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Preface

This volume contains the 2006 annual progress reports of the CTR postdoctoral fellows
and visiting scholars. A separate report of the proceedings of the eleventh biennial CTR
Summer Program was published earlier this year. CTR will be twenty years old by
the time this volume reaches its worldwide readership. In the past twenty years CTR
research has evolved significantly. Many of the fundamental research areas of the early
days of CTR, such as direct numerical simulation of canonical shear flows and combustion
phenomenon have now been adopted as mainstream research tools in the engineering
science community. As is evident from the technical reports in this and recent volumes of
the Annual Research Briefs, current CTR scholars are tackling much more complex and
interdisciplinary problems. However, the most important feature that remains the same
is the continued emphasis on the development of computational tools for conducting
experiments of discovery and for flow prediction in engineering analysis. To conduct
effective research in predictive science in complex systems, CTR has strived to maintain
a critical mass in numerical analysis, computer science and physics based modeling, all
under one roof. CTR has also always maintained close ties to laboratory experiments and
experimentalists in several institutions. Over the last ten years, this infrastructure has
benefited greatly from the sustained financial and intellectual support of the Department
of Energys Advanced Simulation and Computing Program.

The first group of papers in this volume are concerned with uncertainty quantifica-
tion and validation of numerical simulations. This is an emerging area of importance in
computational science, and we have assembled a strong group of students, postdoctoral
fellows and faculty to meet the challenges in this area. The next group of papers are
concerned with fundamental developments in LES, including new subgrid scale models,
and its applications in multi-physics areas such as aero-optics and combustion. There
was a substantial effort in numerical analysis of partial differential equations, which are
reported in the next group of papers. Provable stable schemes were developed and im-
plemented in complex flow applications. An important pacing item in computational
science for complex systems is the problem of integration of multiple codes simulating
multiple physical effects. The utility of the coupler code and environment for integrated
simulations was demonstrated in two massive calculations: end to end hybrid simulation
of a gas turbine engine and a hybrid simulation of flow around helicopter rotors and the
associated acoustics. Computational acoustics, and flow control are receiving renewed at-
tention at CTR in part because of the development of high fidelity large eddy simulation
technology for computation of realistic flows of aeronautical interest. Several papers on
these and more fundamental studies of turbulence constitute the final group of papers in
this volume.

We are grateful to Dr. Donghyun You for his skillful editing of this report. Thanks
are due to Ms. Lan Tang and Tricia Armstrong for their help in the production of the
report. The CTR roster for 2006 is provided in the Appendix. This report is available on
the CTRs site on the world wide web (http://www.stanford.edu/group/ctr/).

Parviz Moin
Nagi N. Mansour
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Uncertainty quantification in simple
linear and non-linear problems

By T. Chantrasmit, P. Constantine, N. Etemadit,
G. Iaccarino AND Q. Wang

1. Motivation and objectives
Despite the considerable success of computer simulation technology in science and en-

gineering, it remains difficult to provide objective confidence measures of the numerical
predictions. This difficulty arises from the uncertainties associated with the inputs of any
computation attempting to model a physical system. Uncertainties are typically classified
as aleatory and epistemic. Aleatory uncertainty (also called variability) arises naturally
from randomness in the system, and is studied using probabilistic approaches. The de-
termination of material properties or operating conditions of a physical system typically
leads to aleatory uncertainties; additional experimental characterization of such quan-
tities might provide more conclusive evidence and characterization of their variability,
but in practical situations it is not possible reduce this type of uncertainty completely.
On the other hand, epistemic uncertainty is typically due to incomplete knowledge (or
ignorance). This can arise from assumptions introduced in the derivation of the mathe-
matical model or simplifications related to the correlation or dependence between physical
processes. It is possible to reduce the epistemic uncertainty by using, for example, a com-
bination of calibration, inference from experimental observations, and improvement of
the physical models.

In this report, we consider two test problems to explore various numerical techniques to
identify, propagate, and quantify uncertainties. The first problem involves transient heat
conduction (a problem governed by a linear PDE) and corresponds to a test problem pro-
posed by Sandia National Laboratory (Dowding et al. 2006). In this case, both aleatory
and epistemic uncertainties are considered. The second problem is related to transient
non-linear advection (Burgers' equation), and only variability in the initial conditions is
considered.

2. Uncertainty analysis for a linear problem: heat conduction
The design and analysis of complex engineering systems is challenging not only be-

cause of the physical processes involved but also as a result of the limited amount of
precise characterization of the overall conditions. This is in stark contrast to the as-
sumptions in a computational model that typically requires well-defined (deterministic)
inputs. For example, the material property of a certain component might be a function
of the manufacturing process and exhibit a strong random variability. In a validation
workshop organized by Sandia National Laboratory, three nominally simple problems
were proposed to identify procedures and techniques to determine confidence bounds on
the predictions. We describe the first of these problems in the following.

t Authors axe listed in alphabetical order.
I University of Illinois at Chicago
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Data set Samples k [117/mC] pC, x10-5[J/m3 C]

Low data 6 [0.0496:0.0796] [3.38:4.52]
Medium data 20 [0.0455:0.0796] [3.38:4.69]

High data 30 [0.0455:0.0811] [3.37:4.69]

TABLE 1. Measured material properties.

2.1. Description of the problem: the Sandia thermal challenge

Consider a I-D slab with a known heat flux applied at one end and an adiabatic boundary

condition at the other. The thermal conductivity (k) and specific heat coefficient (pCp)

of the slab material are known with a degree of variability; these are the only two sources

of aleatory uncertainty. The objective is to determine the probability that after a certain

amount of time (1000 seconds) the temperature in the slab is above a critical value

(T, = 9001C); this is referred to as the regulatory assessment. The source of epistemic

uncertainty is the choice of the numerical model to represent the physical system. Instead

of considering the PDE describing the 1-D heat conduction in the slab, the challenge is

built around an exact solution to the PDE, expressed as a series:

qL [(klpCp)t I X 1+ X)

T(x, t) = Tiit + + 2 [+ 2  - L+- 2 L

2qL 1 n2,2 c ( x) (2.nzr-- (2.1)
7r2k E -n - L o L

where T(x,t) is the temperature within the slab, Tinu the initial condition, L the slab

length and q the heat flux applied at one end of the slab (x = 0). Note that both q and L

are assumed known without uncertainty. Experimental data are provided for the material

properties as a collection of samples. In addition, measured temperature distributions

for five choices of q and L are given. These measurements are repeated few times and,

therefore, several temperature dataset are available for the same nominal conditions (q

and L), but without a reference to the material characterization experiments. In other

words, the material properties of the slab used for the temperature measurements are

unknown. Moreover, the conditions used in these experiments are different from the

conditions specified for the regulatory assessment, and therefore, a direct validation of

the predictions is not possible.

2.2. Characterization of the aleatory uncertainty

The first step of any uncertainty quantification (UQ) study is to characterize the sources

of variability. Thirty measured values are provided for k and pCp. The samples are

organized in three groups corresponding to low, medium, or high volume of data with the

first set including only 6 samples, the other two including 20 and 30 samples, respectively.

The objective is to identify the effect of a better characterization of the input parameters

on the confidence bounds for the predictions. Note that the last set includes the first, two

sets plus 10 new samples.

Initially we analyzed the three data sets to verify their consistency. Using the three

datasets sample, and assuming that k and pCp are random variables independent of
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Data set Samples k [W/mC] pC, x10-5[J/m 3C]

Low data 6 [0.0127:0.1073] [2.047:6.063]
Medium data 20 [0.0416:0.0833] [3.153:4.892]

High data 30 [0.0423:0.0822] [3.189:4.689]

TABLE 2. Material characterization for the thermal problem, assuming a Gaussian distribution
of the variables within the intervals reported in Table 1

everything else, we can compute the 99.5% confidence interval from a student-t distri-
bution. The obtained intervals are reported in Table 2. The addition of more samples
allows to reduce the variation interval for both quantities: the three sets of samples are
consistent.

2.3. Predicting confidence intervals using direct sampling

The next step is to determine the confidence intervals of the predicted temperature at
x = 0 and t - 1000sec from the formula (2.1). Noting that T decreases monotonicly
with respect to pCP, we can calculate the confidence interval by evaluating Eq. (2.1)
using the two ends of the 99.5% confidence interval of pCp, and sampling inside the
99.5% confidence interval of k. This produces a 99% confidence interval of temperature
T. The predictions obtained in this way are compared to the experimental measurements
for all the cases available. In Fig. 1 the results obtained for one of the configurations
(corresponding to L = 0.019m and q = 3000W/m 2) are reported. The experimental data
fall within the predicted bounds, and moreover, as we include more information, the
confidence interval tightens.

Applying the same procedure to the regulatory assessment conditions, we obtain the
predictions reported in Fig. 1. Repeating the predictions for the three sets of mate-
rial properties previously identified yields the following predicted values and confidence
bounds: 1306 ± 682, 906.0 ± 220, and 900.5 ± 217.5 respectively. Note that although the
confidence interval gets tighter as the material characterization data increase, the 99%
confidence interval is not entirely below 900C.

To identify the effect of the assumed stochastic distribution of the material properties,
we also considered the case of k and pCp uniformly distributed within the minimum and
maximum in the experimental samples (see Table 1. We evaluated Eq. (2.1) using the
same statistical sampling discussed earlier and obtained the results reported in Fig. 2.
The bounds are somewhat reduced in this case (due to the elimination of the tails in
the assumed distribution of the material properties), but still the system has a large
probability of achieving temperatures above the critical temperature indicated in the
Sandia challenge.

Therefore, we cannot safely conclude that the system satisfies the regulatory require-
ment. More material properties' measurements might be required to improve the char-
acterization of the distributions of k or pCp, or a different model must be developed to
identify the epistemic uncertainty. In the following section, we consider the heat con-
duction PDE and apply a probabilistic approach to propagate the distributions of the
material properties.
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2.4. Predicting probability bounds using a polynomial chaos approach

In this section, we illustrate the application of the polynomial chaos expansion (PCE) to

solve the present 1-D heat conduction problem. The PCE approach has its foundation

in the work of Wiener (1938), who represented a Gaussian process as an infinite series of

Hermite polynomials that take a vector of random variables as arguments. Ghanem and

Spanos (1991) used this representation to develop the stochastic finite element method.

Xiu and Karniadakis (2002) extended the theoretical framework to non-Gaussian process

by employing different polynomial basis functions. This generalized polynomial chaos ap-

proach was used to address the problem of heat transfer with random material properties

by Wan et al. 2004.
The PCE is a representation of a random variable, more generally a stochastic pro-

cess, with an infinite series of orthogonal polynomials that take a vector of independent

and identically distributed random variables as arguments. Denote the set of orthogonal

polynomials by {IP(I((w))}., i > 0, where (w) is a vector of i.i.d. random variables. Then

{4Ii((w())} have the following properties:

(Do) = 1, (4)i) = 0 for i > 0,( 4 j
4 )k) = 6jk for j. k > 0,

where (.) is the expectation and 6
2 k is the Kronecker delta. By the Cameron-Martin

theorem (1947), the PCE converges in the L2 sense. So, for example, if we represent

T = Zo (x,t)ci(x(W)), where {Ti(xt)} are the PCE coefficients, then

K N )2)T - ýTi -i((' -- 0

i=0

as N - oc. The L2 convergence of this expansion justifies an approximation of the

random quantities by a truncated finite series. For the example above, we approximate

P

i=o

where P is the order of the truncated PCE. The value of P is determined by the number

d of random dimensions - the length of ý(w) - and the highest degree n of polynomial

employed. In particular, we have the formula

(n + d)!
(P±I) - n!d!

In the heat conduction problem considered above, we assume that pCp(wm) is a uni-

formly distributed random variable over the interval [(pCp)a, (pCp)b] and let k(w 2 ) be a

uniformly distributed random variable over [k0 , kb] such that pCp and k are independent:

we use the arguments wm and w2 to emphasize that pCp and k are random quantities.

Then we consider the following differential equation:

T 2 k 2T
PC k x2 (2.2)

where kOT OT

k OT 0 =o = q1 k---a 1=L = 0, T(x, 0) = Ti,,t.

over the domain x E [0, L]. t E [0, tf], where T is in general a function of time, space,

and the two random variables ,)I and W2.
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By choosing a uniform distribution to model k and pCp, we ensure that their support
is bounded. If we had chosen some other distribution, say Gaussian, that has support
in the negative real line, then we risk attempting to solve the backward heat equation.,
which is unstable.

Given (2.2), the objective is to compute the mean and variance of T, both of which are
functions of x and t using the PCE approach. Since pCp and k are both uniform random
variables, we can achieve exponential convergence of the PCE coefficients of T by choosing
{ F (I (1•1 ), ý2 (w 2 )) } to be the 2-D Legendre polynomials with each ýi, i = 1, 2 distributed
uniformly over the interval [-1, 1], as described in Xiu and Karniadakis (2002). For
reference, the first few 2-D Legendre polynomials are given by

'DO = 1

ti= ý1 (WO

'D2 = 62(42) (2.3)
1 )

4'3 = -(3ýi(W)2 - 1)
2

q)4= (W1 )ý2("2)
)5 = 2(36 (W2)2 - 1).

2
Equipped with these basis polynomials, we now represent

Ppep E (,OpCi i (ý1 (Pl), ý2 (W2)),
i=0

P
k¢ " k]i(li (ýl (w31), 2 (U;2)),

i=0
PT 1: Tt T (ý1(U;1 ), ý (U-2)).

i=0

In general, since the distributions of pCp and k are known, we can compute their PCE
coefficients by taking advantage of the orthogonality of {'i I}. In particular, we have the
following formulas:

(p P)? ___ (k'4)i

In this simple case, however, we note that the PCEs of pCp and k are simply scalings of
their respective ranges, i.e.,

Pb+Pa + Pb__Pa 1 ()' k = kb + k, kb - k. , P
2 2 2 2

Then the PCE coeffcients are

Pb + Pa Pb - P-- a PP0- P- P2=0 , p•=0, > 2

2 2

and
kb -+ ka kb - k.ko - , ki = O, k2 ki = 0. i >2.2 2

When we substitute the PCE representations into the differential equation, the problem
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becomes P aTi (x it)

[(pCp)o + (pCP)lýi(wl)] at O bi(ý(1 1) , ý2(12) =

i=O

P a2T,(X~t)
(ko + k 2 2 (w)2 )))) (2.4)

i=O

with boundary and initial conditions prescribed as:

PkOT=
(kO -+-k2•2(•2))Z Xx=--O(Ii(1l (U)1)! 2(w02)) = q (2.5)

i=O

P
(k 2X0) I x=L'Di (ýl (P I1), i2 (W2)) = 0 (2.6)

i=0

P

Z T?(x, 0)4(Ti(wl (1), ý2(12)) = Tiit. (2.7)

i=O

To solve this set of equations for the coefficients T (x, t), we multiply each equation by
4 )k for k = 0,.... P and take the expectation of both sides. Then, by the orthogonality

of {CZj}, we're left with a system of linear differential equations for the PCE coefficients.

By using second-order central differencing in space and the Crank-Nicholson scheme in

time, we obtain a linear system to be solved at each time step. Once we have computed

these coefficients, we can compute the expectation and variance of T at each grid point,

j and time instant n with the following formulas:
P

Tj =(T) = (TO)n. T(n) ((T - (T)) 2) , ,,
i=1

To address the Sandia thermal challenge, we choose the material property intervals

obtained from the high volume dataset, reported in Table 1. We then represent T with a

truncated PCE in two random dimensions with second-degree orthogonal polynomials,

so P = (2 + 2)!/2!2! = 6. We discretize the spatial domain with N = 33 grid points: the

size of the linear system to be solved at each time step is then (N x p) 2 = 1982. There

is no time-step restriction using the Crank-Nicolson scheme, so we choose At = 1OAx.

Although the present approach has been compared to all the experimental data pro-

vided, we only illustrate the results obtained for the configuration reported earlier, cor-

responding to L = 0.019m and q = 3000W/rn 2 . As previously mentioned, there are

two measured values of T at x = 0, L/2, and L, and t a multiple of 50 from 0 up to

1,000 seconds. We compare the results of the simulation at time 1000 seconds with the

experimental data in Fig. 3.

The results show that the predicted results envelop the measured data, providing

confidence that the material property variability is well characterized in these simulations.

The application of the same numerical approach to the regulatory assessment is also

illustrated in Fig. 3.

Once we have the PCE coefficients at x = 0 and t = 1000, we can generate samples from

a uniform distribution over [-1, 1] and evaluate the PCE representation of T(0, 1000).

The percentage of those realizations that are above T,, is approximately:

P(T(0, 1000) > Tc) • 0.2145
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If we follow this approach, we conclude that the device does not meet the regulatory

requirement described by the Sandia challenge problem. How confident are we in this

assessment? There are, of course, the numerical errors resulting from the spatial and

temporal discretization. The PCE representations of pC, and k are exact, but error asso-

ciated with the truncation of the PCE of T is still an area of open research. We compared

the PCE solution with a simple Monte Carlo simulation that generated realizations of

pCp and k, and solved the resulting deterministic problem. We found that the PCE so-

lution was sufficiently close to the Monte Carlo simulation to conclude that the two had

converged. Currently this is the only available method for evaluating the accuracy of the

truncated PCE.
None of these relatively small errors undermines our confidence in the assessment. The

more troubling assumptions are the ones we used to model the uncertain parameters.

Supposing that pCp and k are uniformly distributed, how do we know that they are

actually distributed over the minimum and maximum of their measured values? Their

respective ranges could be much larger, and this could affect the final computed prob-

ability. For example, running the simulation with a 20% increase in upper bound for k

results in P(T(0., 1000) > TJ) ; 0.1480, a significant decrease from the result above.

In addition, the assumption that k is constant and independent of everything else

might be incorrect. A more careful analysis of the conductivity data provided in the

Sandia challenge problem is presented in Fig. 4 , where the samples are organized as a

function of the experimental temperature. With linear regression, we find that there is

likely a linear relationship between temperature and conductivity, i.e., k(u) = a + 3T.

This is not a surprising physical behavior for many materials. Future work on this problem

might involve modeling k as a linear function of T with random slope and/or intercept.

This improved assumption should decrease P(T(0, 1000) > Tcriticai), but the resulting
non-linear equation is much more complicated.



Uncertainty quantification 13

3. Uncertainty propagation for a non linear problem: Burgers' equation

Uncertainty analysis in non-linear problems introduces additional complications. In
this section, we apply the polynomial chaos approach introduced earlier to a simple non-
linear Burgers' equation. We also introduce a hybrid approach based on the combination
of deterministic modeling and stochastic sampling.

3.1. Description of the problem
We study the classical problem of non-linear advection in one dimension. The problem
is governed by the Burgers equation:

O+0< 1. (3.1)
2x

We will assume that the uncertainty is only related to the initial conditions, and in
particular, consists of random perturbation of a sinusoidal wave, i.e.,

u(x, 0) = sin(27rx) + ao, (3.2)
where ý is a standard Gaussian random variable and o is the magnitude of perturbation.
The simplicity of this problem allows us to find an exact solution for the evolution of
the mean and the variance of the solution. In the next section, the polynomial chaos
framework is discussed, followed by a hybrid method.

3.2. Polynomial chaos approach
As previously illustrated, within the polynomial chaos framework we represent the solu-
tion of the Burgers' equation as

OC

u(x, t) = Zui(x, t)Ii(.), (3.3)
i=0

where 4bi is the ith-order Hermite polynomial (as mentioned earlier, this choice is moti-
vated by the distribution of the random variable)

=0() = 1 (3.4)

)( ) -- 2 (3.5)

,D.n+() = 2ý4n(D ) - 2n in- (). (3.6)

As before, we truncate the infinite series (3.3) to order P. Inserting the truncated poly-
nomial chaos expansion into the Burgers equation results in

P P P (uiuj)-(,- 4 + i (ý +0x OD = 0. (3.7)
i=O i=O j=O

Applying Galerkin projection in the probability space yields:

allk P P uij
+- Z ,C k 0--0 0_<k_<P, (3.8)

i=0 j=0

where Ciik =
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FIGURE 5. Evolution of the computed error bars at various times: t=0.1, 0.2. 0.3, 0.4. Note
that the exact solution is also reported in the plots.

Equation (3.8) is again a system of partial differential equations that we can solve

numerically. In order to ensure stability of the numerical scheme, the time step must be

much smaller than the restriction imposed by the CFL number in the deterministic ana-

logue. The details are not discussed in this report. After we obtain a numerical solution

for ui (x, t), i = 0,..., P, we can reconstruct the stochastic solution of (3.1) and its mean

and variance. The standard deviation of the solution is given by the formula

1/2

A 99.7% confidence interval can therefore be constructed as

u(x, t) = uo(x, t) ± 3ur(x, t). (3.10)

Figure 5 illustrates the confidence interval we constructed using second-order polynomial

chaos (P = 2) and compared to the exact bounds. It is also interesting to note the PCE

coefficients corresponding to the computed solution during the time evolution (Fig. 6).

The comparison with the available exact solution (Fig. 5) shows that the second order

polynomial chaos method captures the uncertainty in the location of the shock wave very
well.

3.3. A deterministic/stochastic hybrid approach

In this section, we report our initial efforts in developing a different approach for un-

certainty propagation. As previously mentioned, the uncertainty is introduced into the
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FIGURE 6. Coefficients of polynomial expansion at various instants during the time evolution.
t = 0.1, 0.2, 0.3, 0.4

initial condition u0 = Uo (X,t = 0, w), where w E Q is the sample space. Thus u is a
function of x, t, and w, and the objective is to compute the statistics of u. In particular,
we desire the mean i! and the variance ft, defined as

u =- (u) = udP(w), ft -- var(u) = 1 f• (U- _ )2 dp(,). (3.11)

Note that other definitions of the mean are possible. If we decompose the unknown u
into the mean part and fluctuation part: u = ft + u', plug in into (3. 1), and integrate over
the sample space, we obtain an evolution equation for the mean. Higher-order equations
can also be generated by multiplying (3.1) with (u')' and integrating. Below are the
equations for the mean and the variance.

a u -U ix -u au , ) , (3 .1 2 )

0-t + fTX+ -f _ E ýXd~ ) (3.13)

Note that these equations describe the evolution of the statistics of the solutions.
The terms on the right-hand side are not known (unclosed) and must be modeled or
approximated. Thicis similar in many ways to the process of deriving the Reynolds-
Averaged Navier-Stokes equations.
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In a Monte Carlo approach, one would solve the PDE (3.1) many times with different

initial conditions and average over the realizations. In the present hybrid approach, we

use Monte Carlo (or other approaches) to approximate the unclosed terms in (3.12) and

(3.13), then solve these equations in a deterministic sense.
We proved that, if we simply use Monte Carlo sampling to approximate the unclosed

terms, then solve (3.12) and (3.13), the result is identical to using the samples directly

to obtain the mean. This conclusion applies even when the process is not converged,

namely if we use only a limited number of sample, provided we use the same samples

in both methods. However, the former method allows us to incorporate a model for the

unclosed terms. For instance, we could attempt to model the unclosed term in (3.12) as

a diffusion process. One possible model could be written as 13tora 22,i/rx2 , where a is the

standard deviation in the initial condition and j3 is a constant that can be approximated

by sampling. Current research is focused on an efficient way to obtain 13. We have also

investigated the use of bootstrap or a reduced order model (ROM). Only the latter is

briefly described here. The idea is to perform Monte Carlo sampling on coarser grids (the

simplest ROM in the present problem) and to construct the approximate unclosed terms.

To improve the sampling quality we also considered a few realizations obtained directly on

the fine grid. For example, for the Burgers equation problem described earlier, about 1000

realizations are needed to obtain converged statistics using the Monte Carlo approach.

In the two-grid method, we can achieve the same accuracy with 1000 realizations on the

coarse grid (half the grid points) and 100 realizations on fine grid; the overall reduction

of the computational cost is approximately 40%. The benefit will be obviously more

significant in higher dimensions.
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Strain and stress analysis of uncertain engineering
systems

By D. Ghosh, C. Farhat AND P. Avery

1. Motivation and objectives

Structural properties of any material show variability among different samples of the
material resulting from natural variability in microstructure and from the manufacturing
process. The manufacturing process also causes variability in the geometric properties
of the components made from these materials. These variabilities induce uncertainty in
the predicted response of a physical system. Additional factors such as uncertainty in
external loading, and in some cases insufficient details about the underlying physics such
as behavior of the joints contribute to magnify the uncertainty in this predicted response.
These uncertainties can be modeled and their effects can be analyzed using a probability
theory based framework.

Among the response quantities, the strains and stresses are often of the greatest interest
in an engineering problem. However, the current literature on probabilistic engineering
mechanics focuses on the issue of finding the displacement field; the issue of finding the
strains and stresses is not sufficiently addressed. This paper addresses the computational
issues related to strain and stress computation. Here the problem of uncertainty analysis
is posed in a stochastic finite elements framework.

Among the probabilistic methods of uncertainty analysis, Stochastic Finite Element
Methods (SFEM) (Ghanem & Spanos 2003) have gained considerable attention recently.
The major advantages of these methods are their ability to handle stochastic processes,
encapsulated representation of random quantities, and lower computational cost.

Let (Q, F, P) denote a probability space, where Q is the set of the outcomes 0 of
physical experiments, F is a u-algebra in Q, and P is a probability measure on F. Let
X denote the physical domain of the system. Consider

L(u) = f , (1.1)
where £ = £(0) and f = f(0). Randomness in the parameters of the underlying physical
system induces randomness in L and f. Some of these random parameters can be modeled
as random variables {1i(0)})=' and some as random processes t,(x., 0), where x E X. For
example, a spring stiffness can be modeled as a random variable, whereas the thickness of
"a plate can be modeled as a random field. The processes n(x, 0) can be discretized using
"a random basis set {m(0)}i=r+ 1 in L 2 (Q,F, P), where the coefficients of the random
variables i turn out to be functions of the parameter x. For example, if the
covariance function C(x1 , x 2) of the process K(x, 0) is known then the process can be
discretized using the Karhunen-Lo~ve expansion (Ghanem & Spanos 2003) as

Oc

r(X, 0) = T ~ '(x)q(9), (1.2)
i=O

where Ai are the eigenvalues of the covariance kernel C (Xi 1-X 2 ), arranged in descending
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order, (p() are the corresponding eigenvectors, and qi(O) are zero-mean and orthonormal

random variables. For computational convenience this series is truncated after the first

few terms. The set of all random variables {r1i(0)} =1 completely characterizes the uncer-

tainty in the underlying system. These random variables are characterized by their joint

probability measure, if this measure is not Gaussian, these variables can be transformed

into a nonlinear functional of an independent Gaussian vector {ihanem &

Doostan 2006, Das et al. 2006); the integer m is often referred as stochastic dimension

of the problem (Ghanem & Spanos 2003, Debusschere et al. 05). This new set of inde-

pendent standard random variables will be denoted by an m-dimensional vector ý. Thus,

C(0) and f(O) can now also be denoted by C(ý) and f(ý). The solution u is also a function

of ý, yielding the notation u(ý), or more specifically u(x, ý). The formulation presented

in this paper is valid for ý being non-Gaussian as well, and thus it is equally applicable

to a variety of expansions (Xiu & Karniadakis 2003, LeMaitre et al. 2004).

Once C(L) and f(ý) are constructed, the solution u(x, ý) is next represented in poly-

nomial chaos expansion (PCE) (Ghanem & Spanos 2003), where a square-integrable

random process is expressed as

00
u(X, C)= u(i) (X)i(c) (1.3)

i=O

where vi (ý) are the Hermite polynomials, and u(') (x) are deterministic coefficients called

as chaos coefficients. For computational purposes, the series is truncated after a finite

number of terms, yielding

P-1

u(x,E) = E )(x)4i(V ) " (1.4)
i=0

The index P is determined by the stochastic dimension and the highest order of polyno-

mial chaos to be retained in the expansion. For example, in a second-order expansion in

two stochastic dimension P 6 and the polynomials W/((i, •2) are (Ghanem & Spanos

2003)

3(•1, 12) = - 41, 1(ý, W2) = -2, '5(ý1, 2) = 2 1

The chaos coefficients u(t)(x) can be computed by minimizing either the error in the

solution or the residual in the equation (Ghanem & Spanos 2003). In both cases, a

Galerkin approach is used to find the optimal solution. The second method, when applied

to a linear statics problem of the form

K() = f() , K(s) E lR'<', R u(), f(ý) E 1Ri , (1.5)

where

L-1 M-1 P-1

K(•) - E K(')(•) , f(•) = P () ) , u() =E u(i)w)

i=O i=o i=0

P > L,M, K( ) E R', f('),u(') E R" , (1.6)
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yields a system of linear deterministic equations of the form

Ku=f, KeRfnP nP u, f E RnP (1.7)

where

L1- L-1

i=0 i=0 i=O
L--1 L--1 L--1

K= K() K(KoVi .. (
i=O i=O i=0

L-1 L-1 L-1

E K(') (?iV)o0oP-1) E K(.)( ilP-1) .." E K(2)(Viipivp,- )

i=0 i=0 i=O (1.8)

u f = (2)f( M _) , (1.9)

u(P--1)

0

and (.) denotes the mathematical expectation operator:

(g( W) = . g(ý)p(ý)dý 1.0
S(1.10)

where g(ý) is any function of the m-dimensional random vector ý and p(E) is the joint
probability density function (PDF) of ý. To solve (1.7) efficiently, the sparsity of matrix
K can be exploited and iterative solvers can be employed, as described in Section 4.
Once the coefficients u(') are estimated, any statistical moment and the PDF of u(x, ý)
can be computed using (1.4). For example, the mean (the first moment) and standard
deviation (square root of the second moment about the mean) are

(u(x,•)) - u(°)(x) (1.11)

and

P-1

stdev (u(x, )) = E u(i)2(x) (42(•)) , (1.12)

respectively.
However, in a real engineering problem the displacement field is of very little interest;

the strains and stresses are considered to be more important. It will be shown here that
often computation of the statistical moments of strains and stresses is not as simple as
that of the displacement field. This is because an orthogonal expansion such as PCE is
not easily obtainable for such strains and stresses (explained in details in the following
section). Von Mises stress by any numerical method using 50,000 grid points takes about
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45 minutes, which is significant. There may be additional quantities of interest such

as strains, which will require additional computational time. Moreover, as previously

mentioned, these numerical techniques will bring additional overhead of computational

and programming complexity.
These issues are not addressed at length in the current literature, the goal of this paper

is to discuss these issues and to find a set of feasible solutions. Cases where numerical

integration must be used are identified, and a few integration techniques are considered.

These techniques are further studied for their computational cost and complexity in

implementation.
The stress tensor components aij can be derived from the strain tensor components Fij

using the constitutive relationship. For the isotropic materials these stress components

are

E
- I {(1 - V)Eii + Vjj + VEkk} i # j # k , (1.13)a =(1 - 2v)(1 + v)

and
E

'ij 2(1 + )J i # j (1.14)

where E denotes the Young's modulus and v denotes the Poisson's ratio. The Von Mises

stress can be computed as

= - 312 (1.15)

where

Ii = Oi + 0jj + akk and 12 = 'iiajj + Ojjakk + Ukkrii - Ti - 7ýk -2 2 i (1.16)

Evaluation of the mean and standard deviation of these stress and strain quantities

will be considered next. In a nondeterministic case the displacement field in three spatial

directions can be represented in a form similar to (1.4) as

P-1

ui(x, ) = E iuP)(x)WP(ý) ij = 1.2,3. (1.17)
p=0

The strain tensor components are derived from the displacement field as

aui (9Ui Uj

and Fij = + +-x for i:Y; i,j=1.2,3. (1.18)
ax& xj 9xi

For an uncertain system, using (1.17) and (1.18), the representation of the strain

components become

P-17 = () ,P (1.19)
p=O

For brevity, the arguments x and • are dropped hereafter. The principal strains 6Pr.i (i =

1, 2, 3) are eigenvalues of the matrix E, thus they are highly nonlinear functions of the

strain components Eij. Thus mean and standard deviations of the principal strains cannot,

be easily computed using orthogonality among the polynomials; a numerical technique

is needed for this. The same is true for the Von Mises strains.
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A numerical integration technique is therefore is needed for computing the statistical
moments of the terms that cannot be evaluated using the orthogonality property of chaos
polynomials. A few techniques are considered and compared here for their computational
efficiency and algorithmic complexity. These are (i) Monte Carlo simulation, (ii) Latin
hypercube sampling, (iii) Gaussian quadrature on the standard tensor product grid, and
(iv) Smolyak cubature. These methods are presented below.

2. Numerical integration

The integral of the following form will be considered here:

I= J g(s)p(s)ds , (2.1)

where 2 E RIk is the domain of integration, g(s) is the integrand, and p(s) is the weighing
function. For example, in a probabilistic context, if p(s) is a joint probability density
function of a random vector s then the above integral yields the statistical moment of
the function g(s). In our case k = m and s - •. A numerical integration rule to evaluate
this integral typically looks like

N

i = ~wg(si) (2.2)

where si are the points where the function g(s) is evaluated according to the integra-
tion scheme and wi are the corresponding weights. In this paper the terms quadrature
points and nodal points will be used synonymously. In the probabilistic methods of inte-
gration these points are often referred as realizations of the random variable s and N is
called sample size. Evaluation of multi-dimensional integrals deserves special attention to
manage the increasing computational cost with dimension. Numerical integration can be
categorized into two different classes, probabilistic methods (Evans & Swartz 2000, Liu
2001) and deterministic methods (Abramowitz & Stegun 1984, Stroud & Secresr 1966).
Here two probabilistic methods, Monte Carlo simulation and Latin hypercube sampling,
and two deterministic methods, Gaussian quadrature with standard tensor product and
Smolyak cubature are considered.

2.1. Monte Carlo (MC) simulation

In this method the quadrature points si are generated using a random number generator
such that their probability density function becomes p(s). The weights wi are 1/N (Evans
&- Swartz 2000, Liu 2001). The procedure is explained with a specific example: comput-
ing the statistical moments of the Von Mises stress. To do this, at first realizations of
random numbers ý are generated. Each of these realizations corresponds to a realization
of the random system model. Then for each realization, the following steps are followed.
First, using (1.19), realization of the strain tensor components is computed, simultane-
ously realization of the material properties such as E, v is computed, which yields the
corresponding realization of the constitutive matrix. From the strain tensor components
and constitutive matrix, realization of the stress tensor components is computed. Then
the corresponding realization of Von Mises stress is computed using (1.15) and (1.16).
Finally, over numerous realizations the statistical moments of the Von Mises stress are
computed. The main advantage of this method is its straightforward implementation.
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However, this method needs a large number of realizations to obtain a good estimate of

the statistical moments; thus it is computation intensive.

2.2. Latin hypercube sampling

Latin hypercube sampling (LHS) (Mckay et al. 1979) is a method of selecting the integra-

tion points to achieve faster convergence than the standard Monte Carlo method. This is

a variance reduction technique (pp 391 of Davis & Rabinowitz 1984, pp 183 of Evans &

Swartz 2000). As a result, for any fixed error level LHS requires a smaller sample size than

MC to estimate the integral. The computational procedure of the integral evaluation is

exactly the same as the Monte Carlo simulation, only the sampling points (that is, the

realizations of random numbers ý) are different. Usage of LHS in SFEM applications has

also been addressed in (Choi et al. 2004, Olsson & Sandberg 2002, Ghiocel & Ghanem

2002),

2.3. Gaussian quadrature on standard tensor product grid

This is a deterministic quadrature rule (Abramowitz & Stegun 1984, Stroud & Secresr

1966) that has also been used in SFEM (Field 2002). For an integration of form (2.1) this

method can evaluate the integral exactly if g(s) is a polynomial. In our case, the p(s)

is the distribution of a Gaussian random vector. Gaussian quadrature with Gaussian

distribution as weighing function is also known as Gauss-Hermite quadrature. In one

dimension, an N-point quadrature rule can exactly evaluate the integral of a polynomial

of order up to (2N - 1). For a given quadrature rule in one dimension, its extension to

a multidimensional case is as follows.
Let an mi point numerical integration rule for a function g of one variable S' be

M i

UP(g) = Eag(si), (2.3)

j=1

where sj are quadrature points, and aj are weights. This integration rule can then be

extended to a d-dimensional integration using the Kronecker product as

M'ji 77" d

(U1 S .... 0Ud)(g) = 3 (ay 0... ®ag (2.4)
ji=l jd=l

where Mil., mid are the number of quadrature points used for defining integration

rule in variables sil ,... I Sd, respectively. Thus, computation of the above integral needs

(min ... mid) function evaluations. For example, if an m-point integration rule is used in

each dimension in a d-dimensional space, then evaluation of a d-dimensional integral in

this space needs md function evaluations. The computational burden therefore increases

significantly with dimension d. This is often referred as the curse of dimensionality.

2.4. Smolyak cubature

In order to avoid the so-called curse of dimensionality. another approach of numerical

integration, Smolyak cubature (Smolyak 1963), is widely used. Here, instead of using the

full tensor product grid a recursive contribution of lower-order tensor products is used

to estimate the integral, stated as

iq (-d)q-< (d-_1 (Ul Uid)((
,d=q-d+1<4< (q-jl)_q 25
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i={il,....,id}, liI=il+...++id

Here iq,d is the cubature rule, q _! d is a parameter to be selected, i is a d-dimensional
index set, Uik are 1-dimensional quadrature rules as in (2.3), and mi, 5 mik for ij : ik.
Instead of considering Uik (g) as the integration rule in any particular variable s81, it
can be viewed as a quadrature rule for any dimension. In fact, a closer examination of
(2.5) reveals that the one-dimensional quadrature rules are permuted in all dimensions.
These 1-dimensional quadrature rules can be selected as Gaussian quadrature rules, with
ri, = 1, mi 2 = 2, .... Computational cost saving in Smolyak cubature compared to the
standard tensor product integration rule increases as d, the dimension of the problem
grows. It is proved in (Heiss & Winschel 2006) that if every univariate quadrature rule U'
as in (2.3) in the sequence {U', i = i 1 i2 .... } can integrate any univariate polynomial
of order up to (2mi - 1) exactly, then the Smolyak quadrature (2.5) yields the exact
integral of a d-variate polynomial of total order up to (2M - 1), where

M = max mik . (2.6)
il -<ik <_id

3. Numerical integration of a polynomial integration: dimension reduction

When the integrand admits a polynomial form and the order of the polynomial is less
than the dimension or the number of independent variables involved, then the integration
cost can be reduced significantly by using a reduced dimensional integration, described
here. Let us define the term effective dimension of a function to refer to the maximum
number of independent random variables ýj present in the function: for example, the
effective dimension of ý54•s is 2, since it involves two independent random variables:
ý5 and ýs. Let a random quantity be expressed as an expansion of polynomials of d-
dimensional orthonormal random variables, and the highest order of the polynomial in
the expansion be p. If p < d then the highest effective dimension of any term in the
expansion is p, and not d. Obviously a p-dimensional integration rule is computationally
more efficient than a d-dimensional rule. If a d-dimensional integration rule is used to
evaluate such function, it only contributes to increase the computational cost, without
affecting the result. Thus in this situation a p-dimensional integration rule is sufficient
and computationally more efficient. In this paper such reduced dimensional integration
will be referred as Integration in Reduced Dimension (IRD). For general cases where
IRD is not used, and instead a full dimensional integration is carried out which will be
referred to as Integration in Full Dimension (IFD).

4. Numerical study

Two numerical studies are conducted and presented here. In the first study numeri-
cal integration of a polynomial expansion is considered. Three deterministic integration
techniques are compared regarding the computational cost to integrate a fourth order
polynomial expansion. These techniques are: (i) Gaussian quadrature with standard ten-
sor product grid in full dimension (IFD), (ii) Gaussian quadrature with standard tensor
product grid in reduced dimension (IRD), and (iii) Smolyak cubature. In the second nu-
merical study a plate model with random material properties is considered and the first
two statistical moments of a few strain and stress quantities of this model are computed
using some of the methods described previously. Computational issues such as speed and
complexity in implementation are discussed.
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FIGURE 1. Number of quadrature points needed in different deterministic integration schemes:
fourth degree polynomial expansion

4.1. Example 1

Throughout this paper the Gauss-Hermite quadrature is used as the basic univariate

integration rule for the deterministic integration techniques, that is, as U'(g) in (2.3) and

as 0il(g) in (2.5). For a fourth order polynomial expansion, the number of quadrature

points needed by three exact (and deterministic) methods, IFD with Kronecker product,

IRD with Kronecker product, and Smolyak cubature are plotted in Fig. 1. From this plot

it is noted that IRD with Kronecker product yields a significant improvement over IFD

with Kronecker product, especially as the dimension increases. The Smolyak cubature

is found to be the most computational efficient among the three methods. It is further

noted that for lower dimensional integration, the number of quadrature points needed

by Smolyak cubature exceeds the number of points needed by IFD with direct tensor

product . It is experienced that in terms of complexity in implementation, the sequence

is reverse. That is Smolyak is the most complex and IFD with Kronecker product, is the

simplest. The complexity of Smolyak algorithm arises primarily from the need of some

recursive functions to generate the grid points.

4.2. Example 2

In the second study a square plate model is used to compare numerical integration

schemes to compute the statistical moments of stresses and strains. The dimensions of

the plate are 2.3m x 2.3m x 5mm. The plate is built using 20 metal strips joined side

by side along the edges, and the dimensions of each strip are 2.3m x 0.115m x 5mm, as

shown in Fig. 2. Young's modulus of the strips are assumed to be random, modeled as
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Ei = E, + stdevEi ýi i = 1... 20 , (4.1)
thus L = 20 in (1.6). Here E!i and stdevE, are the mean and standard deviation of the
Young's modulus of the material in strip i, and ýi are independent standard normal
random variables. The plate is fixed along its four edges. A finite element model with
400 square elements is used. Out of the twenty different materials, ten are chosen to be of
mean Young's modulus 2.OMPa and ten of mean 2.1MPa; standard deviations for all the
materials are 20% of the respective mean values. Density of the plate material is assumed
to be 7860Kg/m', the same as steel. In addition to the self-weight, the plate is loaded by
three concentrated forces in its center, 400KN, 300KN, and -2KN in directions x, y,
and z, respectively. Displacement is represented using second-order chaos expansion as
in (1.4) with P = 231. The chaos coefficients are computed by solving (1.7). To solve the
system of deterministic equations a preconditioned conjugate gradient method is used
with Block-Jacobi preconditioner. The matrix-vector (mat-vec) product computation is
optimized by performing them in the block level (Pellissetti & Ghanem 2000). After
estimating the chaos coefficients u(') of the displacement field, standard deviation of the
Von Mises stress are computed by Smolyak cubature and plotted in Fig. 3. Techniques
for computing the chaos polynomials at a given grid point can be found in (Ghanem
& Spanos 2003, Debusschere et al. 05). Next using MC simulation, LHS, and Smolyak
cubature &vm and stdev(avm) are computed. Values of these quantities at an arbitrary
chosen node (node 45) are plotted in Figs. 4 - 5 against the number of quadrature
points used. In this paper the random numbers are generated using Matlab. Usually
the computer-generated random numbers do not satisfy the orthonormal properties for
a finite sample size. Thus the generated random numbers are orthonormalized using a
transformation (Ang & Tang 1984), and the new numbers are used for MC- and LHS-
related computation. From (1.15), it is clear that the C72M is a sixth order polynomial
expansion. Following the discussion in Section 2.4, the cubature rule needs M = 4 for
the exact evaluation of < oaM >, where M is defined in (2.6). For d = 20, it is found
that the numbers of quadrature points in Smolyak cubature are 861, 12341, and 135751
for M = 2, 3, and 4, respectively.

The resullts of our study led to the following observations. Although it is previously
shown that for Smolyak cubature M = 4 or 135751 quadrature points are needed to
exactly evaluate < o2M >, it is observed from the plots that M = 3 or 12341 quadrature
points suffice. Although not plotted here, this trend was observed for most other FE
nodes as well. There were only a few nodes for which changing M from 3 to 4 changed
the estimate of the integral to some extent. Thus, for most of the nodes, contribution
from the higher-order terms in the expansion of < > is very small. It is also observed

that in general all the three methods MC, LHS and Smolyak cubature provided a fair
level of approximation of the statistical moments.

Transformation of the machine-generated random numbers helped improving the con-
vergence of MC and LHS. No significant difference is noticed between the performance
of MC and LHS. One possible reason is that the integrands are not monotonic functions
of the arguments, thus variance reduction in LHS is not guaranteed (Mckay et al. 1979).

5. Conclusions

Stochastic dimension of the system, that is, the number of basic random variables
involved in uncertainty modeling, is an important factor in selecting an integration al-
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FIGURE 2. The plate model

gorithm. If the dimension is very low (say less than four or five) then computational

cost is not very high for any of the methods. In that case even Gaussian quadrature

with full tensor product rule can be used to achieve good accuracy as well as to en-

joy lower algorithmic complexity. As the dimension increases, the computational cost of

this method becomes prohibitive, and more advanced techniques such as Monte Carlo

sampling, Latin hypercube sampling, or Smolyak cubature should be used. It is observed

from the numerical experiments that all of these three methods work satisfactorily. In the

simulation-based methods, the error is random, thus there is a probability of the error

being higher than tolerance. This probability decreases as more number of realizations

or quadrature points are included.
Thus according to the increasing computational cost, the deterministic methods can be

arranged as Smolyak cubature, Integration in Reduced Dimension, Integration in Full Di-

mension (IFD) in Kronecker tensor product grid. According to the increasing complexity

in implementation, the sequence becomes Integration in Full Dimension with Kronecker

tensor product, Integration in Reduced Dimension, Smolyak cubature. Implementation

of Monte Carlo and Latin hypercube sampling are as easy as Integration in Full Dimen-

sion with Kronecker tensor product grid, excluding the additional complexity to generate

the random numbers needed for these methods. The choice of a particular integration

scheme depends upon complexity level that can be afforded, availability of subroutine,
and level of accuracy needed.

6. Future plans

According to the current literature SFEM has been applied to a variety of problems.

However, most of these applications are on fairly small-scale problems. Thus, with the

vision of analyzing and quantifying uncertainty of real-life problems currently we are

working on applying domain decomposition techniques to solve SFEM-related problems
in large-scale systems.
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FIGURE 3. Standard deviation of Von Mises stress (stdev(am)) computed by IFD, used
Smolyak cubature with M = 4
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Separated flow in a three-dimensional diffuser:
preliminary validation

By E. M. Cherry, G. laccarino, C. J. Elkdns AND J. K. Eaton

1. Motivation and objectives
In gas turbine engines, the final stage of air compression occurs within the annular

diffuser just upstream of the combustor. This component must satisfy conflicting goals of
recovering kinetic energy exiting the compressor while supplying reasonably uniform flow
and consistent mass splits into the various sections of the combustor. The key challenge
in designing the diffuser is to make it as short as possible while avoiding any possibility
of massive flow separation. Pressure losses due to the separated flow reduce engine per-
formance while unsteadiness and recirculating flow associated with separation can cause
catastrophic engine failure. An optimal design probably operates very near separation for
some part of the engine's operating envelope. Accurate design analysis tools are needed
to find the optimum and to avoid unexpected failures during prototype testing.

Previous experimental investigations (Obi et al. 1993; Buice & Eaton 2000) considered
a planar geometry and provided a large amount of measurements both in terms of mean
velocity and turbulent quantities. In order to guarantee the two-dimensionality of the
flow, a very high aspect ratio duct was considered. Durbin (1995) and laccarino (2001)
performed Reynolds-Averaged Navier-Stokes (RANS) simulations of the diffuser and con-
cluded that good overall agreement with the experiments was obtained using the V2F
turbulence model; discrepancies were observed in the recovery region (after the flow reat-
tachment). Additional numerical studies carried out using Large-Eddy Simulations (LES)
were conducted by Kalthenbach et al. (1999) and later by Wu et al. (2006); the agreement
was again satisfactory although in the region downstream of the separation proved to
be the most difficult to reproduce numerically. It was hypothesized that the flow in this
region is characterized by long-time unsteadiness and potential flow three-dimensionality.
The difficulty in exactly defining the flow conditions in the direction perpendicular to
the diffuser plane might prevent reproduction of the experimental configuration in the
simulations.

The objective of the present work is to complement the above mentioned study by per-
forming experiments and simulations of a truly 3-D diffuser with simple and well-specified
boundary conditions. The experimental setup is designed to provide a challenging test
case for numerical models: it involves a well-defined 3-D recirculation region, and a con-
siderable amount of data are collected at realistic Reynolds numbers. In addition, the
effect of a small change in the expansion ratio is used to evaluate the ability of the
numerical methods to predict trends and sensitivity to the geometry. Current measure-
ments are obtained using Magnetic Resonance Velocimetry (MRV) (Elkins et al. 2003).
Simulations are based on a novel unstructured-grid method developed for high-fidelity
LES (Mahesh et al. 2004; Ham & laccarino 2004). Predictions using RANS turbulence
models are also considered to identify the limitations of conventional turbulence models.

An additional objective of this work is to develop a procedure to objectively validate
the numerical predictions in a case where detailed volumetric measurements exist. In
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Inlet Development Diffuser Outlet
Transition Channel Transition

FIGURE 1. Sketch of the experimental setup.

development channel

FIGURE 2. The development channel, the diffuser, and the outlet transition duct as fabricated
using stereolithography manufacturing (see Fig. 1)

the present situation, the experiments consist of three-component mean velocity vec-

tors within the entire diffuser volume. This makes classical comparisons based on the

extraction of few selected velocity profiles possibly insufficient (although still useful).

2. Experimental setup

The working fluid for all of the experiments was water. A gadolinium-based contrast

agent (Omniscan, Nycomed, Inc.) was added to the water in a concentration of 0.5 %.

The schematic of the recirculating flow loop is shown in Fig. 1. A centrifugal pump (Little

Giant model no. TE-6MD-HC) circulated water at a flow rate of 20.3 L/min. The average
volume flow rate was measured using a Signet Scientific MK315.P90 paddle wheel flow

meter, which was calibrated using the bucket and stopwatch method described by Elkins

et al. (2003) with an estimated uncertainty of 5%. The pump was placed approximately

3 meters from the magnet, and no other metallic parts were used in the loop to avoid

influencing the signal detected by the magnetic resonance imaging (MRI) system. Flexible

plastic tubing with an inner diameter of 25.4cm was used to complete the flow loop.

Figure 2 is a photograph of the transition piece, development channel, and test diffuser.

The diffuser itself was preceded by three inlet parts made of Plexiglas and stereolithog-

raphy (SLA) resin. The SLA pieces were fabricated with a normal resolution of 100pm

by Mr. Frank Medina of Keck Laboratory at the University of Texas El Paso.

The upstream transition piece was designed to smoothly morph the cross-section of

the flow from a 25.4cm diameter circle to a rectangle with the same dimensions as the

development channel. This section included three sets of grids with 2 mm square holes
and a 60% open area to keep the flow from separating and provide uniform mean flow
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FIGURE 3. Geometrical details of the two diffuser configurations used in the present study.

and turbulence at the development section inlet. The 60-cm-long development channel
had a constant rectangular cross section of height 1 cm and aspect ratio 1:3.33. Three
grids were included at the upstream end of the development section to achieve a greater
flow uniformity. Velocity data a few centimeters upstream of the diffuser inlet showed
that the flow was fully developed by the end of this channel.

The test diffuser is attached directly to the development channel exit. Diffuser 1 has a
rectangular inlet of height 1 cm and aspect ratio 1:3.33 and a 4 cm square outlet, giving
an area expansion ratio of 4.8. The diffuser is 15 cm long. One side wall expands at an
angle of 2.561 degrees, and the top wall expands at an angle of 11.3' degrees. The other
two walls are straight. Diffuser 2 is also 15 cm long and has the same inlet as Diffuser
1, but its outlet is 4.51 cm x 3.37 cm, giving an area expansion ratio of 4.56. The top
wall of Diffuser 2 expands at an agle of 90 degrees and its side wall expands at an angle
of 40 degrees. The Reynolds number in both diffusers based on the height of the inlet
channel is set to approximately 10,000. Different outlet transition sections are used for
the two diffusers because it is necessary to match the dimensions of the diffuser outlet.
Both outlet transitions have 10 cm of constant-cross-section channel and then a 10-cm
contraction into a circular outlet 25.4cm diameter.

Velocity data are collected using the method of magnetic resonance velocimetry (MRV)
described by MRV uses magnetic resonance imaging to measure the three-component
mean velocity vectors in a three-dimensional volume.

All experiments were performed at the Richard M. Lucas Center for Magnetic Reso-
nance Spectroscopy and Imaging at Stanford University. A 1.5-T MR system (GE Signa
CV/I, Gmax = 40mT/rn, rise time = 268s), with a single channel, head receive coil was
used. Data were collected with a sagittal slab 74mm thick in the spanwise direction and a
field-of-view (FOV) of 24cm in the streamwise and cross stream directions. The imaging
matrix was 74 x 256 x 256 yielding lmm resolution in the spanwise direction and 0.9mm
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in the streamwise and cross stream directions. A total of 16 complete scans of the flow

were averaged to produce the final velocity field.

The mean velocity uncertainty was estimated to be less than 10% following the analysis

of Elkins et al. (2003) and Elkins et al. (2004).
Velocity field data were processed using Matlab. The coordinate system was rotated

and translated to match the coordinate system of the Solidworks model of each diffuser.

The data were then averaged in the streamwise direction using a five-point Gaussian

filter.

3. Numerical setup

As discussed in the previous section, the diffuser geometry was designed to be easily

defined; the presence of planar surfaces and simple rectangular inlet and outlet ducts

facilitates the construction of a very high-quality hexahedral-only mesh. The grid is

clustered at the walls to provide good resolution of the near-wall region. In Fig. 4 several

cross-sections are reported in the region of the diffuser. The computational domain also

includes the development duct and the outlet region (as defined earlier). Most of the

calculations reported herein are obtained on a mesh consisting of 1.8 million grid cells

(referred to as the coarse grid); an additional mesh (fine grid) consisting of 14 millions cells

is also considered for the LES simulations. This is obtained by splitting each hexahedral

in the coarse grid into eight elements.
Boundary conditions are simple no-slip walls, velocity inlet and outflow. At the inlet

plane, a constant velocity matching the experimental mass flow rate is specified. No

fluctuations are added, as the inflow plane is far from the diffuser region. The outlet is

treated as a classical convective outlet.
The numerical simulations using LES are performed using CDP, a parallel, unstruc-

tured code for accurate flow simulations (Mahesh et al 2004: Ham & laccarino 2004).

The incompressible Navier-Stokes equations are solved on general polyhedral meshes us-

ing a fractional-step procedure. Second-order symmetric discretization in time and space

is used. This results in an algorithm that conserves kinetic energy, and introduces no nu-

merical dissipation. The subgrid scale Reynolds stresses are modeled using the dynamic

Smagorinsky closure.
In addition to the LES, computations using a commercial software (Fluent) are consid-

ered to evaluate the predictive abilities of conventional RANS turbulence models. Several

models have been tested, but only the results using the k-w SST model (Menter 1994)

are presented herein. Results obtained with other eddy-viscosity models are comparable.

The LES computations are performed using unity CFL: this results in a timestep

approximately equal to 0.00015 seconds on the coarse mesh. The simulation has been

run for approximately 25, 000 timesteps to achieve statistical convergence. Afterward the

flowfield has been averaged for about 2.5 seconds (or equivalently 15, 000 timesteps). On

the other hand, the computations on the fine grid have been averaged only for about

8, 000 timesteps and have not achieved sufficient convergence of the velocity statistics.

The preliminary results are presented in the following section although the computations

are ongoing. Calculations on the two grids have been carried out using 128 processors of

the ALC Linux cluster at Lawrence Livermore National Laboratory.

Fluent computations are carried out solving the steady RANS equations using 16

processors and have been completed only on the mesh consisting on 1.8 million grid

elements.
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FIGURE 4. Cross-section of the computational grid consisting of 1.8 million hexahedrals. The
mesh is clustered toward the no-slip walls. The computational domain includes the development
channel, the diffuser, and the outlet region.

4. Quantitative comparisons
Comparisons between numerical predictions and measurements are reported in Figs.

5 and 6. The development of the flow in the diffuser 1 is illustrated in Fig. 5 in terms of
streamwise velocity isocontours in axial cross-sections. The experiments show the pres-
ence of a 3D separation that originates in the top-right corner and then propagates to
become almost 2D in the upper part of the diffuser. The RANS simulations strongly
overpredict the strength of the separation and result in a flow that is recirculating well
in the outlet region. In addition, the flow is separated on the right side of the diffuser
as opposed to the measurements that show a recirculation area on the top wall. Mass
conservation implies strong acceleration in the left part of the diffuser, resulting in very
different velocity distributions in the cross-sections. On the other hand, the LES compu-
tations show a much better agreement with the data, especially for the fine grid, although
the temporal averages are not converged. In Fig. 6, the streamwise velocity in a longitu-
dinal plane at the mid-span of the development channel cross-section is reported. This
plot can be compared directly to the results presented in the 2D diffuser simulated in
Iaccarino (2001). The results confirm that the RANS predictions severely over-estimate
the strength of the recirculation, while the LES (especially on the fine grid) appear to
be in reasonable agreement with the experiments.

In order to provide a more quantitative analysis of the predictions and measurements,
six velocity profiles are extracted from the longitudinal plane reported in Fig. 5. The
comparisons are reported in Fig. 7. The experiments clearly show a large separated region
on the top wall of the diffuser, but the detachment point is approximately located at
x = 8mm downstream of the diffuser inlet. This is in strong contrast with the predictions
of both RANS and LES, which result in a separation occurring almost immediately at
the diffuser inlet. The LES predictions on the fine grid, however, appear to be in much
better agreement with the measurements. All of the numerical simulations predict a
thinner boundary layer on the bottom wall compared to the measurements.
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FIGURE 5. Streamwise velocity isolevels in four cross-sections along the diffuser 1. The columns

represent sections at x = 4mm, 8mm, 12mm, and 16mm from left to right (the origin of the

x-coordinate is fixed at the diffuser inlet).

5. Ongoing and future work

The experimental and numerical results presented in this report have been collected

during the first part of this research activity. Current experimental work is focused on the

characterization of the second diffuser geometry. On the numerical side, the predictions

obtained on the fine grid are considered to be preliminary because the flow statistics

have not been averaged for sufficient time. The simulation is ongoing. The computational

grid for the second diffuser has been generated but the flow computations have not yet

started. In addition to completing these simulations, we intend to perform simulations

using a Reynolds stress model to evaluate the limitations introduced by the eddy viscosity

approximation.
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FIGURE 6. Streamwise velocity isolevels in a longitudinal section midspan in the diffuser 1.

Another important aspect of the present joint experimental and numerical study is
the development of objective measures of the agreement between the datasets. The avail-
ability of massive amounts of measurements (in the present case about 400,000 velocity
vectors in the diffuser region) makes conventional comparisons such as the one presented
in Fig. 7 limited and potentially misleading, as they only focus on a limited region of the
domain. In particular, the last profile in Fig. 7 seems to suggest a potential difference
in the overall mass flux through the diffuser. In practice, the overall mass flow has been
verified to be conserved and in close agreement between experiments and simulations.
Each velocity profile in Fig. 7 is a 1D sample of a strongly 2D flow in the corresponding
cross-section; mass conservation, on the other hand, is a scalar measure of the flow char-
acteristic in the cross-section. In an attempt to capture the entire flow as a 3D entity,
the probability density functions of the velocity vectors are reported in Fig. 8: this rep-
resents a global measure of proximity between measurements and numerical predictions
although it is only qualitative because by construction it includes a scaling (the integral
of the PDF is unity). Figure 8 shows the mean velocity statistics in the recirculating
region and the much better agreement of the LES predictions as compared to the RANS
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FIGURE 7. Streamwise velocity profiles in a longitudinal section midspan in the diffuser 1.
Symbols are experiments; dotted lines are the RANS predictions; dashed and solid lines are the
LES predictions on the coarse and fine grid, respectively.

one (although only the coarse grid results are reported here for the LES). In addition,

the PDF of the vertical velocity illustrates a strong asymmetry, while the cross-flow ve-
locity is nearly Gaussian. Future work will focus on ways to compare quantitatively the

predictions based on distribution functions and as well as determine local comparison

metrics.
Another important component of the validation process is the determination of the

uncertainties. Although the experimental characterization has been performed (following
what was done earlier in Elkins et at., 2003), we have not included uncertainty bars in

the present data as they are not yetavailable for the computational results. Future work

will address this aspect of the numerical simulations.
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A dynamic global-coefficient subgrid-scale
eddy-viscosity model for large-eddy simulation in

complex geometries

By D. You AND P. Moin

1. Motivation and objectives

A major drawback of the Smagorinsky subgrid-scale eddy-viscosity model used in large-
eddy simulations is that the model needs to be closed with an empirical constant, which
has been found far from being universal and difficult to adjust to the characteristics of the
turbulent flow field and computational resolution (Germano et al. 1991). Furthermore,
the Smagorinsky model predicts non-vanishing subgrid-scale eddy viscosity in the regions
where the flow is laminar, or the eddy viscosity should be zero. These shortcomings of
the Smagorinsky model were overcome by Germano et al. (1991) through a dynamic
procedure for determining the model coefficient. In the dynamic Smagorinsky model,
the model coefficient is dynamically determined as a function of space and time using
the scale-invariance concept and the "local-equilibrium" hypothesis (i.e., an equilibrium
between the subgrid-scale dissipation and the viscous dissipation at the same physical
location).

Although the dynamic model coefficient vanishes where the flow is laminar or fully
resolved, it can cause numerical instability since its value often becomes negative and/or
highly fluctuates in space and time. The numerical instability is remedied by additional
numerical procedures such as an averaging of the model coefficient over statistically
homogeneous directions or an ad hoc clipping procedure. The numerical stabilization
procedure becomes complicated when the dynamic model is applied to a complex flow
configuration in which there are no homogeneous directions. A number of novel ap-
proaches have been proposed (e.g., the dynamic localization model by Ghosal et al.
(1994) and the Lagrangian dynamic model by Meneveau et al. (1996)) to address this
issue. For example, the Lagrangian dynamic subgrid-scale model has been successfully
employed for large-eddy simulations of flow through a real jet engine combustor (Moin
2002) and the tip-leakage flow in a turbomachinery cascade (You et al. 2004). However,
the iterative solution procedure to solve an integral equation in the dynamic localization
procedure (Ghosal et al. 1994) or the interpolation required for the pathline averaging
in the Lagrangian dynamic model (Meneveau et al. 1996) demands a non-trivial effort in
implementation, results in computational overhead, and may still require non-physical
clipping operations.

Recently, Vreman (2004) developed a new subgrid-scale eddy-viscosity model that ap-
pears to offer several advantages over the Smagorinsky model with a constant coefficient.
In this model, vanishing subgrid-scale dissipation for various laminar shear flows is theo-
retically guaranteed even with a non-zero constant empirical model coefficient. Since the
model provides desirable features for successful large-eddy simulation even with a spa-
tially uniform model coefficient and does not require any averaging or clipping procedures
for numerical stabilization, it is especially suitable for complex flow configurations. Vre-
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man (2004) showed that the model with a fixed coefficient predicts turbulence statistics

for channel flow without introducing any wall-damping functions.

However, more recently, Park et al. (2006) showed that the model coefficient is not

universal for all turbulent flows and needs to be adjusted according to the turbulent flow

field simulated. They proposed a dynamic procedure for determining the model coefficient

utilizing the "global equilibrium" between the subgrid-scale dissipation and the viscous

dissipation (da Silva & Metais 2002). In this approach, the model coefficient is globally

constant in space but varies in time, and it still guarantees zero eddy viscosity in the

laminar-flow regions. Furthermore, the model does not require any ad hoc numerical

stabilization or clipping operations. The dynamic procedure was found quite effective

in determining the model coefficient and predicted superior results to those obtained

by using the fixed-coefficient Smagorinsky model in a number of applications including

turbulent channel flow and flows over a circular cylinder and a sphere (Park et al. 2006).

In this study, we propose an improvement of the dynamic global-coefficient subgrid-

scale eddy-viscosity model of Park et al. (2006). The present dynamic procedure is also

based on the "global equilibrium" between the subgrid-scale and viscous dissipation. In

contrast to the dynamic procedure of Park et al. (2006) which requires two-level test

filters, the present model requires only a single-level test filter, and therefore is more

suitable for large-eddy simulation in complex geometries. The present dynamic procedure

guarantees a model coefficient which is free from the influence of the computational

domain size over which the volume averaging is taken while it is controlled by a scale-

invariance concept in the model of Park et al. (2006).
The original Vreman model and the dynamic model of Park et al. (2006) are briefly

introduced in section 2. Then, in section 3, the present dynamic model is derived and its

characteristics are discussed. In section 4, the predictive capability of the present model

is evaluated by considering turbulent channel flow and flow over a circular cylinder. A

brief summary is presented in section 5.

2. Vreman-type subgrid-scale eddy-viscosity models

The incompressible Navier-Stokes and continuity equations are:

ui __ Oujuj Op +Vu--

at aXj aXi axjaxj (

aui
-- 0. (2.2)

By applying a "grid" filter ( to (2.1) and (2.2), one obtains the filtered equations of

motions

-i- DixJ a-P a± a i, (2.3)at axj aXi aXjaXj axj

-•- = 0, (2.4)Dxi
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where 7ij is the subgrid-scale stress tensor. The subgrid-scale stress tensor 7ii is modeled
by an eddy-viscosity model:

1
-ij - 3 TJijrij = -2vTSij, (2.5)

where vT is the eddy viscosity. In the present study, the Vreman-type eddy-viscosity
models are considered for determining VT.

2.1. Subgrid-scale model with a fixed model coefficient
Vreman (2004) proposed a subgrid-scale eddy-viscosity model for VT in the following
form:

VT = CeAl, (2.6)

where

113 yakl~k

BR3 -- 1122 - 12 12 + -/11/33 -3 103/313 + / 22fl 33 -32023,

3

13ij = -MSJrmi-mj,

m=1

=~ij = Oxi (2.7)

Am is the grid-filter width in the m-direction, and C, is the model coefficient. A novel
feature of the model that makes it superior to the Smagorinsky model with a constant
coefficient, is that the kernel fl becomes zero for canonical cases where the eddy viscosity
should be zero. More details of the derivation of the model and its characteristics can be
found in Vreman (2004).

For homogeneous turbulent flow, Vreman (2004) proposed C, of 0.07 and showed
favorable results. However, the value is found not universal and needs to be adjusted
according to the flow and computational resolution as noted by Park et al. (2006).

2.2. Dynamic model with two-level test filters
Park et al. (2006) proposed a dynamic procedure for the determination of the model
coefficient. They considered a transport equation for 7,ii (= UiUi - uiui):

S ax -( - -9Ui j) - -2(p - Ujp) + v ( OUxui - ±i2" }ijUi
- (v 9ui aui d14i &'fl'\-2v • - j a2) -2T,,S 3j, (2.8)

eISGs

where F is the redistribution term, and s, and ESGS are the viscous and the subgrid-scale
dissipation terms, respectively. Taking the volume average () of the terms in (2.8) over
the entire computational domain yields

( 7i-Sij) = -v (d-i-aij - iij)ij), (2.9)
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assuming the volume averages of the redistribution term and the time variation of Tmj are

negligible (Piomelli et al. 1996; da Silva &, Metais 2002; Park et al. 2006). The relationship

in (2.9) was referred to as the "global equilibrium" between the viscous dissipation and

the subgrid-scale dissipation (Park et al. 2006; da Silva & Metais 2002). da Silva &

Metais (2002) and Park et al. (2006) found that the equilibrium between the viscous and

subgrid-scale dissipation is only observed "globally" (not locally).
Replacing rij in (2.9) with (2.6) results in

ii (Iy - 1) (zi~ij
C = -, (2.10)

where the following closure assumption has been made
(Zj--aj = -y (aj~j)ij . (2.11)

The model uses the following scale-invariance assumption:

(Z-;Ja-) =_ K dij) 2 __iyij) (2.12)

where K is another unknown parameter to be determined together with ij and ao

are the first- and second-level test-filtered tensors, respectively, and = 2A and A = 2A

are assumed. From (2.12), K and ^y are readily obtained as follows:

K (aiyaij) ('iij-aiJ) -3ij) (.•iJ'•iJ)2 (2.13)

Equations (2.10) and (2.13) complete the model with two-level test filters. In this ap-

proach, the model coefficient is globally constant in space but varies in time.

3. New dynamic model with a single test filter

In the proposed model, we start with the test-filtered incompressible Navier-Stokes

and continuity equations:

a~ _ Oyi±j + V -T i (3.1)at axj axi axjaxj axj'

a__ = 0, (3.2)

where () denotes () and Tit = iu - uiiuj.
The test-filter-level large-scale turbulent kinetic energy equation is

Oaiiiii = -a - iiuj -- 2•j -- _iti 2Tiji} - 2v a ii +

at -- xj ih - p -x 2 hx + 2T2 jSij. (3.3)

Subtracting (3.3) from the test-filtered total kinetic energy equation results in a transport
equation for Ti7:

aTi, _- uiuij) - 2(r --p - ljp- + .- (aaU Oxj x + 2Tijui

at -axi () ax )I
-2v 6u•Oi - Oi auia 2Tijaij. (3.4)

- axj axj axj axj
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By subtrating test-filtered (2.8) from (3.4), one finally obtains a transport equation for
L2, (= Ti, - Fij)

A~ii

at

5X,3 ý -~iii)-2(~p-ij axjJ 2 T
7

jjt ~jU)f

-2v x O O o + 2(7,,s - T j). (3.5)
a9x 1x ax j axjx3)

Taking the volume average of (3.5) assuming "global equilibrium" finally results in

C -- " - , (3.6)2 <Hjsj - fIIij~ij),

where the subgrid-scale quantities () are defined in (2.7) and

To - 1Tkk6 j =-2CflSj,

- B3

& O3VklOk

B 3 = /0i1322 - 312/312 + ý311333 - /313/313 +) 322/333 - /ý323/323,

3
= A2 nmi,&mj,

m=1

ij= -a•" (3.7)

The present model coefficient is dynamically determined from the instantaneous flow
field and computational resolution by utilizing only a single-level test filter.

Figure 1 shows the temporal evolution of the model coefficient predicted by (3.6) for
turbulent channel flow at Re, = 395 after the flow has reached a statistically steady
state. The temporal variation of the model coefficient is mild and the mean value of the
coefficient is approximately 0.05, which differs from the value of 0.07 proposed by Vreman
(2004) for channel flow and mixing layer simulations. The present dynamic model shows
favorable agreement with the direct numerical simulation results of Moser et al. (1999)
(see section 4.1 for details).

The present model shares the important features of the original Vreman model (Vreman
2004) and the dynamic model of Park et al. (2006). Even with the spatially constant
model coefficient, the model predicts zero eddy viscosity in regions where the vanishing
eddy viscosity is theoretically expected. For example, figure 2a shows the instantaneous
spanwise vorticity contours of the flow over a circular cylinder. The flow configuration
consists of a variety of different flow regimes such as laminar uniform flow (fŽi), laminar
boundary layer (aOlw), and turbulent wake (Qt). The present model predicts vanishing
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FIGURE 1. Temporal evolution of C•, predicted by the present dynamic procedure for turbulent
channel flow at Re, = 395.
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FIGURE 2. Contour plots of (a) the instantaneous spanwise vorticity and (b) the ratio of eddy

viscosity to molecular viscosity VT/V predicted by large-eddy simulation with the present dy-
namic model in the circular cylinder flow at ReD = 3900. 20 contour levels in the range of

-20 - 20, and 0.5 - 5 are shown in (a) and (b), respectively. Q1, Q2t, and t£2, represent laminar

uniform, turbulent wake, and boundary layer flow regimes, respectively.

eddy viscosity in the regions of laminar flow (£2 and a£2•) as shown in figure 2b. The

large-eddy simulation of circular cylinder flow is discussed in detail in section 4.2.

Besides the advantage of utilizing only a single-level test filter, which improves the ap-

plicability of the model for complex flow configurations (especially with unstructured grid

topology where defining the second-level test filter is not straightforward), the present

volume-averaging process in (3.6) obviates a possibility of obtaining different model coef-

ficients when two different computational domains that contain the same turbulence flow

field but different laminar shear flow regions are employed. This is because both the vis-

cous dissipation (v(a,3 0 2 1 Ctij -Q ,)) and the subgrid-scale dissipation (USijSij -lSijSij )
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Re, L,. L, Lz Ný N, N, Ax+ Ay+,i, A--+

590 271b 26 76 64 97 64 57 0.59 29
395 27r6 265 7r6 48 65 48 48 0.95 18

TABLE 1. Grid parameters for large-eddy simulation of turbulent channel flows. Lý, Ly, and L.
are the streamwise, vertical, and spanwise domain sizes, respectively. Nx(y,,) and Ax(y, z)± are
the number of mesh points and the resolution in wall units, respectively.

in (3.6) vanish in the laminar flow region. Therefore, in the present method, the regions
where both the subgrid-scale dissipation and the viscous dissipation vanish are naturally
excluded from the averaging process in (3.6). In the dynamic model of Park et al. (2006),
the influence of the computational domain size in the volume-averaging procedure is
controlled by -X in (2.10).

4. Results and discussion
4.1. Large-eddy simulation of turbulent channel flow

Turbulent flow through a plane channel has been widely considered as a benchmark for
validating turbulence models. Reynolds numbers of 590 and 395 based on the channel
half height 6 and friction velocity u, are considered. Large-eddy simulation results with
three different Vreman-type closures including the present dynamic model and the dy-
namic Smagorinsky model (Germano et al. 1991) with Lilly (1992)'s modification are
compared with the direct numerical simulation results of Moser et al. (1999). The com-
putational parameters for large-eddy simulations at the two different Reynolds numbers
are summarized in table 1. For the simulation at Re, = 590, a second-order finite-volume
solver (Mahesh et al. 2006) on a collocated grid arrangement of the primary variables
is employed, while a second-order finite-difference solver (Templeton et al. 2006) on a
staggered grid is used in the case of Re, = 395.

