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In this paper, a new fluid theory is given in the guiding-center and gyrotropic approximation which
is derivable from the Vlasov-Maxwell equations. The theory includes the effect of wave-particle
interactions for the weakly turbulent, weakly inhomogeneous, nonuniformly magnetized plasma,
and it is applicable to a variety of space and laboratory plasmas. It is assumed that the turbulence
is random and electrostatic, and that the velocity-space Fokker-Planck operator can be used to
calculate the correlation functions that describe the wave-particle interactions. Conservation laws
are derived that relate the low-order velocity moments of the particle distributions to the turbulence.
The theory is based on the work of Hubbard [Proc. R. Soc. London, Ser. A 260, 114 (1961)] and
Ichimaru and Rosenbluth [Phys. Fluids 13, 2778 (1970)]. In the work presented here, the idea is
proposed that the fluid equations can be solved (1) by using measurements of the turbulence to
specify the electric-field fluctuations; and (2) by using measurements of the low-order velocity
moments to specify the initial and boundary conditions. © 2006 American Institute of Physics.
[DOI: 10.1063/1.2220006]

I. INTRODUCTION kinetic-equation approach, see Ref. 17, and for a recent brief
review of applications to some astrophysical plasmas, see

In the literature, there have been two traditional ap- Ref. 18. Particle simulations have also been used to study
proaches to plasma turbulence: one is to view the plasma as anomalous transport in the earth's magnetosphere. 19-2 For a
an initial-value problem; and the other, as plasma where the discussion of a different approach to plasma turbulence using
turbulence is fully developed and in a saturated, stationary renormalization-group methods and some applications to
state. In the first approach, the plasma is initially in contact fully developed intermittent turbulence in space plasmas, see
with a source of free energy and, as a result, one or more Refs. 22 and 23.
collective modes of the plasma are driven unstable and grow In this paper, we present a new method for incorporating
exponentially with time. The theoretical problem here is to plasma turbulence into the fluid equations which is appli-
solve for the time evolution of the system of wave-kinetic pasma tur into the fud equaton s w hi ali-
and plasma-kinetic equations. Quasilinear theory," 3 more cable to a variety of space and laboratory plasmas. The fluid

general weak turbulence theories,4'5 and the renormalized, equations are given in the guiding-center and gyrotropic ap-
resonance broadening theory6-8 are successful examples of proximation for weakly inhomogeneous, nonuniformly mag-

this approach. However, if the plasma remains in contact netized plasma where the particles are transported in one

with sources and sinks of free energy, the particle and field spatial dimension (the distance along the magnetic field) but

distributions will often be driven to a turbulent, steady or the turbulence is two-dimensional. In deriving them, we start

quasisteady state. The plasma may be either weakly or with the Vlasov-Maxwell equations.24 We assume that the

strongly turbulent. In this situation, theories have been de- turbulence is random and electrostatic, and that the velocity-

veloped to describe the particle and field distributions for the space Fokker-Planck operator can be used to calculate the

fully developed turbulent plasma. The main theoretical prob- correlation functions that describe the wave-particle interac-

lem here is to find the correlation functions that determine tions. The method we present is based on the work of

the anomalous transport and relaxation processes that oper- Hubbard, as well as Ichimaru and Rosenbluth,I hereafter

ate. Over the years, treatments along these lines have pro- called I and R. Since the probability distribution that governs
duced important advances9-11 and have been discussed and the turbulence may not be Gaussian, the Fokker-Planck op-
extended.12 erator is an approximation which neglects terms in the ex-

The literature on anomalous transport is vast. For early pansion of the distribution function in powers of Av higher
work, see Refs. 13-15 and for a review of some applications than order 2. The friction and diffusion coefficients depend
to the earth's ionosphere, see Ref. 16 and the citations on the dielectric screening function and the spectral density
therein. For more recent work on anomalous transport in of the longitudinal electric-field fluctuations for the turbulent
axisymmetric, toroidal laboratory plasmas using the drift- plasma. Another assumption inherent in the Fokker-Planck

1070-664X/2006/13(7)/072903/14/$23.00 13, 072903-1 © 2006 American Institute of Physics
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072903-2 Jasperse et aL Phys. Plasmas 13, 072903 (2006)

method is that the turbulence is sufficiently weak so that the [9 a qa [ 1
fluctuating electric field has a small effect on the unperturbed -+v.-+ (E)+-VXB .aV1) = Ca, (1)
particle orbits. We also assume that the dielectric screening d r m, Cd

function and spectral density vary weakly in space and q a
slowly in time compared to the strong spatial and fast tem- Ca =- q4 aE (2)
poral variation of the correlation function for the electric- m\ (
field fluctuations. In this way, the plasma may be treated as a a
locally homogeneous and stationary. This concept is similar - . (E) = 41rp, - X (E) = 0. (3)
to that given in Ref. 25: the separation of space and time ai
scales between (1) the turbulence and the fluid quantities and Here, we can write (E)=-a•i/ar, so we obtain Poisson's
(2) the use of a weak turbulence theory to treat the interac- equation
tion between the evolving turbulence and the plasma par-
ticles. For an interesting and immensely useful way of incor- (4)

porating kinetic effects (Landau damping) into the fluid

equations using gyrokinetic theory, see Refs. 26 and 27. These equations are given in Gaussian units and are valid in
If we could find a renormalized solution of the wave-

kinetic and plasma-kinetic equations, the problem would be thendar sp
solved. The renormalized propagator could then be used to Appendix A.

find the renormalized dielectric screening function and the The conservation relations for Ca for electrostatic turbu-

renormalized spectral density for the longitudinal electric- lence are obtained from (A6)-(A8) as

field fluctuations. However, the development of a renormal- F Ca = 0, (5)

ized solution for turbulent, inhomogeneous, nonuniformly f
magnetized plasma is indeed a formidable problem. The idea
that we present here is to bypass this difficult problem by a 1_. a 1_
solving the fluid equations, where measurements are used f d3vmavCa-'-" 4 °Et5E)+ + .8=0,

to specify the turbulent, electric-field fluctuations and where a 4r 8 7

measurements of the low-order velocity moments of the (6)
particle distributions are also used to specify the initial and
boundary conditions. fd3V 2C +• (E2)0.

