last

// time the federate was updated and the newTime passed in.

//

// RETURN VALUES:

// None.

//

//---

void fedModel::Update(RTI::FedTime& newTime)

{

 char PrintableTime[255];

 newTime.getPrintableString(PrintableTime);

 string msg = "Federate update begun at ";

 msg += PrintableTime;

 logMessage(msg);

 // Save time of previous update

 this->setPreviousTime(this->getCurrentTime());

-A-27-

AFOSR F49620-01-1-0371

 this->setCurrentTime(newTime); // Establish time now

 RTIfedTime now = getCurrentTime();

 // Prepare for this update by clearing the count

 // of interactions sent during the previous update

 // (total counts remain undisturbed)

 for (pTwoCount sent = m_SentCounters.begin(); sent != m_SentCounters.end(); ++sent)

 {

 (sent->second).first = 0; // clear the past interval's count

 }

 // here we will make the Update available to the local federate

 unsigned long federateTime = now.getTime();

 this->fedUpdate(federateTime);

 // Complete this update by clearing the count

 // of interactions received since the previous update

 // (total counts remain undisturbed)

 for (pTwoCount received = m_ReceiptCounters.begin(); received != m_ReceiptCounters.end(); ++received)

 {

 (received->second).first = 0; // clear the past interval's count

 }

 logMessage("Update is Complete.");

 return; // return to modelMain

}

//---

//

// METHOD:

// void fedModel::receiveInteraction(

// RTI::InteractionClassHandle theInteraction,

// const RTI::ParameterHandleValuePairSet &theParameters,

// const RTI::FedTime &theTime,

// const char *theTag,

// RTI::EventRetractionHandle theHandle)

//

// PURPOSE:

// Update the state of the federate based on the contents of the

// interaction. The timestamp on the interaction is guaranteed

// to be >= the most recent invocation of Update (above)

// and <= the next invocation of Update.

//

// RETURN VALUES:

// None.

//

//---

void fedModel::receiveInteraction(

 RTI::InteractionClassHandle theInteraction,

 const RTI::ParameterHandleValuePairSet &theParameters,

 const RTI::FedTime &theTime,

 const char *theTag,

 RTI::EventRetractionHandle theHandle)

{

 char Now[255];

 // The following message produces a record of the interaction-receipt

 RTI::FedTime *pTime = RTI::FedTimeFactory::makeZero();

-A-28-

AFOSR F49620-01-1-0371

 (*pTime) = theTime;

 pTime->getPrintableString(Now);

 delete pTime;

 string out = "Interaction received at time ";

 out += Now;

 logMessage(out);

 // Get parameter string from theParameters

 unsigned long valueLength = 0;

 char *rawData;

 rawData = new char [theParameters.getValueLength(0)];

 theParameters.getValue(0, rawData, valueLength);

 string xmitData = rawData; // Convert the char[] to a std::string

 delete [] rawData; // clean up after ourselves

 for (pString iCount = m_IntName.begin(); iCount != m_IntName.end(); ++iCount)

 {

 if (theInteraction == m_TypeId[*iCount])

 {

 if (theParameters.getHandle(0) != m_Parms_TypeId[*iCount])

 {

 logMessage("Interaction / parameter mismatch.");

 return;

 }

 else

 {

 string IntName = xmitData.substr(0, xmitData.find("~"));

 pTwoCount pIntCounters = m_ReceiptCounters.find(IntName);

 if (pIntCounters != m_ReceiptCounters.end())

 {

 (pIntCounters->second).first += 1; // increment total count

 (pIntCounters->second).second += 1; // increment count this interval

 }

 else

 {

 twoCounts start(1,1);

 labeledTwoCounts tagged(IntName, start);

 m_ReceiptCounters.insert(tagged);

 }

 // At this point we must make the received interaction

 // available to the local federate.

 for (pString subName = m_PubNames.begin(); subName != m_PubNames.end(); ++subName)

 {

 if (*subName == *iCount)

 {

 fedMessage(*iCount, xmitData);

 return;

 }

 }

 }

 }

 }

 if (theInteraction == m_RGtoALL01_TypeId)

 {

-A-29-

AFOSR F49620-01-1-0371

 if (theParameters.getHandle(0) != m_RGtoALL01_Parms_TypeId)

 {

 logMessage("Interaction / parameter mismatch.");

 return;

 }

 else

 {

 interaction<RGtoALL01> *FederationStartup = new interaction<RGtoALL01>(xmitData);

 m_MessageRGtoALL01 = FederationStartup->GetContents();

 m_RunDuration = m_MessageRGtoALL01.getDuration();

 SyncReady(m_RunDuration);

 char dummy[65];

 string out = "LOG:Startup msg received - duration = ";

 out += _itoa(m_MessageRGtoALL01.getDuration(), dummy, 10);

 logMessage(out);

 delete FederationStartup;

 return;

 }

 }

 if (theInteraction == m_RGtoALL02_TypeId)

 {

 if (theParameters.getHandle(0) != m_RGtoALL02_Parms_TypeId)

 {

 logMessage("Interaction / parameter mismatch.");

 return;

 }

 else

 {

 interaction<RGtoALL02> *FederationInitialization = new interaction<RGtoALL02>(xmitData);

 m_MessageRGtoALL02 = FederationInitialization->GetContents();

 // here is where we can access any or all of the ini-file parms

 m_MessageLoggerFileName = m_MessageRGtoALL02.getValue("ScreenLog");

 delete FederationInitialization;

 // create a queue to communicate received interactions

 // to the background thread that saves them

 m_MessageLoggerQueue = new tsQueue();

 if ((m_MessageLoggerFileName == "")

 || (m_MessageLoggerFileName == "NULL")) // if none was supplied

 {

 m_MessageLoggerThreadParms = new logParms(m_MessageLoggerQueue);

 }

 else

 {

 // truncate previous

version - if any

 std::ofstream logFile(m_MessageLoggerFileName.c_str(),

std::ios::out|std::ios::trunc);

 logFile.close();

 m_MessageLoggerThreadParms = new logParms(m_MessageLoggerQueue,

m_MessageLoggerFileName);

 }

 // start the background message-logging thread

-A-30-

AFOSR F49620-01-1-0371

 m_MessageLoggerThreadHandle = CreateThread(NULL, // No security

attributes

 0,

 // Default stack size

 (LPTHREAD_START_ROUTINE)MessageLogger,

 (LPVOID)(m_MessageLoggerThreadParms),

 0,

 // Create running

 &m_MessageLoggerThreadID);

 if (INVALID_HANDLE_VALUE == m_MessageLoggerThreadHandle)

 {

 logMessage("Background processing could not be activated.");

 string out = " Extended Err Info = ";

 out += GetLastError();

 logMessage(out);

 exit(1);

 }

 else

 {

 if (! SetThreadPriority(m_MessageLoggerThreadHandle,

THREAD_PRIORITY_ABOVE_NORMAL))

 {

 logMessage("Background thread priority could not be set.");

 string out = " Extended Err Info = ";

 out += GetLastError();

 logMessage(out);

 exit(1);

 }

 }

 }

 return;

 }

 out = this->getFederateName();

 out += ": Unknown interaction received.";

 logMessage(out);

}

//---

//

// METHOD:

// void MessageLogging(LPVOID param)

// where: param = ptr->struct carrier

// {

// tsQueue *queue;

// std::string *name;

// };

//

//

// PURPOSE:

// Represents a background thread that runs continuously to

-A-31-

AFOSR F49620-01-1-0371

// output logged messages to the display screen.

// The parameters are:

// tsQueue * - the queue of text msgs

// std::string * - the name of a log-file or NULL

// (NULL => display to crt only)

//

// RETURN VALUES:

// None.

//

//---

void MessageLogger(LPVOID param)

{

 logParms *LogParms = (logParms *)param;

 assert(LogParms != NULL);

 std::string xmitData;

 std::ofstream logFile;

 tsQueue *IntSupply = LogParms->InteractionHighway;

 assert(IntSupply != NULL);

 std::string filename = LogParms->logfileName;

 while (1==1) // run for ANY length

 {

 while (IntSupply->queueSize() == 0) // if there are no interactions waiting to be logged

 {

 Sleep(1000); // wait for 1 sec

 }

 assert(IntSupply->queueSize() > 0); // some interactions are waiting to be logged

 if (filename != "") // if a logfile name has been provided

 {

 logFile.open(filename.c_str(), std::ios::app);

 assert(logFile.is_open()); // file is successfully open

 }

 while (IntSupply->queueSize() > 0) // do while any data remains

 {

 xmitData = IntSupply->extract();// get the waiting text message

 assert(xmitData.size() >= 0); // it *could* be 0-length

 if (!logFile.is_open()) // if a logfile has not been requested

 {

 std::cout << xmitData << std::endl;

 }

 else // a logfile has been requested

 {

 logFile << xmitData << std::endl;

 }

 }

 if (logFile.is_open()) // if a logfile has been requested

 {

 logFile.flush(); // empty any holding-buffers

 logFile.close(); // close the file for safety

 assert(!logFile.is_open()); // file is closed

 }

 }

}

-A-32-

AFOSR F49620-01-1-0371

A.1.7. fedSpecCode.cpp

///////////////////////////////

// The debugger can't handle symbols more than 255 characters long.

// STL often creates symbols longer than that.

// When symbols are longer than 255 characters, the warning is issued.

#pragma warning(disable:4786)

///////////////////////////////

//**

//

// The code in this module will be written by the writer of

// the federate simulation. The function names are to be

// used as follows:

//

// getPublicationNames()

// This function returns a stringArray of interaction

// names which this federate wishes to publish.

//

// getSubscriptionNames()

// This function returns a stringArray of interaction

// names to which this federate wishes to subscribe.

//

// fedMessage(string, string)

// This function provides the federate an opportunity to

// process the receipt of an interfederate interaction.

// Arg-1 contains the name of the interaction (Ex: RGtoDF01)

// Arg-2 contains the contents of the interaction string.

//

// fedUpdate(long)

// This function provides the federate an opportunity to

// process a regularly scheduled update. The update

// time interval is set by a call to setUpdateTimeStep.

// Arg-1 contains the current time (at the update).

//

//**

#include "localFederate.h"

#include <iostream> // for printout

using namespace std;

stringArray fedModel::getPublicationNames(void)

{

 stringArray ret;

 ret.push_back("");

 ret.push_back("");

 ret.push_back("");

 return ret;

}

stringArray fedModel::getSubscriptionNames(void)

{

 stringArray ret;

 ret.push_back("RGtoDF01");

 ret.push_back("RGtoDF02");

 ret.push_back("RGtoDF03");

 return ret;

-A-33-

AFOSR F49620-01-1-0371

}

// This function processes the receipt of an interfederate interaction.

void fedModel::fedMessage(const std::string &id, std::string &data)

{

 if (id == "RGtoDF01")

 {

 RGtoDF01 Msg = (new interaction<RGtoDF01>(data))->GetContents();

 // process a receipt of this message

 }

 if (id == "RGtoDF02")

 {

 RGtoDF02 Msg = (new interaction<RGtoDF02>(data))->GetContents();

 // process a receipt of this message

 }

 return;

}

void fedModel::fedUpdate(const unsigned long &n)

{

 std::cout << n << std::endl;

 // process a regularly scheduled update of the federate state

}

A.2 Dispatch/Routher Federate Code

A.2.1 Ambulance_Idle.h

#ifndef AMBULANCEIDLEDEFINITION_01

#define AMBULANCEIDLEDEFINITION_01

struct Ambulance_Idle

{

 unsigned long time;

 unsigned long AmbulanceID;

 double X;

 double Y;

 long Nearest_Node;

 long int Link_ID; // Link Id that is impassable

 unsigned int Onboard_2;

 unsigned int Onboard_3;

 unsigned int Idle;

 Ambulance_Idle(void)

 {

 time = 0;

 AmbulanceID = 0;

 X = 0.0;

 Y = 0.0;

 Nearest_Node = 0;

 Link_ID=0;

 Onboard_2 = 0;

 Onboard_3 = 0;

 Idle=0;

 }

};

#endif

-A-34-

AFOSR F49620-01-1-0371

A.2.2 AmbulanceStuck.h

#ifndef AMBULANCESTUCKDEFINITION_01

#define AMBULANCESTUCKDEFINITION_01

struct Ambulance_Stuck

{

 unsigned long time;

 unsigned long AmbulanceID;

 double X;

 double Y;

 long Nearest_Node;

 long int Link_ID; // Link Id that is impassable

 int Onboard_2;

 int Onboard_3;

 Ambulance_Stuck(void)

 {

 time = 0;

 AmbulanceID = 0;

 X = 0.0;

 Y = 0.0;

 Nearest_Node = 0;

 Link_ID=0;

 Onboard_2=0;

 Onboard_3=0;

 }

};

#endif

A.2.3 Casualty_Delivery.h

#ifndef CASUALTYDELIVERYDEFINITION_01

#define CASUALTYDELIVERYDEFINITION_01

struct Casualty_Delivery

{

 unsigned long time;

 //Changed on 01/19/05 -- Rashmi

 unsigned long TrackID;

 unsigned long Hospital;

 unsigned int Severity;

 //Changed on 01/19/05 -- Rashmi

 Casualty_Delivery(void)

 {

 time = 0;

 TrackID = 0;

 Hospital = 0;

 Severity = 0;

 }

};

#endif

A.2.4 Casualty_Observation.h

#ifndef CASUALTYOBSERVATIONDEFINITION_01

#define CASUALTYOBSERVATIONDEFINITION_01

#include <string>

-A-35-

AFOSR F49620-01-1-0371

#include <cstdlib>

struct Casualty_Observation

{

 unsigned long time;

 unsigned long TrackID;

 double X;

 double Y;

 long Nearest_Node;

 unsigned int Severity;

 float Sev_Prob_Vect[4];

 int pick;

 int ignore;

 Casualty_Observation(void)

 {

 time = 0;

 TrackID = 0;

 X = 0.0;

 Y = 0.0;

 Nearest_Node = 0;

 Severity = 0;

 Sev_Prob_Vect[0] = 0.0;

 Sev_Prob_Vect[1] = 0.0;

 Sev_Prob_Vect[2] = 0.0;

 Sev_Prob_Vect[3] = 0.0;

 pick=0;

 ignore=0;

 }

 std::string reportSelf(void)

 {

 char dummy[65];

 std::string ret = "\nCasualty_Observation";

 ret += "\n time = ";

 ret += _ltoa(time, dummy, 10);

 ret += "\n TrackID = ";

 ret += _ltoa(TrackID, dummy, 10);

 ret += "\n X = ";

 ret += _gcvt(X, 9, dummy);

 ret += "\n Y = ";

 ret += _gcvt(Y, 9, dummy);

 ret += "\n Nearest_Node = ";

 ret += _ltoa(Nearest_Node, dummy, 10);

 ret += "\n Severity = ";

 ret += _itoa(Severity, dummy, 10);

 ret += "\n Sev_Prob_Vect[0] = ";

 ret += _gcvt(Sev_Prob_Vect[0], 7, dummy);

 ret += "\n Sev_Prob_Vect[1] = ";

 ret += _gcvt(Sev_Prob_Vect[1], 7, dummy);

 ret += "\n Sev_Prob_Vect[2] = ";

 ret += _gcvt(Sev_Prob_Vect[2], 7, dummy);

 ret += "\n Sev_Prob_Vect[3] = ";

 ret += _gcvt(Sev_Prob_Vect[3], 7, dummy);

 ret += "\n pick = ";

 ret += _itoa(pick, dummy, 10);

-A-36-

AFOSR F49620-01-1-0371

 ret += "\n ignore = ";

 ret += _itoa(ignore, dummy, 10);

 return ret;

 }

};

#endif

A.2.5 Casualty_Pickup.h

#ifndef CASUALTYPICKUPDEFINITION_01

#define CASUALTYPICKUPDEFINITION_01

struct Casualty_Pickup

{

 unsigned long time;

 //Changed on 01/19/05 -- Rashmi

 unsigned long TrackID;

 unsigned long Nearest_Node;

 unsigned int Severity;

 //Changed on 01/19/05 -- Rashmi

 Casualty_Pickup(void)

 {

 time = 0;

 TrackID = 0;

 Nearest_Node = 0;

 Severity = 0;

 }

};

#endif

A.2.6 Cluster_Cell.h

#ifndef CLUSTERCELLDEFINITION_01

#define CLUSTERCELLDEFINITION_01

struct Cluster_Cell

{

 unsigned int type;// Boundary cell or not

 double Cell_X; // Centroid

 double Cell_Y;

 unsigned int Sev2_Count; // Severity 2 = Medium Priority

 unsigned int Sev3_Count; // Severity 3 = High Priority

 int ignore;

 Cluster_Cell(void)

 {

 type=0;

 Cell_X = 0.0;

 Cell_Y = 0.0;

 Sev2_Count = 0;

 Sev3_Count = 0;

 ignore=0;

 }

};

#endif

A.2.7 Cluster_Identify.h

#ifndef CLUSTERIDENTIFICATIONDEFINITION_01

#define CLUSTERIDENTIFICATIONDEFINITION_01

-A-37-

AFOSR F49620-01-1-0371

#include <vector>

#include "Cluster_Cell.h"

struct Cluster_Identify

{

 unsigned long time;

 unsigned long ClusterID;

 unsigned int Side; // Size of cell side

 unsigned int Count;

 std::vector<Cluster_Cell> Cells;

 Cluster_Identify(void)

 {

 time = 0;

 ClusterID = 0;

 Side = 0;

 Count = 0;

 }

 void addCell(const Cluster_Cell &c)