In figure 3, the profiles of the mean streamwise velocity and rms velocity fluctuations
at Re, = 590 obtained using the present dynamic model, the dynamic model of Park
et al., the Vreman model with a fixed coefficient of 0.07, and the dynamic Smagorinsky
model are compared with the direct numerical simulation data of Moser et al. (1999).
The time-averaged model coefficients for the present channel flow are much smaller than
the coefficient suggested by Vreman (2004) (0.07), and are 0.010 and 0.008 in the present
dynamic model and Park et al.'s dynamic model, respectively. The present dynamic model
(solid line) and the dynamic model of Park et al. (dashed line) predict similar results.
The collocated grid method used in the present simulation requires finer resolution in
the spanwise direction to predict similar results predicted by the staggered grid approach
(Ham & laccarino 2004). The present and Park et al.'s dynamic models predict superior
results to those obtained with the Vreman model (chain-dotted line) with the coefficient
of 0.07, which is not optimal in the present simulation. The present results are comparable
or superior to those obtained with the dynamic Smagorinsky model (dotted line). In the
mean velocity profile, the upward shift in the log-layer is a little bit smaller than that
of the dynamic Smagorinsky model, while the Vreman model with a non-optimal model



48
D. You & P. Moin

25

20

15 

-

10-

5i0' '

(a),10 101 102

4.0.
3.51 - " '

1.5 -1... .. ......

1.0' "ooooooeo<oooo

50 100 150 200

(b) 
-.+

FIGURE 3. Profiles of (a) the mean streamwise velocity and (b) rms velocity fluctuations in
turbulent channel flow at Re, = 590. Solid line, the present dynamic model; dashed line, dynamic

model of Park et al.; dotted line, dynamic Smagorinsky model; chain-dotted line, Vreman model
with C. = 0.07; symbol, direct numerical simulation (Moser et al. 1999).

coefficient (C, = 0.07) predicts deficiency both in the mean streamwise velocity and rms

velocity fluctuations, which are under-predicted in the overlap layer.

The time-averaged model coefficients for the channel flow at Re, = 395 are approxi-

mately 0.05 in both the present dynamic model and the dynamic model of Park et al.

Also at this Reynolds number, the present dynamic and Park et al.'s dynamic models

are slightly superior to the dynamic Smagorinsky model in predicting the mean and

turbulence statistics provided by the direct numerical simulation of Moser ct al. (1999).
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FIGURE 4. Profiles of (a) the mean streamwise velocity and (b) rms velocity fluctuations in
turbulent channel flow at Re, = 395. Solid line, the present dynamic model; dashed line, dy-
namic model of Park et al.; dotted line, dynamic Smagorinsky model; symbol, direct numerical
simulation (Moser et al. 1999).

4.2. Large-eddy simulation of flow over a circular cylinder

The effectiveness of the present dynamic model is further assessed in the large-eddy
simulation of flow over a circular cylinder at ReD = 3900. The circular cylinder flow
consists of a variety of flow regimes including laminar unifrom flow, laminar boundary
layer, laminar shear layer, transition, and turbulent wake. Therefore, it is an excellent
benchmark for assessing the predictive capability of the proposed subgrid-scale model.
Results predicted by the present dynamic model are compared with those predicted by the
large-eddy simulation performed with the dynamic Smagorinsky model and a high-order
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Lx L, L. No Nz NBL(O = 90') NBL(O = 170') NAotj

-30D - 20D -30D - 30D 7rD 300 65 24 13 7,543,680

TABLE 2. Grid parameters for cylinder flow simulation at ReD = 3900. L., Lv, and L0 are

the streamwise, vertical, and spanwise domain sizes, respectively. N 0 , N•, and N131 are the

numbers of mesh points in the circumferential and spanwise directions and in the boundary

layer, respectively. Ntot. 1 denotes the total number of mesh points.

Co) C -Cpb St

LES with DM1 1.01 0.12 0.92 0.211
LES with DSM* 1.04 0.94 0.210

Experiments 0.99 ± 0.05t 0.1 ± 0.05t 0.88 ± 0.05t 0.215 ± 0.05t

TABLE 3. Summary of cylinder flow computations at ReD = 3900. CD--, CL,.m- -Cpb, and St are

the mean-drag, rms-lift, base-pressure coefficients and the Strouhal number, respectively. DM1

and DSM denote the present dynamic model and the dynamic Smagorinsky model, respectively.

*Kravchenko &- Moin (2000), tNorberg (1987), and 1Ong & Wallace (1996).

numerical scheme (B-spline method; Kravchenko & Moin 2000) and experimental data

(Norberg 1987; Ong & Wallace 1996). Grid parameters used in the present simulation are

summarized in table 2. The numerical method is a second-order finite-volume method

and an unstructured grid is employed (Ham & laccarino 2004). The total number of grid

points is similar to those employed in other previous large-eddy simulations performed

with a second-order finite-difference method (Kim & Choi 2005; Park et al. 2006).

As shown in figure 2, the present model predicts eddy-viscosity distribution that is

qualitatively expected from the physical characteristics of the flow (figure 2). High levels

of eddy viscosity occur in the turbulent near wake. On the other hand, Beaudan & Moin

(1994) found, with a constant-coefficient Smagorinsky model, that the largest mean eddy

viscosity is generated in the separated shear layers that are laminar at ReD = 3900. In

the simulation with the present dynamic model, the peak ratio of the eddy viscosity to

the molecular viscosity is not greater than 5 (figure 2).

The global flow quantities such as the drag, rms-lift, base pressure coefficients, and

the Strouhal number are compared with numerical (Kravchenko &- Moin 2000) and ex-

perimental data (Norberg 1987; Ong &- Wallace 1996) and are summarized in table 3. In

general, the present simulation results are in favorable agreement with the other numer-

ical and experimental data.
The profiles of the mean streamwise velocity and streamwise velocity fluctuations

obtained in three different near-wake locations are compared with the numerical data

of Kravchenko & Moin (2000) in figure 5. The present large-eddy simulation with the

dynamic model performs well and predicted comparable results to those predicted by

Kravchenko & Moin (2000) with the dynamic Smagorinsky model. However, it is worth
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FIGURE 5. Profiles of (a) the mean streamwise velocity and (b) streamwise-velocity fluctuations
at three locations in the wake of a circular cylinder at ReD = 3900. Solid line, large-eddy
simulation with the present dynamic model; dashed line, large-eddy simulation with the dynamic
Smagorinsky model (Kravchenko & Moin 2000).

noting that, in the large-eddy simulation of Kravchenko & Moin (2000), it was neces-
sary to discard negative model coefficients by ad hoc clipping operations for numerical
stability (Kravchenko & Moin 1998).

5. Summary
A dynamic procedure for closure of the subgrid-scale model developed by Vreman

(2004) using a single-level test filter has been proposed. The dynamic procedure of deter-
mining model coefficient is based on the "global equilibrium" between the subgrid-scale
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dissipation and the viscous dissipation as utilized by Park et al. (2006). Like the fixed-

coefficient (Vreman 2004) and dynamic-coefficient (Park et al. 2006) Vreman models, the

present model predicts zero eddy-viscosity in regions where the vanishing eddy viscosity

is theoretically expected. In contrast to the dynamic procedure by Park et al. (2006),

which employs two-level test filters, the present model necessitates only a single-level test

filter, and therefore is more suitable for large-eddy simulation in complex geometries. The

present model is not more complicated than the dynamic Smagorinsky model in imple-

mentation and does not require any ad hoc spatial and temporal averaging or clipping of

the model coefficient for numerical stabilization. In addition, the computational cost is

not more expensive than that of the dynamic Smagorinsky model. The present dynamic

procedure has been found quite effective in determining the model coefficient and pre-

dicted excellent results in large-eddy simulations of turbulent channel flow and flow over

a circular cylinder.
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Three-dimensional wall filtering formulation for
large-eddy simulation

By M. Shoeybi AND J. A. Templetont

1. Motivation and objectives
Large-eddy simulation (LES) is a method for computing the solution of the spatially

low-pass filtered Navier-Stokes equations. In most formulations, the filtering operation is
not taken to pass through boundaries. Instead, the wall-normal filter width approaches
zero at walls to allow the application of the no-slip condition (e.g., Carati 2001; Sagaut
2002). However, this introduces commutation error and adds modeling complexity due
to filter anisotropy.

One approach to reduce this error is to use one-sided commuting filters near the wall
which have less commutation error than the numerical differentiation error in the simu-
lation (Vasilyev et al. 1998). The drawback of one-sided filters is that they require slip
velocities at the wall. Prescribing slip conditions both on (lovieno et al. 2004; Borggaard
& Illiescu 2006) and off (Baggett 1997) the wall has proven quite challenging.

A recently proposed alternative involves filtering the wall in conjunction with the op-
timal LES technique (Moser et al. 2005). This method has thus far been applied only
to channel flow, allowing periodic conditions to be used in the wall-normal directions.
Recently, Templeton & Shoeybi (2006) proposed an approach based on filtering the solu-
tion over an infinite domain for 1-D problems. This allows the LES equations, including
boundary conditions, to be precisely defined without any commutation error.

This work considers formulating the LES problem in such a way that the filtering
operation can take place through the wall. This forms a fully consistent LES system that
has compact support, precise boundary conditions, and known forcing terms. Thus, the
LES equations can be solved without any ambiguity concerning the boundary conditions
and filter definition. To clarify the presentation in three dimensions, we will first briefly
review the work of Templeton & Shoeybi (2006) for the 1-D Burgers' equation. This
method will then be extended to the incompressible Navier-Stokes equations.

2. 1-D formulation for the Burgers' equation
The key idea of this work is to alter the formulation of the dynamical equations such

that they are consistent with wall-normal filtering. Such a formulation is accomplished
by considering a limiting process of solutions on an infinite domain with an appropriate
forcing term that ensures the solutions have compact support. This will enable LES to
be constructed using constant width filters. In addition, the proper boundary conditions
will be determined and can be applied precisely.

Consider the Burgers' equation with Dirichlet boundary conditions for the dependent
variable, u,

au 1au2  a2u
-t +-2 cox I - --ýx2 f Vx E (0,'L). (2.1)

t Presently at Sandia National Laboratories, Livermore, CA
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FIGURE 1. Constructed solution schematic.

where v is the viscosity and f is an arbitrary source term. The method consists of

constructing a family of solutions for c > 0 such that each solution has its domain of

support on I-e. L + c] (see figure 1). We begin by fixing c > 0, and indexing the solutions

for each E by u,. On the domain (0,L), the solution has initial conditions u,(xt) =

u(x, 0) E C 2 (x) and is subject to a source term, f, both of which are independent of c.

At x = 0 and L, the solution is constrained to be zero. For x < -E and x > L + c, the

initial conditions and source term are set to zero. In order to make all of these constraints

consistent, the solution in the regions [-E, 0] and [L. L + e] will have a specified form

enforced by the. as yet undefined, source term f,. In the remainder of this section, the

method will be formulated only at the lower boundary to simplify the presentation.

The solution imposed between -c and zero must be C 2 in space and satisfy the con-

straints that it matches the value, first derivative, and second derivative of u, at x = 0

and x = -c. This results in six constraints, indicating that u, can be represented by a

fifth-order polynomial. At x = -c the constraints are such that u, and a are all

zero, so it is useful to write the polynomial as a function of x* = x + E. This makes the

first three coefficients zero, with the resulting polynomial being

u,(x, t) = ax*3 + bx*4 + cx 5 Vx* E [0, E]. (2.2)

The other three coefficients can be uniquely determined such that the first two derivatives

exist and are continuous at x = 0. This gives three expressions for a, b, and c in terms

of c, ý 1' 0 % and 9 2,, The source term f, is chosen such that u, obeys the prescribed

solution (2.2). This results in f, being a ninth-order polynomial in x. Using I E = ,

where E e [0, 1], the leading order terms in e can be written as

0U +- 2U=+

f•(x) = E (241 - 84 2 + 60 3 ) ax = + V (-31' + 122 . i03) 2 + 0(f). (2.3)

2.1. Governing equations of the filtered solution

The exact solution u is spatially filtered to produce the LES solution, ft, which contains

the large scales of the problem. In this work, the LES solution, like the exact solution,

is defined on an infinite domain. This means that the interior domain, wall, and exte-

rior domain can all be filtered directly. This eliminates commutation error between the

filtering and differentiation operations because a homogenous filter is used. In addition,

the LES boundary conditions are known by construction while the forcing term coming

from the DNS boundary conditions can be determined analytically.
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Proceeding directly, the LES velocity field is defined as

fi(x, t) = f u(x - y, t)G(y)dy, V/x e (-cx, oc). (2.4)

Here, G is the filter kernel, which is spatially convolved with the exact solution. We require
that G have compact support so that fi will as well. In this work, we will consider the filter
to be a top-hat filter such that G(y) = 1/2A for y E [-A. A]. However, it is important
to note that any low-pass filter with compact support such that f 0iC G(x)dx = 1 and
f •C JG(x)ldx < oc would be an appropriate filter in this formulation.

Unlike standard LES constructions, the domain of support of fi in this formulation is
[-A, L + A] instead of [0, L]. This property implies that when computationally solving
for fi, the geometry must be extended. When performing such simulations, it will be
necessary to prescribe boundary conditions. Given the above domain of support, it is
clear that fi = 0 at x = -A and L + A (subsequently referred to as the LES boundaries),
implying that Dirichlet conditions are appropriate. However, the continuity of 2 alsoax
implies that it too is zero at the LES boundaries. Thus, two boundary conditions, a
Dirichlet and a Neumann, are valid at each boundary.

To derive the governing equations for the LES field, we will apply the filtering procedure
to the equations governing u, and take the limit as E -- 0 to obtain

a,ý 1o a &2~ a2f
ot + 2--- - = f + fl,. (2.5)

The key step in formulating the LES equations is determining the filtered value of f,.
This is done by simply filtering (2.3). Then the wall force, f", is defined to be lim f, and

f-0
is given by

f(X)-- 2Tx +=o V e [-A,A). (2.6)

Using the top-hat filter kernel and applying the fundamental theorem of calculus, it
can be rigorously shown that

lima -0 •--+ (2.7)f--0 X=-- 2-A Yx- I =0"2.7

When (2.7) is combined with (2.6), an expression for f,, is obtained:

= -V(2AG(x))a 2 -it (2.8)OX2 x=_a A28

This forcing makes the system with over-determined boundary conditions well posed by
ensuring that fi(x = -A) always remains zero.

2.2. Results

Here we consider the stochastically forced Burgers' equation by using independent Guas-
sian random variables to provide the forcing at each DNS grid point. This forcing is
changed at a rate of At,,, at which time a new set of independent random variables rep-
resent the force. In order to make the equations non-dimensional, aL is used as the
velocity scale where a is the square root of the variance of the random variables. When
performing LES computations, this noise is filtered to determine the source term f. To
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FIGURE 2. Time-averaged stochastically forced Burgers' equation. comparison of different filter

widths with A/L= 0.0078125 (left) and A/L = 0.0625 (right): , DNS; o, filtered DNS;

x, LES.
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FIGURE 3. Time-averaged stochastically forced Burgers' equation. Left: grid refinement with

AiL = 0.03125: ---- , DNS; - , filtered DNS; o, LES with AXLES = AXDNS: V,

-AXLES = 2AXDNS; A. AXLES - 4AXDNS; 0 , ,AXDNS = 8AXDNS. Right: Reynolds number

dependence for the case at Re = 2000 with A/L = 0.03125: , DNS; o, filtered DNS: x,

LES.

examine the effect of the proposed filtering treatment only, the DNS solution is used to

provide the SGS stress directly. See Templeton & Shoeybi (2006) for further details.

Time-averaged velocity profiles are shown in figure 2 with Re = 500. In these simula-

tions. 255 interior grid points were used in the DNS computation and the same resolution

was retained for the LES. Filter widths of A = 0.00781L (2AXDNS) and A = 0.0625L

(16AXDNS) are considered. These results indicate that the LES solution is able to ac-

curately capture the filtered time-averaged velocity profile from the DNS solution. The

effect of resolution and Reynolds number are shown in figure 3. To test the effect of

resolution, the LES is computed on a wide range of grids, and the time-averaged velocity

profiles are presented using A = 0.03125L (8AXDNS). All show good agreement with

the filtered DNS solution, up to the ratio of AXLES to A being unity. To examine the

Reynolds number dependence of the method, we consider a test case at Re = 2000 with

a filter width of A = 0.03125L (8AXDNS) on a grid with AXLES = 4AXDNS. Thus. the

method can be applied over a range of flow and numerical parameters.
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3. 3-D formulation for incompressible Navier-Stokes equations

We next extend the previous formulation to the incompressible Navier-Stokes equa-
tions in three dimensions. Only pressure-driven 3-D plane periodic channel flow will be
considered. The equations are non-dimensionalized using the channel half-height and fric-
tion velocity. The DNS domain is defined as 0 < x, < L 1 , 0 < X2 < 2 and 0 < X3 < L3 ,
and the flow is taken to be periodic in the x, and X3 directions while no-slip walls bound
the domain in the X2 direction. The non-dimensionalized governing equations are

aui O~ ~ ap 1 O2ui
D-- + x• +x Re IOxpOxj = fi (3.1)

auj
x = 0. (3.2)

where fi = 1 and f2 = f3 = 0.
To define the LES field, 3-D filters will be applied to the DNS solution. Filtering oper-

ations can pass through the periodic boundaries since the data outside those boundaries
are available. This is not the case in the wall-normal direction, where no information is
provided outside the DNS domain. Therefore, we extend the solution outside the DNS
domain in the wall-normal directions such that (3.1) and (3.2) hold over all of R 3. Unlike
the 1-D case, the pressure must be included in this extension in addition to the velocity
field. The following sections describe this extension for the lower wall of the channel
(X2 = 0), with similar results holding for the upper wall.

3.1. Extension of the velocity and pressure fields

Analogously to the 1-D case, we begin by defining the solution for any fixed f > 0 as
uý and p'. On the domain X2 E (0, 2), the solution is identical to the DNS, denoted
by ui and p. For -oc < X2 < -e and 2 + E < X2 < oc, the pressure and velocities in
the streamwise and spanwise directions are set to zero. In the rest of the domain, the
dependent variables will be constructed such that they are C2 for any E > 0. Using the
coordinate transformation x2 = X2 + f for X2 E [-2,0], ui can be written as

u= ai(x 1 ,x 3) xa +bi(xi,X3) X +ci(X1,x 3) x5 i = 1,3 , x* e [0,E]. (3.3)

Satisfying the three constraints at X2 = 0 requires

1 0aui + 4 9ui +

ai - - x2=o f Ox 120
102uc9 - 0 i ,

bi 1 "a 2 i + 7 9ui +=o

2 1X2=0 E3 
ax2 12=0

1 02u +o 3 Oui +
ci 3 2a 4x x

C 2 E '9X2 [2=0 C4 0373 L=0

In contrast, the wall-normal velocity field is extended to enforce continuity:

u' = a2(x37 - e4) + b2 (x55 
- C

5 ) + C2 (x26 
- E), (3.4)

where
_a1 + _a3 9bi + _b3  _CL + 'C3

a2 03-- 05X3 b2 - 5o1 8a3 , _ o X 3

4 5 6
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Since u' and u' are C 2 at X2 = 0, (3.3) and (3.4) can be used to take the derivatives of

the wall-normal velocity at X2 = 0 as

auý (9 1 a 3 + On2 +

(9X2 Lr=0 (OX 1 X "=0 x 3 [2 =0 19X2 1 2=0

a2U; a 2U, a 2V + a2u +

U31X0 = U0
2Ox Ox3  aX2

a 12 =0 aX2aXI X2=0 1X2 =0 2 12X=0)

showing the constructed wall-normal velocity field is C 2 at X2 = 0.

As opposed to the streamwise and spanwise directions for which the solution and all

the derivatives are zero at X2 = -E, the wall-normal velocity u' is of the order of c2. Since
aU'2,•, • vanish at X2 = -c, we can define the U2 velocity in the region X2 E (-xc, -c)

to be independent of £2 and to remain of the order of c2 everywhere on that region. As

with the 1-D case, terms of the order E
2 and higher will have no contribution to the LES

equations in the limit c -- 0. This implies the LES solution has compact support even

though the DNS for fixed c > 0 does not.

A similar expansion can be used to construct the pressure on the region X2 E [-(. 01.

Since the pressure in the Navier-Stokes equation is undetermined up to a constant, the

polynomial expansion is written as

pf = p* - pave(t) = apx 3 + bpx 4 + CpX25, (3.5)

where pav.(t) is an arbitrary constant and p* is the singular pressure. Ensuring that p'

is C2 requires

10 4ap + _2p +
a _6K 2  ~i- _E 1 0 + 202;p 3 •PIX2=o •2 OX 2. -- 2, = x2 X2=o'

15 7 ap 1+ 1 0 2P =
b p e - PIX2=0 + f 3 -X2 ' 2 0 C OX22 X 2=0'

6 3Oa + 1 02p I±+
P0 - C4 0Cx2 +12'.0 X2e O2 2

3.2. Modified governing equations

To enforce the prescribed fields, an extra source term, fý. is required on the right-hand

side of the momentum equations. The forcing terms are determined by inserting the

constructed velocity field into the governing equations and are active only in the region

X2 E [-(. 0]. We decompose the resulting forcing term into two parts. The first part is a

function of the DNS velocity field. f•u, while the second part contains contributions from

the DNS pressure, fý'P. For the streamwise and spanwise velocities, it is an eleventh-order

polynomial in X2, which has leading-order terms in E of

-1ui +m=0
1 -1 XRe (24 J22 - 84 ý2 + 6023)) (3.6)fi (37' x2,X3) =(3.6)

- (-35;2 + 12i: -_103) 2ui+ + 0(e), i = 1.3
eT 2 [2=
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for the wall-parallel velocities and

1 8. 2 U2 +
"(1.X2X3) R1 (122 - 28±3 + 15.4) u X+ + O(E) (3.7)f2 2x~•,3 2 x--2 ax2 O

for the wall-normal velocity, where t2 = e [0. 1]. Similarly., f-EP can be written as

f'(xx2x)= (10 - 154 +±65)p + O(E). i = 1,3 (3.8)2 2 2 x i I x:= o

and

"'(X1, X2- X3) = E-1 (30, _ -6023 + 30±4) P =o

,ý +p (3.9)
+ (-12.5 + 28±a - 154) t4 + O(o).

2 2 2 a12 X2=0

From the modified momentum equation, we can derive a new pressure-Poisson equation
consistent with the new formulation by taking the divergence of the momentum equations.
The governing equations on the bounded spatial domain X2 E [0, 2] are not subject to any
changes, resulting in the same Poisson equation for pressure as the original equations.
For X2 E [-E. 0], the divegence of the added source term is present on the right-hand side
of the pressure-Poisson equation:

v2P o9 x + V " (3.10)

Here we use the decomposition fE = fEu + fjP to analyze the second term on the
right-hand side of (3.10). By taking the wall-parallel derivatives of (3.6) and wall-normal
derivative of (3.7), we see that

1. f'•= O(1), Ve>0. (3.11)

As we will see later, terms order one and higher in c will have no contribution to the
governing equations when the equations are filtered and f -* 0. However, the divergence
of the pressure force, 2f! will be present and have contributions of orders E2 and E-1ax2
as

S" fEJ - 5d(X , ,)P2=0 + C- (-2422 + 84 2 - 60 r) 2 pX 2=0 + 0(1). (3.12)

where

Jd(X2, C) = - -2 (60±2 - 180±2 + 120.3). (3.13)

3.3. Construction of the filtered equations

As in the 1-D case, we define the filtering procedure as the convolution of a state variable
0 with a spatial filter kernel G(xl, x 2, x 3 ):

O(., t) = j j j o(I - 17! t)G(y-)dg. (3.14)

We require the filter to have compact support in physical space, and hence it can effi-
ciently solve a discrete approximation to the problem. We limit the discussion here to
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the top-hat filter G(xl. x 2 , x 3 ) = G 1 (x)G 2 (x 2 )G 3 (x 3), where

Gi(x) 0 ohA<x<i for i=1,2.3. (3.15)
(o otherwise

although many of the results hold for 3-D extensions of higher-order B-spline filters

(Templeton & Shoeybi 2006). For such a filter, the filtering operation reduces to

0(y.t) = X2 ] O(xly 2,x 3 , t)dy2, (3.16)

where
5(l.X. 3,) 1 fx•+A•f 3+•3

-(xi. X2. X3. t) = 4A1 A3  J(y1. 12. Y3. t)dyjdy3. (3.17)S. .. 4/A1j-3 JX -A l X 3-A3 . .

To derive the LES equations, we first filter the Navier-Stokes equations for any f > 0:

Oat• u + + ape 1 2 e +
a~~ ~ t a= e f2±4 +f (3.18)a-t + x ÷o~xj Re7 cxj xj

V+ V .± fp. (3.19)

Given the exact expression for the added source terms on the right-hand side of the

momentum and Poisson equations. their filtered value when the filter kernel encompasses

the region X2 E [-E. 0] can be written as

I:• G2 (X2)O. + 0(f) i = 1 , f•u = 0(E) (3.20)Re, 19X2 [ý=0 f

f�f" = G 2 (x2)I,=o + O(), 1 7 ' - 0(c) i = 1,3 (3.21)

and

S= a9 + 0 (3.22)

Note that when the filter integrand contains the E region in the X2 direction, all the terms

on the right-hand side of the governing equations will be bounded as f -- 0 except the first

term on the right-hand side of (3.12), 6d(X2, OP)PIx2 0, which varies with E-2. Although

its filtered value vanishes when the filter encompasses the whole c region, its contribution

to the filtered solution on the regions X2 E [-A 2 - E, -A 2] or X2 E [A2 - C, A 2] will be

of order c- 1 and not negligible in the limit as c --+ 0. On X2 E [A2 - e, A2]

6d(X2, e)-P =0 = Ld(X2, e)PiA2=0, (3.23)

where
6

dd(X2, e) = G 2 (X2 ) -30(1 + -)2(Z_2)2 (3.24)

Now we define the LES equations as the limit e -- 0 of filtered governing equations

(3.18) and (3.19). As previously shown for the 1-D case, the constructed velocity and

pressure fields will have no contribution to the LES solution, i.e., fti = lim fil and i

lim P', while the source terms will be non-zero in the limit. The LES governing equations
E-0 •
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can be written as
--~I _----0ii 0u OJ3 1 02fi +2,,±t+ ox + - ,

at OX -j Re, OxjOxj -i A f + + (3.25)

V 2t a- axi xj + SW'P. (3.26)

where

A iim G +(X2) i =1,3 , f =limf2' = 0 (3.27)
ff 'P R lim f2G(x 2)0 12= f

f - r =lim f 'P= 0 i =1,3 (3.28)
E-0 C-0

and
.9G• • 2 015 1+ ( .9

S"'P =im V. f ,P = (x2)pIX2=0 a+ G 2 (X2 ) - (3.29)
CX0 Ox2 X2Z=0

The first term on the right-hand side of (3.29) is a result of taking the limit as E -- 0 of
(3.23), which holds on the interval X2 E [A2 - e, A 2]. This term is zero at both boundaries
of this interval and will go to infinity as c goes to zero while its integral over the region
x2 E [A2 - E, A 2] is bounded and equal to -1. In the limit, the interval will shrink to a
single point, suggesting the source term is a one-sided delta function. This is equivalent
to the derivative of the filter kernel. The property implies that 6 d in (3.13) is a delta
differentiator for which

lim G(X)6d(X - xo, c)dx = aG (3.30)

Figure 4 shows a schematic of the delta differentiator for a finite c. The dashed line
represents the delta differentiator itself while the solid line is simply its integral. As
shown in the figure, the net integral of 3 d over the region x2 E [-(, 0] is zero while as the
integrand contains the E region, it produces a net force that varies as E 1 and acts as a
3 function.

Using the filter kernel with compact support of length 2A 2 extends the domain of
support from X2 E [0, 2] to x2 E [-A 2.2 + A 2]. Although the new LES equations in
(3.25) and (3.26) are defined everywhere on R 3, the velocity and pressure fields are zero
outside the domain x 2 E [-A 2 , 2 + A 2]. The LES field can then be found by simulating
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only the extended domain. However, this requires a new set of boundary conditions at

the LES boundaries x2 = -A, and X2 = 2 + A2. Just as in the 1-D case, both Dirichlet

and Neumann boundary conditions are valid at each boundary for the velocity field. For

the wall-normal velocity, mass conservation provides extra smoothness, making a 2 u2 /!x9•

zero at boundaries. Since the unfiltered pressure is non-zero at DNS boundaries, a Neu-

mann boundary condition does not hold and only a Dirichlet condition is appropriate. As

will be shown. the Dirichlet condition can also be removed via a pressure decomposition.

We derive the LES pressure-Poisson equation by taking the divergence of the unfiltered

momentum equations, filtering them, and taking the limit as c -- 0. To illustrate the

consistency of the equations, we use a different approach and derive the pressure-Poisson

equation by taking the divergence of the LES equations for velocity. This is done by

taking the divergence of (3.25) as
2I5_ + aif+ i+ fU3. fuU + . (3.31)

Oxi Oxj

where

I a2i1 + .2 f13 ) z+= 1 (92 ft 2 2+

.f _ 2(x2 5X - = - G2(x2) 2Re, xfx2 ax3axR (X2) =0 Re, x2 x[2=0

- Z aG2
17-flp= Dr2 X)x,0

The LES Poisson equation can be written as

a api+ 1 a2?2 =0 + aG2
-- _--- = G 2 (x 2 ) (x2)PIx2=o. (3.32)

ari D£3  Re, 19X220

We know from the Navier-Stokes equations that

1 a 2 ii2 + ap1
1 2 r2=- op .+ (3.33)

Re, ax2  = X =o

This again implies, consistently, the LES pressure equation derived in this formulation
is identical to that derived in (3.26) and (3.29).

3.4. Approximate solution

Given the LES governing equations and their source terms, we need to determine a

method to solve them. Therefore, we will do an LES pressure solve as a Lagrange mul-

tiplier to enforce continuity exactly as it is done in DNS. The LES forcing terms will

therefore not be responsible for satisfying the LES continuity equation. Instead, the

pressure is decomposed into two parts: P = P, + Pf as

1 2pf = -O-2 (x2)* 2 o= + I-G 2(x 2) 92 f12 + (3.34)axe c 2 X2 =0

Pc = a ad-r j (3.35)a25c xi aXj

Since these terms are active only near the wall and exhibit stronger variations in the

wall-normal direction, we use the approximation V 2jpf • %_. Taylor series expansion• O~ra '
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shows that this is reasonable near the LES wall, although its accuracy begins to decrease
near the edge of the LES wall region. However, the assumption implies the following
formula

1 a2fi2+ '1

_f - G2(x2)3W=O + e ar 2  
_ + G 2 (y)dy. (3.36)

Ox 2  R x X =0 -_-A

in the near wall region. The first term is an artifact of setting the outside pressure to the
arbitrary value of zero and cancels with this arbitrary pressure acting in the u 2 equation.
This can be easily seen for the top-hat filter. The second term we apply directly through
inversion. In this way, the LES pressure is decomposed, and the forces are applied in an
appropriate manner.

It should be noted that second term on the right-hand side of (3.36) makes the velocity

force fw , in (3.27) divergence-free. From (3.10) we conclude that lir V1. f t U = 0 while
E-0

from (3.27), V.(lim f-') = -0.G2 (x 2 ) o2 I2=0 This suggests that making the velocity
force in the LES formulation divergence-free is equivalent to adding the second term
on the right-hand side of (3.36) to the wall-normal momentum equation. Numerical
experiments demonstrate similar results for both approximations.

Combining all the expressions, our LES equations are given by

Oui !ýý +u 2pL 0u -] + :•,(3.37)
6---t -- 9x "a xj Re, a xjxj

= a 0u-u 3  (3.38)
Oxi Oxj

where

R (2A 2G 2 (x 2)) -2fl_ ij = 1,3
Re, a3, + a2 IX=-A2(3.39)

f2 2A 2G 2 (y)dy.
Re. 9x 2  -- A2

These equations, supplemented with the boundary conditions, need to be discretized and
solved numerically. Filter inversion is used to compute the DNS quantities.

4. Results and discussion
Preliminary results have been obtained using the formulation described in the pre-

ceding section for periodic plane channel flow. Simulations were performed using the
second-order centered finite difference code described in Templeton et al. (2005).

The test case we consider here is pressure-driven channel flow at Re, = 180 of dimen-
sionless size 47r x 2 x 47r/3. The flow is resolved on a uniform grid using 48 x 57 x 48
points. The equivalent wall-normal resolution without extension is 49 points, which is rel-
atively coarse. A homogeneous top-hat filter is used with a large filter width 2Ai = 8Axi.
However, the filter width is not tied to the grid resolution: this choice is simply for con-
venience. Since the LES equations are still unclosed due to the presence of the sub-grid
scale (SGS) stresses, the dynamic Smagorinsky model (Germano et al. 1991) is also in-
cluded in the LES equations with a test filter size of twice the filter width. Since we wish
to separate the effects of the wall-forcing terms from the SGS modeling, the dynamic
model is applied away from the LES walls over the domain x 2 E [A 2 , 2 - A 2].
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Results for the mean velocity profile and rms velocity fluctuations are shown in figure 5.

Good agreement is obtained between the results of the present LES and the filtered mean

velocity from the DNS of Moser et al. (1999), with the greatest discrepancy occurring

in the outer part of the LES wall layer (approximately X2 E [0- A2]). There are two

likely causes of this discrepancy. The first is that the assumptions used in the pressure-

forcing term are less accurate in this region than they are nearer the wall. The second

is uncertainty related to the lack of an SGS model in this region when it is known that,

the SGS stresses are significant. However, the dynamic model, being purely dissipative.,

often has difficulty in this region where turbulence production is significant (Gullbrand

&c Chow 1999).
This point is emphasized by the well-known over-prediction of the peak streamwise

velocity fluctuations. Note that the LES values are directly compared with the DNS

curves, although the appropriate comparison would be to the filtered DNS fluctuations

(a subject of future work). Certain points can be made using the present comparison.,

however. In the spanwise and wall-normal directions, the LES fluctuations are less than

the DNS fluctuations, a qualitatively correct result, and smoothly approach zero at, the

LES wall after having the boundary layer "smeared" by the filtering. In the streamwise

direction, the peak is slightly over-predicted, although this over-prediction is less than

in corresponding wall-resolved simulations. This may be partly due to the ability of the

wall-forcing terms to add energy to the flow, although further study of the energetics of

the boundary terms and SGS model is required. Finally, it should be noted that since

the streamwise fluctuations exhibit a steeper boundary layer, the Neumann condition at

the wall is more difficult to capture. Thus, there may be limits on the wall resolution

that can be used with this approach.
These results suggest that filtering the wall may be a viable formulation for LES of

bounded flows. Reasonable predictions of the mean and fluctuating velocity components

have been obtained, although much work is still needed to fully assess the accuracy of the

method. Comparisons between the LES and filtered DNS turbulence are required, along

with an improved understanding of the energy balance involving the LES wall forces and

SGS model.
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Application of a local subgrid model based on
coherent structures to complex geometries

By H. Kobayashit AND X. WU

1. Motivation and objectives
Fine-scale coherent eddies are an important feature of turbulence. These eddies scale

with the Kolmogorov microscale, and have been found universally in homogeneous isotropic
turbulence, planar channel flow, and mixing layers using direct numerical simulation
(Miyauchi & Tanahashi 2001). Recently, Kobayashi (2005) proposed a coherent struc-
ture model (CSM) as a subgrid scale (SGS) model. This model has been tested in a
series of canonical turbulent flows including rotating and non-rotating channel flows and
was found to yield a level of accuracy similar to that obtained by using the dynamic
Smagorinsky model (DSM) (Germano et al. 1991). Compared to the DSM, the newly
proposed CSM has advantages of local determination of the SGS model parameter and
of faster computation. Simple and stable SGS models are suitable for engineering appli-
cations without any homogeneous directions for averaging. Since the model parameter of
the CSM has a positive, finite small variance, it is stable in spite of local determination
of the model parameter. This local model is suitable for complex geometries.

In this study, the applicability of the CSM is further assessed in the simulations of flow
over a backward-facing step and flow in an asymmetric plane diffuser.

2. Coherent structure model

In LES, coherent structures are extracted by the second invariant Q in a resolved-scale
field, which is given by

1 _-j a-- 1  
_3 0-i

2 2 (Oi axj'2 (axi axj
(2.1)

where Sij is the strain-rate tensor, and Wij is the vorticity tensor.
In the present study, the second invariant is applied to the model parameter C of the

Smagorinsky model (Smagorinsky 1963):

S= -2czSS, 1s1 = 2S ,, (2.2)

where -ij is the traceless SGS stress tensor, A is the filter width, and 1S7 is the magnitude
of the strain-rate tensor Sij. The model parameter C is determined as follows:

C FkFcs= , FQ = I- Fcs,

E (WijWij + SijSij) , C'= -1 (2.3)2 22'

where Fcs is the coherent structure function, which is normalized by a magnitude of the

f Permanent address: Keio University, Japan
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FIGURE 1. Computational domain for a backward-facing step.

shear E; FQ is the energy-decay suppression function. The parameter C' is determined

by a priori tests in isotropic homogeneous and channel turbulent flows, and its value is

fixed as 1/22. This model is called a coherent structure model (CSM) (Kobayashi 2005).

This model is very simple because one has only to calculate vorticities in a resolved-

scale field. This model also realizes a suppression of the energy decay in a flow field with

a high rotation because FQ gives a suppression of the dissipation with the increase in

an angular velocity (Kobayashi 2005). The functions of Fcs and FQ have distinct upper

and lower limits:

-1I < Fcs < 1, 0 <_ IFcs 1< 1. 0_F 0 <2. (2.4)

As a result, the model parameter C of the CSM has a finite small variance, and the nu-

merical simulation with the CSM is stably carried out even though the model parameter
is locally determined.

The model parameter of the DSM (Germano et al. 1991) is determined using a least

square procedure proposed by Lilly (1992) with an average in homogeneous directions.

3. Backward-facing step flow

Figure 1 shows the computational domain for a turbulent flow over a backward-facing

step. The grid resolution is 256 x 96 x 64 in the x, y, and z directions, respectively; x is

the streamwise direction, y is the one normal to the walls, and z is the spanwise one. The

Reynolds number based on the step height H and bulk velocity Ub was 4800. This value is

close to 4775 in the experiment by Kasagi and Matsunaga (1995); the Reynolds number

based on the step height and a centerline velocity at the inlet is 5500. The domain depth

in z direction is 3H. The grid was stretched out with the factors; 4 (x = -5) : 4 (x = -1)

1 (x = 0): 2 (x = 2): 2 (x = 10) : 4 (x = 20) in the x direction; 1 (y =0): 10 (y = 0.5)

1 (y = 1): 20 (y = 2) : 1 (y = 3) in the y direction. An inflow condition is imposed

at x = -5, and the inflow profile is given a fully developed channel flow at Rce = 290.

The time step is 0.O1H/Ub. A convective condition is applied at the outflow boundary.

Statistics for the CSM, the DSM, and no model are accumulated over 20,000 time steps
(200 time units), respectively.

This simulation was performed using JETCODE (CHUCK'S CODE), a structured in-

compressible flow solver developed at the Center for Turbulence Research and based on
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a second-order central-discretization on a staggered-grid, a second-order time advance-
ment, and a Poisson equation for pressure (see Akselvoll &, Moin 1995; Pierce 2001).

Figure 2 shows the profiles of streamwise mean velocities for the CSM, the DSM, and
no model in comparison with the particle-tracking velocimetry (PTV) data by Kasagi
and Matsunaga (1995). The lower figure in Fig. 2 shows the close-up of the upper figure
in a reattachment region near a lower wall. Whereas the overall profiles of the CSM,
the DSM, and no model in the upper figure are almost the same, the lower figure shows
that no model simulation gives under-predictions from x = 4 to x = 8 in a reattachment
region near a lower wall. The CSM and DSM, however, agree well with the PTV data.
The CSM gives a level of accuracy similar to the DSM in spite of a local model.

Figures 3 and 4 show the profiles of streamwise rms velocities and Reynolds shear
stress for the CSM, the DSM, and no model in comparison with the PTV data by Kasagi
and Matsunaga (1995). Whereas the profiles of the CSM, the DSM, and no model in Fig.
3 are almost the same, in Fig. 4 no model simulation gives under-predictions from x = 3
to x = 7 at y = 1 in comparison with the CSM and DSM. The profile of the CSM agrees
well with that of the DSM, although the CSM is a local SGS model.

Figure 5 shows the ratios of the SGS eddy viscosity Vt and the molecular viscosity v
for the CSM and the DSM. The ratio for the CSM becomes small at y = 1 because the
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by Le, Moin & Kim (1997).

SGS eddy viscosity depends on •y, in A = (AxAuA•) 2 /3 , and the Au is stretched out to

create the finest mesh. On the other hand, in the present study the ratio for the DSIM

does not depend on A¾ because the SGS eddy viscosity is determined using an average

in homogeneous directions and not using a filtering for the y direction (Germano et al.

1991; Lilly 1992). In the DSM the filtering in the y direction is "optional", and in some

studies the filtering is carried out. In that situation the DSM would give a similar profile
at y = 1 to the CSM.

However, the sharp profile of the CSM seems to be valid because in the small mesh the

effect of Vt to v should be small. Although the SGS eddy viscosity of the CSM sharply

changes at y = 1, the statistics of the first and second moments of the CSM were almost

the same as those of the DSM. In addition, the CSM was numerically stable.

The CSM ran 15% faster in total CPU time than the DSM, which gives it a significant

advantage over the DSM.
Figure 6 shows the skin friction profiles for the CSM, the DSM, no model, and the

DNS result by Le, Momn & Kim (1997). The Reynolds number for the DNS is 5100 based

on a centerline velocity and a step height. This Reynolds number is similar to 5500 in our

simulation. The slight difference of the amplitude in the skin friction between the DNS

and the other results comes from the difference of the expansion ratio of the backstep

configuration. In our case the expansion ratio of 1.5 is used, while in the DNS that of

1.2 was used. The skin friction profiles of the CSM and DSM agree well, whereas that of

no model gives a far reattachment point. The reattachment lengths for the CSM, DSM,

and no model are 7.09, 6.87, and 7.88, respectively. However, an experimental result by

Kasagi and Matsunaga (1995) was 6.51. A higher grid resolution of 384 x 192 x64 with the

same stretch factors as the lower one was examined to confirm the reattachment length.

In that study, the reattachment lengths for the CSM, DSM, and no model are 6.81, 6.75,

and 7.13, respectively. For each resolution, it is confirmed that the CSM gives a similar

prediction to the DSM.
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FIGURE 7. Computational domain for an asymmetric plane diffuser.

4. Diffuser flow

Figure 7 shows the computational domain for a turbulent flow through an asymmetric

plane diffuser. The diffuser has a total expansion ratio of 4.7h and a single-sided deflection

wall of 10°. An experiment for this configuration was carried out by Obi et al. (1993): more

detailed experiments were conducted by Buice and Eaton (1997). The grid resolution is

400 x 80 × 80 in the x', y, and z directions, respectively (x' is the streamwise direction, y the

one normal to the walls, z the spanwise one). An inflow condition is imposed at a' =-5

and the unsteady inflow profile is given a fully developed channel flow at Rer = 500. A

convective condition is applied at the outflow boundary.

This simulation was carried out using an unstructured LES solver CDP, developed at

the Center for Turbulence Research. The filtered momentum equations are solved on a

cell-centered unstructured mesh with a second-order accurate central difference spatial

discretization. An implicit time-advancement procedure is applied. The Poisson equation

is solved to determine the pressure field. For further details about the numerical algo-

rithm, see Ham &: laccarino (2004); for more information about the diffuser simulation,

see VWu et al. (2006) and Schliiter et al. (2005). In this study, two times larger filter width

was used for the CSM.
Figure 8 shows the streamwise profiles of mean (left column) and rms (right column)

velocities at x' = 5.18, 11.96. 27.1. and 33.86 from top to bottom for the CSM, the

DSM, and no model. Those figures reflect the DSM results with a finer grid resolution

(590 × 100 × 110) by Wu et al. (2006) and the experimental data by Buice and Eaton

(1997). The CSM predicts almost the same streamwise mean velocity as the fine DSM

at each a' location. At a' = 27.1 the DSMv and no model under-predict the mean velocity

profiles at y = 0. while the CSM agrees with the experimental data at y = 0. On the

other hand, the CSM gives some over-predictions near an upper wall at a' = 27.1 and

33.86 in comparison with the DSM and no model. Overall, the streamwise mean and rms

velocities of the CSM agree well with those of the fine DSM and the experiment.

Figure 9 shows the profiles of Smagorinsky constant Cs = • for the CSM at each

a' location. At the centerline of the inlet, the C 5 is about 0.9. As moving downstream,

the Cs increases, and at the shear layer region of a' = 33.86 the maximum Cs gives

approximately 1.4, which is close to a well-known value 1.5 in a mixing layer.

Figure 10 shows the skin friction profiles for the CSM, DSM, no model, fine DSMI, and

experimental data. The CSM under-predicts the skin friction from the inlet to a' = 40 on

an upper wall in comparison with the DSM and fine DSM, while the CSM gives a good

prediction of the skin friction on a lower wall. Overall, the CSM predicts the skin friction

similar to the DSM.
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5. Conclusions

A local SGS model based on coherent structures has been applied to a backward-

facing step flow and an asymmetric plane diffuser. A structured and an unstructured

code was used for the backstep and diffuser flows, respectively. The performance of the

local coherent structure model for both configurations is almost the same as the dynamic

Smagorinsky model using an average in homogeneous directions. The coherent structure

model is inexpensive and efficient in comparison with the dynamic model, and is nu-
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merically stable without averaging. The present model will be suitable for the complex
geometry without any homogeneous directions.

In the future, the local coherent structure model will be applied to a complex geometry
without any homogeneous directions.
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Computational study of aero-optical distortions by

a turbulent wake

By A. Mani, M. Wangt AND P. Moin

1. Motivation and objectives

Optical aberrations induced by turbulent flows are a serious concern in airborne com-
munication and imaging systems. In these applications an optical beam is required to
be transmitted through a relatively long distance, over which the quality of the beam
can degrade due to variations of the index of refraction along its path. For air and many
fluids, the refractive index is linearly related to the density of the fluid through the
Gladstone-Dale relation (see Wolf & Zizzis 1978), and therefore density fluctuations due
to flow turbulence are the root cause of optical aberrations. An airborne optical beam
generally encounters two distinct turbulent flow regimes: the turbulence in the vicinity of
the aperture produced by the presence of solid boundaries, and atmospheric turbulence.

Aero-optics is the study of optical distortions by the near-field turbulent flows, typically
involving turbulent boundary layers, mixing layers, and wakes (see Gilbert 1982). The
depth of the aberrating flowfield is usually smaller than or comparable to the projecting
(or imaging) aperture. When an initially planar optical wavefront passes a compressible
flow, different parts of the wavefront experience different density in the medium and hence
have different propagation speeds. Consequently the wavefront becomes deformed. A
small initial deformation of the wavefront can lead to large errors on a distant target. The
consequences of such deformations include optical beam deflection (bore-sight error) and
jitter, beam spread, and loss of intensity. Wavefront distortions can also cause reductions
of resolution, contrast, effective range, and sensitivity for airborne electro-optical sensors
and imaging systems (Jones & Bender 2001).

Research in the area of turbulent distortions of optical waves can be traced back to
the 1950s and 1960s (see, for example, Chernov 1960; Tatarski 1961) when the scattering
of acoustic and electromagnetic waves due to random fluctuations of refractive index
were studied, mostly in the context of atmosphere propagation. Most of the early studies
are based on statistical analysis with simplifying assumptions such as homogeneous and
isotropic turbulence, and therefore are not directly applicable in realistic aero-optical
flowfields. Sutton (1969) characterized different regimes based on optical and flow pa-
rameters for the case of homogeneous and isotropic turbulence and developed statistical
models to predict far-field optical aberrations.

It was in the late 1980s when aero-optics in the modern sense, i.e., the study of optical
distortions due to near-aperture turbulence, came into consideration. Many experimental
studies have been performed to develop high-speed wavefront measurement tools (e.g.,
Jumper &- Fitzgerald 2001; Cheung & Jumper 2004), study the refractive index structures
(e.g., Catrakis & Aguirre 2004; Dimotakis et al. 2001; Fitzgerald & Jumper 2004), develop
distortion scaling laws (e.g., Gordeyev et al. 2003), and devise control techniques to
suppress or modify optically important turbulence structures (e.g., Gordeyev et al. 2004;
Sinha et al. 2004). Despite advances in wavefront sensor technology, significant limitations

t Present address: Department of Aerospace and Mechanical Engineering, University of Notre
Dame
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still exist in terms of spatial and temporal resolutions. Computational studies., when

performed adequately, can allow us to probe the flow and optical fields in greater detail

and hence complement experiments to further our understanding in this area.

Earlier computational approaches for aero-optics typically involved Reynolds-Averaged

Navier-Stokes (RANS) calculations using a turbulence model such as the k-E model, from

which crude algebraic relationships were used to obtain the root-mean-square (rms) of

intensity and length scales of the index of refraction field. Smith & Truman (1990) used a

more sophisticated approach, in which a model transport equation for the rms refractive

index fluctuations was solved. The turbulence information was then fed into an optics

model based on geometric optics, which predicts properties of the beam such as amplitude

loss and spreading. Truman (1992) and Truman &, Lee (1990) were among the first, to

perform time-accurate computational studies of aero-optical distortions. They used direct

numerical simulation (DNS) of a homogeneous shear flow and turbulent channel flow to

study the induced optical wavefront errors. The simulations were based on incompressible

flow equations at relatively low Reynolds numbers, and the fluctuating refractive index

was modeled by a passive scalar. The anisotropy of the optical phase errors due to

anisotropy of the flow was noted in their work.
Because of its ability to resolve large-scale motions at a reasonable computational cost,

Large-Eddy Simulation (LES) has recently been used for aero-optics. Childs (1993) car-

ried out LES of a compressible turbulent mixing layer and performed ray tracing through

it. Jones & Bender (2001) used LES to study aero-optical distortions in a fuselage/turret

configuration. They used ray tracing to obtain the wavefront error and represented it in

terms of Zernike polynomials. Also, they studied instantaneous far-field intensity pat-

terns using the Fraunhofer approximation. Tromeur et al. (2003) used LES to study

aero-optics of a supersonic boundary layer. Sinha et al. (2004) used experiments and

LES to investigate control of flowfields to mitigate the distortion of a laser beam passing

through a cavity shear layer. In these works the major contribution to optical distortions

was assumed to be from the large resolved scales of the flow. The grid resolutions were

poor in the cases involving complex geometries, and the numerical schemes employed

were either total variation diminishing (TVD) or upwinding techniques that are highly

dissipative. This can severely impact the effectiveness of the subgrid scale (SGS) model

and artificially damp the small resolved scales of the flow (see Mittal & Moin 1997),
which can be important.

The present study is concerned with the numerical simulation of a compressible tur-

bulent wake and its aero-optical effects. We consider the propagation of an optical beam

through the flow over a circular cylinder at Reynolds number of 3900 and freestream

Mach number of 0.4. The time-dependent refractive-index (density) field is computed

using LES., and the time series of distorted optical wavefronts and far-field intensity are

obtained using a combination of ray tracing and Fourier optics. An important distinc-

tion between the present study and the previous studies is that the numerical scheme

is based on a non-dissipative staggered-mesh formulation, which leads to more accurate

representations of a wide range of optically important flow scales.

2. Accomplishments

2.1. Flow simulation

The compressible flow over a circular cylinder at ReD = 3900 and Al = 0.4 is computed

by LES, using a sixth-order, energy conservative, compact finite difference scheme de-
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Cd -Cpb St 0.mP Ui•
Experimentsf 0.99 ± 0.05 0.88 ± 0.05 0.215 ± 0.005 86 ± 2.5 -0.24 ± 0.1

LESt 1.00 0.95 0.203 85.8 -0.32
LES¶ 1.00 0.93 0.207 86.9 -0.35
LESJ[ 1.04 0.94 0.210 88.0 -0.37
LESf t 0.97 0.85 0.213 88.2 -0.31

Present, M = 0.2 0.99 0.86 0.206 86.3 -0.33
Present, Al = 0.4 1.18 1.08 0.202 87.1 -0.26

TABLE 1. Comparison of global flow statistics for flow over a circular cylinder at Re = 3900.
The parameters from left to right are drag coefficient, base pressure coefficient, Strohal
number, separation angle, and minimum averaged streamwise velocity.

t see Kravchenko & Moin (1998)
4Beaudan & Moin (1994)
¶ Mittal & Moin (1997)

! Kravchenko & Moin (1998)
t4 Rizzetta et al. (2003)

veloped by Nagarajan et al. (2003). The LES code, originally written for a C-mesh, has
been modified for a generalized O-mesh to enhance grid smoothness and hence numer-
ical stability. The numerical scheme uses implicit time advancement near the wall and
third-order Runge-Kutta away from the wall. The dynamic SGS model for compressible
flow by Moin et al. (1991) with modification of Lilly (1992) is used to account for the
effect of the SGS on the flow.

The computational domain has a radius of approximately 20D (D = cylinder diameter)
and a width of 7rD in the spanwise direction. The discretization of the code is based on
a generalized curvilinear coordinate formulation. The mesh size is 288 x 200 x 48 in the
wall normal, azimuthal, and spanwise directions, respectively. A sponge layer is applied
at the outer boundary to make it non-reflecting. The total integration time was over 70
shedding cycles. From the last 14 shedding cycles of the simulation, approximately 800
snapshots of the density field were saved for aero-optical study.

The literature includes several numerical and experimental investigations of incom-
pressible flow over a cylinder at Reynolds number of 3900, which are used to help validate
our results. Because all those studies are in the incompressible regime, we performed a
Mach 0.2 simulation for validation and a Mach 0.4 simulation for aero-optical study. The
validation is appropriate, because at Mach 0.2 the compressibility effect on flow statistics
is expected to be relatively small.

Table 2.1 compares the major statistics of our simulations with the previously published
ones. For the case of Mach 0.2 the global statistics are consistent with other studies. At
Mach 0.4 there is a small difference in the drag coefficient, which is attributed to the
effect of compressibility. Figure 1 shows the energy spectra of the vertical velocity in the
wake centerline five diameters behind the cylinder. As shown in the figure, the present
simulation successfully captures the details of the experimental spectrum, including very
high frequency components. The two spectral peaks (at the vortex shedding frequency
and its third harmonic) are captured very accurately. Contours of the instantaneous
vorticity magnitude in a spanwise cut at a given time are shown in Fig. 2. The two
separated shear layers and the development of the Karman vortex street are clearly seen
and are in qualitative agreement with experimental observations.



82 A. Mani, M. Wang & P. Moin

10o

10-
10 - ii I

10-1

10-

10-1 100 101 102

FIGURE 1. Energy spectra of vertical velocity as a function of non-dimensional frequency.

Present LES (M = 0.2); LES of Kravchenko k I\oin (1998); o Experiment (Ong &

Wallace 1999).

Case I Case 2

I I

Case 3 Case 4

I I I I

FIGURE 2. Schematics of optical propagation for four different cases. Arrows represent directions

of optical propagation. The distance between the two arrows corresponds to the diameter of the

optical aperture. The contours represent instantaneous vorticity magnitude in a spanwise plane,
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FIGURE 3. Instantaneous isosurfaces of density for p = 0.98p. The dark zone schematically
represents the optical beam.

2.2. Optical computation
For optical analysis, four different cases are considered as shown schematically in Fig. 2.
In the first case, an optical beam is emitted from the surface of the cylinder at an angle of
approximately 17' with respect to the direction of downstream flow. For better numerical
accuracy, the initial intensity of the beam is assumed to be a Gaussian profile that decays
to 1/e 2 times the maximum value at a distance of 0.15D from the optical axis. In our
computations the optical intensity is truncated at 0.35D away from the axis where the
intensity is less than 0.01% of the peak intensity. In the second case the optical beam of
the same aperture diameter is shot vertically through the near wake behind the cylinder.
The axis of the beam is 1.5D downstream from the cylinder axis. In the third case the
beam is moved further downstream to 3.5D from the cylinder axis. Finally, in the fourth
case the size of the optical aperture is doubled to 0.6D with its optical axis remaining
in the same position as in Case 3. Figure 3 shows a snapshot of the fluctuating density
field in the cylinder wake with an optical beam (corresponding to Case 3) marked as a
dark spot.

A combination of ray tracing with Fourier optics, which has been used in previous
computations (see, for example, Jones & Bender 2001), is an accurate tool to compute
optical wave propagation in the parameter range of interest. In this method the domain of
beam propagation is divided into two parts: the small near field in which ray tracing can
be applied accurately, and the far field in which the density is assumed spatially uniform
and Fourier optics can be applied. Spline interpolations are used to obtain the value of
the density and its gradients along the ray path. Once ray tracing yields the distorted
wavefront after passing the turbulence region, Fourier optics is used to find the far-
field intensity pattern for given the optical wavelength and distance of propagation. The
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FIGURE 4. Instantaneous far-field intensity patterns for an aberrated beam corresponding to

Case 1 (top) and a non-aberrated beam (bottom) at different distances of propagation. The

optical wavelength is 2.5 x 10- 6 D. The intensity levels are normalized by the peak intensity at

the aperture where a Gaussian profile is assumed.

Fraunhofer approximation (see Saleh & Teich 1991) is used if the distance of propagation

is sufficiently large; otherwise our Fourier optics is based on the exact solution of wave

equation.
In the optical calculation the near field is taken to be within 20D. while the far-

field distance varies from 10 3D to infinity. The optical wavelengths considered vary from

2.5 x 10- 6D to 4 x 10- 5 D. We assume a linear relation between the index of refraction and

density (see Wolf & Zizzis 1978) in the non-dimensional form: n - 1 = 2.8 x 10-4 x p/p•,

where p and p, are the instantaneous and freestream densities, respectively. In general,

the constant in the relation depends on the reference density p,, which is based on air

under atmospheric conditions in this study. Depending on the optical wavelength, 256 to

2048 Fourier modes in each direction in the plane perpendicular to the beam are used

for far-field computations.

2.2.1. Instantaneous results

Figure 4 shows the spatial evolution of the far-field intensity of a distorted beam

in Case 1 and contrasts it with that of an undistorted one, for an optical wavelength of

2.5 x 10- 6 D. The distorted beam shows a highly irregular and speckled intensity pattern.,

as described by Zeldovich et al. (1995). After a sufficient distance of transmission, the

distortion leads to a significant loss of intensity. The beam starts to diverge at 4000D.

In contrast, the undistorted beam remains focused for a distance of up to approximately

32, OOOD. In other words, the effective range of the optical beam is reduced by one order
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FIGURE 5. Instantaneous far-field intensity patterns for Case 1 for two different optical wave-
lengths (top) in comparison to undistorted beam patterns (bottom). The propagation distance
of the beam is 105D, where the Fraunhofer approximation holds. The intensity levels are nor-
malized by the peak intensity at the aperture.

of magnitude due to turbulence-induced distortions. Figure 5 shows the far-field intensity
patterns for the same beam configuration with two different optical wavelengths. For the
shorter wavelength beam (left) the interference patterns show smaller-scale oscillations,
while the global structure of the patterns is nearly the same for both wavelengths. The
speckled pattern appears at optical wavelengths smaller than 10- 5 D and as expected,
from diffraction theory, the speckle size was found to be approximately proportional to
the wavelength.

Figure 6 shows the effect of optical aperture diameter on the instantaneous intensity
pattern by comparing distortions in cases 3 and 4 induced by the same instantaneous
flowfield. By changing the aperture, while the qualitative spread of the beam is not
changed, the speckle sizes and the interference pattern are changed significantly.

The above results illustrate that aero-optical distortions are strongly dependent on pa-
rameters such as the optical wavelength, distance of propagation, and aperture diameter.
In a related study, Mani et al. (2006) derived several analytical relations between the
spread of a distorted beam and these parameters, as well as the statistics of the flow. For
statistical study of optical distortions, those relations can help reduce the computational
effort by providing algebraic descriptions. However, in this study, we present more gen-
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FIGURE 6. Comparison of instantaneous far-field intensity patterns for cases 3 and 4 where the

only difference is the diameter of the optical aperture. The propagation distance of the beams
is 105D and the optical wavelength is 2.5 x 10-6D.

eral statistics of optical distortions by examining the time averaged intensity pattern. We

limit ourselves to the case of the Fraunhofer limit for distance of propagation in order to

reduce the parameter space by one dimension. A detailed description, including different

distances of propagation and the effect of distortion on the range of optical beams, is

given in Mani et al. (2006).

2.2.2. Time averaged statistics

Figure 7 shows time averaged intensities for three wavelengths in the far field for Case

1 and compares them against the intensities of undistorted beams. As expected, for

all the wavelengths studied, the undistorted beams provide higher intensities in the far

field. It can be seen that for the case of undistorted beams, diffraction causes the longer

wavelength beams to spread more. As a result, when there is no distortion, for shorter

wavelength beams we have higher intensity, which translates to better performance of

the optical device. In contrast, for the case of distorted beams the effect of the optical

wavelength on the peak intensity is not as strong and is not monotone with the wave-

length. In fact, there is an optimal wavelength that leads to a maximum time averaged

peak intensity.

Figure 8 compares the time averaged intensity for the four different cases. The plots

also provide the statistics of the tilt corrected patterns, where the tilt error is removed at

every time step. From the plots it can be concluded that the tilting effect is significant,

but not necessarily dominant, compared to the spreading effect. In general as the beam is

moved further downstream, the aero-optical distortions decrease due to the decay of the

turbulence. A comparison of cases 3 and 4 shows that the time averaged intensity pattern

without tilt removal is almost unchanged, eventhough the aperture size is changed. This

is in contrast to the case of undistorted beams for which larger aperture size leads to

better focus properties. This is most likely due to the fact that the aero-optical effect

dominates the diffraction effect in this regime. Furthermore., the improvement of the

beam quality by tilt removal is less prominent in Case 4 compared to Case 3. Since tilt

removal acts as a high-pass filter with filter size of the order of aperture diameter. this

observation suggests that the optically important structures at this particular location
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FIGURE 7. Time averaged and tilt removed intensities for different optical wavelengths (top) in
comparison with those of undistorted beams (bottom). To obtain a 1-D plot, the 2-D intensity
patterns are integrated in the y direction shown in Fig. 4, which is the homogeneous direction
of the flow. The plots correspond to Case 1 at a distance of 105D. , A/D = 2.5 x 10-6;
----. ,A/D = 10-5; ........ , A/D = 4 x 10- 5 .

are dominated by length scales smaller than or comparable to the aperture size in Case
3 (for more information, see Siegenthaler et al. 2005).

2.3. Grid convergence
A grid convergence study was conducted to ensure that the unresolved scales in the LES
are optically unimportant. The resolution was doubled in every direction to a grid of 575 x
400 x 96 in the wall normal, azimuthal, and spanwise directions, respectively. Since aero-
optical distortions are due to density fluctuations, we compare density spectrum from
the coarse mesh simulation with that from the fine mesh simulation. It can be seen that
increasing grid resolution improves the capturing of small-scale fluctuations of density.
However, the aero-optical effect of the additional small-scale fluctuations appears to be
negligible compared to the effect of larger scales, as shown in Fig. 10, which compares the
time averaged intensities from the two simulations. This indicates that the coarser mesh
simulation has satisfactory resolution in terms of capturing the important aero-optical
effects.

3. Conclusion

In summary, a high-resolution LES of compressible flow past a circular cylinder at
ReD = 3900 and M = 0.4 has been performed, and the flow statistics have been validated
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FIGURE 8. Time averaged intensity for optical wavelength of 2.5 x 10-'D for the four cases

shown in Fig. 2. The 2-D intensity patterns are integrated in one direction (see Fig. 7 caption).
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FIGURE 9. Density spectra at 5D downstream of the cylinder for the coarse and fine mesh
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FIGURE 10. Comparison of time averaged fax field intensities for A/D = 2.5 x 10-6 and
propagation distance of 105D for the coarse mesh (- -) and fine mesh (- ) simulations.

against previous experimental and numerical results. Using the space-time history of the
refractive index (density) field from LES, instantaneous and statistical descriptions of
the flow-induced optical aberrations have been studied for different optical wavelengths
and propagation distances.

Our results show that the turbulent wake flow can significantly degrade the perfor-
mance of optical beams. Depending on the wavelength, the maximum irradiance of the
optical beam can be reduced by one or two orders of magnitude. Also, turbulence can
severely limit the effective range of an optical beam. Unlike the undistorted case where
shorter wavelengths are desirable for greater depth of focus, for an aberrated beam there
is an optimal wavelength for the highest peak intensity.
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Simulation of the incompressible flow
through a jet engine fuel nozzle rig

By X. Wu, G. Iaccarino, F. Ham AND P. Moin

1. Motivation and objectives
Swirling flow discharged from an injector nozzle is important for flame stabilization

in the jet engine combustion process. Inclusion of the details of the swirl-generating
device, i.e., the realistic injector nozzle geometry, in combustor numerical simulation
is necessary because the complicated, spatially developing swirl pattern produced by a
nozzle is difficult to emulate faithfully using indirect means. An indirect approach of swirl
generation for large-eddy simulation was developed by Pierce & Moin (1998). Brankovic
et al. (2000) reported comparison of laser velocimetry measurements with unstructured
Reynolds-Averaged (RANS) predictions of incompressible swirling flow through a jet
engine fuel nozzle rig. The actual hardware studied was a low-emission fuel nozzle and
swirler combination, representative of current production engines. Their unstructured
mesh has a total of 2.55 million hexahedral elements covering a 180' periodic sector
of the injector, and was generated by simplifying a CAD model. The computations of
Brankovic et al. were performed using the National Combustion Code (NCC). They
found that quantitative accuracy was not achieved by the calculation. In particular,
Brankovic et al. pointed out that the central recirculation zone measured from their
own laser velocimetry experiments is both larger in extent, and has higher reverse flow
than could be predicted using their computational approach. Other recent calculations
of swirling flow in jet engine combustor with the full injector configuration were reported
by Grinstein et al. (2002) and Roux et al. (2005).

Mahesh et al. (2004) developed an unstructured fractional-step algorithm for LES of
incompressible flow in complex geometries. Their fractional-step method uses collocated
grids and is formulated with combined usages of cell center based Cartesian velocity
and face center based face normal velocity; pressure is stored at cell center. Discrete
kinetic energy conservation is achieved by proper handling of the convection and pressure-
gradient terms. Integrated global contribution of the convective term to discrete kinetic
energy is zero if values at the face center are calculated as a simple arithmetic mean of
the values at the two cell centers that have that particular face in common. Although
pressure gradient term is globally non-conservative in the equation of discrete kinetic
energy, its effect can be reduced through a least-square minimization procedure. Mahesh
et al. applied their algorithm to the flow in one sector of a jet engine combustor. The
predicted mass flow splits through various injector nozzle components compare very well
with measurements. No detailed comparisons of the combustor flow velocity profiles were
reported in their study.

We present LES results of incompressible, non-reacting flow in a fuel nozzle rig using
the method of Mahesh et al. (2004). Smagorinsky subgrid-scale model was used together
with a slightly modified implementation of the Germano dynamic procedure tailored for
unstructured grids. Details on the model implementation and filtering procedure are as
in Mahesh et al. The geometry is from Pratt and Whitney, and is substantially similar
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FIGURE 1. Computational model of the Pratt Whitney fuel nozzle rig. Left: side-end view;
right: side-front view.
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FIGURE 2. Frequency spectrum for wall pressure fluctuations in a planar channel flow. * DNS

of Choi & Moin (1990) with a spectral code; o coarse LES of Wang with a structured finite

difference code (unpublished); solid line: present fine LES: dashed line: present coarse LES.

to that of Brankovic et al. (2000) with the exception that the present rig does not have

purge holes and their associated intake, see Fig. 1 and the Fig. lb of Brankovic et al.

(2000). Validation experimental data for the present nozzle rig flow are also supplied by

Pratt and Whitney.
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FIGURE 3. Streamwise turbulence intensity in a planar channel flow. Solid line: present fine
LES; dashed line: DNS of Moser et al. (1999).

2. Validation in simple flows

Prior to computing the flow through injector nozzle, the present unstructured LES
computer program (CDP2.1) was first applied to fully developed turbulent planar channel
flow for the purpose of validation. Flow conditions and geometrical specifications used
in our simulation are identical to those used in the direct numerical simulation (DNS) of
Choi & Moin (1990) with a spectral method. In particular, the Reynolds number based on
channel half-height and friction velocity is 180. Two mesh sizes were used in the present
simulations, (32x64x32) and (128x128x128). The coarse mesh size has a resolution of
72 wall units in the streamwise direction, and 24 wall units in the spanwise direction.
These are the same as those used by Meng Wang in a previous channel calculation
at the Center for Turbulence Research with a structured second-order finite volume
LES code. The fine mesh has the same size as in Choi & Moin. Figure 2 compares the
present channel fluctuating wall-pressure spectrum with previous computations. For the
calculation of power spectra estimation, a long history of pressure samples was saved at
selected locations at every time step. Notations related to power spectrum computation
and related post-processing procedures follow strictly those described in Choi & Moin
(1990). From Fig. 2 it is clear that at the coarse resolution, our wall pressure spectra
results agree well with the results computed previously using a structured LES code
by Meng Wang, indicating the reliability of the present code from one perspective. The
figure also shows that at the fine resolution our wall pressure spectra agree with the DNS
data of Choi & Moin (1990) in the lower frequency range, but there is an earlier drop-off
at the high frequency range. This is to be expected because the DNS of Choi & Moin was
performed using a spectral code, while the present approach is unstructured second-order
finite volume. Figure 3 compares the streamwise turbulence intensity obtained from the
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FIGURE 4. Skin friction coefficient in the flow over a backward facing step. e Jovic & Driver
(1994); solid line: present LES; dashed line: present RANS.

present LES with that from the DNS of Moser et al. (1999). Although not shown here,

mean velocity and other second order turbulence statistics from our computation also

agree very well with existing DNS channel flow data.

The present computer program was also validated using turbulent flow over a backward-

facing step. The flow conditions and geometrical specifications are identical to those re-

ported by Le, Moin & Kim (1997). In particular, the Reynolds number is 5100 based

on step height and inlet freestream velocity. The computational domain consists of a

streamwise length of 30 step heights, including an inlet section of 10 step heights prior

to the sudden expansion, vertical dimension is 6 step heights, and the spanwise width

is 4 step heights. Both LES and RANS computations were performed with the same

code CDP2.1. For the RANS computation, the V2F turbulence model of Durbin (1995)

was implemented into the unstructured LES solver. At the upstream inlet, LES used

the zero-pressure gradient flat-plate boundary layer velocity fields obtained from another

independent computation. That auxiliary computation uses DNS to simulate a spatially

developing flat-plate boundary layer through the laminar, transitional and turbulent

regimes, covering a range of momentum thickness Reynolds number from 80 to 1000.

The boundary layer transitions because of imposed weak, migrating freestream pertur-

bations at the inlet. The time-dependent velocity fields at the station of momentum

thickness Reynolds number 700 were saved and subsequently used as inlet conditions for

the backward-facing step LES. RANS inflow conditions are from the statistics of Le et

al.. At the upper boundary, slip wall boundary conditions were applied. Figure 4 com-

pares the predicted skin friction coefficient with the experimental data of Jovic & Driver

(1994). The skin friction obtained from the present LES exhibits interesting similarities

to the DNS skin friction results of Le et al. in the following three respects. Near the step

corner, there is region (0 < x < 2) with very weak positive skin friction, indicating the

existence of a minor secondary recirculation zone. Secondly, the negative peaks attained
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FIGURE 5. Mean streamwise velocity in the flow over a backward facing step. o DNS of Le et
al. (1997); solid line: present LES; dashed line: present RANS. Upper left: x = -3: upper right:
x = 4; lower left: x = 10; lower right: x = 15.

in the present LES and in previous DNS are not as deep as that of Jovic &: Driver (1994).
Further downstream, there is good agreement between the LES and DNS results with
the experimental data. Mean streamwise velocity profiles at four different x stations are
shown in Fig. 5. Both RANS and LES results show relatively good agreement with the
DNS. The minor differences between the RANS and LES velocity profiles are mostly due
to the slight discrepancy at the inlet.

3. Results of nozzle rig flow

Figure 1 shows the fuel injector nozzle rig model used in the present LES. Three types
of air intakes can be seen from the end view. The central pipe with a small guide vane
is the inlet for the core flow. The slots distributed along the circumference with a radius
furthermost away from the pipe axis are the tangential entries for guide flow. The slots
distributed along the circumference with an intermediate radius (closer to the pipe axis)
are the tangential entries for outer flow. From the side-front view, the outlets into the
combustor chamber for the core flow, outer flow, and guide flow can be clearly seen. Note
the axial position ranges for the three outlets are not the same, i.e., they are staggered.
Figure 6 shows cross-sections of the computational domain. The z = 0 plane indicates
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FIGURE 6. Computational domain of the present nozzle rig flow. Upper: z 0 plane; middle

left: x = -4 plane; middle right: x = 0 plane; lower left: x = 0.01 plane; lower right: x = 2
plane.

that axial coordinate x covers a range of -15.5 < x < 20, approximately. At, x = -4.

the cross-section of the computational domain is a full 360' circular pipe. Downstream

of the nozzle at, x = 2, the cross-section becomes a circular sector. As indicated in the

figure, the nozzle axis is located at y = 9.8 and z = 0.

At the far upstream uniform inlet velocity was prescribed as 29.134 in/sec using ex-
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FIGURE 7. Contours of instantaneous axial velocity inside nozzle, light colors represent low axial
speed. From top left to lower right (row major) the locations for the cross-sections are: x = -2.1,
-1.8, -1.55, -0.9, -0.8, -0.7, -0.6, -0.5, -0.45, respectively.

perimental specifications. The Reynolds number based on inflow speed and unit length
(1 inch) is 1246. Except for the inlet and outlet all the other boundary surfaces of the ge-
ometry are solid wall on which no-slip conditions were applied. A total of six calculations
were performed with mesh sizes ranging from 3.6 to 8 million cells; they yielded similar
and consistent results. Mesh shape and density in the region close to nozzle outlet were
varied in the six cases. The maximum CFL number was set at 4.5 and the corresponding
time step is approximately 7.0 x 10- 7 seconds. It was found that 2 x 105 time steps are
needed to converge the mean flow statistics.

