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Abstract

A firm understanding of the space environment is necessary to defend US access to

space-based systems. Conventional imaging systems have been developed to gather infor-

mation on space-based objects, but they are incapable of imaging objects in the earth’s

shadow. In order close this gap in imaging-system coverage, an active-illumination based

approach must be used. To facilitate this, a multi-frame active phase diversity imaging

(APDI) algorithm is derived and demonstrated for the statistics of coherent light. In ad-

dition to conventional focal-plane and diversity-plane data, a statistical description for the

pupil-plane intensity distribution is formed and included in the derivation. The algorithm

is implemented and characterized using a Monte Carlo approach. Analysis shows that the

algorithm is robust, that the effect of system configuration on optimal algorithm parameters

is minimal, that the algorithm is insensitive to detection noise for SNR ≥ 7, and that it per-

forms well for SNR’s as low as 2. Furthermore, it’s shown that introduction of pupil-plane

data on average results in a 60% better image reconstruction from dynamically aberrated

data than is obtained using only focal-plane and diversity-plane data.

Both an Expectation-Maximization algorithm and a lensless-APDI approach are pre-

sented for generating imagery directly from pupil-plane polarization measurements. Short-

falls of these methods and areas worthy of further consideration are identified. The use of

pupil-plane polarization state measurements in place of pupil-plane intensity measurements

in the APDI algorithm is explored. A framework for including polarization measurements

into the APDI algorithm is demonstrated, and an initial statistical model and results are pre-

sented. Under the developed implementation, introduction of the polarization data doesn’t

result in better performance. Areas that may result in better reconstructions are discussed.
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Phase Diversity and Polarization Augmented

Techniques for Active Imaging

I. Introduction

Recent military engagements in Iraq and Afghanistan have shown the great impact that

space-based systems can have on the battlefield. The strongly asymmetric advantage

in space enjoyed by the United States armed forces has been cited as one of the largest

factors in the tactical success of Operation Iraqi Freedom and the Global War on Terror in

general [16]. With growing dependence on space-based assets, it’s becoming more and more

important to protect those assets and ensure uninterrupted availability to the war-fighter.

Gen. Lance W. Ward, commanding general Air Force Space Command, warned “[US control

of space] is not a birthright or a destiny.” [27] Recognizing this fact, the United States Air

Force has made protection of space-based assets a high priority.

1.1 Motivation

In order to secure access to and use of space-based assets, a clear understanding of

the space environment and associated threats known as Space Situational Awareness (SSA)

is required. To acquire the desired level of SSA, tools and techniques for identifying, track-

ing, cataloging, monitoring, characterizing, and assessing objects in orbit have been and

continue to be developed and improved. One of the most desirable analytical tools for char-

acterizing or assessing an extra-terrestrial object is the ability to generate high-resolution

imagery of that object. High-resolution imagery can provide a wealth of information about

the object of interest, and is critical for the identification of unknown objects or monitoring

of foreign/friendly systems. Imagery can provide information required to positively iden-

tify unknown systems, identify payloads on potentially hostile objects, and assist in the

troubleshooting of failed systems.

While techniques exist for imaging satellites (see for example [29, 39, 42]), optimal

use of conventional methods cannot cover all of the engagement scenarios critical to SSA.

Conventional nighttime imaging systems can only image a satellite during the brief period

near terminator when the observation system is in the earth’s shadow and the object is
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illuminated by the sun. However, there are many desirable engagement scenarios that place

the satellite beyond terminator and in the earth’s shadow. In this case there is no light

being reflected from the object with which to form an image, and conventional imaging

systems fail.

As an alternative approach, the unique properties of laser light can be used to overcome

some of these limitations and provide SSA information that would otherwise be unavailable.

The ability of lasers to generate intense focused optical radiation can be used to overcome

the requirement for solar illumination by effectively generating a “flash bulb” for the imaging

system that shifts it from a passive to an active imaging mode. Unfortunately, the same

coherence properties that make it possible to project intense light over long distances also

introduce complications unique to coherent light. This work attempts to compensate for

and even leverage these coherence properties to generate high-resolution imagery of exo-

atmospheric objects.