 {

 Cells.push_back(c); // makes a copy of c inside Cells

 }

 Cluster_Cell getCell(const int &c)

 {

 return Cells[c]; // returns a copy

 }

// Cluster_Cell subCell(const int &i)

 void subCell(const int &i)

 {

 if(Cells[i].Sev3_Count<3)

 {

 Cells[i].Sev3_Count=0;

 }

 else

 {

 Cells[i].Sev3_Count = Cells[i].Sev3_Count - 3;

 }

 // return Cells[c]; // returns a copy

 }

 void ignore(const int &i)

 {

 Cells[i].ignore = 1;

 }

 void Change_ignore_Flag(const int &i)

 {

 Cells[i].ignore = 0;

 }

 unsigned int getCount(void)

 {

 return Cells.size();

 }

};

-A-38-

AFOSR F49620-01-1-0371

A.2.8 Hospital_Capacity.h

#ifndef HOSPITALCAPACITYDEFINITION_01

#define HOSPITALCAPACITYDEFINITION_01

struct Hospital_Capacity

{

 unsigned long HospitalID;

 unsigned int Severity_1;

 unsigned int Severity_2;

 unsigned int Severity_3;

 double X;

 double Y;

 long Nearest_Node;

 float Delay_1;

 float Delay_2;

 float Delay_3;

 int ignore;

 Hospital_Capacity(void)

 {

 HospitalID = 0;

 Severity_2 = 0;

 Severity_3 = 0;

 X=0.0;

 Y=0.0;

 Nearest_Node=0;

 Delay_1 = 0.0;

 Delay_2 = 0.0;

 Delay_3 = 0.0;

 ignore = 0;

 }

};

#endif

A.2.9 Hospital_Delay.h

#ifndef HOSPITALDELAYDEFINITION_01

#define HOSPITALDELAYDEFINITION_01

struct Hospital_Delay

{

 unsigned long time;

 unsigned long HospitalID;

 float Delay_1;

 float Delay_2;

 float Delay_3;

 Hospital_Delay(void)

 {

 time = 0;

 HospitalID = 0;

 Delay_1 = 0.0;

 Delay_2 = 0.0;

 Delay_3 = 0.0;

 }

};

#endif

#endif

//#include <stdio.h>

-A-39-

AFOSR F49620-01-1-0371

#include <stdlib.h>

#include <conio.h>

#include <ctype.h>

#include <iostream>

#include <fstream>

#include <math.h>

#include <malloc.h>

//#include <iomanip.h>

//#include <string.h>

#include <conio.h>

#include <time.h>

using namespace std;

#define MAX 50000

const double INF=9999999.0;

const double ISPEED=65.0;

const double USPEED=55.0;

const double SSPEED=40.0;

const double RSPEED=30.0;

const double XSPEED=20.0;

const char OBJ[5][40]={"Distance\0","Travel Time\0"};

struct NODE

{

 int NODEID ;

 int FEATUREID ;

 long int NODE_ID ;

 int KEY ;

 int REGION ;

 char DESCRIPT [150] ;

};

struct LINK

{

 int LINKID ;

 int FEATUREID ;

 long int ANODE ;

 long int BNODE ;

 long double MILE ;

 int FCLASS ;

 float DELAY ;

 double SPEED ;

 long int LINK_ID ;

 char DESCRIPT [150] ;

};

struct PathNode

{

 int nodix;

 int preix;

 int lnkix;

 int stats;

 double label;

 long double time;

 long double realtime;

 PathNode *next;

-A-40-

AFOSR F49620-01-1-0371

 PathNode *prev;

};

struct FinalPath

{

 int nodix;

 int lnkix;

 long double label;

 long double dist;

 long double time;

 FinalPath *next;

};

struct PathList

{

 int nodcnt;

 double length;

 int *nodix;

 int *lnkix;

 double *label;

 double *dist;

 double *time;

 PathList *next;

 int flag;

 int pathno;

};

class INTEGRATION

{

 public:

 INTEGRATION();

 ~INTEGRATION();

 void Reset();

 ofstream ofpath;

 NODE *node;long int NoNd;

 LINK *link;long int NoLn;

 int *adjn;long int NoAj;

 int *ndix;

 int *lnix;

 int Final_Path[700];//***********************changed

 int Final_Path1[700];

 long double Final_Path2[700];

 double Final_Path3[700];

 int Node_Count;

 void ReadNode(char fnode1[100]);

 void ReadLink(char flink1[100]);

 void ReadMtrx(char fadjn1[100],char fadjx1[100]);

 void DeletePathNode(PathNode*);

 void DeleteFinalPath(FinalPath*);

 void DeletePathList(PathList*);

 void DijkstraShortestPath(int, int, int);

 void YenShortestPath(int, int, int, int);

 void DisplayNodes(PathList*, int No, int opt, char*); //opt=0 without WS, 1 with WS

 void DisplayDetail(PathList*, int No, int opt, char*);

 void DisplayBrief(PathList*, int No, int opt, char*);

-A-41-

AFOSR F49620-01-1-0371

 void DisplayDetailSorted(PathList*, int No, int opt, char*); //opt=0 without WS, 1

with WS

 void DisplayBriefSorted(PathList*, int No, int opt, char*);

// int* SortPathList(PathList*, int);

 double tstart;

 void SetStartTime(double);

 int Origin;

 int Destin;

 //Section for Dijkstra's shortest path algorithm

 PathNode *Head;

 PathNode *Last;

 int size;

 FinalPath *Final;

 PathList *SP;

 int NodeCnt;

 double FinLabel;

 void SetPair(int, int);

 void ResetSpath();

 double GetFinalDistance();

 void Dijkstra(int, int, int);

 void AddList(PathNode*, int, int, int);

 void UpdateLabel(PathNode*, PathNode*, int, int);

 void DisplayPath(int, int);

 PathNode* MinLabel();

 PathNode* ExistList(int);

 void BuildPath(int, int);

 void FindLabel();

 void AddPathSP();

 void NodeClean();

 void PathClean();

 //Section for Yen's k-shortest path algorithm

 PathList *A;int NoA;

 PathList *B;int NoB;

 int KPATH;

 int Iorigin;

 long double *t1;

 long *t2;

 FinalPath *HELP;

 FinalPath *ROOT;

 FinalPath *SPUR;

 void Dijkstra(int, int, int, int);

 void AddList(PathNode*, int, int, int, int);

 void UpdateLabel(PathNode*, PathNode*, int, int, int);

 void ResetKpath();

 void SetPair(int, int, int);

 void AddPathA(FinalPath*);

 void AddPathB(FinalPath*);

 void GetPath();

 int GetLength();

 void FindRoot(int);

-A-42-

AFOSR F49620-01-1-0371

 void Compare(int,int);

 void FindSpur(int);

 void Combine(int);

 int IfSame(int, PathList*);

 int IfLoop();

 void Replace();

 void Retrieve();

 void BackUp(int);

 void Restore(int);

 int RootPenalty(int);

};

#ifndef h_LOCALFEDERATE_0001

#define h_LOCALFEDERATE_0001

#if defined(_MSC_VER) // if we're using Microsoft VC6

#define RTI_USES_STD_FSTREAM

#endif // defined(_MSC_VER)

#define _DIAGNOSTIC_PRINTOUT_

//#define _TimeProfileOnly_PRINTOUT_

#include <windows.h>

#include <RTI.hh>

#include "AllInteractions.h" // All interaction classes are contained here

#include <vector>

#include <string>

#include <map>

#include "baseTypes.hh"

#include <fedtime.hh>

#include "logParms.h"

#include "tsQueue.h"

#include <assert.h>

//Added on 01/19/05 -- Rashmi

#include "Casualty_Observation.h"

#include "Casualty_Pickup.h"

#include "Casualty_Delivery.h"

#include "Road_Damage.h"

#include "Hospital_Capacity.h"

#include "Road_Delay.h"

#include "Hospital_Delay.h"

#include "Ambulance_Idle.h"

#include "Ambulance_Stuck.h"

#include "Cluster_Identify.h"

#include <vector>

#include "hosploc.h"

//Added on 01/19/05 -- Rashmi

typedef std::vector<std::string> stringVector;

typedef stringVector::iterator ipStringVector;

void MessageLogger(LPVOID param);

// function prototypes - definition in ModelMain

void SyncReady(const long &duration);

void AbortRun(void);

//---

//

-A-43-

AFOSR F49620-01-1-0371

// CLASS:

// fedModel

//

// PURPOSE:

// The purpose of this class is to

//

//---

class fedModel

{

public:

 fedModel(void);

 virtual ~fedModel(void)

 { }

 void setAmbAddress(RTI::RTIambassador* rtiAmb)

 {

 m_rtiAmb = rtiAmb; // initialize the pointer

 }

 void Init(void);

 void Terminate(void);

 void receiveInteraction(

 RTI::InteractionClassHandle theInteraction,

 const RTI::ParameterHandleValuePairSet &theParameters,

 const RTI::FedTime &theTime,

 const char *theTag,

 RTI::EventRetractionHandle theHandle);

 void Update(RTI::FedTime& newTime);

 //---

 // Accessor Methods

 //---

 RTI::FedTime const &GetLastTime()

 { return m_lastTime; };

 RTI::FedTime const &GetLastTimePlusLookahead()

 {

 m_TimePlusLookahead = m_lastTime;

 m_TimePlusLookahead += m_lookahead;

 return m_TimePlusLookahead;

 };

 const char *GetName()

 { return m_Name; };

 RTI::FedTime const &GetLookahead()

 { return m_lookahead;};

 double const &getUpdateTimeStep(void)

 { return m_UpdateTimeStep; }

 //---

 // Mutator Methods

 //---

 void SetLastTime(RTI::FedTime const & time)

 { m_lastTime = time;};

 void SetLookahead(RTI::FedTime& time)

 { m_lookahead = time;};

 //---

 //

 // METHOD:

-A-44-

AFOSR F49620-01-1-0371

 // void PublishAndSubscribe(void)

 //

 // PURPOSE:

 // This method conveys to the federation the names of the

 // interactions which this federate will receive.

 //

 // RETURN VALUES:

 // None.

 //

 //---

 void PublishAndSubscribe(void)

 {

 std::cout << "Publish and Subscribe Starting." << std::endl;

 try

 {

 if (m_rtiAmb)

 {

 m_RGtoALL01_TypeId = m_rtiAmb->getInteractionClassHandle("RGtoALL01");

 m_RGtoALL01_Parms_TypeId = m_rtiAmb->getParameterHandle("RGtoALL01Parms",

m_RGtoALL01_TypeId);

 m_rtiAmb->subscribeInteractionClass(m_RGtoALL01_TypeId);

 m_RGtoALL02_TypeId = m_rtiAmb->getInteractionClassHandle("RGtoALL02");

 m_RGtoALL02_Parms_TypeId = m_rtiAmb->getParameterHandle("RGtoALL02Parms",

m_RGtoALL02_TypeId);

 m_rtiAmb->subscribeInteractionClass(m_RGtoALL02_TypeId);

 m_rtiAmb->publishInteractionClass(m_TypeId["DPtoRG01"]);

 m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP01"]);

 //m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP02"]);

 //m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP03"]);

 m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP04"]);

 m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP05"]);

 m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP06"]);

 m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP07"]);

 m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP08"]);

 m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP09"]);

 m_rtiAmb->subscribeInteractionClass(m_TypeId["EDtoDP10"]);

 m_rtiAmb->subscribeInteractionClass(m_TypeId["RGtoDP01"]);

 }

 }

 catch(RTI::InteractionClassNotDefined e)

 {

 throw "Interaction Class Not Defined";

 }

 catch(RTI::RTIinternalError e)

 {

 throw "RTI Internal Error";

 }

 std::cout << "Publish and Subscribe Ending." << std::endl;

 }// PublishAndSubscribe

//---

//

// METHOD:

// void sendMsgs(parmType *parmlist)

-A-45-

AFOSR F49620-01-1-0371

// where parmlist is an interaction such as RGtoDF01

//

// PURPOSE:

// Send sendInteraction to all subscribing federates.

//

// RETURN VALUES:

// void

//

//---

template<class parmType>

void sendMsgs(parmType *parmlist)

{

 std::string sourcedest = parmlist->getIntName();

 interaction<parmType> *Interaction = new interaction<parmType>(*parmlist);

 RTI::ParameterHandleValuePairSet *pParams = RTI::ParameterSetFactory::create(1);

 RTI::InteractionClassHandle TypeID;

 try

 {

 TypeID = m_rtiAmb->getInteractionClassHandle(sourcedest.c_str());

 }

 catch(RTI::NameNotFound e)

 {

 throw "Name Not Found";

 }

 catch(RTI::RTIinternalError e)

 {

 throw "RTI Internal Error";

 }

 std::string IntParm = sourcedest;

 IntParm += "Parms";

 RTI::ParameterHandle Parms_TypeID;

 try

 {

 Parms_TypeID = m_rtiAmb->getParameterHandle(IntParm.c_str(), TypeID);

 }

 catch(RTI::InteractionClassNotDefined e)

 {

 throw "Interaction Class Not Defined";

 }

 catch(RTI::NameNotFound e)

 {

 throw "Name Not Found";

 }

 catch(RTI::RTIinternalError e)

 {

 throw "RTI Internal Error";

 }

 Interaction->setSrcDstCount(++(m_IntCount[sourcedest.c_str()]));

 try

 {

 pParams->add(Parms_TypeID, (char *)((Interaction->GetASCII()).c_str()),

 ((strlen(((Interaction->GetASCII()).c_str()))+1) * sizeof(char)));

 }

-A-46-

AFOSR F49620-01-1-0371

 catch(RTI::ValueLengthExceeded e)

 {

 throw "Value Length Exceeded";

 }

 catch(RTI::ValueCountExceeded e)

 {

 throw "Value Count Exceeded";

 }

 // make sure that timestamp isn't in the past

 char dummy[65];

 char *timeStamp = _ltoa(parmlist->getTime(), dummy, 10);

 RTI::FedTime &outTime = (*(RTI::FedTimeFactory::decode(timeStamp)));

 if (outTime < this->GetLastTimePlusLookahead())

 {

 outTime = this->GetLastTimePlusLookahead();

 }

 try

 {

 (void)m_rtiAmb->sendInteraction(TypeID, *pParams, outTime, NULL);

 }

 catch(RTI::InteractionClassNotDefined e)

 {

 throw "Interaction Class Not Defined";

 }

 catch(RTI::InteractionClassNotPublished e)

 {

 throw "Interaction Class Not Published";

 }

 catch(RTI::InteractionParameterNotDefined e)

 {

 throw "Interaction Parameter Not Defined";

 }

 catch(RTI::RTIinternalError e)

 {

 throw "RTI Internal Error";

 }

 logSend(parmlist);

 delete pParams;

 delete Interaction;

} // sendMsgs

 //---

private:

 double m_UpdateTimeStep;

 char *m_Name; // Name of this federate

 RTI::RTIambassador *m_rtiAmb; // Pointer to RTIambassador

 RTI::FedTime &m_lastTime; // Time of previous update

 long m_LastUpdate; // Time of previous update

 long m_PreviousUpdate;// saved time of previous update

 RTI::FedTime &m_TimePlusLookahead;

 RTIfedTime m_lookahead; // Minimum time for action

 stringVector m_IntName;

 stringVector m_IntParm;

 RTI::InteractionClassHandle m_RGtoALL01_TypeId;

-A-47-

AFOSR F49620-01-1-0371

 RTI::ParameterHandle m_RGtoALL01_Parms_TypeId;

 RTI::InteractionClassHandle m_RGtoALL02_TypeId;

 RTI::ParameterHandle m_RGtoALL02_Parms_TypeId;

 std::map<std::string, RTI::InteractionClassHandle> m_TypeId;

 std::map<std::string, RTI::ParameterHandle> m_Parms_TypeId;

 unsigned long m_ReceiptCount[INTCOUNT];

 // Type counts are used to supply values for SrcDstCount (in msgHeader.h)

 // values are initialized to 0 in fedModel::Init

 // values are assigned to SrcDstCount in fedModel::sendMsgs

 std::map<std::string, unsigned long> m_IntCount;

 RGtoALL01 m_MessageRGtoALL01;

 RGtoALL02 m_MessageRGtoALL02;

public:

 void logMessage(const std::string &txtMsg);

 void logTime(const std::string &txtMsg);

 void logReceipt(msgHeader &msg);

 void logSend(msgHeader *msg);

 void logCounterOut(const std::string &cntName, const long &cnt);

 void logCounterIn(const std::string &cntName, const long &cnt);

 char separaterChar;

public:

 void parse(stringVector &tokens, char *rawData);

 unsigned long Dispatch_Hospital(Ambulance_Idle* Amb,int& ORIGIN_Hosp,int& DESTINATION_Hosp);

 unsigned long Dispatch_Casualty(Ambulance_Idle* Amb, int Step, int& ORIGIN_Amb,int& DESTINATION_Cas);

 unsigned long Dispatch_Cluster(Ambulance_Idle* Amb,int& ORIGIN_Amb,int& DESTINATION_Cell,double&

Dispatch_Cell_X,double& Dispatch_Cell_Y);

 void Find_Nearest_Node(double x,double y,int& Nearest_Node_ID);

 std::string m_MessageLoggerFileName;

 logParms *m_MessageLoggerThreadParms;

 tsQueue *m_MessageLoggerQueue;

 DWORD m_MessageLoggerThreadID;

 HANDLE m_MessageLoggerThreadHandle;

 //Added on 01/19/05 -- Rashmi

 std::vector< Casualty_Observation* > v_co;

 std::vector< Casualty_Pickup* > v_cp;

 std::vector< Casualty_Delivery* > v_cd;

 std::vector< Road_Damage* > v_rd;

 std::vector< Hospital_Capacity* > v_hc;

 std::vector< Road_Delay* > v_rdy;

 std::vector< Hospital_Delay* > v_hd;

 typedef std::vector< Ambulance_Idle* > AmbQueue;

 typedef AmbQueue::iterator itAmbQueue;

 AmbQueue v_ai;

 std::vector< Ambulance_Stuck* > v_as;

 std::vector< Cluster_Identify* > v_ci;

 std::vector< hospLoc > v_hl;

 //Added on 01/19/05 -- Rashmi

};

#endif

#ifndef h_PARAMETERSTOINDEPENDENTMESSAGELOGGINGTHREAD_001

-A-48-

AFOSR F49620-01-1-0371

#define h_PARAMETERSTOINDEPENDENTMESSAGELOGGINGTHREAD_001

#include <string>

#include <cassert>

#include "tsQueue.h"

// define a carrier-object to transmit the addresses of both

// the the tsQueue and the filename that have been created.