The Birkeland current system of the earth's j 2  a t87r'T(7
magnetosphere28 is a system of upward and downward mag-

netic field-aligned electrical currents that flow between the
magnetosphere and the ionosphere at high geomagnetic lati- III. THE KINETIC EQUATIONS
tudes. The plasma in the earth's magnetosphere is driven IN THE GUIDING-CENTER AND GYROTROPIC
unstable by its continuous interaction with the solar wind and APPROXIMATION
is far from equilibrium. The primary motivation for the work
reported in this paper is to develop a fluid theory applicable For problems where B is a weakly varying function of r,
to the Birkeland current system where the plasma is weakly it is reasonable to seek approximate solutions of the kinetic
inhomogeneous, the geomagnetic field is nonuniform, and equations in the guiding-center coordinate system which are

electrostatic plasma turbulence is known to occur.28  gyrotropic at each point along the B-field flux tube. For the
In Secs. II-VI, we give the fluid theory in the guiding- case where the magnetic field is strong and a weakly varying

center and gyrotropic approximation in the presence of ran- function of position, and the ensemble-averaged electric field

dom electrostatic turbulence where the particles are trans- is weak and a weakly varying function of position and a
ported in one spatial dimension (the distance along the slowly varying function of time, the guiding-center
magnetic field) but the turbulence is two-dimensional. In approximation 29,3 can be made. If lBI(IBI) denotes the
Secs. VII and VIII, we give the fluid equations for quiescent length scale for the variation of B in a direction perpendicu-
(nonturbulent), drifting, bi-Maxwellian, electron-ion plasma lar (parallel) to B, then by a weakly varying B we mean one
in a nonuniform B field and show that they may be solved to where I'B > aaI(411 > ac,•). The lengths a., and aj are de-
give the expected result for equilibrium, electron-ion plasma fined as
in a uniform B field. In Sec. IX, we summarize and discuss = lvj/ al, Ia,= I l, (8)
the results. a = I a=tl I(

where fla=q,,B/mac is the gyrofrequency of the particle in-
cluding the sign of q,. The length scales are defined in the

II. THE ENSEMBLE-AVERAGED VLASOVMAXWELL standard way. For example, 1l11=I(B-1dB/ds)-'I, where s de-
EQUATIONS FOR ELECTROSTATIC TURBULENCE notes the distance along B, with a similar definition for ls±.

The ensemble-averaged Vlasov-Maxwell equations for Similar conditions for the variation of (E) can be given.:3 If

electrostatic turbulence may be determined from Appendix A IEI(lEU) denotes the length scale for the variation of (E) in a
by neglecting 6B and choosing a time-independent model for direction perpendicular (parallel) to (E), then by a weakly
(B): 8B--O, (B)=B(r). This yields varying (E) we mean one where lEI>>aa.(lJ'>aa,). A
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072903-3 Gyrotropic guiding-center fluid theory... Phys. Plasmas 13, 072903 (2006)

slowly varying function of time is one that varies on a time 3p _
scale, r, where T>' Tr=-2r /fkI. q.fd3vfa(s,t,v±,vii). (17)

The self-consistent equations of motion for the particles

in the guiding-center approximation have been found by Here, fa is normalized so that fd 3vf`'=n, where n,, is the
Sivukhin. Using Eq. (12.14) of Sivukhin and our notation number density and (El 1)=El1=-ad4/as.
in (1), we have When the model for B is specified and when Ce, is given,

v.+d q.B I dthen (13) and (16) are the system of kinetic equations in the
m+ + (+ " X Bguiding-center and gyrotropic approximation that describes

d +- 11a+P f) the problem, subject to appropriate initial and boundary con-

f a a il 0, a • 0| aditions. When dB/ds * 0, a direct numerical solution or someat - r + -+ -m'(a_() orthonormal expansion method of solving (13) and (16) can
be considered. For a uniform B field, dBlds=O, and the left-

where R, Pil, and P, are given by (6.10)-(6.12) of Sivukhin. hand side of (13) does not contain v , but the right-hand side
If we neglect all drifts perpendicular to B (E X B, gradient B, does. For this case, we note that an orthonormal expansion
and curvature B), we note that (6.10)-(6.12) of Sivukhin are method on the v, variable needs to be considered. However,

in the remainder of this paper, we pursue the multiconstitu-
R=vjb, (10) ent, multimoment fluid equations as a method of solution for

the problem.

P = q`(E) -b - [b . (aB/ar)12B]m vi, (11) The conservation relations for Ca, in the guiding-center
and gyrotropic approximation are found from (5)-(7) and are

PL = [b. (a9B/Or)/2B]mavllvi, (12) fd'il =0, (18)

where b=B/B. We now replace the fa, dependence in Ca by
the gyrophase average of fa, and take the gyrophase average [ - a = 2
of (1) to obtain I f davm~v1 C" + - (E)] =0, (19)

(9 + v1 d + q.Ell- a _ 1 2BV tL a1lVLd0d 7

dt= C`',Os m. l (13) -dV 1 v]f da v 1 m(V + V2 • d 2 +(5E 2 \)]0.

~~ jvmav+u)C.a+---Ký5E, 1

(20)
fV (2i)1d/f\ (14) Here, cylindrical coordinates are implied, so fd 3v

fa=fa(s,t,vU) =(2)- dH' ,(14) =21Tf'dv J"f dvl1 . In obtaining these results, we have

used the fact that &E, and 8EI1 are functions of s and t and
27 denote the perpendicular and parallel parts of the fluctuating

C C=a(s,t,vi,vl) = (27r)- 1f d9Ca, (15) electric field, respectively.

where s denotes the distance along B and H is the gyrophase IV. THE MULTICONSTITUENT, MULTIMOMENT FLUID
angle, both of which are expressed in the guiding-center co- EQUATIONS IN THE GUIDING-CENTER
ordinate system. We emphasize here that these equations are AND GYROTROPIC APPROXIMATION
valid only for situations where transport along B dominates
transport perpendicular to B. The bar symbol denotes the We wish to calculate the multiconstituent, multimoment
gyrophase average, which is also calculated in the guiding- fluid equations in the guiding-center and gyrotropic approxi-
center coordinate system. The guiding-center coordinate mation. To do this, we multiply (13) by vlvr and integrate
system 30 is one where the velocity-space coordinates slowly over velocity space.31 We use the following notation:
change their orientation as s varies so that the v, axis is
always parallel or antiparallel to B. In general, the B field is (v,vf) =(n,1;1)

curved and varies slowly in space as described above. We f_ I+n,-

interpret fa(s,t,v__,vll)dsv_1 dv 1dvl1 as (2r)-1 times the aver- = 2 17 dvrf dv11v_ vla(s't'vJv1),

age number of particles per unit area of type a for which the
coordinates of the guiding center of the motion lie between s (21)
and s+ds, while the velocities v, and v11 lie between v, and
vu+dv_1 and vil and vll+dvil, respectively. Poisson's equation (v' v,v;C,) = (n,lC)"
becomes f

d2ol/Os2 = -4"rrp, (16) =2TrJ dviJ dvllv± vllC `'( t;v±,VJ),

where 4= 0(s, t) and (22)

Downloaded 19 Sep 2006 to 146.153.144.35. Redistribution subject to AlP license or copyright, see http://pop.aip.org/pop/copyright.jsp



072903-4 Jasperse et aL Phys. Plasmas 13, 072903 (2006)

A = - B-'dB/ds = A-dA/ds, (23) (perpendicular) energy per unit volume for particles of type
a due to wave-particle interactions. The transfer rates are

where A is the cross-sectional area of the flux tube. Here, n functions of s and t. The Mý1 are related to the anomalous
and 1 are positive integers or zero. The velocity moments of (turbulent) resistivity for the problem, and W,,i and WaiL are
(13) are the anomalous (turbulent) parallel and perpendicular heating

a - a or cooling rates per unit volume for particles of type a. If the
-•(n,l;f,,) + -ds(n,1 + 1 ;fJ) + A(1 + nl2)(n,I + 1 ;fc,) momentum (or energy) transfer rate is positive, then momen-

tum (or energy) is gained by the particles. If it is negative,

+ 1{(qjm,)aOr/as(n,1 - 1 ;f•)- (A4/2) then momentum (or energy) is lost by the particles. These
quantities are not independent but are related to the turbulent

X (n + 2,1- 1 ;fa)} = (n, l; ). (24) fluctuations through the conservation relations given by (19)

The lowest four velocity moments [(n, 1) and (20).