The process of swirl generation by nozzle injector is complicated and can be appreciated
by examining the velocity fields over a series of cross-sections perpendicular to the x-
direction. Figure 7 shows the axial velocity contours over nine yz-planes up to x = -0.45.
White space in the first three planes represents slices of the fuel stem hardware. The high-
speed contours near the pipe axis in the plane of x = -1.8 is the core flow. The four
small fan-like structures at x = -1.55 are due to the effect of guide vane inside the core
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FIGURE 8. Contours of instantaneous axial velocity inside nozzle, light colors represent low axial
speed. From top left to lower right (row major) the locations for the cross-sections are: x = -0.4.
-0.35, -0.20, -0.15, -0.10, -0.05, 0.00. 0.05, 0.15, respectively.

flow intake. The tangential outer flow intakes are clearly visible on the three planes of

x = -0.8, -0.7 and -0.6. Also visible over these planes is the velocity wake behind

the fuel stem. At the last two cross-sections the guide flow entries start to affect the

flow, as indicated by the sparsely connected outer ring-like structures in the velocity

contours. The actual guide flow entry slots are shown in the cross-section of x = -0.4

in Fig. 8. Over the yz-plane of x = -0.2 there are four isolated flow streams: core

stream, outer stream, guide stream as well as the flow occupying the reminder of the

container pipe. At the station of x = -0.1 the upstream container pipe has nearly

ended, see also Fig. 6. Therefore almost all the inlet fluid mass now squeezes through

the narrow passages near the nozzle axis. These ring-like flow streams merge further

downstream inside the combustion chamber. Unlike the upstream pipe which covers a

full 360' range, the downstream combustor spans only a small angular section, see the

yz-plane of x = 0.05 and 0.15.

Convergence of numerical solutions in complex swirling flows is more difficult than in

the two simple canonical flows used for the validation study. We found that the mean
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FIGURE 9. Mean axial velocity along the injector geometric centerline. 0 Pratt Whitney
experiment; solid line: present LES.

centerline axial velocity can be used as a good indicator for monitoring convergence of
LES solutions in the present nozzle rig swirling flow. For example, when a new simula-
tion is initiated by interpolating converged solutions from an existing case with different
mesh shape or mesh density, it takes another 2 x 105 time steps for the mean center-
line axial velocity to reach statistically steady state. The predicted mean axial velocity
along the injector geometric centerline in Fig. 9 is seen to agree with the Pratt Whit-
ney experimental data over a significant portion of the axial distance with the exception
of 0.2 < x < 0.6. The present comparison represents a substantial improvement from
that shown in the Fig. 12 of Brankovic et al. (2000). Note the geometries in these two
studies are slightly different and the current experimental data set is close but not the
same as those in Brankovic et al. The predicted secondary negative peak of mean axial
velocity at x ; 0.2 was found to be very persistent through a series of test simulations
with significant changes in mesh density and composition (tetrahedral versus textural),
especially in the region immediately downstream of the x = 0 plane. Inspection of the
instantaneous and mean velocity contours over the symmetry plane of y = 9.8 reveals
a tiny region centered at approximately x = 0.2 with slightly stronger negative flow
compared to the region immediately downstream from 0.2 < x < 0.3. Beyond x = 0.3
is the main central recirculation zone where the primary negative peak is located. The
tiny patch centered at x = 0.2 likely arises from the interaction between the core swirling
flow and the outer swirling flow, and the main central recirculation zone is due to the
combined effects of all the three swirling streams. Mixing between the core and outer
swirling streams occurs upstream of the guide flow outlet. Recall that the three outlets
are staggered in axial position ranges. The calculated mean axial and radial velocities
over the symmetry plane y = 9.8 as a function of distance from the injector centerline
are compared with experimental data in Fig. 10. The comparison is overall satisfactory.
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The underprediction of the primary negative peak at x = 0.4 is directly related to the

discrepancy shown in Fig. 9. Swirling vortex is generated near the nozzle as a resullt of

the interaction of the three jet streams. This is visualized in Fig. 11 using surfaces of
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FIGURE 11. Visualization of swirling vortex near the injector using the second-invariant of the
velocity gradient tensor.

the second invariant of the velocity gradient tensor. The darkened region in the figure
represents higher axial speed.

4. Conclusions

Inclusion of the swirl-generating device geometry is an integral part of jet engine
combustor fluid flow simulation. In this work we have applied an unstructured, energy-
conserving LES approach to the computation of non-reacting flow in a realistic fuel
injector nozzle. Validation results obtained for channel and backward facing step flows
are in good agreement with existing DNS and experimental data. LES results for the
complex nozzle rig flow demonstrated marked improvement over previous RANS results
with respect to comparison with experimental measurements. The effects of the injector
nozzle components are revealed through visualization of the velocity fields over a se-
quence of cross-sections perpendicular to the nozzle axis. Additionally, the axial velocity
along the injector centerline was found to be a good indicator of solution convergence in
the present swirling flow. When a new simulation is initiated using interpolated solutions
from an existing converged case with different mesh shape or density, it takes nearly
the same number of time steps to converge the new solution as required in the original
simulation with zero initial velocity field.
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On the optimization of artificial neural networks
for application to the approximation of chemical

systems

By M. Ihme, A. L. Marsden AND H. Pitsch

1. Motivation and objectives
An artificial neural network (ANN) is a computational model for storing and retrieving

acquired knowledge. ANNs consist of dense interconnected computing units that are sim-
ple models for complex neurons in biological systems. The knowledge is acquired during a
learning process and is stored in the synaptic weights of the inter-nodal connections. The
main advantage of neural networks is their ability to represent complex input/output
relationships. They are well suited for use in data classification, function approximation,
and signal processing, among others.

The performance, or fitness, of an ANN is often measured according to an error between
target and actual output, training time, complexity of the ANN, or in terms of other
properties important for the user. Although the elemental building blocks of a neural
network, i.e., neurons, nodal connections, and the transfer functions of nodes are in
themselves relatively simple, the various combinations can result in different topologies
with similar or vastly different fitness characteristics. Therefore, the a priori design of a
neural network with near-optimal fitness is not a trivial task and is usually guided by
heuristics or trial-and-error. The architecture or topological structure of an ANN can be
characterized by the arrangement of the layers and neurons, the nodal connectivity, and
the nodal transfer functions. In this work, the class of multi-layer perceptrons (MLPs) is
considered, which consists of an input layer with N, input channels, NL hidden layers,
and an output layer with No output channels. The number of neurons in each hidden
layer is denoted by NN. Nodes in the first NL - 1 hidden layers are characterized by a
non-linear behavior; nodes in the last hidden layer are linear (Haykin 1994).

A multi-layer perceptron is shown in Fig. 1(a). Information in this 2-3-2-1 network
propagates uni-directionally from the input to the output channel. Each neuron includes
a threshold which is indicated by a vertical arrow in Fig. 1(a). The significance of the
threshold is explained in Section 2. In the case of a symmetric network, in which all
neurons in a particular layer are connected to the same nodes, the nodal connectivity
matrix can be contracted to a layer connectivity matrix L. The matrix entry Lij indicates
the connectivity between layer j and layer i. The layer connectivity matrix corresponding
to the ANN of Fig. 1(a) is shown in Fig. 1(b).

A particular topology of an ANN, to be denoted by A, can formally be written as

A = A(NL, NN, L, N,, oo, Y, J). (1.1)

in which tW is the vector of transfer functions for all nodes, Y is the approximated function,
and J is a cost function characterizing the performance of the network. The last four
arguments in Eq. (1.1) are constrained by the problem and the desired performance of the
network. The design parameters NL, NN, L, and v- determine the topology of the neural
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FIGURE 1. Multi-layer perceptron: (a) architecture of the MLP consisting of one input layer with
two input channels X 1 and X 2, 4 hidden layers with, respectively, 2, 3, 2, and 1 neurons in each
layer. The neurons in the hidden layers are denoted by n,, with i = 1, .... 8; (b) corresponding
layer connectivity matrix.

network and have to be chosen in such a way that the ANN has an optimal performance

characteristic. While small networks with only a few connections and synaptic weights

are often limited in their capability to perform a certain task, large ANNs with many non-

linear nodes can result in poor generalizability, long training time, and computationally

expensive knowledge retrieval (Yao 1999).

Over recent years considerable research has been conducted on the evolution of topolog-

ical structures of networks using evolutionary algorithms (Koza & Rice 1991: Bornholdt

& Graudenz 1992: Tang et al. 1995: Angeline et al. 1994: Miller et al. 1989; Husken et al.

2005; and references in Yao 1999). However, very little work has been carried out on

evolving node-specific transfer functions or the simultaneous evolution of both nodal ar-

rangement and transfer functions (Liu & Yao 1996: Hwang et al. 1997). This shortcoming

is addressed in the present work by proposing a methodology that can be used to simulta-

neously optimize the nodal arrangement, connectivity, and transfer functions of a neural

network using a generalized pattern search (GPS) method developed by Torczon (1997).

The GPS method is complemented by a surrogate management framework (SMF). de-

veloped by Serafini (1998) and Booker et al. (1999), in order to increase the efficiency of

pattern search methods for computationally expensive problems. In this method, the ex-

pensive cost function is approximated by a surrogate function based on Kriging (Koehler

& Owen 1996). The GPS algorithm is a derivative-free method and provides robust con-
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vergence properties. This method has been used previously by Booker et al. (1999) for
rotorblade optimization and by Marsden et al. (2004) for trailing-edge airfoil optimiza-
tion. Recently., Audet &- Dennis (2000) extended the GPS method to problems with mixed
design variables with bound constraints. This method, the so-called generalized mixed
variable pattern search (GMVPS), was employed in the work of Kokkolaras et al. (2000)
to design a thermal insulation system. Here, GMVPS will be use to optimize the nodal
connectivities and transfer function types of each neuron.

The main objective of this work is to use automatically generated neural networks for
to approximate non-linear functions, e.g., those encountered in representing chemically
reactive systems (Christo et al. 1996a,b; Blasco et al. 1999a,b, 2000; Chen et al. 2000;
Flemming et al. 2005). Chemical kinetic reaction mechanisms are often comprised of
thousands of chemical reactions among hundreds of species. In numerical simulations of
combustion systems., for example, the direct solution of transport equations for all these
species is usually not feasible, partly because of the large range of chemical time scales.
To reduce the number of independent species, dimensional reduction methods have been
developed, in which a part of the chemical species are projected onto lower dimensional
manifolds, parameterized by the remaining species. For instance, in the case of the steady
flamelet model (Peters 1984), all chemical and thermodynamic quantities are represented
using only two scalars. In the case of turbulent combustion and in cases where radiation
and pollutant formation are important, accurate predictions might require the number of
independent scalars to grow to five or even more (Peters 2000). The functional relation
between chemical species and independent scalars is usually stored in conventional tables.
The size of the chemistry table increases with the number of parameters and imposes a
drastic restriction on the resolution for more than three independent parameters. ANNs,
in contrast, have the potential to accurately approximate complex functions using modest
amount of memory. Motivated by the chemistry application, test examples are performed
using functions that closely resemble the chemical characteristics of combustion systems.
Nevertheless, the proposed method for the optimization of the network architecture is
general in nature and applicable to other problems of interest.

The remainder of the paper is organized as follows. Section 2 discusses the ANN
model and describes the training process. The GPS and GMVPS methods are presented
in Section 3. These algorithms are then applied in the optimization of neural networks.
In the first step, only the number of neurons per layer are optimized and the connectivity
matrix and type of transfer function are fixed. This optimization problem is solved using
the surrogate management framework with standard generalized pattern search. In the
following, an example of the approximation of a reactive system is presented in which
the nodal arrangement, transfer function, and connectivity are parameters and optimal
networks are generated using the GMVPS method. The performance of the automatically
generated network is compared with results obtained using a conventional tabulation
technique. The paper finishes with a discussion.

2. Artificial neural network

The general structure of an MLP is shown in Fig. 1(a). This particular network consists
of N1 = 2 input channels and No = 1 output channels and A: RN•N - RNO. Note that
the input nodes do not represent neurons in the conventional sense. Here they merely
perform the task of normalizing the input data so that the input signal feed into the
network is in the interval [-1, 1]Ni. The output Yi of each neuron i in the hidden layers
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is computed according to

Yi = (iCI:~h ciýi .i (2.1)

where xj is the input signal and Nc denotes the number of connections in the network.

The element Cij is unity if neurons i and j are connected and zero otherwise. The synaptic

weights are denoted by .)ij. Each neuron includes a threshold wio, which is connected to

a constant input signal xi0 = -1. The effect of the threshold is to lower the net input on

the transfer function (Haykin 1994). A sigmoidal function

v(s) = a, tanh(bis) (TI)

cyclometric function

,(s) = a2 atan(b2s) J (T2)

a linear function

V(s) = s (T3)

or other monotonic functions are commonly used as transfer functions. The parameters

a and b in the transfer functions (T1) and (T2) are adjustable by the user. Transfer

functions (TI) and (T2) will be used in Section 4.
The synaptic weights in the network are adjusted during the training process, which

in itself represents an optimization problem and can be written as

min E(.A.) . (2.2)
wERN-

In the above problem, E : JRNo , N, -+ R is the error between the actual and desired

output of the network, which can be written as
Nt No

2--- et (j) with et(J) - yt(j)]2  (2.3)
j=1 

i=1

and Kt (j) represents the jth training sample of the output signal i. The number of training
samples is denoted by Nt. The learning process, in which the weights are iteratively
adjusted, is guided by the knowledge of the desired input/output examples and is called

supervised learning. A Levenberg-Nlarquardt algorithm (Hagan et al. 1996) has been

used for the optimization of the synaptic weights. This algorithm is a trust region Gauss-

Newton method and its fast convergence makes it suitable for training neural networks.

The main advantage of ANNs is their generalizability, meaning their accurate perfor-

mance on new data. In this respect ANNs are different from tabulation methods in which

discrete values of a particular function of interest are memorized and stored in a table. A

good generalization of a particular ANN is dependent on the complexity of the function,

the architecture of the network, and the size and information content of the training
set. Networks with only a few hidden neurons and synaptic weights are restricted in the

approximation of complex functions, resulting in poor generalizability characterized by
so-called under-fitting. On the other hand, a network that is too complex, meaning that

there are considerably more synaptic weights than training samples, can result in possible

over-fitting and non-smooth function approximation.
The appropriate size of the training set is crucial for the design of an optimal network.

and is usually determined by two factors. First, the a priori knowledge of the function to
be approximated allows for an assessment of the complexity and shape of the function.
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Based on this information, the minimum size of the training set required for the descrip-
tion of the functional shape can be determined. A second constraint on Nt is imposed
by the size of the network and the number of synaptic weights. The size of the training
set for a fixed architecture with N, synaptic weights is given by

Nt Ž a N . (2.4)

The value of a is chosen based on experience and analysis and typically ranges from
approximately 30 for noisy training data down to 2- 5 for the approximation of analytical
functions. The lower bound is chosen to avoid the possible occurrence of over-fitting,
which can occur if Nt is significantly smaller than aN.,.

The generalization potential of a trained ANN is assessed using test samples. These
samples are used after training to evaluate the ability of the ANN to approximate un-
trained samples. In this process, the performance of the ANN can be evaluated by means
of the following cost function

J(A) = log 10 ( Z(es(j))2 (2.5)

where N, is the number of test samples. The evaluation of the cost function requires
that the synaptic weights in A are fully adjusted during a preceding training process.
In order to allow for an objective comparison of the fitness between different network
architectures, e' is normalized to the interval [0, 1] so that J(A) represents a relative
error.

The resulting optimization problem may be formulated as

min J(A)
NL ,N-N ,C

subject to NL = N
NN~i E {0, 1,. N i = 1. 2,...-NL_

NNNL = 1,

LEE, WeP,

where P is the finite list of transfer functions and £ denotes the finite set of possible
layer connectivity matrices. The continuous variables are NL and NN and the categorical
ones are L and ip.

3. GPS method and GMVPS algorithm

The GMVPS method is an extension of the GPS method (Torczon 1997), and has been
developed by Audet & Dennis (2000) to handle mixed variable problems with bound con-
straints. In the present case, the optimization of a network architecture can be represented
as a mixed variable problem in which the number of hidden layers and neurons are (con-
tinuous) integer-valued parameters and the transfer functions and connectivity matrix
are of categorical type. Categorical variables must take on values from a predefined list
or discrete set of elements. Optimization in this mixed variable space is performed to
find a network architecture with optimal fitness, subject to certain constraints. In this
context note that the pattern search method does not guarantee that the solution is a
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global minimum. The limit point of the sequence of iterations, however, corresponds to a

local optimal solution, which is defined with respect to a set of neighbors. The neighbor-

hood is specified by the user and accounts for the variation of continuous and categorical

variables. A rigorous definition of local optimality for a mixed variable problem is given

by Audet &- Dennis (2000).

The pattern search algorithm is a derivative-free mesh-based method. The algorithm

generates a sequence of iterates, whose cost function is non-increasing (Audet &- Dennis

2000). All points at which the cost function is evaluated are restricted to lie on a mesh.

The algorithm proceeds in two stages: a search and a poll step. The search step allows for

a mesh-restricted local and global exploration of the parameter space. In this step a finite

number of search points are evaluated with the objective of identifying a region with a

reduced cost function. For instance, random sampling of the parameter space using Latin

hypercube sampling (LHS) (McKay et at. 1979) or a genetic algorithm can be employed.

A considerable cost reduction of the search step can be achieved by employing a less

expensive surrogate function. The surrogate function is often an approximation of the

cost function. The shape of the function is continuously updated by incorporating all

previously evaluated points of the cost function. This surrogate function is then used

to identify a new point with a potentially lower cost function. However, the surrogate

function can be used only in the continuous parameter space. For categorical variables,

the above-mentioned techniques have to be employed.

In the present work, Kriging approximation is employed as the surrogate function.

Kriging is a statistical method and is based on the use of spatial correlation functions.

Its multi-dimensional extension makes this method attractive for optimization problems

with several parameters. A summary of the Kriging approximation is given by Marsden

et al. (2004). Details of implementation are described by Lophaven et al. (2002).

In the case of an unsuccessful search step, a poll step in the neighborhood of the

incumbent point with the lowest cost function is executed. All continuous-valued points

are restricted to lie on a mesh that is constrained to the parameter space. For a mixed

variable problem, the mesh M at iteration k is defined to be the direct product of the

categorical variable space QC and the lattice in the continuous variable space

14 = QC X {k + AkD; : ' E NN" I} (3.1)

where Ak > 0 is the mesh size parameter and D is an NC x ND matrix whose columns

form a positive spanning set. If I denotes the identity matrix and t is the vector of ones.,

then D is typically chosen as D-= [/,-Q] or D = [/.-/] (Audet k- Dennis 2000).

The poll step consists of a local search in the mesh neighborhood around the current

best point and, in the case that the categorical variable space is not empty, also in the set

of the categorical neighbors. Polling is conducted in three steps (Audet & Dennis 2000):

"* polling with respect to the continuous variables and fixed categorical parameters,
"* polling in the neighborhood of categorical variables and fixed continuous parameters.

"* extended polling around the neighborhood of points whose cost function is close to

the incumbent value.

The continuous poll step is an evaluation of adjacent mesh points forming a positive

spanning set. This step is augmented with the evaluation of points in the discrete neigh-

borhood. If these poll steps are unsuccessful extended polling is performed. Extended

polling around promising points is triggered when the previous poll steps are unsuccess-
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ful. A promising point ( for the extended polling is defined as

J(A1k) < J(ý) _< (1 + O)J(7k), (3.2)

where ý > 0 is the poll trigger. If J(() is close to J(rlk) of the current best point, polling
around the continuous neighborhood of ý is performed with the expectation of finding
a better point. If a point ý* is found with J(qk) < J((*) < J(Q), extended polling
around this point is continued. This continues until either a new incumbent is found or
until all points in the extended poll set are inferior to the incumbent. If all poll steps
are unsuccessful, the mesh is refined and a new iteration, starting with a search step, is
performed. More details on the algorithm and convergence proofs can be found in Audet
& Dennis (2000) and Abramson (2004).

4. Results
In this section, different aspects of network optimization are explored, including opti-

mization of the nodal arrangement, type of transfer function, and connectivity.
In Section 4.1 the nodal arrangement of the ANN is optimized using the standard

GPS together with surrogate approximation. In this case, the hidden layers and neurons
of the network are free parameters. In Section 4.2, the optimization method is applied
to the approximation of chemical systems with optimal ANNs. In this application the
transfer function type and connectivity matrix are added as optimization parameters,
and the network dependence on NL, &, and C is optimized subject to the cost function
constraint. The nodal transfer function and the connectivity are parameters of categorical
type and therefore require that the GMVPS method be applied. Results for two different
optimization processes are discussed.

4.1. Optimal nodal arrangement

In this section, the GPS method is applied to optimize the number of neurons in a fully
connected MLP. The number of neurons in the first hidden layer is a free parameter and
its bounds are 0 < NN,1 _< 32 = NN-ax. A hyperbolic tangent function with a = 1.075
and b = 2 is used as the transfer function. The number of test samples and training
samples are equal and set to 350 so that the coefficient a in Eq. (2.4) is a > 2.7. It can
be expected that in the limit of small NN,1, the network suffers from under-fitting and
over-fitting might be observable for large NN,1 due to small a-values. For the training
of the individual networks during the GPS optimization, at most 200 iterations in the
Levenberg-Marquardt algorithm are used.

To demonstrate the use of this method, a network with a scalar output, dependent on
two input channels, is optimized. Mimicking a chemical reaction rate dependent on two
input channels, the following analytical function is used:

r 2L (X, - X9)2

exp (4.1)

with X0 = (0.5. 0.5)T, _a = (0.01.,0.1)T, and X E [0, 1]2.
The evolution of the optimization algorithm is shown in Fig. 2. The surrogate function

(solid line) is determined by the surrogate points (circles) and comprises all locations at
which the cost function has previously been evaluated. Points evaluated during the search
step, obtained from the minimization of the surrogate function, are denoted by square
symbols. Locations that are evaluated during the poll step are denoted by diamonds
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FIGURE 2. Evolution of the GPS optimization 
for a network with one non-linear hidden layer.

and the current best value for NN,, resulting in the best ANN performance 
is indicated

by a star. In the first iteration (Fig. 2(a)) the minimum of the surrogate, evaluated

during the search step, corresponds 
to the current best point. The search step is declared

unsuccessful and polling around the previous optimal location is performed. The poll

step does not result in a reduction of the cost function. The mesh size is reduced to

A = 4 in the succeeding iteration and the surrogate is updated (Fig. 2(b)). Neither the

search nor the poll step are successf-l in the second iteration and the mesh size is further

reduced to A = 2 (Fig. 2(c)). The minimum of the newly updated surrogate function

is computed and the cost function is evaluated, resulting in a reduction of J(A) and

therefore a better ANN structure. Both search and poll steps in the fourth iteration

(Fig. 2(d)) are not successful and the mesh size is reduced to A --- 1 in iteration 5.

From the updated surrogate function the search step determines a new minimum of

the surrogate function for N,,7. = 25. The cost function for this location is ev'aluated,

resulting in fulrther improvement of the network fitness. The GMIVPS algorithm identifies

the mesh 
local 

optimizer 
at NNjh 

= 25.

The GPS algorithm requires only eight function evaluations for the optimization of

this particular network with one non-linear hidden layer. A function evaluation comprises

both the training phase and fitness evaluation during the test process. It is also interesting

to point out that two search steps (iterations 3 and 5) lead to reductions in the cost

function and all poll steps were unsuccessful.

Figure 2(e) shows that the fulnction evaluations are mainly clustered around the mesh

local optimizer. This accumulation of points in the Kriging function can lead to a degra-
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FIGURE 3. Solution of the steady laminar flamelet equations as a function of mixture fraction
z and progress variable c; (a) temperature and (b) chemical source term.

dation of the surrogate function (Marsden et al. 2004). This can be prevented by including
space-filling points, which necessarily do not correspond to optimal points.

The evolution of the cost function for 0 < NN.1 < 50 is shown in Fig. 2(f). For
small NN,, the network suffers from under-fitting, resulting in poor generalization. By
increasing the number of neurons and hence synaptic weights, J(A) decreases and stays
approximately constant for NN,1 > 35. A further increase in the number of synaptic
weights results only in marginal improvement of the fitness. This can mainly be attributed
to the limited complexity of the network structure (one hidden non-linear layer) and
possible over-fitting for large NN,1.

4.2. Chemistry example

In this section, optimal neural networks for the approximation of a chemical system are
generated. In this application, all three optimization strategies, namely optimal nodal
arrangement, transfer functions, and connectivity, are combined.

The chemical process under consideration describes methane/air combustion. The GRI
2.11 chemical mechanism (Bowman et al. 1997) containing 277 elementary chemical re-
actions among 49 species is used.

The steady laminar flamelet equations (Peters 1984) are often employed to describe
the reaction-diffusion balance in non-premixed flames. The solutions to these equations
provide temperature and mass fractions of all species in terms of two parameters. The
mixture fraction z and the reaction progress variable c are used for this parameterization.
Figure 3 shows the temperature and the chemical production rate of c, which can be
viewed as a measure of the heat release. In the following, network optimization for the
approximation of these two quantities as functions of these parameters is performed.
The solid lines represent the system boundary; flame states outside this boundary are
unaccessible. Note that the chemical source term is very localized around z -:Z 0.2 and
0.15 < c < 0.23.

The number of samples used during the training phase and testing process is 500.
Sample data are obtained by applying an acception-rejection method (Rubinstein 1981);
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Quantity Neurons Transfer Function L J(A)

0 0 () 0
1 o o 0 0 0
1 1 0 0 o ( 0

Temperature 6-7-4-7-1 (T2)-(T2)-(T2)-(T2)-(T3) 1 1 2.780
1 0 0) 1 () () (
1 0 0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

Chem. Source Term 2-2-8-8-1 (T2)-(T2)-(T2)-(T2)-(T3) -3.124
0 0 o) 1 0 0 o)
0 0 0 0 1 () 0
0 (0 0 0 00 (, 1 0

TABLE 1. Optimal network architecture for the approximation of temperature and chemical
source term. The transfer function and connectivity matrix are free categorical parameters.

this results in higher sampling density in regions where the functional value Y is large.

This method consequently results in a better resolution of the important regions with

high chemical source term and temperature.

By considering the optimization of the nodal transfer function and the connectivity

in the network design, the categorical neighborhood requires an extension in order to

identify a network with optimal fitness in the joint continuous and categorical space. In

this example, the categorical neighborhood for the transfer function includes the following

combinations: (i) The transfer functions for the neurons in all layers are identical, either

of type (TI) or (T2); (ii) Except for the neurons in one layer, the transfer function for

the neurons is identical. The set of neighbors for the connectivity contains the following

combinations: (a) fully connected feed-forward network; (b) fully connected feed-forward

network with Li 0 = 1 where i represents any hidden layer; (c) fully connected feed-

forward network with Lo = 1 for all i hidden layers. The poll trigger is set to ý = 0.05

and the maximum number of neurons per layer and the number of non-linear hidden

layers are set to 8 and 5, respectively.

The optimal network for the approximation of the temperature consists of a 6-7-4-7-1

ANN. All neurons employ a cyclometric transfer function. The connectivity resembles

a fully connected feed-forward network in which all neurons are also directly connected

to the input layer. The cost function of this network is J(A) = -2.780. The regression

analysis for the network is shown in Fig. 4(a).

The network for the approximation of the chemical source term is considerably different

from that of the temperature. This is mainly attributed to the different, shapes of the

functions for temperature and chemical source term. The architecture of the optimal

network consists of a 2-2-8-8-1 fully connected feed-forward network. The cost function

for this network is J(.A) = -3.124 and the regression analysis for this network is shown

in Fig. 4(b). Both network characteristics are summarized in Table 1.

It is interesting to compare the network performance with a conventional tabulation

technique. Here, a particular chemistry table will be denoted by 'T and the parameter

space of z and c will be discretized using a Cartesian and equidistant grid. The function to

be tabulated is linearly interpolated to grid points. The performance for the tabulation of

temperature and chemical source term with increasing resolution is presented in Table 2.
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FIGURE 4. Regression analysis for approximation of (a) temperature and (b) chemical source
with optimal network architecture. Note that the temperature and chemical source term are
here shown in non-dimensional form.

Cost Function J(T)
Table size M x N, Temperature Chemical source term

100 X 100 -2.240 -1.677
200 x 200 -2.580 -2.193
300 x 300 -2.773 -2.492
400 x 400 -2.871 -2.621
500 x 500 -2.974 -2.791

TABLE 2. Comparison of the performance for the representation of temperature and chemical
source term using conventional tabulation technique.

In order to allow for an objective comparison between the methods, the same set of test
samples is used. Generally it can be observed that the performance of the tabulation
method increases monotonically with finer resolution. The resolution required for an
accurate chemistry representation grows rapidly and may impose a rather restrictive
bound when the number of parameters is larger than three. It is interesting to point
out that for an equivalent representation of the temperature using the optimal ANN
described above, a table with about 300 x 300 grid points in z and c direction would be
required. By comparing the fitness of the ANN and tabulation for the representation of
the chemical source term (Tables 1 and 2), it can be concluded that more than 500x500
grid points are required for a table to achieve an accuracy comparable with the network
approximation.

5. Discussion

Optimization of an ANN has been successfully carried out using standard pattern
search methods in conjunction with a surrogate function and generalized mixed variable
pattern search. These methods offer extensive flexibility in implementation and freedom
in choice of parameters. Using a model problem, optimization for the number of neurons,
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the transfer function, and the connectivity was explored. It was demonstrated that the use

of categorical variables for the transfer function and connectivity resulted in identification

of better performing ANNs compared with a trial-and-error approach.
Based on experience from the model problem, an ANN was optimized to model the

chemistry of methane/air combustion for prediction of temperature and chemical source

term. Regression analysis for the optimal ANN demonstrates satisfactory prediction of

both quantities. It is interesting to note that the optimal ANNs for prediction of these

two quantities are very different, which indicates that there are underlying discrepancies

in the behavior of each of these two quantities. Network performance is compared with

the conventional tabulation method. It is shown that the chemistry tabulation requires

considerably more memory in order to obtain equivalent accuracy.
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A dynamic front propagation model for large-eddy
simulation of turbulent premixed combustion

By E. Knudsen, M. Herrmann AND H. Pitsch

1. Motivation and objectives
Turbulent premixed flames are particularly difficult to describe in the context of Large-

Eddy Simulation (LES). Most industrially relevant premixed flames exist in either the
corrugated flamelets regime or the thin reactions zones regime (Pitsch & Duchamp De
Lageneste 2002). The width of the inner reaction zone of a flame in these regimes is
comparable to, if not smaller than, the Kolmogorov length scale that describes the size
of the smallest turbulent eddies in the flow. Flame preheat zones, which are typically
much broader than reaction zones, may also, in the corrugated flamelets regime, exist on
sub-Kolmogorov length scales. In LES, by definition, the smallest length scales of a flow
are filtered out. As a result, in industrially relevant regimes the transitions that occur
between unburned and burned states occur on subfilter scales.

The use of an explicit filtering procedure that could numerically resolve length scales
on the order of LES filter widths would permit the simulation of these sharp unburned-to-
burned transitions. Most LES codes, however, use implicit filtering. In implicit filtering,
filter widths are assumed to correspond to the size of mesh cells. As such, wavenumbers
on the order of the filter cutoff are sure to be under-resolved. In some particular cases,
turbulence may spread and wrinkle a flame front to the extent that the filtered flame
structure is resolvable using implicit filtering. Unfortunately, such a condition can be
neither guaranteed nor enforced.

Premixed combustion models for implicitly filtered LES that use standalone progress
variable or finite rate chemistry approaches will thus, it seems, always fail. These models
are only as accurate as the schemes they use to evaluate gradients. But no scheme is
capable of resolving the sharp subgrid transitions that occur in premixed implicit LES
near flame fronts. LES models that attempt to resolve flame structure are therefore
especially prone to numerical errors in the most critical regions of the flowfield.

This problem has been addressed through the development of application-specific tech-
niques for premixed combustion. Each of the proposed techniques shifts difficulty away
from the issue of resolution and toward the issue of modeling (Colin et al. 2000; Moureau
et al. 2006; Pitsch 2005). To ensure success, these techniques must either implicitly or
explicitly accomplish two separate tasks. First, they must accurately track the position
of filtered flame fronts. Second, given a front position, they must provide an appropriate
density field to a flow solver. In most cases, appropriate means resolvable. It does no
good to have an accurate representation of a flame front if an unresolved density jump
is repeatedly fed into a continuity equation.

For example, the dynamically thickened flame model (Legier et al. 2000) uses finite rate
chemistry, but additionally broadens local reaction zones so that they can be resolved
on LES grids. This broadening is achieved by increasing molecular diffusivities and, in
a proportionate manner so as to keep the laminar flame speed constant, spreading out
the influence of reaction source terms. The task of providing a resolved density field to
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a flow solver is therefore explicitly accomplished by the model. This model suffers from

one significant drawback. however, in that the widened flame severely attenuates local

turbulence and prevents small eddies from influencing the front. This effectively decreases

the velocity at which the front propagates and creates the need for a compensating

model. The so-called "efficiency function" that is used acts to ensure that the flame will

propagate at appropriately large speeds in the presence of turbulence. This efficiency

function may therefore be viewed as the empirical introduction of a model describing the

turbulent burning velocity.

Level set approaches such as the g-equation, on the other hand, attempt to explicitly

track flame fronts (Pitsch 2005). In these methods, a front is defined as an isocontour of a

field variable. This variable is described at the relevant isocontour by a governing equation

in which the front propagation velocity directly appears. Away from this isocontour,

smooth gradients are prescribed for the field variable to ensure that it is well resolved. As

in the thickened flame approach, the influence of subfilter turbulence on the propagation

velocity must be modeled. In contrast to the thickened flame approach, however, resolved

small-scale eddies are not necessarily damped out and thus do not necessarily need to

be modeled. Additionally, and in further contrast, level set methods address the task of

returning a density field to a flow solver using flamelet assumptions. Flamelet profiles are

typically selected using local flow information and then mapped onto the flame front. In

certain level set implementations such as those that use ghost fluids (Moureau et al. 2006),

it is possible to prescribe subgrid density jumps. In more standard implementations, it

will sometimes be necessary to borrow from the thickened flame model and artificially

spread the density jump. In such a case the issue of turbulence attenuation is again

encountered, but in level set methods dealing with this issue is relatively simple. The

parameter used to describe turbulence intensity in the burning velocity model could

simply be adjusted.

In summary, it is difficult to describe premixed combustion in the context of LES

because premixed flame structures often exist entirely within single grid cells. Widely

used approaches to premixed LES such as the thickened flame model and the G-equation

address this problem by treating these structures as coherent and then propagating them

using a modeled turbulent burning velocity. The turbulent burning velocity is therefore

one of the most significant modeling inputs in LES of premixed turbulent combustion.

Traditional burning velocity models rely on a series of coefficients that have been tuned by

analyzing both experimental and direct numerical simulation (DNS) data (Peters 2000:

Abdel-Gayed & Bradley 1981). These coefficient-based approaches have been successfully

applied in the context of RANS, where level set methods offer an alternative to the

problem of reaction rate closure (Peters 2000; Herrmann 2000). In LES, however, where

instantaneous flame realizations are available, it may be possible to eliminate the use

of constant coefficients by employing dynamic procedures that determine coefficients

automatically.

Im et al., for example, proposed a dynamic level set propagation model in which a level

set field variable is treated much like a scalar (Im et al. 1997). Subfilter contributions to

front propagation are determined by evaluating a burning velocity at two different filter

levels and comparing the results to differences in the magnitude of the gradient of the

level set field variable at those same two levels. Im et al. claim that this approach can

be physically interpreted as enforcing flame consumption conservation. They base this

claim on work by Kerstein et al. demonstrating that a volume average of the magnitude

of the gradient of the level set field variable is equivalent to a measure of the total front
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area within that volume (Kerstein et al. 1988). In Kerstein et al.'s work, each isocontour
of the level set field variable is treated as an equally valid representation of the flame
front. Under this assumption, volume averaging is equivalent to averaging over multiple
front realizations.

But more recent work (Peters 2000; Oberlack et al. 2001; Pitsch 2005) has stressed
that level set governing equations are only valid at the field variable isocontour that they
describe, and that traditional averaging procedures therefore cannot be used. Specifically.
because the value of a level set field variable can be arbitrarily defined away from the
relevant isoconotour, volume averaging procedures can produce arbitrary results. In the
present paper, then, a dynamic burning velocity model is proposed that only considers
information directly from the 2-D front of interest. This model requires the use of a
volumetric surface filter that is developed and presented in Section 2. In Section 3, the
new filtering technique is applied to develop the dynamic model. Section 4 presents an
evaluation of the model in the context of DNS. Brief conclusions are offered in Section 5.

2. Spatial filtering of a surface

Level set equations can be derived by setting the substantial derivative of a generic
field variable equal to zero at a surface of interest. The resulting expression describes how
the field variable isocontour associated with that surface evolves. In premixed LES, the
derivation of an equation governing flame front behavior can be approached in a different
way. A flame front can generally be defined as an isocontour of a generic progress variable
c. This variable might represent, for example, a non-dimensionalized temperature. The
equation governing the behavior of such a variable is

a~c ac 1 aD a c' 1
j- + uj Yx p x pD j+ -WR (2.1)

where uj is the local flow velocity in the jth direction, p is the fluid density, D is the
diffusivity of the variable c, and where &'R is a source term that describes the effects of
chemical reactions. To derive an equation describing the flame front associated with a
particular c isosurface, information from Eq. (2.1) needs to be extracted directly from this
isosurface, here arbitrarily defined as c = co. This extraction operation can be performed
by multiplying Eq. (2.1) with a delta function, 3 (c - co),

6 (c -co) -•+ uj =5(c -co) 1 a pD ac ) + • (2.2)

This delta function does not necessarily need to be an infinitesimally thin Dirac delta.
Rather, here 3 will be defined as a normalized Gaussian of finite width. As long as
this width is an order of magnitude smaller than the length scale associated with the
inner reaction zone of a flame, multiplication with 3 (c - co) will effectively give a null
result everywhere except at the flame front. This finite width definition of 3 is convenient
because it eliminates the problem of dealing with the special mathematical properties of
the Dirac delta.

Just as Dirac delta functions may equivalently be written as derivatives of heaviside
functions, Gaussians may equivalently be written as derivatives of error functions. Since
the 6 function that appears in Eq. (2.2) only depends on c, the chain rule may be used to
rewrite the left-hand side of Eq. (2.2). Remembering that what here will be referred to
as the heaviside function H represents an error function of finite width, this procedure
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gives

6 (c - co) Oc + c [H (c - co)] a[H (c -c)] (2.3)
[a ax at x

To move the heaviside function on the right-hand side into the relevant derivatives, the
gradient of the progress variable must first be written in terms of the front normal
direction at co, which here will be denoted nj.

ac - Vcl = nj IVcI (2.4)

axj 1Vcl

Use of the product rule on the diffusive term then gives

a a=pD ac )-o VcI + nj--x a (pD VcI). (2.5)axj x x j

Finally, the delta function acts on ]V7c] as

6 (c- co)Vcj = 16 (c- co) Vcl = IV [H (c- co)]I. (2.6)

Combining all of these elements, the right-hand side of Eq. (2.2) can now be written

3(c-co) [a (D Ox + I) R = (2.7)

DK1V [H (c - co)] + 6 (c - co) -I Lj a (pD Vc1) + )R , (2.8)

where K is the divergence of the normal vector, or the curvature. The whole equation
then becomes

a [H (c - co)] a [H (c - co)]

at + Uj ax= (2.9)

1 [ra•x 1p t+n]• (.0
DuIV [H (c - co)]l + 3 (c - co) - Ina (pD Vcj)+ LR (2.10)

P [ax3

This equation governs the behavior of a heaviside function located at the flame front, and
in this form strongly resembles a level set equation. It differs from a level set equation,
however, in that the heaviside function is meaningfully defined at all locations in the field
away from the front.

A new variable can now be introduced. The variable G will be defined as

G = H(c- co), (2.11)

where the G field away from c = co is not arbitrary but rather obeys the rules of a
heaviside function. A universally valid substitution in Eq. (2.10) gives

aG aG p,
5- + uJ- = DKIVG] + -- SLuJVGI. (2.12)at ax3  p

where S]1
Sp P L nj a (pD Vcl) +& •R (2.13)

Here, the quantity SL describes the laminar burning velocity of the flame, which is a
function of the diffusion and source terms in the progress variable equation, as expected.
The quantity pu describes the density of the unburned fluid, and is introduced to ensure
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FIGURE 1. Application of Eq. (2.14) to the surface G = 0 defined by the field variable
G (X,1Y) = 1.81sin (+)+sin( ) +sin( ) 2Y. The uppermost plot shows the exact
level set. The three lower plots show the level set after sequential filterings. Here, Y (r) is a box
filter.

that laminar burning velocities computed in unburned reference frames, SL,", may be
used within the equation.

Unlike level set variables, G can be volumetrically filtered because there is nothing
arbitrary about its definition. Defining F (r) to be some appropriately normalized filter
kernel and then applying it to the G field gives

G(x t) = j (r)G(x-rt)dr=f, f (r)H(c(x-rt) -co)dr., (2.14)

where A is some characteristic filter width. This filtering procedure is consistent with
LES in the sense that the same filter kernel F (r) that is used to filter the Navier-
Stokes equations can be used for surface filtering, even when Favre density weighting
is considered. It will be assumed here that the filter kernel Y (r) does not change from
point to point in physical space x.

Figure 1 demonstrates how the filtering operation proposed in Eq. (2.14) affects a
2-D front consisting of a variety of wavenumbers. As shown, it first removes the high-
est wavenumbers, as is desirable in LES. After multiple filter passes, only the lowest
wavenumber mode remains.

To summarize, Eq. (2.12) governs the evolution of a heaviside function that describes
the flame front. Because this equation is valid everywhere, it can be volumetrically filtered
and easily manipulated. It is not numerically tractable, however, since it describes sharp
jumps. A level set equation will therefore have to be introduced if simulations are to be
performed.

A level set field variable G associated with an unfiltered flame front can be defined as

G =o V c = co (equivalently, V G = Go ) (2.15)

V!; = 1 V c 0 co (equivalently, V G $ Go ), (2.16)

where the definition away from the co surface is arbitrary. Equation (2.15) guarantees
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that the co and Go surfaces evolve in tandem. A governing equation for g can be developed

by following the level set derivation procedure mentioned at the beginning of this section.

Taking the substantial derivative of Eq. (2.15) yields

D9 gv - 0, (2.17)

Dt 1t + vJg =0

where vj g0 describes the combined influence of propagation and convection on the Go
front. vj, 0o is not arbitrary but rather is implicitly defined by Eq. (2.15). Specifically,

it is what forces the go surface to evolve in tandem with co. Since the convection and

propagation speeds of c are explicitly available from Eq. (2.10) (or, equivalently, from

Eq. (2.12)), however, vj,g, may simply be written

Vj.Go = uj + nj (DN + SL) (2.18)

where again

SL = -SL.p - P [lj (pD Vcj) +WRI (2.19)
p P VC1 Pu LDX,

After substituting for vj,go at the front, the level set equation becomes

-+ uja =DK•IVGq+ iSL.uvglp V 9-=-0. (2.20)

At all locations away from the go surface, 9 obeys no governing equation because it is

arbitrarily defined.
Eq. (2.18) provides a critical link between Eq. (2.12) and Eq. (2.20). When G is filtered

this link changes, but it does so in a completely consistent way. The filtered variable G

and its governing equation can be used to derive a level set equation at the filter level !Tj.

For example, consider an unfiltered flame front described by a heaviside function such as

is done in Eq. (2.11). Eq. (2.12) governs the behavior of this heaviside function. If a LES

of the flame front is to be performed using a filter kernel F, the corresponding filtered

front can be found using Eq. (2.14). Furthermore, filtering Eq. (2.12) with the operator

in Eq. (2.14) will yield an appropriate filtered governing equation. Since the G equation

is not numerically tractable, however, a level set equation describing the same surface

must be developed. The corresponding level set field variable g would be defined by

U=go V G=Go (2.21)

1V1[ =1 V GZ Go. (2.22)

The governing level set equation at the front would make use of some filtered velocity

V7j2 . Unlike the unfiltered case, however, it is not easy to explicitly write down what,

this velocity should be. The unclosed terms that appear when a filter is applied to Eq.

(2.12) must be modeled. They can then be used in the level set equation associated with

the relevant filter level.

The results of filtering Eq. (2.12) will now be examined, and a dynamic model de-

scribing subfilter effects will be developed. The results of this model will be applicable

at U = go, thus closing the problems of both filtering and numerical tractability.

3. Dynamic propagation model

vNith an appropriate surface filtering procedure defined, it is possible to derive a dy-

namic identity that describes the speed at which a turbulent front propagates. This
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identity will be derived using Eq. (2.12). In many respects, it resembles Germano's iden-
tity. A particular form of the latter appears when the Navier-Stokes equations are written
at two different filter levels, here denoted with respect to the velocity uj by Uj and tij.

a---j "+ a (uigJ) +• aX (Wu--- ,- Ul = RHS (3.1)

a--i -a- -iuJ = RHS, (3.2)

where RHS describes the pressure, diffusive, and body force terms, and where a constant
density assumption has been made for simplicity. Applying the filter tj to Eq. (3.1) and
then subtracting Eq. (3.2) gives

a -a a _a _
j___ M U a) (X. ~ x.~ (UýU3 - Uj.j)., (3.3)

where the fact that the right-hand sides of the Navier-Stokes equations commute with
filters has been used. It has also been assumed that

()= , (3.4)

which is not necessarily true for an arbitrary filter F. If all subfilter quantities are known,
then Eq. (3.3), which is the spatial gradient of Germano's identity, will trivially reduce
to 0 = 0. When subfilter quantities are modeled, however, this equation does not iden-
tically hold. But employing a model that enforces this equation ensures that even when
subfilter errors are made, the evolution of a doubly filtered velocity field matches the
filtered evolution of a singly filtered velocity field. This condition should always be true
in consistent LES procedures.

A similar analysis may be performed on a surface evolution equation. When a single
filter is applied, Eq. (2.12) becomes

-' j +i- xj = D--VGI + ' "'IVGI +' I• ZVG[, (3.5)

where 4-,,, JVGZ is the turbulent front propagation model corresponding to the filter
size,

P -gI3 ,, = SL uIVGI, (3.6)

and where primed quantities are defined as

p' (x, r, t) = 0 (x - r, t) - -0 (x, t). (3.7)

When a second, broader filter is used, the equation becomes

+ + = DVGI + Dg" IVGs + ý8 , (3.8)

where the double prime denotes

6" (x, r, t) = 6 (x - r, t) - (x, t). (3.9)

Like Uj, T is defined everywhere in the vicinity of the front, since K = V - When
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nmltiplied with G, however, these filtered quantities become irrelevant at all locations

away from the flame front.
It is interesting to note what happens when Favre velocity filtering is used. Then.

filtered velocities Uj are defined as

S1 t =T (r) p (x - r,t)uj (x - r. t) dr (3.10)Tj (Xx t)

and fluctuating velocities as

u(xr.t) =uj(x-- r, t)- J (r)p(x-rt) uj(x-r.t)dr. (3.11)uj x, , t =v x -r, ) (X, t) < A

Again, when these velocity fluctuations are multiplied with spatial derivatives of G =

H (c - co) in Eq. (3.5), information is retained only directly at the front. As such, the

S(x, t) term that appears in Eq. (3.11) takes on the value of the front conditioned density,

p (x, t) = (co), when it appears in the level set equation. In this sense, all fluctuating

velocities in the equation are conditioned on the density at the front.

A simplification unique to surfaces can now be introduced. Intuition suggests that all

filtered combinations of fluctuating velocities and G are approximately zero.

, 0G ; 0, uJ.ij ,0. (3.12)

Specifically, these terms describe how high wavenumber velocity components move the

filtered front. They tend to wrinkle the instantaneous front, but they act only along

a 2-D surface within the filter volume. When these terms are filtered, therefore, they

will on average have no effect on the mean front position. Some of the subfilter velocity

fluctuations will tend to move the subfilter front location forward, and some will tend to

move the front location backward. But because these fluctuations are all deviations from

the local filtered velocity, when integrated along the front over the filter volume, they

will all tend to cancel out. For example, if a non-propagating front were released in a

flowfield of homogeneous isotropic turbulence, subfilter scale velocity fluctuations would

exist. But the mean front position would remain stationary., even though the exact front

becomes more and more wrinkled. These terms should therefore be unable to contribute

to front propagation.
Filtering Eq. (3.5), subtracting Eq. (3.8), and manipulating produces

t9G
G) = DT1VGI - DkjVGI + (3.13)

(DG s) - DG.sgs + GVC- - S- S v , (3.14)

where the filtered density at the front is taken to be independent of the filter level. Again,

the term on the left-hand side describes the effect of filtered velocity fluctuations and so

can be dropped. DGsgs is the model used to describe subfilter curvature induced front
propagation.,

DG,ýg.s = Dt;' VGI, DG sgs = DO 1VGI. (3.15)
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Upon grouping all curvature related terms together into 9,

9 = D-RjVGI - D-jTVGI + (DGsg9s) - DG,sgs (3.16)

the dynamic identity becomes

P9 = 9 3 ! q -VGK - 9  V7G . (3.17)

For the purposes of simplification, the remainder of this brief will consider the corru-
gated flamelets regime only. Diffusive effects in this regime do no significantly influence
the burning velocity, resulting in -9 0. In this regime, then, the identity reduces to

•Sgs G -§,g, ]VG. (3.18)

LES turbulent burning velocity models usually depend much more strongly on the filter-
ing level at which they act than on space. 8sas may therefore be drawn outside the filter
integral, leaving

"8sgs V " (3.19)

Although this equation looks very much like a dynamic identity, the G variable will
not be available in computations. Eq. (3.19) can be written in a more useful form by
manipulating the filter definition. If for the purposes of demonstration the first filter
level is taken to represent a completely resolved field, then

_-- __-__
SIr< = VG[ F= 2A (r) IH (c (x - r. t) - co)t dr (3.20)

<2A

= f,.F2A(r) 3 (c(x - r,t) - co) lVc(x - r,t)I dr. (3.21)
_<2A

It will now be assumed that VcI does not strongly vary along the flame front. In the
corrugated flamelets and thin reaction zones regimes this assumption is certain to hold
since turbulent eddies do not penetrate the inner reaction zones of such flames. Under
this assumption, [Vcj may be treated as a constant and brought out of the integral.
Additionally, a front area per filter volume may be defined as

a 2 = 2A (r) 6 (c (x - r, t) - co) dr. (3.22)

When _F is a tophat filter, a2A describes the exact unfiltered flame area within the filter
domain. When T is a Gaussian, a 2 A gives flame surfaces near the center of the filtering

domain more weight. Using these assumptions, 11VGI may be rewritten

IVGI = IVct I a2A. (3.23)

The denominator of the right hand side of Eq. (3.19) may be written

VG = VcllK j 72A(r)6(c(x-rt) -co)nj(x-r,t)dr (3.24)
I n r<2A

It can be shown that the expression within the absolute value sign describes the area
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density of the filtered flame front within the filter volume. This quantity will be defined as

a 2,.. Finally, since the right-hand side of Eq. (3.19) describes flame area densities within

the same filter volume, the actual flame areas may be used in the identity,
.gsgs - _Af°nt . (3.25)
8sgs Afront

This form of the identity agrees with Damkohler's hypothesis (Damk6hler 1941).

s, A(3.26)
8 L Amean'

and enforces the condition that the mass a flame consumes should be independent of

filter level.
The remainder of this brief will use a burning velocity model proposed by Peters (Pitsch

2005). (Peters 2000),
STS- L 2/
ST - S = -IDa + (,Da) +± aDa. (3.27)

In the limits of large and small Da, respectively, this model reduces to

ST- = L +t U'-- 8T = SL (I + (ba) ½ (3.28)

which obey the appropriate regime scaling laws. While it is not entirely clear that the

placement of the a and ý coefficients in Eq. (3.27) is ideal, it is reasonable to suggest

that physically, flame mass consumption should appear in both limiting cases. Therefore,

Eq. (3.25) will be used as a dynamic identity, Eq. (3.27) will be used to model ssg,. and

a in Eq. (3.27) will be treated as a dynamic coefficient.

4. DNS results

A direct numerical simulation (DNS) of a front propagating in forced homogeneous

isotropic turbulence was performed to validate this model. The parameters describing

the DNS are shown in Table 1. Turbulence was forced using the linear scheme of Rosales

and Meneveau (Rosales & Meneveau 2005), and the simulation was run at a constant

density. A uniform cartesian mesh was used, but in the direction of front propagation the

domain length was doubled so that front statistics could be gathered for a longer period

of time. The level set equation
06 09

ot ±UJ 0  SLIV 9 I V 9=g0 (4.1)

was solved to describe front evolution. As there are no diffusive terms in this equation,

the front effectively propagates with a Damkohler number of infinity, and thus resides in

the corrugated flamelets regime. A re-initialization procedure was performed after every

three time steps to force the level set field variable away from the front to conform to

a distance function. Reinitialization was accomplished by first using an iterative marker

method to estimate the distance to the front, and subsequently solving a PDE in psuedo-

time to improve the accuracy of this estimate. The third order WENO scheme of Peng

et al. (Peng et al. 1999) was used for the PDE step.
Statistics involving the front itself were computed using information from only one
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Simulation Constants Turbulence Parameters
Mesh Size = 256 x 128 x 128 Re, = 39

Ax = 1.0.10-3 m Ret 101
v = 1.87- 10-5 m 2 

. s-1 Integral length scale, It = 7.7. 10-3 m
p = 1.16 kg -m- 3  Eddy turnover time, r = 0.20 s

Burning velocity, SL = 0.06 m • s-1 Komogorov scale, 7 = 5.0.10-4 m
Forcing Coefficient, A = 2.4 Largest eddy size, 1 - 16.0. 10" m

TABLE 1. DNS Parameters

FIGURE 2. Snapshots from a DNS of front propagation. The level set is the wrinkled surface, and
the cut plane shows voriticity magnitude. The left image shows an early time in the simulation,
while the right image shows the fully developed front.

isocontour of the level set field variable. Neumann boundary conditions were prescribed
for the level set at each end of the domain in the propagation direction. The front,
however, never comes so near these boundaries that their treatment influences behavior.
The front was not allowed to propagate periodically in this direction because the re-
initialization procedure would create artificial fronts at the domain boundary. Periodic
boundary conditions were prescribed for the level set in the other two directions.

A parallel, structured code that is second order in both time and space was used to
compute the flow. Although the code was run using an implicit solver, the CFL number
was limited to 0.5 to ensure that all structures were time resolved. Because the linear
forcing scheme used here adds energy to the flow at all wavenumbers, the turbulent
flowfield was initialized within a 1283 cube, and then copied to an adjacent cube. This
prevented the generation of wavenumbers smaller than the inverse of the box size. Periodic
boundary conditions were used in every direction for the velocity field. Figure 2 shows
two instantaneous realizations of the flowfield and front.

Figure 3 shows mean front displacement as a function of time, computed both di-
rectly from the DNS and from a variety of models. If no turbulent burning velocity
model is used, front displacement is severely under-predicted, as expected. The static
turbulent burning velocity model of Eq. (3.27), however, somewhat over-predicts front
displacement. This over-prediction primarily develops at early times as the front, which
is initially flat, transitions to a wrinkled surface under the influence of turbulence. In
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FIGURE 3. Front displacement from initial location as a function of time, using: o : Mean front
position from DNS; n : Laminar burning velocity; A : Static turbulent burning velocity

model (Eq. (3.27)); SL , with area ratio from DNS: - - Dynamic model

computed using unfiltered and singly filtered fields, - • - : Dynamic model computed using
quadruply filtered and completely filtered fields

contrast, the dynamic model accurately predicts this transition. The solid line, for exam-

ple, uses unfiltered fields to describe a first filter level, and completely filtered fields to

describe a second. Applying Eq. (3.25) in this context consists of multiplying the laminar

burning velocity by the area of the fully resolved front and then dividing the result by

the width and height of the domain, which represents the area of the completely filtered

front. The results are in excellent agreement with the DNS data.
The dynamic model produces results that are somewhat less accurate when filter levels

that are very closely spaced are used. For example, when unfiltered and singly filtered

fields are used in Eq. (3.25), front displacement is mildly over-predicted. This error

does not signify a problem with the modeling approach as much as it highlights the

difficulty of describing how velocity fluctuations, u', change with very small changes in

filter wavenumber. If the fluctuations are relatively small to begin with, as they are when

a singly filtered field is used, all errors made in predicting u' will strongly affect the

solution of Eq. (3.25). Similar conclusions were arrived at by Im et al. in the context of

scalar isosurfaces (Im et al. 1997).
Difficulties in predicting filtered velocity fluctuations are alleviated to a certain extent

when the test filters selected span a wider range of wavenumbers. The - ... - line in Fig.

3 shows that dynamic model predictions considerably improve when quadruply filtered

and completely filtered fields are used as test levels.
Figure 4 shows speeds and area ratios from both the DNS and the models as a function

of time. The front propagation speed that the static turbulent burning velocity model

predicts varies smoothly in time, because it depends only on averaged velocity fluctu-

ations that are a function of the amount of kinetic energy in the domain. The actual

front propagation velocity, however, oscillates at relatively high frequency. The dynamic

model, regardless of the filters used, appropriately captures this high frequency behavior.

which appears through the surface area of the front. Specifically, even in the dynamic case

that uses unfiltered and singly filtered fields, the area ratio of the fronts that is plotted

using the right vertical axis qualitatively matches the plot of the DNS front propagation
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FIGURE 4. Front speed and area ratio as a function of time: o : ST directly from DNS data;
o : Laminar; A : Static ST model (Eq. (3.27)); -: s = a .. d with area ratio8 L A flat

from DNS; - - : Area ratio of unfiltered and singly filtered fronts (right vertical axis), -
- : ST from dynamic model, computed using quadruply filtered and completely filtered fields

speed. The errors in the model are therefore due to the scaling of this area ratio, which
again is a function of subfilter velocity fluctuations.

Finally, since the model's sensitivity to u' has been emphasized, it is appropriate to
describe how this quantity is computed in the DNS. The most critical requirement for
this computation is that there be a match between the filtering procedure used on the
front area and the procedure used on the velocity field. At a minimum, this means that
the filtering kernel F that is computationally applied to the front should be the same
as that applied to the velocity field. Experience showed, however, that this alone was
not enough. Attempts to extract differences in u' from turbulent viscosities computed
at two filter levels, or from model turbulence spectra mapped onto the velocity fields,
proved insufficient. Rather, the energy of the velocity fields at each filter level had to be
computed. A difference in the velocity fluctuations associated with different filters could
then be formed,

u -k- -k, (4.2)
3 3

where k is the kinetic energy associated with the velocity field Uj. Even when an arbi-
trary means of computing u7 was used, this technique accurately described how velocity
fluctuations varied with the filter used.

5. Conclusions

Most computationally tractable methods of simulating turbulent premixed combus-
tion require information regarding the speed of flame front propagation. In this brief, a
dynamic model for calculating this speed was presented. First, a consistent flame front
filtering approach for LES was developed. This approach is useful because it both works
in conjunction with standard LES filtering techniques and because it uses information
from just a single 2-D surface. Next, this filtering approach was used to derive a dynamic
identity that is compatible with a level set equation. When enforced, this identity en-
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sures that evolving a flame front and then filtering the result yields the same answer that

evolving a filtered front does. This dynamic identity, in its simplest form. may physically

be viewed as an enforcement of flame mass consumption conservation. A DNS was per-

formed to validate the proposed dynamic model. Results showed that the model predicts

the speed of a propagating turbulent front with considerably more accuracy than a static

burning velocity model.
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Consistent and accurate state evaluations in
variable-density flow simulations

By L. Shunn AND F. Ham

1. Motivation and objectives

For the case of low-Mach number combustion where acoustic effects are considered
unimportant, the variable-density equations for reacting flows can realize substantial
efficiency gains relative to fully compressible formulations. In variable-density formula-
tions, pressure and density are formally decoupled by defining the density through an
equation-of-state (EOS) in terms of one or more transported scalars: p = p(01, 02, ... ).
The EOS may be given by an analytic expression, or as is common for complex reactive
systems, it may be precomputed and tabulated as a function of the scalars.

When the variable-density equations are discretized and solved numerically, it is com-
mon to use a fractional-step formulation where a constant-coefficient Poisson equation
for pressure is derived through a constraint on the divergence of pui coming from the
continuity equation. The resulting equation for pressure has the time derivative of the
density as a source term, and is solved and used to correct the velocity field and en-
force mass conservation discretely. For density ratios of approximately three or greater,
instabilities are commonly encountered and resolved by largely ad hoc techniques whose
effect on the solution cannot easily be quantified. For example, Pierce & Moin (2001,
2004) characterized the problem as "spurious heat release" related to inconsistencies be-
tween the mass and scalar transport, and resolved the instabilities by spatially filtering
the computed e9p/lt source term several times. While this will not alter the mass in the
simulation (assuming a conservative filter), it does have the effect of moving mass around
in a way not called for by the governing equations. Forkel & Janicka (2000) performed
temporal filtering of the density to stabilize their calculations. This introduces an ad-
ditional complexity and hysteresis to the state equation whose effect is also difficult to
quantify.

Other authors have reformulated the numerical method to solve a variable-coefficient
Poisson system derived through a constraint on the velocity divergence coming from the
energy equation. While these approaches stably support much higher density ratios, it
appears necessary to relax the conservation properties of the scheme (Nicoud 2000), or
allow the state to wander somewhat from the state equation (Pember et al. 1998).

In the present study the instability problem is resolved by recognizing that non-
linearities in the state equation can introduce a multi-scale resolution problem not sup-
ported by the grid. This problem can be largely resolved by simply evaluating the density
(and other tabulated source terms) using an accurate subgrid representation.

2. Consistent state evaluations

2.1. Numerical method

The simulations presented in this brief are performed using a collocated, unstructured
version of the algorithm of Pierce & Moin (2001). The algorithm employs a temporally-
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non-convergent combustion simulation.

staggered variable arrangement in which velocity components are staggered in time with

respect to density and other scalar variables. The velocity and scalars are implicitly

advanced in time, and an iterative approach is used at each time level to repair lin-

earization errors and enhance stability. The overall algorithm was implemented in the

computer code CDP using unstructured node-based finite volume operators. Details of

CDP's node-base operators are described elsewhere in this volume (Ham et al. 2006).

The salient features of the iteration process at each time step are as follows:

1. The scalar equation(s) are advanced in time. This yields (po)k+l, from which a provi-

sional estimate for 0 k+1 is obtained by I = (pO)k+l/pk.

2. The momentum equation is advanced to obtain provisional velocities: i7,.

3. The provisional scalar values are used to evaluate the density from the EOS: pk+l =

f(O).

4. The updated density is used to correct the scalar(s) to ensure primary conservation:
0 k+i1 = (po)k+l/pk+l.

5. A Poisson equation is solved for pressure corrections that satisfy the continuity equa-

tion, and the pressure and velocity fields are adjusted accordingly.

6. The process is repeated from step 1 and continued until convergence.

Linear stability analysis indicates that the above iterative approach is second-order

accurate when at least two inner-iterations are employed (Pierce & Moin 2001). Addi-

tional iterations may improve the stability of the scheme, but do not increase the order

of accuracy. When the scheme is applied to real combustion problems. however, it is

generally not iterated to convergence. Normally, a fixed number of inner-iterations are

performed (typically 3-5) and then the time step is considered to be "converged." For-

mal verification of the second-order behavior of the algorithm requires convergence of

the system at each time step. For many of the combustion problems investigated, how-

ever, rigorous convergence of the scheme was not possible. For example, Fig. 1 shows the

values of three scalar quantities sampled from one spatial location in a combustion sim-

ulation at successive inner-iterations of a single time step. In this example the density is

obtained as a function of two transported scalars: the mixture fraction, z, and a reaction

progress-variable, c. Clearly, the system is non-convergent irrespective of the number of

inner-iterations used, presenting a serious impediment to verification.
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2.2. Source of instabilities

These instabilities can be reproduced and their sources understood by studying much
simpler problems. Consider, for example, the 1-D problem depicted in Fig. 2, which shows
the mixture fraction, z, as a function of the spatial coordinate, x. Also shown are the
density and product source term, w,, which are consistent with non-premixed methane
chemistry at slightly elevated pressures. An example computational grid is denoted by
the solid symbols along the mixture fraction curve. Note that although the mixture
fraction transition in the figure is reasonably resolved, the highly non-linear behavior of
the density and source term would be grossly under-represented on this grid. Instabilities
can develop as the under-resolved, non-linear features of the EOS are transported through
the grid.

Consider the case of convective scalar transport (no diffusion) with the density given
as a continuous function of one scalar, i.e.,

apo apujo 0
at+ x 0. p=p(O). (2.1)

Together with continuity,
Op apu,

-0 + ax• = 0, (2.2)

these equations are equivalent to passive scalar advection and a divergence-free velocity
field, i.e., (o0 ao 1ui

+ui- = 0, -= 0. (2.3)

This continuous equivalence is exploited in some numerical approaches for multi-phase
flow, such as the level set method, where Eq. 2.3 is discretized and solved. For the case
of turbulent combustion, however, discrete conservation is considered important, so it
is preferable to discretize and solve the conservative form of both scalar transport and
continuity. Due to discretization errors, this equivalence is not realized discretely and
manifests itself in some non-physical divergence in the velocity field.

One way to reduce this non-physical divergence can be seen by considering the lead-
ing truncation error associated with the second-order approximations normally used in
discretizing Eqs. 2.1 and 2.2. Consider the 1-D case inside a control volume of size Ax.
The volume integration of density associated with the time derivative in the continuity
equation is

Ax/22

fJ p(6)dx=&o)+ Ax P 2 &2 xO(Ax 4) (2.4)Ax (O~x~pOo) 24• •-[€o~ x2]°a 9 O2 ox Xoj
AX-Axi224 aM

and the volume integration of density times the scalar associated with the time derivative
in the scalar transport equation is

Ax12

f p(o)odx = P(po)Oo,+
AJx

- Ax/2

2 P(°-Ox + 2'9 o Po (2.5)
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By introducing a higher-order reconstruction of density in the control volume, it is

clear that the truncation errors associated with both of these approximations can be

reduced. For example, introducing a more accurate approximation for the density in the

control volume, P:

pP(0°)+-- [ 0-x20+ 5 (X (2.6)
24 00 ýOx2  O-0\

removes all of the second-order error in Eq. 2.4 and two of the four second-order terms in

Eq. 2.5. Numerical experiments indicate that the removal of the curvature term involving
02p/0O2 is particularly important, as this term is normally dominant.

The extension of this more accurate approximation of the density to multiple dimen-

sions and unstructured grids is presented in the next section.

2.3. Tetrahedral quadrature

The purpose of this section is to develop a family of optimized quadrature rules that

can be used to efficiently evaluate volume-averaged state quantities in reactive simu-

lations. Determining quadrature points for volume integration has been the subject of

many studies: see the reviews of Cools & Rabinowitz (1993) and Cools (1999) for details.

Accurate and efficient quadrature points can be generated by the recursive application

of 1-D Gaussian quadrature, referred to as the product Gaussian rule (see Stroud 1971).
When the product Gaussian rule is applied to tetrahedra, however, it results in an un-

pleasant asymmetry (and presumable inefficiency), clustering the points near one of the
vertices.

The product Gaussian rule implicitly assumes an underlying structured hexagonal grid

for the point locations. This grid samples a hexagonal space more or less uniformly. For

tetrahedra, however, the structured hexagonal grid is inappropriate. A more natural grid

for tetrahedra is that obtained by the hexagonal close-packed structure. Hexagonal close-

packing is the arrangement obtained by packing spheres of equal size in the most efficient

manner, such that each sphere (not on the boundary) touches its 12 nearest neighbors. In

the present study we describe a method for developing quadrature points for tetrahedra

based on parameterizing the point locations in terms of an underlying hexagonal close-

packed grid, and then optimizing the precise point locations and weights to reduce the

truncation error in the quadrature approximation. Such an approach results in a family

of symmetric rules for tetrahedral integration where the number of integration points
progresses as np = 1. 4, 10, 20, 35, 56, etc.

The integration of the function f(x) over the tetrahedron Q with volume VQ is defined

jf(x)dV = VQ wf(x)+O(Sp) (2.7)

where 6 is a length scale associated with the tetrahedron (e.g., the longest edge length).

and p is the order of the integration. The integration points (or quadrature points) xi

are defined in terms of the four vertices of the tetrahedron X1, X 2. X3, X 4 as

4

xi =ZatjXj. (2.8)
j=1
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An integration scheme of this sort should have the following desirable properties
(adapted from Vavasis 1998):

1. The scheme is optimal in some sense, e.g., minimizing truncation error.
2. It is symmetric, i.e., the scheme is independent of vertex ordering or the rule is invariant

under affine maps of the tetrahedron to itself.
3. The weights are all positive: wi > 0.
4. The quadrature points are all interior to the tetrahedron: aij >_ 0.

The following integration schemes were developed by parametrizing the integration
point locations in terms of the vectors of the unit equilateral tetrahedron scaled by 6

X (= 2' 2 '

X2 = ) v32 2 '

Xv/3-. _ V6_
3 1

X4 =6 (o0, N/)

and comparing the Taylor series expansion at the points to the exact integration of the
Taylor series over the tetrahedron. The coefficients of successive powers of 6 produce a
series of non-linear equations that can be set equal to zero to solve for the positions
and weights. When it was not possible to completely eliminate the truncation error at
the highest level, then the error can be minimized in a least-squares sense, assuming the
partial derivatives are all of equal magnitude. When more than one solution is found
satisfying all four of the previously mentioned criteria, then the solution is considered to
be the one with minimum least-squares truncation error.

The parameterization of the points exploits the tetrahedral symmetry by arranging the
points as close-packed spheres and writing the sphere locations as linear combinations of
the above vectors. Once the optimal solutions have been obtained, the point locations
and weights are assembled and stored in a computer library for efficient implementation
in numerical applications. The optimized rules are shown in Fig. 3, and their properties
are summarized in Table 1.

3. Results
3.1. 1-D example problem

The 1-D combustion problem shown schematically in Fig. 4 has been designed to demon-
strate the impact of EOS evaluations on a flow simulation. Here an initial transition
from fuel (z = 1) to oxidizer (z = 0) is imposed and allowed to evolve subject to diffusive
mixing. A constant reference-frame velocity URF can be supplied to translate the entire
system through the computational grid.

For this problem, a polynomial state-relationship of the form

p = 2z + (1 - z)"' (3.1)

is used to describe the density. This EOS exhibits strong non-linear behavior in the region
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TABLE 1. Tetrahedral quadrature rules.

Order of
Rule Points Accuracy

1 1 0(62)
2 4 o(6,")
3 10 o(64)
4 20 0(66)
5 35 0(67)
6 56 0(69)

FIGURE 3. Tetrahedral integration quadrature point locations and weights. Top row (left to
right): 1-, 4-, and 10-point rules. Bottom row (left to right): 20-, 35-, and 56-point rules.

z < 0.2 (see Fig. 5), and is indicative of the general behavior expected in non-premixed

combustion systems. In particular, the density minimum around z ,Z 0.12 suggests a

region of reaction and heat release caused by the mixing of relatively dense fuel at z = 1

with moderately dense (preheated) air at z = 0.

As the fuel front in Fig. 4 diffuses, the low-density reactive region broadens and forces

mass out of the right-hand side of the domain. The velocity at the exit, u 0,t, can be used
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FIGURE 4. 1-D combustion problem. FIGURE 5. Model reactive EOS.

to monitor the global rate-of-change of mass in the system:

L

(Uout - URF) -1 d L (3.2)
Px=L dt I.

0

Here the outlet velocity is used to gauge the effectiveness of the density evaluations.
The 1-D diffusion problem was solved numerically using two different EOS-evaluation

methods. In the first method, the mean density at a node is computed by simply evaluat-
ing the EOS using the mean mixture fraction value for that node. This method is referred
to as "node evaluations." In the second approach, the independent function (z in this
case) is reconstructed linearly and continuously in the polyhedral region around each grid
node. Each polyhedral control volume is then tessellated into tetrahedral subvolumes in-
volving a combination of nodes, vertices, edges, and faces. A quadrature rule is applied
within each subvolume to accurately integrate the state equation in space and construct
an appropriate approximation to the density. This evaluation technique is referred to as
"tetrahedral integration" (TI). 128 points in x were used in all of the simulations, and
the most accurate (56-point) quadrature rule was applied in the TI evaluations.

Figs. 6 and 7 show numerical solutions to the 1-D diffusion problem with reference-
frame velocities of URF = 0 and URF = 0.2, respectively. Solutions using node evaluations
and the TI method are compared in each figure. Three cases, denoted as (a), (b), and
(c), were run for each EOS-evaluation technique. In case (a), the EOS (Eq. 3.1) was
evaluated analytically to compute the density. In cases (b) and (c), the EOS was inter-
polated linearly from a grid of uniformly-spaced points in mixture-fraction space. Case
(b) used 101 points in z (Az = 0.01), and case (c) used 51 points in z (Az = 0.02).
Cases (b) and (c) are of practical interest due to the widespread use of tabulated state-
relationships in industrial computations. Interpolation of the EOS at these z-resolutions
is not unreasonable. The maximum and average errors in the density for case (b) are

= 3.5 x 10- 3 and Eay9 = 1.5 x 10-4. For case (c) the errors are approximately four
times larger: Ema, = 1.3 x 10-2 and caug = 6.0 x 10-4.

At the beginning of the simulation, the outlet velocity starts from some initial value
dictated by the rate of diffusion and decays smoothly as the mixture fraction gradient
decreases. This behavior is captured very well with both EOS-evaluation techniques when
the analytic EOS is used to compute the density, as indicated in case (a) shown in Figs.
6 and 7. When linear interpolation is used to evaluate the EOS, however, interpolation
errors cause unphysical oscillations in the velocity. These errors are clearly shown in cases
(b) and (c) of Figs. 6 and 7. The node-based EOS evaluations are particularly susceptible
to these errors.
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FIGURE 6. 1-D combustion problem with reference-frame velocity
UflF = 0.0. (a) analytic EOS evaluation, (b) linear interpolation
As = 0.01, (c) linear interpolation Az = 0.02.
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FIGURE 7. 1-D combustion problem with reference-frame velocity
ula- = 0.2. (a) analytic EOS evaluation, (b) linear interpolation
Az = 0.01, (c) linear interpolation Az = 0.02.