// if the filename * == NULL, display will be to the CRT only

struct logParms

{

 tsQueue *InteractionHighway;

 std::string logfileName;

 logParms(tsQueue *queue, const std::string &name)

 {

 assert(queue != NULL);

 assert(name.size() > 0);

 InteractionHighway = queue;

 logfileName = name;

 }

 logParms(tsQueue *queue)

 {

 assert(queue != NULL);

 InteractionHighway = queue;

 logfileName = "";

 }

 ~logParms(void)

 {

 delete InteractionHighway;

 }

};

#endif

#pragma warning(disable:4786)

#include "Integration.h"

#include "localFederate.h"

#include <cassert>

void origin_destin(FILE *fp_origin_destin, char file_origin_destin[200]);

void CallYen(INTEGRATION* Beyza,int org,int dst);

class MainClass

{

public:

 MainClass(void *arg)

 {

 localFederate = (fedModel *)arg;

 i = 0;

 m = 0;

 }

fedModel *localFederate; // pointer to our federate

int Exit_Entry[50];

char fnode[100];

char flink[100];

char fadjn[100];

char fadjx[100];

int i;

int m;

-A-49-

AFOSR F49620-01-1-0371

int number_entry_exit;

int kpath,opt;

int exit_points;

int entry_points;

double Shortest_Path;

int final_exit;

int final_entry;

long display_nodes_origin[1000];

long display_links_origin[1000];

long display_nodes_interm[1000];

long display_links_interm[1000];

long display_nodes_destin[1000];

long display_links_destin[1000];

int Cnt_Exit;

int Cnt_Interm;

int Cnt_Entry;

struct Final_output_origin

{

 int Final_Nodes_origin[500];

 int Final_Links_origin[500];

 long double Final_Dist_origin[500];

 double Final_Time_origin[500];

 double Path_Distance_origin_exit;

 int count;

} origin_final_output[50];

struct Final_output_destin

{

 int Final_Nodes_destin[500];

 int Final_Links_destin[500];

 long double Final_Dist_destin[500];

 double Final_Time_destin[500];

 double Path_Distance_destin_entry;

 int count;

} destin_final_output[50];

struct Final_output_interm

{

 int Final_Nodes_interm[500] ;

 int Final_Links_interm[500] ;

 long double Final_Dist_interm[500] ;

 double Final_Time_interm[500] ;

 double Path_Distance_interm ;

 int count ;

} interm_final_output[50][50];

struct original_data

{

 long from_id[MAX] ;

 long to_id[MAX] ;

 int region[MAX] ;

} input_nodes;

struct nodes

{

 int sno[7500] ;

 int node_id[7500] ;

-A-50-

AFOSR F49620-01-1-0371

 long node[7500] ;

 int key[7500] ;

 long regn[7500] ;

} convert_node;

struct links

{

 int sno[7500] ;

 int linkid[7500] ;

 int anode[7500] ;

 int bnode[7500] ;

 long double mile[7500] ;

 int fclass[7500] ;

 float delay[7500] ;

 float speed[7500] ;

 long int link_id[7500] ;

}convert_link;

void main_method(int origin, int destination)

{

 string out;

 char dummy[65];

FILE *fp;

FILE *fp_origin;

FILE *fp_destin;

FILE *fp_macro;

FILE *fp_origin_links;

FILE *fp_interm_links;

FILE *fp_destin_links;

int j = 0;

int x = 0;

int y = 0;

int n = 0;

int origin_actual=0;

int destin_actual=0;

int Exit_origin[50];

int Entry_destin[50];

char file_origin[500];

char file_destin[500];

char file_macro[500];

char file_origin_links[500];

char file_interm_links[500];

char file_destin_links[500];

int origin_region=0;

int destin_region=0;

int Macro_Enter[50];

int Macro_Exit[50];

int Enter[50];

int Exit[50];

 Cnt_Exit=0;

 Cnt_Interm=0;

 Cnt_Entry=0;

 kpath=1;

 opt=1;

-A-51-

AFOSR F49620-01-1-0371

// FINDING THE ORIGIN & DESTINATION REGION

 fp = fopen("original.txt", "r");

 if (fp == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 while (feof(fp) == 0)

 {

 fscanf(fp, "%ld\t%ld\t%d\n", &input_nodes.from_id[i], &input_nodes.to_id[i],

&input_nodes.region[i]);

 if ((input_nodes.from_id[i]==origin) || (input_nodes.to_id[i]==origin))

 {

 origin_region=input_nodes.region[i];

 }

 if ((input_nodes.from_id[i]==destination) || (input_nodes.to_id[i]==destination))

 {

 destin_region=input_nodes.region[i];

 }

 i++;

 }

 fclose(fp);

// cout<<"Origin region is: "<<origin_region<<endl;

// cout<<"Destination region is: "<<destin_region<<endl;

 // *************If the Origin or Destination node is not listed in the database ==>> IGNORE ROUTING CALL

AND MOVE TO NEXT THING ************* //

 if(origin_region!=0 && destin_region!=0)

 {

 // FINDING THE ORIGINAL NODE ID FOR ORIGIN

 sprintf(file_origin,"node%d.txt",origin_region);

 fp_origin=fopen(file_origin,"r");

 if (fp_origin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_origin) == 0)

 {

 fscanf(fp_origin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 if(convert_node.node[i]==origin)

 {

 origin_actual = convert_node.node_id[i];

 break;

 }

 i++;

 }

 fclose(fp_origin);

 // FINDING THE ORIGINAL NODE ID FOR DESTINATION

 sprintf(file_destin,"node%d.txt",destin_region);

 fp_destin=fopen(file_destin,"r");

-A-52-

AFOSR F49620-01-1-0371

 if (fp_destin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_destin) == 0)

 {

 fscanf(fp_destin,"%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 if(convert_node.node[i]==destination)

 {

 destin_actual = convert_node.node_id[i];

 break;

 }

 i++;

 }

 fclose(fp_destin);

 //***

 // CASE 1: BOTH ORIGIN AND DESTINATION ARE IN SAME REGION

 if(origin_region==destin_region)

 {

out = "CASE 1: BOTH ORIGIN AND DESTINATION ARE IN SAME REGION";

localFederate->logMessage(out);

 sprintf(fnode,"node%d.txt",origin_region);

 sprintf(flink,"link%d.txt",origin_region);

 sprintf(fadjn,"adjacency%d.txt",origin_region);

 sprintf(fadjx,"index%d.txt",origin_region);

 INTEGRATION *Beyza =new INTEGRATION;

 Beyza->ReadNode(fnode);

 Beyza->ReadLink(flink);

 Beyza->ReadMtrx(fadjn,fadjx);

 CallYen(Beyza,origin_actual,destin_actual);

 n=0;

 origin_final_output[n].Path_Distance_origin_exit = Beyza->GetFinalDistance()/1600;

 for(i=0;i<Beyza->Node_Count;i++)

 {

 origin_final_output[n].Final_Nodes_origin[i]=Beyza->Final_Path[i];

 origin_final_output[n].Final_Links_origin[i]=Beyza->Final_Path1[i];

 origin_final_output[n].Final_Dist_origin[i]=Beyza->Final_Path2[i];

 origin_final_output[n].Final_Time_origin[i]=Beyza->Final_Path3[i];

 }

 delete Beyza;

 origin_final_output[n].count=i;

 Shortest_Path=origin_final_output[n].Path_Distance_origin_exit;

// cout<<"Distance from "<<origin<<" to "<<destination <<" is " <<

origin_final_output[n].Path_Distance_origin_exit<<" miles"<<endl;

 cout<<"100\t"<<"100\t"<<origin_final_output[n].Path_Distance_origin_exit<<endl;

 if(Shortest_Path > (30)||(Shortest_Path<0))

 {

// cout<<" ==>> Inside MAIN: THE DESTINATION IS UNREACHABLE <<== "<<endl;

 }

-A-53-

AFOSR F49620-01-1-0371

 //DISPLAY NODES

 else

 {

 fp_origin=fopen(file_origin,"r");

 if (fp_origin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

// cout<<endl;

 i=0;

 m=0;

 while (feof(fp_origin) == 0)

 {

 fscanf(fp_origin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_origin);

 Cnt_Exit=origin_final_output[n].count;

// cout<<"===>> Count in MAIN FUNCTION FOR EXIT is: "<< origin_final_output[n].count<<endl;

 for (m=0;m<origin_final_output[n].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(origin_final_output[n].Final_Nodes_origin[m] ==

convert_node.node_id[j])

 {

 display_nodes_origin[m]=convert_node.node[j];

 break;

 }

 }

 }

 // DISPLAY LINKS

 sprintf(file_origin_links,"link%d.txt",origin_region);

 fp_origin_links=fopen(file_origin_links,"r");

 if (fp_origin_links == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_origin_links) == 0)

 {

 fscanf(fp_origin_links, "%d\t%d\t%d\t%d\t%lf\t%d\t%d\t%f\t%ld\n",

&convert_link.sno[i], &convert_link.linkid[i],

&convert_link.anode[i],&convert_link.bnode[i],&convert_link.mile[i],&convert_link.fclass,&convert_link.delay[i],

&convert_link.speed[i],&convert_link.link_id[i]);

 i++;

 }

 fclose(fp_origin_links);

 for (m=0;m<origin_final_output[n].count; m++)

-A-54-

AFOSR F49620-01-1-0371

 {

 for(j=0;j<i;j++)

 {

 if(origin_final_output[n].Final_Links_origin[m] ==

convert_link.linkid[j])

 {

 display_links_origin[m]=convert_link.link_id[j];

 break;

 }

 }

 }

 // DISPLAY

 /* for (m=0;m<origin_final_output[n].count-1; m++)

 {

 // cout<<"Link\t\t"<<display_links_origin[m+1]<<endl;

 // cout<<"Node\t\t"<<display_nodes_origin[m+1]<<endl;

 // cout<<"Dist\t\t"<<origin_final_output[n].Final_Dist_origin[m+1]<<endl;

 // cout<<"Time\t\t"<<origin_final_output[n].Final_Time_origin[m+1]<<endl;

 }

 */

 } //END ELSE LOOP

 } //**END IF LOOP 1

 //***

 // CASE 2: ORIGIN IS AT THE MACRO NETWORK AND DESTINATION IS IN SOME REGION

 else if(origin_region==99 && destin_region!=99)

 {

out = "CASE 2: ORIGIN IS AT THE MACRO NETWORK AND DESTINATION IS IN SOME REGION";

localFederate->logMessage(out);

 sprintf(fnode,"node%d.txt",destin_region);//SP FROM ENTRY POINT TO DESTINATION

 sprintf(flink,"link%d.txt",destin_region);

 sprintf(fadjn,"adjacency%d.txt",destin_region);

 sprintf(fadjx,"index%d.txt",destin_region);

 INTEGRATION *Beyza=new INTEGRATION;

 Beyza->ReadNode(fnode);

 Beyza->ReadLink(flink);

 Beyza->ReadMtrx(fadjn,fadjx);

 origin_destin(fp_destin,file_destin);

 entry_points=number_entry_exit;

 for(n=0;n<number_entry_exit;n++)

 {

 Entry_destin[n]= Exit_Entry[n];

 CallYen(Beyza,Entry_destin[n],destin_actual);

 destin_final_output[n].Path_Distance_destin_entry = Beyza-

>GetFinalDistance()/1600;

 for(i=0;i<Beyza->Node_Count;i++)

 {

 destin_final_output[n].Final_Nodes_destin[i]=Beyza->Final_Path[i];

 destin_final_output[n].Final_Links_destin[i]=Beyza->Final_Path1[i];

 destin_final_output[n].Final_Dist_destin[i]=Beyza->Final_Path2[i];

 destin_final_output[n].Final_Time_destin[i]=Beyza->Final_Path3[i];

 }

 destin_final_output[n].count=i;

-A-55-

AFOSR F49620-01-1-0371

 }

 delete Beyza;

 //Convert Entry points for Macro Network

 fp_destin=fopen(file_destin,"r");

 if (fp_destin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 while (feof(fp_destin) == 0)

 {

 fscanf(fp_destin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_destin);

 for(n=0;n<number_entry_exit;n++)

 {

 for(j=0;j<i;j++)

 {

 if(Entry_destin[n]==convert_node.node_id[j])

 {

 Macro_Exit[n] = convert_node.node[j];

 break;

 }

 }

 }

 // Convert back for Macro Network

 sprintf(file_macro,"node%d.txt",99);

 fp_macro=fopen(file_macro,"r");

 if (fp_macro == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 while (feof(fp_macro) == 0)

 {

 fscanf(fp_macro, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_macro);

 entry_points=0; // *********** CHANGED 03/23/2006

 for(n=0;n<number_entry_exit;n++)

 {

 for(j=0;j<i;j++)

 {

 if(convert_node.node[j]==Macro_Exit[n])

 {

-A-56-

AFOSR F49620-01-1-0371

 Exit[entry_points] = convert_node.node_id[j];

 ++entry_points; // *********** CHANGED 03/23/2006

 break;

 }

 }

 }

 // SP FROM ORIGIN TO ENTRY POINT

 sprintf(fnode,"node99.txt");

 sprintf(flink,"link99.txt");

 sprintf(fadjn,"adjacency99.txt");

 sprintf(fadjx,"index99.txt");

 Beyza =new INTEGRATION;

 Beyza->ReadNode(fnode);

 Beyza->ReadLink(flink);

 Beyza->ReadMtrx(fadjn,fadjx);

 n=0;

 exit_points=1;

 for(m=0;m<exit_points;m++) //******************************Changed

 {

 origin_final_output[m].Path_Distance_origin_exit = 0.0;

 }

 for(m=0;m<entry_points;m++)

 {

 CallYen(Beyza,origin_actual,Exit[m]);

 interm_final_output[n][m].Path_Distance_interm = Beyza->GetFinalDistance()/1600;

 for(i=0;i<Beyza->Node_Count;i++)

 {

 interm_final_output[n][m].Final_Nodes_interm[i]= Beyza->Final_Path[i];

 interm_final_output[n][m].Final_Links_interm[i]= Beyza->Final_Path1[i];

 interm_final_output[n][m].Final_Dist_interm[i]= Beyza->Final_Path2[i];

 interm_final_output[n][m].Final_Time_interm[i]= Beyza->Final_Path3[i];

 }

 interm_final_output[n][m].count=i;

 }

 delete Beyza;

 Shortest_Path = GetShortestDistance();

// cout<<"Distance from "<<origin<<" to "<<destination <<" is " << Shortest_Path<<"

miles"<<endl;

 cout<<"100\t"<<"100\t"<<Shortest_Path<<endl;

 if(Shortest_Path > (30)||(Shortest_Path<0))

 {

// cout<<" ==>> Inside MAIN: THE DESTINATION IS UNREACHABLE <<== "<<endl;

 }

 //DISPLAY NODES FOR ORIGIN TO ENTRY

 else

 {

 fp_macro=fopen(file_macro,"r");

 if (fp_macro == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

-A-57-

AFOSR F49620-01-1-0371

// cout<<endl;

 i=0;

 m=0;

 while (feof(fp_macro) == 0)

 {

 fscanf(fp_macro, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_macro);

 Cnt_Interm=interm_final_output[final_exit-1][final_entry-1].count;

// cout<<"===>> Count in MAIN FUNCTION FOR CASE 2 INTERM is: "<< interm_final_output[final_exit-

1][final_entry-1].count<<endl;

 for (m=0;m<interm_final_output[final_exit-1][final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(interm_final_output[final_exit-1][final_entry-

1].Final_Nodes_interm[m] == convert_node.node_id[j])

 {

 display_nodes_interm[m]=convert_node.node[j];

 break;

 }

 }

 }

 //DISPLAY LINKS FOR ORIGIN TO ENTRY

 sprintf(file_interm_links,"link99.txt");

 fp_interm_links=fopen(file_interm_links,"r");

 if (fp_interm_links == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_interm_links) == 0)

 {

 fscanf(fp_interm_links, "%d\t%d\t%d\t%d\t%lf\t%d\t%d\t%f\t%ld\n",

&convert_link.sno[i], &convert_link.linkid[i],

&convert_link.anode[i],&convert_link.bnode[i],&convert_link.mile[i],&convert_link.fclass,&convert_link.delay[i],

&convert_link.speed[i],&convert_link.link_id[i]);

 i++;

 }

 fclose(fp_interm_links);

 for (m=0;m<interm_final_output[final_exit-1][final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(interm_final_output[final_exit-1][final_entry-