=(0,0),(0, 1),(0,2),(2,0)] and Poisson's equation are Equations (25)-(29) are a set of 4N+ 1 equations for the
6N+l unknowns: n., uaW,,w,, q.11, q,±, and rb, where N

dna a (nauJB)is the number of plasma constituents. Instead of using this

--as set, we may introduce the parallel and perpendicular tem-
peratures in energy units32 defined as

dmcnaua+2 d-nw.1- l-Bnal +qno nT,2 =p/,2 = (m,2) d'v(v - u) 21f, (30)
at as B ds 2/ as f~aV P~-mJ

= M,,iI, (26)

9+nT = p, = (mJ2) f d3vvfi. (31)a a 1 dB rJ

an,,+-sn,, -- s(,-q. + q ,"S It follows that w.11 = T, /2+mau /2 and W., = Ta. Substitut-

= WI, (27) ing for w,•1 and w., in (26)-(28) gives

a aa n,, + B s(nauJB) = 0, (32)d 2_O Wd 1928)
faWa-L + B 2) =*a1 (28)as

at ds
0a a 2 1 dB
dm2aau + na(Tall + mau a) - Bs-2 = _ 47rr qpnp/. (29)

as2  or(29
X (T. 1 + mu2 - Ta) + qqc = M•o , (33)

Here, we have defined the velocity moments using the as

following notation: na=(0,0;fa), n u.u=(0,1J;f,), nwa 2 a I aB

=(ma/2)(0,2;f), naw,_=(maI2)(2,0;fa), naq,1,=(Man2) nna(Ta•i+mmcu)+-nAj --- n (q-ql _)

X(0,3;fa), and nAql=(m,,2)(2,l;f,). For particles of
type a, n, is the number density, ua, is the parallel drift a4 .
velocity, wd, is the total parallel energy per particle, wa,, is + q/n°uda = W, 1 , (34)
the total perpendicular energy per particle, q,,, is the total
parallel energy flux per particle, and q., is the total perpen- a a
dicular energy flux per particle. By total, we mean the sum of tnT,,ai + B 2 (nAq/aIB 2) Wai, (35)

the drift and random parts. Note that nq,,11(n~q,,) is the

total parallel (perpendicular) energy flux and nwwlc(nawa) A204
is the total parallel (perpendicular) energy density. The defi- 2s---- TI- q4np. (36)
nitions for q,,, and qc,± should not be confused with the heat as
flux per particle, also denoted by q11 and q, in Braginskii,32 Here (32)-(36) are a set of 4N+ 1 equations for the 6N+ 1
but defined differently here. Also, we have changed the no- unknowns: n,,, u., T,0 t, T,,±, ql, q,,±, and 0,.
tation used for the energy fluxes per particle from what was The fluid equations for turbulent, inhomogeneous, non-
used in Ref. 31. In our new notation, the lowercase symbols uniformly magnetized plasma in the guiding-center and gy-
are used for per particle quantities and uppercase symbols rotropic approximation are given in two representations by
are reserved for per unit volume quantities. (25)-(29) and by (32)-(36). They are the basis of our fluid

We have also introduced the following notation: MAci theory. For both sets of equations, 2N closure conditions are

=m,(0, 1 ;C,), i,1=(ma2)(0,2;Qa), and Wa,± =(m,/2) needed. When the model for B is given and when A•d, Wal

X (2,0; Ca). Here, M.11 is the rate of transfer of momentum and Wai are specified, then either set of fluid equations may
per unit volume for particles of type a due to wave-particle be solved subject to appropriate initial and boundary condi-

interactions, and WcA(Wai) is the rate of transfer of parallel tions to give the weak spatial and slow temporal evolution of

Downloaded 19 Sep 2006 to 146.153.144.35. Redistribution subject to AlP license or copyright, see http:llpop.aip.org/pop/copyright.jsp
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the turbulent system. Examples of how this is done for qui- (s2 1 dB
escent plasma are given in Secs. VII and VIII. na (qj,• + qL)JS2 - ds- -I n,(ql + q.)

It is interesting to compare the above equations to the a 1 B ds a

standard approach for a uniform B field. We see that (32) is fs2

the one-dimensional equivalent of (1.11) of Braginskii.32 We =J dsj1 lEl. (41)

also see that (33) is the one-dimensional equivalent of the S

left-hand side of Eq. (1.12) of Braginskii, where no drifts Let us assume that both q,,,, and q,, are positive (outgoing
perpendicular to B or off-diagonal elements of the pressure particles) on the flux tube from s, to s2. If B-ldB/ds is nega-

tensor appear. When we add (34) and (35) for a uniform B tive, and if j11E11 is positive on the flux tube, j11E11 provides the
field, we see that the sum is also the one-dimensional equiva- rate of change of energy density to drive the two terms on the
lent of the left-hand side of Eq. (1.13) of Braginskii. left-hand side of (41). Further, for the case of a uniform B

field, then

2

V. CONSERVATION LAWS IN THE GUIDING-CENTER n. (q.1 + q._)I52 = dsj1E1,. (42)

AND GYROTROPIC APPROXIMATION a i

This means that the total energy flux exiting the flux tube at
The conservation laws for the number density, charge S2 is greater than that entering at sl, if jfE1 is positive on the

density, momentum density, and total energy density for flux tube.
electrostatic turbulence in the guiding-center and gyrotropic The conservation laws for turbulent, inhomogeneous,
approximation may be written from the results in Secs. III nonuniformly magnetized plasma in the guiding-center and
and IV. The conservation of number density is gyrotropic approximation are given by (37)-(40).' Since all

a a drifts perpendicular to B have been neglected, the particles
-'ftn + B-s(nuJB)=0. (37) are responding in one spatial dimension, s, but the electro-

static turbulence is two-dimensional, as (c5E2)=(OE2 )

The conservation law for the charge density follows from +(BE2).