To examine the cause of the unphysical oscillations, consider the evolution of the sto-

ichiometric mixture fraction value, zst. This value indicates the ratio of fuel to air that

leads to chemical reactions, and can be loosely identified in this example as the density

minimum in Fig. 5. As the flow evolves, the location of z2 t (and the corresponding non-

linear density region) moves through the computational grid under the effects of diffusion
and reference-frame translation. When the EOS is under-resolved on the computational

grid, this can lead to subtle errors in the instantaneous density field. These errors, when

summed globally, lead to fluctuations with respect to time in the total amount of mass

contained within the computational domain. In pressure projection methods, any erro-

neous mass is instantaneously removed from the system by adjusting the pressure and

velocity to "correct" the global mass-balance of the system. As a consequence. spurious
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density fluctuations give rise to spurious velocity and pressure fluctuations. The veloc-
ity and density in turn influence the evolution of the scalar field in a highly non-linear
manner, further compounding the errors. The end result is that small errors in the EOS
evaluation can amplify and lead to very large errors in the velocity and scalar fields.

Another way to explain these errors is to consider the implications of the piecewise-
linear EOS used in cases (b) and (c). This representation is characterized by discontinuous
first derivatives and undefined second derivatives of the density in mixture-fraction space.
Examination of Eqs. 2.4 and 2.5 shows that these derivative terms are important for
accurate approximation of the density. Neglecting these terms, as is done with node
evaluations, can lead to large discrepancies in the numerical results.

The TI method is more resistant to this type of error because the TI-evaluated density
reflects a subgrid average over the control volume, including features of the EOS that
are not resolved on the computational grid. Small oscillations are still observed in the TI
results, but the errors remain small and do not overwhelm the physics as in the case of
the node evaluations.

3.2. 2-D example problem
In more complex systems, EOS-evaluation errors can lead to significant errors in the
time evolution of the flow, including the development of spurious flow structures and
unphysical mixing. This is demonstrated through the 2-D problem shown in Fig. 8. The
initial configuration is similar to the classical Rayleigh-Taylor mixing problem, however,
the density is given by the "reactive" EOS used in the previous example (Eq. 3.1). As the
initial disturbance evolves under the influence of gravity, the low-density region around
zst is confined to a thin region around the fuel-oxidizer interface. Discretely representing
these highly complex mixing patterns is a challenging computational problem.

Fig. 8 compares the time evolution of the 2-D mixing problem using node-based density
evaluations and the TI method. Simulation results on four different grids are presented
to show the effects of grid refinement on the solution and to give a point of comparison
to judge the physicality of the coarse-grid solutions. For each EOS-evaluation method,
the coarsest solution is shown in the left-most column of the figure matrix, and time
increases from top to bottom. The most accurate (56-point) quadrature rule was applied
for all evaluations in the TI computations. A non-dimensional viscosity of p = 8.0 x 10-4
was used in all cases, while the mixture fraction diffusivity was set to zero.

After only a short integration time, distinct differences emerge between the two EOS-
evaluation methods. These differences are particularly pronounced on the coarser grids
shown in Fig. 8. In the case of the node-based evaluations, the interface develops un-
physical corrugations that numerically amplify as the solution progresses. After some
time, the flowfield is contaminated with spurious flow structures evolving from an un-
physical mixing-history. The coarse-grid results for the TI method, while still unresolved
on the computational grid, tend to better preserve the characteristics and appearance
of the resolved solutions. The difference between the two methods is clearly noticeable
in Fig. 9, which shows the long-time evolution of the flowfield on a 50 x 150 grid. The
different evaluation techniques are shown side-by-side with a more resolved solution for
comparison purposes.

3.3. Adaptive tetrahedral integration

The hierarchical nature of the quadrature rules shown in Fig. 3 lends itself naturally
to an adaptive EOS-evaluation procedure. Such an adaptive approach should efficiently
focus additional quadrature work only where it is needed and apply lower-order methods
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FIGURE 8. 2-D Rayleigh-Taylor instability. The left figures use node EOS-evaluations, and the
right figures use TI 56-point EOS-evaluations. (top to bottom) t = 0, t = 1.56. t = 3.08, t = 4.64.

(left to right) 25 x 75, 50 x 150, 100 x 300, 200 x 600 grids.

in regions that do not demand special treatment. One implementation strategy would

be to adaptively select the quadrature rule based on the local spatial gradient of the

scalar field. A computational cell that spans a large region of scalar-space would, for

example, select a high-order, multi-point quadrature rule, whereas a cell with relatively

homogeneous composition might only require a one-point evaluation. The minimum and
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FIGURE 9. 2-D Rayleigh-Taylor instability at t = 5.2. (left to right) Node evaluations on
50 x 150 grid, TI 56-point evaluations on 50 x 150 grid, TI 56-point evaluations on 100 x 300

grid.

maximum values of the scalars at the vertices of tetrahedral subvolumes is a natural
choice for gradient estimation in such a method.

The adaptive method described above has been applied to the 2-D Rayleigh-Taylor
mixing problem (see Fig. 10). The criterion for rule selection in this example required at
least one quadrature point per Az of 0.005. The time evolution of the solution is shown
in Fig. 10. The upper figures show the evolution of the density, and the lower figures show
the number of quadrature points used per subvolume. It is clearly seen that the bulk of
the EOS-evaluation work is concentrated in the thin interface region of the solution. Fig.
11 compares the solution using the adaptive procedure with that obtained by universally
applying the 56-point quadrature rule. The solutions are virtually indistinguishable.

The total execution time of the simulations was monitored for the 100 x 300 grid case,
and the results are presented in Table 2. In all of the simulations, a sufficient number
of inner-iterations was performed at each time level to converge the maximum density
difference pk+l - pkI to less than 1.0 x 10-6. Using TI with the 56-point quadrature
rule incurred an increase of approximately 20% in the total execution time compared to
node-based density evaluations. The adaptive TI method was the least computationally
expensive approach. In this case, the extra EOS-evaluation work was offset by a decrease
in the number of inner-iterations per time step and multi-grid cycles per Poisson-solve
required to achieve the given levels of density and pressure convergence, respectively.

4. Summary

A method for consistent and accurate EOS evaluations in variable-density flow simula-
tions has been developed and implemented. Various example problems were studied that
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FIGURE 10. 2-D Rayleigh-Taylor instability on FIGURE 11. 2-D Rayleigh-Taylor instability on
100 x 300 grid using adaptive TI evaluations. 100 x 300 grid at t = 5.2. (left to right) TI adap-
Density on top, number of quadrature points tive, TI 56-point.
per subvolume on bottom. (left to right) t = 0,
t = 1.56, t = 3.08, t = 4.64.

TABLE 2. Execution time of simulations.

Total Time Average no. of MG Cycles
Method Time Steps (min) Inner-Iterations per Iteration

node 1120 180 40.1 12.3
TI 56-point 1120 211 34.1 9.05
TI adaptive 1120 178 34.5 9.00

demonstrate that under-resolving the EOS can lead to numerical instabilities and un-
physical flow features. A hierarchy of symmetric quadrature rules for tetrahedral volume

integration was developed and used to efficiently integrate the EOS in fluid dynamics
simulations. The new method, termed tetrahedral integration (TI), was shown to reduce

EOS-evaluation errors, mitigate many of the undesirable numerical artifacts that, result

from other techniques, and produce a more physical evolution of the flowfield. The ex-

tra cost of the TI method is offset by better convergence and stability properties of the
numerical solution.
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Scalar gradient and small-scale structure in
turbulent premixed combustion

By S. H. Kim AND H. Pitsch

1. Motivation and objectives
The scalar gradient is a key quantity in describing and modeling turbulent mixing

and combustion. In studies of scalar fields for non-reacting flows, it has been shown that
the gradient of a passive scalar tends to align with the most compressive strain and
that its magnitude is highly intermittent (Ashurst et al. 1987; Brethouwer et al. 2003:
Warhaft 2000). As compared with the non-reacting case, the statistical characteristics of
the gradient of a reactive scalar are not well understood due to the complexity in non-
linear turbulence/chemistry interaction. In chemically reacting flows, chemical reactions,
the rate of which is influenced by turbulence, can have leading-order effects on the scalar
gradient evolution, and the interaction of the scalar and turbulence fields can be strongly
affected by thermal expansion due to heat release (Swaminathan & Grout 2006).

The characteristics of the scalar gradient in turbulent premixed flames are quite differ-
ent from those in conserved scalar mixing. The evolution of scalar gradient fields for high
Damk6hler number (Da) flames (Damk6hler 1940) is governed by strong coupling of dif-
fusion and chemical reactions in relatively thin flame fronts, while, in non-reacting flows,
turbulent straining is the unique mechanism of generating small-scale scalar variations.
For the corrugated flamelet regime, where the thickness of the flame front is smaller than
all turbulence length scales, the laminar flamelet theory well describes the structure of
local flame fronts (Peters 2000), and the scalar gradient in turbulent flames is expected
to be similar to that in corresponding laminar flames. However, the small-scale structure
inside flame fronts is not fully understood for the moderate and low Da regime, such as
the thin reaction zones regime or the broken reaction zones regime (Peters 2000), where
the scale separation is not strictly valid.

The scalar gradient and flame broadening have been a subject of experimental and com-
putational studies of premixed flames, especially with high turbulence intensity. While
increasing turbulence intensity is generally expected to result in flame broadening, there
has been controversy in the literature whether turbulence makes flame fronts thinner or
thicker. The thickening of flame fronts has been reported by O'Young & Bilger (1997)
and Chen & Mansour (1998), while the increase of the scalar gradient has been observed
in other experiments (Buchsman et al. 1996; Soika et al. 1998) and direct numerical sim-
ulations (DNS) (Swaminathan & Bilger 2001). The importance of the Markstein number
in flame thickening in the thin reaction zones regime has been proposed on the basis
of the laminar flamelet theory (de Goey et al. 2005), while Law et al. (1994) and Sung
et al. (1996) reported the insensitivity of the flame thickness to the flame stretch in
their analysis of strained laminar flames. In general, large-scale turbulence contributes to
flame thinning via a straining velocity field, while small-scale turbulence thickens flame
fronts. The thickening process may depend on the relative importance of the effects of
the large- and small-scale turbulence (de Goey et al. 2005). The curvature of flame fronts
(Soika et al. 1998; Renou et al. 1998) and thermal expansion due to heat release are



150 S. H. Kim & H. Pitsch

also expected to have significant effects on the local turbulent velocity field and flame

thickening/thinning processes. However, detailed physical mechanisms for flame thicken-

ing/thinning, and their relative importance have not been fully understood.

In this paper, we investigate the scalar gradient and the small-scale structure of tur-

bulent premixed flames with emphasis on flame thickening/thinning. The Lagrangian

equation for the evolution of the scalar gradient following an isoscalar surface is pre-

sented, which is useful in studying physical mechanisms for the scalar gradient evolution

in propagating reaction front problems. The terms in the Lagrangian form of the scalar

gradient equation are analyzed using DNS data for statistically 1-D planar flames with

high intensity turbulence. Emphasized in this paper are the following: detailed mecha-

nisms for flame thickening/thinning, the alignment of flame normal with turbulent strain,

and the effects of heat release on these processes.

2. The equation for scalar gradients on isoscalar surfaces

In turbulent premixed flames, relatively thin reaction fronts propagate into turbulent

medium, and the scalar gradient maintains itself due to the balance between diffusion

and reactions. In this reaction front propagating problem, the Lagrangian-type equation

is useful in studying the evolution of the local instantaneous reaction front structure. Of

particular interest here is the time evolution of the scalar gradient following the flame

surface.
The equation for a scalar 0 can be written as

Do -= (n. u6)lVOl = Q,, (2.1)Dt

where u, is the velocity of the iso-surface relative to the fluid. Dt= t + U • Vg is the

Stokes derivative, where U is the fluid velocity. The normal vector n is defined as

n V- (2.2)
1V0*

For a reacting scalar obeying Fickian diffusion, Q0 = l/pV • (pDVO) + wo, where D

is the molecular diffusivity, wp is the chemical reaction rate, and p is the density. The

displacement speed can be written as

1
1= [17 [V. (pDV6) + w6]. (2.3)

Taking the gradient of eqrefphieq and the inner product with -n, we obtain

Dg 1D___9 = _ -17o" S .0 - n. Uric, (2.4)Dt g

where Vol =_ g. S is a strain rate tensor defined by 1/2(VU + VUT). The equation for

the evolution of g following the iso-6 surface can be written as

D, g- gn"-S •n-gn.Vuo, (2.5)Dt

where + - (U + u,) • Vg. This equation can be rewritten as

Dt pgn n- [pgV U gupn Vp] gn -Vpu, (2.6)



Scalar gradient in premixed combustion 151

where S = S - (V . U)I. I is the identity matrix. From the continuity equation, we have
DopD - p7.- U +un - •Vp. (2.7)
Dt

The equation for the normalized increase of the norm of the scalar gradient can therefore
be written as

1lD~g ID~p 1
1 g _1pn. n+- - -n. Vpuo. (2.8)

gDtp Dt p
Note that each term on the right-hand side (r.h.s.) of the above equation vanishes in an
unstretched laminar premixed flame. Decomposing the diffusion term in the displacement
speed into the components normal and tangential to the isosurface, the displacement
speed can be written as

u= -DK + u' , (2.9)

where

u -pn Vl • (PD-) +Pw " (2.10)

K = 17 . n is the mean curvature. K is positive when an iso-scalar surface is convex toward
the unburned side. n denotes the coordinate along the normal direction n. With this
decomposition, (2.8) can be rewritten as

1 Dog 1 Dop 1
g ntln g=-n _S n-+n. [-V(pD,) + ±7(pun)]. (2.11)g~tp Dt p

By taking conditional averaging we obtain
1 Dg 16 = ý ( -n n~o = ýp + 1 D op 10

\g Dt ýp (2.12)

+ ( .n . V (pD ,)[0 = ýo - -n . 7pun 1 = • ,

where the angular brackets denote ensemble averaging conditioned on the quantity on
the right side of the vertical bar.

It is worthwhile to review the physical meaning of the first term on the r.h.s. of (2.8).
We have

n. S. n = n V(U -n) = a ., (2.13)
an

The first term on the r.h.s. of (2.8) is thus the dilatation on the tangential plane of an
iso-o surface, the so-called tangential strain rate:

-n. S. n = VT- UT, (2.14)

where VT and UT are the gradient operator and the velocity projected on the tan-
gential plane, respectively. This represents the increase of surface area due to turbulent
stretching (Chung & Law 1986; Candel & Poinsot 1990). For non-reacting scalar mixing
in incompressible flows, the scalar gradient is aligned with the most compressive strain.
Then, the average tangential strain is positive, and the area of a non-propagating sur-
face increases (Batchelor 1954; Cocke 1963). For a propagating surface, the evolution of
the surface area is also influenced by the curvature of the surface (Pope 1988; Chung &
Law 1986; Candel & Poinsot 1990). The alignment characteristics are represented by the
eigen-decomposition of the rate-of-strain tensor S. Using the eigen-decomposition, the
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tangential strain rate can be written as

-n Sn = -[(01 - + (02 - + (03 - 3kjj. (2.15)

ai is the eigenvalue of the strain rate tensor S, which satisfies a,1 > 02 > 03 and

al + a2 + a3 = A. vi = n . ei, where ei is the eigenvector corresponding to ai. The

eigenvectors of S are the same as those of S. Hereafter, the tangential strain rate term

is denoted by Tt,.
The second term on the r.h.s. of (2.8) represents the effects of the time evolution of the

density along the trajectory of the iso-surface. In flames with unity Lewis number, this

term represents compressibility effects and thus is negligible for low Mach number flows.

This term also represents the effects of differential diffusion. In flames with non-unity

Lewis number, the iso-surface of the progress variable can propagate with different speed

from that of the density, even for the low Mach number limit. Hereafter, this term is

denoted by Tp.
The last term of (2.8) represents the effects of variations of the mass flux along the

normal to the iso-surfaces. In stationary laminar flames, we obtain
1

0 = -n. S. n- -n Vpu,,. (2.16)
P

This means that the mass flux through an isosurface varies in a straining velocity field.

The variation can be estimated as

______ 1F P Ka, (2.17)

PuSL SL Pu

where Ka is the Karlovitz number (Peters 2000), Pu is the density of the unburned gas,

and SL is the laminar flame speed. In the laminar flamelet regime with Ka < 1, the

variation will be negligible. In a highly strained flame with high Ka, the variation of the

mass flux can be significant. In turbulent flames with moderate and low Da, e.g., those in

the thin reaction zone regime, the small-scale wrinkling of flame fronts is significant such

that the radius of curvature is of the order of thickness of an unstretched laminar flame. In

that case, the radius of curvature can have significant variations for different iso-surfaces,

which results in variations of the propagation speed. The curvature variation term, the

third term on the r.h.s. of (2.11), emphasizes the role of the small-scale turbulence in

turbulent mixing and flame thickening. The term involving u' represents the tendency

to return to the unstretched laminar flame structure. Hereafter, the term involving K and

that involving u' are referred as the curvature variation term T, and the normal mass

flux variation term T,, respectively.

3. Direct numerical simulations

The compressible Navier-Stokes equations are solved:

+ OP--aU3 = 0 (3.1)T-t + xý

Opu2  0 Op Or+ +

t + -.X (puiUj) =-- Ox + + pf- (3.2)

Oxe + - + AOx ) +p PQ" (3.3)
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u'/SL 1/1F Da Ka Re,\
PF1 13.8 3.9 0.28 14 95
PF2 19.5 2.75 0.14 28 95

TABLE 1. Characteristics of the simulated premixed flames (u': r.m.s. initial turbulent velocity, 1:
initial integral length scale, SL: laminar flame speed, 1F: flame thickness based on the maximum
temperature gradient, Da= SLl/(u'iF), Ka= DU/(SLIK)2 ' li: Kolmogorov length scale, D.:
unburned mixture diffusivity, ReA: Reynolds number based on the Taylor scale).

a + ' (Puj p) = a (PD -a6) + P "., (3.4)

where
1 p

pe = -pujuj + -1 (3.5)

= \ + Px 3  2 " ) (3.6)

p is pressure, e is the total internal energy, we, is the chemical reaction rate of the scalar
Q, Q is a heat release parameter. The thermal conductivity A and the diffusion coefficient
D are given as

A = pcp/Pr and D = p/(pSc), (3.7)

where cp is the specific heat at constant pressure. The dynamic viscosity p is given as

p = p.(T/T.) 0 7 . (3.8)

The Prandtl number Pr and the Schmidt number Sc are set to 0.7. The gas mixture is
assumed to be a perfect gas with a specific heat ratio of -y=1.4. The Mach number based
on the root mean square (r.m.s.) velocity fluctuations is below 0.1 for all the cases studied
here. The equations are integrated using a low-storage fourth-order Runge-Kutta method
with a sixth order compact finite difference scheme for spatial discretization (Kennedy
et al. 2000; Lele 1992).

The simulated flames are statistically 1-D premixed flames propagating in decaying
homogeneous turbulence. The reaction rate is given by

WvyR = AYR exp (_La). (3.9)

where YR is the mass fraction of the deficient species in the reactant. The activation
temperature T, is set to be 4Tb, where Tb is the burned gas temperature. The heat
release parameter Q is chosen such that the density ratio between unburned and burned
gas, -, is equal to 6. The reaction progress variable is defined here as C = 1 - YR/YR,,,
where the subscript u denotes the unburned side.

A non-reflecting boundary condition is used for the x, direction, while the x2 and x3
directions are periodic (Poinsot & Lele 1992). The equations are solved on 512 x 256 x 256
grid points. Initial turbulence is homogeneous and isotropic. The characteristics of the
premixed flames are shown in Table 1. The initial turbulence intensity u'/SL is larger than
10, while the length scale ratio 1/iF is approximately 3-4. The laminar flame thickness
iF is based on the maximum temperature gradient. The initial Da for the cases PF1 and
PF2 are 0.14 and 0.28, respectively.
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(a) (b)

FIGURE 1. Instantaneous fields of the reaction progress variable C for (a) PF1 and (b) PF2
(dashed dotted line: C = 0.1, solid line: C = 0.5, dashed line: C = 0.9).
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FIGURE 2. PDFs of the normalized scalar gradient conditioned on C = 4 for (a) PF1 and (b)
PF2 (solid line: ( = 0.03, dashed line: 4 = 0.08, dashed dotted line: • = 0.13. dashed dotted
dotted line: ( = 0.18).

4. Results and discussion

4.1. Characteristics of flame and scalar gradient field

Figure 1 shows the instantaneous C-field for PF1 and PF2 at 7 r 4.5, where r is the time

normalized by the initial eddy turnover time 1/u'. There is significant small-scale wrin-

kling as well as large-scale wrinkling for both cases. In the region with large curvature,
where the small-scale turbulence is intense, the preheat zone is thickened. Variations of

the curvature along the flame normal are also evident near this region. For PF2, flame

thickening is more evident while, in some regions, thin flame fronts are also observed.
Figure 2(a) shows the conditional probability density function (PDF) of different nor-
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FIGURE 3. PDFs of the normalized scalar gradient conditioned on C = for (a) PF1 and (b)
PF2 (solid line: ý = 0.43, dashed line: ( = 0.48, dashed dotted line: " = 0.53, dashed dotted
dotted line: ( = 0.58).

malized scalar gradients for C < 0.2 for PF1. For low values of C, the PDF is skewed
with the peak at g/gL < 1. While the preheat zone is thickened on average, the local
scalar gradient can be significantly higher than the corresponding laminar flame value
9L. The conditional PDF for PF2 is shown in Fig. 2(b). For the lower Da case, the shift
of the peak of PDF toward the higher g/gL occurs more slowly with increasing C, which
indicates that the flame is more broadened at these values, and has a wider distribution
than that for PF1. The conditional PDFs for 0.45 < C < 0.65 are shown in Fig. 3.
For 0.45 < C < 0.65, the PDF peaks around 9/9L - 1. The variance of the PDF be-
comes smaller as C increases. The conditional average of g is similar to the corresponding
laminar value gL.

4.2. Balance of terms in the scalar gradient equation
The terms in the scalar gradient equation are evaluated and shown in Fig. 4. The terms
are averaged over the whole domain with the condition that C = (, where C is the sample
space variable of C. The balance of the terms for PF1 at r , 2.5 are shown in Fig. 4(a). On
average, the local flame fronts are being thickened in the preheat zone. The conditional
average of the normalized Lagrangian time derivative of g, (1/gDg/Dt10 1), is almost zero
for C > 0.5, which indicates that there is no significant variation of the average flame
thickness in the reaction zone. For PF1, there is a significant change in flame thickening
processes in the preheat zone and the reaction zone. The balance of the terms for PF2
at r z• 2.5 are shown in Fig. 4(b). For the lower Da case, the reaction zone as well as the
preheat zone are being thickened. The conditional average (1/gDg/DtI•) shows almost
linear dependence on C, which indicates decreasing strength of the thickening processes
with increasing (. The balance of the terms at a later time -r ;Z 4.5 for PF1 is shown in
Fig. 4(c). The dependence of the average time derivative of g on ( is qualitatively the
same as that in Fig. 4(b), but the magnitude of each term is decreased due to decaying
turbulence. As shown in Fig. 4(d), for PF2, the strength of the thickening process in
the reaction zone is reduced more rapidly than that in the preheat zone. The terms on
the r.h.s. of (2.11) show the same qualitative behavior for all plots shown in Fig. 4. The
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FIGURE 4. Balance of terms for (a) PF1 at 7 = 2.5, (b) PF1 at r ; 4.5, (c) PF2 at 7- r 2.5 and (d)
PF1 at 7 r 4.5 (squares: tangential strain rate term (Tt., I ), upside down triangles: Lagrangian
time derivative of the density (T, J(), diamonds: normal mass flux variation term (T, I)., triangles:
curvature variation term (T, I(), filled circles: (1/igD~g/Dt l ); terms are normalized by the flame
time scale tF).

tangential strain rate term Tt,, which represents the turbulent stretching of the isoscalar

surface, is a primary source of the scalar gradient generation. The curvature variations

tend to thicken the flame fronts throughout. The major sink term in the scalar gradient

equation is the curvature variation term T•, in Fig. 4. The density variation term T, is

negligible in the present unity Lewis number flames. In the preheat zone, Tt, is balanced

primarily with the normal mass flux variation term T,, and the average time derivative

(1/gDg/Dtlý) is almost equal to the curvature variation term T,. On the other hand, for

0.5 < C < 0.8 with significant reaction rates, T, does not contribute to flame thickening

in the present flames. (TnJý) increases with (, and is balanced primarily with (T,. •) for
( 'ý51.
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FIGURE 5. PDFs of the tangential strain rate term Tt. conditioned on C = C at (a) 7 r 2.5 and
(b) 7- 4.5 (solid line: ( = 0.03, dashed line: C = 0.28, dashed dotted line: • = 0.53, dashed
dotted dotted line: ( = 0.93; PF1).

4.3. Tangential strain rate term and alignment characteristics

Figure 5(a) shows the PDFs of the tangential strain rate term Tt, conditioned on C =

for PF1 at r P 2.5. The PDF is close to Gaussian with the peak at the positive value.
As shown in Fig. 4, the conditional average (Ttsl ) is positive for the whole range of (.
This is consistent with the conjecture of Batchelor (1952). The positivity of the average
stretching rate has been rigorously proven in an incompressible and isotropic field (Cocke
1969). Note that the variance becomes smaller with increasing (. This suggests the in-
tensity of the small-scale turbulence becomes weaker when going to the burned side, as
expected. The PDFs of Tt, at a later time 7 r 4.5 are shown in Fig. 5(b). While the level
of the variance is reduced, the decreasing rate of the variance with ( is similar to that at
7 Tý 2.5.

Figure 6 shows the joint PDF of the curvature K and the tangential strain rate term Tt,
for PF1 at - z 4.5. For the ensemble with 0.4 < C < 0.8, Tt, has a negative correlation
with the K. The negative correlation has been observed previously in DNS (Chakraborty
& Cant 2005) and in experiments (Soika et al. 1998). The correlation for the ensemble
with 0.05 < C < 0.15 is much weaker than that with 0.4 < C < 0.8.

The correlation of the tangential strain rate and the curvature can be explained by the
following decomposition of the tangential strain rate:

2A (4.1)Tt, =-n.S.n+3 2,(41

3
where

=S - 'AI. (4.2)
3

In the first term on the r.h.s. of (4.1), the first-order effects of the dilatation is removed
in the sense that the trace of the tensor S vanishes. The joint PDF of the curvature K and
the dilatation A is shown in Fig. 7. The dilatation shows a strong negative correlation
with the curvature for the ensemble with 0.4 < C < 0.8 in Fig. 7(b). The correlation
becomes weaker for low values of C in Fig. 7(a). For the ensemble with 0.4 < C < 0.8.,
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FIGURE 6. The joint PDFs of the curvature and the tangential strain rate term for (a) the
ensemble with 0.05 < C < 0.15 and (b) the ensemble with 0.4 < C < 0.8 (PF1, r P 4.5).
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FIGURE 7. The joint PDFs of the curvature and the tangential strain rate term for (a) the
ensemble with 0.05 < C < 0.15 and (b) the ensemble with 0.4 < C < 0.8 (PF1, r7z 4.5).

the slope of the conditional dilatation as a function of the curvature is steeper than that,

of the tangential strain rate by a factor of approximately 1.5, as indicated in (4.1). The

conditional dilatation is known to be important in the structure of turbulent premixed

flames (Swaminathan et al. 1997). In a flame with unity Lewis number and low Mach
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FIGURE 8. PDFs of the cosine angle, wi,, between the flame normal n and the principal axis of the
strain tensor, conditioned on (a) K- = -0.5 and (b) K = 0, for the ensemble with 0.4 < C < 0.8
(dashed dotted line: vi, dashed line: V2, solid line: W; PF1; r : 4.5).

number, the dilatation can be written as

A -3(V. pDVC + pwc) = 3g pUC= 3g1(pu - pDt4 (4.3)
PU PU PU

where /3 = (Tb - Tu)/Tu. (4.3) shows that the dilatation is closely related to the propa-
gation property of the flame front. The dependence of the tangential strain rate on the
curvature is mainly determined by the curvature dependence of the displacement speed,
while the correlation with the scalar gradient can be of significance. As in the above
equation, the displacement speed uc has a negative correlation with the curvature K.

In Figs. 6 and 7, the tangential strain rate is more scattered than the dilatation espe-
cially for the negative curvature, and the conditional average (Tts8 () is lower than (Aký)
for large tKJ. These can be explained by investigating the alignment characteristics of
the flame normal n with the principal axis of the strain. Figure 8 shows the PDF of
the cosine angle, Vi, between the iso-surface normal vector n and the eigenvector of the
strain rate tensor ej, conditioned on the curvature n. PDF is evaluated for the ensemble
with 0.4 < C < 0.8. For K = -0.5, which is normalized by SL/D,, the normal vector n
is more aligned with the most extensive strain. Considering that the eigenvectors of S
are the same as those of S and that the trace of S is equal to zero, the term, -n. S • n,
becomes negative, and therefore contributes in the opposite direction to the dilatation
term. Turbulent fluctuations of this term are responsible for the weaker correlation be-
tween Tt, and K. In Fig. 8, n has no evident preferential alignment for very low values
of t1, while the PDF for 13 is slightly higher than those for V2 and V3 near i = 1.
Overall, the term -n.S. n tends to reduce the scalar gradient for large IKI in the present
flame.

To further investigate the alignment characteristics, the PDFs of 11' conditioned on
C = ý are shown in Fig. 9. For low and high values of ý, the scalar gradient is more
aligned with the most compressive strain, but the degree of the alignment is not as
strong as in conserved scalar mixing (Asherst et al. 1987). No preferential alignment of
the scalar gradient is observed in the middle of the flame front, while the PDF of oi is
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FIGURE 9. Alignment characteristics on iso-scalar surfaces with (a) C = 0.05, (b) C - 0.25,
(c) C = 0.55, and (d) C = 0.95 (dashed dotted line: tl, dashed line: t,2, solid line: V3,;•; PF1;
7 : 4.5).

slightly higher than others in Fig. 9(c). For • 0.6, the dilatational velocity induced by

the heat release is largest.

As shown in Figs. 8 and 9, the alignment characteristics in premixed flames are sig-

nificantly different from those in non-reacting flows, due to the heat release effects and

the different origin of the generation mechanism of the scalar gradient. In their study of

the alignment characteristics in turbulent premixed flames with high Da, Swaminathan

& Grout (2006) found that the scalar gradient in high Da premixed flames aligns with

the most extensive strain in contrast to non-reacting scalars. This is because in high Da

flames the velocity field induced by heat release is dominant over the turbulent velocity

field. The dilatational velocity is mostly in the flame normal direction in high Da flames.

In non-reacting flows, the preferential alignment of the scalar gradient with the most

compressive strain has been reported (Ashurst et al. 1987; Warhaft 2000). The present
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FIGURE 10. The joint PDFs of the curvature and the curvature variation term for (a) the
ensemble with 0.05 < C < 0.15 and (b) the ensemble with 0.4 < C < 0.8 (PF1, r ; 4.5).

results show that the alignment of the scalar gradient with the most extensive strain rate
becomes less evident with decreasing Da. Alignment characteristics are determined by
the relative importance of the dilatation and the turbulence. Since the dilatation is of
the order of 3 /1r', where 7, is the chemical time scale, and the strain rate is of the order
of the small-scale turbulent time scales, the relative importance of the dilatation can be
estimated by the parameter O3/Ka. The dependence of the aligment characteristics on
is primarily due to that of the dilatation on (. In addition, due to the correlation between
the dilatation and the curvature, the alignment characteristics in premixed flames show
stronger dependence on the curvature than in non-reacting scalars.

The dependence of the tangential strain rate on the curvature is a direct consequence
of the heat release effects in premixed flames. The relationship between the dilatation
and the displacement speed is primarily responsible for this dependency. In reaction front
propagation with no heat release, such dependence of the tangential strain rate on the
curvature will not be observed. It is expected that, in the front with no heat release, the
tangential strain rate has a maximum near K = 0 and decreases with increasing tKJ.

4.4. Effects of the tangential strain rate and the curvature on the mass flux variation
term

Figure 10 shows the joint PDF of the curvature K and the curvature variation term T, for
PF1. T, has a negative correlation with the IKI for the ensemble with 0.4 < C < 0.8. This
implies that smaller-scale wrinkling is more responsible for flame thickening. T, always
has a negative value when Ir< is large. For low values of IKI, T, can be positive, while it is
much more probable for T, to be negative. For large IKI, the wrinkling is of the order of
the flame thickness and significant variations of the curvature across flame fronts occur.
T, then plays a key role in the thickening of flame fronts. Significant scattering in the
joint PDF means the importance of small-scale turbulence that can locally make high
curvature and associated curvature variation near the iso-surface with small curvature.
As shown in Fig. 11(b), T, has essentially no correlation with the curvature for the
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FIGURE 11. The joint PDFs of the tangential strain rate and the curvature variation term for
(a) the ensemble with 0.05 < C < 0.15 and (b) the ensemble with 0.4 < C < 0.8 (PF1, rz• 4.5).
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FIGURE 12. The joint PDFs of the tangential strain rate and the normal mass flux variation
term for (a) the ensemble with 0.05 < C < 0.15 and (b) the ensemble with 0.4 < C < 0.8 (PF1,
7 ; 4.5).

ensemble with 0.5 < C < 0.15. The response of the reaction fronts to wrinkling is

different for different iso-surfaces. while the curvature variations contribute to reduce the

scalar gradient for all ranges of C. The curvature variation term has no correlation with

the tangential strain rate term in Fig. 11.

Figure 12 shows the joint PDF of the tangential strain rate term Tt and the normal

mass flux variation term T, for PF1. T, has a negative correlation with Tt, for both
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FIGURE 13. The joint PDFs of the curvature and the normal mass flux variation term for (a)
the ensemble with 0.05 < C < 0.15 and (b) the ensemble with 0.4 < C < 0.8 (PF1, r z 4.5).

ensemble with 0.05 < C < 0.15 and that with 0.4 < C < 0.8. This correlation is
determined by the response of the unstretched flame to the straining velocity field. For
the preheat zone with no reaction, the normal mass flux term has the contribution only
from diffusion normal to the iso-surface, and the positive tangential strain rate enhances
the normal diffusion, which reduces the scalar gradient. The same argument applies to
the reaction zone, since the reaction rate on an iso-surface does not change for unity
Lewis number. In Fig. 12(b), TK has a negative correlation with the tangential strain
rate. This can be explained by (2.16).

Figure 13 shows the joint PDF of the curvature , and the normal mass flux variation
term T,. For the ensemble with 0.4 < C < 0.8, T, has a positive correlation with the
K, but the correlation is weaker than that between the tangential strain rateTt, and the
normal mass flux T,. This correlation does not indicate the direct influence of K on the
normal mass flux variations, but comes from the correlation between K and Tt,. The
correlation between K and T, for the ensemble with 0.4 < C < 0.8 is weaker than that
with 0.4 < C < 0.8.

5. Conclusion

The scalar gradient and the small-scale structure of turbulent premixed flames with
high turbulence intensity are investigated using DNS data for statistically 1-D planar
flames. The evolution equation for the scalar gradient following an iso-scalar surface is
presented. In the Lagrangian form of the scalar gradient equation, which is useful in
propagating reaction front problems, the evolution of the scalar gradient on an iso-scalar
surface is governed by the tangential strain rate, the Lagrangian time derivative of the
density, and the mass flux variations along the normal to the iso-scalar surface. The
mass flux variation term is decomposed into the normal and the tangential components
to investigate the effects of the curvature.

The major sink term in the scalar gradient equation is shown to be the curvature
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variation term, while the tangential strain rate term is a major source term. In the

preheat zone, the average of the tangential strain rate term conditioned on the progress

variable is balanced with that of the normal mass flux variation term, and the conditional

average Lagrangian time derivative of the scalar gradient is approximately equal to the

conditional average curvature variation term. In the reaction zone, the curvature variation

term is primarily balanced with the tangential strain rate term. It is observed that the

thickening process in the reaction zone is much weaker than that in the preheat zone.

In one of our simulated flames, a sudden drop of the strength of flame thickening in the

reaction zone was observed.
The statistics of each term in the scalar gradient equation are investigated. The tangen-

tial strain rate and the curvature are found to have a negative correlation. It is shown that

the negative correlation is due to the relation between the dilatation and the displacement

speed of an iso-scalar surface. This implies that the heat release effects are of significant

importance in the evolution of the scalar gradient in premixed flames. The dependence

of the dilatation on the curvature is also shown to affect the alignment characteristics of

the flame normal with the principal axis of the strain. The curvature variation term is

found to have a negative correlation with the magnitude of the curvature, which suggests

that smaller-scale wrinkling is more responsible for flame thickening.
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A balanced force refined level set grid method for
two-phase flows on unstructured flow solver grids

By M. Herrmann

1. Motivation and objectives
In liquid/gas flows, surface tension forces often play an important role. For example,

during the atomization of liquid jets by coaxial fast-moving gas streams, the details of the
formation of small-scale drops from aerodynamically stretched out ligaments is governed
by capillary forces (Marmottant & Villermaux 2004). From a numerical point of view,
surface tension poses a unique challenge since it is a singular force, active only at the
location of the phase interface. In addition, the situation is further complicated by the
fact that material properties, like density and viscosity, exhibit a discontinuity at the
same location. One of the prerequisites for correctly treating surface tension forces is
therefore the ability to locate the position of the phase interface accurately. To this end,
several phase interface tracking schemes exist for fixed grid flow solvers, among them the
marker method (Tryggvason et al. 2001), the Volume-of-Fluid (VoF) method (Gueyffier
et al. 1999), and the level set method (Sussman et al. 1994). Here we will use a variant
of the level set method, termed Refined Level Set Grid method (Herrmann 2004, 2005),
to ensure good fluid volume conservation properties.

Different strategies exist to discretize the surface tension force once the location of
the phase interface is known. The most commonly used method is due to Brackbill
et al. (1992) called Continuum Surface Force (CSF). Here, the ideally singular surface
tension force is spread into a narrow band surrounding the phase interface by the use of
regularized delta functions. These can take the form of a discrete derivative of a Heaviside
scalar, i.e., the volume fraction, in VoF methods, or spread out delta functions, like
the popular cosine approximation due to Peskin (1977) in level set methods. Especially
in level set methods, the use of spread out delta functions can be problematic, since
convergence under grid refinement is only guaranteed for certain, not commonly employed
delta function approximations (Engquist et al. 2005). An alternative to the CSF method
is the Ghost Fluid Method (GFM) proposed in Fedkiw et al. (1999) that aims to apply
the jump conditions and surface tension force as singular source terms within the context
of finite difference schemes.

Both the CSF and the GFM method, however, are prone to generating unphysical
flows, so-called spurious currents, near the location of the phase interface when surface
tension forces are present. In the canonical test cases of an equilibrium column and an
equilibrium sphere, these velocity errors can grow unbounded very fast, if they are not
artificially damped by introducing viscosity. The amplitude of the spurious currents when
damped by viscosity is of the order of u - 0.01olap for VoF and level set methods and
u _ 10-50/p for marker methods (Scardovelli & Zaleski 1999), where 0 is the surface
tension coefficient and p is the viscosity. Thus, numerical simulations are limited by a
critical Laplace number, La = apR/p , where p is the density and R is a characteristic
phase interface radius of curvature, since for large La, i.e., large a, spurious currents
start to dominate the physical flow (Scardovelli & Zaleski 1999).
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The reason for the occurance of spurious currents is twofold. The major reason is a

discrete imbalance between the surface tension force and the associated pressure jump

across the phase interface (Francois et al. 2006). The second source of error is due to

errors associated with evaluating phase interface curvature. To address the former source

of error, Young et al. (2002) proposed a modification to the procedure of Kim & Choi

(2000) to regain discrete consistency. However, they were using the CSF method with

smeared out delta functions in a level set context and, hence, the exact discrete balance

was not achieved. Francois et al. (2006) proposed a so-called "balanced force algorithm"

for VoF schemes on structured Cartesian meshes that discretely balances the surface

tension force and the associated pressure jump across the interface. In that paper, the

discrete evaluation of the delta function as the derivative of the volume fraction scalar

naturally results in the discrete balance when following a similar approach to the one

proposed in Young et al. (2002). The approach by Francois et al. (2006) eliminates

spurious currents up to machine precision zero, if the interface curvature is prescribed

exactly.
Different strategies exist to increase the accuracy of curvature evaluation. For VoF

methods, the height-function approach (Sussman 2003) allows second-order converging

curvature calculation. However, the required stencil sizes are large and thus problematic

for interfaces close to each other. For level set methods, curvature at the node location

can be calculated with high-order accuracy, however, the phase interface curvature is

approximated to first order at most, due to the fact that nodal location and phase

interface position typically do not coincide.
In this paper, we will extend the balanced force algorithm of Francois et al. (2006) and

Young et al. (2002) to unstructured flow solver grids using the RLSG level set method

to track the phase interface. To achieve second-order converging curvature evaluation,
an interface projected curvature evaluation method is proposed. The performance of the

balanced force RLSG method is demonstrated analyzing equilibrium columns and spheres

on structured and unstructured flow solver grids. Finally, to demonstrate the capability

of the new method in complex flows, a Rayleigh-Taylor instability is presented.

2. Governing equations

The equations governing the motion of an unsteady. incompressible, immiscible, two-

fluid system are the Navier-Stokes equations,

au 1 1 1
t +uVu=-IvpV+ .(P(Vu+V T u))+g+ITor (2.1)

where u is the velocity, p the density, p the pressure., p the dynamic viscosity, 9 the

gravitational acceleration, and T, the surface tension force which is non-zero only at

the location of the phase interface xf. Furthermore, the continuity equation results in a

divergence-free constraint on the velocity field,

V .u = 0. (2.2)

The phase interface location xf between the two fluids is described by a level set scalar
G. with

G(xf, t) = 0 (2.3)

at the interface, G(x, t) > 0 in fluid 1, and G(x, t) < 0 in fluid 2. Differentiating Eq. (2.3)
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with respect to time yields the level set equation,

aG
--- + u. -VG = 0. (2.4)

Assuming p and p are constant within each fluid, density and viscosity at any point x
can be calculated from

p(x) = H(G)pl + (1 - H(G))p2  (2.5)

p(x) = H(G)pl + (1 - H(G))p2 , (2.6)

where indices 1 and 2 denote values in fluid 1, respectively 2, and H is the Heaviside
function. From Eq. (2.3) it follows that

6(x - xf) = 6(G)IVGI (2.7)

with 6 the Dirac delta function. Furthermore, the interface normal vector n and the
interface curvature r, can be expressed in terms of the level set scalar as

VG
n -7VGK, , =V.n. (2.8)

Using Eqs. (2.7) and (2.8), the surface tension force T, can thus be expressed as

T,(x) = ao6(x - xf)n = aK3(G)JVGln = aK6(G)VG, (2.9)

with o the surface tension coefficient.

3. Numerical method

In this section, we first briefly summarize the RLSG method used to solve the level
set equation and discuss how the RLSG level set solution is coupled to structured and
unstructured flow solver grids. Next, the level set-based balanced force algorithm for
unstructured flow solver grids is presented and the performance of the resulting method is
illustrated using the canonical test cases of equilibrium columns and spheres prescribing
curvature exactly. Then, the method to calculate second-order converging interfacial
curvatures is outlined. Finally, results are presented for curvature evaluation of columns
and spheres on structured and unstructured flow solver grids.

3.1. Refined Level Set Grid method
In the RLSG method, all level set-related equations are evaluated on a separate, equidis-
tant Cartesian grid using a dual-narrow band methodology for efficiency. This so-called
G-grid is overlaid onto the flow solver grid, which can be either structured or unstruc-
tured. Details on the method when used in conjunction with a structured, equidistant
Cartesian flow solver grid and its performance in generic test cases can be found in Her-
rmann (2006, 2005). To a certain extent the RLSG method is similar to the recently
proposed Narrow-Band Locally Refined Level Set (NBLR-LS) approach by Gomez et al.
(2005). However, the latter is limited to Cartesian grids, whereas the former can deal with
arbitrary unstructured flow solver meshes. In the following, we will discuss only recent
modifications to the RLSG method not contained in the aforementioned publications.

3.1.1. Re-initialization
For reasons of numerical accuracy, one would like to maintain G away from the interface

G = 0 as smooth a field as possible. Sussman et al. (1994) proposed defining the level
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FIGURE 1. Volume integration for unstructured flow solver grid cells.

set scalar away from the interface to be a signed distance function, i.e., VGJ = 1. Since

solution of Eq. (2.4) will not maintain this property, a re-initialization procedure has to be

applied to force G # 0 back to VGJ = 1. Several different strategies exist to achieve this.

the one used in this work is based on the PDE-based re-initialization by Sussman et al.

(1994) using the modified signed function due to Peng et al. (1999). Unfortunately, it is

well known that repeated application of the PDE-based re-initialization will inadvertently

move the G = 0 isosurface and hence will not conserve fluid volume and thus fluid

mass. It is therefore desirable to limit the application of the re-initialization procedure to

situations where the divergence from G being a signed distance function would adversely

impact numerical accuracy by using an appropriate trigger criterion.

Here we will use a slight modification to the criterion proposed by Gomez et al. (2005).

The PDE-based re-initialization procedure is applied only if

max(lVGI) > re.×x or min(1aG) < O<jmin, (3.1)

evaluated inside the transport band T-band (see Herrmann (2005, 2006) for definition of

the individual bands). Also, Eq. (3.1) is used as a convergence criterion for the pseudo-

time iteration of the re-initialization, while still limiting the maximum number of iteration

steps to 71nmax = Cdg/lhG, where dgr is the width of the re-initialization band (,V-band),

C is the CFL-number, and hG is the grid cell size of the G-grid. In the results presented

in this paper we use a ax = 2 and .min = 10-4, resulting in typically 1-2 pseudo-time

iteration steps until convergence is reached, should re-initialization be triggered.

3.1.2. Coupling to flow solver

In the Navier-Stokes equation, the position of the phase interface influences two dif-

ferent terms. The first term is due to Eqs. (2.5) and (2.6), since H(G) is a function of

the position of the phase interface. For finite volume formulations, the volume fraction

v, of control volume cv is defined as

= 1/=cv j H(G)dV. (3.2)

with Vv, the volume of the control volume cv. In the RLSG method, the above integral

is evaluated on the G-grid as

1/V'V Iv I H(G) dV= Z G VCViG"G (3.3)

where Vc,,i, is the joined intersection volume of the G-grid cell iG and the flow solver

control volume cv (see Fig. 1), and the G-grid volume fraction vi, is calculated using an
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analytical formula developed by van der Pijl et al. (2005),

,i, = fa(Gi, VG 0i). (3.4)

The joined intersection volumes Vcv.it are calculated using CHIMPS (Alonso et al. 2006),
employing a Sutherland-Hodgman clipping procedure (Sutherland & Hodgman 1974) to
calculate the intersection volume between a Cartesian grid cell and convex tetra-, penta-,
and hexahedra.

The second term that is a function of the interface position is the surface tension force
term, Eq. (2.9). This term could be calculated first on the G-grid, using a smeared out
version of the delta function 6 ,, and then volume averaged to the flow solver grid,

T• =/livEVcvT c. =Ei Vc,:icoagi,6(Gi,)(VG)i; (35)

oG ZiG Vcv,ic

However, as will be seen later, this formulation is inconsistent with the balanced force
algorithm. Instead, only the interface curvature is transferred from the G-grid to the flow
solver grid,

racV = EiG VCV~iGaiG ' (3.6)

where 6iG = 0 if ?PiG = 0 or pi, = 1, and Si, = 1 otherwise. The use of 6iG ensures that
K is treated as a surface quantity and not a volume quantity.

In order to couple the level set equation, Eq. (2.4), to the Navier-Stokes equation, uiG
has to be calculated from ucv. Again the CHIMPS infrastructure is used and either tri-
linear or C1, isotropic tri-cubic interpolation (Lekien & Marsden 2005) is employed. It
should be pointed out that strictly speaking neither one of these velocity interpolations
can maintain a smooth curvature field under G-grid refinement. To achieve this property,
kint is defined as

S= V. (V(ui n)), (3.7)
where uint is the interpolated velocity onto the G-grid and n is the interface normal
vector, would have to be continuous when switching between neighboring interpolation
cells. Clearly, for tri-linear interpolation, this is not the case and even the isotropic tri-
cubic interpolation of Lekien & Marsden (2005) does not guarantee this property, since
neither 0a,, nor c9, nor a, are kept continuous between neighboring interpolation
cells. Constructing an interpolation scheme that fulfills the above condition will be part
of future work.

To achieve second-order in time, the level set equation is solved staggered in time with
respect to the Navier-Stokes equation.

3.2. Balanced force algorithm
The solution method of the Navier-Stokes equations is based on the fractional-step
method for collocated variables on unstructured grids described in Mahesh et al. (2004).
In the following, outlined is only the part of the algorithm that ensures discrete balance
between surface tension forces and pressure gradient forces. It is based on the balanced
force method for Volume of Fluid methods on collocated Cartesian grids (Francois et al.
2006).

For simplicity, we will omit the viscous term in the following discussion. The term is
fully implemented and solved for in flux form, with the viscosity at the cell face calculated
by the harmonic mean of the centroid viscosities of the two control volumes cv and nbr
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sharing the face,
2
1Icviinbr(38

2Jcv +nbr (3.8)

The cell centroid values are calculated by

Pcv W VcvPl ± (1 - Ycv)P2 • (3.9)

The algorithm then reads

__ u" n+1/2 n+1/2

Vcv Ui'CV At + E • u+1/2 Ui'cv 2 i,nbr Af = Vg + / (3.10)

f
Un+l 1 apn+l/2

--CV 1 ap (3.11)

At ,n+1/2 Ox

where Af is the face area, uf the face normal velocity, F2 •v the density weighted surface

tension force defined below, and superscripts denote time levels.

To define the force F7+c1/ 2 at the control volume centroid, we first need to define the

surface tension force at the cell face,

Tn+1/2 n
1 2 (V+1)/ +

1 2 . (3.12)

Here, the face curvature is calculated from the centroid curvature, Eq. (3.6),

n+1/2 n+1/2 n+1/2 n+1/2
,n+1/2 _ CV 'CV + anbr 1

bnbr (3.13)
f n+1/2 + n+l/2 (.3

OCV + Onbr

with

1n12 1 , V+/

V 1 0 otherwise (3.14)

and (,V,,))+ 1/2 (,n+1/2 _ .n+1/2)•1

<nb,. - v /1cv~nb,1 (3.15)

Here, Scvnbr is the vector connecting the cv and nbr control volume centroids. Then,

Fn+1/2 at the face becomes

Fn+1/2- Tn+1/2/pn+l/
2/ (3.16)

f a jf f+1/2. (n+1/ +^n+l/2"/

with pf+1/ 2 
= (p+)/ 2 + p,'1 2

)/ and the centroid densities calculated from

n t+1/2= ,n+1/2p, + (1 - O'cj'n+l
2 2. (3.17)

PCV2 CV CV )P 3.7

Finally, F n+1/2 defined at the cell face needs to be transferred to the control volume

centroid. It is crucial that for this, one uses exactly the same operation that is used

for transferring (Op/On)f to (Op/Oxi)cv in the pressure corrector step. Here we use the

face-area weighted least-squares method of Mahesh et al. (2004) by minimizing

Ec,= 1/2 - F+1/2 2 Af . (3.18)

f

After solving Eq. (3.10) to obtain u*,cv, the cell face normal velocities u* are calculated,

uf= -• (Ui + Uifnbr)flif - i t F(7+1/
2 + Fin/2 nij + AtF7+

1 /
2 (3.19)
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This is essentially a modification of the procedure by Kim & Choi (2000). first proposed
by Young et al. (2002). To correct the face intermediate face velocities u} to be divergence
free, we then solve the following variable coefficient Poisson system.

1 ap1n+ 1
/ 2  1S 1!2 -• Af = y-u5 tiuAf (3.20)

f Pj f

and then apply the correction

U+1 u f* - AtPf, (3.21)

with

pn+1/2 n+1/2

,1 (-vpn+1/ 2 )f - 1 nnbr -- Pcv (3.22)
Pf+/ Pn+1/2 S8cv~nbrI

Next, the centroid-based density weighted pressure gradient Pv is calculated from the
face-based density weighted gradient Pf using the same face-area weighted least-squares
method employed in calculating Ff (see Eq. 3.18),

v= (Picvn1 ,j - pf)2 Af. (3.23)

f

Finally, the control volume centroid velocity is corrected (cf. Eq. 3.11),
Un+1 = * - AtP.,c (3.24)

concluding the flow solver time step.

3.3. Exact curvature equilibrium inviscid column and sphere
To illustrate the performance of the balanced force algorithm, we analyze the canonical
test cases of the equilibrium inviscid column and sphere. In this case, the surface tension
forces should exactly balance the pressure jump across the phase interface, resulting in
the column and sphere remaining perfectly at rest. We employ the test case parameters
suggested by Williams et al. (1999) and used by Francois et al. (2006): a column (or
sphere), of radius R = 2 is placed at the center of an 8x8(x8) domain. The surface
tension coefficient oa is set to 73, resulting in a theoretical pressure jump across the
interface of ApeI = 36.5 for the column and Ap" = 73 for the sphere. The density
inside the column/sphere is set to pi = 1 and the density outside the column/sphere P2
is varied. Equidistant Cartesian and unstructured prism and tetrahedral flow solver grids
are tested. The flow solver grid is characterized by the characteristic grid size h, whereas
the equidistant Cartesian G-grid size is denoted by hG.

The error in pressure is measured in two different ways (Francois et al. 2006),

E(Apmax) = max(pcv) - min(pcv) - Apex (3.25)
E(APpart) = P-•cv1<R/2 - AcvŽr>3R/2 - Apex (3.26)

where the bar indicates an arithmetic average over all control volumes fulfilling the given
condition.

Table 1 summarizes the errors in velocity, pressure, and kinetic energy Ekin for the
column after a single time step of size At = 106 for varying density ratios if the exact
curvature of the column is used for ni, in Eq. (3.6) . As can be seen, both on the Cartesian
and the unstructured prism flow solver grid, errors are machine precision zero, even for
extremely large density ratios.
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IP1/P21 L_(u) I Ek, IE(p .... ))E(Ap,.,0) IPlIP21 LP(u)/I Ek,- I E(_p .. )E(-p...)

1 6.76e-20 6.86e-40 414e-16 3:41e-15 1 1.82e-16 1.06e-32 1.82e-16 4.58-1'3

10
3  

3.59e-17 6.28e-35 990e-14 9.21e-13 10 2.55e-16 7.84e-36 2.55e-16 1.97-15

105 9.93e-19 2.26e-40 3116e-16 1.58e-15 105 5.43e-16 8.43e-38 5.43e-16 2.29e-15

1010 9.77e-19 1.74e-40 7.30,-16 1.19e-15 1010 3.93e-18 3.39e-39 3.93e-18 7.40e-15

TABLE 1. Errors in velocity and pressure after single time step for varying density ratio in the
inviscid, equilibrium column test case using exact curvature and h = hG = 0.2; Cartesian flow
solver grid (left) and prism flow solver grid (right).

I plp2 I n_(u)I Ek,,I E (Ap. . ) IE(Ap.,-I IP I Lp -(u) I E.i E (p... E(Ap,. .

1 5.49,-17 6.95e-34 6.57e-14 1.19e-12 1 3.31e-16 8.20e-33 1.31e-:1 1.25e-14

103 1.15e-17 1.40e-36 1.15e-14 9.41e-14 103 1.07e-15 5.96e-35 4.81e-14 1.50e-15

110 1.21e-16 3.30e-39 5.30e-15 1.38e-14 10" 2,58e-15 2.76e-36 1.42e-14 102e-15

101 5.47e-16 8,24e-36 3.54e-1
3  

2.74e-13 1010 9.95e-11 2.73e-35 2.40e-15 5.60e-16

TABLE 2. Errors in velocity and pressure after single time step for varying density ratio in the
inviscid, equilibrium sphere test case using exact curvature and h = hc = 0.2; Cartesian flow
solver grid (left) and tetrahedral flow solver grid (right).

Table 2 summarizes the same quantities in the sphere test case. Again, both on the

Cartesian and the tetrahedral flow solver grid, machine precision zero errors are achieved

for varying density ratios, if the exact curvature is employed.

Thus, provided that the exact curvature is known, the balanced force algorithm results

in machine zero spurious currents, even in the inviscid case. However, the exact curvature

is rarely known, instead it has to be evaluated and is prone to errors. These curvature

errors are then the sole source of error for spurious currents.

3.4. Curvature evaluation

As noted in the previous section, only curvature errors result in spurious currents when

employing the balanced force algorithm. Hence the task of minimizing spurious cur-

rents is equivalent to increasing the accuracy of curvature evaluation. In standard level

set methods (Sethian 1999), curvature is evaluated at G-node locations by discretizing

Eq. (2.8),

G 2 (G2 ±G 2) + G,yy(G 2 +i Gý) + G,zz(G 2 G 2 )

(G 2 , G + G + G )3/2

-2 G,xyG,xG 5y + G,x.G xG,z + G,yzG yG,z (3.27)
(G

2 + G2 + + G62) 3 /
2

typically using a 27-point stencil. It is important to point out that this approach ap-

proximates the curvature of the G-isosurface that passes through the nodal point itself.

It is therefore, at best, only a first-order approximation to the curvature of the phase
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FIGURE 2. Inherent phase interface curvature error when evaluating curvature at nodes.
Curvature is determined to be K = l/R 1  1/(R + O(hc)) instead of K, 1/R.
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FIGURE 3. Initial column curvature errors under G-grid refinement; flow solver grid h = 0.2;
Cartesian flow solver grid (top), prism flow solver grid (bottom); nodal curvature (circles), direct
front curvature (squares), Chopp front curvature (triangles), first- and second-order convergence
(dashed lines).

interface, which can be a distance hc away from nodes directly adjacent to the inter-
face (see Fig. 2). Figures 3 and 4 demonstrate this first-order convergence rate under
G-grid refinement for both the column and the sphere test case using either Cartesian

flow solver grids (column and sphere), unstructured prism grids (column), or tetrahedral

grids (sphere) with h = 0.2.
Since the root cause of the first-order convergence rate is the fact that curvature is

not calculated at the interface itself, different approaches can be taken to overcome this

problem. Introducing a polynomial representation of the interface in terms of interface-
based coordinates is a viable approach in two dimensions, but becomes cumbersome
in three dimensions. Here, we will follow an alternative approach using the fact that a
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FIGURE 4. Initial sphere curvature errors under G-grid refinement; flow solver grid h = 0.2:

Cartesian flow solver grid (top), prism flow solver grid (bottom); nodal curvature (circles), direct

front curvature (squares), Chopp front curvature (triangles), first- and second-order convergence
(dashed lines).

quantity defined only on the interface itself, like curvature, can be distributed to the
whole computational domain in a meaningful way by solving

Vr, .V G = 0. (3.28)

This effectively sets K constant in the front normal direction. Note that due to Eq. (3.6),

Eq. (3.28) needs to be solved only for G-nodes adjacent to the interface. The problem is

therefore similar to determining the initially accepted values in the Fast Marching Method

(Adalsteinsson & Sethian 1999). For this purpose, Chopp (2001) developed a Newton's

method that determines the nearest point on the interface (called "base-point" in the

following) for a given node in two dimensions. The method relies on approximating the

level set scalar within each computational cell close to the interface by a bi-cubic spline.

For this purpose. G need not be a distance function. We have extended Chopp's method

to three dimensions using C1, isotropic tri-cubic interpolations (Lekien &- Marsden 2005).

We typically find the base-point within 2-4 Newton iterations. However, the algorithm

can find base-points that lay outside of the considered G-grid cell for which the tri-

cubic interpolation is valid. In this case, the base-point is rejected, unless none of the

alternative eight G-cells the node belongs to yields a valid base-point. Once the base-point

coordinates have been determined, the base-point's curvature is calculated by tri-linear

interpolation using the surrounding nodal curvature values. Using Eq. (3.28), the nodal

curvature is then set equal to its base-point's curvature.

The resulting curvature errors under G-grid refinement using Chopp's method are
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FIGURE 5. Equilibrium inviscid column and sphere velocity (circle) and pressure (triangle) errors
after 1 time step under G-grid refinement; flow solver grid h = 0.2, density ratio pl/p2 = 103;
from left and right: column Cartesian flow solver grid, column prism flow solver grid, sphere
Cartesian flow solver grid, and sphere tetrahedral flow solver grid; dashed lines mark sec-
ond-order convergence.

shown in Figs. 3 and 4. They show second-order convergence, and even on coarse grids,
Chopp's method yields more than one order of magnitude better curvature estimates
than the nodal-based evaluation. The drawback of Chopp's method is that for complex
interface geometries in three dimensions, the Newton algorithm does not always converge.
The method thus lacks the stability required for complex interface geometries typically
found in liquid/gas flows. Thus, the following method is proposed as an alternative.

Assuming that G is smooth in the vicinity of the phase interface, the base-point XB

for a given node XG close to the interface can be explicitly calculated from

G VG
XB = XG - dn =x - vIcG VGI' (3.29)

where all gradients are calculated using central differences. This approach is termed direct
front curvature in the following. It gives good base-point estimates only for nodes close
to the interface. However, due to the way Eq. (3.6) is evaluated, r, needs to be calculated
only on nodes close to the interface, making the direct front curvature method viable. As
before, once base-points have been determined, their curvature is again calculated using
tri-linear interpolation from the surrounding nodal curvature values. Then, according to
Eq. (3.28), the curvature values of nodes are set to their respective base-points' curva-
ture values. Figures 3 and 4 also include the curvature errors calculated by the direct
method. As can be seen, they are virtually indistinguishable from the values obtained
using Chopp's method yielding second-order convergence.

Comparing the obtained curvature errors to those calculated by Francois et al. (2006),
both Chopp's and the direct method give curvature errors an approximate factor of 5
lower than the 7x3 stencil height function method employed in that paper. While a height
function approach could be employed in the RLSG method as well, since volume fractions
7' are readily available, the effective G-stencil needed would be 9x5x5 (cf. Eq. 3.2), as
compared to 4x4x4 in the direct front curvature method. Smaller stencil sizes are espe-
cially important for complex interface geometries, since both the height function and all
level set curvature methods are based on the assumption that all 0 and G values in the
stencil relate to one continuous interface segment only. Auxiliary, non-contiguous, inter-
face segments inside the stencil can introduce significant errors. Hence, smaller stencil
sizes are preferred to limit these errors.

In the following, we will employ the direct front curvature method to calculate nodal
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FIGURE 6. Temporal evolution of kinetic energy for equilibrium inviscid column (top) and sphere
(bottom) for 500 time steps under G-grid refinement: hG = 0.4 .circle), hc = 0.2 (triangle),
hG, = 0.1 (box); flow solver grid h = 0.4, density ratio p1/p2 = 10 ; Cartesian flow solver grids

(top left and bottom left), prism flow solver grid (top right), and tetrahedral flow solver grid
(bottom right).

curvature values on the G-grid. Figure 5 shows the errors in velocity and pressure after

a single time step of size At = 10-6, using p, = 1 and P2 = 10- 3 and refining the

resolution ha of the G-grid. As expected, due to the balanced force algorithm, errors in

curvature evaluation result in errors in velocity and pressure, showing the same second-

order convergence behavior (cf. Figs. 3 and 4).

4. Results

4.1. Long-time evolution of the equilibrium inviscid column and sphere

As shown in the previous section, errors in curvature evaluation result in spurious currents

that are small, but non-zero. Thus, the long-time behavior of the equilibrium column and

sphere is of interest, since errors might accumulate and result in large erroneous velocities.

Figure 6 shows the temporal evolution of the kinetic energy in the computational

domain for both the inviscid column and sphere on Cartesian and unstructured flow

solver grids. The flow solver characteristic grid size is h = 0.4 in all simulations, p, = 1,

P2 = 10-3. 30 = 73, and the fixed time step size is At - 10-3. As observed by Francois

et al. (2006), the column seems to enter an oscillatory mode that appears quite stable on

a Cartesian flow solver grid (top left), but shows a slight growth on the prism flow solver

grid (top right). The inviscid sphere results, on the other hand, do not exhibit such a

clear periodic behavior. In the Cartesian flow solver grid case, different periods seem to

be superposed, and the unstructured tetrahedral grid shows an increase in kinetic energy
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FIGURE 7. Equilibrium inviscid column and sphere maximum velocity error during 500 time
steps under G-grid refinement; flow solver grid h = 0.4, density ratio P1/p2 = 103 ; from left to
right: column Cartesian flow solver grid, column prism flow solver grid, sphere Cartesian flow
solver grid, and sphere tetrahedral flow solver grid; dashed lines mark second-order convergence.

without reaching a periodic state. This is due to the fact that the unstructured grid lacks
the symmetry of the Cartesian grids of the flow solver and the G-grid. This symmetry
seems to initiate a periodic oscillation instead of a constant growth in spurious currents
and is thus beneficial in this particular test case, but not indicative of the method's
performance in a more general setting. In the general case, one can expect a growth
of the kinetic energy along the lines of the unstructured grid results, necessitating at
later times the use of viscous dissipation to control the spurious currents. However, the
balanced force method exhibits very low levels of spurious currents and indeed, this
level can be made even smaller if the G-grid is refined to increase the accuracy of the
interface curvature evaluation. Figure 7 shows the convergence rates for the maximum
velocity error under G-grid refinement, using a flow solver resolution of h = 0.4. Close
to second-order convergence can be observed both on structured and unstructured flow
solver grids.

4.2. Rayleigh-Taylor instability
To demonstrate the performance of the proposed method, the complex flow of a Rayleigh-
Taylor instability is computed. This is a common test problem performed by a variety
of different methods (Bell & Marcus 1992; Puckett et al. 1997; Popinet & Zaleski 1999;
Gomez et al. 2005). A heavy fluid, p, = 1.225, pl = 0.00313, is placed above a light
fluid, P2 = 0.1694, p2 = 0.00313, inside a domain of size lx4. The interface between
the two fluids is placed in the middle of the domain and is perturbed by a cosine wave
of amplitude 0.05. The gravity constant is set to g = 9.81. We set the time step size
constant to At = 2.5 . 10- 4 and simulate up to t = 0.9. Figure 8 shows the interface
shape at different instances in time for a Cartesian flow solver grid of h = 1/512 and a
G-grid of hG = 1/512. As will be demonstrated below, this grid resolution ensures grid
converged results and thus will be used as a reference solution in the following.

Figures 9-11 show the interface shape for different flow solver and G-grid resolutions.
Using the coarsest flow solver grid of h = 1/64 presented in Fig. 9, one can already
notice deviations from the reference solution at early times. While the stem and bubble
shape is well captured, the fine scale geometry of the side arms is not well maintained.
Up to t = 0.8, there appears almost no difference between the results using hG _Ž 1/128.
This indicates that the deviations from the reference solution are due to errors in the
flow representation and not due to errors in the interface tracking scheme. However, at
t = 0.9, the very fine connecting bridge at the side arms can only be maintained by
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FIGURE 8. Rayleigh-Taylor instability interface shapes for reference solution, h = ha= 1/512.
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FIGURE 9. Rayleigh-Taylor instability interface shapes under C-grid refinement he; = 1/64,
1/128. 1/256, and 1/512 (left to right in each group) at t = 0.6, 0.7, 0.8, and 0.9 (top left to
bottom right) and flow solver grid h = 1/64. Thin line denotes reference solution.

hG= 1/512. Note that except for the difference in the details of the connecting bridge,
the larger scale geometric features are consistent between different C-grid resolution with
h0 > 1/128.

At a flow solver grid of h = 1/128 presented in Fig. 10, virtually no difference can
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FIGURE 10. Rayleigh-Taylor instability interface shapes under G-grid refinement hG = 1/128,
1/256, and 1/512 (left to right in each group) at t = 0.6, 0.7, 0.8, and 0.9 (top left to bottom
right) and flow solver grid h = 1/128. Thin line denotes reference solution.
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FIGURE 11. Rayleigh-Taylor instability interface shapes under G-grid refinement hG = 1/256
and 1/512 (left to right in each group) at t = 0.6, 0.7, 0.8, and 0.9 (left to right) and flow solver
grid h = 1/256. Thin line denotes reference solution.

be discerned between the reference solution and G-grid resolutions of hG > 1/128 up to
t = 0.8. At t = 0.9, however, the thin connecting bridge is only supported by hG = 1/512.
Comparing the results at t = 0.9 of h = 1/128 to those of h = 1/64 (cf. Fig. 9), the
finer grid flow solver results capture the shape of the interface significantly better. This
indicates that the flowfield is well resolved by the h = 1/128 grid.

This observation is further substantiated by refining the flow solver grid further to
h = 1/256, presented in Fig. 11. Virtually no difference to the reference solution can be
discerned, with the exception of hc = 1/256 at t = 0.9, where again the complete fine
connecting bridge is not supported by that G-grid resolution. Nonetheless, those parts
of the bridge that can be maintained by the grid are in excellent agreement with the
reference solution.
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FIGURE 12. Rayleigh-Taylor instability normalized volume error, h = 1/64,
h = 1/128.h = 1/256, and h = 1/512 (from left to right) for hG = 1/64 (open circle),
h(;= 1/128 (filled triangle), h-; = 1/256 (open box), and hG = 1/512 (filled circle).

To ascertain the volume/mass conservation properties of the method, Fig. 12 depicts

the normalized volume error, defined as

Ex(t) =IE w. M)V, . - Yc, V.(t = 0) V Vl (4.1)
EZv VV(t =

Except for hG = 1/512, all solutions show an increase in error at late times. This is due to

the disappearance of the thin connecting bridge. Also, at constant flow solver grid size h

and G-grid refinement, the volume errors converge to a non-zero value. Furthermore, the

converged error decreases when increasing the flow solver grid resolution. This indicates

the source of this error: because ui. is used to solve the level set transport equation

(Eq. 2.4), u is not discretely divergence free. An improved interpolation scheme to de-

termine ui, could therefore eliminate this error and will be investigated in the future.

Nonetheless, the observed volume errors on fine G-grids are very small and well within

acceptable limits.

5. Conclusion and future work

A balanced force RLSG method has been presented for structured and unstructured

flow solver grids. The method ensures machine precision zero spurious currents for arbi-

trary density ratios if the curvature can be evaluated exactly. Spurious current magni-

tude is directly related to errors in the evaluation of the interface curvature. To minimize

spurious currents in actual applications, a robust second-order converging curvature eval-

uation scheme has been presented that significantly reduces spurious currents compared

to the traditional first-order converging curvature evaluation schemes. The performance

and good volume conservation properties of the RLSG method have been demonstrated

using the Rayleigh-Taylor instability.

Future work will focus on enhancing the velocity interpolation scheme from the cur-

rently employed tri-linear or tri-cubic interpolation. Furthermore, subgrid models for

surface tension-induced subgrid velocities are necessary when extremely refining the G-

grid. Finally, the employed methods will be used to study the primary atomization of

liquid jets and sheets to help develop a LES-type model for primary atomization.
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Toward two-phase simulation of the primary
breakup of a round liquid jet by a coaxial flow of

gas

By D. Kim, 0. Desjardins, M. Herrmann AND P. Moin

1. Motivation and objectives

Two-phase flows are very common in nature and technical processes such as ocean
waves, tire splash, and combustion devices. Among them, the atomization of liquid jets
or sheets by gas streams has received much attention due to its direct applicability to the
design of combustion chambers. However, it is challenging to model such a phenomenon
because of its complex nature. In a combustion chamber, fuel is typically injected as
a liquid and atomized subsequently to enhance evaporation. Combustion then occurs
in the gaseous phase. Atomization involves a sudden jump in the density across the
interface, surface tension force on the interface, topological changes of the interface, and
phase transition. Moreover, atomization of the liquid jet usually occurs in a turbulent
environment.

The atomization of a liquid jet can be considered as two subsequent processes, i.e.,
primary atomization followed by secondary atomization. The primary atomization is
the initial breakup of the liquid jet into large and small liquid structures close to the
injection nozzle. It involves complex interface topology of large coherent liquid structures.
The secondary atomization is the subsequent breakup into smaller drops forming sprays.
For the secondary atomization, a number of breakup models for liquid drops have been
proposed and validated (Reitz 1987; Tanner 1997; Apte et al. 2003). Using these breakup
models, there have been several attempts to simulate a liquid jet injected into a chamber
by representing the liquid core by a collection of liquid drops. However, the results are
easily changed by the initial drop size distribution, which is unknown without appropriate
primary atomization modelling. Although primary atomization is necessary to simulate
the whole atomization process, modelling still remains a major unresolved problem. It
is, therefore, crucial to develop a feasible high-fidelity computational tool for simulation
of the whole primary and secondary atomization process.

In this study, we conduct numerical simulations to investigate the breakup mechanism
of a liquid jet surrounded by a coaxial flow of gas. A Refined Level Set Grid (RLSG)
method (Herrmann 2004: 2005; 2006) coupled to a Lagrangian spray model (Apte et al.
2003) is used to capture the whole breakup process of the liquid jet. In the near field
of the liquid jet, where the primary breakup occurs, motion and topological changes of
the liquid jet are described by the RLSG method. In this region, a liquid jet consists of
the core and ligaments, which subsequently break into drops of various sizes. The drops
generated by the primary breakup are transferred to a Lagrangian spray model in order
to describe the secondary breakup process.
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2. Numerical methods

2.1. Governing equations

The Navier-Stokes equations for incompressible. immiscible. two-phase flow are described

as

p! + Pu. Vu = -Vp + V7 r + Ta (2.1)

1. u = 0. (2.2)

where p is the density, p is the pressure, 7 is the viscous stress tensor, and Ta is the

surface tension force.

A level set method is applied to track the location of the phase interface. The location

and time evolution of the phase interface are described by the level set equation:

OG
__ + u. 1G = 0., (2.3)at

where the isosurface G = 0 defines the location of the interface, G > 0 in the liquid, and

G < 0 in the gas phase. In the computational domain, G is set to be a signed distance

function to the interface:

1VGI = 1. (2.4)

The interface normal vector n and the interface curvature K can be calculated as

n V1G (2.5)
VGJ

K 17 n. (2.6)

In this paper, we used the RLSG method to solve the coupled level set equations (2.3,

2.4). The level set transport equation (2.3) is solved on a separate refined G-grid using

fifth-order WENO scheme (Jiang & Peng 2000) with a third-order TVD Runge-Kutta

time discretization (Shu & Osher 1989). It is coupled to the flow solver through u. The

velocity u on the fine G-grid is obtained by trilinear interpolation from the flow solver

grid. Reinitialization (2.4) is solved by an iterative procedure using a fifth-order WENO

scheme and a first-order pseudo-time integration (Sussmann et al. 1994: Peng et al. 1999).