1].Final_Links_interm[m] == convert_link.linkid[j])

 {

 display_links_interm[m]=convert_link.link_id[j];

-A-58-

AFOSR F49620-01-1-0371

 break;

 }

 }

 }

 // DISPLAY

 /* for (m=0;m<interm_final_output[final_exit-1][final_entry-1].count-1; m++)

 {

 // cout<<"Links\t\t"<<display_links_interm[m+1]<<endl;

 // cout<<"Nodes\t\t"<<display_nodes_interm[m+1]<<endl;

 // cout<<"Dist\t\t"<<interm_final_output[final_exit-1][final_entry-

1].Final_Dist_interm[m+1]<<endl;

 // cout<<"Time\t\t"<<interm_final_output[final_exit-1][final_entry-

1].Final_Time_interm[m+1]<<endl;

 }

 */

 //DISPLAY NODES FOR ENTRY TO DESTINATION

 fp_destin=fopen(file_destin,"r");

 if (fp_destin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

// cout<<endl;

 i=0;

 m=0;

 while (feof(fp_destin) == 0)

 {

 fscanf(fp_destin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_destin);

 Cnt_Entry= destin_final_output[final_entry-1].count;

// cout<<"===>> Count in MAIN FUNCTION FOR CASE 2 DESTIN is: "<< destin_final_output[final_entry-

1].count<<endl;

 for (m=0;m<destin_final_output[final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(destin_final_output[final_entry-1].Final_Nodes_destin[m] ==

convert_node.node_id[j])

 {

 display_nodes_destin[m]=convert_node.node[j];

 break;

 }

 }

 }

 //DISPLAY LINKS FOR ENTRY TO DESTINATION

 sprintf(file_destin_links,"link%d.txt",destin_region);

 fp_destin_links=fopen(file_destin_links,"r");

 if (fp_destin_links == NULL)

-A-59-

AFOSR F49620-01-1-0371

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_destin_links) == 0)

 {

 fscanf(fp_destin_links, "%d\t%d\t%d\t%d\t%lf\t%d\t%d\t%f\t%ld\n",

&convert_link.sno[i], &convert_link.linkid[i],

&convert_link.anode[i],&convert_link.bnode[i],&convert_link.mile[i],&convert_link.fclass,&convert_link.delay[i],

&convert_link.speed[i],&convert_link.link_id[i]);

 i++;

 }

 fclose(fp_destin_links);

 for (m=0;m<destin_final_output[final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(destin_final_output[final_entry-1].Final_Links_destin[m] ==

convert_link.linkid[j])

 {

 display_links_destin[m]=convert_link.link_id[j];

 break;

 }

 }

 }

 // DISPLAY

 /* for (m=0;m<destin_final_output[final_entry-1].count-1; m++)

 {

 // cout<<"Links\t\t"<<display_links_destin[m+1]<<endl;

 // cout<<"Nodes\t\t"<<display_nodes_destin[m+1]<<endl;

 // cout<<"Dist\t\t"<<destin_final_output[final_entry-

1].Final_Dist_destin[m+1]<<endl;

 // cout<<"Time\t\t"<<destin_final_output[final_entry-

1].Final_Time_destin[m+1]<<endl;

 }

 */

 } // END ELSE LOOP

 } //END IF LOOP2

 //***

 // CASE 3: DESTINATION IS AT THE MACRO NETWORK AND ORIGIN IS IN SOME REGION

 else if(origin_region!=99 && destin_region==99)

 {

out = "CASE 3: DESTINATION IS AT THE MACRO NETWORK AND ORIGIN IS IN SOME REGION";

localFederate->logMessage(out);

 sprintf(fnode,"node%d.txt",origin_region);// FINDING THE SP FROM ORIGIN TO EXIT POINTS

 sprintf(flink,"link%d.txt",origin_region);

 sprintf(fadjn,"adjacency%d.txt",origin_region);

 sprintf(fadjx,"index%d.txt",origin_region);

 INTEGRATION *Beyza=new INTEGRATION;

 Beyza->ReadNode(fnode);

 Beyza->ReadLink(flink);

-A-60-

AFOSR F49620-01-1-0371

 Beyza->ReadMtrx(fadjn,fadjx);

 origin_destin(fp_origin,file_origin);

 exit_points=number_entry_exit;

 for(n=0;n<number_entry_exit;n++)

 {

 Exit_origin[n]= Exit_Entry[n];

 CallYen(Beyza,origin_actual,Exit_origin[n]);

 origin_final_output[n].Path_Distance_origin_exit = Beyza->GetFinalDistance()/1600;

 for(i=0;i<Beyza->Node_Count;i++)

 {

 origin_final_output[n].Final_Nodes_origin[i]=Beyza->Final_Path[i];

 origin_final_output[n].Final_Links_origin[i]=Beyza->Final_Path1[i];

 origin_final_output[n].Final_Dist_origin[i]=Beyza->Final_Path2[i];

 origin_final_output[n].Final_Time_origin[i]=Beyza->Final_Path3[i];

 }

 origin_final_output[n].count=i;

 }

 delete Beyza;

 //Convert Exit points for Macro Network

 fp_origin=fopen(file_origin,"r");

 if (fp_origin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 while (feof(fp_origin) == 0)

 {

 fscanf(fp_origin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_origin);

 for(n=0;n<number_entry_exit;n++)

 {

 for(j=0;j<i;j++)

 {

 if(Exit_origin[n]==convert_node.node_id[j])

 {

 Macro_Enter[n] = convert_node.node[j];

 break;

 }

 }

 }

 // Convert back for Macro Network

 sprintf(file_macro,"node%d.txt",99);

 fp_macro=fopen(file_macro,"r");

 if (fp_macro == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

-A-61-

AFOSR F49620-01-1-0371

 while (feof(fp_macro) == 0)

 {

 fscanf(fp_macro, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_macro);

 exit_points=0; // *********** CHANGED 03/23/2006

 for(n=0;n<number_entry_exit;n++)

 {

 for(j=0;j<i;j++)

 {

 if(Macro_Enter[n]==convert_node.node[j])

 {

 Enter[exit_points] = convert_node.node_id[j];

 ++exit_points;// *********** CHANGED 03/23/2006

 break;

 }

 }

 }

 // SP FROM EXIT POINTS TO DESTINATION

 sprintf(fnode,"node99.txt");

 sprintf(flink,"link99.txt");

 sprintf(fadjn,"adjacency99.txt");

 sprintf(fadjx,"index99.txt");

 Beyza =new INTEGRATION;

 Beyza->ReadNode(fnode);

 Beyza->ReadLink(flink);

 Beyza->ReadMtrx(fadjn,fadjx);

 m=0;

 entry_points=1;

 for(n=0;n<entry_points;n++)//****************

 {

 destin_final_output[n].Path_Distance_destin_entry = 0.0;

 }

 for(n=0;n<exit_points;n++)

 {

 CallYen(Beyza,Enter[n],destin_actual);

 interm_final_output[n][m].Path_Distance_interm = Beyza->GetFinalDistance()/1600;

 for(i=0;i<Beyza->Node_Count;i++)

 {

 interm_final_output[n][m].Final_Nodes_interm[i]= Beyza->Final_Path[i];

 interm_final_output[n][m].Final_Links_interm[i]= Beyza->Final_Path1[i];

 interm_final_output[n][m].Final_Dist_interm[i]= Beyza->Final_Path2[i];

 interm_final_output[n][m].Final_Time_interm[i]= Beyza->Final_Path3[i];

 }

 interm_final_output[n][m].count=i;

 }

 delete Beyza;

 Shortest_Path = GetShortestDistance();

-A-62-

AFOSR F49620-01-1-0371

// cout<<"Distance from "<<origin<<" to "<<destination <<" is " << Shortest_Path<<"

miles"<<endl;

 cout<<"100\t"<<"100\t"<<Shortest_Path<<endl;

 if(Shortest_Path > (30)||(Shortest_Path<0))

 {

// cout<<" ==>> Inside MAIN: THE DESTINATION IS UNREACHABLE <<== "<<endl;

 }

 //DISPLAY NODES FROM ORIGIN TO EXIT

 else

 {

 fp_origin=fopen(file_origin,"r");

 if (fp_origin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

// cout<<endl;

 i=0;

 m=0;

 while (feof(fp_origin) == 0)

 {

 fscanf(fp_origin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_origin);

 Cnt_Exit=origin_final_output[final_exit-1].count;

// cout<<"===>> Count in MAIN FUNCTION FOR CASE 3 ORIGIN is: "<< Cnt_Exit <<endl;

 for (m=0;m<origin_final_output[final_exit-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(origin_final_output[final_exit-1].Final_Nodes_origin[m] ==

convert_node.node_id[j])

 {

 display_nodes_origin[m]=convert_node.node[j];

 break;

 }

 }

 }

 // DISPLAY LINKS FROM ORIGIN TO EXIT

 sprintf(file_origin_links,"link%d.txt",origin_region);

 fp_origin_links=fopen(file_origin_links,"r");

 if (fp_origin_links == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

-A-63-

AFOSR F49620-01-1-0371

 while (feof(fp_origin_links) == 0)

 {

 fscanf(fp_origin_links, "%d\t%d\t%d\t%d\t%lf\t%d\t%d\t%f\t%ld\n",

&convert_link.sno[i], &convert_link.linkid[i],

&convert_link.anode[i],&convert_link.bnode[i],&convert_link.mile[i],&convert_link.fclass,&convert_link.delay[i],

&convert_link.speed[i],&convert_link.link_id[i]);

 i++;

 }

 fclose(fp_origin_links);

 for (m=0;m<origin_final_output[final_exit-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(origin_final_output[final_exit-1].Final_Links_origin[m] ==

convert_link.linkid[j])

 {

 display_links_origin[m]=convert_link.link_id[j];

 break;

 }

 }

 }

 // DISPLAY

 /* for (m=0;m<origin_final_output[final_exit-1].count-1; m++)

 {

 // cout<<"Links\t\t"<<display_links_origin[m+1]<<endl;

 // cout<<"Nodes\t\t"<<display_nodes_origin[m+1]<<endl;

 // cout<<"Dist\t\t"<<origin_final_output[final_exit-

1].Final_Dist_origin[m+1]<<endl;

 // cout<<"Time\t\t"<<origin_final_output[final_exit-

1].Final_Time_origin[m+1]<<endl;

 }

 */

 //DISPLAY NODES FROM EXIT TO DESTINATION

 fp_macro=fopen(file_macro,"r");

 if (fp_macro == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

// cout<<endl;

 i=0;

 m=0;

 while (feof(fp_macro) == 0)

 {

 fscanf(fp_macro, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_macro);

 Cnt_Interm=interm_final_output[final_exit-1][final_entry-1].count;

// cout<<"===>> Count in MAIN FUNCTION FOR CASE 3 INTERM is: "<< interm_final_output[final_exit-

1][final_entry-1].count <<endl;

-A-64-

AFOSR F49620-01-1-0371

 for (m=0;m<interm_final_output[final_exit-1][final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(interm_final_output[final_exit-1][final_entry-

1].Final_Nodes_interm[m] == convert_node.node_id[j])

 {

 display_nodes_interm[m]=convert_node.node[j];

 break;

 }

 }

 }

 //DISPLAY LINKS FROM EXIT TO DESTINATION

 sprintf(file_interm_links,"link99.txt");

 fp_interm_links=fopen(file_interm_links,"r");

 if (fp_interm_links == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_interm_links) == 0)

 {

 fscanf(fp_interm_links, "%d\t%d\t%d\t%d\t%lf\t%d\t%d\t%f\t%ld\n",

&convert_link.sno[i], &convert_link.linkid[i],

&convert_link.anode[i],&convert_link.bnode[i],&convert_link.mile[i],&convert_link.fclass,&convert_link.delay[i],

&convert_link.speed[i],&convert_link.link_id[i]);

 i++;

 }

 fclose(fp_interm_links);

 for (m=0;m<interm_final_output[final_exit-1][final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(interm_final_output[final_exit-1][final_entry-

1].Final_Links_interm[m] == convert_link.linkid[j])

 {

 display_links_interm[m]=convert_link.link_id[j];

 break;

 }

 }

 }

 // DISPLAY

 /* for (m=0;m<interm_final_output[final_exit-1][final_entry-1].count-1; m++)

 {

 // cout<<"Links\t\t"<<display_links_interm[m+1]<<endl;

 // cout<<"Nodes\t\t"<<display_nodes_interm[m+1]<<endl;

 // cout<<"Dist\t\t"<<interm_final_output[final_exit-1][final_entry-

1].Final_Dist_interm[m+1]<<endl;

 // cout<<"Time\t\t"<<interm_final_output[final_exit-1][final_entry-

1].Final_Time_interm[m+1]<<endl;

 }

 */

-A-65-

AFOSR F49620-01-1-0371

 } // END ELSE LOOP

 } /// END IF LOOP3

 //***

 // CASE 4: ORIGIN AND DESTINATION ARE IN DIFFERENT REGIONS

 else if (origin_region!= destin_region)

 {

out = "CASE 4: ORIGIN AND DESTINATION ARE IN DIFFERENT REGIONS";

localFederate->logMessage(out);

out = "Origin region = ";

out += _itoa(origin_region, dummy, 10);

out += " and Destination region = ";

out += _itoa(destin_region, dummy, 10);

localFederate->logMessage(out);

 sprintf(fnode,"node%d.txt",origin_region);

 // FINDING THE SP FROM ORIGIN TO EXIT POINTS

out = "FINDING THE SP FROM ORIGIN TO EXIT POINTS";

localFederate->logMessage(out);

 sprintf(flink,"link%d.txt",origin_region);

 sprintf(fadjn,"adjacency%d.txt",origin_region);

 sprintf(fadjx,"index%d.txt",origin_region);

out = "Link file name = ";

out += flink;

localFederate->logMessage(out);

out = "Adjacency file name = ";

out += fadjn;

localFederate->logMessage(out);

out = "Index file name = ";

out += fadjx;

localFederate->logMessage(out);

 INTEGRATION *Beyza=new INTEGRATION;

 assert(Beyza != NULL);

 Beyza->ReadNode(fnode);

 Beyza->ReadLink(flink);

 Beyza->ReadMtrx(fadjn,fadjx);

 origin_destin(fp_origin,file_origin);

 exit_points=number_entry_exit; // number_entry_exit set in origin_destin

 assert(exit_points < 50); // larger will overflow array Exit_origin

 for(n=0;n<number_entry_exit;n++)

 {

 Exit_origin[n]= Exit_Entry[n];

 CallYen(Beyza,origin_actual,Exit_origin[n]);

 origin_final_output[n].Path_Distance_origin_exit = Beyza->GetFinalDistance()/1600;

 assert(Beyza->Node_Count < 500);// larger will overflow origin_final_output member

arrays

 for(i=0;i<Beyza->Node_Count;i++)

 {

 origin_final_output[n].Final_Nodes_origin[i]=Beyza->Final_Path[i];

 origin_final_output[n].Final_Links_origin[i]=Beyza->Final_Path1[i];

 origin_final_output[n].Final_Dist_origin[i]=Beyza->Final_Path2[i];

 origin_final_output[n].Final_Time_origin[i]=Beyza->Final_Path3[i];

 }

 origin_final_output[n].count=i;

-A-66-

AFOSR F49620-01-1-0371

 }

 delete Beyza;

 //Convert Exit points for Macro Network

 fp_origin=fopen(file_origin,"r");

 if (fp_origin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 while (!feof(fp_origin))

 {

 fscanf(fp_origin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

out = "Number of records read from ";

out += file_origin;

out += "is ";

out += _itoa(i, dummy, 10);

localFederate->logMessage(out);

 fclose(fp_origin);

 assert(number_entry_exit < 50); // larger will overflow Exit_origin

 for(n=0;n<number_entry_exit;n++)

 {

 assert(i < 7500); // larger will overflow convert_node

member arrays

 for(j=0;j<i;j++)

 {

 if(Exit_origin[n]==convert_node.node_id[j])

 {

 Macro_Enter[n] = convert_node.node[j];

 break;

 }

 }

 }

 // Convert back for Macro Network

 sprintf(file_macro,"node%d.txt",99);

 fp_macro=fopen(file_macro,"r");

 if (fp_macro == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 while (!feof(fp_macro))

 {

 fscanf(fp_macro, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

out = "Number of records read from ";

out += file_macro;

out += "is ";

out += _itoa(i, dummy, 10);

-A-67-

AFOSR F49620-01-1-0371

localFederate->logMessage(out);

 fclose(fp_macro);

 exit_points=0; // *********** CHANGED 03/23/2006

 for(n=0;n<number_entry_exit;n++)

 {

 for(j=0;j<i;j++)

 {

 if(Macro_Enter[n]==convert_node.node[j])

 {

 Enter[exit_points] = convert_node.node_id[j];

 ++exit_points; // *********** CHANGED 03/23/2006

 break;

 }

 }

 }

 // FINDING THE SP FROM ENTRY POINTS TO DESTINATION

 sprintf(fnode,"node%d.txt",destin_region);

 sprintf(flink,"link%d.txt",destin_region);

 sprintf(fadjn,"adjacency%d.txt",destin_region);

 sprintf(fadjx,"index%d.txt",destin_region);

 Beyza =new INTEGRATION;

 Beyza->ReadNode(fnode);

 Beyza->ReadLink(flink);

 Beyza->ReadMtrx(fadjn,fadjx);

 origin_destin(fp_destin,file_destin);

 entry_points=number_entry_exit;

 for(n=0;n<number_entry_exit;n++)