(37) and is

a a VI. CALCULATION OF THE MOMENTUM
-p + B- (j1 B) = 0, (38) AND ENERGY TRANSFER RATES
at as IN THE GUIDING-CENTER AND GYROTROPIC

where we have defined j 11,=Xqanu.. From (19) and (33), we APPROXIMATION

obtain the conservation law for momentum density The wave-particle transfer rates per unit volume were
defined in Sec. IV asdt r•nu' d- a(~+ m.U2)ldosa- -s I dO"Bl

E Manu + E n.Toi 0

+=.2_T (52 (E) d'v 2 /c•a. (43)
X E + (T.11) + 11 (al cv11

apEpI (39) L_ .ItJLa-1

We now assume that the fluctuating electric field is random
In order to obtain the conservation law for the total energy (Markovian), that the length and time scales for the one-
density, we add (34) and (35) and use (20) to obtain particle distribution functions and the two-particle correla-

a9 T, 2 a tion functions separate, and that C. is given by a velocity-
, + + Tai) +-s n(q.11 + qa) space Fokker-Planck operator,33

,12

1dB a. + Ca,=- (Ff + FP)fc, +I fa, (44)
_n' ) +t [(bE2 + (&E')] 24vdv

where Fý, FP, and D{, are functionals of F and (Ila21)), and
- j,1E11. (40)

where E and (18•E21) are the dielectric screening function and
For B equal to a constant, (37), (39), and (40) reduce to the spectral density of the longitudinal electric-field fluctuations
one-dimensional forms of (A9)-(A1 1) for electrostatic turbu- for the turbulent plasma, respectively. By separation of
lence, given in Appendix A. Also note that (37), (39), and length and time scales, we mean that there is a length I and

(40) reduce to the form given by Davidson,5 Chap. 8, if B is time T such that 11 >I 1>2 1- \D, and 7-1 >> r> T2, where XDe is
uniform, the plasma is homogeneous and one-dimensional, the electron Debye length and '2 is discussed in Appendix B.
and the turbulence obeys the quasilinear assumptions. Here, 11 and Ti are the characteristic length and time scales

It is interesting to examine the integrated, total energy- for the one-particle distribution functions and their moments,
density conservation equation for steady-state conditions. In- respectively. It is important to point out here that these scal-
tegrating (40) from si to S2, we obtain ing assumptions render (44) for C,, approximate: the Fokker-
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Planck method is valid only for large length- and time-scale . (27

separations. W`± = mafJ d'v(2"tr)-I dp[{v,(Ff+

In the guiding-center and gyrotropic approximation, we
consider a Cartesian, velocity-space coordinate system which + vy(Fy + FP) + (1/2)(D{f + Dyy)}fa. (47)
slowly changes its orientation as s varies along B so that the
v, axis is always parallel or antiparallel to B. See Sec. M. In (45)-(47), there is an explicit dependence on f. as shown,
Thus, v v and v2 -+Vy. Using integration by parts and and an implicit dependence on f`, in Ff, FP, and Df` through

the asymptotic properties of f,, for large v, we see from (43) the Vlasov-Maxwell hierarchy of kinetic equations. As dis-
and (44) that cussed in Sec. III, we note that the guiding-center and gyro-

f 21r tropic approximation is the one obtained by replacing both
MAl = m d3v1(21r)-1 dp(Ff + FP)f" (45) dependences by f. In Appendix B, we calculate Ff, FP, and

Df in the guiding-center and gyrotropic approximation. We

2vP obtain W,,il and W*. as generalizations of Eqs. (64) and (63)
Wl= ma d3v(21r)-' dqp{v,(F{ + Ff) + (1/2)Dtz}fa, of Ichimaru and Rosenbluth." Using the I and R formalism,

f 0 Zwe may also obtain an expression for Mi. From Appendix

(46) B, we obtain

Maf (s,t))=(q'r) f d3 f'(s,t,oV,,Vi) f 23k f fl([" J -Jn+i(ý.)](EIE 2I(s,t;k't)-

+ ()kiJ~~ai(I~2~ 2T; , fo) d)J (olJ)(m I )[J~,2- t; k,)]}5(lk+k1 v-), (4o)
\ma/ f(27rn=-_ Jn=- \2k2 /\ ja ,,

+ (I 52)kj 2(s.)-_',w E2J(s+t;kto)-( + ( k )J2(b44m [(ntk, 1} + k -to)- (48)
k2 n d)k

3V. f d3k8f1 & 1),

Wai(st) =(-:) f d3 f(S,t,ViV) f d3  f j +, (s,{(tk )+) 6

+ (kI 8)nl(s, t;Jk,&a))) +-(If.62l(s,t;k, to) + ( -v)n'f2J( ý,)4m' Im[X(s, t;k , w)']} S(n fl , + k lv[[ - ), (50)

where •a=k Vi/&•a and fla`=q`'B/m• to include the sign sion across B and assumed that velocity-space transport
of q`'. Also, J,(•) is the usual Bessel function of order n, along B dominates spatial transport along B. In order to es-
k (k I) is the perpendicular (parallel) part of k, and k2  timate the magnitude of the spatial diffusion processes to see

+k2. The other symbols have their usual meaning. As dis- if they are negligible for a given problem, the formulas given
cussed in Appendix B, the transfer rates are weak functions by Ichimaru and Tange34 and Tange35 may be used. We also

of s and slow functions of t, as are the low-order velocity note that, since B is a weak function of s, so are l)'

moments of the one-particle distribution functions. Here, we The momentum and energy transfer rates per unit vol-

reiterate from Appendix B that the following symmetries ume for turbulent, inhomogeneous, nonuniformly magne-
hold: (I SE21(s, t; (J&P2(s t;k,o-,)); and tized plasma in the guiding-center and gyrotropic approxima-
o .(s, t; k,i t)f=u o(s, t;-k,-oo), tion are given by (48)-(50). They are generalizations of the

In deriving (48)-(50), we have neglected spatial diffu- formulas given by I and R.
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VII. THE FLUID EQUATIONS FOR QUIESCENT, ) \112
DRIFTING, BI-MAXWELLIAN, fa(s,t,u 1.,vi)qu = 2n1 22
ELECTRON-ION PLASMA IN A NONUNIFORM a &I

B FIELD 2 1VIU)
×exp - , 2 1 (1

In order to find the fluid equations for quiescent, drifting, 2Va 2 2v 2  (51)

bi-Maxwellian, electron-ion plasma in a nonuniform B field
in the guiding-center and gyrotropic approximation, we must
evaluate the momentum and energy transfer rates due to where na, ua, vail, and va.L depend on s and t, and we have

wave-particle interactions. Let us assume that fa is a drifting introduced the thermal velocities for the particle distributions

bi-Maxwellian, and that the relative drift between the elec- which are given by v2= Tai/lma andVa±- Ta±/ma. We note

trons and ions is sufficiently small so that the plasma remains that la has been normalized to na. Substituting (51) into
stable (quiescent) as it evolves in space and time. The drift- (48)-(50), we see that the velocity-space integrals are
ing bi-Maxwellian distributions are known. 36 We obtain

T)• 112( q2 I ~ _
I 2r Ta11

dm~,V F_ k Ik ll

+4TalIm[E(s,t;k, o) 2]} An(13a)exp (o a 2 - , 
(52)