1.2 Overview

Both active and conventional imaging systems suffer from the effects of atmospheric

turbulence. As a result, any system designed to produce high-resolution imagery must be

capable of compensating for or otherwise negating the aberration and associated blurring

caused by atmospheric turbulence. One technique for compensating for the blurring effects

of the atmosphere is the use of phase diversity (PD) image reconstruction [23, 39]. In

conventional PD imaging, two images are simultaneously collected where the first image

is obtained in the conventional focal plane (FP), and the second is obtained in a diversity

plane (DP) that is defocused from the focal plane by some known amount. The data is then

post-processed to produce an estimate of both the aberration and the object.

Because of the severity of laser speckle noise, a multi-frame approach is used to derive a

maximum-likelihood active phase diversity imaging (APDI) reconstruction algorithm similar

to that of Seldin et al. [45]. The resulting algorithm is essentially a hybrid between multi-

frame blind deconvolution and conventional PD reconstruction techniques. In addition to

the modifications required by speckle noise statistics, additional information made available

by coherent illumination is included in the derivation to better condition the reconstruction.
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Specifically, a significant amount of information about the object being imaged is encoded

in the imaging system’s pupil-plane (PP) intensity distribution. A statistical description

of the PP intensity is developed and incorporated into the derivation of the reconstruction

algorithm. The completed APDI algorithm is implemented and characterized using Monte-

Carlo style simulations.

Two scenarios are developed. First, a version of the algorithm tailored to static aber-

rations is developed. This configuration covers situations where the system suffers from an

unknown systemic aberration or when the time between frames is much smaller than the

atmospheric decorrelation time. The non-time-varying nature of the atmospheric aberration

simplifies the problem, making the resulting computations significantly faster. The second

scenario considered is the case where atmospheric turbulence dynamically evolves and re-

alizations are completely decorrelated between data frames. This configuration represents

the most interesting, practical, computationally expensive, and challenging system.

The effects of key parameters (conditioning bias and convergence tolerance) on algo-

rithm performance are evaluated for both static and dynamic aberrations by varying each

parameter and generating 100 random data realizations. The residual mean-squared error

(MSE) between the reconstructed image and the known truth object is computed for each

realization. The effect of parameter variation on MSE is used to determine optimal param-

eter values for multiple scenarios. Overall performance in the presence of detection noise is

characterized by generating 100 random realizations with signal to noise ratio (SNR) values

ranging SNR = 2 to SNR = ∞ with 10, 20, 30, 40, and 50 frames of data, then processing

them with near optimal bias and convergence tolerance. MSE, mean computation time, and

average function evaluations are determined for each reconstruction. The effect of including

additional terms in the reconstructed turbulence representation is investigated by recon-

structing images using 5, 10, 15, 20, 30, 50, and 100 Zernike modes and again comparing

MSE, computation time, and number of function evaluations.

To quantify the impact of adding PP data to the algorithm, versions of the algorithm

excluding the PP data and alternatively the DP data are compiled and run along with

the complete algorithm on 100 data realizations. MSE, convergence time, and function
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evaluations are computed for each realization and compared between the three algorithm

configurations.

As an alternative approach to active imaging, three methods are developed for recon-

structing images using PP polarization data. First, a statistical model for the PP polariza-

tion state is developed and used to build the framework for an Expectation-Maximization

(EM) algorithm for reconstructing the image directly from PP polarization state measure-

ments. Second, the PP polarization data is mathematically shaped to fit within the frame-

work of the APDI algorithm, and the algorithm is modified accordingly. Finally, in an effort

to expand the information available to the initial APDI algorithm and produce better re-

sults, a statistical model for polarization phase data is developed, and the APDI algorithm

expanded to utilize PP polarization state measurements in place of PP intensity measure-

ments.

1.3 Notation and Conventions

To the greatest extent possible, consistent notation is used throughout the text. Where

possible, a given symbol retains its interpretation once defined. Most symbols used through-

out the text are included in a list of symbols located in the prefatory material. Symbols

not defined in the list of symbols either change depending on context, or are only used in

a limited section of the text and not referenced elsewhere. A list of abbreviations is also

included in the prefatory material for reference.

The general geometry used for all notation in this work is shown in Fig. 1.1. Propa-

gation is taken to be along the z axis. The coordinate set (ξ, η) is used for the object plane

(OP), and occasionally for an intermediate mathematical plane. The coordinate set (u, v)

is used for pupil-plane (PP) measurements and/or a frequency-domain coordinate system.