 {

 Entry_destin[n]= Exit_Entry[n];

 CallYen(Beyza,Entry_destin[n],destin_actual);

 destin_final_output[n].Path_Distance_destin_entry = Beyza-

>GetFinalDistance()/1600;

 for(i=0;i<Beyza->Node_Count;i++)

 {

 destin_final_output[n].Final_Nodes_destin[i]=Beyza->Final_Path[i];

 destin_final_output[n].Final_Links_destin[i]=Beyza->Final_Path1[i];

 destin_final_output[n].Final_Dist_destin[i]=Beyza->Final_Path2[i];

 destin_final_output[n].Final_Time_destin[i]=Beyza->Final_Path3[i];

 }

 destin_final_output[n].count=i;

 }

 delete Beyza;

 //Convert Entry points for Macro Network

 fp_destin=fopen(file_destin,"r");

 if (fp_destin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 while (feof(fp_destin) == 0)

 {

-A-68-

AFOSR F49620-01-1-0371

 fscanf(fp_destin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_destin);

 for(n=0;n<number_entry_exit;n++)

 {

 for(j=0;j<i;j++)

 {

 if(Entry_destin[n]==convert_node.node_id[j])

 {

 Macro_Exit[n] = convert_node.node[j];

 break;

 }

 }

 }

 // Convert back for Macro Network

 sprintf(file_macro,"node%d.txt",99);

 fp_macro=fopen(file_macro,"r");

 if (fp_macro == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 while (feof(fp_macro) == 0)

 {

 fscanf(fp_macro, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_macro);

 entry_points=0;// *********** CHANGED 03/23/2006

 for(n=0;n<number_entry_exit;n++)

 {

 for(j=0;j<i;j++)

 {

 if(Macro_Exit[n]==convert_node.node[j])

 {

 Exit[entry_points] = convert_node.node_id[j];

 ++entry_points;// *********** CHANGED 03/23/2006

 break;

 }

 }

 }

 //FINDING THE SP FROM ENTRY POINTS TO EXIT POINTS

 sprintf(fnode,"node99.txt");

 sprintf(flink,"link99.txt");

 sprintf(fadjn,"adjacency99.txt");

-A-69-

AFOSR F49620-01-1-0371

 sprintf(fadjx,"index99.txt");

 Beyza =new INTEGRATION;

 Beyza->ReadNode(fnode);

 Beyza->ReadLink(flink);

 Beyza->ReadMtrx(fadjn,fadjx);

 for(n=0;n<exit_points;n++)

 {

 for(m=0;m<entry_points;m++)

 {

 CallYen(Beyza,Enter[n],Exit[m]);

 interm_final_output[n][m].Path_Distance_interm = Beyza-

>GetFinalDistance()/1600;

 for(i=0;i<Beyza->Node_Count;i++)

 {

 interm_final_output[n][m].Final_Nodes_interm[i]= Beyza-

>Final_Path[i];

 interm_final_output[n][m].Final_Links_interm[i]= Beyza-

>Final_Path1[i];

 interm_final_output[n][m].Final_Dist_interm[i]= Beyza-

>Final_Path2[i];

 interm_final_output[n][m].Final_Time_interm[i]= Beyza-

>Final_Path3[i];

 }

 interm_final_output[n][m].count=i;

 }

 }

 delete Beyza;

 Shortest_Path = GetShortestDistance();

// cout<<"Distance from "<<origin<<" to "<<destination <<" is " << Shortest_Path<<"

miles"<<endl;

 cout<<"100\t"<<"100\t"<<Shortest_Path<<endl;

 if(Shortest_Path > (30)||(Shortest_Path<0))

 {

// cout<<" ==>> Inside MAIN: THE DESTINATION IS UNREACHABLE <<== "<<endl;

 }

 //DISPLAY NODES FROM ORIGIN TO EXIT

 else

 {

 fp_origin=fopen(file_origin,"r");

 if (fp_origin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

// cout<<endl;

 i=0;

 m=0;

 while (feof(fp_origin) == 0)

 {

-A-70-

AFOSR F49620-01-1-0371

 fscanf(fp_origin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_origin);

 Cnt_Exit = origin_final_output[final_exit-1].count;

// cout<<"===>> Count in MAIN FUNCTION FOR CASE 4 ORIGIN is: "<< origin_final_output[final_exit-1].count

<<endl;

 for (m=0;m<origin_final_output[final_exit-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(origin_final_output[final_exit-1].Final_Nodes_origin[m] ==

convert_node.node_id[j])

 {

 display_nodes_origin[m]=convert_node.node[j];

 break;

 }

 }

 }

 // DISPLAY LINKS FROM ORIGIN TO EXIT

 sprintf(file_origin_links,"link%d.txt",origin_region);

 fp_origin_links=fopen(file_origin_links,"r");

 if (fp_origin_links == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_origin_links) == 0)

 {

 fscanf(fp_origin_links, "%d\t%d\t%d\t%d\t%lf\t%d\t%d\t%f\t%ld\n",

&convert_link.sno[i], &convert_link.linkid[i],

&convert_link.anode[i],&convert_link.bnode[i],&convert_link.mile[i],&convert_link.fclass,&convert_link.delay[i],

&convert_link.speed[i],&convert_link.link_id[i]);

 i++;

 }

 fclose(fp_origin_links);

 for (m=0;m<origin_final_output[final_exit-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(origin_final_output[final_exit-1].Final_Links_origin[m] ==

convert_link.linkid[j])

 {

 display_links_origin[m]=convert_link.link_id[j];

 break;

 }

 }

 }

 // DISPLAY

 /* for (m=0;m<origin_final_output[final_exit-1].count-1; m++)

-A-71-

AFOSR F49620-01-1-0371

 {

 // cout<<"Links\t\t"<<display_links_origin[m+1]<<endl;

 // cout<<"Nodes\t\t"<<display_nodes_origin[m+1]<<endl;

 // cout<<"Dist\t\t"<<origin_final_output[final_exit-

1].Final_Dist_origin[m+1]<<endl;

 // cout<<"Time\t\t"<<origin_final_output[final_exit-

1].Final_Time_origin[m+1]<<endl;

 }

 */

 //**

 //DISPLAY NODES FROM EXIT TO ENTRY

 fp_macro=fopen(file_macro,"r");

 if (fp_macro == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

// cout<<endl;

 i=0;

 m=0;

 while (feof(fp_macro) == 0)

 {

 fscanf(fp_macro, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_macro);

 Cnt_Interm = interm_final_output[final_exit-1][final_entry-1].count;

// cout<<"===>> Count in MAIN FUNCTION FOR CASE 4 INTERM is: "<< interm_final_output[final_exit-

1][final_entry-1].count <<endl;

 for (m=0;m<interm_final_output[final_exit-1][final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(interm_final_output[final_exit-1][final_entry-

1].Final_Nodes_interm[m] == convert_node.node_id[j])

 {

 display_nodes_interm[m]=convert_node.node[j];

 break;

 }

 }

 }

 //DISPLAY LINKS FROM EXIT TO ENTRY

 sprintf(file_interm_links,"link99.txt");

 fp_interm_links=fopen(file_interm_links,"r");

 if (fp_interm_links == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_interm_links) == 0)

-A-72-

AFOSR F49620-01-1-0371

 {

 fscanf(fp_interm_links, "%d\t%d\t%d\t%d\t%lf\t%d\t%d\t%f\t%ld\n",

&convert_link.sno[i], &convert_link.linkid[i],

&convert_link.anode[i],&convert_link.bnode[i],&convert_link.mile[i],&convert_link.fclass,&convert_link.delay[i],

&convert_link.speed[i],&convert_link.link_id[i]);

 i++;

 }

 fclose(fp_interm_links);

 for (m=0;m<interm_final_output[final_exit-1][final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(interm_final_output[final_exit-1][final_entry-

1].Final_Links_interm[m] == convert_link.linkid[j])

 {

 display_links_interm[m]=convert_link.link_id[j];

 break;

 }

 }

 }

 // DISPLAY

 /* for (m=0;m<interm_final_output[final_exit-1][final_entry-1].count-1; m++)

 {

 // cout<<"Links\t\t"<<display_links_interm[m+1]<<endl;

 // cout<<"Nodes\t\t"<<display_nodes_interm[m+1]<<endl;

 // cout<<"Dist\t\t"<<interm_final_output[final_exit-1][final_entry-

1].Final_Dist_interm[m+1]<<endl;

 // cout<<"Time\t\t"<<interm_final_output[final_exit-1][final_entry-

1].Final_Time_interm[m+1]<<endl;

 }

 */

 //**

 //DISPLAY NODES FROM ENTRY TO DESTINATION

 fp_destin=fopen(file_destin,"r");

 if (fp_destin == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

// cout<<endl;

 i=0;

 m=0;

 while (feof(fp_destin) == 0)

 {

 fscanf(fp_destin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 i++;

 }

 fclose(fp_destin);

 Cnt_Entry = destin_final_output[final_entry-1].count;

// cout<<"===>> Count in MAIN FUNCTION FOR CASE 4 Entry is: "<< destin_final_output[final_entry-

1].count <<endl;

-A-73-

AFOSR F49620-01-1-0371

 for (m=0;m<destin_final_output[final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(destin_final_output[final_entry-1].Final_Nodes_destin[m] ==

convert_node.node_id[j])

 {

 display_nodes_destin[m]=convert_node.node[j];

 break;

 }

 }

 }

 //DISPLAY LINKS FROM ENTRY TO DESTINATION

 sprintf(file_destin_links,"link%d.txt",destin_region);

 fp_destin_links=fopen(file_destin_links,"r");

 if (fp_destin_links == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_destin_links) == 0)

 {

 fscanf(fp_destin_links, "%d\t%d\t%d\t%d\t%lf\t%d\t%d\t%f\t%ld\n",

&convert_link.sno[i], &convert_link.linkid[i],

&convert_link.anode[i],&convert_link.bnode[i],&convert_link.mile[i],&convert_link.fclass,&convert_link.delay[i],

&convert_link.speed[i],&convert_link.link_id[i]);

 i++;

 }

 fclose(fp_destin_links);

 for (m=0;m<destin_final_output[final_entry-1].count; m++)

 {

 for(j=0;j<i;j++)

 {

 if(destin_final_output[final_entry-1].Final_Links_destin[m] ==

convert_link.linkid[j])

 {

 display_links_destin[m]=convert_link.link_id[j];

 break;

 }

 }

 }

 // cout<<"Final entry value in the display is: "<<final_entry<<endl;

 // DISPLAY

 /* for (m=0;m<destin_final_output[final_entry-1].count-1; m++)

 {

 // cout<<"Links\t\t"<<display_links_destin[m+1]<<endl;

 // cout<<"Nodes\t\t"<<display_nodes_destin[m+1]<<endl;

 // cout<<"Dist\t\t"<<destin_final_output[final_entry-

1].Final_Dist_destin[m+1]<<endl;

 // cout<<"Time\t\t"<<destin_final_output[final_entry-

1].Final_Time_destin[m+1]<<endl;

-A-74-

AFOSR F49620-01-1-0371

 }

 */

 } // END ELSE LOOP

 } //END IF LOOP4

 }// LOOP TO CHECK IF NODE IS UNLISTED IN DATABASE

 else

 {

// cout<<"Nodes are unlisted: NOT IN DATABASE"<<endl;

 Shortest_Path=90;

 }

} //////////////////////***END MAIN

//*********************** Applying Algorithm*********************//

void CallYen(INTEGRATION* Beyza,int org,int dst)

{

 remove("Solution/KPathDistance.txt");

 remove("Solution/KPathBriefNodes.txt");

 char ofname[100];

 switch(opt)

 {

 case 1:

 sprintf(ofname,"%s","Solution/KPathDistance.txt\0");

 Beyza->ofpath.open(ofname,ios::app);

 break;

 case 2:

 sprintf(ofname,"%s","Solution/KPathTime.txt\0");

 Beyza->ofpath.open(ofname,ios::app);

 break;

 default:

 return;

 }

 Beyza->ResetSpath();

 Beyza->ResetKpath();

 Beyza->SetPair(org,dst,kpath);

 Beyza->Dijkstra(org,dst,opt);

 Beyza->BuildPath(org,dst);

 Beyza->FindLabel();

 Beyza->DisplayPath(1,opt);

 Beyza->NodeClean();

 Beyza->AddPathA(Beyza->Final);

 Beyza->PathClean();

 Beyza->ofpath.close();

 Beyza->DisplayNodes(Beyza->A, Beyza->NoA, 0, "KPathBriefNodes.txt");

 Beyza->ResetSpath();

 Beyza->ResetKpath();

}

void origin_destin(FILE *fp_origin_destin, char file_origin_destin[200])

{

 fp_origin_destin=fopen(file_origin_destin,"r");

 if (fp_origin_destin == NULL)

 {

-A-75-

AFOSR F49620-01-1-0371

 cout<<"Could not open file for reading"<<endl;

 }

 i=0;

 m=0;

 while (feof(fp_origin_destin) == 0)

 {

 fscanf(fp_origin_destin, "%d\t%d\t%ld\t%d\t%ld\n", &convert_node.sno[i],

&convert_node.node_id[i], &convert_node.node[i],&convert_node.key[i],&convert_node.regn[i]);

 if(convert_node.regn[i]!=99 && convert_node.key[i] == 1)

 {

 Exit_Entry[m] = convert_node.node_id[i];

 m++;

 }

 i++;

 }

 fclose(fp_origin_destin);

 number_entry_exit=m;

}

double GetShortestDistance()

 {

 double distance;

 int i,j;

 double distance_temp = 90000.0;

 for(i=0;i<exit_points;i++)

 {

 for(j=0;j<entry_points;j++)

 {

 distance=0;

 distance = origin_final_output[i].Path_Distance_origin_exit +

interm_final_output[i][j].Path_Distance_interm+destin_final_output[j].Path_Distance_destin_entry;

 if(distance_temp>distance)

 {

 distance_temp = distance;

 final_exit = i+1;

 final_entry = j+1;

 }

 }

 }

 return distance_temp;

 }

};

#ifndef ROADDAMAGEDEFINITION_01

#define ROADDAMAGEDEFINITION_01

struct Road_Damage

{

 unsigned long time;

 unsigned int Link_ID ;

 unsigned int Severity; // Damage Level

 unsigned int Delay;

-A-76-

AFOSR F49620-01-1-0371

 double Link_Delay;

 Road_Damage(void)

 {

 time = 0;

 Link_ID = 0;

 Severity = 0;

 Delay = 0;

 Link_Delay=0.0;

 }

};

#endif

#ifndef ROADDELAYDEFINITION_01

#define ROADDELAYDEFINITION_01

struct Road_Delay

{

 unsigned long time;

 unsigned int Link_ID;

 unsigned int Delay;

 Road_Delay(void)

 {

 time = 0;

 Link_ID = 0;

 Delay = 0;

 }

};

#endif

#ifndef h_TIMESTAMPGENERATOR_0001

#define h_TIMESTAMPGENERATOR_0001

///////////////////////////////

// The debugger can't handle symbols more than 255 characters long.

// STL often creates symbols longer than that.

// When symbols are longer than 255 characters, the warning is issued.