/ ~q\ 2k2 2V (52)ffl'f

2kH all ]

Wal(s't)=na ( 7T) 2( 2)ff A f'_ _ do)9to 2 I Infaa- +o(w-na-kk'" 2a) (bE21(S't;k'o9)>q"

w)I}AnP x[ (co9- nf°- kiua)2 ]
+4To•1 Im[e(s,t;k, o)]Anfaxp- 2k~uvt j (53)

"n\1/2 q2 dk + += __ aL, l~

3k 31i E(s,t;k,9))qu

2 2;rr)n=-= d- r KlIL -to±

+ 4 Tal imn[E(s,t;k, o9)q]} AnI(rt)exp (to9- n~a - k1lu ") 2

qu 2kiV2 . (54)

Here, we have defined A•(x)=exp(-x)I.(x), fla=k~va±l a quiescent dielectric screening function for this case is given
and I.(x) is the Bessel function of imaginary argument of by
order n. The subscript "qu" refers to quiescent plasma. In
obtaining (52)-(54), we have used some well-known (s,t;k, 9)qu

l()integrals 36 involving J2(•:) and the recursion Properties 36 of =+ 2l+--- 1 ( T)l/ n
a-i 2 MV all T2 77r n-n=--- kklu

In what follows, we give explicit expressions for r/ 1and (I 8E2 1)q as weak functions of s and slow functions of t 2 (W-l~a -kIua -) (54)

by making use of the separation of spatial and temporal L W •k,~ -~ 1 AJ f ,(5
scales between the one-particle distribution functions and the
two-particle correlation functions. The expression for the where W(z) is the plasma dispersion functionb2 given by
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f0 tions where electron- and ion-neutral particle collisions are
W(z) = 1 - z exp(- z2/2) dyexp(y 2/2) + i(¢r/2)/ 2z negligible compared to charged-particle collisions. Such an

=I e0 application is currently under study.

Xexp(- z2/2), (56)

and where we have defined k,2=4rn,,/q2IT,,,. The spectral VIII. THE SOLUTION OF THE FLUID EQUATIONS
density of the longitudinal electric-field fluctuations can be FOR EQUILIBRIUM ELECTRON-ION PLASMA
calculated using the superposition technique for the dressed IN A UNIFORM B FIELD
test particles.37 '38 For a drifting bi-Maxwellian with Iqel=qi
=q, the spectral density is In this section, we give the solution of the fluid equa-

.2 tions for equilibrium, electron-ion plasma in a uniform B
(I 8E211(s,"t; k, (0)6r61q2 q S0(s,t;k,W)qu, field and obtain the expected result. We consider the special

W2(t qu= ks(s,t;k, o0)quI2 _, case when the plasma is in thermal equilibrium and the

(57) B field is uniform, i.e., when ne=ni=n,,Ue=Ui=O,Tell=Tel
=Tirl=Ti1 =T. From (51), we see that

n, 7=(s,t, V i,Vi)qu fa(vi,,,Ll)eqS°a(s, t; k, -o)qu -• Y, A,(,8.) (1)1
1 =n(2T)"2)3lexp[ (v+n )] (61)

Xexp - 2 k2  . (58)

2k•2 2 and that (52)-(58) pass to their equilibrium forms. Here,1v=TIm,. In particular, the equilibrium forms of squ and
Since squ and (ISE 2I)qu are known functions of n,, u., T.11, (11E2I)qu are

and Ta±., then M,, Wo,, and Wai are also known functions k2{ =+
of n., u., T.11, and T.,i, which are, in turn, functions of s and s(k, to),q= 1 + I+ (: IAn(&t. c_•.j k2 n=- ... w - nfl.)/

As is the case with all moment equation descriptions,
closure conditions must be specified. For electron-ion plasma X[I(W - nL ) - I , (62)
with drifting, bi-Maxwellian distributions, the 2N(=4) clo- IkIav J
sure conditions are found by taking the appropriate velocity
moments of (51). The expressions for the perpendicular and 161T2q2n
parallel total energy fluxes per particle in terms of the low- (E,(k, co)= - q
order velocity moments are kq

qal = UaTai, (59) × w 112 A JA_
a--ej (21r) Ik[klIv,,n-o

q.11,= ua{(312)T,.i + (l/2)mu2}. (60) xexp (a ) 2k )2. (63)

The 4N+ 1(=9) fluid equations given by (32)-(36) and 1 2 1 V I

the 2N(=4) closure equations given by (59), (60), and (52)- Using (56) for the definition of the W function, we find from
(54) for the momentum and energy transfer rates when (62) and (63) that
supplemented by (55)-(58) represent a closed set of self- 14Tm
consistent equations for quiescent, drifting, bi-Maxwellian, (I8E21(k, ))q= - (k,0e,
electron-ion plasma in a nonuniform B field in the guiding- (k, & (kw)e1

center and gyrotropic approximation. There are 6N+ 1 (= 13) (4T) [ I
equations for the 6N+ 1 (= 13) low-order velocity moments - ,o(64)

and 0. The equations may be solved subject to appropriate
initial and boundary conditions to give the weak spatial and which is the relationship that is required by the fluctuation-
slow temporal evolution of the system. dissipation theorem.4 3 '" As a consequence of (64), we find

We also note that, since the magnetized Balescu-Lenard from (52)-(54) that M, 1 = W,= w, 1 =0. From (32)-(36), we
collision operators for the multiconstituent plasma can be see that the equilibrium solution for the fluid equations is
recast into Fokker-Planck forms (see Ref. 12), the effect of
charged-particle collisions is contained in the expressions for n, = ni = n (a constant), (65)
the transfer rates given by (52)-(58) for quiescent, magne-
tized, bi-Maxwellian plasma. For an explicit solution of the Tell = Te, = Till = Til = T (a constant), (66)
dielectric function for the unmagnetized, Balescu-Lenard-
Poisson equations, see Refs. 39 and 40. When gravity is Ue = ui = 0, (67)
included in the theory, (32)-(36) and (52)-(60) may be ap-
plied to the earth's topside ionosphere for quiescent condi- El = 0, (68)
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qell = qei = = qiL= = 0. (69) generalized the work of I and R by introducing the ten-
sorial spectral density of the longitudinal electric-field

The solution is the expected result. It is important to note fluctuations in the guiding-center and gyrotropic ap-
that the fluid equations obey the fluctuation-dissipation theo- proximation. See (B110). The transfer rates are given by
rem in the limit as the plasma approaches thermal equilib- (48)-(50). If large-amplitude coherent structures are
rium. We also note that this result is independent of the clo- present in the plasma so that the length and time scales
sure assumptions as qei1=qei =qi11=qi±=0 by symmetry, if do not separate, then the method presented here may not
Ue=ui=O" apply.