The numerical details about the RLSG method are described in Herrmann (2005: 2006).

In order to solve the flow-field, an unstructured grid solver is used based on a balanced

force finite volume formulation of the variable density Navier-Stokes equations (Mahesh

et al. 2004; Ham & laccarino 2004: Herrmann 2006). The Navier-Stokes equations (2.1)

are coupled to the level set equation (2.3) through the density, viscosity, and surface

tension force. The density p and the viscosity p in a cell i are defined as volume averaged

quantities:

Pi = Wpj + (1 - Vi)pg (2.7)

Pi= V'ipl + (1 - ?Pi)pg, (2.8)

where the subscript I denotes quantities in the liquid and the subscript g denotes those

in the gas phase. The flow solver volume fraction i) is defined as



The breakup of a round liquid jet by a coaxial flow of gas 187

Vi = ' H(G)dV, (2.9)

where H is the Heaviside function and V2 is the control volume of the flow solver grid
cell. In the RLSG method, this integral is calculated on the G-grid as

1 H(G)dV -= a (2.10)

where Vii, is the joined intersection volume of the G-grid cell iG and the flow solver
control volume Vi, and the G-grid volume fraction Vi, is calculated using an analytical
formula developed by van der Pijl et al. (2005),

V~i, = f(Gi, ni.). (2.11)

The surface tension force T, is calculated as

T,,i = jV aowVýdx, (2.12)

where a is the surface tension force coefficient. The curvature K is transferred from the
G-grid to the flow solver grid,

S= ' (2.13)

where 6i, = 0 if Vi,; = 0 or wi, = 1, and 6i, = 1 otherwise. Details of the balanced force
algorithm and curvature are described in Herrmann (2006).

2.2. Coupling to flow solver
In this work, the RLSG method has been coded in a separate solver called LIT (Level
set Interface Tracker). All communication between the level set solver and the flow solver
is handled by a coupling software, named CHIMPS (Coupler for High-performance Inte-
grated Multi-Physics Simulations, Alonso et al. 2006). CHIMPS is used for all interpola-
tion of velocity vectors from the flow solver grid to the G-grid and all volume integration
from the G-grid to the flow solver grid. The advantage of this approach is that any
flow solver can be coupled to LIT. In this study, LIT has been coupled to CDP, a fully
unstructured, LES flow solver (Ham & laccarino 2004; Mahesh et al. 2005; Herrmann
2006).

2.3. Drop transfer

A vast number of atomized drops can be generated in the atomization process of liquid
jets. Thus, it becomes prohibitively expensive to resolve every drop by the level set scalar.
Instead, Lagrangian spray models are more adequate to describe small scale liquid drops
having simple geometry. In this study, broken small liquid drops are identified, removed
from the level set representation, and inserted as liquid drops into a Lagrangian spray
model if they satisfy the two criteria presented below.

In order to identify the broken-off drops, special care must be taken because broken
liquid structures can span different blocks on different processors. The drop identification
algorithm with multi-block domain decomposition is fully explained in Herrmann (2005).
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FIGURE 1. Computational domain of a round liquid jet surrounded by a coaxial flow of gas.

Using this algorithm, the volume of a broken drop and its center of mass can be easily

calculated.
As previously mentioned, there are two criteria for drop transfer. The first one states

that the drop volume VD has to be smaller than the volume criterion for a Lagrangian

spray model.

VD < V (2.14)

with V, .,, proportional to the volume of the local flow solver grid cell volume 1V. Since

the RLSG method can provide subgrid resolution with respect to the flow solver grid,

broken-off liquid structures whose volumes are less than Vi are still resolved, can be

identified and are candidates for Lagrangian spray tracking. The second criterion is a

shape criterion. Although a broken-off liquid structure might satisfy the above volume

criterion, it should not be transferred to the Lagrangian spray model if its shape is not

spherical, for example, if it is a thin ligament. The spherical shape criterion is defined as

rmax < 2 rsphere, (2.15)

where rmax is the maximum distance between the center of mass and the surface of the

drop and rsphr, is the radius of a sphere such that 4/37rr3phe = VD. If both criteria are

satisfied, the liquid drop is removed from the level set tracked representation and inserted

into the Lagrangian spray model, preserving its mass, center of mass. and momentum.

3. Results

When a liquid jet flows in a faster coaxial gas stream, different atomization regimes

are observed depending on Weber numbers and the velocity difference between the liquid

and gas (Farago & Chigier 1992; Zaleski et al. 1996). At low gas velocity, a liquid jet

wanders in the gas stream, inducing bags and rims. For higher gas velocities, the liquid

jet is no longer deformed as a whole, but it is peeled off at its surface forming ligaments.

These ligaments are broken into small liquid droplets. The typical droplet size decreases

with the velocity difference (Yatsuyanagi et al. 1994,; Lasheras et al 1998). The drop size

distribution shows an exponential tail characteristic of broad size statistics and is very

important for industrial applications.
Recently, Marmottant and Villermaux (2004) performed various experiments on the at-

omization of a liquid jet when a gas stream flows coaxial to its surface. Their experimental

findings suggest that two successive instabilities are responsible for the disintegration of

the liquid jet into dispersed droplets. First, a Kelvin-Helmholtz type instability triggers

axisymmetric modulations on the liquid by shear between the slow liquid and the fast

gas stream. Then, these axisymmetric waves undergo transverse azimuthal modulations

when the gas velocity goes beyond a critical velocity. This azimuthal secondary instabil-
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FIGURE 2. Axisymmetric modulation on the liquid surface at the initial stage of the breakup.

ity of the axisymmetric waves was explained by the Rayleigh-Taylor instability in their
study (Marmottant & Villermaux 2004). At azimuthal wave crests, liquid ligaments are
produced, elongated by the gas stream, and finally broken into droplets.

In this section, we investigate these two instabilities responsible for the droplet forma-
tion from a round liquid jet and examine the statistical property of the resulting droplets
for different G-grid resolutions.

3.1. Computational details
A round liquid jet surrounded by a coaxial flow of gas is simulated as shown in Fig. 1.
The liquid jet is injected at the center with the nozzle diameter D. The surrounding
gas flows coaxially with the annular gap thickness h. The gap thickness h is 0.3D. In
this paper, the jet parameters are determined following the experiment of Marmorttant
& Villermaux (2004). However, the density ratio of the liquid and gas is limited to 5.
The Reynolds and Weber numbers of the gas based on the gap thickness h are Re9 =
ugh/vg = 3770 and We9 = pghu2/a = 34, respectively, which are the same values in the
experiment. The Reynolds and Weber numbers of the liquid are Rel = uD/lv = 295
and We, = pIDu2/ o = 0.6, respectively, based on the liquid jet velocity and D. The
momentum ratio used is pu !/pgu2 = 190. An error function is used for the velocity
profile of the gas and the liquid at inlets. The inlet boundary-layer thickness of the gas
69 is 0.096D; that of the liquid J, is determined by

5 = / - tl P- - g ( 3 1

Vapol g"

The boundary-layer thickness used in this study is larger than that in the experiment of
Marmorttant & Villermaux (2004) due to the available grid resolution.

The size of the computational domain used is -2.5 < x/D < 2.5, -2.5 < y/D < 2.5,
and 0 < z/D < 8. Slip boundary conditions are used except at the jet inlet and exit
boundary, and convective boundary conditions are used for the exit boundary. Uniform
Cartesian meshes are used for the flow solver and level set solver grids. The grid size for
the flow solver is Ax/D = 0.02. For the level set solver, we used two different G-grids:
AC/D = 0.02 and AC/D = 0.01. The velocity profiles of the gas and the liquid at the
inlet are used for the initial velocity field along the jet direction.

3.2. Kelvin-Helmholtz instability
Figure 2 shows the axisymmetric modulation on the liquid jet at the initial stage. Two
fluids having different velocities are inherently unstable, producing an instability of the
Kelvin-Helmholtz type. From the stability analysis by Villermaux (1998), the selected
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FIGURE 3. Linear velocity profile used in the Kelvin-Helmholtz stability analysis.

wavelength and frequency at the maximum growth rate are expressed as a function of

the density ratio and gas boundary-layer thickness 6. when a linear velocity profile is

assumed (Fig. 3):

Akh = 27r F(-P)6_. (3.2)
0.8 P9,

where F(pl/p.) is

F( P1) _ 5 1 ./5 + 13(pl/pg) - 37(p'/p9) 2 + 2 7 (pi/pg)3  (33)
p9  6 6 (p,!P9 ) + 6V2'(p,/p,)

The group velocity of the most amplified wavenumber is well estimated by a convection
velocity u, as

i-'ul = V- u2 (3.4)

VP1+ VP2

Thus, the period of the surface modulation Tkh is given by

Tkh- = 1 = . (3.5)
fkh Akh

From the computational result, the wavelength is measured as the mean distance be-

tween the highest point of the primary waves and the frequency is measured by calcu-

lating the mean velocity of the wave crests. Table 1 shows the wavelength and period

divided by those obtained from the stability analysis., respectively. Experimental values

from Marmorttant &- Villermaux (2004) are much smaller than those from the stability

analysis since the velocity profile is not linear in the experiments and the effective linear

boundary-layer thickness used in the stability analysis is much larger than the experi-

ment as mentioned in Marmorttant & Villermaux (2004). However, the boundary-layer

thickness used in this study is 4 times larger than the experiment. Therefore, our results

are much closer to the stability analysis than the experiment.

3.3. Raleigh- Taylor instability

After the onset of shear instability causing axisymmetric waves, transverse azimuthal

modulations appear as shown in Fig. 4. Several mechanisms have been suggested to

explain these modulations. Villermaux and Clanet (2002) have proposed that transient
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Table 1. Comparison of the wavelength and period of the primary modulation.

Experiments Present study Stability analysis
(Marmottant et al. 2004)

Wavelength A/Akh, 0.29 0.83 1.0
Period T/Tkh 0.33 0.85 1.0

(a)

cut

(b)
FIGURE 4. (a) Transverse azimuthal modulations on the liquid surface; (b) liquid interface in

the cutting plane.

acceleration in the direction normal to the liquid at the rims triggers a Rayleigh-Taylor
instability, which produces the azimuthal perturbation.

The most amplified wavenumber km can be calculated by (Chandrasekhar 1961)

k - [(P2 P1Xg (3.6)

where g is the maximum acceleration of the primary wave expressed as

/ 22TUC -- Ul•
g-=-a\ 2 7r, (3.7)

with a the amplitude of the primary wave. By this stability analysis, the theoretical
wavelength for our simulated condition is approximately 0.72D, which means four crests
are triggered on the primary wave rims. As shown in Fig. 4(b), our computational result
is consistent with the stability analysis showing exactly four crests.
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(a)

(b)

FIGURE 5. (a) Development of the ligaments; (b) further elongation of the ligaments.

3.4. Ligament development and breakup

The transverse azimuthal modulations grow in amplitude producing small ligaments
at the wave crests. These are elongated further by the gas stream and their diameter
decreases as shown in Fig. 5. The ligaments are finally pinched off, usually at their base,
and broken into liquid droplets. When the ligaments are detached, a capillary instability
grows in a very short time and breaks them into several droplets of different, sizes (Fig.
6). These droplets are automatically transferred to the Lagrangian spray model through
our drop transfer algorithm (Fig. 6(b)).

3.5. Drop formation

Several drops are formed from the detached ligaments. In natural spray formation, drops,
such as rain drops and fuel droplets, have a broad range of sizes. The statistical drop size
distribution has been known to show an exponential tail shape.

In the computational simulations, level set tracked liquid droplets smaller than the
G-grid resolution cannot be resolved correctly. Thus, drop size distributions at small
scales of the order of the G-grid resolution can be expected to be dependent on the grid
resolution and should be considered a numerical artifact. It is, therefore, important to
determine a converged drop diameter dc, i.e., the drop size above which the drop size
distribution is statistically converged and grid-independent.

Figure 7 shows the drop size distribution with two different G-grid resolutions. The
flow solver grid resolution is fixed to Ax/D = 0.02. As shown in Fig. 7, the peaks
in the number of drops show a large difference between the two grids. However, the
drop size distributions at larger diameters have a similar shape. Thus., we can consider
the converged drop diameter to be approximately d, = 0.04D. In terms of the G-grid
resolution AG = 0.02., the converged drop diameter d, thus corresponds to d, = 2AG.

Any drops produced with a diameter smaller than d, ought to be considered a numerical
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FIGURE 6. (a) Formation of the droplet from the ligaments; (b) zoom on the ligament-breakup
region: liquid jet structures such as ligaments are tracked by the level set method and shaded
spherical objects are Lagrangian sprays.

artifact and cannot be trusted. Therefore, the concept of a converged drop diameter
provides an important and useful reference for computational simulations.

4. Conclusions and future work
The atomization of a liquid jet surrounded by a coaxial flow of gas was numerically

simulated using a Refined Level Set Grid (RLSG) method with a Lagrangian spray model.
The characteristics of the underlying breakup mechanism have been examined to show
the validity of the simulation. Our results are consistent with the experimentally observed
physical mechanisms and the corresponding stability analysis. The drop-size distribution
of the resulting spray after breakup exhibits grid-independent results for drops resolved
by at least two G-grid cells per diameter. This proves the applicability of our method for
simulations of the atomization process of liquid jets.

In this work, the density ratio between the gas and liquid was limited to 5. Future
work will focus on the atomization of coaxially atomized liquid jets with higher density
ratio and thin boundary-layer thickness using the same parameters as the experiments
of Marmottant & Villermaux (2004).
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FIGURE 7. Drop size distribution with two different G-grid sizes: -, Ac; = 0.02;
AG = 0.01.

Acknowledgments

The work presented in this paper was supported by the Department of Energy's ASC

program. The authors also would like to thank F. Ham and S. Apte.

REFERENCES

ALONSO. J. J., HAHN, S.. HAM, F.. HERRMANN, M., IACCARINO. G., KALITZIN, G.,
LEGRESLEY. P.. MATTSSON. K.. MEDIC, G.. M\OIN. P.. PITSCH. H.. SCHLt.'rITER.

J., SVARD, M., VAN DER WEIDE, E., You, D. & Wu, X. 2006 CHIMPS: A high-
performance scalable module for multi-physics simulations. AIAA Paper 2006-5274.

APTE. S. V., GOROKHOVSKI, M. & MOIN, P. 2003 LES of atomizing spray with stochas-

tic modeling of secondary breakup Int. J. Mult. Flow 29, 1503-1522.

CHANDRASEKHAR, S. 1961 Hydrodynamic and hydromanetic stability. Dover.

FARAG6. Z. & CHIGIER, N. 1992 Morphological classification of disintegration of round

liquid jets in a coaxial air stream. Atom. Sprays 2, 137-153.

HAM, F. & IACCARINO, G. 2004 Energy conservation in collocated discretization
schemes on unstructured meshes. Annu. Res. Briefs 2004. Center for Turbulence

Research, 3-14.

HERRMANN, M. 2004 On mass conservation and desingularization of the Level

Set/Vortex Sheet method. Annual Research Briefs 2004., Center for Turbulence Re-
search, 15-30.

HERRMANN, M. 2005 Refined Level Set Grid method for tracking interfaces. Annual
Research Briefs 2005, Center for Turbulence Research, 3-18.

HERRMANN. M. 2006 A balanced force refined levle set grid method for two-phase flows
on unstructured flow solver grids. Annual Research Briefs 2006, Center for Turbu-
lence Research.

JIANG. G.-S. & PENG. D. 2000 Weighted ENO schems for Hamilton-Jacobi equations.
SIAM J. Sci. Comp. 21, 2126-2143.



The breakup of a round liquid jet by a coaxial flow of gas 195

LASHERAS, J., VILLERMAUX, E. & HOPFINGER, E. 1998 Breakup and atomization of
a round water jet by a high-speed annular jet. J. Fluid Mech. 357, 351-379.

MAHESH, K., CONSTANTINESCU, G. & MOIN, P. 2004 A numerical method for large
eddy simulation in complex geometries. J. Comput. Phys. 197, 215-240.

MARMOTTANT, P. & VILLERMAUX, E. 2004 On spray formation J. Fluid Mech. 498
73-111.

PENG, D., MERRIMAN, B., OSHER, S., ZHAO, H. & KANG. M. 1999 A PDE-based
fast local level set method. J. Comput. Phys. 155, 410-438.

SHU, C.-W. & OSHER, S. 1989 Efficient implementation of essentially non-oscillatory
shock-capturing schemes. J. Comput. Phys. 77, 439-471.

VILLERMAUX, E, 1998 On the role of viscosity in shear instabilities. Phys. Fluids 10,
368-373.

VAN DER PIKL, S. P., SEGAL. A. &- VuIK. C. 2005 A mass-conserving level-set method
for modelling of multi-phase flows. Int. J. Numer. Meth. Fluids 47, 339-361.

YATSUYANAGI, N., SAKAMOTO, H. & SATO, K. 1994 Atomization characteristics of
liquid jets injected into a high-velocity flow field. Atom. Sprays 4, 451-471.

ZALESKI, S., Li, J., SCARDOVELLI. R. & ZANETTI, G. 1996 Direct simulation of mul-
tiphase flows with density variations. In Colloque IUTAM on Variable Density Low
Speed Turbulent Flows, Marseille 8-10 Juillet 1996 (ed. L. Fulachier & F. Anselmet).
Kluwer.



Center for Turbulence Research 197
Annual Research Briefs 2006

Stable and high-order accurate finite difference
schemes on singular grids

By M. Svfird AND E. van der Weide

1. Motivation and objectives
The use of finite difference methods on curvilinear grids is an established computational

method and the technique has been thoroughly analyzed with respect to accuracy and
stability. However, coordinate mappings are usually assumed to be smooth and topology
conserving, such that a smooth mapping to a square grid exists. For practical applica-
tions it is not always possible to construct grids with these properties and singularities
are sometimes present in the metric coefficients. Yet, it is desirable to have a robust
computational method on such grids and obtain high-quality solutions.

In particular, we will study the grid shown in Figure 1, which we will refer to as the
circle segment. The circle segment can be viewed as the mapping from a Cartesian grid
where one side is collapsed into a point.

We will use a certain kind of finite difference schemes satisfying a summation-by-
parts (SBP) rule. In combination with the Simultaneous Approximation Term technique
(SAT), these schemes can be proven stable using energy estimates. The SAT technique
use penalty terms to impose the boundary conditions weakly. (For SBP-SAT theory see
Carpenter et al. 1994, Carpenter & Nordstr~m 1999; Kreiss & Scherer 1974; Mattsson
et al. 2006: Nordstr6m &- Carpenter 1999; Strand 1994: Svidrd 2004; Sviird & Mattsson
2005; Svdrd & Nordstrom 2006.) For such schemes, we will propose two different ways
to recover design order accuracy despite singularities in the grid. The first is designed
for SBP-SAT schemes and can be used at boundaries where boundary conditions are
supplied. The other can be applied to any boundary and any stable finite difference
scheme.

2. Summation-by-parts discretization
Before studying singular grid transformations, we introduce the basic concepts of SBP-

SAT schemes. Discretize 0 < x < 1 using N+1 evenly distributed grid points with spacing
h. Introduce the scalar grid function v(t) = (vo(t), . V(t))". Then the first derivative
is approximated by, P-'Qv, where P is a positive definite (symmetric) matrix. P is used
to define a discrete 12 equivalent norm, Ivt2p = vTPv. In our particular schemes P is
diagonal, which is a necessary requirement for stability on curvilinear grids. (See Svdrd
2004.) Q is skew-symmetric almost everywhere and Q + QT = diag(-1, 0,..., 0, 1) = B.
In two space dimensions, we use a subscript x or y to distinguish between operators in
the respective directions.

As a model problem for the non-linear two-dimensional Euler equations, we consider.,

ut +a(x,y)Ux +b(xy)uy = 0, 0 ,< y, < 1. t > 0. (2.1)

where a(x, y), b(x, y) > 0. The equation is subject to the following boundary conditions,

u(0,y,t) = g(y,t), u(x,0,t)=9g2(xt).
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FIGURE 1. A grid with a collapsed side.

\,e discretize the equation using N points in the x-direction and Al in the y-direction.
We denote the grid sizes by hý 1/N and hV = 1/A!. Let vii(t) be the approximate
solution of u(r 1, yj, t) and v be the vector v = (vO0 iv 20 . . VNA). Define aij = a(x7 ,y3 )

and bij = b(xi, yi) and distribute aij and bij on the diagonal of a matrix in the same way
vij was distributed. Denote the resulting matrices A and B. The discretization of (2.1)

can be written.

vt + A(I 0 Dx)v + B(Dy 0 I)v = (2.2)

7-1(1 0 P- 1 Eox)(v - Gj) + T2(P- 1Eoy 0 I)(v - G2)

where Eoyv = (vo.o,..,jVNo). Eox, = (vo.oO,...,vo,0 .... V0 Mo, ... )". The symbol 0
denotes the Kronecker product. Moreover, G0 and G2 are vectors with (G 1 )oj = gi(yj, t)

and (G2)io = g 2 (xi, t) and 0 elsewhere.

To prove stability, we freeze the coefficents in A and B (and denote the respective
scalars by a and b) and apply the energy method by multiplying by vT(PY Is PX),

(flvjb' Y)t + avT(Py 0 Bx)v + bvT(By 0 Px) = (2.3)

271(Py 0 Ex) (v - G1) + 2, (Eoy 0 P,)(v - G2 )

In (2.3) we have introduce the norm flvj' , = vJ(Py 0 Px)v. Assuming homogeneous

data. 7'1 :S -a/2 and r2 < b/2 guarantees stability.

In this article, we will use two different schemes. The first is the commonly used central
second-order stencil with a first order boundary closure. We will refer to this schemes
as the 2-1 method. The other is the standard central difference fourth-order accurate
scheme with a specific second-order boundary closure that enforces the SBP property.
This scheme is called the 4-2 method. In both cases the norm P is diagonal and the
precise form of operators (P and Q) can be found in Strand (1994).
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2.1. Grid singularities

Consider,

ut + aux + buy = 0. (2.4)

Assume 0 < a < 1 and b = -v 1 - a 2 . The exact solution is, u(x, t) = sin(ax + by - t).
Introduce x = x(ý, ,q), y = y(ý, 77). Then (2.4) can be written as,

ut + a(rxut + •?u,) + b(ýyut + r/.u,) = 0 (2.5)

We define J = (x~y, - x,7yý) and obtain,

Jx = y,, J• = -x'! Jl7 X = -ye, JAy = X•,J = ( -

In the circle segment (Figure 1) we have ý and ql being the polar coordinates r and 9
with the transformation (x, y) = (rcos(O) + 0.5, rsin(O)), r = [0, 1], 0 = [0, 7r/4]. In this
case, O 1, 2 1, 08 1 08 1. We rewrite equation (2.5),

Ox ay 'OX r'ay Ir

ut + aut + bu, = 0., <x + b~y, =ax + bb+ y. (2.6)

Equation (2.6) is now a variable coefficient problem in ý, ,q-space and we wish to employ
the same discretization technique as for (2.1). However, & and b may now be singular.

We will study the effect of the following approximation. At the singular point, approxi-
mate the indefinite metric coefficents with the coefficients of non-singular neighbors. This
is a first-order approximation of the metrics and the truncation error of the approxima-
tion of the equation reduces to first order at that point.

For the circle segment (Figure 1), we note that the transformation from the square
makes x = 0.5, y = 0 a multi-valued point, since all the points on that side collapse to
one. Let (x(i~j),y(ij)), i = 0...N~j = O..M be a grid point. Then (x(O,j),y(Oj)) =
(x(0, k), y(O. k)) for any valid combination j, k. With that notation, we choose,

y'(x(Oj),y(Oj)) = y, 7(x(1,j),y(1,j)), xn(x(Oj),y(O~j)) = x,(x(1,j),y(1,j)).

3. Analysis
To study the basic mechanisms of singular coordinate transformations, we consider the

one-dimensional problem,

ut+uX=0, t>0. 0<x< c. (3.1)

Introduce a coordinate transformation x = x(ý) such that.,

ut+ 1 ut=0, t>0, ý1 < < 2. (3.2)

Let x = p 2/2 such that xt = ý . Furthermore, =x = = 1 This motivates the study of
the following problem,

1
Ut+-Ux 0, t>0. 0<x<C. (3.3)

x
In this case the coefficient in front of ux becomes singular as x - 0. However, in the
circle segment case it is the coefficent in front of the u 7 that becomes singular as r - 0.
This fact suggests that also the following model problem is relevant to analyze.

1
ut+UX=O0, t >0, 0<x.y<0c. (3.4)

Y
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WVe will also study,

ut +au, =O, t >0. 0< x< Dc. a> 0, (3.5)

which will give us insight in the properties of the penalty imposition of boundary condi-

tions. Equation (3.5) will be referred to as Model Problem 1, since it is the simplest to

analyze. Morevoer, (3.3) is denoted Model Problem 2 and (3.4) Model Problem 3.

3.1. Model problem 1

Consider (3.5) and assume that u -• 0 sufficiently fast as x - oc. We use the exact

solution u(x. t) = sin(ax - t) to provide initial and boundary data. We discretize using

the SBP-SAT methodology.

vt + aP-XQv = TP- 1Eo(v - g) (3.6)

where Eo = diag(1, 0,..., 0). Assuming homogeneous data, the energy estimate becomes,

(11vH2)t - av2 + av2 = 2v 0. (3.7)

For 7 < -a/2 the scheme is stable. The 2-1 scheme can be proven to have a globally

second-order convergence rate and the 4-2 third order. (See Gustafsson 1975. 1981:
Svdird & Nordstrdm 2006.) We define the convergence rate, q = Ilog(cI/e2 )llog(hi/h 2)1
where el and e2 are the errors (in an appropriate norm) on two different grids with grid
sizes h, and h2. The numerical solution using the two different schemes are computed
using the standard fourth-order explicit Runge-Kutta scheme in time. with a time step

small enough for the temporal errors to be negligible. (Correct convergence rates have

been shown for these schemes.) Our proposed remedy, for the coordinate singularity was

to make a first-order approximation of the metric coefficents, i.e. to lower the accuracy

of the approximation of the partial differential equations at that point. To model that,
we add an order 1 error (a constant c) to the equations at the boundary point. The

stability properties are not changed by the addition of a lower order term. According to
classical theory Gustafsson (1975, 1981), the resulting order of accuracy should be 1.

We will now analyze this case in detail. Let u be the exact solution and define the error

ek(t) = u(Xk t) - Vk(t) and the vector c = (Cl, e2, ... )T. Then the error equation is,

et + aP-'Qc = -rP-1 Eo(e - 0) + T.

where T is the truncation-error vector with the constant c at the boundary point, included.

Hence, T = (0(1)1 0(h 2 ), ... )T. Next, we split the truncation error into two parts, T =

Ti+Tb, where, Tj = (0(1), 0, ... )", Tb = (0. 0(h 2 ), ...)T". Correspondingly, we let e = ci+eb

and split the problem into,

(ei)t + aP-'Qci = 7P-'Eo(ei - 0) + Ti, (3.8)

(6b)t + aP-'QCb = TP- 1 Eo(Cb - 0) + Tb. (3.9)

Note that, ej and eb are in general non-zero everywhere since there is usually a strong
coupling between the interior and the boundary. It follows directly from the energy
estimate of (3.8) that ei is of order Ti, i.e. second-order in this case. Let (P-1 )0o = (hp)- 1

where p is a constant. (p = 1/2 for the 2-1 scheme and p = 17/48 for the 4-2 scheme.)
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r = -a r = -a/h
N 12-error q2 1/-error qo. 12-error q2 lo-error qý

10 0.0025 - 0.0071 - 9.8062e-04 - 0.0029 -
20 0.0010 1.3219 0.0035 1.0205 2.2634e-04 2.1152 7.7750e-04 1.8991
40 4.2519e-04 1.2338 0.0016 1.1293 5.1196e-05 2.1444 1.8462e-04 2.0743
80 2.0653e-04 1.0418 7.7984e-04 1.0368 1.2834e-05 1.9961 4.7078e-05 1.9714
160 1.0075e-04 1.0356 3.9445e-04 0.9833 3.1810e-06 2.0124 1.2239e-05 1.9436
320 4.9906e-05 1.0135 1.9911e-04 0.9863 7.9385e-07 2.0025 3.0348e-06 2.0118

TABLE 1. Errors and convergence rates at t = 0.1 for the 2-1 discretization of the advection
equation with a = 1 and zeroth-order boundary error.

For eb we proceed by Laplace transforming (3.9).
8(6b)i + a (eb)i+1 ( Tbli-= 0, i > 1 (3.10)

2h

s(ýbo + a (eb)1 - (Rb)o = R()o (Tb)0, (3.11)h ýh_ + (.1

We make the following ansatz, (eb)i = oK & and define 9 = sh/a. At the left boundary all
K with IKI < 1 for Re 9 > 0 should be supplied with boundary conditions. If o' is bounded
for Re 9 > 0 the scheme is stable. (See Gustafsson et al. 1995.) We use the ansatz in

(3.10) and obtain K = -_ + + 1 It can be shown that K, = -2- + s1+1 < 1,a a
2  

a a
2

for Re . > 0. We use the definition that the square root denotes the value with positive
real part. (In this case 0"2 = 0 corresponding to K2 due to the fall-off condition of u.
Otherwise, it is bounded by the right boundary condition.) We insert (6)i = alni' in
(3.11), and use the expression for KI,

01( g[2 +1-
a2  ap a

Denote the resolvent R = 2 -1For Re>0wehave thatRe 2+1>0.

Hence, a1 4 0 if -1 - Z > 0, i.e 7 < -a/2. This is in full agreement with the stability
analysis using the energy estimate. Choosing 7 = constant < -a/2 implies that R is
of order 1 and a, -( T . If (Tb)o is of order h we have ox - h2 . Hence, 6b -, h2.a
Transforming back using Parseval's relation, we obtain that eb is second-order accurate.
This is the classical result that a scheme is allowed to be closed with 1 order less accuracy
at the boundary without degrading the global accuracy. (See Gustafsson 1975, 1981 and
also Sviird & Nordstrdm 2006.)

In our example, (Tb)o -. 1 implying that 6b and consequently eb is 0(h). In Table 2 this
case is computed, corrobating the expected first-order convergence rate. We use c = 0.1
as the order 1 error, a = 1, r = -a.

Next, we consider the case r = -a/(hP) < -a. Now, R - 1/(hP) and a '-. hP+l(Tb)o.
In our case with zeroth-order boundary closure and p = 1 we recover second-order global
accuracy, see Table 1. Of course, there is little to gain by choosing a larger p since the
global order of accuracy is also limited by the interior accuracy. To show that these
conclusions carry over to high-order finite difference methods, we compute a similar
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r -a -a -a/h -a/h

N 12-error q2 12-error q2

10 1.0220e-04 - 5.1669e-05 -

20 2.7002e-05 1.9203 9.0017e-06 2.5210
40 7.0084e-06 1.9459 1.3840e-06 2.7014
80 1.7607e-06 1.9929 1.7674e-07 2.9691
160 4.3989e-07 2.0009 2.2384e-08 2.9811
320 1.0973e-07 2.0032 2.8176e-09 2.9899

TABLE 2. Errors and convergence rates at t = 0.1 for the 4-2 discretization of the advection
equation with a = 1 and first-order boundary error. Different scalings of the penalty parameter,
T.

example using the 4-2 scheme. For the 4-2 scheme, we add, 0.1h to the first point in the

scheme, i.e. a first-order error, and compute the solution with different scalings of the

penalty term, see Table 2. As expected the convergence rate drops to 2 with 7 = -a.

Third-order convergence it recovered for r = -a/h.

3.2. Model problem 2

The previous example shows a fundamental phenomenon that order of accuracy may be

increased via a stronger enforcement of the penalty boundary conditions. However, we

assumed that a(x) = a and we may only claim that the analysis holds for a case where

a(x) is smooth. But, in the coordinate transformation case the a(x) becomes singular.

Hence, we continue our analysis and consider Model Problem 2 (3.3) and observe that

u(x, t) = sin(4- - t) is the solution. Obviously, (3.3) is singular at x = 0. Let x = ih
and a(xi) = 1/xi for i - 1.N and a(xo) = 1/xi, which is a first-order approximation.

Define A = diag(a(xo), a(xj), ... , a(xN)). We discretize (3.3) as,

vt + AP-1 Qv = rP-'Eo(v - g) (3.12)

Since A 1 and P are diagonal and positive definite, we can define a norm Ivly 2 =

vTA-lPv. Then we use the energy method with homogenoues data and arrive at,

lvfll - Vo+ v = 2ra-l(xo)v (3.13)

The scheme is stable if r < -1/(2a- 1 (xo)). Since a-l(xo) = x, = h we have, 7 <

-1/(2h). This stability limit is easily verified in computations and is valid for both the

2-1 method and 4-2 method. In the 2-1 case the first-order closure of A is sufficient for

globally second-order convergence. However, in the 4-2 case the convergence drops from

third to second order, see Table 3. Note also that the stablity limit of r is dependent

on the strength of the singularity. In this case a(x) = 11x implies that -r 1/h. But. if

a(x) = 1/VY we would obtain r -1/v'h, and so on.

Next, we consider the possiblity to raise the order of accuracy at. the boundary by

increasing the strength of 7 as a function of h. Again, we consider the boundary portion

of the error equation for the quarter-space problem. (The interior can readily be shown

to give the correct convergence rate via the energy estimate.)

I ei+l - i--1 1 el -e 0  r
(eC)t + 2 h = 0, i > 1, (ea)t + - =- o +Taýi=O0 (3.14)

xi 2h X h ph
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r -1/h -1/h -1/h 2  -1/h 2

N 12-error q 12-error q

10 0.0025 - 2.7040e-04 -

20 6.1073e-04 2.0333 3.9040e-05 2.7921
40 1.4964e-04 2.0290 4.7133e-06 3.0501
80 3.7125e-05 2.0110 6.2343e-07 2.9184

TABLE 3. Errors and convergence rates at t = 0.1 for the 4-2 scheme with a = 11x and
first-order approximation of metrics at x = 0.

Laplace transform the first equation in (3.14) results in K(i) = -§xi ± V/(gxi) 2 + 1.
Again, IKlI = I - 9xi + v/(gxj) 2 + 11 < 1 and Re v/(9-x) 2 + 1 > 0, since xi > 0. We note
that according to our approximation x0 = x= h. Laplace transforming equation (3.14)
and using the explicit expression for K1 yield,

h -1 )=hT, i=0. t>0h p

For stability, we demand that the resolvent, R = h •) > 0, for Re(g >_h -P>.o~~
0, h > 0. Since Re V(§h)2 +1 > 0 we must require that, > 0 and obtain

h p
< < -p/h = -1/(2h). With r 1 1/h we have R - 1 and o - hTo. Using Parseval's

relation, we also obtain that eb - hTo.
As in the constant coefficent case we may choose r - 1/hP to obtain eb - hP+1 T0 .

With 7- = -1 the scheme is unstable as predicted by theory and the results r = -1/h
and -r = -1/h 2 are displayed in Table 3. The results supports the theoretical derivations.

3.3. Model problem 3

The polar singularity was modelled by, ut + 1u. = 0, 0 < x, y _K 1. This equation is
discretized as outlined in (2.2). We choose A = diag(a(yo). ... , a(yM)), where a(yo) = l/y,
and a(yj) = 1/yi, i = 1..M. That is, we commit a first-order error along the line y = 0. We
need boundary conditions at x = 0 and choose r1 = -a(yi) at yj in (2.2). Further, r2 = 0
in (2.2). We use the exact solution u = sin(yx - t) to provide boundary and intitial
data. We do not need to redo a similar analysis but only interpet this case from the
results of the constant coefficient. For each y ? 0 the equation is approximated to design
order. If we assume that the 4-2 is employed, we have third-order global convergence.
In other words, for N x M - 1 points the error is O(h3). For y = 0 we approximate
1/y by l/y, = 1/hy and we commit a first-order error on N points. We assume that
hx - hy - h. Then the overall 12-error, el2 , is computed as,

N M

c 2 = h 2  
'23 h2 

'h
3 )2  N )h2 ) h2 4  ) h3e12 J -2ZZe•" h2 (N(M - 1)(h3) + N(h)2 -h h(ha +h)-.•ha

i=1 j=l

or, el, - h1"5. The computational results are displayed in Table 4 and the convergence
rate is 1.5 as predicted. As mentioned above, we need not supply any boundary condition
at y = 0. However, at any boundary we may enforce the exact solution, if known, as a
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N error q

10 0.0195 -
20 0.0067 1.5412
40 0.0023 1.5425
80 8.1073e-04 1.5043

TABLE 4. Errors and convergence rates at t = 0.1 for the 4-2 scheme with a = 1/y and
first-order approximation of 1/y at y = 0.

N error q

10 0.0011 -

20 1.9677e-04 2.4829
40 3.4801e-05 2.4993
80 6.1540e-06 2.4995

TABLE 5. Errors and convergence rates at t = 0.1 for the 4-2 method with a = 1/y and first-order
approximation of 1/y at y = 0. A penalty term enforce the exact solution along the slip boundary
y =0.

boundary condition. In this case we know the exact solution and we choose r2 = -a(yo).

As the previous analysis suggests, we should gain one order of accuracy at y = 0 (and

globally.) We note that Table 5 supports that conclusion.

3.4. Advection equation on the circle segment

We will compute the solution to the advection equation with the 4-2 method on the circle

segment shown in Figure 1. The grid spacing is equidistant meaning Ar = constant and

Ao = constant with N + 1 points in both directions. implying that hC = h,7 = 1/N.

(The general coordinate ý corresponds to r and q• to 0.) We use the scheme (2.2) for the

equation (2.6) with a = 0.9 and b = -v1 - a2 and compute two different cases:

(a) (T1)j = --a(x 0 , xj) and (ir2 )i = b(xi, YN). (A local penalty parameter is computed
at each gridpoint.)

(b) (rl)j = -5(xo. xj)ihý and (T2)j = b(xi, YN).

In the first case, we commit an O(h) error along the line • = 0. The penalty strength at

S= 0 is the marginal scaling for stability. Hence, this case corresponds to Model Problem
3 without the extra penalty term at y = 0. We would expect the 12 convergence rate to

be 1.5 and the 1, convergence rate to be 1, which is the case in Table 6.
The second case corresponds to Model Problem 3 with the additional penalty at y = 0

in the sense that the penalty is unecessary strong for pure stability purposes. However,
the effect is an increased convergence rate by one order in both 12 and 1,. which is
observed in Table 7.

3.5. Grid singularity at outflow boundary.

So far, we have only considered the case of a grid with boundary condition at the singu-
larity. To study the case of a grid singularity at an outflow we consider Model Problem
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N 12-error q2 l.-error qý

10 0.0068 - 0.0292 -

20 0.0024 1.5025 0.0142 1.0401
40 8.5049e-04 1.4967 0.0071 1.000
80 3.000le-04 1.5033 0.0036 0.9798

TABLE 6. Errors and convergence rates on the circle segment grid at t = 0.1 for the 4-2
method with (7-1 )j = -a(xo, xj).

N 12-error q2 l-error qý

10 0.0012 - 0.0057 -

20 2.2791e-04 2.3965 0.0016 1.8329
40 4.2458e-05 2.4244 4.5839e-04 1.8034
80 7.7408e-06 2.4555 1.2366e-04 1.8902

TABLE 7. Errors and convergence rates on the circle segment grid at t - 0.1 for the 4-2
method with (7-1 )j = -a(xo, xj)/ht.

2, modified to a left-going wave problem.
1

ut - a(x)u. = 0. a(x)=- u(1, t) = g(t), 0 < a < 1 (3.15)

The idea is to try to increase the accuracy of the approximated metric coefficient at the
left boundary. The naive approach is to extrapolate to higher order using the ansatz,
a(xo) • aa(xj) + f3a(x 2 ), and Taylor expand.

a(zo) a; o(a(xo) + a'(xo)(xi -- xo) + a"(xo) (Xl _ xO)
2)

( -2- a'0) 2

+-3(a(xo) + a'(xo)(x 2 - xo) + a"(xo) 2 )" (3.16)

We have to interpret the derivatives as limits as x0o - 0. Then we obtain the conditions,

a+3=1, ah+2h13=0. a=2.0 =-1. (3.17)

This is the same solution we would obtain if we had fit a linear polynomial between x,
and X2 and extrapolated to x 0. The Taylor expansions, however, gives insight in the errors
commited. The convergence rates obtained using this kind of extrapolation is shown in
Table 8. p is the order of the extrapolation polynomial., i.e. p = 0 is the previously used
simple extrapolation from a close neighbor. p = 1 the linear extrapolation derived above.
and p = 2 a second-order polynomial. As is clearly seen, trying to extrapolate to higher
order does not raise the accuracy. To explain these results, we consider the first error
term of (3.16).

e = aa"(xo) (a' -2 a') 2 + Oa"(xo) (a 2 - a') 2  (3.18)

Let x0 approach 0 and compute the limit, e = a! + 3-L. We conclude that the error at
x 0 is a term a(xo + h), i.e. a first order error, which explains the results in Table 8. Of
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p 0 0 1 1 2 2

N 12-error q 12-error q 12-error q

11 0.0024 - 0.0016 - 0.0013
21 5.6173e-04 2.0951 3.7609e-04 2.0889 3.0830e-04 2.0761
41 1.3472e-04 2.0599 8.9812e-05 2.0661 7.3485e-05 2.0688
81 3.3056e-05 2.0270 2.2041e-05 2.0267 1.8035e-05 2.0267

TABLE 8. Eq (3.15) approximated with the 4-2 scheme. Extrapolation of -1ix to x = 0 with
polynomial order p.

N 12-error q2

11 2.9288e-04 -

21 3.5629e-05 3.0392
41 3.7477e-06 3.2490
81 4.4241e-07 3.0825

TABLE 9. Eq (3.15) approximated with the 4-2 scheme. -1/h 2 approximating -11x at x = 0.

v 12-error q2 I.-error qý

11 0.0024 - 0.0136 -

21 8.3055e-04 1.5309 0.0068 1.000
41 2.8687e-04 1.5337 0.0034 1.000
81 1.0012e-04 1.5187 0.0017 1.000

161 3.5161e-05 1.5097 8.4251e-04 1.0128

TABLE 10. Circle segment with outflow at singular point (a = -1, b = 0). Zeroth-order
interpolation of y,, x, to x = 0.5, y = 0.

course, extrapolation only gives smaller leading error term with higher polynomial order
if the extrapolated function is sufficiently smooth, which was not the case above. This
leads us to extrapolate the smooth inverse of 1/x.

That is, we approximate x0 = 0 to second order accuracy, i.e. xO - x' = h2, such that

1/Xo is approximated by 1/x' = 1/h 2 which is a second-order approximation and the

entire scheme should recover third-order accuracy. Indeed, this is confirmed in Table 9.
Again, the numerical scheme becomes more stiff. Applying the same idea to the circle

segment suggest that y, and x, should be extrapolated to second-order accuracy. In our
example the functions are linear and we use a linear extrapolation to a point O(Ar 2 )

away from the singularity. The results are displayed in Table 10 and 11. As is seen we
get the predicted convergence rate 2 in l1,. We have confirmed that the maximum errors
occur at the singular point and get an approximate convergence rate of 2.5 in 12.
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v'W 12-error q2 l.-error q,

11 3.8502e-04 - 0.0022 -
21 7.2143e-05 2.4160 5.8375e-04 1.9141
41 1.3120e-05 2.4591 1.4845e-04 1.9754
81 2.7956e-06 2.2305 3.7411e-5 1.9884

TABLE 11. Circle segment with outflow at singular point (a = -1, b = 0). Linear interpolation
of y,1, x, to a point h2 away from x = 0.5, y = 0.

3.6. Time step limits
Both the proposed remedies for the grid singularity introduces a stiffnes to the problem, if
compared to the same problem on a non-singular grid. However, if we accept the choice
of a singular grid transformation and still want to compute a solution, the time step
restriction is unavoidable. Consider,

ut + a(x)ux = 0 (3.19)

Then the CFL constraint is At < c. a(x)/h where c is a constant depending on the choice
of numerical scheme. As an example, we use model problem 1 where a(x) = 1/x. The
more accurate we want to approximate a(0), the more stiff the problem becomes.

4. The Euler equations

We will demonstrate the robustness of the proposed techniques using the Euler equa-
tions of gas dynamics. We will consider an analytical vortex solution that enables us to
measure the error. Since the flows will be subsonic there will be boundary conditions
both at inflows and at outflows but not on all variables. Hence, we will use the technique
where the metric coefficients are approximated (and not the remedy utilizing stronger
penalties). The computations will be carried out with the multi-block SBP-SAT finite
difference code SUmb. The Euler equations are stated on conservative form and since the
previous analysis was carried out on primitive form, we will briefly discuss the differences
with respect to the metric approximations. The Euler equations in a Cartesian system
can be stated as,

ut + F, + GY = 0 (4.1)

where u are the conservative variables and F, G are the fluxes. Applying a coordinate
transformation results in,

(Ju)t + (Jý,F + J~yG)ý + (J?71F + J17yG),7 = 0. (4.2)

We note that Jý. = y,7, J~y = -x?, Jix = -ye, Jo7 = xý are not singular but well-defined
on the grids we have considered. Hence, it is only J appearing in the time derivative
that is troublesome. To compute J, we use the approximations of the metric coefficients
discussed at length above. We use the analytical solution as initial and boundary data.
The Mach number is 0.5 and the solution is computed with the 4-2 scheme marched with
a 3rd-order explicit Runge-Kutta scheme on 4 different meshes. The domain is seen in
Figure 2 and the grid sizes are: 33 x 17 points (grid 1): 65 x 33 points (grid2); 129 x 65 points
(grid 3); 257 x 129 points (grid 4). At T = 0.6 the 12-errors, l-errors and convergence
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grid 1.-error q 12-error q

1 0.7263e-02 - 5.424e-4 -

2 0.2251e-02 1.69 2.032e-4 1.42
3 0.9573e-03 1.23 6.027e-5 1.75
4 0.4275e-03 1.16 1.921e-5 1.65

TABLE 12. 12-errors, /z-errors and convergence rates for the Euler equations computed with
the 4-2 schemes.

rates are displayed in Table 12. We note that the computational convergence rates, are
close to the theoretical 1.5 in 12 and 1 in l1,. Also, the computations are perfectly stable

on all grids and we note that the 4-2 method is quite accurate although the formal order

is degraded due to the singularity. In Figure 2 the density is shown at T = 0.6 for two
different grids: the coarsest (grid 1) and the second finest (grid 2). We observe that on

grid 3 an almost perfect solution is obtained but even the solution on the coarsest mesh
is good.

5. Conclusions

We have considered fictious singularities introduced by the mapping of a non-square
computational grid to a square that results in singular metric coefficients. We approach
this problem by studying one-dimensional model problems and present two ways of han-
dling the singularity, while keeping design order of the scheme.

The first remedy is applicable to SBP-SAT schemes and requires only a crude and

simple approximation of the metric coefficients (one can even choose them to be an

arbitrary constant). The accuracy is recovered through a stronger enforcement of the

penalty boundary conditions.
The second technique, is a sufficiently accurate extrapolation of the metric coefficients

to a point that approaches the singularity sufficiently fast. This solution is generally
applicable to any stable finite difference scheme. However, care has to be taken when the
metric coefficents are extrapolated and naive extrapolations do not improve the accuracy.
Numerical examples supports the linear analysis for both remedies.

Both methods yield a more stiff set of ordinary differential equations to solve, compared
to the same problem on a non-singular grid. The additional stiffness is proportional to

the strength of the singularity. We show that this is a natural CFL constraint.

Finally, we show how to interpret the results for a system of equations in conservative

form. We demonstrate that the non-linear two-dimensional Euler equations computed
with the 4-2 scheme is robust with the second technique and obey the same accuracy

properties as the linear counterpart.
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Stable and compact finite difference schemes

By K. Mattsson, M. Sviird AND M. Shoeybi

1. Motivation and objectives
Compact second derivatives have long been known to have good accuracy properties

for pure second derivatives. However, for many equations subject to boundary conditions,
stability can not easily be proven for problems with a combination of mixed (02/axOy)
and pure (c92/0x ,a 2/0y') second derivatives, such as the compressible Navier-Stokes
equations.

We remark that spatial Pad6 discretizations (see, for example, Lele (1992)) are often
referred to as "compact schemes". The approximation of the derivative is obtained by
solving a tri- or penta-diagonal system of linear equations at every time step. Hence, Pad6
discretizations lead to full difference stencils, similar to spectral discretizations. In this
paper the term "compact" will be used exclusively for schemes with a minimal stencil
width.

For the continuous problem one can derive an energy estimate for the linearized and
symmetrized Navier-Stokes equations, proving boundedness of the initial-boundary value
problem (see for example Ndrdstrom & Svdrd (2005) and Carpenter et al. (1999)). Al-
though the analysis is done for 2-D problems, the extension to 3-D problems is straight-
forward. If first-derivative difference operators that satisfy a Summation-By-Parts (SBP)
formula (see Kreiss & Scherer (1974)) are employed twice for all second-derivatives (pure
and mixed), yielding a non-compact stencil, and if the Simultaneous Approximation Term
(SAT) method by Carpenter et al. (1994) is used to implement the boundary conditions,
one can exactly mimic the continuous energy estimate (proving stability). There are two
obvious drawbacks to this approach when compared to a compact formulation, namely:

(1) There is no mechanism to damp the highest frequency mode (spurious oscillations).
(2) Less accurate difference approximations of pure second-derivative terms (due to

the leading order error constant) are created.
The former could partially be resolved by the addition of artificial damping, but it is

difficult to tell a priori how much is needed. Accuracy and stability are closely linked.
The two drawbacks above work together to make compact schemes more accurate than
non-compact schemes, especially in regions where viscous effects are important. A prop-
erty that is not addressed in this paper is computational cost. For a scalar problem on
a Cartesian grid, the compact scheme is clearly less expensive, but for more realistic
applications (for example the 3-D Navier-Stokes equations on a curvilinear grid), this is
still an open question.

Compact second-derivative SBP operators that are stable in combination with first-
derivative SBP approximations were derived in Mattsson & Nordstr6m (2004). However,
it is not clear how to obtain a stable and accurate overall scheme with the addition of
mixed derivative terms.

In Section 2 we discuss the SBP property for the first- and second-derivative difference
operators. A 2-D model for the Navier-Stokes equations is introduced in Section 3, and
we show how to combine the SAT method and the SBP operators to obtain stable finite
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difference approximations using the energy method (see for example Gustafssonet al.

(1995)). In Section 4 the accuracy of the compact and the non-compact formulations are

compared by performing numerical simulations for the both the model-problem and the

2-D Navier-Stokes equations. Conclusions are presented in Section 5.

2. Definitions
The two-dimensional schemes are constructed using 1-D SBP finite-difference opera-

tors. We begin with a short description and some definitions (for more details, see Kreiss

& Scherer (1974); Strand (1994); Mattsson & Nordstr6m (2004)).

2.1. One-dimensional problems

Let the inner product for real-valued functions uv E L 2 [0., 1] be defined by (u. v) =

fluvdx, and let the corresponding norm be IIuI12 = (uu). The domain (0 < x < 1) is

discretized using N+1 equidistant grid points,

xi = ih, i = 0, 1....,N , h= 1 N

The approximative solution at grid point xi is denoted vi, and the discrete solution

vector is vJ = [vo, VI , VN]. Similarly, we define an inner product for discrete real-

valued vector functions uv E RN'+ by (U,V)H = uTHv, where H = HT > 0, with the

corresponding norm IvflH = vr H v. The following vectors will be used frequently:

e0 = [1,0,..._,0]T, eN=[0,.0. 1]z• (2.1)

Consider the hyperbolic scalar equation ut + u. = 0 (excluding the boundary condi-

tion). Multiplying by u and integration by parts (referred to as the energy method) leads

to
dhu/ll = -(u, u.) - (u,.u) = (2.2)

where u2 11 - u 2 (x = 1) - Ut(x = 0).

DEFINITION 2.1. A difference operator D1 = H-1 Q approximating a/9 x is a compact
first-derivative SBP operator if H = HT is diagonal, xT Hx > 0, x 0 0, and Q + Q7"
B = diag (-1,0...,0, 1).

A semi-discretization of ut + ux = 0 is vt + Dlv = 0. Multiplying by vTH from the
left and adding the transpose lead to

d

dIVlH = -(v., H-1 Qv)H - (H-1 Qv,V)H = -V(Q+QTv = v0 - . (2.3)

Equation (2.3) is the discrete analog of (2.2).
For parabolic problems, we need an SBP operator for the second derivative. Consider

the heat equation, ut = u,,. Multiplying by u and integration by parts leads to

d IluI12 = (u, u .. ) + (u ,,,u) = 2uu 11 - 21Hu .1 1
2 . (2.4)

DEFINITION 2.2. A difference operator D2 = H-1 (-M + BS) approximating a I/a x 2

is said to be a compact second-derivative SBP operator if H = HT is diagonal, x"Hx >

0, x : 0, Al = MT is sparse. xTAIx > 0. S includes an approximation of the first-

derivative operator at the boundary and B = diag (-1,0 .... 0, 1).
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FIGURE 1. Domain 2-D

In Mattsson & Nordstr6m (2004), high-order compact second-derivative SBP oper-
ators were constructed. A semi-discretization of ut = u., is vt = D2v. Multiplying by
vTH and adding the transpose, lead to

dTtv = 2VN(Sv)N - 2vo(Sv)o - 2vrMv. (2.5)

Formula (2.5) is the discrete analog of (2.4).
Obtaining energy estimates for schemes utilizing both D1 and D2 requires that both

are based on the same norm H.

2.2. Two-dimensional domains

We begin by introducing the Kronecker product

[c-,0 D ... C-,q- D1

where C is a p x q matrix and D is an m x n matrix. Two useful rules for the Kronecker
product are (A 0 B)(C 0 D) = (AC) 0 (BD) and (A 0 B)T = AT 0 BT.

Next, consider the domain Q defined as 0 < x < 1, 0 < y 1 with an (N+1) x (M+1)-
point equidistant grid as

xi=ihx, i=O,1...,N, hx =
Yj = jhy, j = 0, 1 ....,M, hy = -M.

The numerical approximation at grid point (xi, yj) is denoted vij. We define a discrete
solution vector vT = [v 0 .v 1 ,.... ,vN], where vk = [VkOVk1,. . ,Vk,M] is the solution
vector at Xk along the y direction, illustrated in Fig. 1. To simplify the notation we
introduce Vw, e sn to define the boundary values at the west, east, south and north
boundaries (see Fig. 1). In order to distinguish whether a difference operator P is working
in the x or the y direction, we will use the notations Px and Py. The following two-
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dimensional operators will frequently be used:
D,, =(DlI 01y), Dy = (!x® Di).

D 2 r = (D 2 0 Iy), D 2y = (I & D 2 )! (2.6)
H, =(H I0y). Hy, =(D 1 0H),

where D 1 , D 2 , and H are the one-dimensional operators. Ix,, are the identity matrices

of appropriate sizes in the x and y direction, respectively. We also introduce the two-

dimensional norm f -H- HxHv.

3. Numerical method

Our main interest is the compressible Navier-Stokes equations, which can be written

as:

ut + (Au)x + (Bu)y = C 1 1 Ux x + C12Uxy + C 2 1Uyx + C 2 2 Uyy, [x, y] e Q. t > 0. (3.1)

The non-linear equations can be stated as (3.1) but we consider (3.1) to be the linearized,
symmetrized, and frozen coefficient equations. It can be shown (see Strang (1964))

that if the frozen coefficient problem is well-posed so the non-linear problem will be for

smooth solutions. These equations have been studied more extensively (see for example

N6rdstrom &- Sviird (2005)).

3.1. The continuous model problem

As a model of (3.1) we consider the two-dimensional non-linear parabolic problem

Ut + - +- = c11Uxx + cl2Uxy + C21Uyx + c22Uyy + F, [x, Y] E R t > 0, (3.2)

where F is a forcing function. Equation (3.2) is subject to the following boundary con-

ditions:

aU - CllUx + Cl2Uy = 9w au + C2 1 Ux + C2 2 Uy = 9s (3.3)

OteU + C1 1 ux +- C12 Uy = 9e OnU + C2 1 U x + C2 2 Uy = gn

The subscripts denote (w)est, (e)ast, (s)outh and (n)orth boundaries, respectively. The

main focus of this paper is to analyze the discretization of the viscous terms.

To further simplify the analysis, we will consider the linearized parabolic problem

ut + aux + buy = c1 Uxx + c1 2 uxy + c21uyx + c22uyy + F, Ix, y] E Q2, t > 0 (3.4)

and assume that the boundary data are homogeneous. (The analysis holds for homoge-

neous data, but introduces unnecessary notation. ) We wish to discretize uxx and uyy

with the compact stencil while the mixed derivatives are approximated using Dx and

Dy. The problem lies in deriving sufficient stability conditions for the resulting scheme.

We apply the energy method to (3.4), and with the use of (3.3) we obtain

I = BT + DI + FO, (3.5)

where FO = 77 l1lu + •flFfl (for an arbitrary constant q > 0) and

DI = wT(C + CT)wdxdy, (3.6)
0
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where

[ = Cll C1 2 ] W = [U -]IC21 C22J Uy

denotes the contribution from the dissipative terms. Parabolicity requires that

xT+(C + CT)x > 0. (3.7)

The Navier-Stokes equations (3.1) satisfy the same relation (3.7) with Cij instead of
cii. (See Ndrdstrom & Svhrd (2005).)

The boundary terms are given by

BT = (a + 2aw)u2 - (a + 2ae)U2 dy + (b + 2a 3 )u2 - (b + 2a,)u2, dx.

An energy estimate exists for

(a + 2a,,) < 0, (a + 2a,) > 0, (b+ 2a,) < 0, (b + 2an) Ž 0. (3.8)

3.2. The non-compact formulation

A semi-discretization of (3.4) employing only the first-derivative SBP operator combined
with the SAT method can be written as

vt + aDv + bDxv = cnDDv + c12D 1 Dvv

+ c 2 iDyDv + c2 2DyDyv + SAT + F.

The discrete version of the boundary conditions (3.3) is given by

L v = aWvW + cll(D.v)w + Ci2 (Dyv)u, = gu
Lev = aQv' + cli(Dzv), + c12(DYv)e = ge
Lsv = av, + c22 (DYv)s + c 21(Dxv)s = (3.10)

Lv = anvn + c22 (Dyv)n + c 21(Dxv)n = gn

The penalty term in (3.9) is given by

+7+.HI-leo 0 (Lwv - gw) + reHx'eN 0 (Lev - ge)SAT = +-ýH '(Lv-g.)Se + rngHls(Lvgn) N (3.11)

LEMMA 3.1. The scheme (3.9) with homogeneous data has a non-growing solution, if
D1 is a compact first-derivative SBP operator, rw, , = 1, r., = -1 and (3.7), (3.8) hold.

Proof. Let F = g, e, , = 0. Multiplying (3.9) by vtHft from the left and adding the
transpose lead to

d - 2ciiv"H(Dxv)w(1 -,r) - 2CI2 H(Dyv)w(1 -

+ 2ciiv[H(Dv),(1 + r,) + 2c12V eH(Dyv)e(1 + Te)

- 2c 22 vH(Dyv)5 (1 - -r) - 2c 21vH(Dzv).(1 - vs)

"+ 2c 22 vnH(DYv)n(1 + -m) + 2c 2 vln H(Dýv)W(1 + r7)
T V

" (2Twaw + a)vwjHvw + (2reae - a)vrHv,

+ (2ra, + b)VTHvg + (2-ra,• - b)vT HVg + DI
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The dissipative term is given by

D DHv [xv] (3.12)
DI - [Dt,] [(C + C") OH] w [DyJ] (

which exactly mimics (3.6). If 7,,,, = 1, T,., = -1 we obtain

d 2
•-• 1vH = (2a9, + a)vTHvli. - Te(2ae + a)v"Hv,

+ (2a, + b)vgHv, - (2an + b)v,[Hv, + DI

This is completely analogous to (3.5). If (3.8) hold we obtain a non-growing energy. W

3.3. The compact formulation

A semi-discretization of (3.4) using compact operators and the SAT method can be

written as

vt + aDv + bD~v = c11D 2xv + C12 DxDyv (3.13)

+ c 21DyDxv + c 22 D 2yv + SAT + F.

The discrete version of the boundary conditions (3.3) are now (compare with (3.10))

given by

L,,v = auvV + ci(Sxv)w + c12 (Dyv)w = gu,

L'v = a'v, + cii(Sxv), + C12 (Dyv)e = g (3.14)
L.v = asv, + c22 (Syv)s + c2 1(Dxv), = g.
Lnv = anv + c22(Syv), + c21(Drv) , = gn

The penalty term in (3.13) is given by

SA-.,H 'geO ( (L.v - g9.) + TeHxet'N 0 (Lev - ge)
SAT = +TgH,(1L 8 Vv-g,) 0eo + r',HY's(Lsv-g,)ZeN (3.15)

LEMMA 3.2. The scheme (3.13) with homogeneous data has a non-growing solution,
if D 1 is a compact first-derivative SBP operator, D 2 is a compact second-derivative SBP

operator, xT(M - QTH -lQ)x > 0, 7u,. s = 1, Te.n = -- 1 and (3.7), (3.8) hold.

Proof. Let F = ga,. €. = 0. Multiplying (3.13) by vt' H from the left and adding the

transpose lead to

dltl2 = - 2clivUiH(Dxv)w(1 - rA,,) - 2c12vwH(Syv)w(1 -,r,)

+ 2ciiveH(Dxv)e(1 + -r) + 2c1 2vf H(Syv)e(1 + 7rý)

- 2c 22vs H(DYv)s(1 - 7-,) - 2c 21v[H(Sxv)s(1 - 7)
TT"+ 2c 22vn H(Dyv),(1 + 7-,,) + 2c 21vT'H(S~v),(1 + 7,)

(2+ au, + a)vTHvw + (2ra, - a)v/Hv,

+ (2', as + b)v Hv, + (2 Tna• - b)vTHv, + DI,

In Lemma (3.1) it is shown that by using the first derivative twice, i.e., (D 1 )2 
= H- 1 (-Q"'H-1 Q+

BD1 ) to approximate the two terms, c 1 lUx and c22 uY,, we obtain DI as in (3.12).

The dissipative part of (D 1 )2 is given by -QTH-1Q. If the compact second derivative

D2 = H-1 (-Al + BS) is used, the dissipative part is given by - M. We restate M as
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MI = QTH-IQ+(M-QTH-1Q) and define the rest term R = M-QTH-iQ. According
to the assumption, R is positive semi-definite. Then we obtain for the compact scheme
the dissipative term analogous to (3.12),

DIc = DI - clivT RHyv - C22 VT HJRyv,

which mimics (3.6) with two small additional damping terms.
Finally, for stability of the scheme we also need to bound the boundary terms. With

7 1., = -1 we obtain

d IIVI12 = (2a., + a)vgHv. - re(2ae + a)VTjHv,

+ (2a, + b)vTHv, - (2a, + b)vJHv, + DI,

This is completely analogous to (3.5). If (3.8) hold we obtain a non-growing energy. 0l

3.4. Definiteness of R

Consider a pth-order accurate discretization of the periodic problem (3.13). One can
easily derive the following relations for the rest term R(P) (see Lemma 3.2)

-R(2) =-hT D4

= hs h'-R(4 = +hLD6 (4 15 h7D8

(6 h) + D 1 0 7D + (3.16)
= -- D + D0 -- + 1-D 1 2

-()= +-L-•Dlo - 2--l-D12 + h-'•-D14 - h8-n D16-,

where

D2, = (D+D-)n (3.17)

is an approximation of d, (D+D-v)j = (vj+1 -2vj +vj- 1 )/h 2 is the compact second-
order finite difference approximation. By using Fourier analysis, it is easily shown (see,
for example, Mattsson et al. (2004)) that -R(P) constitutes only dissipative terms.

We have shown that the non-compact stencil plus a dissipative term is equal to the
compact scheme for a Cauchy problem. Since we have derived an energy estimate for the
non-compact scheme, we conclude that the same estimate (with an additional dissipative
term) will lead to stability for the compact scheme as well. However, a careful boundary
closure is required in order to maintain this property for initial-boundary value problems.

Lemma (3.2) introduces a relation between the compact first- and second-derivative
SBP operators via R =- - QTH-4 Q. For the second-order accurate case we have

i 1 1 0 0 0 0
4 2 4

1 5 0 0
-• • -1 1 0 0 0

(2) 4 2 4

S-1 -1 0 a (3.18)

o o ¼ -1 -1

o 0 a a 1 1 1

4 t 4

The following Theorem can be proven (although it is not shown here).

THEOREM 3.3. Let A be an nxn pentadiagonal symmetric matrix. Assume -=1 Aj =
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0 and Aii > 0, Aj.j+j < 0. Aii+ 2 > 0. If -A 2.3 > 2A 2 4., -A,.n- 1 > 2A,,.,-2 and

-Ai+1 ý:> 2Aj-ji+_ + 2Ai~i+2, i = 3...n - 2, then A is positive semi-definite.

COROLLARY 3.4. The matrix. R(2) given by (3.18) is positive semi-definite.

Proof. The conditions in Theorem 3.3 can easily be verified. El

In the fourth- and sixth-order cases it is possible to derive similar Theorems. After
extensive analysis (not shown here) we conclude that the compact schemes are bounded
by energy estimates, if the boundary closures are chosen properly.

4. Results

We compare the efficiency of the compact and the non-compact formulation by per-
forming numerical simulations of the non-linear problem (3.2). Choosing cl l C 2 =

C21 = c22 = e, we construct the analytic solution

u=-atanh(a((1-a)x+ay-ct))+c' (4.1)

which describes a two-dimensional viscous shock. The parameter a defines the propaga-
tion angle of the shock, and a,c can be chosen arbitrarily. We solve the problems on a
rectangular domain Q. The standard explicit fourth-order Runge-Kutta method is used
for time integration.

One of the leading motives (see Section 1) for using a compact formulation was to have
damping on the high-frequency modes, which are often triggered by unresolved features
in the solution (like a shock). In the first test we compared the compact and non-compact
fourth-order discretizations with a = 1, c = 2, and a = 0.2, allowing the viscous shock
to travel out through the north-east boundary. The results are shown in Fig. 2.

In the second test we choose a = 1, c = 0 to obtain a stationary viscous shock. This
means that there are no dispersive errors present in the computation, which isolates
the dissipative errors. To test the efficiency in handling mildly under-resolved problems
(strong shocks require additional artificial dissipation), we compared the second-order
formulations for the case with E = 0.01. For N < 100, this is a slightly under-resolved
problem. To obtain a solution with an 12 (error) < 0.01, the compact second-order for-
mulation requires 382 grid points, and the non-compact 2nd-order formulation requires
942 grid points. This is due to the presence of high-frequency modes in the non-compact
formulation. In Fig. 2 we show a comparison of the convergence history between the com-
pact and the non-compact formulation on the mesh with 382 grid points. Both solutions
were run to t = 10. The compact discretization is clearly superior.

4.1. The two-dimensional compressible Navier-Stokes

To demonstrate that the stability properties of (3.4) carry over to the 2-D Navier-Stokes
equations, we will compute an analytic viscous shock solution (see Sviird & Nordstrdm
(2006)) and laminar flow over a cylinder. (In fact, the the stability properties carry over
to the 3-D Navier-Stokes equations as well.)

In the first test we chose a computational domain 0 < x, y < 3. The shock is initiated
0.25 unit lengths away from the diagonal of the box and is propagated with an angle of
450, 0.5 length units across the grid. The Reynold number is 10, which results in a smooth
profile. A convergence study is shown in Table 1. The convergence rate is calculated as
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Convergence moving shock, compact v/s non-compact, E = 0.1, N=41 2

102

10-

1012

10-14 -3

10 10 10 100 101
log (time)

(a) Unsteady shock

Convergence steady shock, compact v/s non-compact, c = 0.01, N=38 2

100

10

-- 10-2

10-

10- 10-1 100 10'
log (time)

(b) Steady shock

FIGURE 2. The convergence histories. The solid line (and circles) are the fourth-order compact
and the dashed (and boxes) the non-compact.
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N 1(,.omprct) q(COmpact) 1(non -coarpact) q(nOn -conpact)

30 -1.61 -1.43
60 -2.28 2.22 -2.06 2.07
120 -2.89 2.14 -2.68 2.06
240 -3.50 2.10 -3.28 2.05

TABLE 1. log(12 - error) and convergence rate, q, for the compact and non-compact stencils
on Cartesian grids.

Drag Maximum Drag Maximum Lift Base Pressure
Coefficient Coefficient Coefficient Coefficient

1.3471 1.3569 0.3254 0.7407

Strouhal Separation Recirculation Ui,•
number Angle Bubble length

0.1687 118.6 1.414 -0.1778

TABLE 2. Simulation results.

q = lglo 1 w - W(h2)1h) /1og 10  2 (4.2)

where w is the analytic solution and w(hi) the corresponding numerical solution with
grid size hi. 1Jw - w(hl)Ilh is the discrete 12 - error.

Although the study is not shown here, the difference in accuracy between the compact

and wide stencil formulations (for a steady problem) was found to be larger when the

shock is not fully resolved (by increasing the Re number, using a coarse grid).

In the second test we computed the flow over a 2-D cylinder at ReD = 100. An
unstructured finite volume code for compressible N-S equations is used to simulate the
flow. The free-stream Mach number is set to 0.1 to be able to compare the results from
previous incompressible simulations. The domian is a cylinder of radius 30 x D. Structured
grid is used near the cylinder while unstructured grid is used to capture the wake. To
resolve the thin laminar boundary laver in front of the cylinder, the minimum radial
grid spacing is set to 3 x 10-3, while 260 points are used in the circumferintial direction.
Figure 3 shows the contour of density.

Table 2 shows the results, which are in good agreement with the results presented in
Kravchenko (1998); Kwon & Choi (1995).
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FIGURE 3. Flow over a 2-D cylinder (density), ReD = 100.

5. Conclusions and future work

Our approach have been to use SBP operators and the SAT technique to enforce the
boundary conditions. By using energy estimates it is proven that there are compact SBP
operators that lead to stability for problems with mixed and pure second derivatives, such
as the compressible Navier-Stokes equations. Numerical computations for both Burgers'
equation and the two-dimensional Navier-Stokes equations corroborate the stability prop-
erties and also show that the compact schemes are more accurate than the corresponding
non-compact schemes.

The next step will be to couple the compact unstructured finite volume discretization
to a high-order finite difference discretization to obtain an efficient hybrid Navier-Stokes
solver. This will allow us to capture the geometry using the unstructured method and
also allow us to capture the wave propagation in the farfield.
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Efficient wave propagation on complex domains

By K. Mattsson, F. Ham AND G. Taccarino

1. Motivation and objectives

In many applications, such as general relativity (see., for example, Szilagyl et al.
(2005)), seismology, and acoustics, the underlying equations are systems of second-order
hyperbolic partial differential equations. However, as pointed out by Kreiss et al. (2002),
with very few exceptions (see for example Kreiss et al. (2002, 2004); Shubin & Bell
(1987); Bamberger et al. (1997); Cohen & Joly (1996)), the equations are rewritten
and solved on first-order form. There are three obvious drawbacks with this approach: 1)
the number of unknowns is doubled, 2) spurious oscillations due to unresolved features
might be introduced, and 3) double resolution (both in time and in each of the spatial di-
mensions) is required to obtain the same accuracy. The reasons for solving the equations
in first-order form are due to the fact that computational methods for first-order hyper-
bolic systems are very well developed, and they are naturally more suited for complex
geometries.

For problems on complex domains it is very difficult to maintain both high-order ac-
curacy and efficiency. To retain high-order accuracy for problems with discontinuities
in the coefficients is another concern (see for example Gustafsson & Mossberg (2004)
and Gustafsson & Wahlund (2004)). High-order finite difference methods are very ac-
curate and efficient on problems that are relatively simple geometrically. In Mattsson &,
Nordstr6m (2006) high-order accurate, strictly stable schemes for the wave equations
on discontinuous media were constructed by combining compact Summation-By-Parts
(SBP) operators (constructed in Mattsson & Nordstr6m (2004)) with the projection
method . However, on complex domains it is difficult to obtain a high quality grid that
supports high-order accuracy. In Kreiss et al. (2002, 2004. 2006) a second-order accurate
finite difference method for the wave equation on second-order form was constructed,
where the geometry is handled by embedding the domain into a Cartesian grid. It is
unclear if that technique can be extended to accurately handle discontinuous media.

In this paper we will show how to impose boundary and discontinuous interface con-
ditions in a strictly stable way by combining compact second derivative SBP operators
and the Simultaneous Approximation Term (SAT) method by Carpenter et al. (1994).
To handle complex geometries we will make use of a compact and second-order accurate
Laplacian operator with SBP property on unstructured grids (presented in Ham et al.
(2006) elsewhere in this volume).

In Section 2 we introduce some definitions and discuss the SBP property for the second
derivative. In Section 3 we introduce the numerical method by considering the second-
order wave equation in one dimension (1-D). In Section 4 we verify the accuracy and
stability properties by performing numerical computations on complex geometries using
an unstructured finite volume discretization. In Section 5 we present our conclusions.



224 K. Mattsson, F. Ham & G. laccarino

2. Definitions
Definitions are needed to describe the SBP property in detail. For clarity we consider

the 1-D problem. The extension to the 3-1D unstructured case is directly related to the

1-D analysis through the use of matrix notation, as will be shown in Section 4.

2.1. The energy method

Let the inner product for real valued functions u,v E L 2 [0, 1] be defined by (u.,v) =
f1 uT v dx, and let the corresponding norm be kUl 2 = (u. u). We also introduce a weighted

norm
IU1 j 7'u w(x) dx.

where w(x) E L'[0, 1] is a positive function. The domain (0 < x < 1) is discretized using
N+I equidistant grid points.

xi = ih, i = O, 1.... N. h =

The numerical approximation at grid point xi is denoted vi, and the discrete solution

vector is v1 = [v0 , v 1, ,** VNA]. We define an inner product for discrete, real valued vector-

functions u, v E RN+1 by (u, V)H = uT H v, where H = HT > 0. with a corresponding

norm Jlv11 =v' Hv.