#pragma warning(disable:4786)

///////////////////////////////

#include <string>

#include <ctime>

class timeStamp

{

public:

 timeStamp(void)

 { }

 ~timeStamp(void)

 { }

 std::string stamp(void)

 {

 time_t clock;

 struct tm *TimeDateStruct;

 char *TimeDateString;

 char dbNameString[26];

 time(&clock);

 TimeDateStruct = localtime(&clock);

-A-77-

AFOSR F49620-01-1-0371

 TimeDateString = asctime(TimeDateStruct);

 strncpy(dbNameString+0, TimeDateString+8, 2);

 strncpy(dbNameString+2, TimeDateString+4, 3);

 strncpy(dbNameString+5, TimeDateString+22, 2);

 *(dbNameString+7) = '_';

 strncpy(dbNameString+8, TimeDateString+11, 2);

 strncpy(dbNameString+10, TimeDateString+14, 2);

 strncpy(dbNameString+12, TimeDateString+17, 2);

 *(dbNameString+14) = '\0';

 return(dbNameString);

 }

};

#endif

#ifndef h_CRITICALREGIONINFO_0001

#define h_CRITICALREGIONINFO_0001

#include <vector>

#include <string>

#include <queue>

//#include "typedefs.h"

class tsQueue : public std::queue<std::string> // Threadsafe access to data

{

public:

 tsQueue() // Constructor

 {

 // Create the mutex which serializes all access to our data

 m_Mutex = CreateMutex(NULL, false, "SerializeAccess");

 if (m_Mutex == NULL)

 {

 // This will crash the program - what

else to do?

 exit(9);

 }

 }

 virtual ~tsQueue() // Destructor

 {

 CloseHandle(m_Mutex); // Clean up

 }

 void insert(const std::string & s) // Add a member at the end

 {

 getAccessToData(); // Check for non-destructive access

 this->push(s); // Add data-element to vector

 m_TotalMemberCount += 1; // add to total count

 if (m_HighWaterMark < this->queueSize())

 {

 m_HighWaterMark = this->queueSize();

 }

 releaseAccessToData(); // Give up control of data

 }

 std::string extract(void) // Pull a member from the front

 {

 std::string retValue; // What we'll return to caller

 getAccessToData(); // Check for non-destructive access

-A-78-

AFOSR F49620-01-1-0371

 if (!this->empty()) // make sure something is there

 {

 retValue = this->front(); // Grab requested element

 this->pop(); // remove element from queue

 }

 releaseAccessToData(); // Give up control of data

 return retValue; // Send removed value to caller

 }

 unsigned long queueSize(void) // How many members in queue

 {

 unsigned long retValue; // What we'll return to caller

 getAccessToData(); // Check for non-destructive access

 retValue = this->size(); // Get number of elements in vector

 releaseAccessToData(); // Give up control of data

 return retValue; // Send count to caller

 }

 unsigned long getHighWaterMark(void)

 {

 return m_HighWaterMark;

 }

 unsigned long getTotalMemberCount(void)

 {

 return m_TotalMemberCount;

 }

private:

 HANDLE m_Mutex; // Serialize access to this data

 unsigned long m_HighWaterMark; // instantaneous largest number of members

 unsigned long m_TotalMemberCount; // total number of insertions

 void getAccessToData(void) // Grab sole control

 {

 // Request access to data

 WaitForSingleObject(m_Mutex, INFINITE);

 }

 void releaseAccessToData(void) // Release sole control

 {

 ReleaseMutex(m_Mutex); // Release access to data

 }

 tsQueue(const tsQueue &dS) // copy constructor

 {

 // private member: cannot be copied

 }

 tsQueue &operator=(const tsQueue &dS)// assignment

 {

 // private member: cannot be assigned

 }

};

#endif

#pragma warning(disable:4786)

#include "Integration.h"

#include <vector>

#include "Road_Damage.h"

-A-79-

AFOSR F49620-01-1-0371

#include "Ambulance_Idle.h"

#include "localFederate.h"

INTEGRATION::INTEGRATION()

{

 NoNd=0;

 NoLn=0;

 NoAj=0;

 tstart=0;

 Head=NULL;

 size=0;

 NodeCnt=0;

 FinLabel=0;

 NoA=NoB=KPATH=0;

 A=NULL;

 B=NULL;

 SP=NULL;

 HELP=ROOT=SPUR=Final=NULL;

}

void INTEGRATION::Reset()

{

 DeletePathNode(Head);

 Head=Last=NULL;

 size=0;

 NodeCnt=0;

 FinLabel=0;

 tstart=0;

 NoA=NoB=KPATH=0;

 DeletePathList(A);

 DeletePathList(B);

 DeletePathList(SP);

 A=NULL;

 B=NULL;

 SP=NULL;

 DeleteFinalPath(HELP);

 DeleteFinalPath(ROOT);

 DeleteFinalPath(SPUR);

 DeleteFinalPath(Final);

 HELP=NULL;

 ROOT=NULL;

 SPUR=NULL;

 Final=NULL;

}

void INTEGRATION::SetStartTime(double start_time)

{

 tstart=start_time;

}

void INTEGRATION::ReadNode(char fnode1[50])

{

 int i;

 char fname[50],ln[150];

 ifstream in;

-A-80-

AFOSR F49620-01-1-0371

 sprintf(fname,fnode1);

 in.open(fname);

 while (!in.eof())

 {

 in>>ln;

 if (ln[0]>' ')

 NoNd++;

 in.getline(ln,150);

 }

 in.close();

 node=new NODE [NoNd];

 in.open(fname);

 for (i=0;i<NoNd;i++)

 {

 in>>node[i].NODEID;

 in>>node[i].FEATUREID;

 in>>node[i].NODE_ID;

 in>>node[i].KEY;

 in>>node[i].REGION;

 in.getline(node[i].DESCRIPT,150);

 }

 in.close();

}

void INTEGRATION::ReadLink(char flink1[100])

{

 int i,j;

 char fname[50],ln[150];

 extern fedModel *localFederate;

 ifstream in;

 sprintf(fname,flink1);

 in.open(fname);

 while (!in.eof())

 {

 in>>ln;

 if (ln[0]>' ')

 NoLn++;

 in.getline(ln,150);

 }

 in.close();

 link=new LINK [NoLn];

 int ucnt=0,scnt=0,icnt=0,rcnt=0,xcnt=0;

 ifstream in1;

 in1.open(fname);

 for (i=0;i<NoLn;i++)

 {

 in1>>link[i].LINKID;

 in1>>link[i].FEATUREID;

 in1>>link[i].ANODE;

 in1>>link[i].BNODE;

 in1>>link[i].MILE;

 in1>>link[i].FCLASS;

 in1>>link[i].DELAY;

 in1>>link[i].SPEED;

-A-81-

AFOSR F49620-01-1-0371

 in1>>link[i].LINK_ID;

 in1.getline(link[i].DESCRIPT,150);

 if (link[i].FCLASS==0 || link[i].FCLASS==1)

 {

 link[i].SPEED=ISPEED;

 icnt++;

 }

 else if (link[i].FCLASS==2)

 {

 link[i].SPEED=USPEED;

 scnt++;

 }

 else if (link[i].FCLASS==3 || link[i].FCLASS==4)

 {

 link[i].SPEED=SSPEED;

 ucnt++;

 }

 else if (link[i].FCLASS==5)

 {

 link[i].SPEED=RSPEED;

 rcnt++;

 }

 else

 {

 link[i].SPEED=XSPEED;

 xcnt++;

 }

 }

 in.close();

//***** See if it can be written in a better way *****//

 for (i=0;i<NoLn;i++) // Changing length due to road damage

 {

 for (j=0;j<localFederate->v_rd.size();j++)

 {

 if(link[i].LINK_ID==localFederate->v_rd.at(j)->Link_ID)

 {

 link[i].MILE=link[i].MILE*(localFederate->v_rd).at(j)->Link_Delay;

 break;

 }

 else

 {

 link[i].MILE=link[i].MILE;

 }

 }

 }

 for (i=0;i<NoLn;i++)// Changing length due to ambulance stuck

 {

 for (j=0;j<localFederate->v_ai.size();j++)

 {

 if(link[i].LINK_ID==localFederate->v_ai.at(j)->Link_ID)

 {

 link[i].MILE=INF;

 break;

-A-82-

AFOSR F49620-01-1-0371

 }

 else

 {

 link[i].MILE=link[i].MILE;

 }

 }

 }

}

void INTEGRATION::ReadMtrx(char fadjn1[100],char fadjx1[100])

{

 int i;

 char fname[50],ln[150];

 ifstream *in;

 sprintf(fname,fadjn1);

 adjn=new int [NoNd];

 in = new ifstream(fname);

 for (i=0;i<NoNd;i++)

 {

 (*in)>>adjn[i]>>adjn[i];

 }

 in->close();

 delete in;

 sprintf(fname,fadjx1);

 in = new ifstream(fname);

 while (!in->eof())

 {

 (*in)>>ln;

 if (ln[0]>' ')

 NoAj++;

 in->getline(ln,150);

 }

 in->close();

 delete in;

 ndix=new int [NoAj];

 lnix=new int [NoAj];

 in = new ifstream(fname);

 for (i=0;i<NoAj;i++)

 {

 (*in)>>ndix[i];

 (*in)>>lnix[i];

 }

 in->close();

 delete in;

}

void INTEGRATION::DeletePathNode(PathNode* pathnode)

{

 PathNode *dpn=pathnode;

 while (pathnode!=NULL)

 {

 pathnode=pathnode->next;

 dpn->next=dpn->prev=NULL;

 delete dpn;

 dpn=pathnode;

-A-83-

AFOSR F49620-01-1-0371

 }

}

void INTEGRATION::DeleteFinalPath(FinalPath* finalpath)

{

 FinalPath *dfp=finalpath;

 while (finalpath!=NULL)

 {

 finalpath=finalpath->next;

 dfp->next=NULL;

 delete dfp;

 dfp=finalpath;

 }

}

void INTEGRATION::DeletePathList(PathList* pathlist)

{

 PathList *dpl=pathlist;

 while (pathlist!=NULL)

 {

 pathlist=pathlist->next;

 dpl->next=NULL;

 if (dpl->nodcnt>0)

 {

 delete [] dpl->nodix;

 delete [] dpl->lnkix;

 delete [] dpl->label;

 delete [] dpl->dist;

 delete [] dpl->time;

 }

 delete dpl;

 dpl=pathlist;

 }

}

INTEGRATION::~INTEGRATION()

{

 delete [] link;

 delete [] adjn;

 delete [] node;

 delete [] ndix;

 delete [] lnix;

 link= NULL;

 adjn=NULL;

 node=NULL;

 ndix=NULL;

 lnix=NULL;

// cout<<"Object deleted!!!"<<endl;

}

#pragma warning(disable:4786)

#include "Integration.h"

void INTEGRATION::DisplayPath(int i, int opt)

{

// int z;

-A-84-

AFOSR F49620-01-1-0371

 if (Final!=NULL)

 {

 FinalPath *current=Final;

 char disunit[20];

 switch(opt)

 {

 case 1:

 strcpy(disunit,"meters\0");

 break;

 case 2:

 strcpy(disunit,"min\0");

 break;

 default:

 return;

 }

 ofpath<<"\n Origin - Destination: "<<this->Origin<<" - "<<this->Destin;

 ofpath<<" Objective: Minimize "<<OBJ[opt-1]<<endl;

 if (i==0)

 {

 ofpath<<"Minimum "<<OBJ[opt-1]<<": "<<FinLabel<<" "<<disunit<<endl<<endl;

 }

 else

 {

 ofpath<<"Path "<<i<<" "<<OBJ[opt-1]<<": "<<FinLabel<<" "<<disunit<<endl<<endl;

 }

 ofpath<<" NODE"<<"\t"<<" DISTANCE"<<"\t"<<" TIME"<<endl;

 i=0;

// z=0;

 while (current!=NULL)

 {

 ofpath<<current->nodix<<"\t"

 <<current->dist<<"\t"

 <<double(int(current->time*100)/100.0)<<"\t"

 <<endl;

 Final_Path[i]=current->nodix;

 Final_Path1[i]=current->lnkix;

 Final_Path2[i]=current->dist;

 Final_Path3[i]=double(int(current->time*100)/100.0);///////

 i++;

 current=current->next;

 }

 ofpath<<"\n---\n";

 }

}

void INTEGRATION::DisplayNodes(PathList *PL, int No, int opt, char *cfname)

{

 char f[100];

 ofstream of;

 int i,pt;

-A-85-

AFOSR F49620-01-1-0371

 PathList **ListArray=new PathList* [No];

 sprintf(f,"%s%s","Solution/",cfname);

 of.open(f,ios::app);

 pt=0;

 PathList *cr = PL;

 while (cr!=NULL)

 {

 ListArray[pt] = cr;

 cr=cr->next;

 pt++;

 }

 if (PL!=NULL)

 {

 of<<"\n \t\tRoutes for Path " << this->Origin<<" to "<<this->Destin << endl;

 for (pt=No-1;pt>=0;pt--)

 {

 of<<"\nPath "<<No-pt<<"\t";

 Node_Count=ListArray[pt]->nodcnt;

 for (i=0;i<ListArray[pt]->nodcnt;i++)

 {

 of<<ListArray[pt]->nodix[i]<<" " ;

 }

 of<<endl;

 }

 of.close();

 }

 delete [] ListArray;

}

double INTEGRATION::GetFinalDistance()

{

 return FinLabel;

}

// DispTest.cpp : Defines the entry point for the console application.

//#include <iostream>

#pragma warning(disable:4786)

#include <string>

#include <vector>

#include "Casualty_Observation.h"

#include "Casualty_Pickup.h"

#include "Casualty_Delivery.h"

#include "Road_Damage.h"

#include "Hospital_Capacity.h"

#include "Road_Delay.h"

#include "Hospital_Delay.h"

#include "Ambulance_Idle.h"

#include "Ambulance_Stuck.h"

#include "Cluster_Identify.h"

#include "Main.h"

#include <Math.h>

//#include <iostream>

-A-86-

AFOSR F49620-01-1-0371

//#include <stdio.h>

//#include <stdlib.h>

#define MAX 90000

using namespace std;

class DispTest

{

public:

 DispTest()

 {

 }

 void parse_line(string s, vector<string> &words)

 {

 int pos = 0;

 int y = 0;

 for (int ix = 0; ix < s.size(); ++ix)

 {

 if (s[ix] == '~' || s[ix] == '\n')

 {

 string test;

 test = s.substr(pos, (ix-pos));

 words.push_back(test);

 pos = ix+1;

 }

 }

 //cout << "Inside parseline: " << words.size() << endl;

 return;

 }

 void parse_File()

 { // parse the file

 ifstream ist;

 ist.open("Input.txt");

 string w;

 while (ist>>w)

 {

 vector< string > values;

 parse_line(w, values);

 /*for(int i=0; i<values.size(); ++i) {

 cout << "Inside CO" << values.at(i) << endl;

 }*/

 //convert each message into a struct variable

 if(values.at(0) == "EDtoDP01")

 {

 //cout << "Type is " << values.size() << endl;

 Casualty_Observation *co;

 co = new Casualty_Observation();

 co->time = atol(values.at(1).c_str());

 co->TrackID = atol(values.at(2).c_str());

 co->X = atof(values.at(3).c_str());

 co->Y = atof(values.at(4).c_str());

 co->Nearest_Node = atol(values.at(5).c_str());

 co->Severity = atoi(values.at(6).c_str());

 co->Sev_Prob_Vect[0] = atof(values.at(7).c_str());

-A-87-

AFOSR F49620-01-1-0371

 co->Sev_Prob_Vect[1] = atof(values.at(8).c_str());

 co->Sev_Prob_Vect[2] = atof(values.at(9).c_str());

 co->Sev_Prob_Vect[3] = atof(values.at(10).c_str());

 v_co.push_back(co);

 //TO_DO should reserve() be used in prior

 }

 else if(values.at(0) == "EDtoDP02")

 {

 //cout << "Type is " << values.size() << endl;

 Casualty_Pickup *cp;

 cp = new Casualty_Pickup();

 cp->time = atol(values.at(1).c_str());

 cp->TrackID_1 = atol(values.at(2).c_str());

 cp->Nearest_Node_1 = atol(values.at(3).c_str());

 cp->Severity_1 = atoi(values.at(4).c_str());

 cp->TrackID_2 = atol(values.at(5).c_str());

 cp->Nearest_Node_2 = atol(values.at(6).c_str());

 cp->Severity_2 = atoi(values.at(7).c_str());

 cp->TrackID_3 = atol(values.at(8).c_str());

 cp->Nearest_Node_3 = atol(values.at(9).c_str());

 cp->Severity_3 = atoi(values.at(10).c_str());

 v_cp.push_back(cp);

 }

 else if(values[0] == "EDtoDP03")

 {

 //cout << "Type is " << values.size() << endl;

 Casualty_Delivery *cd;

 cd = new Casualty_Delivery();

 cd->time = atol(values.at(1).c_str());

 cd->TrackID_1 = atol(values.at(2).c_str());

 cd->Hospital_1 = atol(values.at(3).c_str());

 cd->Severity_1 = atoi(values.at(4).c_str());

 cd->TrackID_2 = atol(values.at(5).c_str());

 cd->Hospital_2 = atol(values.at(6).c_str());

 cd->Severity_2 = atoi(values.at(7).c_str());

 cd->TrackID_3 = atol(values.at(8).c_str());

 cd->Hospital_3 = atol(values.at(9).c_str());

 cd->Severity_3 = atoi(values.at(10).c_str());

 v_cd.push_back(cd);

 }

 else if(values.at(0) == "EDtoDP04")

 {

 //cout << "Type is " << values.size() << endl;

 Road_Damage *rd;

 rd = new Road_Damage();

 rd->time = atol(values.at(1).c_str());

 rd->Link_ID = atoi(values.at(2).c_str());

 rd->Severity = atoi(values.at(3).c_str());

 v_rd.push_back(rd);

 }

 else if(values.at(0) == "EDtoDP05")

 {

-A-88-

AFOSR F49620-01-1-0371

 //cout << "Type is " << values.size() << endl;

 Hospital_Capacity *hc;

 hc = new Hospital_Capacity();

 hc->time = atol(values.at(1).c_str());

 hc->HospitalID = atol(values.at(2).c_str());

 hc->Severity_2 = atoi(values.at(3).c_str());

 hc->Severity_3 = atoi(values.at(4).c_str());

 hc->X = atof(values.at(5).c_str());

 hc->Y = atof(values.at(6).c_str());

 hc->Nearest_Node = atol(values.at(7).c_str());

 v_hc.push_back(hc);

 }

 else if(values.at(0) == "EDtoDP06")

 {

 //cout << "Type is " << values.size() << endl;

 Road_Delay *rd;

 rd = new Road_Delay();

 rd->time = atol(values.at(1).c_str());

 rd->Link_ID = atoi(values.at(2).c_str());

 //TO_DO delay not found

 rd->Delay = atoi(values.at(3).c_str());

 v_rdy.push_back(rd);

 }

 else if(values.at(0) == "EDtoDP07")

 {

 //cout << "Type is " << values[0] << endl;

 Hospital_Delay *hd;

 hd = new Hospital_Delay();

 hd->time = atol(values.at(1).c_str());

 hd->HospitalID = atol(values.at(2).c_str());

 //hd->Delay_1 = atofvalues[3].c_str());

 hd->Delay_2 = atof(values.at(3).c_str());

 hd->Delay_3 = atof(values.at(4).c_str());

 v_hd.push_back(hd);

 }

 else if(values.at(0) == "EDtoDP08")

 {

 //cout << "Type is " << values.size() << endl;

 Ambulance_Idle *ai;

 ai = new Ambulance_Idle();

 ai->time = atol(values.at(1).c_str());

 ai->AmbulanceID = atol(values.at(2).c_str());

 ai->X = atof(values.at(3).c_str());

 ai->Y = atof(values.at(4).c_str());

 ai->Nearest_Node = atol(values.at(5).c_str());

 ai->Onboard = atoi(values.at(6).c_str());

 v_ai.push_back(ai);

 }

 else if(values.at(0) == "EDtoDP09")

 {

 //cout << "Type is " << values[0] << endl;

 Ambulance_Stuck *as;

 as = new Ambulance_Stuck();

-A-89-

AFOSR F49620-01-1-0371

 as->time = atol(values.at(1).c_str());

 as->AmbulanceID = atol(values.at(2).c_str());

 as->X = atof(values.at(3).c_str());

 as->Y = atof(values.at(4).c_str());

 as->Nearest_Node = atol(values.at(5).c_str());

 as->Loaded = ((values.at(6).c_str()) == "T") ? (true) : (false);

 v_as.push_back(as);

 }

 else if(values.at(0) == "EDtoDP10")

 {

 //cout << "Type is " << values[0] << endl;

 Cluster_Identify *ci;

 ci = new Cluster_Identify();

 ci->time = atol(values.at(4).c_str());

 ci->ClusterID = atol(values.at(7).c_str());

 ci->Size = atoi(values.at(8).c_str());

 //TO-DO fill up for cluster cell.