(5) For quiescent, drifting, bi-Maxwellian, electron-ion
IX. SUMMARY AND DISCUSSION plasma in a nonuniform B field, we give explicit expres-

This work was motivated by the success of the I and R sions for the momentum and energy transfer rates. See

method in treating temperature relaxation problems for ho- (52)-(58). In the limit as the plasma approaches thermal

mogeneous plasmas in a uniform magnetic field. 11 We have equilibrium, the Fokker-Planck expressions for the cor-

generalized their work in order to obtain a fluid theory ap- relation functions produce momentum and energy trans-

plicable to space and laboratory plasmas, when random elec- fer rates that are zero, in agreement with the fluctuation-

trostatic turbulence is present, the magnetic field is nonuni- dissipation theorem. The solution of the fluid equations

form, the spatial gradients are weak, the guiding-center and for thermal equilibrium yields the expected result. See

gyrotropic approximation is generally valid, and transport (65)-(69).

parallel to B dominates transport perpendicular to B. The method we present has a formal similarity to the

The main results of this paper are summarized as fol- standard theory of anomalous resistivity and anomalous

lows: heating.15 The major difference is that in the work presented
here, we assume that the correlation functions are given by a

(1) We have derived a set of kinetic equations in the velocity-space Fokker-Planck operator. We are currently
guiding-center and gyrotropic approximation where all comparing the two approaches to the problem.
the drifts perpendicular to B are neglected. These equa- For nonturbulent plasmas, s- qu, and explicit expres-
tions are valid for a weakly inhomogeneous magnetic sions for the wave-particle transfer rates were given for qui-
field, provided that the conditions on B and (E) dis- escent, drifting, bi-Maxwellian, electron-ion plasma. Since
cussed in Sec. III are satisfied, that the turbulence is the magnetized Balescu-Lenard collision operators for a mul-
electrostatic, and that the (E,) X B drift is small com- ticonstituent plasma can be recast into Fokker-Planck forms
pared to the electron and ion drifts along B. See (see Ref. 12), the effect of charged-particle collisions is con-
(13)-(15) and the self-consistent Poisson's equation tained in the expressions for MAii, W,11 , and WV, given by
given by (16). The kinetic equations include the effect of (52)-(58) for the quiescent plasma. However, if the plasma is
wave-particle interactions due to the turbulence. turbulent, then we need either a theoretical or an experimen-

(2) Two sets of multiconstituent, multimoment fluid equa- tal determination of 9 and (18, 21). As we mentioned in the
tions valid in the guiding-center and gyrotropic approxi- Introduction, if a solution for the renormalized propagator
mation are given by (25)-(29) and (32)-(36). The fluid for the turbulent plasma could be found, then it could be
equations are new and include anomalous transport of used to find the renormalized dielectric screening function
momentum and energy due to the electrostatic turbu- and the renormalized spectral density for the longitudinal
lence. electric-field fluctuations. These formulas could then be used

(3) Conservation laws are also given in the guiding-center in (48)-(50).
and gyrotropic approximation that relate the spectral
density of the longitudinal electric-field fluctuations to ACKNOWLEDGMENTS
the low-order velocity moments of the one-particle dis-
tribution functions. See (37)-(40). The conservation We wish to acknowledge important conversations with
laws are also new. the following people: J. W. Bonnell, W. J. Burke, C. W.

(4) If we assume that the turbulent electric field is random Carlson, T. S. Chang, D. L. Cooke, N. J. Grossbard, K. A.
(Markovian), that the length and time scales between the Lynch, D. C. Montgomery, and R. Pottelette.
one-particle distribution functions and the two-particle This work was supported by the Air Force Office of
correlation functions separate, and that the correlation Scientific Research. E.J.L. was partially supported by NASA
functions are given by the velocity-space Fokker-Planck Grant No. NNG04GP84G.
operator, then explicit expressions for the wave-particle
transfer rates in the guiding-center and gyrotropic ap-
proximation can be found. We have assumed that the APPENDIX A: THE VLASOV-MAXWELL EOUATIONS
turbulence is sufficiently weak so that the fluctuating In this appendix, we assemble some well-known results
electric field has a small effect on the unperturbed par- from plasma theory for the reader's convenience. The mate-
ticle orbits. The transfer rates are functionals of E and rial is discussed in Tidman and Krall,24 Chap. 1, and we use
(If 321, the dielectric screening function, and the spec- their notation in this paper.

tral density of the longitudinal electric-field fluctuations We wish to average the Vlasov-Maxwell equations for a
for the turbulent plasma, respectively. Here, we have plasma by splitting the one-particle distribution functions
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and field quantities into an ensemble-averaged part and a suits, Maxwell's equations, standard vector and tensor iden-
fluctuating part: fa=(f,)+Sf,, E=(E)+SE, B=(B)+bB. tities, integration by parts, and the asymptotic properties of
Here, the ensemble average of a quantity such as fa is de- (f,) for large v have been used. See Ref. 24.
noted by (f,) and its fluctuation about the average value by In order to obtain the conservation laws for the number
8f,. Averaging the Vlasov-Maxwell equations in the stan- density, the momentum density, and the total energy density,
dard way, we obtain we multiply (Al) by 1, mav, and (l/2)mav 2, respectively,

(9 r a. 1 and integrate over velocity space. We then substitute for the
+ V + (B] +V f aB = velocity moments of Ca using (A6)-(A8). This gives the

rm,• L C three conservation laws for the low-order velocity moments
(Al) of (fa), (E), and (B) in terms of the fluctuating electric and

magnetic fields. We obtain

C ,•= q_ •• + bf a) (A2) a _9nM+(( d •n, n,6u,=0, (A9)

at r

(91Catdt 41rc

X (B) - (E) = -j, .(B) = 0. (A4) 41 d•r 3VMývvfC,) + a (oE2 + oB2)I

The charge density and current density are defined as I I
-4"(+E°"E + =p(E)+-j X (B), (A10)

p , q# d3fu), j= q# 3 d 3vVf 3 . (A5) 4 I C

03 16 f d 3 V Vm 2 (fc)+ -'(°E2+ }2)
Here, (f,)=(f,(r,v,t)) denotes the one-particle distribution dt 22 a 8
function for the species a in the standard six-dimensional
phase space F, where F=(r,v) and where (fa)dF has the•afff d3m ,1;, +-6 EX4  oB)l
standard interpretation. Ca are the wave-particle correlation +dr a 2  a 47T
functions for the problem. It is important to note that, for
quiescent plasma, the Ca contain the effect of charged- =j - (E), (A11)
particle collisions, and for turbulent plasma, the effect of where u,, is the drift velocity defined as ua,=nfl lfd3VV(fa).
turbulent fluctuations. Gaussian units are used, and (fa) are
normalized so that fd 3 v(fa,)=n,a, where n,, is the number APPENDIX B: CALCULATION OF AND
density. The other quantities have their usual meaning. The IN THE GUIDING-CENTER AND GYROTROPIC
fluctuations and the correlation functions determined from APPROXIMATION
them satisfy the familiar Vlasov-Maxwell hierarchy of ki-
netic equations, which we do not write here. In this appendix, we give the details of the calculation

The conservation relations for Ca, may also be deter- leading to Eqs. (48)-(50). They may be obtained as generali-
mined. They are zations of the work of Hubbard,' 0  Ichimaru and

Rosenbluth," and Matsuda.42 Uncertainties in the calculation

f d3vCa=O, (A6) by I and R have been discussed and clarified in Refs. 43 and
f 42 and we follow the procedure of Ref. 42 in this appendix.