2.2. Summation-By-Parts property

An SBP operator mimics the behavior of the corresponding continuous operator with

respect to the inner product previously mentioned. Consider the wave equation autt =

(bu,)., x E [0, 1], and a, b > 0. Integration by parts (IBP) leads to

dt
d (ti a buI~ = 2buux~ 1. (2.1)

Consider the semi-discrete approximation AHvtt = (-Al + BS)v, where A is the

projection of a onto the diagonal. By multiplying the semi discrete approximation by vi"
and by adding the transpose, we obtain

dt (vt1 + vTMv) = 2vo(BSv)o + 2VN(BSV)N . (2.2)

To obtain (2.2) requires that 1) H > 0 and diagonal, 2) M = MT > 0, and 3) BS mimic

the boundary derivative operator. Formula (2.2) is a discrete analog to the IBP formula

(2.1) in the continuous case. The above procedure is referred to as the energy method.

We introduce the following definition:

DEFINITION 2.1. A difference operator D 2 = H-1(-MI + BS) approximating (bu-)x

is said to be a symmetric second derivative SBP operator if H is diagonal and positive

definite, M is symmetric and positive semi-definite, S includes an approximation of the

first derivative operator at the boundary, and B = diag (-bo. 0. ... 0, b).

3. Boundary treatment

In this method developed by Carpenter et al. (1994), the boundary conditions are

introduced as a penalty term. When the energy method is applied, a discrete analog to

the continuous energy is obtained.
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Consider the 1-D wave equation on second-order form:

autt =(bu,) 1 + F , 1 > x > O, t>O (3.1)
U=fl,ut =f 2 , 1 >x>0, t=0,

where V'b = c is the wave speed. For density waves a- 1 
= pc 2 , and b-' = p. where

p > 0 is the density of the media. General boundary conditions are given by

Liu = ,1u(0, t) - 032boux(0. t) + 3,3ut(0, t) = g1(t)
L,.u=3u(1,t)+32bNUx(1,t)+3Ut(1,t)- (t) (3.2)

Note that (3.2) includes the special case of Dirichlet boundary conditions (and radiation
boundary conditions. See for example Tsynkov (1998) and Hagstrom (1999)).

3.1. Mixed boundary conditions

We start by considering the case where /32 # 0, which includes the important case of
Neumann boundary conditions (,31 = 0. i32 = 1, /33 = 0). Assuming zero boundary data
and forcing function F, the energy method leads to

S(I I(U12 + I uxI12 + 131 + 012U2) = /33 (2) - 0313(2) (3.3)

Hence, the continuous problem (3.1) and (3.2) have an energy estimate if

/32 > /32

The semi-discrete boundary conditions corresponding to (3.2) can be written

L1v = /31vo + ±32(BSv)o + /3 3 (vt)o = gi (3.5)
Lfv = /31VN + !32 (BSV)N + 033(Vt)N = g, ,

where v is the discrete solution vector, S is the boundary derivative operator in Definition
2.1, and B = diag (-bo, 0.. 0, b.).

The SAT method for the wave equation in second-order form with the boundary con-
ditions (3.2), can be written

HAvtt = (-Ml + BS)v + reo (LTv - gl) + TeN (L~v - gr) + F

v = fl, vt = f 2 , t=0. (3.6)

LEMMA 3.1. (3.6) with homogenous data has a non-growing solution if D 2 is a sym-
metric SBP operator, r = 1//32 and (3.4) hold.

Proof. Let F, gj, g,- = 0. Multiplying (3.6) by vT from the left and adding the trans-
pose leads to

v[tH Avtt + vT A Hvt = - v[Mv - vTAITvt + 2(vt)o(BSv)o + 2(Vt)N(BSv)N

"+ 27(Vt)o(/3iVl +- 3 2 (BSv)o + 33(Vt)O)

"+ 27(Vt)N(31vN + /32 (BSv)N + 03(Vt)N)

If D 2 is a symmetric SBP, operator we obtain

d 2Vt12 + M -TM /3V •v0-V2 = (V)+ )2

+ 2(1 + -/3 2)(vt)O(BSv)o + 2(1 +- 7/32)(Vt)N(BSV)N
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If 7 = -1/,32., we obtain an energy estimate completely analogous to (3.3). If (3.4) holds,

we have a non-growing energy. El

3.2. Dirichlet boundary conditions

We now consider the case of Dirichlet boundary conditions (31 = 1. 32 = 0. 3,1 = 0).

We introduce the following Lemma:

LEMMA 3.2. The dissipative part Al of a symmetric second-derivative SBP operator

has the following property:

vAlv = h o(BSv) + h '--(BSv N (3.7)
bo bN )+ Tiv(37

where 2l is symmetric and positive semi-definite, and a a positive constant. independent

of h.

This was indicated in Carpenter et al. (1999) but never derived explicitly. With Dirich-

let, boundary condition (31 = 1, 32 = 0, /33 = 0) and homogenous data, the energy

method leads to
d ( 2jut ±12 + 11U.112) 0. (3.8)
dt a b

The SAT method for the wave equation on second-order form and Dirichlet boundary

conditions is given by

HAvtt = (-Al + BS)v +e(BS)Teo (vo - gO) + aboco (vo - gi) + F

+e(BS)TeN (VN - gr) + abNeN (VN - gr) (3.9)

V(O) =lvt (0) = f2.-

LEMMA 3.3. (3.9) with homogenous data has a non-growing solution if D 2 is a sym-

metric SBP operator, a < - -I-, e = 1, and (3.7) hold.

Proof. Let F. gi, g,. = 0. Multiplying (3.9) by v[ from the left and adding the trans-

pose leads to

v/ H Avtt + vhtA Hvt = - vT[v - vTMTvj + 2(vt)o(BSv)o + 2(Vt)N(BSv)N

"+ 2E(BSvt)ovo + 2abo(vt)ovo

"+ 2e(BSvt)NvN + 2 "bN(Vt)NVN

If D2 is a symmetric SBP operator, e = 1 and (3.7) hold, we obtain

d W71t12 IRN V+ T Wd(vtHl A + vT ~lv + Rowo + 0RNwN =.

where wy. = [VO, N (BSv)oN] and
= [-ab _° ' [-o-bN -11

Ro,,h RN -h
60-1 1-1

Finally, if h < - h holds, we have a non-growing energy. E
We introduce the penalty-strength parameter y7 through

1a = -)Ya
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Hence a value of -ý < 1, according to Lemma 3.3, will not result in an energy estimate
and might lead to an unstable scheme.

3.3. Discontinuous media interface

We start by deriving the interface conditions for the continuous problem. Consider the
wave equation

awtt = (bwx)x , x c [-1, 1], t > 0,

where a, b > 0 are discontinuous at x = 0 and c = Vb/a is the wave propagation speed.
Integration by parts leads to

f awttwt dx = lir (bwx)xwt dx - (b wx)xwt dx
1 E-0 Q-16

Sim° bwxwt ll- bwxwtl - j bwxwxt dx + j bwxwxt dx)

Obtaining an energy estimate requires that w and b wx are continuous across the interface,
i.e.. lim,_0 (bwxwtt) 0, leading to - (Hjwtjj1 + JwXH

2) - bwxwtl' 1 . We consider the
following problem

alutt = (blux)x, -1 < x < 0
a 2vtt = (b2vx)x, 0 < K 1 (3.10)

where a, 5 a 2 , b, :A b2. Continuity at the interface (x = 0) means that

ut = vt , blux = b2vx . (3.11)

The first condition (ut = vt) holds if we impose u = v at the interface. This will have
implications for the time discretization. The discrete approximation to (3.11) is given by

UN = Vo ! (Ut)N = (Vt)o , (BSV)N = (B 2Sv)o , (3.12)

where all conditions (also u = v) are written out. If we use the interface conditions
(3.11) and apply homogeneous Neumann conditions (ux = 0) at the outer boundaries
the energy method leads to

d-E = 0, (3.13)
dt

where the energy is defined as

E = I121 + jVtI12 + IU.12' + IIV. 1I2 . (3.14)

We will treat the semi-discrete problem in such a way that we exactly mimic (3.13).
The SAT method for this particular problem (3.10)-(3.11) can formally be written

HAjutt = (-AM1 + BS)u HA 2vtt = (-Al12 + B 2S)v

+TCN(UN - Vo) +-Teo(Vo - UN)

+3(B1S) eN(uN - vo) + (B2 S) 0  - UN)

+-YeN((B1SU)N + (B 2Sv)o) +±Yeo((B2SV)o - (BSU)N)

+UeN((Ut)N - (Vt)0) +ueO((Vt)o - (Ut)N)

+SAT, +SAT,,

(3.15)
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utilizing the discrete conditions (3.12). Here u and v are the solution vectors correspond-
ing to the left and right domain respectively. SATI.,. correspond to the outer boundaries
(described in previous sections). The left and right domain is discretized using (N+I)
and (M+1) grid points.

We can have different discretizations in the left and right domains. The only require-
ment for the stability analysis to hold is that we use symmetric SBP operators (see
Definition 2.1) in each of the domains.

If we multiply (3.15) by u[TH and v['H, respectively, we obtain

dEH = 2avT Dvt, (3.16)
dt

where the discrete energy is defined as

EH = ±I + VtlbRA2 + iTM u + vzM 2 v + IT + BT,

where IT corresponds to the interface terms, BT the boundary terms, and

D 1 1]

is a positive semi-definite matrix. The first stability requirement is that a' < 0.
The advantage of choosing a = 0 is that we can obtain a compact time discretization.

This is also the choice in the computations. However. by choosing a' < 0 we introduce
damping, which will potentially lead to a more robust and less reflective interface treat-
ment. We have not included that numerical study in this paper.

To have a discrete energy we must further show that EH is positive. Certain relations
need to be met to demonstrate this. We begin by recognizing the symmetry conditions

1 1
=--, 3=-. (3.17)

2 2

The interface term is given by IT = wTRw, where

7 71
2 2 UN

R ( lo 1 hv0
-2 rb, 0lw (BiSU)N

- 21 b 2 -S0 wJ(B 2Sv)o]

Obtaining an energy estimate requires

b < b, + b2  (3.18)
4ho

such that R becomes positive semi-definite. Here bl, 2 denotes the local values of bl, 2 at
the interface.

4. 3-D simulations on unstructured grids

By combining symmetric second-derivative SBP operators and the SAT method, to
implement the boundary conditions (see for example (3.9)), we obtain an ODE system
(with N unknowns)

vtt = Qv + G(t) (4.1)

v(0) = fh ,vt(O) = f241



Wave propagation 229

for the discrete solution vector v. In Section 3 we have shown that the matrix Q have
non-positive and real eigenvalues (a necessary stability condition) by utilizing the energy
method. For the second-order accurate case we approximate vtt using the central second-
order scheme resulting in an explicit two-step method (see Mattsson & Nordstr6m (2006)
for details). The present method has been implemented for unstructured tetrahedral grids
using a node-based finite-volume discretization.

4.1. Verification

In the first test we verify the accuracy and stability of the Dirichlet boundary conditions.
The semi-discrete finite volume system, including Dirichlet boundary conditions, can be
written:

HAvtt = (-Al + BSi, b) + e(BSi, b)T(v - g) + oBi, b(v - g), (4.2)

where H is the nodal volume, M is the symmetric unstructured volume-integrated Lapla-
cian operator described in Ham et al. (2006). Here BS 2 , b is the volume-integrated gra-
dient operator, which is based on Green-Gauss integration over the one-sided boundary
nodal volumes assuming a linear variation in each associated tetrahedron. Bi, b is the
value of b at the boundary nodes. In the 1-D case we concluded (see Lemma 3.3) that o'
is proportional to h-'. Based on the previous structured 1-D analysis we expect that o is
proportional to f1I, b/Ai, b, where A2 , b is the area magnitude and H2 , b the nodal volume
associated with the boundary node. The penalty parameters e, o in (4.2) are completely
analogous to the ones in the 1-D case (3.9).

An energy estimate exists for the choice f3 = 1 and or = -yýHl-, b/Ai. b, for some y
large enough. Unlike the uniform structured 1-D case, it is more complicated to ana-
lytically derive a single sharp value for the minimum borrowing penalty, i.e., Ymin, that
is applicable to all unstructured grids. Instead we performed a numerical study. There
was a slight variation of the threshold value at which the simulations become unstable,
although always close to 1, the limit in the 1-D case.

To verify the stability and accuracy of the unstructured implementation, a triply-
periodic tetrahedral mesh was generated around a 2 x 2 x 2 array of three cube compounds.
Inspiration for this choice of geometry comes from M. C. Escher's Waterfall (see Fig. 1).
Our cubes have a characteristic dimension of 0.2, and have center-to-center spacing of
0.5 in a 1 x 1 x 1 box. The simulation of the wave equation in the surrounding volume
requires an unstructured mesh to capture the complex polyhedral boundaries, although
at any resolution the boundaries are precisely represented because all surfaces are planar.
This allows us to generate a series of fine grids starting from a coarse grid by recursively
applying a tetrahedral-splitting algorithm.

A grid convergence study was performed using the sequence of triply-periodic grids
described previously and computing the standing wave problem u = sin(w c t) sin(w x),
with the exact solution as initial condition and time-dependent Dirichlet boundary data.
The convergence rate is calculated as

q~ ~ H ý o U-V (N' ) 1h / logi0 ( ,\ 1d(43
q = J -~l tu v(N2) 11h)j2

where d is the dimension (here d = 1), u is the analytic solution, and v(Ng) the corre-
sponding numerical solution with N1 unknowns. Iu - v(N,) I1h is the discrete 12 norm of
the error. The results are presented in Table 1, where the grid sizes range from 46,680
tetrahedra up to 23,900,160 tetrahedra on the finest grid. With each grid refinement
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FIGURE 1. Geometrical details and inspiration for the three cube compounds.

A x 109(12) qN 1og(12) q ____________

46,680 -1.46 - 0.0625 111

373,440 -2.08 2.056 0.03125 -1.70 1.97
0.015625 -2.31 2.07

2.987,520 -2.69 2.028 000125 -2.92 2.04

23.900,160 -3.30 2.003
0.00390625 -3.52 2.00

TABLE 1. Unstructured grid refinement study: reduction in 12 error with grid refinement for
Dirichlet BC (left) and discontinuous interface (right).

the time step was also refined by a factor of 2 such that the temporal integration error
remained small.

In the second test we verify the accuracy for the discontinuous interface. We chose an

analytic solution

u = cos(wicit) cos(wix), xE [-1.0], t >0, w, = (2n+1)7r. mrn G Z
v=cos(w2c 2t) cos(w 2x) x e[0. 1], t > 0. w2 = (2 m + 1)7r. c2 = '

and compute the solution on a square multi-block domain with a, =b = 1. 02 = b=
0.6, n = 1 and m = 2. A convergence study is shown in Table 1

4.2. Application

As a qualitative illustration of the method's capability, we compute the 3-D propagation

of a Gaussian pulse in the volume surrounding the 2 x 2 x 2 array of 3-cube compounds.

For this case, we made use of the unstructured mesh to significantly extend the grid at

modest cost to help reduce reflections at the far field boundary. The simulations reported

below were run on the finest grid (see Table 1) produced by 3 applications of recursive
tetrahedral refinement to this coarse grid.

To qualitatively investigate the effect of the Dirichlet boundary conditions, the same

simulation was run with homogenous Neumann boundary conditions at the boundaries.

Results from these simulations are compared in Fig. 2. The grid for this simulation
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consisted of 31,126,528 tetrahedra, with constant computational time step At = 0.00025.
Results are plotted on a plane passing through the center of 4 of the polyhedra for 3
times, t = 0.25, t = 0.5, and t = 0.75. The location of the center of the initial pulse
is in this plane and displaced slightly toward the upper right, producing the observed
diagonal symmetry. At t = 0.75 the coarseness of the outer grid (see Fig. 2) can be seen
producing some reflections.

In the last computation we discretize the interior of the 3-cube compounds and use
a, = b, = 1 on the outside domain and a 2 = b2 = .2 on the inside. We then apply the
discontinuous interface treatment to compute the 3-D propagation of the Gaussian pulse.
The result from that simulation is presented in Figure 2.

5. Conclusions and future work
Time stable boundary treatments are derived for the wave equation on second-order

form and on discontinuous media. We consider an unstructured Finite Volume discretiza-
tion to handle complex geometries in 3-D. The methodology is based on the SBP prop-
erties of the schemes in combination with the SAT penalty technique to impose general
boundary and interface conditions. The efficiency and accuracy of this method has been
verified by numerical simulations.

The next step will be to couple the unstructured finite volume discretization to a high
order finite difference discretization to obtain an efficient hybrid method. That will also
require some effort to handle the far field boundaries using non-refelecting boundary
conditions.
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A stable, efficient, and adaptive hybrid method
for unsteady aerodynamics

By J. Nordstr~imt, M. Sviird, M. Shoeybi, F. Ham, K. Mattsson, G. laccarino,
E. van der Weide AND J. GongT

1. Motivation and objectives

The generation and transportation of vortices from wingtips, rotors, and wind mills,
and the generation and propagation of sound from aircraft, cars, and submarines require
methods that can handle locally highly non-linear phenomena in complex geometries as
well as efficient and accurate signal transportation in domains with smooth flow and
geometries.

These demands require a hybrid between a finite volume method on an unstructured
grid (for the non-linear phenomena and complex geometries) and a high-order finite
difference method on the structured part (for the wave propagation).

There are essentially two different types of hybrid methods. The most common one
employs different governing equations in different parts of the computational domain. A
typical example is noise generated in an isolated part of the flow, considered as the sound
source. The nonlinear phenomenon in the complex geometry is often computed by the
Euler or Navier-Stokes equations. The sound propagation to the far field is considered
governed by the linear wave equation with source terms from the Euler or Navier-Stokes
calculation, see Lyrintzis (1994); Wells & Renaut (1997).

All coupling procedures that involve different governing equations suffer from one ma-
jor problem. A stable and accurate numerical procedure does not suffice for convergence
to the true solution, even if accurate data is at hand. Convergence to the true solution
requires a priori knowledge of exactly where and how the solution shifts from being
governed by one equation set to being goverened by the other. This a priori knowledge
cannot be obtained as part of the coupling procedure.

In this project we intend to develop another type of hybrid method that avoids the
artificial decoupling mentioned above and uses the same governing equations (in this
case the Euler or Navier-Stokes equations) in the whole computational domain, not just
close to the source. The word hybrid points in this case to the use of different numerical
methods in different parts of the computational domain. Examples of this type of hybrid
method can be found in Burbeau & Sagaut (2005); Rylander & Bondeson (2000). In this
type of coupling procedure (provided that accurate data is known), a stable and accurate
numerical procedure does suffice for convergence to the true solution.

Strict stability, which prevents error growth on realistic mesh sizes, is very important
for calculations over long times. We have derived and studied strictly stable unstruc-

t Department of Information Technology, Scientific Computing, Uppsala University, SE-751
05 Uppsala, Sweden, Department of Aeronautical and Vehicle Engineering, KTH, The Royal
Institute of Technology, SE-100 44 Stockholm, Sweden, Department of Computational Physics,
FOI, The Swedish Defence Research Agency, SE-164 90 Stockholm, Sweden

$ Department of Information Technology, Scientific Computing, Uppsala University, SE-751
05 Uppsala, Sweden
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tured finite volume methods (Nordstr6m et al. 2003; Svhrd & Nordstr6m 2004; Svard
et al. 2006) and higher-order finite difference methods (Carpenter et al. 1999: Nord-
str6m &- Carpenter 1999, 2001: Mattsson & Nordstr6m 2004: M. &- Nordstr6m 2006) for
hyperbolic. parabolic, and incompletely parabolic problems. These methods employ so-
called summation-by-parts (SBP) operators and impose the boundary conditions weakly
(Nordstr6m et al. 2003; Carpenter et al. 1994).

In (Nordstrdm &- Gong 2006) it was proven that a specific interface procedure is stable

for hyperbolic systems of equations. This project will rely heavily on these results: we
will apply the theoretical results to the Euler equations. In a forthcoming paper we will
include the treatment of the viscous terms in the Navier-Stokes equations.

A general 3-D code (CDP) that uses the node-centered finite volume method mentioned
above has been developed by the Center for Turbulence Research (CTR) at Stanford
University. A 3-D multi-block code (SUmb) that uses the finite difference technique
discussed above is available at the Department of Aeronautics &, Astronautics at Stanford
University. These codes compute approximations to the Euler or Navier-Stokes equations
and are the initial building blocks for the new hybrid method. A third coupling code
(CHIMPS-lite, a simplified version of CHIMPS) will administer the coupling procedure
and make it possible for the two solvers to communicate in an efficient and scalable way
(Alonso et al. 2006).

2. Analysis

The material in this section is based on Nordstr6m &_ Gong (2006). To introduce our
technique we will consider the hyperbolic system

ut +Aux+Bu.=O, -1<x<_l,0<y_<1 (2.1)

with suitable initial and boundary conditions. A and B are constant symmetric matrices
with k rows and columns. We will also consider a simplified computational domain that is
divided into two subdomains. A so-called edge-based unstructured finite volume method
will be used to discretize (2.1) on subdomain [-1. 0] x [0, 1] with an unstructured mesh,
while a high-order finite difference method will be used on subdomain [0, 1] x [0, 1] with
a structured mesh (see Fig. 1).

The fact that the unknowns in the finite volume and the finite difference methods are
located in the nodes and can be collocated at the interface is a key ingredient in the
coupling procedure presented below.

2.1. The edge-based finite volume method

In Nordstr6m et al. (2003); Nordstr6m & Gong (2006) it was shown that the semi-discrete

finite volume form of (2.1) on subdomain [-1,01 x [0, 1] can be written
pL -l EI)pL QLIl I

ut + {[(pL)-QL] ,] A}u + {[(pL)-lQL] B}u={[(PL)-l(E )L}(u-v•)

+ SATL, (2.2)

where SATL is the penalty term that imposes the outer boundary conditions weakly.
The SAT technique is a penalty procedure that can be used to specify outer boundary
conditions as well as treating block interfaces. uJ and vi are vectors that represent u and
v (v is the discrete finite difference solution that will be presented below) on the interface
respectively. EL is a projection matrix that maps u to u, such that u, = (EL 0 Ik)u.
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FIGURE 1. The hybrid mesh on the computational domain.
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(a) in the interior (b) on the boundary

FIGURE 2. The grid (solid lines) and the dual grid (dashed lines).

The non-zero components of EL have the value 1 and appear at the interface. PL ® EL

is a penalty matrix that will be determined below by stability requirements.
pL is a positive diagonal m x m matrix with the control volumes Qj on the diagonal

and QL and QL are almost skew symmetric m x m matrices. The matrices QL and QL
have the components

(Q-) -=- (Qf)ji, (QL)ii~aQ = 0, (Q=) • (2.3)
X 2 2X)xi 2 0

) 2 = j (QL)tii• = 0, (QL)iiEaQ = - (2.4)\ )J 2 Y y Y Y 2

The definition of Axi and Ayj is presented in Fig. reffig:grid. Moreover, (2.3) and (2.4)
imply that QL and QR satisfy

Q± + (Qb T = Y, QL + (QL) T = x, (2.5)
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where the non-zero elements in Y and X are Ayi, -Axi and correspond to the boundary
points. For more details on the SBP properties of the finite volume scheme, see Nordstr6m
et al. (2003).

2.2. The high-order finite difference method

Consider the subdomain [0, 1] x [0, 1] with a structured mesh of n x I points. The finite
difference approximation of u at the grid point (xi., yj) is a k x 1 vector denoted vij. We or-
ganize the solution in the global vector v = [V1l,..., v- , V1 •2 1 ... , v 21,... vni,..., vnl]'I.
vx and vy are approximations of ux and uy and are approximated using the high-order
accurate SBP operators for the first derivative constructed in Mattsson & Nordstrhm
(2004); Kreiss & Scherer (1974); Strand (1994). The difference operators in the x and y
direction on the right subdomain are denoted (pR)-Q' and (P') -'Q', respectively.

The semi-discrete approximation of (2.1) on subdomain [0, 1] x [0, 1] can be written,

Vt + {[(pR) 0 I 0- A[ 0 B}v = SATR

+ 0 ] 0 R}(vi - u,), (2.6)

where the sizes of the identity matrices If and IR are n x n and 1 x I respectively. SATR is

the SAT penalty term for the outer boundary conditions. E R is a projection matrix that
maps v to vi, that is, v, = (E R 0 Ik)V. ER is a penalty matrix that will be determined
below by stability requirements.

Note that u, and v, in (2.2) and (2.6) are collocated at the interface. This is absolutely
essential for the accuracy of the hybrid scheme. It will be shown that it is also necessary
for stability.

Note that the operators (pp)-IQR and (R) 1 QR are SEP operators since matrices

PT and P2 are symmetric and positive definite and the matrices Qx and Qy are nearly
skew-symmetric, that is,

QR + (QR) T diag(T 0, ...0. 1), QR + (QR)T = D=D = diag(-1, 0, ... 0. 1), (2.7)

where DR and DyR are n x n and 1 x 1 matrices, respectively.

2.3. Stable interface treatment

We define the norms NL = pL ® Ik and NR = (PR ® P () 0Ik, where NL = (N L)T > 0

and NR = (NR)T > 0. We also define an inner product and a norm for discrete real
vector-functions a, b E Rn by

(a, b)H = aTHb, 1afll' = (a, a), H = HT > 0. (2.8)

We apply the energy method by multiplying (2.2) and (2.6) with uTNL and v"NR

respectively. We also use (2.5), (2.7), (2.8), (2.5) and assume that the terms including UB,

yE, vS, VN at the outer boundaries are precisely cancelled by the SAT terms (Carpenter
et al. 1999; Nordstr6m & Carpenter 1999). This yields the energy estimate

d L+ )= [u0, vif Ir [ui, vi], (2.9)

where
l~i=[-pL 0 A + pL 0 EL + pL & (EL)T -PL o EL -pR ER ]

-PL o EL - PR o ER+ PR-A + PR a ER + R P3  (yR)T

LY Y 1Y
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We need M1) to be negative semi-definite for stability. Consider a simplified case where

pL = pR= p EY = (ZL)T, 7R = (ER)T. (2.10)
Y Y*

This yields,

[ ~A2EL _EL ER1
Mt=Py9 [ EL-ER A+2ER =P

To obtain stability -11 has to be negative semi-definite. We can diagonalize A by
XTAX = A, where X is an orthogonal matrix consisting of the eigenvectors of A.
Moreover, consider penalty parameters EL and ER of the form XTELX = AL and
XTERX = AR. We denote by Ai the ith diagonal component of A and similarly AL and
AR for AL and AR. Then we obtain a negative semi-definite M if

AR=AL-A., AL-< A-. i=1,•..,k. (2.11)

The first condition in (2.11) is recognized as the condition for a conservative interface
treatment. The second condition in (2.11) leads to stability if conservation is guaranteed.
For more details, see Nordstr6m & Carpenter (1999).

We have proved the following proposition:

PROPOSITION 2.1. If the conditions (2.10)-(2.11) hold, (2.9) leads to a bounded energy
and (2.2), (2.6) have a stable and conservative interface treatment.

The specific SBP operators that are based on diagonal norms are given in Mattsson &
Nordstrdm (2004): Strand (1994). When we use the second-order diagonal norm pR =

ydiag[1/2, 1...., 1, 1/2]/h on the right subdomain, we do not need to change the control
volumes on the left domain, since p p. But the standard fourth- and sixth-order
diagonal norms are

13649
43200

17 12013
48 8640

59 2711
48 4320

43 5359
1 48 1 4320

49 787 77
48 8640

43801
43200

". ~1

(2.12)
respectively. In both cases we need to modify the control volume for the finite volume
method at the points on the interface to guarantee pL = pR The old dual grid for the

points at the interface consists of the lines between the center of the triangles and the
midpoints of the edges. In order to match pL and PR, the new lines will connect the

center of the triangles and the points at the interface that correspond to the pR (see
Fig. 3).
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FIGURE 3. The modified control volumes for the points on the interface.

2.4. The coupling code, CHIMPS-lite

A general 3-D code (CDP) that uses the node-centered finite volume method previously
mentioned has been developed by the Center for Turbulence Research (CTR) at Stanford
University. Also available at the Department of Mechanical Engineering at Stanford Uni-
versity is a 3-D multi-block code (SUmb) based on high order finite difference methods.

These two codes compute approximations to the Euler or Navier-Stokes equations and
are the initial building blocks for the new hybrid method. The codes are node-based
and use SBP operators and penalty techniques for imposing the boundary and interface
conditions weakly. This numerical technique enables coupling of the two codes by sending
the value of the dependent variables in the nodes located on the interface to the other
code while simultaneously recieving the colocated data at the interface from the other
code. Each code provides boundary data to the other code.

A third coupling code (CHIMPS-lite) administers the coupling procedure and makes it
possible for the two solvers to communicate in an efficient and scalable way. CHIMPS-1lite
is a simplified version of CHIMPS (Alonso et al. 2006) designed specifically for interfaces
with collocated nodes where no interpolation is required. In an initial setup phase, both

codes register their interface nodes with CHIMPS-lite, and the parallel communication
pattern is built. Using this communication pattern, CHIMPS-lite then facilitates the ex-

change of interface data at each stage in the Runge-Kutta scheme. The development of
coupling software like CHIMPS and CHIMPS-lite is an essential new ingredient that will
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Densiy

CIDP MSUmb

FIGURE 4. Transport of a vortex across an interface for the Euler equations.

take the coupling idea from theoretical concept to practical tool for fluid flow investiga-
tions.

3. Results

We consider this project as work in progress; only a few preliminary results currently
exist. Fig. 4 presents a calculation using the unstructured finite volume code CDP coupled
to the high order finite difference code SUmb. The calculation is fourth order accurate
and shows the transport of a vortex across an interface for the Euler equations. Other
similar results have been produced. The results indicate that the procedure is stable and
useful.

4. Future work

Future work involves verifying the computational procedure against exact solutions to
ensure that it converges at the correct rate. We also intend to apply the method to a
high-lift device problem with complex geometry and high accuracy requirements. These
results will be presented at the 2007 SIAM Conference on Computational Science and
Engineering, in Costa Mesa, California.

Viscous terms will then be included and verified in the same manner. A stable and
accurate operational hybrid method for the Navier-Stokes equations will allow for the
analysis of very demanding fluid flow problems involving complex geometries and wave
propagation effects that are not possible to address today.
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Accurate and stable finite volume operators for
unstructured flow solvers

By F. Ham, K. Mattsson AND G. Iaccarino

1. Motivation and objectives

The development of unstructured numerical methods for complex geometries remains
a pacing issue in the application of Large Eddy Simulation (LES) to flows of engineering
interest. Techniques such as LES place strict and often conflicting demands on numerical
methods because of both the long integration times involved and the broad spectral
content of the solution. The developer must strike the right balance between accuracy,
stability, and conservation, all the time paying careful attention to the overall cost of
solving the resulting systems. This paper describes the decisions (and compromises)
made in the development of CDPt, an unstructured finite volume flow solver developed
as part of Stanford's DOE-funded ASC Alliance program to perform LES in complex
geometries.

2. Numerical method

2.1. SBP/SAT as a framework for development
As one starts to analyze existing finite volume operators or develop new operators suitable
for unstructured LES, it is important to have a systematic framework for this endeavor.
Historically in the context of LES and Direct Numerical Simulation (DNS), the concept
of kinetic energy conservation has served this role. Operators or discretizations that dis-
cretely conserve kinetic energy (in the incompressible, inviscid limit) have been shown
to produce more accurate turbulence simulations. Discrete kinetic energy conservation
also provides a stability proof for the discretization, and it can guide the choice of opera-
tors in higher-order methods (Morinishi et al. 1998) and unstructured grids (Perot 2000;
Mahesh et al. 2004; Ham & Iaccarino 2004). In these more complex cases, however, the
discrete manipulations required can become cumbersome.

One of the most promising alternatives for developing provably stable and accurate
discretizations with minimal dissipation is to discretize the equations using the so-called
summation-by-parts (SBP) operators (Kreiss & Scherer 1974) and impose boundary con-
ditions weakly using a penalty procedure called simultaneous approximation term (SAT)
(Carpenter et al. 1994). The combination of these techniques (SBP and SAT) can pro-
duce discretizations where strict stability can be proven using a technique referred to
as "the energy method". For time-dependent problems involving long-time integration,
strict stability provides a more complete and appropriate statement of stability than tra-
ditional Lax-Richtmyer stability (Lax & Richtmyer 1956) because, on realistic meshes,
strictly stable schemes do not allow non-physical solution growth in time (Carpenter
et al. 1993). In many ways, the energy method is similar to kinetic energy conservation:

t CDP is named after Charles David Pierce (1969-2002)
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FIGURE 1. Details of an asymmetric channel mesh using all unstructured primitives.
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FIGURE 2. Comparisons of near-wall asymmetric channel mesh: (left) y = -1; (right) y = 1.

however, it represents a more complete and broadly applicable framework for develop-

ing discretizations that naturally includes boundary conditions and can be extended to

systems of equations where kinetic energy conservation is an inappropriate goal.

The development of CDP's operators and boundary closures described in this brief

summarizes our progress to date in applying the SBP/SAT methodology to the finite

volume method for general polyhedral grids.

2.2. Nodal vs. cell-centered discretizations

Before describing the operators, we briefly address the decision to use the nodes for collo-

cation of the unknowns. Early implementations of the LES unstructured solver (Mahesh

et al. 2004; Ham & Iaccarino 2004) were based on a cell-centered control volume (CV)

approach. For high-quality hex-dominant meshes, this CV approach proved very efficient

and accurate, with results documented in a variety of simulations in moderately com-
plex geometry (Mahesh et al. 2004; Wu et al. 2006). Truly complex geometries, however,

commonly involve regions of tetrahedral elements where CV discretizations are known to

be inaccurate if simple averages are used to preserve operator symmetries. In Ham et al.

(2006), we reported the results of a one-to-one comparison of the two methods using the

inviscid Taylor vortex problem on a variety of grids, and concluded that, with few ex-
ceptions, the nodal discretization was significantly more accurate., displaying consistent

second order rates of error reduction.

More recently we have compared the performance of the two methods on identical grids

for simulating turbulent flow in a plane channel using purposely asymmetric meshes. One
such asymmetric channel suitable for the Re, = 180 simulation is shown in Fig. 1.

On the bottom half of the channel (y < 0) the mesh consists of regular hexahedrals with



Operators for unstructured flow solvers 245

structured unstructured
side side

Ay+ at wall 0.17 0.18
AZ+ 18 23- 27

Ax+ 24 23-27
CV count 294912 348929

TABLE 1. Details for asymmetric-mesh turbulent channel grid spacings, Re, = 180, domain size:
47r x 2 x 27r. For the unstructured region a range is provided because the resolution depends on
the triangle orientation.

near-wall stretching. On the top half, however, we triangulate the top wall and extrude
the tris to produce a boundary layer of prisms with a similar near-wall stretching. These
prisms then transition to tets, then a final transition layer of pyramids to join to the lower
hex mesh. The mesh supports periodic boundary conditions in both streamwise (x) and
spanwise (z) directions. Fig. 2 compares the meshes at the two walls. Mesh spacing details
are provided in Table 1. All simulations were run with no subgrid scale (SGS) model.

Fig. 3 compares the computed mean velocity profiles for the CV and node-based cases.
The CV case exhibits a substantial asymmetry in the mean, with the peak velocity signif-
icantly higher and shifted toward the unstructured half of the calculation. It appears the
unstructured side of the grid is destroying the boundary layer flow structures responsible
for momentum transfer. The node-based result shows much less mesh sensitivity, produc-
ing a nearly symmetric mean that compares much more favorably with the resolved DNS
result of Moser et al. (1999) (over-predicted slightly, as is expected with the relatively
coarse mesh spacing and no SGS model).

This particular calculation dramatically illustrates the benefit of the node-based for-
mulation for unstructured boundary layers, and was one several issues that motivated us
to modify CDP's discretization to a node-based formulation. Another significant moti-
vation was that node-based SBP operators with SAT boundary closures support stable
and accurate coupling to other SBP/SAT solvers, including coupling with higher-order
finite difference (see, for example, Nordstr6m et al. (2006) elsewhere in this volume).

Although worth noting, we do not consider the increased efficiency on simplex grids
a primary motivation. While the number of unknowns is significantly reduced on tetra-
hedral grids, LES-suitable grids normally minimize the number of tets for reasons of
solution quality, and so this savings is never realized in actual computations. In addition,
because the node-based operators are generally more costly to compute than CV-based
operators, they are pre-computed and stored, making the node-based version more mem-
ory intensive than previous CV-based versions, despite the reduced number of unknowns
in some cases.

2.3. SBP/SAT definitions

Here we briefly define SBP (an internal property of the operators) and SAT (a method
to apply boundary conditions) using scalar convection-diffusion. The passive transport
of scalar 0 in an incompressible velocity field is governed by the following equation:

ot + (U. V)o = aV 2 6. (2.1)
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FIGURE 3. Comparisons of computed mean velocity profiles for asymmetric-mesh turbulent
channel showing substantial mesh-induced asymmetry in the CV-based formulation. The bumpy
region between 0 < y < 0.5 corresponds to the tetrahedral region where averaging in the two
homogenous directions is not available because nodes are not at identical y locations.
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A SBP/SAT semi-discretization of this equation, including boundary conditions, will
have the following matrix form:

Vot + (Q + B)o = a(L + S)6 + penalty terms., (2.2)
where V is the diagonal matrix of nodal volumes, V- 1 (Q + B) is the convective operator
split into internal and boundary parts, and V- 1 (L + S) is the Laplacian operator split
into internal and boundary parts. We note that Eq. 2.2 is solved at all nodes in the
domain, including those on the boundary.

Application of the energy method to Eq. 2.2 involves multiplying by 6T and adding
the transpose to produce the following discrete equation for the time evolution of scalar
energy:

tTot T _d 1101I12 = -oT(Q + QT)O + OT(L + LT) other terms. (2.3)

For simplicity we have omitted the details of the boundary penalties, lumping all boundary-
related terms into "other terms". Eq. 2.3 is called an energy estimate if all terms on the
right-hand side involving the unknown 6 can be bounded (typically • 0). Clearly the
first two terms can be bounded for any 6 if matrices Q and L have certain properties.
This is in fact the essence of SBP operators: it is an internal property of the operators
that produces these desired properties. Specifically, the convective operator V- 1 (Q + B)
is called an SBP operator if the internal part Q is skew-symmetric (i.e., Q + QT = 0),
and the Laplacian operator V- (L + S) is called an SBP operator if L + LT is negative
semi-definite. SBP operators thus simplify the derivation of energy estimates by isolat-
ing the work required to the boundary and interface terms. For these remaining terms
(lumped in other terms), the SAT method can be used; examples are provided in the
following subsection.

2.4. CDP's operators
This subsection describes the details of the discrete finite volume operators used to
develop the internal discretization and boundary conditions in CDP. The operators are
developed for a node-based discretization on general polyhedral meshes, where both
grid coordinates and the unknowns are collocated at nodes. Figure 4 provides some
geometrical details used for operator construction.

2.4.1. Nodal volumes and volume integration

The node-based volumes required for integrating the time derivative and any source
terms are computed by tessellating each cell into "sub-tets", each defined by a node,
an edge, a face, and a cell as shown in Fig. 4. The volume of the sub-tet is then added
to the volume associated with node "P". In the current version of CDP, the volume
or mass matrix is thus diagonal (lumped-mass approximation). Row "P" of the volume
integration operator V has a single diagonal entry equal to the sum of its associated
sub-tet volumes Vt,:

VP fp 6 dV

E Z P (2.4)
t'ET'74
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FIGURE 4. Geometrical details for 3-D node-based meshes. Unknowns are stored at nodes (e.g.,
P and edge-based neighbor nb). Edge centers are located at the midpoint between nodes, face
centers are located at the simple average of their surrounding nodes. and cell centers are defined
by the simple average of their surrounding nodes. N,, is a sub-edge normal, associated with an
internal or boundary edge. Nf, is a sub-face normal associated with boundary faces only. N is
used to indicate normals with area magnitude.

where t' represents a sub-tet, and T' the set of all sub-tets associated with node "P".

To further simplify the construction of these volumes and the operators in general, we

choose the simple average of surrounding nodes to define face and cell centers. Unlike CV-

based formulations, where face and cell centers are defined at the centroids or centers of

mass, this same definition for the node-based mesh has no obvious benefit. The choice of

simple average for center locations ensures that interpolations based on simple averages

of nodal data will be limited and linearly exact. For meshes built from simplex elements
(tris/tets), the simple average is of course equivalent to the center of mass.

2.4.2. Convective operator

CDP's convective operator including SAT penalty treatment was presented in Ham

et al. (2006), but is described here for completeness. For row "P" of the convective
operator:

(Qp+Bp)o ,: ) dV o ui AidA (2.5)

= Z U +,'P+OnbA,, + E Uf, 0pAf,. (2.6)2
e'EE, f'PEF,

where c' represents a sub-edge, E' the set of all sub-edges associated with node P,
f' represents a boundary sub-face, and Fý the set of all boundary sub-faces associ-
ated with node P. U,' and Ufp are sub-edge and sub-face velocity components in the
outward-normal direction. Clearly the internal part of the operator is skew-symmetric
by construction.
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2.4.3. Laplacian operator

The discretization of the Laplacian operator is particularly challenging for unstructured
finite volume methods because it is difficult to simultaneously achieve accuracy and
stability on general unstructured grids. In the case of the Laplacian operator, stability
can be translated into the SBP requirement that the symmetric part of the internal
operator L + LT be negative semi-definite, and that the SAT closure yields an energy
estimate.

These stability requirements are normally met by construction in the finite element
method (FEM), however FEM Laplacian operators are rarely used in FVM. Even CV-
FEM (Schneider & Raw 1987), a popular hybrid of the two, only uses FEM basis functions
to compute gradients at integration points around the nodal control volume, and the
resulting operator will not guarantee the desired stability properties. The typical reasons
FEM Laplacian operators are not used routinely in FVM are:

9 Inconsistencies between the FEM "lumped mass" volume and the FVM volume on
certain grids (although, for node-based FVM they are equivalent on structured orthogonal
grids and arbitrary simplex grids)

* The perception that FEM operators have greater complexity (involve more neigh-
bors), and are thus more expensive. While this is true on structured orthogonal grids
where FVM reduces to the finite difference method, on general unstructured grids the
complexity of FVM is similar to or even greater than FEM.

e FVM has the additional constraint that the Laplacian must discretely be the diver-
gence of a gradient, i.e., the discrete operators must mimic the identity:

V 2  7V.. (2.7)

This final discrete requirement allows the viscous terms in FVM to be formulated in
terms of a discretely conserved flux involving face-normal gradients, and also allows the
use of the Poisson solve to discretely project the divergence out of the predicted velocity
field when fractional-step time advancement is used. This discrete decomposition is not
always clear in the case of FEM Laplacians.

In CDP, the volume-integrated Laplacian operator is constructed using divergence
theorem and the sub-edge concept presented in Fig. 4. For row "P" of the Laplacian
operator:

2f
p pdV =+ S - i dA (2.8)(Lp + ~i p) axO-xi

e'EE' F(2.9)

- E Seo+ E Sf, (2.10)

where e' represents a sub-edge, E' the set of all sub-edges associated with node P., f'
represents a boundary sub-face, and Fp' the set of all boundary sub-faces associated with
node P. ft,, the sub-edge outward unit normal (outward with respect to P), A,, the
sub-edge area, Se, and Sf, are the sub-edge and sub-face normal-derivative-times-area
operators, respectively. The required gradient for each sub-edge is determined by solving
the following 3 x 3 system for the unknown gradient components:
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C9o • (xi,nb - xi.p) =O~b -- OP (2,11)

o 1xi 1'

O ( x j Xi, nof - - (Xi.nb + Xi,P) = Onof - -(Onb + op),(2 .12 )

aoý ( IEX i~noc - i.nb~ + Xi) Ornoe I (Onb + op).( 2 .l3 )
T Nn,2 Nnoc2

where P and nb represent the two nodes associated with the edge of this sub-edge, nof
the NY,,f nodes of the face associated with the sub-edge (these will of course include P
and nb) and noc the N,0, nodes of the cell associated with this sub-edge (these will also
include P and nb).

It is important to note that the sub-edges are not combined into a single edge normal
and edge area prior to dotting with an edge-based gradient. This combination of normals
to a single edge normal may simplify the construction of the operator, but it is not done
in CDP. As such, in addition to being compact and linearly exact (which, for a Lapla-
cian, means returning zero in a linear field), the resulting operator has two important
properties:

e In the limit of Cartesian structured meshes, the standard symmetric second-order
finite difference Laplacian is recovered (involving only node P and the 6 neighbors that
share an edge with P).

e For the case of simplex elements, the standard symmetric FEM Laplacian using
linear basis functions is recovered.

The first of these properties is well known, and would have resulted even if we had

combined the sub-edge normals into a single edge. The equivalence with linear FEM
on simplex grids and resulting symmetry, however, is less well known and requires this
sub-edge construction.

Part of the stability requirement for the Laplacian operator is the SBP property that
L + LT be negative semi-definite. For both the limiting cases previously described, it is
well known that this is true. On general polyhedra, however, we do not have a proof. But

numerical experiments using a variety of polyhedral meshes indicate that the operator is
negative semi-definite except for the case of extreme element deformation.

The boundary part of the Laplacian operator is a summation over sub-faces, and will
be non-zero at boundary nodes only. The three required components of the gradient
at each sub-face are determined by solving a similar 3 x 3 system, involving the two
equations:

0 (Xi.nb - XiP) Onb - Op (2.14)
aXi f,

Do (1 ) 1
a9 EkN0  Xi ,nof - iP) An 720 rf - OP (2.15)

and one of:

90 -(Xij, - Xip) = - Op (2.16)
Dxi f
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S( zP) 1 1 noc E op - O, (2.17)ýx0 1~ E Xi~rnoc -- ioc-

with the first of these being preferred. Nodes P and nb are on the edge associated with
the boundary sub-face, nof are the Nnof nodes of the face associated with the sub-face,
I (for Internal) is/are the node(s) along the edge(s) of P not part of the boundary face,
but still part of the internal cell that contains the boundary face, and noc are the Nnoc
nodes associated with the internal cell that contains the boundary face. For clarity, node
I is labeled in Fig. 4. Although the last equation is never used for grids composed of
convex unstructured primitives (tet, pyramid, prism, hex), it is included here because on
certain non-convex or polyhedral meshes (e.g., meshes with hanging nodes on boundary
faces), the edges associated with node I can be coplanar with the boundary face.

While there are no restrictions on the complexity of Sf, with regard to stability, here
we have made the practical decision to define it in a way that simplifies the parallel
implementation. In CDP the domain is decomposed such that the cells (elements) are
uniquely divided among the processors, however nodes, edges, and faces that lie on inter-
processor boundaries are multiply defined. By expressing the Sf, operator as a global
sum of locally available information (the cell and boundary face that completely define
the gradient are entirely present on only one processor), this also makes the transpose of
Sf, (required by the SAT penalty - see §2.6) a global sum of locally available information.

In addition, this local definition of Sf, makes it straightforward to include only those
sub-faces that participate in a particular Dirichlet or Neumann boundary condition.
For example, a single node can have sub-faces associated with an adiabatic boundary
and sub-faces associated with an isothermal wall, each requiring a separate boundary
treatment.

2.5. Gradient operator

While the gradient operator is not required in the discretization of scalar transport, it is
required for the incompressible Navier-Stokes equations, so we include a brief description
here. CDP's gradient operator uses Green-Gauss theorem to approximate the integral of
the gradient over the volume as follows:

Gi,Ppo -dV jV onidA

0 +OeOf +Dc^ _op-+oe-
- ni, 'Ae' + + 6f nijAf,

e'EE' f'EF.

6 be+ Of+ Oc-. +, Y- o + 6, + Of ', (2.18)

3 3--" 3 .
e' EE'P f'EF.

where 0,. of, and 6, are computed from simple averages of the nodes associated with
the edge, face, and cell defining the sub-edge or boundary sub-face, and Ne, and Nf, the
sub-edge and sub-face normals with area magnitude. Note that the second part of the
gradient operator is non-zero for boundary nodes only.

Interestingly, on simplex grids this operator is exactly equivalent to the standard skew-
symmetric edge-based gradient operator and to the gradient operator resulting from FEM
with linear basis functions. The operator is also skew-symmetric on structured orthogonal
hex grids, and is linearly exact and generally more accurate than the edge-based operators
on general polyhedral meshes, although not exactly skew-symmetric.
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2.6. Scalar transport with SAT penalties

Using the previously described operators, it is now possible to illustrate how SAT penal-

ties are added to produce a strictly stable finite volume discretization for scalar transport:

Vp O + U1OP+ O'b A,'+ Z UfopAf,=2
CE E'P f'EF,,

a 1 Sc, O+c E Sf,o+

Z'E, f'Z Sf'oS Uf ,sf(o-g), (2.19)

f'eF,. J'EF:-,

where the potentially time-dependent Dirichlet boundary data g has been introduced on

the rhs using penalty parameters or for the advection term, and a 2 for the diffusion. S:f

is the transpose of the sub-face normal-derivative-times-area operator. which introduces

penalty terms into all nodes associated with the Sp, operator, including those not directly

on the boundary.
Application of the energy method to this system leads to an energy estimate for penalty

parameters or, > 1/2 and a 2 = 1.

2.7. Incompressible Navier-Stokes

It is also possible to develop a finite volume discretization of the incompressible Navier-

Stokes equations using the CDP operators with good accuracy and stability properties.

For this case, however, we cannot make the claim of strict stability on arbitrary unstruc-

tured meshes, and present the discretization as a work in progress.

Following the collocated fraction-step methods developed in Zang et al. (1994); Kim

& Choi (2000): Mahesh et al. (2004), CDP's incompressible flow algorithm proceeds as

follows:
1. Extrapolate the divergence-free edge-based (not sub-edge: see step 5 below) velocity

field to the midpoint of the current time step. Set the boundary sub-face velocities to

the normal component of the known boundary velocity gi:

•n+1/2 = 3 1 un l/2 11
S 2= 2 (U-6 Ue = gi ') if f, =_ Uf,. (2.20)

2. Build momentum equation for velocity predictor ft2:

U.P +i. +.b• +ý~n + gf(•z +"p)

p i+ E Ue.ip P zinb p nb A,, + Uf(fl.+Up )Af, -

Ate 4 Z
C'eE, EPEYF;,

k' E/ S', (ý n)- S, f,+ 1 + -~- 1/2

e'EE' f'EfFF
V n-lil

0a1 5: b7(ai.P+UP9gn~ - g")Af' -

P'E Fp.

oa2 5 S2 (f ' -g, -g•D. (2.21)

f'eF,'
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3. Modify the matrix to project wall velocities to fti = 0. Solve for uti.
4. Remove old pressure gradient from all velocities (including any projected walls):

Vp - = Gi ppn-1/ 2 . (2.22)
At

5. Interpolate u* to the edges and take the edge-normal component. It is important
to produce a single edge-based velocity component here to preserve the skew-symmetry
of the convective operator. We consider two possibilities for interpolating to the edge,
either a simple average of the two nodes associated with the edge:

U-2A (UP + U2 ,fb) fiie.A,',, (2.23)
e'Ee

where the edge area is defined A, = E'--,e A,,. A more accurate alternative on bad grids
is the following:

1 + u + u*,f + u,U e* h i-- • ,.e,A f!,. (2 .2 4 )
A e' Ee

6. Solve the following Poisson equation for the new pressure at the midpoint of the
time interval:

U:At U"Atf (2.25)
e' EEp eCEp f'EF,

7. Correct the edge-based velocity components and node-based velocity vectors using
the new pressure:

A, -QU - - S•,p•+1/ 2  (2.26)
e'Ee

n+1 _ *

Up At - -Gippn+1/ 2 . (2.27)

8. Project wall velocities: u'+1 = 0.
We note that in the previous discretization, wall boundary conditions were projected

(ui = 0), rather than weakly enforced with a viscous penalty and gi = 0. Projection was
found necessary to get accurate near-wall behavior in turbulent boundary layers.

3. Results
3.1. Heat equation

To test the accuracy of the Laplacian operator and SAT boundary closure, we first solve
the time-dependent heat equation on both periodic and non-periodic meshes using the
manufactured solution:

6 = sin(x) sin(y) sin(z) cos(t) (3.1)

Fig. 3.1 shows the spatial convergence study on a sequence of nested tetrahedral meshes
-7r < xi < 7r. The convergence is second order in 12 both with and without boundary
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FIGURE 5. Spatial mesh refinement study for heat equation with manufactured solution on

irregular tetrahedral grids.

conditions.,1l, errors are second order with periodic boundaries, and first order with the

Dirichlet boundary conditions and SAT boundary closure.

3.2. Advecting Taylor vortices

The advecting Taylor vortex problem is an exact solution of the incompressible Navier-

Stokes equations. Here we write the solution as:

/ -- s--L•bt

u(x, y, t) = U - cos(7r(x - xo - Ut))sin(7r(y - yo - Vt) •(3.2)

v(x, y., t) = V + sin(7r(x - xo - Ut))cos(7r(y - yo _ Vt))C ," (3.3)

1 ---A Lkitb

10 10

P(x, y! 0) = -(cos(27r(x - xo - ut)) + cos(27r(y - yo - Vt))) ,e (3.4)

To break grid symmetries and make the problem more challenging, this solution includes
an initial displacement of the vortices (xh, ya) and a constant advection speed (U, V).

For Vic +eV2 < I this leads to time-dependent boundary conditions with regions of

inflow and outflow. Using the discretization of the incompressible Navier-Stokes equations
described in the previous section, several mesh convergence studies were performed and

are reported in Figs. 6 through 10. All studies were performed with v = 0.01, (UT V) =
(0.25, 0.15), and errors computed at t = 1 for velocity, and t = 1 - At/2 for pressure

(because pressure is stored at the midpoint of the time step)-
Figure 9 (left) shows an interesting result where the pressure error is seen to fall off

to first order on randomly perturbed quad meshes when the fine meshes are unrelated
to the coarse meshes, apart from being a factor of 2 finer in both directions. This first-
order convergence rate occurs on both periodic and Dirichlet boundary condition (bc)

cases, indicating that it is not due to the inaccuracy of the internal
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FIGURE 6. Advecting Taylor vortex problem on uniform Cartesian grids: (top) changing time
step size to confirm observed error is spatially dominated: periodic boundary conditions with
CFL = 0.32 (solid) and CFL = 0.16 (dashed); (bottom) effect of Dirichlet boundary conditions
imposed using the SAT approach.
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FIGURE 7. Randomly skewed quadrilateral mesh used for convecting Taylor vortex problem:
(top) full mesh; (bottom) detail.
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FIGURE 8. Contours of computed pressure at t = 0, 0.5, and 1.0 for convecting Taylor vortex
problem on the skewed quadrilateral mesh shown in Fig. 7. For this case, vortices are advected in
the positive x direction with U = 1, V = 0, viscosity is v, = 0.01, Dirichlet boundary conditions
on all boundaries.
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Laplacian operator on irregular quad meshes. When nested homothetic refinement of the
parent grid is used (a coarse grid is perturbed and then successively refined), the pressure
recovers its second order behavior.

4. Conclusions

SBP operators and SAT boundary closures have been described for the finite volume
method applied to arbitrary polyhedral meshes. The operators use a node-based (cell-
vertex) formulation, where the unknowns are collocated with the nodes. The operators
produce a strictly stable discretization for scalar advection diffusion. When applied to the
heat equation and incompressible Navier-Stokes equations, manufactured and analytic
solutions have been used to show consistent second order convergence in 12 errors on a
variety of unstructured grids.

The incompressible flow solver described in this brief is being successfully applied to an
increasing range of flow problems in complex geometry. In addition, the operators as de-
scribed readily support the stable and accurate discretization of other partial differential
equations, including the linear wave equation (Mattsson et al. 2006) and a formulation
for variable density reacting flows (Shunn & Ham 2006: Medic et al. 2006ab). The de-
velopment of a stable and accurate discretization for compressible flows on unstructured
grids is currently in process.
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Coupled high-fidelity URANS simulation for
helicopter applications

By S. Hahn, K. Duraisamyt, G. Iaccarino,
S. Nagarajan, J. Sitaramant, X. Wu,

J. J. Alonso, J. D. Baeder$, S. K. Lele, P. Moin AND F. Schmitz$

1. Motivation and objectives

Transonic flows on the advancing side of a helicopter rotor and blade-wake/blade-
vortex interactions (BWI, BVI) are the major sources of helicopter noise. Both phe-
nomena should be accurately predicted for a successful improvement of state-of-the-art
helicopter design. To account for the former, a fully compressible CFD solver is essential
in computing the flow around rotor blades. In most compressible flow solvers, however,
the artificial dissipation formulated for shock capturing may lead to an erroneous dis-
sipation of the wake or tip vortices and their subsequent spreading. Furthermore, the
typical operating Reynolds number is very high, which makes the application of LES to
helicopter rotor flow infeasible.

This article summarizes our technical efforts toward the development of high-fidelity
CFD tools for rotorcraft applications as part of the DARPA Helicopter Quieting project.
The key ideas in our strategy to overcome the difficulties previously stated are:

(1) Coupling fully compressible and incompressible CFD solvers for near-blade and
wake regions, respectively;

(2) Incorporation of the low-dissipation algorithm (Mahesh et al. 2004; Ham & Iac-
carino 2004) into the incompressible URANS solver for the wake region, in order to
minimize the dissipation of vortical structures;

(3) Using the most advanced four-equation v2 -f turbulence model (Durbin 1995) for
improved predictive performance.

This combination will resolve both compressibility and wake effects with solvers best
suited for each purpose. We use the multi-block, structured SUmb code (Van der Weide
et al. 2006) and the unstructured CDP solver (Ham & laccarino 2004) for compressible
and incompressible flow solvers, respectively. These two codes have been successfully
applied to the full gas turbine simulation (Medic et al. 2007). Note that the initial setup
of the necessary computational frameworks such as a moving-mesh capability, coupling
strategy, and validation cases is already reported in Hahn et al. (2005). As a continuing
work, this article will mainly focus on more challenging validation cases.

This paper is organized as follows: Section 2 briefly describes new aspects of the re-
vised coupling software. Section 3 introduces the technique of anisotropic adaptive mesh
refinement. Validations for the UH-60A and HART-II cases are provided in Sections 4
and 5, respectively, followed by the rotational correction on the v2 -f model in Section 6.

t Research fellow, University of Maryland.
$ Professor, University of Maryland.
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2. Revision of coupling software

In order to facilitate the coupling procedure, it is more advantageous to have a sepa-
rate coupling module that exclusively performs complicated searches, interpolations, and
data transfer in an automated manner. For this purpose, we developed an initial version
of coupling software, named CHIMPS (Coupler for High-performance Integrated Multi-
Physics Simulations), through a collaboration with the ASC project in 2005 (Schltiter et
al. 2005). We completely revised CHIMPS in 2006. The main objective of this revision
is to provide more direct control of coupling procedures by specifying the frequency and
nature of the data exchange between the applications. Furthermore, more functionali-
ties are introduced to handle a wider class of applications within a coupled simulation
(for example, particle-based simulations in addition to grid-based approaches) and to
support various kinds of code-to-code data exchange (for example, spatially integrated
data in addition to simply interpolated ones). This redesign not only provides more com-
prehensible, user-friendly, and organized API routines but also demonstrates efficient
performance. On the other hand, along with the existing Python API, the CHIMPS li-
brary now supports a Fortran API to expedite the debugging of large-scale integrated
simulations. C API may be also added in the near future. We examined the performance
of the revised software for various applications, including simple interpolations, internal-
and external-flow computations, and particle-based simulations. All test cases yielded
successful results both in accuracy and scalability. This revised CHIMPS was also suc-
cessfully applied to all the validation cases presented below. For detailed information on
the revised CHIMPS (including users' manual), see Alonso et al. (2006).

3. Anisotropic adaptive mesh refinement (AAMR)

One of the objectives of the present research in rotorcraft aerodynamics is to develop a
computational approach that enables the accurate representation of the development of
wake vortices and their interactions. Adaptive Mesh Refinement (AMR) allows efficient
clustering of cells in the specific regions of interest. It is therefore a possible candidate
to achieve the required high resolution in the vortical regions without affecting the grid
elsewhere. The present implementation is an extension of the classical AMR technique to
include anisotropic refinement, since mesh resolution in the wake is only required in the
vortex core, where large gradients are expected. Along the vortex axis, the grid resolution
can be relaxed quite dramatically, unless strong interactions between the vortices cause
breakdown. The meshes are built (and refined) using a tool developed for the immersed
boundary technique (laccarino & Ham 2005); any orthogonal coordinate basis can be
used to take advantage of the quasi-circularity of the vortices in a rotorcraft wake. As
illustrated in figure 1 for a hovering case, the grid alignment between the vortex and the
azimuthal direction allows full advantage to be taken of the anisotropy. In comparison,
the Cartesian grid with the same resolution requirement contains typically 50% more
grid cells. Once the grid is generated, it is converted into an unstructured polyhedral
mesh.

One of the difficulties in the application of AMR schemes is the definition of the
region of interest (i.e. where to apply refinement). Typically a scalar quantity (marker)
is defined and all the cells above a threshold value are split. In the present work, the use
of anisotropic AMR introduces an additional difficulty: the refinement marker must be
a vector. Our choice for a marker quantity is illustrated in figure 2. Due to the specific
nature of the refinement requirement in this application, we have chosen a vortex-related
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FIGURE 1. Example of grid refinement on helical vortices. The adapted mesh can be generated
either in a Cartesian (left) or cylindrical (right) coordinate system.

FIGURE 2. Detection criteria to perform anisotropic grid refinement. The helicity is used to select
the cells to be refined (left) and the vorticity vector to identify the vortex direction (middle).
The corresponding adapted grid is also illustrated (right).

parametrization. The first observation is that, although we require a vector quantity,
we first rely on the classical scalar detection and calculate a direction vector afterward.
Helicity (the dot product of velocity and vorticity vectors) is used as a scalar marker in
the present study, which is presented in the leftmost plot of figure 2. It allows vortex
cores to be sharply detected and filters out the vorticity generated in the boundary layer
and shed in the near wake. The vorticity vector is then used to identify the vortex axis.
An example of the grid generated for a rotor in hover is also presented in figure 2.

The final and most complicated step in applying this technology to rotorcraft wakes
is to embed the refinement procedure within the solution loop, as the vortices move
within the domain of interest. The current implementation is based on a loose coupling
between grid generator and flow solver. The mesh is regenerated at specific checkpoints
during the calculations, usually every 100 time steps. Simple linear interpolation is used
to transfer the solution between grids. To illustrate the application of dynamic AMR,
three different grid systems and corresponding solutions are illustrated for the problem
of a translating vortex dipole in figure 3. The grid is generated using the detection
scheme previously described. The marker is then spread over a larger area by applying a
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(a) (b)

FIGURE 3. Translation of a vortex dipole: (a) at t = 0; (b) at a later time. Results from
uniform (left) and two different adapted meshes (middle and right) are compared.

smoothing procedure: this allows a good solution accuracy to be retained as the vortex
moves with the lapse of time. Two adaptive grids with different amounts of smoothing

are shown in figure 3, along with a uniform grid as a reference. From figure 3, it appears

that the amount of smoothing has a considerable effect on the preservation of vortices.

In particular, the grid obtained by spreading the marker on a large area yields a solution

almost comparable to that obtained from a fully uniform mesh. Note that the amount of

smoothing applied to the marker is a function of the speed of vortices.

4. Validation on the forward flight: UH-60A

In the present study, the ability to handle the fluid-structure interaction is devised by
coupling a structural analysis code, the University of Maryland Rotorcraft Comprehen-

sive Analysis Code (UMARC), with the SUmb/CDP/CHIMPS flow analysis platform.

The calculations are performed in a loosely coupled fashion (i.e. data exchange between

CFD and CSD happens every revolution) to ensure stable convergence of aeroelastic mo-

tion, aerodynamic loading, and vehicle trim. Figure 4 shows grid topology used for the
near- (SUmb) and off-body (CDP) meshes in this simulation. The total number of grid

points for this simulation is approximately 6 million.
The fluid-structure analysis has been performed on a few forward-flight conditions for

the UH-60A rotor where measured data are avaliable from flight tests by Bousman et

al. (1994). Results obtained for two critical steady-flight conditions are presented in this

report: (1) high-speed forward flight (critical for high vibration); (2) high-altitude stall

(critical for torsional loading and push-rod load).
The high-speed forward-flight condition is dominated by two critical flow phenom-

ena that determine the phase and magnitude of the aerodynamic loading (Sitaraman et

al. 2005). The first effect is the generation of large nose-down pitching moments in the
advancing-blade phase because of the incidence of high transonic Mach numbers. These

high nose-down pitching moments cause a large elastic torsional response that determines
the phase and magnitude of the sectional aerodynamic lift as well (i.e. causes blades to
be negatively loaded in the advancing-blade phase). Another dominant physical phe-

nomenon is the blade-wake interaction, again on the advancing-blade phase. Blades with

negative tip loading generate strong inboard wake sheets in contrast to strong rolled-up
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(a) (b)

(c)
FIGURE 4. Grid topology in the SUmb-CDP coupling for the UH-60A case: (a) domain con-
figuration (dark and light regions for inner CDP holes and SUmb domains, respectively); (b)
surface mesh on the blade; (c) off-body CDP meshes and inner holes.

tip vortices. These inboard wake sheets interact with the following blade and, due to
their proximity and strength, cause appreciable impulsive perturbations in the sectional
aerodynamic lift. This impulsive lift is the main contributor to fixed-frame vibrations at
this flight condition.

Figure 5 shows time histories of aerodynamic loading obtained from the coupled aeroe-
lastic simulation and the comparison with flight-test data. From the phase and magni-
tude of the normal force and pitching moment, it is evident that the coupled aeroelastic
simulation accurately resolves the transonic effects in the advancing-blade phase. The
evidence of impulsive loading is also found in the advancing-blade phase, suggesting the
appropriate resolution for the phenomenon of blade-wake interaction as well. Overall,
we obtained a good correlation between the flight-test data and computed aerodynamic
loading for the entire rotor disk; this is also clear in contours of the normal force and its
azimuthal derivative presented in figure 6.

For the high-altitude stall condition, the significant physical phenomena are the dy-
namic stall events in the retreating-blade phase, which are highly aeroelastic in nature. A
high pitch-angle variation for generating large thrust at a high-altitude operating condi-
tion causes the first stall event (named trim stall). The trim stall event creates negative
pitching moments, which cause an elastic torsional response that subsequently causes
the flow to reattach and stall again (named torsion stall; Sitaraman & Baeder 2006).
Therefore, a fully consistent fluid-structure coupling is absolutely necessary to obtain
the correct phase and magnitude of the stall events. Present calculations show a good
correlation with test data at this flight condition (figure 7), both in the phase and mag-
nitude of the stall events: this is most evident in the time histories of pitching moment
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FIGURE 5. Time histories of the normal force (top), pitching moment (middle), and chord force
(bottom) for the UH-60A high-speed forward-flight condition (8534). Solid lines and error bars
represent simulation results and experimental data, respectively.
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UH-60A high-speed forward-flight condition (8534). Experimental data and simulation results
are shown on the left and right, respectively.
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and chord force. The contour plot of aerodynamic loading on the entire rotor disk, shown

in figure 8, also exhibits a good agreement with the experiment, both in the location and

magnitude of the stall events.

5. Validation on the descent flight: HART-IT

The descent-flight condition for helicopters is dominated by blade-vortex interaction

events that cause mid- to high-frequency impulses in aerodynamic loading and contribute

significantly to the mid-freqency noise spectrum.
The SUmb/CDP/CHIMPS flow analysis has been conducted for a descent-flight op-

erating condition, chosen from the HART-II wind-tunnel tests by Yu et al. (2002). Pre-

scribed blade motions are used for this case in order to calibrate the resolution require-

ments for the flow analysis. Similarly to the UH-60A case, we initially coupled a single

SUmb and a single CDP (without any mesh adaptation) for the near- and cylindrically

shaped off-body regions, respectively, with approximately 6 million mesh elements in to-

tal. In this case, the wake effects could not be sufficiently accounted for. Consequently,

we have devised a coupling of a single SUmb and two different instances of CDP (i.e.

3-mesh coupling), which capture the rotor-disk and wake regions, respectively. Since the

near wake at this flight condition is populated by strong tip vortices, the conventional

mesh generation would require an extremely large grid number. Therefore. we have ap-
plied the AAMR technique (described in Section 3) to the CDP domain for the wake

region, where the CDP grids are pre-adapted based on the free-wake solution. Figure 9

shows the comparison of airload histories for the two different mesh systems. A signifi-

cant improvement is noted in the aerodynamic loading with the 3-mesh coupling: the BVI

events are evident on both the advancing and retreating sides. In the case of the 2-mesh

coupling, the vortex/wake system is diffused quite significantly and the associated BVI

events are completely smoothed out. Therefore, this simulation does provide proof-of-

concept demonstration for the benefit of AAMR in predicting blade-vortex interactions.

Nevertheless, it is to be noted that the mesh resolution for the 3-mesh coupling is still

unsatisfactory for precisely accounting for the wake structure. The BVI events captured

by the 3-mesh coupling are still much weaker than those demonstrated by the experi-
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ment, which leaves room for improvement. A finer mesh system with similar topology
will be applied in the near future.

6. Turbulence-model improvement for dynamic stall using LES database

Linear eddy-viscosity models have an inherent limitation in the correct representation
of influence from system rotation or streamline curvature. Pettersson Reif et al. (1999)
suggested a rotational correction for the v 2-f model, where the eddy-viscosity coeffi-
cient is modified to mimic the second-moment closure in the case of isotropic turbulence
that is subject to system rotation. This correction introduces a new eddy-viscosity coeffi-
cient, C,, which is represented as a function of non-dimensional strain- and rotation-rate
tensors, •77 and 712 , viz.

c*= l+ 1a 2 q31 + a 3 ?7 3 c+ a571 (6.1)

P =1 + 4 'q 3 1 -+- a577 2 - 1

where C, is the uncorrected eddy-viscosity coefficient, 7i = SkSik, 772 = ik Rk, S,=
T(o9Ui/Oxk + WUk/Ixi), fQ* = ½T(t9Ui/Oxk - WUk/Oxi + 4.5Ekimn1f), •kzm and M

are the permutation symbol and angular velocity for system rotation, T = min[max(k/i,
6v/-E),ak/v'CSýv2], S = OSikSi, Sik = S/*k/T, a, = 0.055v/fl, a 2 = 2f, o3 =

fl, a4 = IV T, a 5 = -, and fi = V 2 /0.367k. Finally, the eddy viscosity is computed
as follows:

lt = C v 2 T. (6.2)

On the other hand, further analysis on homogeneous rotating turbulence shows that a
constraint should be devised on C, in order to limit the turbulent production to levels
attained by the original second-moment closure. In the present study, effects of this
constraint are tested simply by introducing a limiter to Cý as follows:

C =C, min [+ 213+ +3513 ( I/-m.061+ a417q3[ 1 -+[ a5772

(6.3)
This variant was shown to provide an improved predictive performance for the laminar-
ization near the core of wing-tip vortex in a static 3D airfoil (Duraisamy & laccarino
2005). In order to examine its performance in highly non-equilibrim wall-bounded flows,
the correction is further applied to a 2D dynamic stall in the present study. For a precise
assessment of accuracy, a flow over a pitching NACA0012 airfoil is computed using both
LES and URANS.

The Reynolds and Mach numbers chosen are Re = uc/li, = 1.3 X 105 and M =

u,,/a, = 0.3, where u., •, and a,, are velocity, kinematic viscosity, and speed of
sound at the free stream, and c is the chord length. A NACA0012 airfoil is pitching about
the leading edge and the pitching condition is a(t) = a0+Aa sin(wt), ao = 10', Aa = 5',
0 = wci2u, = 0.5, where a(t) is the angle of attack, w is the pitching frequency, and
f3 is the reduced frequency. Note that the static airfoil at this mean angle of attack has
a small separation bubble near the leading edge, with transition in the separated shear
layer. A fully compressible LES code, based on the sixth-order compact scheme and
staggered arrangement of conserved variables (Nagarajan et al. 2003), and SUmb are
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(a) (b)

(c) (d)

FIGURE 10. Contours of the spanwise vorticity from LES: (a) t = nT (middle of upstroke); (b)
t -= nT + 1T (highest incidence); (c) t = nT 2 ½T (middle of downstroke); (d) t = nT 4

(lowest incidence). T denotes the pitching period.

used for the present LES and URANS, respectively. For both LES and URANS, an 0-
mesh system with 480 x 300 points in the chordwise and normal directions, respectively,
is used. The domain extends approximately 20c from the airfoil in each direction. For
the 3D LES simulations, a rather small spanwise domain of 0.1c is used along with 128
grid points near the wall. This spanwise resolution is decreased away from the wall using

a zonal approach. For URANS, three different variants of the v2-f model, the original
uncorrected version together with the corrections (6.1) and (6.3), are considered. For all
the computed cases, the simulation is initialized with the flowfield from the static-airfoil
calculation at the mean angle of attack. For URANS, 1200 time steps per pitching period
guarantee the time accuracy for the uncorrected version and (6.1), whereas 4800 time
steps per pitching period are necessary for (6.3). On the other hand, 30,000 time steps
per pitching period are used for LES.

Figure 10 shows contours of the spanwise vorticity from LES at four different time
instants. This figure clearly shows the evolution of a dynamic-stall vortex (DSV) and its
detachment. Formation of a large DSV is found around the mid-chord location during the
downstroke (figure 10c) and it moves closer to the trailing edge at the instant of lowest
incidence (figure 10d). When the DSV is in the vicinity of the upper airfoil surface, it
induces a suction peak on the airfoil, leading to high lift. Figure 11 shows a comparison
of the surface pressure distribution among the LES and three URANS simulations at
four different time instants. The uncorrected v 2 -f model substantially underpredicts the
suction peak throughout the DSV formation and detachment process. The rotational
correction without the limiter, (6.1), introduces a certain amount of improvement over
the uncorrected one, but it is still grossly inaccurate both in the strength and phase
of the DSV. On the other hand, the rotational correction with the limiter, (6.3), shows
a significant enhancement in the overall accuracy. It reproduces the amplitude of the
suction peak quite closely, although it is still wider than that predicted by LES. Figure
12 shows time histories of lift and drag coefficients from the LES and URANS simulations.
The superiority of the rotational correction with the limiter is especially prominent during
the later stage of downstroke and earlier stage of upstroke (i.e. near the valleys of lift and
drag coefficients), where the recovery from stall (decreasing drag coefficient) is predicted
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more accurately than the other v 2-f variants. However, the maximum values of lift and
drag still deviate considerably from the LES values. A proper modification of the limiter
near the solid surface will be explored in a future study.
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Integrated RANS/LES computations of turbulent
flow through a turbofan jet engine

By G. Medic, G. Kalitzin, D. You, M. Herrmann, F. Ham, E. van der Weide,
H. Pitsch AND J. Alonso

1. Motivation and objectives

The interaction between different components of a jet engine represents a very impor-
tant aspect of the engine design process. Sudden mass flow-rate changes induced by flow
separation and pressure waves, interaction of the unsteady wakes originating from the
fan blades with the low-pressure compressor, high temperature streaks interacting with
the first stages of the turbine are all complex unsteady phenomena that cannot be sim-
ply accounted for through boundary conditions of a single component simulation. Only
simulations that integrate multiple engine components can describe these flow features
accurately.