 /*int l = (values.size()/4)-1;

 for (int i=0, index=4; i<values.size(); ++i, index+4) {

 }*/

 v_ci.push_back(ci);

 }

 }

 }

 vector <Casualty_Observation*> get_Casuality_Observation()

 {

 return v_co;

 }

 vector <Casualty_Pickup*> get_Casualty_Pickup()

 {

 return v_cp;

 }

 vector <Casualty_Delivery*> get_Casualty_Delivery()

 {

 return v_cd;

 }

 vector <Road_Damage*> get_Road_Damage()

 {

 return v_rd;

 }

 vector <Hospital_Capacity*> get_Hospital_Capacity()

 {

 return v_hc;

 }

 vector <Road_Delay*> get_Road_Delay()

 {

 return v_rdy;

 }

 vector <Hospital_Delay*> get_Hospital_Delay()

 {

 return v_hd;

 }

 vector <Ambulance_Idle*> get_Ambulance_Idle()

-A-90-

AFOSR F49620-01-1-0371

 {

 return v_ai;

 }

 vector <Ambulance_Stuck*> get_Ambulance_Stuck()

 {

 return v_as;

 }

 vector <Cluster_Identify*> get_Cluster_Identify()

 {

 return v_ci;

 }

 private:

 vector< Casualty_Observation* > v_co;

 vector< Casualty_Pickup* > v_cp;

 vector< Casualty_Delivery* > v_cd;

 vector< Road_Damage* > v_rd;

 vector< Hospital_Capacity* > v_hc;

 vector< Road_Delay* > v_rdy;

 vector< Hospital_Delay* > v_hd;

 vector< Ambulance_Idle* > v_ai;

 vector< Ambulance_Stuck* > v_as;

 vector< Cluster_Identify* > v_ci;

};

struct Nodes // for finding the nearest node

{

 long nodeid[MAX] ;

 double x[MAX] ;

 double y[MAX] ;

}Nearest;

int main()

{

 int Num_Cas=0;

 int Num_Idle=0;

 int Num_Hosp=0;

 int i=0;

 int j=0;

 double Distance_Cas[50];

 int X_Cas[20];

 int Y_Cas[20];

 int X_Amb[20];

 int Y_Amb[20];

 int Amb_Disp=0;

 int ORIGIN=0;

 int DESTINATION=0;

 double z_x=0.0;// Difference in X coordinates for calculation of Nearest Node

 double z_y=0.0;

 double Min=99999.0;

 double Min_Dist_Cas=99999.0;

 double Nearest_dist[200];

 long Nearest_Node[200];

 int range=0;

 int Cas_X;// For Dispatch to Hospital

 int Cas_Y;

-A-91-

AFOSR F49620-01-1-0371

 int X_Hosp[20];

 int Y_Hosp[20];

 double Min_Dist_Hosp=999999.0;

 double Distance_Hosp[50];

 int Hosp_Disp=0;

 MainClass *mc = new MainClass();

 //testing

 ORIGIN = 96964094;

 DESTINATION = 1396514;

 mc->main_method(ORIGIN, DESTINATION);

 cout << "End of Calling the shortest path for the first time" << endl;

 int choice;

 cin >> choice;

 FILE *fp;

 DispTest dt = DispTest();

 dt.parse_File();

 Num_Cas = dt.get_Casuality_Observation().size();

// cout<<Num_Cas<<endl;

 Num_Hosp= dt.get_Hospital_Capacity().size();

 Num_Idle = dt.get_Ambulance_Idle().size();

 vector <Casualty_Observation*> Cas_Observation=dt.get_Casuality_Observation() ;

 vector <Road_Damage*> Road_Damage=dt.get_Road_Damage();

 vector <Hospital_Capacity*> Hospital_Capacity=dt.get_Hospital_Capacity();

 vector <Road_Delay*> Road_Delay=dt.get_Road_Delay();

 vector <Hospital_Delay*> Hospital_Delay=dt.get_Hospital_Delay();

 vector <Ambulance_Idle*> Amb_Idle=dt.get_Ambulance_Idle();

//********************** Finding Nearest Node for Hospitals **************************//

 fp = fopen("Nearest_Node.txt", "r");

 for (j=0;j<MAX;j++)

 {

 Nearest.nodeid[j] = 0;

 Nearest.x[j] = 0;

 Nearest.y[j] = 0;

 }

 if (fp == NULL)

 {

 cout<<"Could not open file for reading"<<endl;

 }

 while (feof(fp) == 0)

 {

 fscanf(fp, "%ld\t%lf\t%lf\n", &Nearest.nodeid[i], &Nearest.x[i], &Nearest.y[i]);

 i++;

 }

 fclose(fp);

 cout<<"Enter the value of Range within which the Coordinates are to be found: "<<endl;

 //cin>>range;

 range=300;

 for(int m=0;m<Num_Hosp;m++)

 {

 for(int n=0;n<i;n++)

-A-92-

AFOSR F49620-01-1-0371

 {

 z_x= Hospital_Capacity.at(m)->X - Nearest.x[n];

 z_y= Hospital_Capacity.at(m)->Y - Nearest.y[n];

 if ((z_x>-range) && (z_x<range) && (z_y>-range) && (z_y<range))

 {

 Nearest_dist[m] = (pow(pow(z_x,2)+pow(z_y,2),0.5));

 if(Min> Nearest_dist[m])

 {

 Min=Nearest_dist[m];

 Nearest_Node[m]=Nearest.nodeid[n];

 }

 }

 }

 Min=99999.0;

 // cout<<"Nearest Node for Hospital "<<m<<" is "<< Nearest_Node[m]<<endl;

 }

//**//

//******** DISPATCHING FROM AMBULANCE LOCATION TO CASUALTY LOCATION*******//

//**** Dispatch to Severity type 3 First ****//

for(i=0;i<Num_Cas;i++)

 {

 if(Cas_Observation.at(i)->Severity==3)

 {

 X_Cas[i]=Cas_Observation.at(i)->X; //** Get X,Y Co-ordinates

 Y_Cas[i]=Cas_Observation.at(i)->Y;

 for(j=0;j<Num_Idle;j++)

 {

 if(Amb_Idle.at(j)->Onboard==0)

 {

 X_Amb[j]=Amb_Idle.at(j)->X; //** Get X,Y Co-ordinates

 Y_Amb[j]=Amb_Idle.at(j)->Y;

 Distance_Cas[j] = (pow(pow((Cas_Observation.at(i)->X)-(Amb_Idle.at(j)-

>X),2)+pow((Cas_Observation.at(i)->Y)-(Amb_Idle.at(j)->Y),2),0.5));

 cout<<"Distance_Cas "<<j <<" is "<<Distance_Cas[j]<<endl;

 if(Min_Dist_Cas> Distance_Cas[j])

 {

 Min_Dist_Cas=Distance_Cas[j];

 Amb_Disp=Amb_Idle.at(j)->AmbulanceID;

 }

 }

 }

 Min_Dist_Cas=999999.0;

 cout<<"For Casualty "<<i+1<<" Dispatch Ambulance "<<Amb_Disp<<endl;

 for(j=0;j<Num_Idle;j++)

 {

 if(Amb_Idle.at(j)->AmbulanceID==Amb_Disp)

 {

 Amb_Idle.at(j)->Onboard=1; // Update the status of the

dispatched ambulance to Busy

 ORIGIN=Amb_Idle.at(j)->Nearest_Node;

 cout<<"Origin is "<<ORIGIN<<endl;

-A-93-

AFOSR F49620-01-1-0371

 }

 }

 DESTINATION=Cas_Observation.at(i)->Nearest_Node;

 cout<<"Destination is "<<DESTINATION<<endl<<endl;

 //*********** insert the router call function***//

 //shortest_path(ORIGIN, DESTINATION);

 Cas_X=Cas_Observation.at(i)->X;

 Cas_Y=Cas_Observation.at(i)->Y;

 //********Dispatch to Hospital*****/////////

 Min_Dist_Hosp=999999.0;

 for(int k=0;k<Num_Hosp;k++)

 {

 if(Hospital_Capacity.at(k)->Severity_3 > 5)

 {

 X_Hosp[k]=Hospital_Capacity.at(k)->X; //** Get X,Y Co-ordinates

 Y_Hosp[k]=Hospital_Capacity.at(k)->Y;

 Distance_Hosp[k] = (pow(pow((Hospital_Capacity.at(k)->X)-

(Cas_X),2)+pow((Hospital_Capacity.at(k)->Y)-(Cas_Y),2),0.5));

 cout<<"Distance to hospital "<<k <<" is "<<Distance_Hosp[k]<<endl;

 if(Min_Dist_Hosp> Distance_Hosp[k])

 {

 Min_Dist_Hosp=Distance_Hosp[k];

 Hosp_Disp=Hospital_Capacity.at(k)->HospitalID;

 // cout<<"Min Distance is "<<Min_Dist_Hosp<<endl;

 // cout<<"For Casualty "<<i+1<<" Dispatch Ambulance

"<<Amb_Disp<<endl;

 }

 }// if loop

 //cout<<"Casualty "<<i<<" Dispatch to hospital "<<Hosp_Disp<<endl;

 } //for loop

 for(int l=0;l<Num_Hosp;l++)

 {

 if(Hospital_Capacity.at(l)->HospitalID==Hosp_Disp)

 {

 Hospital_Capacity.at(l)->Severity_3=Hospital_Capacity.at(l)->Severity_3 -

5;// Update the Capacity of the Hospital

 cout<<"Capacity of hospital remaining "<< Hospital_Capacity.at(l)-

>Severity_3<<endl;

 DESTINATION=Hospital_Capacity.at(l)->Nearest_Node;

 }

 }

 ORIGIN = Cas_Observation.at(i)->Nearest_Node;

 cout<<"Casualty "<<i<<" Dispatch to hospital "<<Hosp_Disp<<endl;

 cout<<"Destination hospital is "<<DESTINATION<<endl;

 cout<<"Origin is Casualty Location "<<ORIGIN<<endl<<endl;

// Route_origin_destin(ORIGIN,DESTINATION);

 mc->main_method(ORIGIN, DESTINATION);

-A-94-

AFOSR F49620-01-1-0371

 } //End 1st IF LOOP

 }// 1st FOR loop

//**//

//****Dispatch to Severity type 2 ****//

for(i=0;i<Num_Cas;i++)

 {

 if(Cas_Observation.at(i)->Severity==2)

 {

 X_Cas[i]=Cas_Observation.at(i)->X; //** Get X,Y Co-ordinates

 Y_Cas[i]=Cas_Observation.at(i)->Y;

 for(j=0;j<Num_Idle;j++)

 {

// cout<<"##"<<Amb_Idle.at(j)->Onboard<<endl;

 if(Amb_Idle.at(j)->Onboard==0)

 {

 X_Amb[j]=Amb_Idle.at(j)->X; //** Get X,Y Co-ordinates

 Y_Amb[j]=Amb_Idle.at(j)->Y;

 Distance_Cas[j] = (pow(pow((Cas_Observation.at(i)->X)-(Amb_Idle.at(j)-

>X),2)+pow((Cas_Observation.at(i)->Y)-(Amb_Idle.at(j)->Y),2),0.5));

 cout<<"Distance_Cas "<<j <<" is "<<Distance_Cas[j]<<endl;

 if(Min_Dist_Cas> Distance_Cas[j])

 {

 Min_Dist_Cas=Distance_Cas[j];

 Amb_Disp=Amb_Idle.at(j)->AmbulanceID;

 // cout<<"Min Distance is "<<Min_Dist_Cas<<endl;

 // cout<<"For Casualty "<<i+1<<" Dispatch Ambulance "<<Amb_Disp<<endl;

 }

 }

 }

 Min_Dist_Cas=999999.0;

 cout<<"########For Casualty "<<i+1<<" Dispatch Ambulance "<<Amb_Disp<<endl;

 for(j=0;j<Num_Idle;j++)

 {

 if(Amb_Idle.at(j)->AmbulanceID==Amb_Disp)

 {

 // cout<<"Dispatched Ambulance is "<<Amb_Idle.at(j)->AmbulanceID<<endl;

 Amb_Idle.at(j)->Onboard=1;

 ORIGIN=Amb_Idle.at(j)->Nearest_Node;

 cout<<"Origin is "<<ORIGIN<<endl;

 }

 }

 DESTINATION=Cas_Observation.at(i)->Nearest_Node;

 cout<<"Destination is "<<DESTINATION<<endl<<endl;

//*********** insert the router call function***//

 //shortest_path(ORIGIN, DESTINATION);

 mc->main_method(ORIGIN, DESTINATION);

 Cas_X=Cas_Observation.at(i)->X;

 Cas_Y=Cas_Observation.at(i)->Y;

 //********Dispatch to Hospital*****/////////

 Min_Dist_Hosp=999999.0;

 for(int k=0;k<10;k++)

-A-95-

AFOSR F49620-01-1-0371

 {

 if(Hospital_Capacity.at(k)->Severity_2 > 5)

 {

 X_Hosp[k]=Hospital_Capacity.at(k)->X; //** Get X,Y Co-ordinates

 Y_Hosp[k]=Hospital_Capacity.at(k)->Y;

 Distance_Hosp[k] = (pow(pow((Hospital_Capacity.at(k)->X)-

(Cas_X),2)+pow((Hospital_Capacity.at(k)->Y)-(Cas_Y),2),0.5));

 cout<<"Distance to hospital "<<k <<" is "<<Distance_Hosp[k]<<endl;

 if(Min_Dist_Hosp> Distance_Hosp[k])

 {

 Min_Dist_Hosp=Distance_Hosp[k];

 Hosp_Disp=Hospital_Capacity.at(k)->HospitalID;

 // cout<<"Min Distance is "<<Min_Dist_Hosp<<endl;

 // cout<<"For Casualty "<<i+1<<" Dispatch Ambulance

"<<Amb_Disp<<endl;

 }

 }// if loop

 //cout<<"Casualty "<<i<<" Dispatch to hospital "<<Hosp_Disp<<endl;

 } //for loop

 for(int l=0;l<Num_Hosp;l++)

 {

 if(Hospital_Capacity.at(l)->HospitalID==Hosp_Disp)

 {

 Hospital_Capacity.at(l)->Severity_2=Hospital_Capacity.at(l)->Severity_2 -

5;// Update the Capacity of the Hospital

 cout<<"Capacity of hospital remaining "<< Hospital_Capacity.at(l)-

>Severity_2<<endl;

 DESTINATION=Hospital_Capacity.at(l)->Nearest_Node;

 }

 }

 ORIGIN = Cas_Observation.at(i)->Nearest_Node;

 cout<<"Casualty "<<i<<" Dispatch to hospital "<<Hosp_Disp<<endl;

 cout<<"Destination hospital is "<<DESTINATION<<endl;

 cout<<"Origin is Casualty Location "<<ORIGIN<<endl<<endl;

//*****************************////////

// Route_origin_destin(ORIGIN,DESTINATION);

 mc->main_method(ORIGIN, DESTINATION);

 } //End 2nd IF LOOP

 }// 2nd FOR loop

 return 0;

}

#include "Integration.h"

void INTEGRATION::ResetKpath()

{

 NoA=NoB=KPATH=0;

 DeletePathList(A);

 DeletePathNode(Head);

-A-96-

AFOSR F49620-01-1-0371

 Head=Last=NULL;

 A=NULL;

 DeleteFinalPath(Final);

 Final=NULL;

}

void INTEGRATION::SetPair(int so, int si, int kp)

{

 Origin=so;

 Destin=si;

 KPATH=kp;

}

void INTEGRATION::AddPathA(FinalPath* cand)

{

 PathList *Cur=A;

 PathList *NewList=new PathList;

 NewList->nodcnt=0;

 NewList->length=0;

 FinalPath *reserve=cand;

 while (cand!=NULL)

 {

 NewList->nodcnt++;

 NewList->length=cand->label;

 cand=cand->next;

 }

 NewList->nodix=new int [NewList->nodcnt];

 NewList->lnkix=new int [NewList->nodcnt];

 NewList->label=new double [NewList->nodcnt];

 NewList->dist=new double [NewList->nodcnt];

 NewList->time=new double [NewList->nodcnt];

 cand=reserve;

 int i=0;

 while (cand!=NULL)

 {

 NewList->nodix[i]=cand->nodix;

 NewList->lnkix[i]=cand->lnkix;

 NewList->label[i]=cand->label;

 NewList->dist[i]=cand->dist;

 NewList->time[i]=cand->time;

 cand=cand->next;

 i++;

 }

 NewList->flag=0;

 NewList->next=A;

 A=NewList;

 NoA++;

}

///////////////////////////////

// The debugger can't handle symbols more than 255 characters long.