From I and R, the equation of motion for a particle of
a 1 a charge q and mass m isE d3 vm,,vC,+'--c(O5E X o6B)-- -5rt)]+xB

t4c d d v(t)= [r(t),t]+ v(t) X B, (BI)

1 1 dt m mc
•-(oEbE + 61B3B) + - - (bE + oB2 I= 0,

4Tr 87r where r(t) and v(t) give the trajectory of the test particle in

(A7) phase space, B is the magnetic field, and 6E is the fluctuating
electric field. We wish to generalize the calculation of I and

f Id3V 1m",V2Cc + _I (oE2 + oB2) + R by considering B to be a weak function of position. The
a 2 dt 81T at meaning of the weak variation of B is given in Sec. III. In the

guiding-center approximation, we consider a velocity-space

c coordinate system which slowly changes its orientation as s
4,7- (bE X oB)= O. (A8) varies along the B-field line so that the v, axis is always

oriented parallel or antiparallel to B. Since B is changing
Here, we have used standard vector and tensor dyadic nota- slowly with s, it may be considered as locally uniform. In
tion, and I is the unit tensor dyadic. In obtaining these re- this appendix, all subscripts are suppressed in order to sim-
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plify the notation. The trajectories of the particles are found + sin ,t 1 - cos fat 0
by integrating (B 1). They are H(t) = (1 - cos fit) sin fit 0 , (B4)

1 [o t
r(t) = r(0) + -H(t) • v(0)

1 1~~d [cos f~tt sin fit 01
+ B dt'H(t- t'). bE[r(t'),t'], (B2) B(t) = IdH(t)= sinl ft cos ft 0 (B5)

The tensor B(t) should not be confused with the vector B,
v(t) = B(t)• v(0) + -f dt'B(t-t') bE[r(t'),t'], (B3) which denotes the magnetic field. Following I and R, the

MJ 0  increments Ar(r) and Av(T) of the particle coordinates dur-
ing the time interval r are defined as Ar(r)=r(r)-r(0) and

where f1=qB/mc is the cyclotron frequency including the Av(r)=v(r)-v(0). They may be expressed in terms of the
sign of q. Here, H and B are dimensionless tensors which fluctuating electric field by making a Taylor expansion of
characterize the helical motion of a charged particle in a Ar(r) and Av(r) in powers of the fluctuating electric field,
magnetic field and are expressed in Cartesian coordinates and then truncating the expansion to the second order. These
(x,y,z) as formulas are given in I and R. For Av(r), they obtain

Av(r) = [B(r) - I] • v + dT'B(r')• bE[ro(r- ),r- T] + - dr'B(r')

• d T'H ( r') • bE [ro(r- 7' - 7 '), r- 7 ' - e '] a rbE [r0 ( - 7 ), r- r'] j + (B 6)

where ro(t) =r(0) + (I /a)H(t) , v. In making this approxima- scribe below, which is used throughout this appendix, it is
tion, we have assumed that the turbulence is sufficiently possible to show that the other two second-order terms van-
weak so that the fluctuating electric field has a small effect ish. Therefore, we are left with (B9) for D. The procedure we
on the unperturbed particle orbits denoted by r 0 (t). use to evaluate the 71 integration is the same as that used in

The diffusion tensor in velocity space is defined as an Ref. 42 and is described as follows. When no magnetic field
ensemble average of the dyadic Av(,r)Av(T), as is present, Hubbard noted that correlations of the fluctuating

electric field persist only for times on the order of r' - &oP-.
D(v) (Av(r)Av(r)) (B7) When a magnetic field is present, Matsuda42 has assumed

T that the major contribution to the i-' integration comes from

The time r must be chosen so as to satisfy the condition times where 0< -r'_- a few times r2, where r2(=rac) is
the autocorrelation time for the turbulence and where

,r >r> r2, (B8) 7ac-< 2 "7T/fl. We accept this assumption and will evaluate be-

where r" is defined in Sec. VI and '2 is discussed below, low the 71 integration in (B9), and the analogous integration

Since Hubbard10 has shown that the self-field contribution to in Ff also given below, by integrating on r' and then taking

D is small compared to the dominant, second-order-in-bE the limit as 0r/2rr-- 0.

contribution, and since (bE)=0, we may expand AvAv using We now generalize the I and R calculation to include a

(B6), take the ensemble average, and keep only the second- weakly varying, fluctuating electric field in space and a

order terms. The dominant second-order contribution is slowly varying, fluctuating electric field in time by introduc-
ing the tensorial spectral density of the electric-field fluctua-

D (v) = __2 dTr'J dt(B (Tr) tions

bE[ro(r- 7I),r- r']B(r' + t)
S=(" d 3k f+ - -. ('r~r'LtLt' ))

S(B9) =f A f+ dwK 6E6E

where the condition (B8) has been used to extend the range
of the t integration from -- to +-. This is (13) of I and R. Xexp[ik- (r-r')- iw(t-t')]. (B10)
The other two second-order terms are given in Ref. 42. Us-
ing the procedure to evaluate the TI integration that we de- Here (oE(r,t)o&6(r' ,t')) is the two-point, two-time correla-
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tion function for the turbulent electric field. It depends not Xexp{i(nfl + klvil- co)t}. (B 15)
only on r-r' and t-t', but on the average spatial (r+r')/2,
and average temporal (t+t')/2 coordinates. In order to re- In writing (B 15), we have chosen a Cartesian, velocity-space

mind us that we are describing correlation functions for the coordinate system where e, ey, and e, are appropriate unit

turbulent plasma, we use the tilde notation. Now, we wish to vectors and the magnetic field is oriented either parallel or

impose the same restrictions on the length and time scales of antiparallel to ez. Here, ýp(o0) is the angle that the component

the average spatial and the average temporal variations of of v(k) in the i,-iy plane makes with the e. axis. Also,

(o5o6*[(r+r')/2,(t+t')/2;k,co]) as we did in Sec. III for 6=kiv/1 ff, where v,(k1 ) is the component of v(k) in the

the variation of (E). Therefore, we assume that the length i,-iy plane, and v11(kj) is the component of v(k) either par-
allel or antiparallel to the magnetic field. Using (B5) and

scale for the variation of (oEoE*) with (r+r')/2 in the di- integration by parts, we see that the r' integration can be
rection perpendicular and parallel to B is large compared to carried out and the limit as ffr/21T---*0 taken, as described
a, and al, respectively. We also assume that the time scale above, to give

for the variation of (o5o6* with (t+t')/2 is large compared
to I2rr/-. In the guiding-center coordinate system we use, D= qd f dk( 1(s,t;k,w)ý
which was discussed in Sec. mI, (r+r')/2--+s and (t+t')/2 m2 (2 7T)3j_)
-- t. Here, s and t are the weak spatial and slow temporal
coordinates, and r-r' and t-t' are the strong spatial and fast ×f dtl2[kB(t) • k]exp[- ik . f-'H(- t) .v - iot].
temporal coordinates, where s is the distance along the mag- k k

netic field line. Again, it is important to point out that the (B 16)
scaling assumptions leading to (B 10) for the spectral density
are valid only for a large separation of the length and time This is Eq. (17) of Ref. 42 when (18Z21) is independent of s
scales. and t. It is the generalized D when (10 2 1) has a weak spatial