Today's use of Computational Fluid Dynamics (CFD) in gas turbine design is usually
limited to component simulations. The demand on the models to represent the large
variety of physical phenomena encountered in the flow path of a gas turbine mandates
the use of a specialized and optimized approach for each component. The flow-field in the
turbomachinery portions of the domain is characterized by both high Reynolds numbers
and high Mach numbers. The prediction of the flow requires the precise description of
the turbulent boundary layers around the rotor and stator blades, including tip gaps and
leakage flows. A number of flow solvers that have been developed to deal with this kind
of problem have been in use in industry for many years. These flow solvers are typically
based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Here, the unsteady
flow-field is ensemble-averaged, removing all the details of the small scale turbulence: a
turbulence model becomes necessary to represent the effects of turbulence on the mean
flow.

The flow in the combustor, on the other hand, is characterized by multi-phase flow,
intense mixing, and chemical reactions. The prediction of turbulent mixing is greatly
improved using flow solvers based on Large-Eddy Simulations (LES). While the use
of LES increases the computational cost, LES has been the only predictive tool able to
simulate consistently these complex flows. LES resolves the large-scale turbulent motions
in time and space, and only the influence of the smallest scales, which are usually more
universal and hence, easier to represent, has to be modeled (Ferziger, 1996, and Sagaut,
2002). Since the energy-containing part of the turbulent scales is resolved, a more accurate
description of scalar mixing is achieved, leading to improved predictions of the combustion
process, as shown in Raman & Pitsch (2005). LES flow solvers have been shown in the
past to be able to model simple flames and are currently being adapted for use in gas
turbine combustors, e.g., Poinsot et al. (2001) and Constantinescu et al. (2003).

In order to compute the flow in the entire jet engine, one needs to couple RANS and
LES solvers. We have developed a software environment that allows a simulation of multi-
component effects by executing multiple solvers simultaneously. Each of these solvers
computes a portion of a given flow domain and exchanges flow data at the interfaces with
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FIGURE 1. Decomposition of the engine for flow simulations.

its peer solvers (see figure 1). The approach to couple two or more existing flow solvers has
the distinct advantage of building upon the experience and validation that has been put
into the individual codes during their development. It provides the possibility of running
simulations in different domains at different time steps, and provides a higher degree
of flexibility. We will demonstrate this approach in a simulation of a 20' sector of the
entire gas turbine jet engine, encompassing the fan, low- and high-pressure compressor,
combustor, high- and low-pressure turbine, and the exit nozzle. We will show that such a
simulation can deliver important insight into the physics of interaction between different
engine components within a manageable turnover time, which is necessary to be useful
in the design process of an engine.

2. Flow solvers

For the integrated computations presented here, we use flow solvers that are well-suited
and tested for the individual components: a RANS flow solver for the turbomachinery
parts and an LES flow solver for the combustor. These solvers were further adapted for
efficient use on massively parallel platforms of up to several thousand CPUs, which are
needed for these integrated computations of an entire jet engine.

2.1. RANS flow solver

The RANS flow solver used in the computations is the SUmb code developed at the
Aerospace Computing Lab (ACL) at Stanford. The flow solver computes the unsteady
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Reynolds-Averaged Navier-Stokes equations using a cell-centered discretization on ar-
bitrary multi-block meshes (see Yao et al., 2000). The solution procedure is based on
efficient explicit modified Runge-Kutta methods with several convergence acceleration
techniques such as multi-grid, residual averaging, and local time-stepping. These tech-
niques, multi-grid in particular, provide excellent numerical convergence and fast solution
turnaround. The turbulent viscosity is computed from a k - w two-equation turbulence
model and adaptive wall functions are employed to compute the boundary conditions.
The dual time-stepping technique of Jameson (1991), Alonso et al. (1995), and Belov et
al. (1996) is used for time-accurate simulations that account for the relative motion of
moving parts as well as other sources of flow unsteadiness.

2.2. LES flow solver

The LES flow solver used for the current study is the CDP code developed at the Center
for Turbulence Research (CTR) at Stanford. The numerical algorithms and their imple-
mentation are described in detail in Mahesh et al. (2006). Here we summarize the main
features of the methodology. The filtered Navier-Stokes equations are solved in an un-
structured grid system using a Smagorinsky-type subgrid-scale (SGS) model of Germano
et al. (1991). The integration method used to solve the governing equations is based
on a fully implicit fractional-step method. All terms, including cross-derivative diffusion
terms, are advanced in time using the Crank-Nicholson method.

The Cartesian components of momentum, density, and pressure are stored at the nodes
of the computational elements. Once density is obtained from a flamelet library, the
continuity equation can be imposed as a constraint on the momentum field, with the
time-derivative of density as a source term. This constraint is enforced by the pressure,
in a manner analogous to the enforcement of the incompressibility constraint for constant
density flows. The computational approach is to first advance the mixture fraction and
the progress variable. The flamelet library yields the density, whose time-derivative is
then computed. The momentum is predicted using the convective, viscous, and pressure-
gradient at first. The predicted value of the momentum is then projected such that the
continuity equation is satisfied.

2.3. Boundary conditions

The definition of the boundary conditions requires special attention, especially for LES.
Because a part of the turbulent spectrum is resolved in the LES, the challenge is to
regenerate and preserve the turbulence at the boundaries.

At the LES inflow boundary, the challenge is to prescribe transient turbulent velocity
profiles from ensemble-averaged RANS data. Turbulent fluctuations at the inflow of the
combustor have to be constructed using an additional LES computation. The fluctuations
can be precomputed and stored in a database, as shown in Schluter et al. (2004), or
computed on the fly from an auxililiary duct computation as in Medic et al. (2006).

For the RANS solver, inlet and exit boundary conditions are applied using the time-
averaged solution from the LES, as suggested in Kim et al. (2004). Turbulence variables
(such as k and w) can also be computed on the fly from a quasi-2D RANS computation
of an auxilliary duct at the turbine inflow. For more details, see Medic et al. (2006).

3. CHIMPS: Multi-solver coupling

Previous approaches to couple solvers were based on a pure MPI approach; for more
details see Shankaran et al. (2001), Schluter et al. (2003a), Schluter et al. (2003b), and
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FIGURE 2. CHIMPS approach: solvers communicate location of their interface points and their
mesh and solution to the coupler. The coupler determines how to provide information to the
solver at the interface nodes.

Schluter et al. (2005). In that approach, MPI is used to let different solvers communicate

directly with each other. The disadvantage of this approach is that the implementation is

tedious and error prone since each MPI command in one solver requires a corresponding

MPI command in the other solver. Furthermore, the search and interpolation routines

have to be implemented in each solver separately.

A more effective approach consists in implementing all the coupling routines (commu-

nication, search, and interpolation) in a separate software module that performs these

tasks: Coupler for High-Performance Integrated Multi-Physics Simulations (CHIMPS)

(for the latest update see Alonso et al., 2006). The solvers are now communicating with

the coupler software only (figure 2) and the coupler performs all searches and interpola-
tions. In this latest version, the coupler supports both a script language such as Python

and standard programming languages like Fortran90.

4. Full-engine simulations

In this section we present an integrated multi-component simulation of a Pratt k- Whit-

ney aircraft engine. This simulation simultaneously computes the flow in the fan/compre-

ssor, the combustor, and the turbine, and each of the components exchanges flow data
with its neighbors. The goal of this simulation is to demonstrate the ability to perform

complex, multi-physics, multi-code simulation on a real-world problem. The domain con-

sists of a 20' sector of all the components; in view of the full-engine simulation, this is the

smallest sector that can be chosen since it contains one fuel injector. The initial solution

for the integrated simulation is provided by a combination of the component simulations.

Note that the blade counts in turbomachinery are normally such that no sector pe-

riodicity occurs. This is done to avoid instabilities caused by resonance between two

components. As a consequence., the true unsteady simulation can only be done for the
entire wheel, unless simplifying assumptions are made. The currently accepted practice
is to rescale the blade counts of the turbomachinery stages such that sector periodic-

ity is obtained. To preserve the same flow blockage, the pitch of the blades is adjusted

according to common industry practice.
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FIGURE 3. Simulation of the entire engine: axial velocity.

FIGURE 4. Flow stations.

4.1. Operating conditions

The operating conditions for the engine correspond to cruise conditions; these define the
boundary conditions for the engine: fan inlet conditions, turbine outlet conditions, and
fuel inlet conditions. Boundary conditions are also specified at the interfaces, however
here they are computed using the data from the neighboring component.

For the fan inlet, the total temperature, total pressure, and the flow directions are
imposed. At the outlet of the compressor, the static pressure is imposed. The combustor
receives at the inlet the flow vector [u, v, w]. The fuel mass flow rate is defined correspond-
ing to the cruise operating conditions. The actual outlet of the combustor domain is far
downstream in order to minimize the effect of the domain boundary and the convective
outflow condition. The turbine inlet receives the total pressure, the total temperature
and the flow directions from the combustor; the quantities that are transfered are time-
averaged on the fly as the computation proceeds. At the turbine outlet, we specify the
static pressure.

The communication between the components is handled by the coupling software
CHIMPS. Since the turbomachinery meshes of each sector may not necessarily coincide
with the sector mesh of the neighboring domain, the interface donor cells are searched
over the entire circumference of the engine. A fast search method has been developed to
minimize the time spent on the sector searches. Vector components of exchanged flow
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FIGURE 5. Total pressure, circumferentially averaged profiles.

variables are automatically rotated dependent on the azimuthal offset of the neighboring

domains.

4.2. Computational cost

The computational domain includes the fan, the low- and the high-pressure compressor,

the combustor, the high- and low-pressure turbine, and the exit nozzle, as shown in

figure 3. We considered two sets of grids for the compressor: a finer grid consisting of

approximately 57 million cells for the entire fan/compressor and a coarser grid consisting

of approximately 8 million cells. The combustor grid contains 3 million cells and the fine
grid for the turbine consists of approximately 15 million cells, whereas the coarser grid

for the turbine consists of about 3 million cells. The time step has been chosen to assure

that in the turbomachinery components we use at least 30 time steps for a blade passing

in a blade row with the highest count and the highest rotational speed. This translates
to about 11,500 time steps needed for a full wheel revolution of the slower low-pressure

components and 3700 time steps for the faster rotating high-pressure components. In

addition, estimates for the number of time steps needed for a flow-through time range

from 10,000 time steps for the high-pressure spool core of the engine, to about 20,000 for

the entire engine.

We have performed multiple simulations on a DOE ALC Xeon Linux cluster. The sim-
ulations typically run for 1500 time steps in 24 hours of wall-clock time on 700 processors,

for the entire engine using the coarser grid for the fan/compressor and the turbine. The

fan/compressor was run on 480 processors, the combustor on 80 processors, and the tur-
bine on 140 processors. To obtain the same amount of time steps for the entire engine on

the finer grid, approximately 4,000 processors are needed. A flow-through time for the

entire engine can then be computed within 14 days of uninterrupted running.

An important component of these computations is the parallel I/O, which, depending

on the desired frequency and extent of output data, can take up to 50 % of the run time
(when saving output at every single time step). Here, we have chosen to save the output

every 10 time steps.
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FIGURE 7. Fan/low-pressure compressor interaction: turbulent kinetic energy, mid-span.

4.3. Results

First, the fidelity of the integrated simulation at 7,500 time-steps is examined by com-
paring the results at several axial locations (see figure 4) to existing data provided by
Pratt & Whitney. Circumferentially averaged radial profiles of total pressure and total
temperature are shown in figures 5 and 6, respectively. The results agree reasonably well
with the data. However, the predictions are somewhat less accurate near the hub and
the casing.
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FIGURE 8. Compressor/combustor interface: axial velocity, mid-span.

FIGURE 9. Compressor/combustor interface: axial velocity at the interface.

Next, we focus on the solution in the vicinity of the component interfaces and investi-

gate three specific interaction phenomena. The first is the interaction of the wakes from
the fan blades with the low-pressure compressor. The second concerns the influence of the
wakes from the high-pressure compressor on the diffuser and the flow in the combustor.,
and the third one concerns the propagation of unsteady hot streaks from the combustor
into the turbine.

Details of the wakes from the fan blades are illustrated by the contours of kinetic energy
of turbulence presented for the mid-span radial plane and shown in figure 7. These wakes
are propagating almost all the way through the low-pressure compressor, which effects
the efficiency and flow capacity in the low-pressure compressor. That is the subject of a
more detailed study, contrasting these quantities from the integrated and the standalone
component computations which is currently under way.

The axial velocity contours at the compressor/combustor interface plotted in the mid-
span radial plane are shown in figure 8. The wakes from the last row of vanes in the high
pressure compressor are propagating into the diffuser, as can be seen from the contours
of the instantaneous axial velocity in figure 9. We are currently examining the effect of
these wakes on the stability (and possibly separation) of the flow in the diffuser, as well
as its effect on the flow splits and the flow in the combustor chamber.

Figure 10 presents an isosurface of mean temperature in the combustor and turbine,
indicating the high temperature streaks propagating through the combustor/turbine in-
terface and into the turbine, i.e., the time-averages of the flow variables from the combus-
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FIGURE 10 Combustor/turbine interface isosurface of mean temperature.

FIGURE 11. Combustor/turbine interface: mean temperature.

tor computation are passed to the turbine (total pressure, total temperature, and flow
angles). At the turbine inflow there is a strong variation of temperature and axial velocity
in the circumferential direction. The circumferential variation of the temperature at the
combustor/turbine interface is illustrated in figures 11 and 12; we have observed a 10%
variation of temperature at mid-span.

5. Conclusions
A new approach to simulate multi-component effects is proposed. In this approach,

existing solvers are adapted for use in integrated simulations and a new software module
has been developed to allow the coupling of multiple solvers. The advantage of using
this module is that it is written in a general fashion and solvers can easily be adapted
to communicate with other solvers. The software module performs many of the required
coupling tasks, such as searches, interpolations, and process-to-process communication.

We demonstrated this approach in a simulation of the entire flow path of a Pratt
&- Whitney jet engine. The results are promising and we were able to show that the
computational cost of such simulations is not prohibitive. The importance of interac-
tions of the fan with the low-pressure compressor, the high-pressure compressor with the
combustor-inlet diffuser, and the combustor with the high-pressure turbine are discussed.
More details and a quantitative characterization of these interactions will be provided in
future publications.
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An approach for coupling RANS and LES in
integrated computations of jet engines

By G. Medic, D. You AND G. Kalitzin

1. Motivation and objectives
Large-scale computations of the flow in an entire jet engine can be carried out by

using different simulation techniques for each component of the engine. The flow in the
combustor is characterized by multi-phase flow, intense mixing and chemical reactions,
and the prediction of turbulent combustion is greatly improved by using LES, as dis-
cussed in Pitsch (2006). The flow in the compressor and turbine is computed using the
unsteady RANS framework since the high Reynolds numbers make the cost of resolv-
ing the boundary layers with LES prohibitive (see Chapman, 1979). For such integrated
computations to be successful, a proper coupling of the flow variables is needed at the
interfaces between the RANS and LES solvers.

A fully coupled solution requires that all flow variables must be exchanged at the
interface. When some engine components are computed with LES and others with RANS,
approximations will have to be made to couple instantaneous and averaged variables.
To simplify the problem, in this paper we consider only the one-way coupling of the
velocity and turbulence variables. One-way coupling means that information is passed

only downstream; the variables at the inlet of the downstream domain are computed
from the variables at the outlet of the upstream domain.

For the RANS/LES interface, turbulent fluctuations need to be added to the velocity

from an upstream RANS computation. This was previously investigated in Schluter et
al. (2004). It has been suggested that the LES flow solver has to reconstruct the re-
solved turbulence according to the statistical data delivered by the RANS flow solver,
in particular, according to the turbulent kinetic energy k when RANS is computed with
a two-equation turbulence model that includes a transport equation for k. It is further
proposed that one could use fluctuations computed from an auxilliary, a priori LES of
a periodic channel and scale them with the turbulent kinetic energy from the upstream
RANS computation. In that study, virtual body forces were used inside the channel to
drive the flow to the desired mean flow velocity, as in Pierce & Moin (1998).

Although an accurate turbulence description needs to take into account the convection
from upstream, in this paper it is suggested that turbulence production at the compres-
sor/combustor and combustor/turbine interfaces is dominated by strong mean velocity
gradients in the wakes and boundary layers. At the compressor/cobustor interface, the
wakes of the upstream compressor blades create significant mean shear and the local
production of turbulence dominates. Thus, only the mean velocity is passed to the LES
inlet from RANS and turbulence fluctuations equilibrated with the mean velocity profile
are computed using a recycling technique from an LES of an auxiliary annular duct. This
is explained in detail in Section 2.

For the LES/RANS interface, such as the combustor/turbine interface, a simple time
average of the velocity provides a mean velocity at the inlet of the RANS domain. This
velocity distribution is again highly non-uniform, which allows to describe turbulence at,
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FIGURE 1. Compressor and combustor: RANS and LES axial velocity, mid-passage.

the inlet with the local turbulence generation from the mean velocity. Analogous to the

treatment for the RANS/LES interface, we propose here to use an auxiliary duct in which
the RANS turbulence model equations are solved for the transferred mean velocity. The
advantages of the proposed approach are discussed in Section 3.

2. RANS/LES interface

The region of the compressor exit and combustor inlet is shown in figure 1. The flow
in the compressor is computed with unsteady RANS using the k-W model of Wilcox
(1998) and the flow in the combustor is computed with LES. The last blade row of the
compressor is a row of stators and does not rotate. The blade row upstream is a row of
rotors that rotate counter-clockwise (by an observer looking downstream).

The axial velocity and turbulent kinetic energy in a cross-section at the compressor
exit are shown in figures 2 and 3, respectively. The mean flow is highly complex, with the
wakes originating from the last stage of the compressor. These wakes are unsteady due to
the rotation of the rotors in the compressor. Larger values of turbulent kinetic energy are
in the regions with strong velocity gradients. The large values of k near the hub might
be spurious: they are highly dependent on the quality of the grid. This illustrates the
fact k from the k-x model usually fails to accurately represent the true turbulent kinetic
energy in complex flows.

The flowfield in the downstream LES domain is highly dependent on the conditions at
the inlet. To generate an inflow profile for the LES in the combustor, the mean velocity
at the combustor inlet is set equal to the RANS velocity at the compressor exit and
appropriate fluctuations need to be added. Instead of using the turbulent kinetic energy
k from RANS to scale the fluctuations from a periodic channel, as in Schluter et al. (2004),
we propose to generate turbulent fluctuations equilibrated with the mean velocity profile,
that is relatively accurately predicted with RANS, by using a recycling technique inspired
by Lund et al. (1998).

Here we compute the fluctuations on the fly in an auxiliary annular duct. The cross-
section of the duct corresponds to the combustor inlet, and the length of the duct is
chosen to correspond to the distance between the last compressor blade row and the
combustor inlet. Convective boundary conditions are imposed at the exit of the duct and
a no-slip condition is applied at the top and bottom cylindrical walls. When the integrated



An approach for coupling RANS and LES 289

FIGURE 2. Compressor/combustor interface: axial velocity from RANS.

FIGURE 3. Compressor/combustor interface: turbulent kinetic energy from RANS.
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FIGURE 4. Compressor/combustor interface: RANS - LES.
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computations are performed for a 200 sector of the engine, periodicity is assumed in the
circumferential direction for the duct as well. At the duct inlet the mean velocity from
the compressor/combustor interface is imposed. By using the viscosity of the flow in the

combustor, the Reynolds number of the duct LES corresponds to the Reynolds number
at the combustor inlet.

As previously mentioned, the fluctuations are computed with a recycling technique.
A cross-section upstream of the duct exit is chosen, as shown schematically in figure
4. The mean velocity at this cross-section is computed by time-averaging the velocity:

Ui.D = 11T f U.D (t)dt. The fluctuations UZD = Ui.D - Ui.D are then added to the mean
flow at the inlet of the duct. The LES in the duct is computed until converged rms values
at the inlet are obtained.

The recycling technique can be refined to account for pressure gradients, curvature,
and flow structures in the duct. Contour plots of the axial velocity in a mid-plane between
the bottom and top walls are presented in figure 5. As shown, the mean velocity diffuses
when propagating downstream. In the recycling procedure, this evolution of the wakes
in the streamwise direction can be accounted for with a scaling of the circumferential
spreading of the wakes. A similarity analysis in the far wake implies that the thickness of
the wake spreads proportionally to the square root of streamwise coordinate (6 - .1/ 2 ).
With such a scaling, the recycled fluctuations correspond better to the mean velocity
at the inflow of the LES domain. Otherwise, the thickness of the wake increases as the
recycling progresses.

Contour plots for the instantaneous axial velocity and the mean axial velocity are
shown for the duct inlet in figures 6 and 7, respectively. The corresponding URMS velocity
and turbulent kinetic energy from the LES are shown in figures 8 and 9. Both turbulent
quantities have larger values in the shear regions. The large values of turbulent kinetic
energy, observed with the RANS turbulent kinetic energy near the hub (figure 3), are
not present as convection from upstream is neglected.

The LES in the auxiliary duct is computed on the fly, in parallel with the computations
in the compressor and the combustor. This allows to take into account the unsteadiness
of the mean flow. Finally, after the fluctuations are generated in the auxiliary duct,
they are superimposed with the mean velocity at the compressor/combustor interface as
presented in figure 4.

2.1. Validation: recycling for plane channel flow

The recycling technique used here has been validated for plane channel flow at Re, = 180.
The Reynolds number is based on channel half-height, 6, and friction velocity, u,. A
mesh of 64 x 64 x 64 grid points in the streamwise, wall-normal, and spanwise directions,
respectively, is employed in the computational domain size of 47r6 x 26 x 17r6. Periodic
boundary conditions are imposed in the spanwise direction and a no-slip condition is
applied at the top and bottom walls. The dynamic subgrid-scale (SGS) model of Germano
et al. (1991) is employed.

First, periodic channel flow is computed by also imposing periodic boundary conditions
in the streamwise direction. The mean velocity profile is in good agreement with the DNS
of Kim et al. (1987). as shown in figure 10.

In the recycled channel case, convective outlet boundary conditions are employed at
the outlet of the channel. The velocity at the inflow is computed every time step by
superposing the mean velocity profile (from the periodic channel case) with the fluctu-
ations computed at the channel exit. The simulation is initiated with the mean velocity
profile superimposed with random fluctuations and the simulation is continued until con-
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FIGURE 5. Auxilliary duct: the instantaneous (left) and mean (right) axial velocity, mid-plane,
top view.

FIGURE 6. Compressor/combustor interface: instantaneous axial velocity.

FIGURE 7. Compressor/combustor interface: mean axial velocity.

verged rms velocities are obtained. As shown in figure 11, the rms velocity fluctuations
obtained from the recycled simulation compare well with those from the periodic channel
simulation and the DNS of Kim et al. (1987).
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FIGURE 8. Compressor/combustor interface: '
0

RAIS.

FIGURE 9. Compressor/ combustor interface: turbulent kinetic energy.
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FIGURE 10. 'Mean streamnwise velocity profiles in wall units at Re, = 180. periodic
LES; o DNS of Kim et al. (1987).
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FIGURE 11. Profiles of rms velocity fluctuations in wall units at Re, = 180. --- , recycling
LES; , periodic LES; o , DNS of Kim et al. (1987).

FIGURE 12. Combustor and turbine: LES and RANS axial velocity, mid-passage.

3. LES/RANS interface

At the combustor/turbine interface (from LES to RANS, see figure 12), inflow con-
ditions are needed for the RANS turbulence variables. Here we use the k-"; turbulence
model in the turbine; k and Lo need to be specified at the turbine inflow. An obvious
suggestion would be to compute k and w directly from the instantaneous velocity field
at the combustor exit. The disadvantage of this strategy is explained in the following
subsection.

3.1. Periodic channel flow
In order to examine in detail how well the RANS turbulence variables can be recon-
structed from LES, we return to the periodic channel flow at Re, = 180 discussed pre-
viously. The LES has a sufficient near-wall resolution and it was run for approximately
100 flow-through times. This permits a long time integration of the equation resulting in
a statistically well-converged solution.

The Reynolds number is somewhat low for a RANS computation, but the inconsistency
between the LES statistics and the RANS turbulence variables are representative. Figure
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FIGURE 14. Channel flow at Re, = 180, LES vs. RANS k-wu model, specific dissipation rate w

computed using 6 = v~ ~-L-d

13 compares k from the k-,, model with k = 1/2u'u' from LES. The near-wall peak is

practically absent for the k-w turbulent kinetic energy.

The specific dissipation rate w; = E/(Ck) is compared to wu from the LES, computed

using two different approaches. A first approach consists of computing the turbulence
au' 8v' h rslig scmprdt

dissipation using its definition (for DNS): E = v __ auTersltn 4 s oprdt

that of the k-w model in figure 14. The trend of increasing,,; when approaching the wall

is relatively well captured, but there are significant discrepancies in the buffer and the

logarithmic layer. Therefore, we also examined a second approach where E is computed

using the assumption that the dissipation rate equals production: 6 = -U'iV'k'Ui/OXk.

The resulting ) is compared to that of the k-,) model in figure 15. As expected, the
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FIGURE 15. Channel flow at Re, = 180, LES vs. RANS k-w model, specific dissipation rate O
computed using e = P.
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FIGURE 16. Channel flow at Re, = 180, LES, specific dissipation rate w in the logarithmic layer,

computed using E = v-- --ý, (left) and 6 = P (right) with the statistics for E and k over very

short time windows.

agreement is best in the logarithmic layer where the used assumption holds. However,
below y+ = 20 this approach for computing s yields a bad prediction for ýu: the near-wall
increase is completely absent. Such near-wall behavior may lead to numerical instabilities
in the near-wall region.

The convergence of the statistics for E is presented for the logarithmic layer in fig-
ure 16, where w for both approaches are plotted for computations with averaging over
different time windows (from one flow-through time to only 15 % of one flow-through
time). It becomes apparent that for short time windows, the values of '; are strongly
oscillating, thus further reducing the numerical stability when used with the k-w model.
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FIGURE 17. Combustor/turbine interface: mean axial velocity.

FIGURE 18. Combustor/turbine interface: ve from the auxilliary duct.

This is especially important as the mean flow in jet engines has unsteady features with
relatively small time scales (up to one flow-through time). Thus, the use of weakly aver-
aged statistics of s is questionable; our experience with the engine computations showed
that these approaches for computing w lead to severe numerical instabilities. Note that
in the jet engine computations the grid resolution in certain regions for both LES and
RANS is not comparable to the one used for this simple flow.

Furthermore, to complicate matters, if one is to employ a more complex RANS tur-
bulence model, such as the four-equation v 2 _f model of Durbin (1995), it becomes prac-
tically impossible to reconstruct turbulence variables from the LES, i.e., the variables
f or v2 have no clear physical counterpart in complex flows. It is therefore clear that
reconstructing the RANS turbulence variables directly from the LES is unfeasible in a
general case.

3.2. Combustor/turbine interface

The aforementioned arguments lead to a conclusion that k and ") at the turbine inlet,
should instead be computed from the mean flow velocity field, shown for the combus-
tor/turbine interface in figure 17. The mean velocity is a first-order moment that con-
verges significantly faster than the rms velocities (second-order moments) and a smaller
averaging window can be employed. As was the case with the compressor/combustor
interface, convection of turbulence will be ignored.

Analogous to the proposed auxiliary annular duct used to compute the inflow fluc-
tuations for the LES domain, we propose here to use an auxiliary duct in which the
RANS turbulence model equations are solved for the mean velocity field transferred at
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FIGURE 19. Combustor/turbine interface: LES - RANS.

the turbine inflow (see figure 19). The duct is quasi two-dimensional with a cross-section
identical to the combustor/turbine interface and a single cell in the streamwise direction.
The mean velocity from the combustor outlet is passed to the duct and the equations for
k and u) are iterated until convergence for a frozen mean flow is achieved. Finally, the
mean velocity from the combustor and k and w from the duct are passed to the turbine
inlet.

The underlying assumption of this approach is that, again, local effects dominate tur-
bulence production over convection effects, especially near walls. This produces an inflow
boundary condition for the RANS domain that is consistent with the RANS turbulence
model used. Most importantly, the turbulent eddy-viscosity remains consistent with the
transferred mean velocity, as shown in figures 17 and 18.

4. Conclusions

An approach to couple the LES and RANS computational frameworks is proposed. The
approach consists in the generation of turbulence inflow conditions in auxiliary ducts in
parallel with the main computation. We have demonstrated this approach in a simulation
of a 200 sector of an entire jet engine, with LES used for the combustor and RANS for
the turbomachinery parts.

In the case of compressor/combustor interface, an auxiliary LES computation is carried
out in a three-dimensional duct with the turbulent fluctuations generated using a recy-
cling technique. Because k from RANS is not accurate enough for these complex flows,
instead of using the turbulent kinetic energy k from RANS to scale the fluctuations from
a periodic channel, we proposed to generate turbulent fluctuations equilibrated with the
mean velocity profile that is relatively accurately predicted with RANS.

For the combustor/turbine interface, an auxiliary RANS computation is carried out
in a quasi-2D duct. The turbulence variables for the RANS model, specifically the k-w,
model, are computed from the duct simulation with a frozen mean flow. This technique
obviates numerical instabilities observed when k and w were computed directly from the
instantaneous velocity field at the combustor exit using weakly averaged statistics from
LES.
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Low frequency sound sources in high-speed
turbulent jets

By D. J. Bodonyt AND S. K. Lele

1. Motivation and objectives

A gap exists in the understanding of the sources of jet noise and their dependence on
external conditions, such as those determined by the nozzle and the environment farther
upstream. The influence of nozzle chevrons on the radiated sound is, for example, still
characterized parametrically based on a series of experimental studies (Saiyed et al. 2003).
Further development of an understanding of the "sound sources" in a high-Reynolds-
number jet, however, is slowed for two primary reasons: (i) the lack of a universally
agreed-upon acoustic theory, and (ii) the difficulty in making experimental measurements
suggested by the acoustic theories. The current theories, most notably those of Lighthill
(1952), Lilley (1974), Tam & Auriault (1999), and Goldstein (2003) are similar in their
arbitrary, but exact, rearrangement of the Navier-Stokes equations (with new variables
in the case of Goldstein and a proposed source term by Tam & Auriault), and in the
functional form of the identified source term. The acoustic source is of the general form

{linear combination of at and a, } Sj(x, t),

where the source Sj itself may involve additional differentiation. Measurements of Sj
are quite difficult and, currently, only point-measurements of related quantities have
been obtained (Panda & Seasholtz 2002; Panda et al. 2004). It presently appears that
the major practical difference between the dominant theories is in their sensitivity to
numerical errors (Freund et al. 2005).

Large-eddy and direct numerical computational studies of jet noise offer an alterna-
tive to experimental measurements but suffer from the resource requirements imposed
by the near-nozzle turbulent annular shear layers for jets at realistic Reynolds numbers.
An accurate calculation does not yet exist that includes the nozzle geometry (see, e.g.,
Andersson et al. (2003) and Uzun & Hussaini (2006)) so most studies have concentrated
on the portion of the jet immediately downstream of the nozzle exit plane (Freund 2001;
Bogey et al. 2003; Bodony & Lele 2004, 2005). (A review of the use of large-eddy sim-
ulations (LES) for jet noise prediction is given in Bodony &- Lele (2006).) The direct
numerical simulation (DNS) of Freund (2001) continues to be the only calculation of its
type; post-processing of the DNS data has been useful in evaluating key assumptions
(e.g., Khavaran et al. (2002)). However, the high cost, low Reynolds number, and single
jet operating point of the DNS calculation are limiting.

To complement the DNS calculation of Freund and to develop and expand the capabil-
ities of LES for jet noise prediction, a series of numerical simulations were conducted by
the authors for jets at six operating conditions with Mach numbers ranging from 0.4 to
2.0 of both heated and unheated jets. Details of the calculations are available in Bodony

t Present address: Department of Aerospace Engineering, University of Illinois at Ur-
bana-Champaign
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& Lele (2005). Due to resolution limitations the far-field sound of the simulations is lim-
ited to those frequencies with St = fDj/Uj < 1.2; near-field frequencies are limited to

St < 1.5.
This paper is concerned with those jets originally presented in Bodony &- Lele (2005)

having Mj >_ 0.9, which includes two unheated jets and one heated jet. Additional

analysis is performed on the databases generated by the space-time histories of the jets

to investigate characteristics of the sound generation. To do so we adopt Lighthill's

acoustic analogy (Lighthill 1952) and explore its ability to predict the sound of the jets

as compared to the sound directly captured in the compressible LES calculations. Effects

of jet Mach number and temperature on the radiated sound, in the context of Lighthill's

theory, are discussed.

1.1. Objectives

Using the LES databases described in Bodony & Lele (2005) the objectives of this work

are to critically examine the ability of Lighthill's acoustic analogy to predict the acoustic

spectra of hot and cold high-speed jets. To accomplish this we first present a comparison

of the Lighthill-predicted sound spectra to the directly computed sound spectra from the

compressible LES calculations. We then examine in more detail the components of the

Lighthill spectra.

2. Sound predictions using Lighthill's theory

2.1. Previous work

Lighthill's theory has been used previously in numerical noise prediction. For a plane

(2-D) jet Bastin et al. (1997) found that the monopole source form S = 09, Oxj Tij, where

Tij = puiuj + [(p - p.) - a' (p - p.)]3 i) - rij (2.1)

is the Lighthill stress tensor, yielded inferior sound predictions relative to the alternative

far-field expression involving Tij or its counterpart in the freqency domain, which are in
appropriate quadrupole forms. In his round jet Freund (2001) found using the identity

-9 2 _12

S (p - p.) - a - - (p p.), (2.2)

that noise predictions using Lighthill's theory compared well with the instantaneous
pressure time history. Later Freund (2002) showed that the Lighthill-predicted noise

spectrum at e = 30' compared well with the DNS data and with the data of Stromberg

et al. (1980). Freund also discussed the relative roles of the "shear noise," "self noise,"
and "entropy" terms embedded in Tij.

2.2. Frequency domain considerations

In this section we use the space-time databases generated from the simulations to demon-

strate the feasibility of using LES in combination with Lighthill's theory to predict jet
noise and to extend the predictions to heated jets.

The calculation of the far-field sound using Lighthill's theory begins by considering

the integral form of the time-Fourier-transformed version of Eq. 2.2,
1 f _i___/a_

p- .(X;U) := p'(x: -4ira R S(y;w)dy, (2.3)
•3
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where R = Ix - y] and S is the transformed monopole source. The advantage of using
the frequency-domain form of Eq. 2.3 and not its time-domain analog is in avoiding the
interpolation needed for the evaluation of S at the retarded time t - R/a ". An alternative
form that follows from integrating Eq. 2.3 by parts twice (and assuming the boundary
terms vanish for a surface taken to infinity) is

p'(x;w)-= 4ira• J Oyi8 yj {efR a- } Tij(y;w) dy (2.4)

7Z3

where the quadrupole Fourier amplitude 4i now appears explicitly.
In view of Eq. 2.1 the resultant density Fourier amplitudes can be considered as the

sum of the components

P Itot = P'mom + P'ent + P'vis,

where
I a 2 { ei . R!a-

¢.,o( -- 1 0J W8 -R p (y; w) dy. (2.5)
R

3

P'ent(X I) = (1- J}. (y:L)dy. (2.6)

and
- 11 0 2 ez.LR

P'vis(x; -- 4Ui) J y { ei-R-- }%ij(y;w) dy. (2.7)

R 3

Freund (2003) found that the viscous stress contribution to Ti6 was negligible; hence, we

take Pi, = 0. We also do not consider the the contribution of the subgrid scale (SGS)
stresses to the Lighthill-determined acoustic spectra and focus solely on the sound due
to the resolved field.

3. Observations

Application of the integral form of Lighthill's analogy (Eq. 2.4), for the Mach 0.9
unheated jet is shown for the two observer angles of 300 and 900 at a distance of 30Dj
in fig. 1. The Kirchhoff surface predictions for the same jet at the corresponding angles
are also shown for comparison. There is reasonable agreement at both angles within
the statistical uncertainty due to the limited LES data record length. The peak SPL
(sound pressure level) and the corresponding peak frequency are captured in the Lighthill
integrations. (Freund (2003), for the 30' prediction, saw similar agreement with his DNS
database.) Similar spectral shapes are seen in both prediction methods at each angle.

In fig. 2 the Lighthill and Kirchhoff surface predictions are repeated for the Mach 2
unheated jet. As with the near-sonic cold jet the two sound predictions are similar for
a wide range of Strouhal numbers. The peak SPL and Strouhal number are captured as
is the spectral shape for all frequencies. At 300 the Lighthill-predicted spectrum is 2 dB
below the Kirchhoff spectrum for 0.4 < St < 1.0. As St -* 1.5, the predictions begin to
differ due to grid resolution limitations with the Lighthill prediction being the higher.
Our Kirchhoff surface data are not reliable beyond St = 1.2 for this jet.

The Mach 1 heated jet results are shown in fig. 3 where, again, the two methods yield
similar predictions over a range of frequencies. For both angles the Lighthill prediction
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shows an over prediction for St < 0.2, although the Kirchhoff surface data shows increased

oscillations in SPL at these frequencies, indicative of the limited statistical sample. The

peak frequency appears to be closer to St = 0.2 at this operating condition for each

angle.

For each jet the contributions to the total spectrum by the momentum term (Eq. 2.5)

and the so-called entropy term (Eq. 2.6) are presented next. The decomposition due to

Lilley (1974) of

p2-a(p-p2 pukUk + a2f k dt.

term I term II
(3.1)

with h, and h, being the freestream and static enthapies, is used to further examine the

spectra. Such a decomposition was also used by Freund (2003) for his Mach 0.9 jet. Note

that term II involves an integral over time but may be related to the local total energy

via the energy equation.

Figure 4 shows the decomposition for the unheated Mach 0.9 jet. At 300 and at 90'

the momentum contribution dominates the overall spectrum; for the shallower angle it

over-contributes by approximately 2 dB (as also found by Freund (2003)). The p',ap2 -

contribution is a relatively small portion in an overall SPL sense, approximately 10

dB below the momentum term's level. However, for frequencies St < 1 at E) = 30',

there is some cancellation between puiuj and p' - a2p'. It is interesting to note that-c app .tiierting moinimtal

at low frequencies, at 300. the entropic (term II) contribution to p' - alcp2 is minimal

but increases with increasing frequency. At 90' the momentum term dominates at all

frequencies and shows very little, if any, correlation with p' - a2P ' for the available range

of frequencies. At 30' there is significant interplay between the entropy components term

I and term II, especially at higher frequencies.

For the Mach 2 cold jet (fig. 5) at 300 the Lighthill-predicted spectra are of a different

nature than for the Mach 0.9 cold jet; at 900 the high-speed jet spectra is qualitatively

the same as for the lower speed jet. Figure 5(a) shows that (i) there is much greater

(puiuj)--(p' - oap') cancellation at all frequencies, and (ii) the peak frequency of the

individual spectra near St = 1 does not correspond to the peak frequency of the total

spectrum's peak of St = 0.3. (There does, however, appear to be a weak local maximum

near St = 0.3 for the individual spectra.) Below St = 0.4 the momentum stress term is

approximately 3 dB greater than the total SPL, indicating cancellation. For this range

of frequencies (St < 0.4) we find that term I > term II for the entropy contribution: at

higher frequencies they are of comparable magnitude. At St = 0.4 and above, the puiuj

and (p' - a2P')6ij contributions become increasingly anticorrelated to yield a total SPL

that is much less than the individual SPLs. Conversely, for St > 0.4, the term I and term

II portions of p' - a p' show constructive interference.

Turning to the 90' spectrum in fig. 5(b) we find that it is the momentum stress that is

the dominant source of the radiated noise. The so-called entropy term contributes very

little at all frequencies. The spectral peak occurs near St = 0.3 for all individual spectra

and for the total spectrum.

When the Mach 1 heated jet, with TjI/T, = 2.3, is considered as in fig. 6. we find

a picture that differs in some important aspects from the unheated jet at the same

velocity. At 30' the heated jet's component spectra show a St peak well beyond the peak

frequency of the total spectrum, although there is a minor local maximum near St = 0.2
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in the individual spectra. Over all frequencies the puiuj and p' - a2p contributions are
closely correlated, especially at higher frequencies; it is now the term I1 component that
is most important. Indeed, -[(y - 1)/2]pUkuk seems to play a very small role. At 90'
the momentum and term II components combine constructively for the total SPL for
St < 0.4 but add destructively for higher frequencies. At both angles the decay of the
total SPL with increasing St shows a different functional form than do the individual
spectra.

4. Discussion

The aforementioned observations highlight additional aspects of the Lighthill-predicted
sound spectra that are worth discussing in greater detail. The first is the difference in
the 30' individual component spectra and the total spectrum for the high-speed jets as
shown in figures 5(a) and 6(a). The second is the amount of cancellation that occurs for
the high-speed jets between the momentum and entropic contributions.

4.1. High-speed jet spectra at e = 300 and 900

The Mach 2.0 unheated and Mach 1.0 heated jets exhibit qualitatively different spectra
at 300 for the individual components of Ti3 compared to its sum, in contrast to the Mach
0.9 cold jet as found here (fig. 4) and earlier by Freund (2003). To examine the cause
consider the further decomposition of the momentum term puiuj into

puiuj = TUiUj +±(Uij + UiUj)+)+puiUj + p'(uiu+uUj) + -pu'u + p'uu' (4.1)

Li L2  Q1 Q2 C

where an overbar denotes a time-averaged quantity with corresponding fluctuation de-
noted by the prime. The terms L1 and L2 are linear in the fluctuations; Q, and Q2 are
quadratic in the fluctuations; and C is cubic. The very first term, puiUj, has only a mean
component and does not radiate sound; it is not considered further. The spectra for the
five remaining terms are plotted in fig. 7 for the Mach 2 cold jet and in fig. 8 for the
Mach 1 heated jet. From the figures it is apparent that the subcomponents of puiuj are
qualitatively similar to the overall puiuj spectrum.

For the Mach 2.0 cold jet in the 300 direction, the cubic term is of the least importance
at all frequencies. The linear term L2 = p'Uij is of the most importance for St >
0.5 while L1 dominates for St < 0.5. At 900 the linear term L2 becomes of the least
importance at all frequenices while the two terms L 1 = -P(i u'[ + u~j) and Q2 = p'(tiu +
u'Uj) contribute most to the overall spectrum, with the latter term dominating for St <
0.5. It is notable that the linear term L2 swaps dominance completely with the pair
(L 1 , Q2) when the observer angle is changed.

For the Mach 1.0 heated jet (fig. 8) we find the linear term L2 dominates at all fre-
quencies, with the quadratic term Q2 being within 5 dB over the spectrum. The linear
term L1 is confined to St < 0.1, while the terms Q, and C are 8-10 dB and 10-15
dB, respectively, below the L2 contribution. At 900 the linear term L2 is far below the
overall spectrum and does not appear on the scale of fig. 8(b). For all frequencies the
Q1 quadratic term accounts for the majority of the overall puiuj spectrum, while the
spectra of L, and C are similar but does not appear to contribute to the total.

Historically those terms proportional to iii, i.e., those that include the mean velocity,
have been associated with the notion of "shear noise" (Goldstein 1976), where the sound
is generated by the interaction of fluctuations with the mean flow. Another interpretation



304 D. J. Bodony & S. K. Lele

is that the sound is redistributed by the mean flow through refraction. For tile case of
L2 = p'Ui 3j for the 30' observer the significant cancellation that occurs with the term
(p' - a2p') suggests that neither of these two interpretations are appropriate: if they
were appropriate one would not expect such a large portion of the available energy to be

non-radiating.
The linearity of L2 in the density fluctuations implies that the portion of the far-field

density spectrum due to L2 will be proportional to ";4SoP in the Fraunhaufer limit, where
Spp is the spectrum of p',

, J(p'(t)p'(t + 7)) exp{li,} dr.

For weakly compressible turbulence it is expected that p'i- - (u'id)2 and, similarly,
ptil _. (U'/-) 2 . Thus Spp '- Su•,S,,, functionally so that the density and pressure fluc-

tuation spectra are, to leading order in u'/-, quadratic in the velocity spectra. For the
30' observer, then, the term p'UU, dominates the six terms of L2 and has a frequency
dependence that is functionally similar to Q2, the term quadratic in the velocity fluc-
tuations. Near-field temporal spectra of p' and u'. (not shown, but available in Bodony
(2004)) demonstrate that this is indeed the case.

Finally, we note that for the Mach 0.9 unheated jet, the lower mean shear and conse-
quently lower fluctuation root-mean-square (rms) values are not able to produce mean-
ingful levels of p' (Bodony &- Lele 2005) to be of consequence in the sound radiated to
the far-field.

The dominance of the L2 term for the 30' observer for both the Mach 2.0 cold and
Mach 1.0 hot jets then explains the strong correlation of puiuj with (p' - ao"P')3 -
Because U,, - a, in the sound generating portion of the jet (Bodony & Lele 2005) and

because puiuj P:, plxiSij, we have the leading two terms canceling, leaving p'6ij and
the remaining terms of puiuj, all of which are of lower magnitude.

At 90' the relevance of the L2 is lowered as the radial mean velocity component,
U is very small relative to Ux and a, in the radiating portion of the jet. The terms
LI zzý p;5UxU, Q, ,: -pux., and Q2 = PUiu- thus remain possible contributors to the
overall sound radiation. For the heated jet, with its low value of mean density in the
sound-generating region, Ll,hot < Ll,,o0 ik given that the velocity fluctuation levels are
very similar in magnitude between the cold and hot jets. For the cold jet at 900 we

thus expect L 1 > Q1,Q2, which is observed for St > 0.5 while at lower frequencies

Q2 > L1. For the heated jet at 90' the observation angle and low mean density imply
that Q2 > Q 1,LI.

We note that the ordering arguments are made based on order-of-magnitude estimates
and do not consider the frequency dependence of the fluctuations, other than the w2

contribution coming from the Green's function.

4.2. On Lilley's decomposition of Tij

From observations of the unheated jets at 900 it appears that both constituents of the
- ap' term, namely term I and term II as defined in Eq. 3.1, are of approximately

equal magnitude and combine to form the "entropic" contribution to the SPL. For the
heated jet, however, it is the enthalpy fluctuation term that takes precedence. This and
the fact that, for the unheated jets at least, some cancellation occurs between the puiuj
and [(,)- 1)/2]pukuk terms suggest that it may be more useful to prefer the decomposition



Low frequency sound sources in high-speed turbulent jets 305

(Lilley 1974) of

T = PpUj - ukuk6i af [Puk (hf h ) 1  ,jdt -Tij (4.2)

momentum stress enthalpy flux viscous stress

to better describe the roles of the various stresses to the sound spectra. The presence of
the integral in time implies a non-local dependence of the sound field on the enthalpy
fluxes. However, through the energy equation it is possible to write

S(h h - h•h)] dt

as p(E/h, - 1), where E is the total energy per unit mass, so that the appearance
of the time integral is not unphysical. In using Eq. 4.2 the independence in modeling
of the momentum and enthalpy fluctuations may be helpful. This conclusion is further
borne out by the relative roles played by the momentum and "entropy" terms for the
hot Mach 1 jet.

At 300 the data suggest that Lilley's decomposition may also be beneficial. It was
discussed previously that the leading terms of puiuj and (p'- a2p')6ij almost completely
cancel for the high-speed jets considered in this study. In Lilley's rearrangement of Tij
this cancellation occurs naturally within the momentum stress term, leaving the enthalpy
flux contribution and the remaining momentum stress terms. As the arguments made in
determining the canceling are general, we would expect this conclusion to hold for other,
high-speed jets with Uj > aoc up to those jets with Mj > 2.5 where Mach wave radiation
becomes important.

5. Conclusions
Based upon the investigation of the space-time databases provided by three large-eddy

simulations of high-speed turbulent jets, the accuracy of Lighthill's acoustic analogy has
been examined. It was found that the Lighthill predictions agreed very well with the
directly computed radiated sound for jets of Mach numbers 0.9 (cold), 1.0 (hot), and
2.0 (cold). Investigation of the sound spectra showed that the momentum contribution
due to puiuj was dominant at 900 but its overall effect was dependent on cancellation
with the so-called entropy component p - Poc - a2(p - p,) at 30'. In the cold Mach
0.9 jet the momentum stress was the determining factor for the sound spectra; at higher
jet velocities this contribution was tempered by the -[(-7 - 1)/2]pukukSi 2 portion of
the entropy term for the cold jet and by the "enthalpy flux" term for the heated jet.
Modeling of the sound sources is believed to be made easier by considering the combined
term puiuj - [(? - 1)/2]pukuk 6iJ separate from the enthalpy flux, due to Lilley (1974),
as the latter term is more important for heated jets. At 30' it does not appear that
considering the momentum and entropic portions of Tij, in its original Lighthill (1952),
is entirely beneficial, as the leading order contributions from these two terms cancel. That
high-speed jets are quieter when heated (keeping the jet velocity constant) appears to be
due to a reduced sound-generating volume and a reduced convective jet Mach number.
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Improved near-wall accuracy for solutions of the
Helmholtz equation using the boundary element

method

By Y. Khalighi AND D. J. Bodony

1. Motivation and objectives

The propagation of flow-generated sound in the presence of surfaces often depends on
the scattering properties of those surfaces. In the low Mach number limit and in the
context of a linear acoustic theory such as that of Lighthill (1952) the process of noise
prediction is divided into two steps: (i) the calculation of the sound sources generated
by the flow, and (ii) the propagation of the sound. The latter stage accounts for the
traveling of acoustic waves in the medium as well as the scattering of the sound due to
solid objects. The propagative behavior of the environment can be fully described by
the acoustic Green's function tailored to that environment's specific geometry. In the
frequency domain, the Green's function is the fundamental solution of the Helmholtz
equation with appropriate boundary conditions on the solid surfaces as well as a far-field
radiation condition for exterior problems (Crighton 1975).

The Boundary Element Method (BEM) can be ideally employed for Helmholtz equa-
tion. It has a few inherent advantages over Finite Element and Finite Volume techniques,
including the ease of applying infinite domains in exterior problems, not being subject to
dissipation and dispersion error, and not requiring a volume mesh (Worbel & Aliabadi
2002).

In the BEM, the Helmholtz equation is cast into an integral equation using Green's
second theorem. After surface discretization, the first step in the BEM is to numerically
solve a boundary integral equation on the solid surface. In the next step the solution at
any point in the volume, i.e., any point off the surface, can be calculated by a boundary
quadrature formula using the results from the first step. In both steps the integral kernels
exhibit singularities, or nearly so, and special attention must be paid in the evaluation
of these integrals. Even if the surface solution obtained in the first step is accurate,
the numerical evaluation of the surface quadrature can be inaccurate for points located
within a distance of a few elements from the solid surface. The source of this inaccuracy
is numerical integration of a kernel that is close to its singular point. In this work, using
an asymptotic expansion of the singular kernel we present a new approach to circumvent
this problem and recover the desirable order of accuracy in the vicinity of the surface.

The evaluation of the broadband noise due to the turbulent flow past an airfoil trailing
edge at low Mach number is one application requiring accuracy in the Green's function
obtained by quadrature. It is known that the noise generation is concentrated very close
to the trailing edge (Amiet 1976; Wang & Moin 2000) where the influence of the airfoil
on the sound propagation is significant. However, because of the low Mach number the
acoustic wavelength is much higher than the flow scales and, as a result, the size of BEM
surface mesh can be large compared to flow scales. Consequently, the major source region
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FIGURE 1. Schematic of sound source region in the vicinity of the solid surface.

can be at a distance of a few BEM surface elements and may be subject to errors due to
the quadrature (see Fig. 1).

2. Basic concepts in BEM f

2.1. Helmholtz equation. fundamental solutions, and boundary conditions

The Helmholtz equation for a time-harmonic signal of frequency ; can be written as

(,72 + k2)o(x) = 0 x E Q, (2.1)

where k = ,z/C is the wavenumber and C is the constant speed of sound. Since the
Helmholtz equation is presented in the frequency space o is, in general, complex-valued.
The fundamental solutions of the Helmholtz equation (with a source term in the form of
-J(x - xo)) in two and three dimensions are, respectively,

"G(x, xo) = - .1H0()(k Ix - xo) (2.2)
4

ikx--xo

"G(x. xo) = - c x- (2.3)47fix - xol

where H(1) is the Hankel function of the first kind of the order zero. In the present work

the derivations and results are based on an analysis of the 2-D problem but the same
methodology can be applied to 3-D problems, though additional difficulties arise.

For interior problems., three standard boundary conditions- Dirichlet, Neumann, and
Robin-can be applied on the boundary surfaces FD, FN, and FR, respectively, where

F = FD U FN U FR entirely bounds Q. For exterior problems. in addition to previous
boundary condition types for the interior surfaces, the Summerfeld radiation condition
should be satisfied far from the object. The Summerfeld radiation condition can be
written as

lim r +iko =0 (2.4)

and represents the propagation of sound without reflection away from the body.

t Additional details can be found in Worbel &- Aliabadi (2002) and Brebbia et al. (1984).
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2.2. Formulation of Direct BEM Equations

Direct boundary integral equations can be derived by applying the second Green's iden-
tity to the solution of Helmholtz equation o(x) and its fundamental solution G(x. xo).
By taking the source point x0 on the boundary Fr, the Helmholtz equation reduces to
an integral equation on the boundary, viz,

c(xo)o(xo) = j x0DX4 G(xo, x)ds f - O(x) OG(,x)ds. (2.5)

In this expression c(xo) is a geometry-dependent parameter. It varies between zero and
unity and equals 1/2 if the point is on a smooth part of the boundary; at edges it is
related to the angle of the joining surfaces.

If the source point x0 is inside the domain Q, but not on the surface Fx, the value of
(p at that point can be written in terms of an integral over the surface as

0(x0)aGxo x)r o~)_

6(X0) j o(x) G(xo 1x)ds - j x OGXXo ds. (2.6)

Equations 2.5 and 2.6 are the basis of the direct BEM. The method can be described as
a two-step approach. In the first step, (2.5) is discretized on the surface and the integral
equation is numerically solved for the unknowns. The type of unknown depends on the
boundary condition applied on the surface, for example, on FD with Dirichlet boundary
condition 0 is described and the equation is solved for ý-O. In the second step the solution
at any point inside the volume can be numerically integrated using expression (2.6).

The kernel of integrals in (2.5) and (2.6) are the free space Green's function of the
Helmholtz equation and its derivative. As can be seen from (2.2) and (2.3), G and !-
have singular behavior as x0 approaches x. Since in (2.5) point x0 lies on the boundary
F,,, the kernel is singular at x = x0 . Despite the singularity these integrals exist in the
sense of their Cauchy principal value and are discussed in detail in the literature (for
example see Worbel & Aliabadi (2002) and Brebbia et al. (1984)).

Obviously, the singularity of the kernels does not take place in (2.6) as xo does not lie
on the surface. However, x0 can be very close to the surface and this causes numerical
issues, which is the central focus of the current work.

3. Numerical issues in the calculation of the boundary integral

In this work we set the desirable order of accuracy as second order. We assume the
boundary solution is available with at least this order of accuracy and will focus on the
accuracy of the numerical quadrature for points x0 not on the surface. Assuming the
boundary is discretized and represented by N linear elements, (2.6) can be written as

N /f 9x)I G(xo ,.x)\
OX = E Kir, x G(xo, x)ds -~ 6(X) a ds) (3.1)

A simple, piecewise constant representation of 0 and o is sufficient for rectangular
integration, thus second order of accuracy. This can be written as

N x xG(xo xi) S(3.2)
i=1 an a
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where xi and Si are center and area of element i, respectively. In this representation
the solution is approximated by N point monopoles and dipoles. W•e call this point-wise
representation.

An alternative representation at the same order of approximation is to represent the
integral by summation of distributed single- and double-layer acoustic potentials as

NN

O(xo) 'Zý (K an Hio(xi)) (3.3)

Ki = G(xo. x)ds

H1= OG(xo, x) ds.

This is a distributed representation of the integral. The analytical expressions for Hi and
Ki are not known and are not likely to exist because of the complexity of G and
as it can be seen from (2.2) and (2.3). However, an analytical solution exists for the
fundamental solution of the 2-D Laplace operator (Worbel & Aliabadi 2002).

In order to compare the accuracy of pointwise and distributed representations, a simple
2-D Laplace equation is studied. Let t be defined as:

t(x.y)=x -l<x<1, -1 yl. (3.4)

The boundary of the domain is discretized into N equal elements and the exact solution
is applied on the center of each element. The solution inside the domain is then calculated
using different integral representations. We tested the distributed expression with 40
elements and the pointwise expression with 40, 80, and 160 elements. The results are
shown in Fig. 2. Clearly, the accuracy of the pointwise expression is reduced close to
the boundaries. This could be expected since the leading error term in the pointwise
representation scales with h/R (where h is the size of element and R = Ixo - xi as
shown in Fig. 3) and that term becomes significant when xO is in the vicinity region
of any element. The error of the pointwise representation can be reduced by using a
more accurate numerical integration, such as subdividing the closest element to smaller
elements or using quadratures of higher order. Note that the error will arise as the point
gets close enough to the element. As is shown in Fig. 2, the distributed formulation with
40 elements is more accurate than the pointwise expression with 160 elements in an L,
sense.

This observation can be problematic in acoustic applications where major sound sources
are close, in terms of the acoustic wavelength, to the boundaries (see trailing edge ex-
ample in Fig. 1). Here, an erroneous acoustics Green's function unphysically amplifies
the noise sources close to the wall. This situation is likely to occur in the turbulent flow
simulation past a solid surface where the wall normal resolution is very high (y+ t 1).
It is very expensive to use BEM elements with sizes on the order of wall units. On the
other hand, an exact distributed integral formulation is not possible because of the com-
plexity of the Green's function. An intermediate formulation, which is described in the
next section. uses the asymptotic behavior of the solution in the vicinity of the near-wall
elements.
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4. Asymptotic expansion for 2-D BEM element

In BEM the size of boundary elements should be sufficient to resolve the wavelength
A = 27r/k of the sound, implying that h <K A as required by the simple elements used here.

In the vicinity region of the element where R is comparable to, or smaller than, the size

of element h, we have kR < 1. This observation suggests that the Helmholtz equation
in this region can be approximated by the Laplace equation and that the distributed

expression in its analytical form can be applied for the corresponding element. This can

be verified from the asymptotic behavior of the free space Green's function for the 2-D
Helmholtz equation (2.2).

From Abramowitz & Stegun (1964) the Hankel function has the following asymptotic
behavior, for ýzzI < 1,

H0(1)(Z) -l 2in(z). (4.1)
7T

which results in the fundamental solution of the form

G*(R) I -ln(kR) (4.2)
27r

OG*(R) 1 (4.3)
OR T2rR'

which has the same form as the free space Green's function for the 2-D Laplace equation.

Thus Hi and Ki defined in (3.4) can be approximated for the region at the vicinity of
the element using the analytical expression of distributed representation. However, for
points far from the element the pointwise distribution is sufficient: see Fig. 2. As a result.,
these two formulations can be blended using a transition function to provide a globally
accurate, economical approximation for Hi and Ki. This asymptotic approximation can
be written as

Ki z:2 T(R/h)G(xo. x1)h +(1 - T(Rih))Ki" (4.4)
Hi Z,- T(R/h) a•o)h +(I - T(R/h))Hj"'. (4.5)

The analytical expressions for K2" and HV are available in Appendix A. T(77) is a tran-
sition function defined as

T(77) = 0.5(1 + tanh(10(i/o - 1))). (4.6)

T and T' both vanish at 17 = 0. It has a smooth transition centered at 71 = a and becomes
unity with zero derivative at sufficiently large 77. Based on experience, a = 2 provides
sufficiently accurate results.

5. A test case

As a validation test case we calculate the solution for the scattering of a planar wave of
wavelength A/D = 0.44 off a solid circular cylinder, as shown in Fig. 4. The solution on

the surface is calculated using second-order BEM and the solution of a point at distance
d from the cylinder is calculated using the asymptotic approximation formulation of (4.4)
and (4.5). The calculation is done for three different resolutions of N = 100, 200. and
400 elements. An analytical solution exists in the form of infinite series and is available
in Appendix B. We truncate the infinite series by neglecting all terms smaller than 10-12

in magnitude.
The result for absolute value of the solution 161 is shown in Fig. 5. There is desirable
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FIGURE 4. Schematic of the scattering from cylinder.
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FIGURE 5. Comparison of BEM result and exact solution as the point approaches the solid
surface.

agreement between the exact solution and the BEM result in the both far-field and the
vicinity regions. The maximum error occurs in the transition point, as could be expected.

To assess the order of accuracy of the scheme, (N/ 100)2 1 0BEM - 6exact is plotted in
Fig. 6. There it can be seen that the error curves for both asymptotic branches converge,
which shows the second order of accuracy for the far-field solution and for the solution
in the vicinity of the surface. Slightly better than first-order accuracy is observed in the
transition region.

6. Possible extensions to 3-D problems

A key point for the implementation of 2-D asymptotic approximation is the ability
to carry out the integrals analytically. Unfortunately, this is not the case in 3-D, even
for very simple triangular surface elements. This problem can be remedied by making
another approximation to calculate integrals in the vicinity region.

When the observer point is very close to the element, the shape of the element has very
little effect. In other words, the observer does not see the edges. This suggests replacing
the closest element with an element of the same area but a simpler geometry (e.g. , a
circle). This method provides acceptable results (not shown) when the point is very close
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FIGURE 6. Plot of normalized error with N 2 to demonstrate the second order of accuracy.

to surface;however, it can be rather erroneous when the point is in the vicinity of the
edges or far from the element.

Another technique that can be applied to both 2-D and 3-D problems is using the
continuity of the solution and extrapolating the solution from the closest element. This
can be written as

d Obounda.y dn (6.1)0 -" Oboundary an•

where d, is normal distance between the point and the closest element. This method
is very easy to implement for both 2-D and 3-D cases, but is not as accurate as us-
ing distributed representation for the vicinity region. We continue to work on the 3-D
problem.

7. Summary
We have developed a new approach to accurately and efficiently calculate the boundary

integrals that appear in the BEM formulation in two dimensions. It is first shown that
pointwise representation of the integral can be very inaccurate close to the boundaries.
Based on this observation we devised a method using the asymptotic expansion of the
solution in the vicinity of elements. A simple test case was presented to show applicability
of the method.

Appendix A. Analytical expressions for Kil' and HIj

K = j G di (A 1)

( bln (k 2 (b+2 d2)) - a ln (k 2 (a 2 + d2)) + 2dtan-' 4R h2 2h
47r(42-h) )
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11m1= O-- dl (A 2)

/ 4dh
2-- tan 4R2 - h2]

where G* is defined in (4.2) and a, b, and d are related to the geometry via

d = Rcos9 (A 3)

a= VR2 + h2 /4- Rhsin0

b = v/R2 + h2 /4+ Rhsin0.

Appendix B. Exact solution of scattering from a rigid cylinder

Assume a solid cylinder with radius a is subject to a planar incident wave of wavenum-
ber k traveling normal to the generator of the cylinder,

oi(r, 0) =ekcs,(B 1)

where r is the polar distance from the axis and 0 is measured from the direction of k.
By decomposing the solution into incident and scattered parts and separation of vari-

ables, the solution can be written as infinite series

0(r, O) = (p + E Am cos(mO)HQ)(kr), (B 2)
m=0

where the Am can be calculated from

Am -2i m  I + i Ym-l(ka). Y. ,+l(ka) m O (B3)
Jm-i(ka) - Jm+i(ka)/

Ao=- 1+(i ) (B4)
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Evaluation of active control of a laminar
separation bubble based on linear stability theory

By 0. Marxen, R. B. Kotapatit AND D. You

1. Motivation and objectives

Control of laminar separation using zero-net-mass-flux (ZNMF) devices for airfoils
operating at low to medium Reynolds numbers is a common approach in laboratory
experiments, in both numerical (e.g., Fasel & Postl 2006; Rist & Augustin 2006) and
experimental (e.g., Bons et al. 2001) setups. However, ongoing physical processes in such
flows can be diverse, spanning from convective-type (Kelvin-Helmholtz) instability (Rist
& Augustin 2006) to vortex-wall interaction (Simens & Jimenez 2006).

Here, an interpretation of a flow situation investigated numerically during the CTR
summer program (Kotapati et al. 2006) in terms of local linear stability theory based
on the Orr-Sommerfeld equation is presented. Such an instability corresponds to the
convective-type Kelvin-Helmholtz instability for laminar separation bubbles (LSB). In
contrast to Rist & Augustin (2006), the present flow possesses an actual ZNMF actuator
geometry for forcing, and investigates a wider range of forcing frequencies.

Results obtained from numerical simulations mentioned above shall be post-processed
and analysed with respect to unsteady disturbance evolution in the flow. First, stability
characteristics of the different mean flows resulting from different forcing frequencies
are evaluated theoretically; numerical data are then Fourier-analyzed in time and are
compared to theoretical results. Based on such a comparison, a discussion of similarities
and differences between numerical and theoretical results then allows us to conclude on
physical mechanism in operation. This is expected to help to improve the efficiency of
active flow-control devices in the future.

2. Flow configuration and mean flows

A configuration shall be considered that was studied numerically during the 2006
CTR summer program (Kotapati et al. 2006). Data from respective simulations (cases
2.2-2.5) in that reference shall be analyzed here with respect to their stability properties
and disturbance evolution, leading to a deeper understanding of physical processes taking
place in the controlled flowfields. A brief overview of the setup and the mean flow shall be
given in this section. Note that the simulations are 2-D only. Nevertheless, in the following
the term transition will be used, indicating saturation of the dominant disturbance, even
though no true (3-D) turbulent state is reached.

2.1. Overview

The general setup is given by a finite flat plate with an elliptic nose placed in a channel
with slip walls, subject to a uniform incoming freestream at the channel inlet. In the rear
part of the plate, steady blowing and suction is applied on the upper (slip) wall of the

t Mechanical and Aerospace Engineering, The George Washington University, Washington,
DC 20052, USA
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FIGURE 1. Configuration used for numerical simulations.

case forcing frequency fj
2.1 -

2.2 1.5
2.3 3.0
2.4 6.0
2.5 9.0

TABLE 1. Overview of simulation cases with respect to their forcing frequency.

channel in the interval 0.2 < x/c < 0.8, which induces an adverse pressure gradient at
the top wall of the flat plate and in turn leads to separation of the laminar boundary
layer on that plate.

All quantities are non-dimensionalized with the inlet velocity of the channel and the

chord of the plate. This amounts to a Reynolds number of 60,000. The wall-normal

origin of the coordinate system lies on the top wall of the flat plate while the streamwise

origin corresponds to the start of the plate, i.e., the (elliptic) nose. The flat part of the
finite plate starts at x/c=0.2. In the following, we focus solely on the region around the

separation bubble, which is located in the flat section downstream of the elliptic leading
edge and upstream of the end of the plate, namely 0.2 < x/c < 1.0.

A ZNMF actuator is centered at x/c=0.625. This actuator is used to diminish boundary-

layer separation downstream of its location by forcing at different frequencies, but with
a fixed amplitude. Four different non-dimensional frequencies were applied in the four

different cases 2.2-2.5 (see Table 1). Case 2.1 refers to an undisturbed flow and will not
be further considered.

The flow is computed by means of the second-order finite-volume based code CDP

(Ham & Iaccarino 2004)., which has been developed at the Center for Turbulence Research

at Stanford University. For details of these simulations, refer to Kotapati et al. (2006).
Only a very brief overview of the results with respect to the mean flow is provided in
the next section. The mean flow for each case will be used as a base flow for subsequent
stability calculations.

2.2. Mean flows

Figures 2 and 3 show boundary-layer parameters for all simulations with forcing. Those
were computed from streamwise mean-flow velocity profiles up to a wall-normal distance

of y=0.0347. Within this distance from the plate, changes in the potential flow, which

introduce an error into the computation of displacement and momentum thicknesses, re-



Evaluating control of lamninar separation 325

2000 ,.,, . 0 .

--- c.2.2 (1.1.5) -- 2.2 (t.1.5)
con 2.3 (%3.0) cm.2.3 (f.3.0)

- ---c.2.4 (f-6.0) -- -cs2.4 (f.6.0)
1500 ems 2.5 (f.9.0) 300 -mON 2.56(1-9.0)

..........
/7V3 ~ ~ ~ ~ I 0. . .6 0!' 08 09 1V3 040\0, ! . .

01000 020

220. .5 0.6.0 .7 0.20Iu. . .4 06.6 0.7 05).

momntu thckes (U(igt)fo0cse 2.2(-2.5.

-. 050.75 m.25190

0..05 1. /1

4 . 31 0.4 0.5 0.6 0.7 0.8 0.9 1 V3. 0.4 0.5 0.6 0.7 0.6 0.9 1

x/c xlc

FIGURE 3. Skin-friction (left) and wall-pressure (right) coefficients for cases 2.2-2.5. The
pressure is chosen such that it is the same for all cases at x/c=O.3.

main fairly small. Typical features of laminar separation bubbles can be observed when
looking at these time-averaged quantities. For instance, the larger the bubble, the larger
is its displacement thickness (see Fig. 2, left). The Reynolds number based on the mo-
mentum thickness 9 (Fig. 2, right) strongly changes only when the flow transitions, so
this quantity gives a rough idea of the transition location. The mean flow in case 2.5
(forcing frequency f =9) is somewhat similar to the undisturbed case (not shown here).
Instead, case 2.5 will be referred to as essentially uncontrolled.

Forcing at the three lower frequencies (f :• 6), cases 2.2-2.4 respectively, considerably
reduces the size of the separation region. This is visible via the skin-friction coefficient
Cf (Fig. 3, left), whose changes in sign from positive to negative and vice versa mark the
separation and reattachment location, respectively. When compared to the essentially
uncontrolled case 2.5 it is obvious that this reduction takes place from both sides, i.e.,
not only does the reattachment location move upstream, the separation location also
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moves downstream. This is due to a feedback effect, namely disturbance input causes

earlier transition downstream that in turn changes the mean flow, i.e., causes a mean

flow deformation, via the pressure at the location of forcing or even upstream of it. Such

a feedback effect of the mean flow deformation has also been reported by Marxen (2005).

This change in pressure due to forcing is clearly observable in Fig. 3 (right): the pressure

increase is delayed upstream of transition., or more precisely disturbance input causes

a weaker pressure increase upstream of separation, again in accordance with findings

of Marxen (2005). Note that, for example, at x/c=0.6 the wall-pressure coefficient cp
possesses a larger value in case 2.3 or 2.4 than in case 2.5. Instead, on the downstream

side, an earlier pressure increase takes place inside the separation bubble in cases 2.3 and

2.4 compared to case 2.5.

However, cases 2.2-2.4 possess essentially the same separation location, while slightly

differing in mean reattachment location. This suggests that the reattachment processes
are slightly different in these three cases, and that the upstream effect of the mean flow

deformation does not always cause a simultaneous movement of both separation and
reattachment location. On the other hand, when considering the pressure coefficient cp
(Fig. 3, right) it becomes clear that, for example, the pressure in case 2.2 is slightly higher

upstream of separation at x/c=0.6 compared to case 2.4. This is in accordance with the
fact that a slightly larger separation bubble has developed in case 2.2 with corresponding

influence on the pressure distribution (the previously mentioned effect of the mean flow

deformation).

In terms of size of separation bubbles, we would order them by increasing size (start-

ing with the smallest) in the following way, based on the pressure distribution c, and
displacement Re6 -: case 2.4 (f=6), 2.3 (f=3), 2.2 (f=1.5), and 2.5 (f=9). The length of
the separation bubble (computed from the skin-friction coefficient cj ) does not perfectly

fit with this order, but a reason for that will be suggested below.

3. Linear stability theory: results for the different base flows and the effect of

mean flow deformation

The development of perturbations introduced into a laminar flow via a ZNMF actuator

is characterized by disturbance growth that will eventually lead to transition. For a

sufficiently small disturbance level, the initial behavior of these perturbations is linear,
i.e., can be treated by a set of linear equations, in contrast to the non-linear Navier-Stokes

equations. Here, we will focus on a certain class of disturbances, specifically wave-like
perturbations with exponential growth in x (spatial model).

A theoretical approach according to Schlichting (1979) is employed to describe the

behavior of small disturbances: so-called Linear Stability Theory (LST) based on the

Orr-Sommerfeld equation. Only a short overview of LST shall be given: more elabo-

rate treatments can be found in Schmid & Henningson (2001) and Boiko et al. (2002).
Decomposition of the flowfield into a known 2-D parallel steady base flow uB=uB(y)

(parallel-flow assumption) and small disturbance quantities s'=p', u', v', and lineariz-
ing with respect to these disturbances leads to a system of linear partial differential

equations. Submitting a normal-mode ansatz for the perturbations:

81 = ý' e (•X-Wt) + conjugate complex, ý' = ý' (y) E C, (3.1)
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into the equations to obtain a separation of variables yields the Orr-Sommerfeld equation:

(au-w f__ 
_2__ 2ýl 0,V-a v =ý C-- -,' Ui - 2 (3.2)(a- - -0)v a i 2° e f-57y2 + 4y ]

with complex a, WR(a) being the streamwise wavenumber and !Ž(o) the streamwise am-
plification rate, and with complex w, 3?(w) being the circular frequency and ý'(w) the
temporal amplification rate.