// STL often creates symbols longer than that.

// When symbols are longer than 255 characters, the warning is issued.

#pragma warning(disable:4786)

///////////////////////////////

-A-97-

AFOSR F49620-01-1-0371

//---

// Project Include Files

//---

#include "HwFederateAmbassador.hh"

#include "localFederate.h"

//---

// System Include Files

//---

#ifndef _MSC_VER

#include <stdio.h>

#include <stdlib.h>

#include <iostream.h>

#else

#include <iostream>

using std::cout;

using std::cerr;

using std::endl;

#endif

//---

// Bad C like global variables being externed - bad boy!!!

//---

extern RTI::Boolean timeAdvGrant;

extern RTI::Boolean TimeRegulation;

extern RTI::Boolean TimeConstrained;

extern RTI::FedTime & grantTime;

extern fedModel *localFederate;

HwFederateAmbassador::HwFederateAmbassador()

{

}

HwFederateAmbassador::~HwFederateAmbassador()

throw(RTI::FederateInternalError)

{

 cerr << "FED_HW: HwFederateAmbassador::~HwFederateAmbassador destructor called in FED" << endl;

}

////////////////////////////////////

// Federation Management Services //

////////////////////////////////////

void HwFederateAmbassador::synchronizationPointRegistrationSucceeded (

 const char *label) // supplied C4)

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: synchronizationPointRegistrationSucceeded not supported in FED"

 << endl;

}

void HwFederateAmbassador::synchronizationPointRegistrationFailed (

 const char *label) // supplied C4)

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: synchronizationPointRegistrationFailed not supported in FED"

 << endl;

}

-A-98-

AFOSR F49620-01-1-0371

void HwFederateAmbassador::announceSynchronizationPoint (

 const char *label, // supplied C4

 const char *tag) // supplied C4

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: announceSynchronizationPoint not supported in FED" << endl;

}

void HwFederateAmbassador::federationSynchronized (

 const char *label) // supplied C4)

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: federationSynchronized not supported in FED" << endl;

}

void HwFederateAmbassador::initiateFederateSave (

 const char *label) // supplied C4

throw (

 RTI::UnableToPerformSave,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: initiateFederateSave not supported in FED" << endl;

}

void HwFederateAmbassador::federationSaved ()

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: federationSaved not supported in FED" << endl;

}

void HwFederateAmbassador::federationNotSaved ()

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: federationNotSaved not supported in FED" << endl;

}

void HwFederateAmbassador::requestFederationRestoreSucceeded (

 const char *label) // supplied C4

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: requestFederationRestoreSucceeded not supported in FED" << endl;

}

void HwFederateAmbassador::requestFederationRestoreFailed (

 const char *label) // supplied C4

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: requestFederationRestoreFailed not supported in FED" << endl;

-A-99-

AFOSR F49620-01-1-0371

}

void HwFederateAmbassador::requestFederationRestoreFailed (

 const char *label,

 const char *reason) // supplied C4

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: requestFederationRestoreFailed not supported in FED" << endl;

}

void HwFederateAmbassador::federationRestoreBegun ()

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: federationRestoreBegun not supported in FED" << endl;

}

void HwFederateAmbassador::initiateFederateRestore (

 const char *label, // supplied C4

 RTI::FederateHandle handle) // supplied C1

throw (

 RTI::SpecifiedSaveLabelDoesNotExist,

 RTI::CouldNotRestore,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: initiateFederateRestore not supported in FED" << endl;

}

void HwFederateAmbassador::federationRestored ()

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: federationRestored not supported in FED" << endl;

}

void HwFederateAmbassador::federationNotRestored ()

throw (

 RTI::FederateInternalError)

{

 cerr << "FED_HW: federationNotRestored not supported in FED" << endl;

}

/////////////////////////////////////

// Declaration Management Services //

/////////////////////////////////////

void HwFederateAmbassador::startRegistrationForObjectClass (

 RTI::ObjectClassHandle theClass) // supplied C1

throw (

 RTI::ObjectClassNotPublished,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: startRegistrationForObjectClass not supported in FED" << endl;

-A-100-

AFOSR F49620-01-1-0371

}

void HwFederateAmbassador::stopRegistrationForObjectClass (

 RTI::ObjectClassHandle theClass) // supplied C1

throw (

 RTI::ObjectClassNotPublished,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: stopRegistrationForObjectClass not supported in FED" << endl;

}

void HwFederateAmbassador::turnInteractionsOn (

 RTI::InteractionClassHandle theHandle) // supplied C1

throw (

 RTI::InteractionClassNotPublished,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: turnInteractionsOn not supported in FED" << endl;

}

void HwFederateAmbassador::turnInteractionsOff (

 RTI::InteractionClassHandle theHandle) // supplied C1

throw (

 RTI::InteractionClassNotPublished,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: turnInteractionsOff not supported in FED" << endl;

}

////////////////////////////////

// Object Management Services //

////////////////////////////////

void HwFederateAmbassador::discoverObjectInstance (

 RTI::ObjectHandle theObject, // supplied C1

 RTI::ObjectClassHandle theObjectClass, // supplied C1

 const char * theObjectName) // supplied C4

throw (

 RTI::CouldNotDiscover,

 RTI::ObjectClassNotKnown,

 RTI::FederateInternalError)

{

// cout << "FED_HW: Discovered object " << theObject << endl;

// cout << "FED_HW: Object name = " << theObjectName << endl;

// localFederate->receivePublisher(theObject, theObjectClass, theObjectName);

}

void HwFederateAmbassador::reflectAttributeValues (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleValuePairSet& theAttributes, // supplied C4

 const RTI::FedTime& theTime, // supplied C1

 const char *theTag, // supplied C4

 RTI::EventRetractionHandle theHandle) // supplied C1

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::FederateOwnsAttributes,

-A-101-

AFOSR F49620-01-1-0371

 RTI::InvalidFederationTime,

 RTI::FederateInternalError)

{

 return; // Not needed for this federation execution

}

void HwFederateAmbassador::reflectAttributeValues (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleValuePairSet& theAttributes, // supplied C4

 const char *theTag) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::FederateOwnsAttributes,

 RTI::FederateInternalError)

{

 return; // Not needed for this federation execution

}

void HwFederateAmbassador::receiveInteraction (

 RTI::InteractionClassHandle theInteraction, // supplied C1

 const RTI::ParameterHandleValuePairSet& theParameters, // supplied C4

 const RTI::FedTime& theTime, // supplied C4

 const char *theTag, // supplied C4

 RTI::EventRetractionHandle theHandle) // supplied C1

throw (

 RTI::InteractionClassNotKnown,

 RTI::InteractionParameterNotKnown,

 RTI::InvalidFederationTime,

 RTI::FederateInternalError)

{

 localFederate->receiveInteraction(theInteraction, theParameters, theTime, theTag, theHandle);

}

void HwFederateAmbassador::receiveInteraction (

 RTI::InteractionClassHandle theInteraction, // supplied C1

 const RTI::ParameterHandleValuePairSet& theParameters, // supplied C4

 const char *theTag) // supplied C4

throw (

 RTI::InteractionClassNotKnown,

 RTI::InteractionParameterNotKnown,

 RTI::FederateInternalError)

{

// Pass the interaction off to the local federate object

// so that it can be processed.

 // localFederate->receiveInteraction(theInteraction, theParameters, theTag);

// This function won't be used in the disaster simulation.

}

void HwFederateAmbassador::removeObjectInstance (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::FedTime& theTime, // supplied C4

 const char *theTag, // supplied C4

 RTI::EventRetractionHandle theHandle) // supplied C1

throw (

 RTI::ObjectNotKnown,

 RTI::InvalidFederationTime,

-A-102-

AFOSR F49620-01-1-0371

 RTI::FederateInternalError)

{

 return; // Not needed for IFD

}

void HwFederateAmbassador::removeObjectInstance (

 RTI::ObjectHandle theObject, // supplied C1

 const char *theTag) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::FederateInternalError)

{

 return; // Not needed for IFD

}

void HwFederateAmbassador::attributesInScope (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& theAttributes) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: attributesInScope not supported in FED" << endl;

}

void HwFederateAmbassador::attributesOutOfScope (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& theAttributes) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: attributesOutOfScope not supported in FED" << endl;

}

void HwFederateAmbassador::provideAttributeValueUpdate (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& theAttributes) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::AttributeNotOwned,

 RTI::FederateInternalError)

{

 return; // Not needed for the IFD federate

}

void HwFederateAmbassador::turnUpdatesOnForObjectInstance (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& theAttributes) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotOwned,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: turnUpdatesOnForObjectInstance not supported in FED" << endl;

-A-103-

AFOSR F49620-01-1-0371

}

void HwFederateAmbassador::turnUpdatesOffForObjectInstance (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& theAttributes) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotOwned,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: turnUpdatesOffForObjectInstance not supported in FED" << endl;

}

///////////////////////////////////

// Ownership Management Services //

///////////////////////////////////

void HwFederateAmbassador::requestAttributeOwnershipAssumption (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& offeredAttributes, // supplied C4

 const char *theTag) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::AttributeAlreadyOwned,

 RTI::AttributeNotPublished,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: requestAttributeOwnershipAssumption not supported in FED" << endl;

}

void HwFederateAmbassador::attributeOwnershipDivestitureNotification (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& releasedAttributes) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::AttributeNotOwned,

 RTI::AttributeDivestitureWasNotRequested,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: attributeOwnershipDivestitureNotification not supported in FED"

 << endl;

}

void HwFederateAmbassador::attributeOwnershipAcquisitionNotification (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& securedAttributes) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::AttributeAcquisitionWasNotRequested,

 RTI::AttributeAlreadyOwned,

 RTI::AttributeNotPublished,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: attributeOwnershipAcquisitionNotification not supported in FED"

 << endl;

-A-104-

AFOSR F49620-01-1-0371

}

void HwFederateAmbassador::attributeOwnershipUnavailable (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& theAttributes) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::AttributeAlreadyOwned,

 RTI::AttributeAcquisitionWasNotRequested,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: attributeOwnershipUnavailable not supported in FED" << endl;

}

void HwFederateAmbassador::requestAttributeOwnershipRelease (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& candidateAttributes, // supplied C4

 const char *theTag) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::AttributeNotOwned,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: requestAttributeOwnershipRelease not supported in FED" << endl;

}

void HwFederateAmbassador::confirmAttributeOwnershipAcquisitionCancellation (

 RTI::ObjectHandle theObject, // supplied C1

 const RTI::AttributeHandleSet& theAttributes) // supplied C4

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::AttributeAlreadyOwned,

 RTI::AttributeAcquisitionWasNotCanceled,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: confirmAttributeOwnershipAcquisitionCancellation not"

 << " supported in FED" << endl;

}

void HwFederateAmbassador::informAttributeOwnership (

 RTI::ObjectHandle theObject, // supplied C1

 RTI::AttributeHandle theAttribute, // supplied C1

 RTI::FederateHandle theOwner) // supplied C1

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: informAttributeOwnership not supported in FED" << endl;

}

 void HwFederateAmbassador::attributeIsNotOwned (

 RTI::ObjectHandle theObject, // supplied C1

 RTI::AttributeHandle theAttribute) // supplied C1

throw (

-A-105-

AFOSR F49620-01-1-0371

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: attributeIsNotOwned not supported in FED" << endl;

}

void HwFederateAmbassador::attributeOwnedByRTI (

 RTI::ObjectHandle theObject, // supplied C1

 RTI::AttributeHandle theAttribute) // supplied C1

throw (

 RTI::ObjectNotKnown,

 RTI::AttributeNotKnown,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: attributeOwnedByRTI not supported in FED" << endl;

}

//////////////////////////////

// Time Management Services //

//////////////////////////////

void HwFederateAmbassador::timeRegulationEnabled (

 const RTI::FedTime& theFederateTime) // supplied C4

throw (

 RTI::InvalidFederationTime,

 RTI::EnableTimeRegulationWasNotPending,

 RTI::FederateInternalError)

{

 // cout << "FED_HW: Time granted (timeRegulationEnabled) to: "

 // << theFederateTime << endl;

 grantTime = theFederateTime;

 timeAdvGrant = RTI::RTI_TRUE;

 TimeRegulation = RTI::RTI_TRUE;

}

void HwFederateAmbassador::timeConstrainedEnabled (

 const RTI::FedTime& theFederateTime) // supplied C4

throw (

 RTI::InvalidFederationTime,

 RTI::EnableTimeConstrainedWasNotPending,

 RTI::FederateInternalError)

{

 // cout << "FED_HW: Time granted (timeConstrainedEnabled) to: "

 // << theFederateTime << endl;

 grantTime = theFederateTime;

 timeAdvGrant = RTI::RTI_TRUE;

 TimeConstrained = RTI::RTI_TRUE;

}

void HwFederateAmbassador::timeAdvanceGrant (

 const RTI::FedTime& theTime) // supplied C4

throw (

 RTI::InvalidFederationTime,

 RTI::TimeAdvanceWasNotInProgress,

 RTI::FederateInternalError)

{

 // cout << "FED_HW: Time granted (timeAdvanceGrant) to: "

-A-106-

AFOSR F49620-01-1-0371

 // << theTime << endl;

 grantTime = theTime;

 timeAdvGrant = RTI::RTI_TRUE;

}

void HwFederateAmbassador::requestRetraction (

 RTI::EventRetractionHandle theHandle) // supplied C1

throw (

 RTI::EventNotKnown,

 RTI::FederateInternalError)

{

 cerr << "FED_HW: requestRetraction not supported in FED" << endl;

}

-A-107-

AFOSR F49620-01-1-0371

Appendix B: Sample Data Sets

To illustrate the dynamics of the interactions, the first 16 reports of each report type which were captured during

a typical DIRE run are listed below. The total number of reports of each type captured on this run (Test 01-001-

01) are indicated on the report title lines. For those report types for which 16 or less reports were captured, all

reports are listed. All fields of all listed reports are entered, with the exception of certain report types which

have a large and variable number of parameter fields. For these reports, the first few parameter fields are listed.

Details of the report types and their data fields are given in Sec. 6.2 of this report.

-A-108-

AFOSR F49620-01-1-0371

Casualty Observation Reports (16 /11,138)

Roadwa

y Damage Reports

-A-109-

AFOSR F49620-01-1-0371

Casualty Pickup Reports (16/32)

Casualty Arrival Reports (16/5715)

-A-110-

AFOSR F49620-01-1-0371

Medical Facility Capacity Reports (16/3460)

Casualty Treatment Delay Reports (16/3460)

-A-111-

AFOSR F49620-01-1-0371

Ambulance Idle Reports (16/181)

Ambulance Stuck Reports (16/63)

-A-112-

AFOSR F49620-01-1-0371

Travel Delay Reports (16/904)

Cluster Identity Reports (16/33402) Note: Table truncated to show only first two Param fields

-A-113-

AFOSR F49620-01-1-0371

Casualty Observation Reports (16/11,138)

Casualty Pickup Reports (16/32)

-A-114-

AFOSR F49620-01-1-0371

Ambulance Route Reports (16/232) Note: Table truncated to show only first two Segment fields

Casualty Observation Reports (16/11,137)

-A-115-

AFOSR F49620-01-1-0371

Roadway Damage Reports

Medical Facility Capacity Reports (16/3,340)

-A-116-

AFOSR F49620-01-1-0371

Travel Delay Reports (16/904)

Casualty Treatment Delay Reports (16/3340)

-A-117-

AFOSR F49620-01-1-0371

Ambulance Idle Reports (16/181)

Ambulance Stuck Reports (16/63)

-A-118-

AFOSR F49620-01-1-0371

Cluster Indentity Reports (16/48,032) Note: Table truncated to show only first two Param fields

Casualty Delivery Reports (16/5656)

-A-119-

AFOSR F49620-01-1-0371

Casualty Observation Reports (16/11,138)

-A-120-

AFOSR F49620-01-1-0371

Medical Facility Capacity Reports (16/3340)

Cluster Indentification Reports (16/48,031) Note: Table truncated to show only first few Param fields

-A-121-

AFOSR F49620-01-1-0371

Roadway Damage Reports

Cluster Identification Reports (16/700) Note: Table truncated to show only first two Param fields

-A-122-

AFOSR F49620-01-1-0371

Medical Facility Capacity Reports (16/20)

Casualty Treatment Delay Reports (16/20)

-A-123-

AFOSR F49620-01-1-0371

Casualty Observation Reports (16/11,228)

Roadway Damage Reports (16/18)

-A-124-

AFOSR F49620-01-1-0371

Casualty Pickup Reports (16/32)

Casualty Delivery Reports (16/5798)

-A-125-

AFOSR F49620-01-1-0371

Medical Facility Capacity Reports (16/3580)

Casualty Treatment Delay Reports (16/3580)

-A-126-

AFOSR F49620-01-1-0371

Ambulance Idle Reports (16/181)

Ambulance Stuck Reports (16/70)

-A-127-

AFOSR F49620-01-1-0371

Travel Delay Reports (16/904)

Cluster Identification Reports (16/51,547) Note: Table truncated to show only first two Param fields

Hospital Location Report

Hospital Location Report

-A-128-

AFOSR F49620-01-1-0371

Hospital Location Report

Hospital Location Report

Hospital Location Report