When the fluctuations are electrostatic, the tensor of the and a slow temporal dependence before the gyrophase aver-
spectral density of the electric-field fluctuations has a simpli- age is calculated. From Sec. VI, we see that since f, is re-
fled form,

placed by f, we need only to calculate the gyrophase aver-
(oEoE*(s,t;k, wo)) = (kk/k2)( 8,E

21 (s,t;k,ow)), (B] 1) age of D in order to evaluate WV,, and W,,. Therefore,

where ([3E21(s,t;k,wo)) is the spectral density of the turbu- q= 2 d dk &Zd¢1E21 (Stk, d'

lent, longitudinal electric-field fluctuations and has the sym- m (2ir)3 .f _

metry (I&E2 1(s,t;k,t))=(18E 2 1(s,t;-k,-o)). Using (B10), k2 cos nt -k2 sin ftt 0 1
we find that the generalized diffusion tensor is I I

q2fdXk k 2 sin fit +k2cosSfht
D= 2" (2)J dow(SE21(s,t;k,w)) 0 0 2k11

f f o+X J2(6)exp[i(nf1 + kvl - )t]. (B 17)-X dt dr' [B(7-) • k][B(-' + t). k] n=_-

Xexp[ik. Ar 0(t) - itot], (B 12) Noting that only the even part on t survives the inversion on

k, co, and n, we obtain
Aro(t) =ro(,r- 71) - ro(r- 7' - t) /±0 0

=l-l[H(r- r)-H(r-r'-t)].v. (B13) D= 0 1f± 0 , (B18)

Here, the slow time dependence of (1,5,E21) has been excluded 0 0 o hi
from the integration over the fast time scale. Using the
identity36  where

17rZ f d3
k 2

exp(iz sin #P) = J(z)exp(in), (B14) D= Jn()
n(=--F2 r _ n=__ k

we find that the expanded expression for D is X(I5E2I(s,t;k,&t))8(nii, + klpvl - w), (B 19)

q dk dl 0(s,t; k, co)1k, ) 2 3).2
"m2J (2Er)" J_ t=_ 21rq f dak I +

D- fJ (22)"=+, t
1= ~m2 . (2i)L n=-- 4k2

"×f dt' f r'dr '2[(7) .k][B( r" + t) " k] X=- K ~~ S
m rj [r X(ISE2 I(s,t;k, w)) (nfl + k11v 1- t). (B20)

"x J,(6)J1 (ý)exp{i(n - 1)[ - -(r-r')]} Equations (B19) and (B20) are the generalizations of Eqs.
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(26) and (25) of I and R to include the weak spatial and slow From Sec. VI, we see that in order to find W* and WV,

temporal variation of (108E2 1). we need to find the gyrophase average of
In order to find the generalized friction coefficient, again

we follow I and R. It is defined as v-(Ff+ FP)f= {v-(Ff+ FP)}f+ {v• (Ff+ FP)}.

(Av( )) 
(B26)

F(v) ,. (B21) We proceed as in the calculation for D to obtain
I""

where r is a time interval satisfying (B8). As shown by (2 r)_, dpm(v. Ff)11

Hubbard,10 there are two contributions to F: a part due to the
correlated effect of the electric-field fluctuations on the par- 2 f 1{
ticle orbit, Ff, and a polarization part due to the self-field of _q __ f_ ' J ( k_ )
a test particle in a plasma, FP, (21r)3 0 2k

F = Ff + FP. (B22) +.
× • [J,2_() - j•+i(•)](I E2l(s,t;k, o))

The formulas given in I and R may be generalized in the ....
same way as we did to obtain (B 16) for a weakly varying B

field with position, and a weakly and slowly varying (15 /2 1) +kiv(, k_ " k,
with position and time, respectively. In the calculation of Ff,
we note that the first two terms in (B6) do not contribute X ×(nfl + klivil - to), (B27)
because their ensemble average is zero, and that the contri-
bution comes from the third term. Following procedures (2.

similar to the calculation of D, we obtain (27r)-'J0 dqpm(v . Ff)1
Ff~~~~~ ~ ~ ~ += {' 

+' 
k2(~2~~~~w)q2TfA+

F1 = 2mB f (2r)' tY f dw{ 2
(2) (27T) 2k

dt- k +. 2~).k+X E d ( P ) k -H~ t -kX [J ,2-_ ( ý) + J Z2+ 1( 6)](J & P I (s, t; k , wo )) + k2 k 2

Xexp[- ik. Wf'-H(- t) . v - iot]. (B23) 1n\

We have used the above-described procedure to evaluate the X • n[Jn_(_) - J÷2(+ )]([5E2i(s,t;k, w)) +
r' integration and (B8) to extend the t integration, first from ....

0 to -, and then from -- to +- by taking half the value. +. I
Equation (B23) is the same as Eq. (24) of Ref. 42 when X I nfJ•(J)•+2 -(s,t;k,w)) &(nw+k11v11-).

(1I 2) is independent of s and t and is the generalized Ff n=-oo

before the gyrophase average of v .Ff is calculated. It is also (B28)

possible to show that A similar calculation for FP yields

/0v .D = 2Ff, (B24) (2 1r) -, 2"d~pm(v "

where D is given by (B 16).
The second term in (B22) is due to the polarization of q2 Tr f d3 kf A + klu' N

the plasma and has been given when there is no magnetic -J (21r) E dwy 4m Im[k(s,t;k,w)-]
field present by Hubbard. 0 When a magnetic field is present,/
we obtain +.

2 f J2n(e) 8(nf + klvll - o,(1329)
FP = 2f d~k dwImF+=t n=--

X f§ dt( k)exp[- ik. f-'H(t)• v +iiwt]. (B25) (21r-' dsm(v FP),

q 27 f a•, f÷ +_d(4m )ImistkQ
Here, F is the dielectric screening function for the turbulent f d() 7Im[)(skt;k2)-
plasma. It varies weakly with s and slowly with t as the
properties of the plasma medium vary. We also note that
9(s,t;k,wo)*=F(s,t;-k,-to), and (B25) is the same as (30) X nf1J](6)5(nf1 + klvl - w). (B30)

of I and R and (27) of Ref. 42 when F is independent of s n=-o

and t. Combining (B27)-(B30) with (B19) and (B20) allows us to
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