The ordinary differential equation (3.2) is supplemented by homogeneous boundary
conditions at the wall (y=O) and in the free-stream y »> 699 in which case an eigenvalue
problem for the perturbation quantities is obtained, if either a or w is assigned. We
adopt the spatial approach by prescribing R(Lo), setting •(w)=O and obtain a complex
disturbance spectrum a.

Due to the parallel-flow assumption, the only information required to determine sta-
bility or instability of a laminar flow is the streamwise base-flow velocity UB at a certain
streamwise location. For that reason, LST can be classified as a theory describing local
instability. Note that for the present definition, we have an unstable flow for a given
disturbance frequency R(w)=fl=27rf, if a(a(uB,fl)) < 0, while Z(a(uB./3 )) > 0 means
that the flow is stable.

Here, a solution to the Orr-Sommerfeld equation is obtained numerically by means of
an iterative shooting method (Miiller 1995). Only the non-zero discrete eigenvalue corre-
sponding to strongest amplification will be considered. Starting values for the iteration
procedure are obtained from a direct solution of the temporal approach ((?(a) prescribed,

a(a)=O), by making use of a conversion procedure based on a formula by Gaster (1962).
Application of linear stability theory to laminar separation bubbles has shown favorable

agreement between theoretical results and DNS (e.g., Marxen et al. 2003; Marxen 2005)
despite the strong non-parallelity of the base-flow profile. In most cases, only one unstable
eigenmode is reported.

Velocity profiles with an inflection point are known to possess particularly large growth
rates (Schlichting 1979). Profiles at separation and inside the LSB resemble free shear
layers by showing such an inflection point, and thus exhibit very strong growth of small
wave-like perturbations. The dominant role of the inflection point with regard to the
instability in a LSB suggests this instability be attributed to the Kelvin-Helmholtz (i.e.,
free-shear-layer) type; this is frequently done in literature (Pauley et al. 1990; Watmuff
1999; Spalart & Strelets 2000; Yang & Voke 2001).

Stability diagrams for all considered base flows (cases 2.2-2.5) are computed based
on linear stability theory. Results are given in Figs. 4 and 5. It can be seen that the
controlled flow (cases 2.2-2.4) is more stable than the essentially uncontrolled flow (case
2.5): the amplified region (contained within the thick black line) is much smaller than
in the controlled case. Such a stabilizing effect of small disturbances on the mean flow
even upstream of transition was also described in Marxen (2005). Furthermore, the most
unstable frequency, which roughly corresponds to f=6 in case 2.5, is lowered to f ; 4.5
in cases 2.2-2.4. A shift in most unstable frequency was predicted in Marxen (2005) as
an effect of the mean flow deformation.

4. Comparison of LST results with numerical simulation data

To allow for a comparison between numerical and theoretical results, numerical re-
sults are Fourier-analyzed in time using available discrete time steps 1=1 to I=Lper
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FIGURE 4. Stability diagram for cases 2.2 (left) and 2.3 (right): contours of the imaginary part
of the smallest non-zero eigenvalue a, computed from the Orr-Sommerfeld equation. The thick
black line gives the contour csi=O, while dashed lines indicate negative ai corresponding to an
amplified disturbance.
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FIGURE 5. Stability diagram for cases 2.4 (left) and 2.5 (right). The legends are the same as in
Fig. 4.

(Lper=20... 25) - with the forcing frequency being the respective fundamental frequency
/3•p for such an analysis. The corresponding inverse operation is Fourier synthesis, with

i30P=1.5 (case 2.2), /3P=3 (case 2.3), /3'P=6 (case 2.4), 3P3 = 9 (case 2.4):

H

u(x, y, 1) = AufhZo )(x, y) cos(h '3' t "+ (h)Qx y)), H < Lp.,/2 (4.1)
h~=O

First, we compare disturbance amplification, i.e., the downstream evolution of the
disturbance amplitude. For data from numerical simulations, wall-normal maxima of the

amplitudes of the streamwise disturbance velocity are computed:

A(fO) (X) ma (--hOPP(d(=hAu,rnax ()= max •AU 0 '(x = c onst, y) (4.2)
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FIGURE 6. Disturbance amplification based on the streamwise disturbance velocity A,.,. (x/c)
for cases 2.2 (left) and 2.3 (right) in comparison with results from LST: ALST(X/C) (symbols).
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FIGURE 7. Disturbance amplification based on the streamwise disturbance velocity A u.mx (x/c)
for cases 2.4 (left) and 2.5 (right) in comparison with results from LST: ALST(X/C) (symbols).

These are plotted in Figs. 6 and 7. In contrast, theoretical amplification rates ai are
integrated in a downstream direction according to ALST(x/c)=Aoexp(- fa (x/c)dx), all
based on the respective underlying mean flow of the respective case. Since LST leaves A 0
undetermined, A0 is chosen in an arbitrary manner for each single curve independently
so that they best fit respective numerical simulation data. In all four cases the strongest
peak in amplitude is visible at the position of the ZNMF actuator x/c=0.625 for the
respective forcing frequency, for example for f =3 in case 2.3 (Fig. 6, right).

Furthermore, in all cases, slightly downstream of the actuator location we find a region
where the observed amplification agrees well with LST for the forced disturbance. How-
ever, only in case 2.4 (f =6) does this disturbance also dominate the flow downstream
(in the sense that it remains the largest disturbance downstream of the position of the
first deviation between LST and the numerical simulation).

In case 2.2, the disturbance with f=4.5 becomes dominating downstream, and this
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FIGURE 8. Wall-normal amplitude functions (left) and phase functions (right) for the streamwise
and wall-normal disturbance velocity (amplitudes normalized by the respective maximum of the
streamwise-velocity amplitude) for case 2.2, f=1.5=fj in comparison with results from LST
(symbols) at a position x/c=0.75.
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FIGURE 9. Wall-normal amplitude functions (left) and phase functions (right) for the streamwise
and wall-normal disturbance velocity (amplitudes normalized by the respective maximum of
the streamwise-velocity amplitude) for case 2.3, f=3=fj in comparison with results from LST
(symbols) at a position x/c=0.75.

disturbance is amplified stronger than suggested by LST (Fig. 6, left). In principal, the

same is observable in case 2.3, where the disturbance with f=6 overtakes the one with

f=3 at x/c=0.8 (Fig. 6, right), even though they quickly reverse order again downstream.

This latter event is associated with vortex pairing, as can be seen from visualizations.

Streamwise wavenumbers computed from streamwise derivatives of the phases of the

Fourier-analyzed simulation data show reasonable agreement with LST results for all four

cases as well (not shown). Good agreement of numerical results with LST in all cases for

the forced disturbance within a certain region downstream of actuation is confirmed by

reviewing wall-normal distributions of amplitude and phase functions (see Figs. 8-11).

It appears that the lower the frequency, the more pronounced is the maximum in
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FIGURE 10. Wall-normal amplitude functions (left) and phase functions (right) for the stream-
wise and wall-normal disturbance velocity (amplitudes normalized by the respective maximum
of the streamwise-velocity amplitude) for case 2.4, f=6=fj in comparison with results from
LST (symbols) at a position x/c=0.70.

. . . ... . . . . 3.14159

UU

\V 1.5708

0,5 ,0

I . *-1.5708

0 V -. . I . . 3 141590 t . . ! . .

0 0.01 002 003 0,01 0.02 0.03
Y [-] Y [-]

FIGURE 11. Wall-normal amplitude functions (left) and phase functions (right) for the stream-
wise and wall-normal disturbance velocity (amplitudes normalized by the respective maximum
of the streamwise-velocity amplitude) for case 2.5, f=9=fj in comparison with results from
LST (symbols) at a position x/c=0.70.

u-amplitude away from the wall. However, keep in mind that the base flows are also
different in all cases and that not the same x locations are compared (x/c=0.75 in cases
2.2 and 2.3, and x/c=0.7 in cases 2.4 and 2.5).

5. Discussion

The origin of higher harmonics (particularly visible in both cases 2.2 and 2.3, Fig. 6)
is non-linear generation around the location of forcing via the ZNMF actuator. Their
downstream growth is not due to a linear instability (note the poor agreement between
LST and numerical results) but might be caused by continuous non-linear generation,
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a secondary instability in the presence of a large fundamental disturbance, an absolute

instability inside the bubble, or a global instability. Which of these possibilities is true

remains unclear, but at least non-linear generation cannot explain why these initially

higher harmonics finally overtake the generating one. suggesting that one of the other

possibilities. i.e., instabilities, might be involved. Clarification of this issue is beyond the

scope of this paper and remains a subject of further exploration in the future.

In case 2.4 we see disturbance growth of the forced perturbation in agreement with

LST; this disturbance governs the flow downstream, i.e., it saturates, leading to vortex

roll-up associated with gain of amplitude of higher harmonics, without letting them

actually overtake, followed by vortex shedding. A similar behavior was observed in several

earlier studies of transition in LSBs (e.g., Marxen 2005) and active control of LSBs (e.g.,

Rist & Augustin 2006). However, final disturbance growth slightly before saturation is

larger compared to LST. which was not observed in the cited studies: a specific reason

for this strong growth remains unclear.

Case 2.5 was denoted before as essentially uncontrolled, and from spectra given in

Kotapati et al. (2006) it can be deduced that disturbances with frequencies lower than the

forcing frequency play a significant role. These are not computable from the present data

of just one forcing period. For that reason, no further conclusions about the transition

process can be derived from Fig. 7. Still, we can once more observe good agreement

between numerical data and LST shortly downstream of forcing, even in this case.

Disturbance saturation for the respective forcing frequency in cases 2.2 and 2.3 can be

observed from the sudden drop in amplification and from deviation from good agreement
with LST (Fig. 6). However, disturbances of higher frequencies in these cases grow beyond

that level of saturation, unlike in case 2.4. Obviously, in cases 2.2 and 2.3 the saturation

of the forced disturbance does not mark the end of the transition process, note that cases

2.2-2.4 show first saturation at roughly the same streamwise location x/c=0.76, while

only case 2.4 shows an increase in Re0 directly thereafter (even though it is soon followed

by case 2.3). Moreover and more importantly, the saturation in case 2.2 does not equal

quick reattachment as it does in case 2.4 (the case with the earliest reattachment). A

possible explanation is that in cases 2.2 and 2.3, the forced perturbation is not able to

fully transition the flow and thus the resulting (only slightly) increased mixing is not able

to reattach the flow immediately. Instead, in these cases the transition process continues

until it finishes with the saturation of a higher harmonic disturbance with f=4.5 (case
2.2) or f=6 (case 2.3).

In case 2.3 this continuation of the transition process is finished within a short distance,

and thus both the pressure distribution and the height of the bubble in this case is quite
similar to case 2.4. Also, Reo increases almost as early (as noted above). However, the

skin-friction distribution of both cases is quite different in the rear part. This is believed

to be due to the vortex-pairing mentioned earlier, which takes place in case 2.3 only:

the resulting fairly large vortex that is shed from the bubble induces a large reverse-flow

velocity close to the wall and causes a larger negative skin friction in the mean at the
position of its formation.

So far, the influence of the finite dimension of the plate (which ends at x/c=1) was

not considered: however, it could play a role with respect to the processes that remain

unclear (as previously mentioned). At least in case 2.4 it is quite likely that the wake
is forced by the vortices shed from the separation bubble and therefore locks on to this

shedding frequency f=6 as stated in Kotapati et al. (2006), i.e., the wake is influenced

by the bubble but not vice versa. The same seems true for case 2.3, where vortex pairing
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occurs in the bubble and a vortex with frequency f =3 is shed, which again is observed
as the dominating frequency in the wake. In contrast, it remains unclear what happens
in the wake and whether there is interaction in cases 2.2 and 2.5.

6. Conclusions

Four different cases of a laminar separation bubble being forced at different frequencies
by means of a ZNMF actuator were considered with respect to disturbance growth occur-
ring in the respective flow. Linear instability of the resulting mean flows were evaluated
based on the Orr-Sommerfeld equation, so-called local linear stability theory (LST). This
led to a deeper understanding of some occurring instability processes.

Our research indicates that a larger separation bubble corresponds to a larger region
of instability and a higher most-amplified frequency. A feedback effect of the mean flow
deformation, i.e., a change of the mean flow caused through disturbance input even
upstream of transition, could be observed in accordance with reports in Marxen (2005).

When comparing Fourier-analyzed numerical results with theoretical eigensolutions,
a region of good agreement both with respect to eigenvalues (amplification rates) and
eigenfunctions (wall-normal amplitude and phase functions) was found in all cases. This
emphasizes that in all cases the ZNMF actuator triggered an instability mode in the flow.

However, the triggered instability mode was not the cause for transition in every case,
nor for reattachment. Only in the case where control was most effective (case 2.4), where
the forcing frequency is close to the integrally most amplified frequency of the resulting
mean flow, does the triggered perturbation lead to transition and reattachment. Such a
behavior is in agreement with similar studies of active flow control, e.g., Rist &- Augustin
(2006). Since this case also corresponds to the smallest separation bubble, it appears
best for efficient flow control to select a forcing frequency close to the most amplified
disturbance as computed by LST.

On the other hand, the disturbance behavior could not solely be explained in all cases
by linear stability theory in the region close to transition. Instead, indications for other
instabilities to be active were found and discussed, but future work is required to fully
understand ongoing processes.

At least in cases 2.3 and 2.4, the cases with the second-smallest and smallest separation
bubbles (based on cp and Ree), the presence of a wake downstream of separation does not
seem to play a role. This is due to the fact that the separation bubble dynamics are largely
governed by the forced perturbation with respect to the vortex-shedding frequency, and
rather this wake is just forced by the perturbations convecting downstream from the
bubble. This suggests that both problems (i.e., separation bubble and wake dynamics)
are decoupled and can be studied independently of each other in these cases.

Present results indicate that it would be beneficial to place the actuator further up-
stream, since in all cases the flow is at least neutrally stable as early as x/c=0.5 for
frequencies > 3. This is even more true if the most amplified frequency according to LST
is selected. A drawback of LST is that it cannot predict the most amplified frequency
of the controlled flow a priori. However at least an estimation can be derived from a
stability analysis of the uncontrolled flow, and then a slightly lower frequency should be
selected.



334 0. Marxen, R. Kotapati & D. You

7. Future work

A deeper understanding of flow dynamics for the present case of laminar-separation
control was gained with the help of linear stability theory. However, several questions
were also raised. The following list provides an overview of possible future research on
the present setup:

e The choice of the actuator length might be suboptimal (note the large drop in
amplitude at the end of the slot in Figs. 6 and 7), and therefore the receptivity of the
boundary layer with respect to the actuator should be investigated (varying actuator
dimensions, positions, and jet exit momentum),

* The influence of the wake on the separation bubble should be clarified by simulations
with a semi-infinite plate,

* Subharmonic vortex-pairing is not observed in case 2.4 (in contrast to case 2.3), a
possible reason for this is the absence of a (large) subharmonic disturbance in case 2.4:
a simulation with forcing at f=6 with some added smaller perturbation at f=3 could
clarifv the influence of subharmonic background noise on vortex pairing,

* To clarify growth of disturbances with growth rates exceeding those from LST, the
flow should be investigated with respect to occurrence of (local) absolute instability.
global instability, and secondary (local and global) instability.
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Large-eddy simulation of flow separation over an
airfoil with synthetic jet control

By D. You AND P. Moin

1. Motivation and objectives

The performance of an airplane wing has a significant impact on issues such as runway
distance, approach speed, climb rate, payload capacity, and operation range, but also
on the community noise and emission level as an efficient lift system also reduces thrust
requirements (see Woodward & Lean 1993; Thibert et al. 1995). The performance of an
airplane wing is often degraded by flow separation. Flow separation on an airfoil surface
is related to the aerodynamic design of the airfoil profile. However, non-aerodynamic con-
straints such as material property, manufacturability, and stealth capability in military
applications often conflict with the aerodynamic constraints, and either passive or active
flow control is required to overcome the difficulty. Passive control devices, for example,
vortex generators (Jirasek 2004), have proven to be quite effective in delaying flow sepa-
ration under some conditions. However, they can introduce a drag penalty when the flow
does not separate. Over the past several decades various active flow control concepts
have been proposed and evaluated to improve the efficiency and stability of lift systems
by controlling flow separation. Many of these techniques involve continuous blowing or
suction, which can produce effective control but is difficult to apply in real applications.

In recent years, control devices involving zero-net-mass-flux oscillatory jets or synthetic
jets have shown good feasibility for industrial applications and effectiveness in controlling
flow separation (e.g., Glezer & Amitay 2002; Rumsey et al. 2004; Wygnanski 2004). The
application of synthetic jets to flow separation control is based on their ability to stabilize
the boundary layer by adding/removing momentum to/from the boundary layer with
the formation of vortical structures. The vortical structures in turn promote boundary
layer mixing and hence momentum exchange between the outer and inner parts of the
boundary layer. The control performance of the synthetic jets greatly relies on parameters
such as the amplitude, frequency, and location of the actuation. Therefore an extensive
parametric study is necessary for optimizing the control parameters.

For numerical simulations, an accurate prediction, not to mention control, of the flow
over an airfoil at a practical Reynolds number is a challenging task. The flow over an
airfoil is inherently complex and exhibits a variety of physical phenomena including strong
pressure gradients, flow separation, and confluence of boundary layers and wakes (e.g.,
Khorrami et al. 1999, 2000; Ying et al. 1998; Mathias et al. 1999). The complex unsteady
flow is difficult to compute by traditional computational fluid dynamics (CFD) techniques
based on Reynolds-Averaged Navier-Stokes (RANS) equations (Rumsey & Ying 2002).
For prediction of such unsteady flows, large-eddy simulation (LES) offers the best promise
in the foreseeable future because it provides detailed spatial and temporal information
regarding a wide range of turbulence scales, which is precisely what is needed to gain
better insight into the flow physics of this configuration.

Recently, Gilarranz et al. (2005) performed an experimental study of flow separation
over a NACA 0015 airfoil with synthetic jet control. They reported the flow visualization,
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mean pressure coefficients, and wake profiles in both controlled and uncontrolled cases.
However, the mechanism for separation control and how the boundary laver is modified
by the control have not been clearly identified. In the present study we address the issues
using large-eddy simulation. A detailed understanding of the control mechanisms in the
typical stall situations (e.g., a docile stall and a full stall) is valuable in reducing the
effort for optimizing the control parameters.

In this study we employ an unstructured grid LES solver, CDP, to predict turbulent
flow separation over an airfoil and its control by synthetic jets, and to understand the
control mechanism for separation control. The unstructured grid capability of the solver
allows us to effectively handle the complex flow configuration involving an embedded
synthetic jet actuator and wind-tunnel walls. The present LES results are compared to
the experimental data (Gilarranz et al. 2005) in both controlled and uncontrolled cases.
The effects of flow control on the boundary layer properties, flow separation, and lift,
enhancement are discussed.

2. Computational methodology

2.1. Numerical method

The numerical algorithm and solution methods are described in detail by Mahesh et al.
(2006) and Ham &_ laccarino (2004); the main features of the methodologies are sum-
marized here. The spatially filtered Navier-Stokes equations for resolved scales in LES
are

--t-i 9 0-P + 1 a 0 h ,3  (2.1)

xtx5 + .i 7  Re Oxj xj axj

= 0, (2.2)aOxi

where 7q is the subgrid-scale (SGS) stress tensor modeled by the dynamic Smagorinsky
model (Germano et al. 1991). All the coordinate variables, velocity components, and
pressure are non-dimensionalized by the airfoil chord length C, the inflow freestream
velocity U,, and pUg, respectively. The time is normalized by C/U,. The Cartesian
velocity components and pressure are stored at the center of the computational elements.
A numerical method that emphasizes discrete energy conservation was developed for the
above equations on unstructured grids with hybrid, arbitrary elements. Controlling alias-
ing errors using kinetic energy conservation instead of employing numerical dissipation
or filtering has been shown to provide good predictive capability for successful LES (You
et al. 2006).

The temporal integration method used to solve the governing equations is based on
a fully-implicit fractional-step method that avoids the severe time-step restriction that
would occur in the synthetic jet orifice region with an explicit scheme. All terms in (2.1)
and (2.2) are advanced using a second-order accurate fully-implicit method in time, and
are discretized by the second-order central difference in space. A bi-conjugate gradient
stabilized method (BCGSTAB) is used to solve the discretized nonlinear equations. The
Poisson equation is solved by an algebraic multigrid method.
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FIGURE 1. Flow configuration for LES of flow over a NACA 0015 airfoil with synthetic jet
control.

2.2. Flow configuration

The flow configuration is shown in figure 1. This configuration was experimentally studied
by a team at Texas A&M (Gilarranz et al. 2005). In the experiment, a NACA 0015 airfoil
with a chord length of 375mm was installed in a wind tunnel. The slot of the actuator
had a width of 2mm across the entire length of the span and was placed at 12% of the
chord measured from the leading edge on the suction side of the airfoil. This location was
selected to provide sufficient volume to accommodate the synthetic jet actuator inside
the airfoil.

Figure 2 shows the maximum lift coefficient measured in the experiment (Gilarranz
et al. 2005) as a function of angle of attack (a) in both the uncontrolled and controlled
cases. The use of the synthetic jet actuator causes a dramatic increase in the maximum
lift coefficient when the baseline (uncontrolled) flow separates. In the experiment, it
was found that the angle of attack for which stall occurs is increased from 120 for an
uncontrolled airfoil to approximately 180 for the controlled case. For the synthetic jet
actuation, the frequency of the actuation in the range of 60 - 130Hz (or fC/U", =
0.65 - 1.40) does not seem to have a significant effect on the maximum lift coefficient.
Figure 2 indicates that the uncontrolled airfoil first suffers from a docile stall, which is
also referred to as a trailing-edge stall when the angle of attack reaches approximately
120. The separation point gradually moves upstream as the angle of attack increases. The
leading-edge stall at approximately 19' produces an abrupt change in the lift coefficient.

With the synthetic jet actuation, the docile stall is effectively controlled and produces
further enhanced lift coefficient up to the attack angle of approximately 180. For an angle
of attack greater than 180, the controlled airfoil also suffers from a sharp drop of the lift
coefficient due to the leading-edge stall, which is characterized by the formation of a
separation bubble near the leading edge. Even after the massive stall (leading-edge stall)
occurs, the synthetic jet actuation increases the maximum lift coefficient compared to
the uncontrolled case, but the amount of the lift augmentation is relatively small.

The present study focuses on cases with the angle of attack of 16.60, where flow sepa-
rates from the mid-chord location of the airfoil in the uncontrolled case, and the control
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FIGURE 2. Lift coefficient as a function of angle of attack (a) measured by Gilarranz et al.
(2005). o , controlled case (f = 1.2U 00/C); -, uncontrolled case.

effect is most remarkable. For this angle of attack, experimental data such as the mean

surface pressure coefficients and wake profiles are available for comparison (Gilarranz

et al. 2005).
The computational domain is of size L. x Ly x L. = 6C x 2.44C x 0.2C. In the

present LES, a smaller domain size than that in the experiment is employed in the
spanwise direction to reduce the computational cost. The Reynolds number of this flow

is 8.96 x 10", based on the airfoil chord and inflow freestream velocity.

In this study, it is important to precisely predict the flow through the synthetic jet

actuator because the directional variation of the jets during the oscillatory period greatly
affects the boundary layer. Therefore, in the present study, the flow inside the actuator

and resulting synthetic jets are simulated along with the external flowfield using an un-

structured grid capability of the present LES solver. Figure 3a shows the synthetic jet

actuator modeled with an unstructured mesh. In the experiment, a piston engine is uti-

lized to generate a sinusoidal mass flux and generates synthetic jets through the spanwise

cavity slot. To mimic the oscillatory motion of a piston engine in the experiment, we ap-

ply sinusoidal velocity boundary conditions to a cavity side wall as shown in figure 3b.

Figure 3b shows the spanwise vorticity contours representing flow inside the cavity and

the interaction between synthetic jets and boundary layer flow. The frequency of the

sinusoidal oscillation of the cavity side wall is f = 1.284U,/C, which corresponds to

120Hz in the experiment of Gilarranz et al. (2005); the peak bulk jet velocity at the cav-

ity exit nozzle is Umr = 2.14Uc. The same momentum coefficient as in the experiment

is produced as:

h(pU,2n,.) 2
CM - C(pU =) = 1.23 x 10, (2.3)

where h is the width of the cavity nozzle exit.

No-stress boundary conditions are applied along the top and bottom of the wind tunnel,

and no-slip boundary conditions are applied on the airfoil surface and cavity wall. Periodic

boundary conditions are used along the spanwise (z) direction. At the exit boundary, the
convective boundary condition is applied, with the convection speed determined by the

streamwise velocity averaged across the exit plane.
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FIGURE 3. (a) Computational mesh and (b) instantaneous spanwise vorticity contours inside
and around the synthetic jet actuator. 20 contour levels in the range of -50 "-. 60 are shown.

Ax/C Ay/C Az/C Ax+ Ay+ Az+

2 x 10-4 _ 1 x 10-2 7 x 10-5 - 1 x 10-4 2 x 10-3 < 60 < 1.2 < 16.2

TABLE 1. Grid spacing and resolution along the blade surface.

The mesh size used for the present simulation is approximately 8 million. A total of 24
mesh points are allocated along the cavity slot. The grid spacings and resolution in wall
units are summarized in table 1. Prior to this simulation, coarser grid simulations were
carried out to determine the resolution requirements, and the final mesh was subsequently
constructed using this information.

The simulation is advanced in time with a maximum Courant-Friedrichs-Lewy (CFL)
number equal to 3.5, which corresponds to AtU,,/C z 1.7 x 10-4, and each time step
requires a wallclock time of approximately 1.5 seconds when 128 CPUs of the ASC Linux
Cluster (2.4GHz Intel Pentium 4 Prestonia) are used. The present results are obtained
by integrating the governing equations over an interval of approximately 20C/Um.

3. Results and discussion

Gross features of the flow over uncontrolled and controlled airfoils are revealed in
figure 4, showing iso surfaces of the instantaneous vorticity magnitude overlapped with
pressure contours predicted by the present LES. The vortical structures present over the
suction surface qualitatively indicate the degree of flow separation. In the uncontrolled
case (figure 4a), flow massively separates from the half aft portion of the suction surface
while the flow separation is dramatically prevented with the synthetic jet actuation in the
controlled case (figure 4b). Qualitatively, these features are consistent with the change in
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FIGURE 4. Iso surfaces of the instantaneous vorticity magnitude (IflIC/U2,) of 40 overlapped
with the pressure contours. (a) Uncontrolled case; (b) controlled case.

the experimentally measured maximum lift coefficient (Gilarranz et al. 2005) with flow
control (see figure 2).

The pressure distributions over the airfoil surfaces in both uncontrolled and controlled
cases are compared with the experimental data in figure 5. In general, the present LES
shows favorable agreement with experimental measurements in both cases. The pressure
distribution directly indicates the effect of synthetic jets on flow separation. As seen in
figure 5, most of the lift enhancement is achieved in the upstream portion of the airfoil
suction surface, while the control effect of synthetic jets on the pressure distribution in
the pressure surface is negligible.

The lift and drag coefficients predicted by the present LES in the uncontrolled and con-
trolled cases are in excellent agreement with the experimental data (Gilarranz et al. 2005)
as shown in table 2. The present synthetic jet actuation with the momentum coefficient,
of 1.23% produces more than a 70% increase in the lift coefficient. The drag coefficient
is found to decrease approximately 15% - 18% with the synthetic jet actuation.

The drag reduction due to the synthetic jet actuation is also indicated by the wake
profiles. Figure 6 shows the mean streamwise velocity profiles in the uncontrolled (dashed
line) and controlled (solid line) cases in a downstream location at x/C = 1.2. The width
of the wake and the peak magnitude of velocity deficit decrease with synthetic jet control.
The present wake profiles are in favorable agreement with experimental data (Gilarranz
et al. 2005) in both uncontrolled and controlled cases.

Both the suction and blowing phases modify the boundary layer on the suction surface
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FIGURE 5. Mean pressure distribution over the airfoil surface. Solid line, controlled case;
dashed line, uncontrolled case; symbols, experimental data (Gilarranz et al. 2005).

Case Uncontrolled Controlled

CL CD CL CD

Present LES 0.83 0.28 1.43 0.23

Experiment (Gilarranz et al. 2005) 0.82 0.26 1.41 0.22

TABLE 2. Summary of lift and drag coefficients.

of the airfoil. The synthetic jet actuation not only stabilizes the boundary layer either by
adding/removing the momentum to/from the boundary layer, but also enhances mixing
between inner and outer parts of the boundary layer. The change of the blade boundary
layer during a period of synthetic jet actuation is shown in figure 7 in terms of the
phase-averaged streamlines. In the suction phase (figure 7a) the low momentum flow in
the upstream boundary layer is removed by the suction and prevents downstream flow
separation. On the other hand, synthetic-jet blowing (figure 7c) energizes the downstream
boundary layer and prevents downstream flow separation.

4. Conclusions

We have performed a large-eddy simulation of separation control for flow over an
airfoil and evaluated the effectiveness of synthetic jets as a control technique. The flow
configuration consists of f a flow over a NACA 0015 airfoil at Reynolds number of 896,000
based on the airfoil chord length and freestream velocity. A small slot across the entire
span connected to a cavity inside the airfoil is employed to produce oscillatory synthetic
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FIGURE 6. Mean streamwise velocity profiles at x/C = 1.2. Solid line, controlled case; dashed
line, uncontrolled case; symbols, experimental data (Gilarranz et al. 2005).

jets. Detailed flow structures inside a synthetic jet actuator and the synthetic jet/cross-
flow interaction have been simulated using an unstructured-grid finite-volume large-eddy

simulation solver. Simulation results have been compared with the experimental data,
and qualitative and quantitative agreements have been obtained for both uncontrolled
and controlled cases in terms of mean pressure coefficients and wake profiles. As in the

experiment, the present large-eddy simulation confirms that the synthetic jet actuation
effectively delays the onset of flow separation and causes a significant increase in the lift
coefficient.
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Asymptotic analysis of the constant pressure
turbulent boundary layer

By T. S. Lundgrent

1. Motivation and objectives

The Navier-Stokes equations are expanded in asymptotic power series in a small param-
eter c (= u,/Ue) which is determined as a function of Reynolds number by an asymptotic
matching procedure. The present matched asymptotic expansion analysis differs from the
more traditional approach by employing the unsteady Navier Stokes equations instead
of the unclosed Reynolds averaged equations. It is therefore not necessary to expand the
Reynolds stress separately in the small parameter. The analysis is therefore simpler and
requires fewer assumptions. The main result of this analysis is an instantaneous log-law
in the overlap region, of form u+ = K-' ln(y+) + B where the additive "constant" B is
independent of y but depends on the outer scaled x, z, t variables.

In this paper the constant pressure flat plate turbulent boundary layer is studied by the
method of matched asymptotic expansions. This was first done as a formal procedure by
Yajnik (1970) and Mellor (1972). They expanded the two-dimensional Reynolds-averaged
Navier-Stokes equation, which has always defined this problem, in asymptotic power
series in a small parameter, employing expansions in inner and outer regions which were
then matched in an overlap region where both expansions are assumed valid. Since the
equations are unclosed, the Reynolds stress terms must be expanded in addition to the
velocity components. The present paper follows the same basic procedure, but makes use
of the complete unsteady Navier-Stokes equations, and is therefore properly posed. This
approach requires fewer assumptions. In particular no assumptions are required for the
Reynolds stresses.

The present analysis is restricted to incompressible turbulent flow along a flat plate
with constant free stream velocity Ue. A constant length scale I is introduced which is the
boundary layer thickness at some position x0 , I = 6(xo). In the outer expansion all the
spatial coordinates are scaled with 1, not just the wall normal coordinate. This implies a
turbulent boundary layer in which large scale vortical structures are convected with the
free stream. It is assumed that the length scales of these structures are of the same order
as the thickness of the boundary layer. These can be envisioned as long waves on the
turbulent shear layer which originate from instabilities near the wall and interact back
on the near wall disturbances in a complicated manner.

The inner layer is scaled with wall variables in the traditional way.

2. Outer expansion
The Navier-Stokes equations

9u/Ot + u. Vu = -Vp + vV2 u (1)

V. u = 0 (2)

f Department of Aerospace Engineering and Mechanics, University of Minnesota
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are scaled to outer variables by the change of variables

U = u!/U, P = p!U,. X = x1l, Y = y/l, Z = z/1. T = U~t/l. (3)

This makes

aU!lT + U VU = -VP + Re7V 2 U, Re = Uel/v (4)

V.U=0 (5)

Now make a change of variables to

U=i+EUi(.,Y.,Z.Ti), =X-T. T 1=ET, P= 2 P1 . (6)

which puts the problem in a coordinate frame moving with the free stream: T 1 is the

natural time scale in this frame. The unit vector i is in the x direction. The velocity U 1

satisfies the exact Navier-Stokes equation,

DU1 i0T 1 + U 1 ' VU 1 = -VP, + (,Re,)-V 2 U1 , (7)

so no approximation has been made. At this stage c is an arbitrary constant parameter.
Now if we assume that ( is a function of Re which tends to zero as Re -- Oc (tentativly

identified as ui/U) and expand in an asymptotic power series, we find a time dependent

"defect law",

U = i + cUl (X - T, Y, Z) +... (8)

In this approximation U 1 (X - T, Y, Z), without the explicit dependence on T 1 , satisfies

the steady nonviscous version of (7). The vorticity is frozen into the external stream. At
fixed x the velocity would be seen as a fluctuating function of time as vortical structures
are convected past the observer. Viscosity is neglected since Mellor (1972) showed that

Re 1 is smaller than any power of c as E - 0 (transcendentally small), which will be veri-

fied below. This means that viscosity would be negligible to any order in the asymptotic

expansion of (7) in powers of E. With the viscous second derivative term neglected this is
a singular perturbation problem which calls for a rescaling of the equations in order to

describe a viscous boundary layer near the wall which can satisfy the no slip boundary
condition.

3. Inner expansion

Rescale the Navier-Stokes equations using a velocity scale vi and a length scale 1i in

such a way as to retain the viscous terms in the infinite Reynolds number limit. Inner
variables are defined by

ui = u/vi. pA = p/v, yi = y/l, x, = x = z/1i. ti = vit/li (9)

When livi/v = 1 the rescaled equations become

aui /ati + Ui - Viui = -Vipi + Vui . (10)

with the viscous terms of the same order as inertial terms, without identifying vi; any
constant velocity would do this. To make a definite physical identification the friction

velocity will be used., vi = u, where u, = V/( < r,,, > /p), with < rw, > the average shear
stress at the wall. This is of course the scaling velocity which is always used for the wall
layer, but it may not be the only possibility.

We reason as follows: < 7r, > /p = v < du/dy >o= v(vi/li) < dui/dyi >(= v2 <
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dui/dyi >0. A scaling condition can be taken as < dui/dyi >0= 1, so vi = u,. Thus we
have vi = u, and li = v/ur.

Solutions of (10) are sought in an asymptotic power series in c. The lowest order term
in the expansion, ui, 1 , satisfies the same equation and could depend parametrically on
the outer variables which are slowly varying in inner variables. For instance the convect-
ing vorticity in the outer flow can induce long irrotational waves near the wall which
would enter the problem through boundary conditions. Townsend (1961) described this
outer influence as an "inactive" component of the inner flow. Presumably the inner layer
responds to this by an "active" ejection of vorticity and low speed fluid.

4. Matching

We have a two term outer expansion and a one term inner expansion,

two term outer: U=i+EU1 (X-TY,Z) (11)

one term inner: U = cu i ,i(xi,yi, zi,ti) (12)

where the inner and outer variables are related by X = xi/l(R,), Y = yi/(cRe), Z =
zi/(eRe). These will be matched in the y variables holding x, z, t fixed, assuming that
they both express the same function in an overlap region. We will use the VanDyke
(1964) matching principle, which states that the one term inner expansion of the two
term outer expansion has to equal the two term outer expansion of the one term inner
expansion. This is a little tricky because the matching process, as conceived here, also
has to determine the Re dependence of c(Re).

The two term outer expansion, expressed in the inner y variable is

U=i+feU(X-T,yi/(eR,),Z) (13)

This is to be expanded in inner variables, retaining one term in an inner expansion.
Expressing this back in outer variables

U = i + JUI(X - T, Y, Z) asymptotically as Y - 0. (14)

The one term inner expansion expressed in the outer y variable is

U = cui, 1 (xi, eReY. zi,ti) . (15)

This is to be expanded in outer variables retaining two terms in an outer expansion. This
generates the large yi asymptote of ui,1 which has to depend the same way for large yi
as the two term outer expansion does for small Y. (This is a little confusing because one
can't see two terms explicitly. We will come back to this.) The matching principle means
that (14) and (15) have to be equal for all Y when Re is large. In general this will not
be true without restrictions on the functions. For the x-component this requires

1 + EU, (X - T, Y, Z) = fui,l (x, EReY, zi, t) • (16)

This matches exactly for all Y if

ui.1 = K- 1 ln(EReY) + Bi(xi, zi, ti) (17)

and

UI = r-z ln(Y) + B,(X - T., Z) (18)

since In Y will cancel from both sides for any Re and no other functional form can
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accomplish this. Substituting (17) and (18) into (16) with B = Bi - B. results in the
identity

1 = 6(H-1 In(cR) + B) (19)

This gives the required relationship between c and Re,. with the added requirement that
,-1 and B must be constants (independent of coordinates and time). since c and Re are
constants. This is the standard form for the friction law. It may be solved for R, as a
function of E as

Re = (b•)- 1 exp(K//) with b = exp(KB) (20)

This shows that R-1 is transcendentally small compared to powers as was shown by
Mellor.

Having determined e(Re) it is instructive to verify formally that the asymptotic match-
ing procedure is satisfied. For the inner expansion in outer variables use (17) in (15) (for
the x component) with ER, = b-1 exp(K/E):

U = r(K-' ln(b-'Yexp(,/e)) + Bj) . (21)

This is supposed to be expanded to two terms in ( holding Y fixed. Because In (exp(K/())
/f/ this gives

U = 1 + (K- 1 ln(b-'Y) + B) =1 + E(- ln(Y) + B,) (22)

which is the two term outer expansion, as was to be shown. In the same way the outer
expansion in inner variables is

U = 1 + jfK-1 In (byi exp (-h•/))+ Bo) (23)

This is to be expanded to one term in E holding yj fixed. Here it gives exactly one term,

U = E(K-1ln(byj) + Bo) = E(K- 1 ln(y) + B) , (24)

because the "1" is cancelled by the singular term in the logarithm.
For the y-component of velocity the matching condition is

0 = vii(xi, ReY.ti) - v 1(x - T. z)) ) (25)

This is only possible for all Y as Re gets large if both functions are independent of y,
V, = Vi,1 = A,(X - T, Z) . (26)

Similarly, for the z-component

W1 = wi. 1 = Co(X - T. Z) . (27)

5. Conclusion

Therefore in the overlap region, we have

U = 1 + E(K-' ln(Y) + Bo(X - T, Z)) (28)

V = EAo(X - T.Z) (29)

II' = eCo(X - T. Z) (30)
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where the functions Ao, B,. Co are unknown. These can also be expressed in inner vari-

ables:

u+ = K-1 ln(y+) + Bo(X - T. Z) + B (31)

v+ = A 0 (X - T. Z) (32)

w+ = C 0(X - T. Z) (33)

At fixed X, Z the functions A., Bo, C, are fluctuating random functions of time. Note that
the logarithmic part is independent of time. Also note that in (31) Bo(X -T, Z) +B _= B,
depends on outer variables because of the matching condition. The dependence on inner
variables has dropped out as yi -- oc. This asymptotic boundary condition is where a
parametric dependence on outer variables can enter solutions of the inner equations.

The averages of these expressions are:

"< U >= 1+ (K-1 ln(Y)+ < B > (34)

"< V >= <A 0 > (35)

" W >= < Co> (36)

where the angle brackets denote ensemble or time averages.
The fluctuating parts are obtained by subtracting:

U' = U- < U >= c(Bo- < B 0 >) =B' (37)

V = V- < V >= c(Ao- < A0 >) cA' (38)

W' = W- < W >= f(Co- < C0 >) =cC' (39)

There are some empirical results which describe fluctuations of this kind. Lindgren
(2003) have shown, using the KTH database for high Reynolds number zero pressure
gradient turbulent boundary layers, that the PDF of fluctuations of u normalized by

its rms value, i.e. B'/ < (B') 2 
>1/2, is self similar and approximately Gaussian in the

overlap region and independent of Reynolds number and y. One might reasonably assume
that the A' and C' fluctuations are of a similar nature.

It follows from (37), (38), and (39) that Reynolds stresses, which depend on averages
of A', B', C', are all constants in the overlap region:

< U'V' >= f 2 < A'B' > (40)

< V'V' >= ( 2 < A'A' > (41)

"K WtV >= f2 < C'C' > (42)

"K U'U' >= E2 < BB' > (43)

The method of matched asymptotic expansions has been used here to study the con-
stant pressure fully developed turbulent boundary layer. The new idea in the present
analysis is the use of the unsteady Navier-Stokes equation. The conventional treatment
of this problem has always made use of the Reynolds-averaged momentum equation,
which requires a separate expansion of the Reynolds stresses. This is not required in the
present approach. The result of the analysis is an instantaneous logarithmic law in the

overlap region described by, (28), (29), and (30), in which the velocity fluctuations, (37),
(38), and (39), are independent of the distance from the wall and are functions which
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are "frozen" into the flow so that the dependence on t implies a dependence on x. This
is Taylor's frozen hypothesis, which is often assumed for processing experimental data.
The analysis presented here, while making use of formal matched asymptotic methods,
strongly resembles the Millikan (1939) classical overlap treatment in which empirical
defect and wall laws were matched. Here (11) is the defect law and (12) the wall law:
solutions of the Navier-Stokes equations have been substituted for the empirical laws and
matching was done by a formally different method.

The number of assumptions required for the analysis is quite small. It was assumed
that the boundary layer thickness is the proper outer scaling for all the coordinates,
implying that the large eddies of the flow scale with the boundary layer thickness. It is
also assumed that the velocity tends to uniform flow in the outer scaling as the Reynolds
number tends to infinity.

6. Discussion
The existence of an overlap region implies a coupling or interaction between an outer

problem and an inner problem. The inner problem is to solve the Navier-Stokes equations
in inner variables with asymptotic boundary conditions as y, tends to infinity. This looks
much like a conventional boundary layer problem. The outer problem is to solve the
inviscid Euler equations with boundary condition at Y = 0. The nature of the coupling
between the two problems is described below.

There are three unknown functions of outer variables Ao, B,, C, which result from
this analysis. However, it appears that only two of them are independent. We reason
as follows. Suppose that the inner scaled Navier-Stokes equations (10) are solved with
boundary conditions on the horizontal velocity components at infinity, therefore involving
the B, and C, functions. These are the usual boundary conditions for boundary layers.
Using this solution integrate the continuity equation from zero to infinity:

-i ) = - j au + -aw) dj (44)

But vi(yi -- cc) = A, and the right hand side of (44) depends only on the functions B,
and C0 . Therefore by this "displacement" arguement A, is a function of B, and C.. The
implication of this is that the inner layer provides a boundary condition for the outer
scaled equations at Y = 0 as in second order laminar boundary layer theory. Actually,
one more condition is needed since there are two unknown functions. The continuity
equation can be used in the overlap region. Since A, is independent of Y, we have the
condition aBo/,9X + OCoiOZ = 0.

Fluctuations in the wall stress are related to fluctations in the additive function B0 .
Use 7rw/p = u 2 (dui/dyi)o or the equivalent <,/ -r, >= (dui/dyi)o. Now near the wall
ui = y, (dui/dyi)o and from (31) ui = K,-' ln(yi)+Bo+B. Equating these two expressions
at yi = 1 gives the approximate result r,! < r.. >= (dui/dyi)o = B0 + B. This can be
written as

rwý- < Tu, > <B<-> B 0 - <B 0 >
<Tw>

This suggests that fluctuations in the shear stress at the wall are related to the outer
problem boundary condition on V at Y = 0.
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Convection in an internally cooled fluid layer
heated from below

By T. Hartlep AND F. H. Busset

1. Motivation and objectives

Convection visible in the form of granulation on the sun represents the turbulent system
with the highest Reynolds number that is accessible to direct observation. Also charac-
terized by large Reynolds numbers is mesoscale convection in the Earth's atmosphere
as visualized by the cloud patterns seen in satellite images. Both cases, though highly
turbulent, exhibit surprisingly regular structures. Evidently, the presence of large-scale
regular structures at asymptotically high Reynolds and Rayleigh numbers is compatible
with a broad spectrum of highly chaotic motions at intermediate scales. Unfortunately,
this aspect of turbulent convection cannot be easily investigated in laboratory experi-
ments. In their attempts to reach high Rayleigh numbers Ra, experimenters have focused
on convection layers with small aspect (height to horizontal width) ratios which do not
permit the realizations of spontaneous large-scale patterns in highly turbulent convec-
tion. In fact, typical high Rayleigh number experiments are carried out with an aspect
ratio of the order unity (e.g., Shang et al. 2003).

The numerical simulation of turbulent convection suffers from similar restrictions. High
aspect ratios can be attained only through a corresponding reduction in the numerical
resolution in the vertical direction. Since the thickness of the thermal boundary layers at
the top and bottom plates decreases in proportion to Ra-1/ 3 there are obvious limita-
tions in reaching high Rayleigh numbers together with large aspect ratios. In contrast to
laboratory experiments, periodic boundary conditions can be assumed in the horizontal
directions. This allows the use of somewhat lower aspect ratios than would be needed to
capture the large-scale spontaneous turbulent patterns in experiments.

A compromise in attaining the simultaneous goals of large aspect ratios and high
Rayleigh numbers has been attempted in the numerical study of Hartlep et al. (2005).
Using aspect ratios of 10 and 20 in both horizontal dimensions and Rayleigh numbers
up to Ra = 107 convection in the presence of rigid boundaries at the top and bottom,
i.e., Rayleigh-B~nard convection, has been simulated for a range of Prandtl numbers Pr
between 0.7 and 60. In agreement with earlier experimental observations (Busse 1994),
a network of large-scale square cells has usually been found at the highest Rayleigh
numbers.

The square pattern is symmetric in both upward and downward plumes. and it could
be argued that this reflects the symmetry of the upper and lower boundary conditions.
For this reason it is of interest to study cases that are not symmetric in the conditions
for the hotter and colder parts of the convection layer, especially since this situation is
usually found in natural convection systems. In this paper we therefore consider the case
when the upper boundary is thermally insulating and stress-free, while the temperature
at the lower rigid boundary is assumed to be fixed. A time-averaged heat transport that is

t Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany
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steady can be achieved in this case when the layer is cooled homogeneously. More easily
realizable in the laboratory is the mathematically equivalent case of a homogeneously
heated layer with a fixed temperature at the cold upper boundary and a thermally
insulating lower boundary. The stress-free lower boundary cannot be realized easily, of
course, but this would be of minor importance.

Convection in an homogeneously cooled layer is of interest in its own right, since this
case is often used as a model for convection in the Earth's atmosphere where the cooling
is provided by infrared radiation (e.g., Parodi et al. 2003).

2. Mathematical formulation of the problem

We consider an infinitely extended horizontal fluid layer of height d between a lower
rigid plate that is kept at the temperature To and an upper, stress-free plate that is
thermally insulating. The layer is cooled homogeneously with a cooling source density
q. A cartesian coordinate system is used with the gravitational acceleration g acting
in negative z-direction. Periodic boundary conditions are imposed in x- and y-directions
with periodicity lengths /I and ly. The aspect ratio F is defined as F = 11/d = l./d. Using
d, d2/'K, and d2q/Hcp as units of length, time, and temperature, respectively, where K is
thermal diffusivity and cp is the specific heat at constant pressure, one obtains non-
dimensional equations for the velocity field v(r, t) and the temperature T(r. t). When
the fluid is at rest, the (dimensionless) temperature depends only on z and varies as
To - (z - z2/2). In the general case, it is convenient to specify the temperature through
the deviation 9 from the static profile: T(r, t) = O(r, t) + To - (z - z2/2). The equations
of motion for v(r. t) and EJ(r, t) are:

atv + (v • V)v = -V7r + Pr V2 v + Ra Pr O, (2.1)

V. v = 0, (2.2)

9te + v. VE = v 2e+(1) -+ )v. _ , (2.3)

where i is the unit vector in z-direction and terms that can be written as gradients
have been combined into V7r. Since we have employed the Boussinesq approximation,
two dimensionless control parameters have entered the equations, the Rayleigh number
Ra and the Prandtl number Pr,

Ra = gad5 q/(cpKv), Pr = vK., (2.4)

where v is the kinematic viscosity of the fluid and a is its coefficient of thermal expansion.
The velocity field can be uniquely represented by a poloidal scalar o(r, t)., a toroidal

scalar v(r, t), and a mean flow U(a, t):

v=VxVx O+VxVi +U, (2.5)

where 0 and ?) are bounded functions with vanishing average over the xy-plane. and the
z-component of U is zero. The boundary conditions are given by

E=o=ao v 0 =,0 at Z=0.

a9 a0 2 o = :W=0 at z=1. (2.6)

and

U=0 atz=0,

&zU=0 at z =1. (2.7)
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Equations of motion for 6, 7, and U are obtained from the z-component of the curl

of the curl of Eq. (2.1), the z-component of the curl of Eq. (2.1), and the average over
horizontal planes of Eq. (2.1), respectively,

A2 V2[t- PrV2]O = - . IV x V x [(V x v) x vi] - RaPrA2e, (2.8)

2 [at-PrV2 p=, [V x [(V x v) x v]], (2.9)

[,9 - Pri9,,] = ((V X v) x v), (2.10)

where A 2 is the horizontal Laplacian, A 2  9 02, + 092, and (... denotes the average
over horizontal planes.

A spectral method (Moser et al. 1983; Kerr 1996; Hartlep & Tilgner 2003) is used to
solve Eqs. (2.3) and (2.8)-(2.10) numerically. Space is discretized with Chebychev poly-
nomials in the z-direction and with Fourier modes in the x- and y-directions. Dealias-
ing using the two-thirds rule has been implemented. The time-marching procedure is a
second-order Adams Bashforth scheme for the advection and buoyancy terms coupled to
a Crank-Nicolson scheme for the diffusive terms. An adaptive time step is used to speed
up the transients. Computations have been started from random noise as initial condi-
tions or from cases with neighboring parameter values and have been run for several tens
of convective time scales r = (2Eki, )-1/2, with Ekin being the average kinetic energy
density. The code is a slightly modified version of the code used for the work of Hartlep
et al. (2005). By restricting the expansion in terms of Chebychev polynomials for 0 to
those that are symmetric with respect to z = 0.5 and the Chebychev polynomials for e
and ?P to those that are antisymmetric with respect to z = 0.5, we can satisfy boundary
conditions (2.6) at z = 0.5 instead of z = 1. A simple rescaling will thus convert the
numerical results to those obeying boundary conditions (2.6) at z = 1. Spatial resolu-
tion was 65 Chebychev polynomials, of which only those with the proper symmetry were
actually used, and 1282 grid points in horizontal planes.

3. Evolution of convection patterns

Convection is known for its rich variety of patterns which appear to persist even into the
regime of fully developed turbulence as indicated by the examples of cloud patterns in the
atmosphere and of solar granulation. Many of the characteristic patterns are associated
with special boundary conditions or deviations from the Boussinesq approximation. Here
we shall focus on the role of the up-down symmetry of the convection layer. Due to the
asymmetric way in which the heat transport enters and exits the fluid layer, it may be
expected that the pattern of turbulent convection will differ strongly from that seen under
conditions of symmetry as visualized, for instance, in the work of Hartlep et al. (2005).
As will be demonstrated in the following, the large-scale cells in which the turbulent
convection organizes itself are rather similar in symmetric and asymmetric cases, while
the small-scale structures and many quantitative properties differ considerably. Similar
to the work of Hartlep et al. (2005), a series of Prandtl numbers ranging from Pr = 0.3
to Pr = 30 were considered. Some computations at Pr = 0.1 have also been made.

Figures 1 and 2 provide a good illustration of the convection flow which is dominated
by sheets of hot rising flow that tend to entrain the colder surrounding fluid. As a result,
the rising fluid cools and loses buoyancy until near the upper boundary only small hot
plumes are left. The initial thickness of the rising sheets corresponds to the thickness of
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FIGURE 1. Contour plots of the instantaneous temperature distribution in horizontal planes near

the bottom boundary (z • 0.12, left column), at the center (z = 0.5, center column), and near

the top boundary (. • 0.9, right column) for simulations at Rayleigh number Ra = 4 x 10' and
four different Prandtl numbers Pr: 0.3, 0.7. 7, and 30 (from top to bottom row). The aspect
ratio F in these simulations is 8, except for the case of Pr = 7 (third row), where F = 10. Dark

and bright areas indicate cold and hot fluid, respectively.
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FIGURE 2. Contour lines of the vertical velocity for the same parameters and at the same instant
in time as Fig. 1. Solid lines correspond to positive and broken lines to negative values of the
vertical velocities.
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FIGURE 3. Horizontally averaged temperature difference AT between upper and lower boundary
as a function of Prandtl number Pr. Rayleigh numbers are 2 x 104 (plus signs), 10' (star), 2 x 105

(diamonds), and 4 x 105 (triangles).

the thermal boundary layer at the bottom. At the highest Prandtl number, Pr = 30,
the plume-like structures manifest themselves already close to the lower boundary. It

is of interest to note that at the higher Prandtl numbers also cold sheet-like structures
become visible in the temperature field near the upper boundary. These represent the
cell-like downward flows generated by the rising plumes.

The distribution of the rising sheets is not uniform. They tend to organize themselves
into a network of centers similar to the "spoke centers" in Ravleigh-Benard convection
(Busse & Whitehead 1974; Busse 1994; Hartlep et al. 2005). This phenomenon is espe-
cially apparent in the case Pr = 7 of figures 1 and 2, but the cases of lower values of

the Prandtl number also show the tendency toward large wavelength structures. It is
less evident, though, in the Pr = 30 simulation. The observed network structures in the
Rayleigh-B3nard case are typically square-like.

4. Heat transport

The effectiveness of the heat transport in Rayleigh-B1nard convection is commonly

measured by the Nusselt number Nu which is defined as the ratio between the actual,
vertical heat flux through the convection cell and the heat flux that would be observed

if there were no flows (i.e., pure conduction). In the present case, though, the constant

cooling rate effectively prescribes the heat flux, and the Nusselt number cannot be used

as a measure of the transport. The temperature at the tipper boundary is not prescribed,
though. and will assume different values depending on how effective heat is carried from

the bottom to the top by the convection. The resulting temperature difference between
the upper and lower boundary for the simulations performed for this study are shown in
figure 3 as a function of Pr. Apparently, for a given Rayleigh number heat is transported
most effectively at the highest Prandtl numbers considered here.

Averaged densities of the kinetic energy of the convection flow have been plotted as
a function of the Prandtl number in figure 4 for given values of the Rayleigh number.

The plot indicates that the optimal conversion of potential energy into kinetic energy
occurs at a moderate value of the Prandtl number somewhere between 0.7 and 7. This
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FIGURE 4. Time- and volume-averaged kinetic energy density Ekn = (v 2/2),,Y as a function

of Prandtl number Pr. As in figure 3, Rayleigh numbers are 2 x 104 (plus signs), 105 (star),
2 x 105 (diamonds), and 4 x 105 (triangles).

is different from the behavior in standard Rayleigh-B~nard convection where, at least

for values of Pr between 0.3 and 120, the kinetic energy increases monotonically with
Prandtl number (Hartlep 2004).

5. Conclusion and future work
The preliminary results presented in the preceding sections indicate that convection

with highly asymmetric transport of thermal energy can serve as an example for the

study of changes in the structure of turbulent convection that occur when the flow is
governed by a single thermal boundary layer instead of two antisymmetric ones. Instead
of large scale hexagon-like cellular structures that might have been expected, it is found
that the large-scale structure of the turbulent convection does not differ greatly from

that seen in the case of Rayleigh-Benard convection. Significant differences are found,
though, in quantitative measures such as the kinetic energy density or the effectiveness of

the heat transport. A more detailed study of the properties of this type of convection is
still needed, and an extension of the computations to higher Rayleigh numbers is highly

desirable.
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Magnetic waves in a two-component model of
galactic dynamo: metastability and stochastic

generation

By S. Fedotovt AND S. Abarzhi

1. Motivation and objectives
The generation and propagation of magnetic fields in galaxies have been studied for

many years (see, e.g., Moss et al. 2000). Nonetheless, many fundamental aspects of the
galactic dynamo remain to be understood. The propagation of magnetic fronts is one
such aspect of dynamo evolution. It is now accepted that the generation of the large scale
magnetic field occurs as a result of the simultaneous action of differential rotation of the
galactic disk and turbulent motions of the interstellar medium. Standard mathematical
procedure consists of looking for exponentially growing solutions of the linear mean field
dynamo equation (kinematic dynamo) (see, e.g., Beck et al. 1996). The propagation
of a magnetic front then can be analyzed in terms of the classical Fisher-Kolmogorov-
Petrovskii-Piskunov (FKPP) equation for the azimuthal magnetic field (Murray 1989).
This equation is a generic model describing front propagation into an unstable state. If
the dynamo excitation occurs within a certain radius r < r0 , then the magnetic front
propagates into the unstable region r > r 0 , where the linear growth rate y is positive

(supercritical case). One can find that the minimal propagation speed is c = 2 (-Y3)2

where 0 is a magnetic diffusivity. This type of magnetic front is referred to as an "exterior
front" (see, e.g., Moss et al. 2000). In fact, there are an infinite number of possible wave
velocities that are determined by initial conditions. The front-like initial condition for a
magnetic field ensures the minimal rate of propagation c.

The essential feature of early models for magnetic waves is that the minimal propa-
gation rate is found from linear analysis. The main purpose of this work is to consider
the subcritical case when the propagation of a magnetic wave is essentially a non-linear
phenomenon. We are going to use recent results concerning non-normal growth and non-
linear instability for the galactic dynamo (Fedotov 2003; Fedotov et al. 2004). The key
insight gained from this theory is that although the trivial state with zero magnetic field
is linearly stable, the non-normality due to differential rotation and the dependence of
a-effect and turbulent magnetic diffusivity on a magnetic field can lead to the insta-
bility with respect to finite perturbations. Thus, in the subcritical case the generation

of a large scale magnetic field can be regarded as a stochastic nucleation in a spatially
extended dissipative system. Depending on the relative stability of stationary states,
the finite localized perturbations (nuclei) either grow or shrink. When they grow, the
propagation of magnetic fronts is observed. It should be noted that although the phe-
nomenon of metastability occurs in many different situations in physics, it has received
little attention in the context of magnetic field generation.

In this paper we use the comparatively simple thin-disk asymptotic approach to ax-
isymmetric mean-field dynamo for disk galaxy (see, e.g., Beck et al. 1996). We restrict our-
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selves to the non-linear oQ-dynamo when both alpha and magnetic diffusivity quenching
are taken into account. The goal is to derive a closed stochastic partial differential equa-
tion for the order parameter describing the subcritical generation and propagation of
magnetic fronts. Our intention is to describe the magnetic field generation as a stochas-
tic process in a spatially extended system with multiple stationary states (a first-order
phase transition). The magnetic front can be regarded as a trigger wave connecting an
initial metastable state and an absolutely stable state (Murray 1989).

2. Thin-disk dynamo equation

We start with an axisymmetric turbulent dynamo in the galactic disk of thickness 2h
and radius R that rotates with angular velocity Q(r) (R >> h). A mean field model for
the evolution of the components of magnetic field Br (t. r) and B, (t, r) can be written
as

OB,I a (B ,,) B , 7rT23 (B ,,) B r B )1 B . t
at h 4h2 ±V (3(B•)VB.)+ F.(t7r),

OBIP 7r 2 ( B,) B,,at - go B,, 4h2 + V (3 (B,) VB;,) + F,(t. r), (2.1)

where a (B,) is the non-linear function describing the a-effect, /3 (B,) is the non-linear
magnetic diffusivity, g9 = rdQ2/dr is the measure of differential rotation and (dQ/dr < 0).
V is the gradient operator in the polar system of coordinates: VB = OB/Or e,.. To
account for unresolved turbulent fluctuations, we add two stochastic terms F,.(t, r) and
F•,(t, r) on the right-hand side of (2.1). We average the magnetic field over the vertical
cross-section of a turbulent disk and consider the spatial structure in the galactic plane
only. Since BI/B,,,, - h/R << 1, we are only interested in the radial, B, , and azimuthal,
B.,. components of the magnetic field B. Here we introduce two functions a(B,) and
O3(B,) describing the quenching mechanism. Theoretical disagreement currently exists
regarding how the a-effect and turbulent diffusivity 3 are suppressed by the magnetic
field. In this paper we use the following non-linear functions:

a(B,) = a0 ( + k, (B,/Beq)2 O(B,) = 3o 1 + k/ ) (2.2)' 1 + (B~qiB,)• ) I22

where k, and k3 are positive constants, Beq is the equipartition strength. It should be
noted that while in this paper we choose specific forms of the dependence of a and 3
on the magnetic field B,. the core result is not dependent upon the precise forms of
these functions. Beq is defined as a field for which the magnetic energy is equal to the
characteristic energy of the turbulent fluctuations: Beq = pv2,. Here p is the density
and v.. is the characteristic velocity associated with the large-scale turbulent flow. Both
functions a(B;) and 3(B,) decay with B,, thus describing the negative feedback on
the magnetic field generation: a0 and i0 are chosen in such a way that a(0) = co and
3(0) = 3o. Note that the dependence of the magnetic diffusivity 3(B,) on the azimuthal
component Bl. is crucial for the subcritical generation of the magnetic fields.

The mean field dynamo equations (2.1) can be non-dimensionalized by using a char-
acteristic length 2h/7r, an angular velocity Q0, and the equipartition strength Bcq:

aB,aBt -= _ (B;,)B,, - 6 3 (B¢,)B, + FV (ý 3 (B,)VB,.) + fr (t. r).
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aB•_ - gBr - !p3(B•)B. + EV (p 3 (B•)vB,) + f• (t. r), (2.3)

at
where

R, - g- = !0 (2.4)

4Rj Q0
and R,, and R•, are the dimensionless measures of relative strength of the a-effect and
the differential rotation respectively:

aoh £2oh 2

R o R, = (2.5)

The random forces f, (t., r) = F,(t, r)/ Q0 and f, (t, r) = F (t. r)/Qo are assumed to be
Gaussian delta-correlated random fields with zero-mean

< f, (t. r) fr (t', r') >= Dr6 (t - t') 6 (r - r'), (2.6)

< f, (t, r) fý, (t', r') >= Dp6 (t - t') 6 (r - r'). (2.7)

The non-linear functions '•(B,) and o3,(B¢,) are

1 (1 + B 2)

1 + kB2 1 + (k + 1)B2' (2.8)

In this paper we consider only the case of aQ-dynamo for which the differential rotation
dominates over the a-effect: £10h >> ao, that is RQ << R... The system (2.3) involves
two small parameters 6 and 6. The typical values are 6 = 0.01 and 6 = 0.1. For small
values 6, s and g ,- 1, the linearized operator in (2.3) is highly non-normal which might
lead to a large transient growth of the azimuthal component B1. Comprehensive survey
and many examples of non-normal systems are given in (Grossmann 2000). One can also
expect a high sensitivity of the second moments of a magnetic field to the stochastic
perturbations ft (t, r) and fs, (t, r) (Fedotov 2003; Fedotov et al. 2004).

Linearization of a zero-dimensional dynamical system (2.3) about the equilibrium point
(0, 0) shows that in the subcritical case when both eigenvalues Al and A2 are negative:

A1 = -E /- A2 =- -- g6 (2.9)

the point (0,0) is a stable node. The corresponding eigenvectors are

hi= (-p, ) h 2 = u 1)T p = << 1. (2.10)
ý9

3. Stochastic normal form of dynamo equation

In this paper we consider only the subcritical case ( 6 > vlg) (Fedotov 2003; Fedotov
et al. 2004). It is convenient to represent the system (2.3) in the stochastic normal form.
By using the eigenvectors h, and h 2 as a basis, the change of variables (B,, B•) -* (u. v)
can be introduced

Br(t, r) = p(v(t, r) - u(t, r)), B¢,(t, r) = v(t, r) + u(t, r). (3.1)

The partial derivatives of the fields u(t, r) and v(t, r) are

au 1( aB, aB,'\
at - 2p a "- at-)



366 S. Fedotov & S. Abarzhi
av _1 9&B, aBIP'
at 2p at at )(32)

and the non-linear stochastic system (2.3) can be rewritten as:

au 1 1 1
-- 2= ( - 1)v + (6 - 2p-;, 3 + 6ý;a)U] + 6V (p37V) - -ft + -fP.

at 2p 2p 2

D9V 1 1 1
t-2[(-2pE3 - J- )v + 6(1 - •)uj + FV (z 3 Vv) + -f, + -f,. (3.3)

where

ýPa= Yp, (v + u), = p 3 (v + u). (3.4)

Since the parameter p is small, the stochastic term f•, (t. r) can be neglected compared
to (2p) - f, (t, r). Since the latter term is proportional to the large parameter p-l, it
explains the sensitivity of the non-normal dynamical systems to random perturbations
(Grossmann 2000). In the linear case, the system (3.3) can be rewritten in a decoupled
form:

au1
= -JAI Ju + sAu - r),

av 1
S IA2 1V +EAV + -f,.(tr). (3.5)

These two equations can be easily solved to get the statistical moments of the random
fields u(t, r) and v(t, r). For the large r for which Au = a 2u/ar 2, we can find from (3.5)
that two-points equal time correlation functions are

(u(t r)u(t.r')) -= (D•) exp - (,A,,)2r-r' - ] (3.6)

(v(t, r)v(t, r')) - D¢ 1 exp - ) Ir - r'1 . (3.7)

In what follows we consider only the case when

A1)• << IA2. (3.8)

One can see from (3.5) that under the condition (3.8), the random field u(t, r) can be
regarded as the "slow" field and v(tr) as the "fast" field. We can see from (3.6) and
(3.7) that the ratio of the second moments Kv2 ) and Ku2

) can be written as

T 2) = (IJ I ) << 1. (3.9)

This inequality allows us to neglect the random fluctuations of v(t, r) compared to those
of u(t, r).

4. Stochastic equation for order parameter

4.1. Adiabatic elimination

Our purpose now is to derive the stochastic equation governing the slow evolution of the
field u. Under conditions (3.8) and (3.9), the "fast" field v(tr) follows the "slow" field
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v(t, r). Neglecting partial structure of v(t, r), one can find from (3.3) that

v - 1 - ý-U) 41
v 2/2E•(u) + 6o(u) +9g 2 " (4.1)

Substitution of (4.1) into (3.3) and putting v = 0 in (3.4) gives the stochastic partial
differential equation (PDE) for the order parameter u(t, r)

1
u= b(u) + EV (,(u)Vu) - fr (t., r) (4.2)

at- = 2/

where

b(u) - . (4.3)
2pc~s(u) + 6,.(U) + gp 2

The main idea of this paper is that the stochastic reaction-diffusion equation (4.2) pro-
vides an universal description of magnetic field generation near the subcritical bifurcation
point. It admits a large variety of solutions including propagating fronts connecting the
different metastable states. The remarkable result here is the appearance of the deter-
ministic potential

U(u) Jb(z)dz, (4.4)

0

which is not obtained by considering the original equations (2.3). Recall that the az-
imuthal component of the magnetic field, B,, can be found as B, = v + u. The function
u describes how the solution of the system (2.3), (B,., B•,), moves along the eigenvector
hl. Eliminating the variable v we neglect the "fast" evolution of (Br, B,) toward h, from
arbitrary initial conditions.

4.2. Steady uniform distributions

Next we find the steady uniform distributions for the equation (4.2). By using (2.8),
(4.3), and equating b(u) to zero, we find the equation

(I + ku)2 ( ku 2 ( + (k +l)u 2 )a=0 (4.5)

determining non-trivial stationary points for the deterministic equation du/dt = b(u). If
we take kQ = k=- = 1, then (4.5) can be rewritten as the equation

(1 + u 2 )3 
- gb(1 + 2U2) 2 = 0 (4.6)

with the bifurcation parameter

gb = (4.7)

It follows from (4.6) that when the parameter 9b is below approximately 0.844, there
exists only one stable equilibrium point u = 0. For the range 0.844 < gb < 1 , the
system exhibits multi-stablity in the bifurcation diagram (Fedotov 2003; Fedotov et al.
2004): there are two unstable states, u , and two non-trivial stable states, 2•. This is a
classical subcritical pitchfork bifurcation. For example, if g5 = 0.95., then uj: = ±0.243
and u2 = ±1.167. The value 9b = 1 separates subcritical (gb < 1) and supercritical

(9b > 1) zones. Here we are concerned only with the subcritical case: 0.844 < gg K 1.
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Since
A, V'7 - << ( . (4.8)

the main criteria for the adiabatic elimination procedure: AlI << IA2 1 is generic in the
subcritical case.

4.3. Free energy functional and first-order phase transitions

One can introduce the free energy functional

F[u] =f [H~j (Vu) 2 + U (u)] dr (4.9)

such that the stochastic PDE (4.2) can be rewritten in the form
Ou 6F 1- -f T (t, r). (4.10)
at 6u 2M

This equation allows us to consider the problem of a galactic magnetic field generation as
a first-order phase transition in a distributed non-equilibrium system. The additive noise
term, f,- (t., r), represents the stochastic forcing arising from the small-scale fluctuations
in magnetic and turbulent velocity fields. Here we address the situation when these
fluctuations generate the critical nucleus. The stable uniform distributions u = 0 and
u = u= can be interpreted as phases. Subcritical instability of the metastable state u = 0
with respect to a finite spatially localized perturbation (nucleus) gives rise to a transient
behavior of a magnetic field in the forms of trigger waves. They connect, for example,
the local minimum of F [u] at u = 0 and the global minimum at u = u'. The critical
nucleus, u* (t, r) can be found from • = 0, that is

b(u*) + EV (ýo3(u*)Vu*) = 0, (4.11)

Vu*(0)=0 and u* -- 0 as r- oc. (4.12)

As long as the critical nucleus u* is formed as a result of random perturbations. it
gives rise to traveling fronts. One can verify that the functional Fokker-Planck equation
corresponding to (4.10) has a stationary solution

P[u] = 4exp 42 F[u]1  (4.13)

where Z is a normalization constant. The transition time, T, from the metastable uniform
state u = 0 to the stable state u- is given by

T - exp 4 DF "[u*] (4.14)

4.4. Magnetic fronts

In the subcritical case, galactic magnetic fronts can be analyzed by using the deterministic
PDE

au
Tt = b(u) + FV (ý3 (u)Vu)), (4.15)

where the non-linear function b(u) belongs to a generic class of bistable non-linearities:
b(u) < 0 for u in (0., u') and b(u) > 0 for u in (u+, u+)). (Note that b(u) is the odd func-
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tion). This is a classical reaction-diffusion equation with the field-dependent diffusivity
ý 3(u).
Let us consider the propagation of the effectively plane magnetic front neglecting all

curvature effects. The equation (4.15) can be written as

at = b(u) + E lOON(u) . (4.16)

One can expect that the long time development leads to the propagation of a traveling
front of permanent form u = u (z), where z = r - ct. The propagation rate c has to be
found from the boundary value problem

-C = b(u) + 6 (a) )z (4.17)

u-0 asz--c, u-+u+ asz- -oc. (4.18)

One can also consider the front propagation when u -* u2 as z - -oc. It should be noted
that when the non-linear function b(u) is bistable and the diffusivity 6p0(u) depends on
the field u, the direction of front propagation is controlled by the sign of the integral

U+ +oo(u)b(u)du (4.19)

rather than fu' b(u)du (constant diffusion). To show this, we use the new variable s.
s(z) obtained from the equation

ds 1 1

dz - p(u (z)) (4.20)

We can rewrite the boundary value problem (4.17) in terms of the auxiliary function

4 (s(z)) = u (z):

-CTs= -- ,(4F)b(D) + , (4.21)

4--0 ass--, ass---c0. (4.22)

Multiplying both sides of (4.21) by d and integrating over [0, u+], we find that the
propagation rate c is given by

C =° 3(u)b(u)du (4.23)
-oo ids,2

So the speed c is positive as long as the integral (4.19) is positive.
To get the formula for c we approximate the non-linear function ý (u)b(u) by a cubic

polynomial for u > 0

ýo3 (u)b(u) u (ut - u)) (u - u+), (4.24)
•1 42

such that ýP(O)b(0) = -JA 1 ju. It follows from (4.21), (4.22) that the propagating rate c
is given by

c+ ' 1 -- - (+ (U 2u+)• (4.25)
2zul u+2



370 S. Fedotov & S. Abarzhi

This is a unique speed that does not depend on the initial conditions. Recall that for the
supercritical case when A1 > 0, we have the minimal speed ci,, = 2 VA'1j.

5. Conclusions and future work

We have studied the stochastic oQ-dynamo model near the bifurcation point in the
subcritical case. By using a two-component aQ-dynamo model, we have derived the
equation for an order parameter in the form of a stochastic reaction-diffusion equation.
This stochastic partial differential equation describes a subcritical generation of galactic
magnetic field as a first-order phase transition in a spatially extended system. We have
identified the free energy functional for galactic dynamo problem, which allows us to find
the estimate for the mean transition time from the metastable uniform state with zero
magnetic field. We have shown that the stochastic generation of magnetic field leads to
a spontaneous front propagation.

So far we have considered the magnetic field propagation in the form of 1 - D traveling
wave that propagates with a constant velocity. It is well known that the speed of a
traveling wave in 2 - D depends on the radius of the expanding circle: c(R) = c - D/R,
where D is a constant diffusivity, c is the propagation rate of a plane wave. So the excited
domain with the radius less than the critical R,,. = c/D does not propagate outward. The
value of the critical radius corresponding to the equation with field-dependent diffusivity
can be found from the critical "nucleus" problem (4.3) and (4.12). Note that in the
subcritical case, the excited domain with the radius greater than Rcr can be formed as
a result of random fluctuations. Clearly our results concerning the subcritical generation
of magnetic field and front propagation are relevant for not only galactic dynamo but
also for solar dynamo as where spatial and temporal structures emerge. However, the
solar dynamo equations cannot be reduced to a single equation like (4.2) and therefore
the computer simulations are required to analyze the subcritical dynamics.
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