The coordinate system (x, y) is used for the FP, DP, and all data arrays that directly inter-

face with the APDI algorithm, regardless of whether or not they correspond with a physical

plane.
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ξ u

v

x

y

Object Plane Pupil Plane Data Plane(s)

z

η

Figure 1.1: Generalized geometry showing notational conventions. (ξ, η) are used for
object-plane coordinates, (u, v) for pupil-plane coordinates, and (x, y) for data plane coor-
dinates. z is used for the coordinate along the direction of propagation in all planes.

1.4 Document Organization

The document is organized as follows: Chapter II introduces estimation and optimiza-

tion theory applicable to the active imaging problem and image reconstruction techniques.

Chapter III describes applicable optical phenomena including light propagation, coherence

theory, and applicable statistical characteristics of laser speckle patterns. Chapter IV intro-

duces the theory and models used for imaging system performance and atmospheric turbu-

lence. Chapter V contains the development of the APDI algorithm. Chapter VI presents

the results of Monte Carlo analysis of the APDI algorithm and a discussion of their signif-

icance. Chapter VII builds the framework for use of PP polarization state measurements

in image reconstruction and presents the initial results obtained. Chapter VIII summarizes

the contributions and conclusions reached as a result of this work and highlights areas for

future work. Computer code used to implement the APDI algorithm is included in the

appendices.
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II. Applicable Estimation and Optimization Theory

At the core of probabilistic image reconstruction techniques is estimation of unknown

information based on available data. To do this, a basic understanding of estimation

and optimization theory is required. This chapter covers estimation theory and optimization

methods applicable to building the statistically based reconstruction algorithms considered.

2.1 Estimation Theory

All information covering estimation in this section is derived or taken directly from [49].

In the most basic form, estimation is simply a well-defined statistical “best guess” at desired

data (parameters) based on corrupted or incomplete data (observations) using a set of

predefined criteria known as a cost function. The basic estimation problem is composed

of four main components shown in Fig. 2.1: the parameter space, probabilistic mapping,

observation space, and an estimation rule.

Probablistic
Mapping

Estimation

Space
Parameter

Space
Observation

Rule

Figure 2.1: Basic elements of an estimator include the parameter space containing the
parameters to be estimated, an observation space where data is collected, a probabilistic
mapping relating the parameters to observations, and an estimation rule linking observations
with parameters.

The parameter space is made up of all possible parameters and contains the data

that corresponds to the desired “truth” result. The output of the estimation problem

is an element of the parameter space which hopefully corresponds to the “truth.” The

probabilistic mapping models whatever process corrupts the parameters to be estimated,

and is posed in the form of probability distributions describing statistical behavior of the

parameters and observations. The observation space is composed of all possible observations,
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and may or may not intersect the parameter space. The estimation rule is the mapping used

to map elements of the observation space back into the parameter space and thereby form

an estimate of the desired parameter(s).

The probabilistic mapping is frequently a function of the operating environment, and

cannot in general be altered to aid the development of an estimator. Similarly the obser-

vation and parameter spaces are not typically customizable for a given problem. The task

then becomes development of an adequate estimation rule.

2.1.1 Bayesian Estimation. One of the first considerations when developing an

estimation rule is what exactly must be accomplished. For example, one could conceive

a situation such as monitoring for a toxic substance in the environment where overesti-

mation of a parameter might be relatively acceptable, but underestimating it could have

disastrous consequences. Alternatively, when monitoring something like oxygen concentra-

tion in breathable air the converse situation could be true, and overestimation could be

deadly. Given these examples, it should be clear that no one estimation rule will work for

all applicable problems.

To incorporate requirement variability into the estimation rule, a cost function C is

introduced. In general, a cost function is a scalar valued function of both the parameters

and the observations whose value is proportional to the “badness” of a given combination

of the two. Frequently, the cost function can be written as a function of the scalar absolute

error Er, defined as

Er(ô, ~o) ≡ ‖ô(~d)− ~o‖2 (2.1)

where ~o is the parameter vector, ~d is the observation vector, ô is the estimate of ~o generated

by the estimation rule, and ‖·‖2 is the standard Euclidean norm.

While the cost function can be tailored to any specific application, the two most

commonly used cost functions, shown in Fig. 2.2, are the mean-square error cost function

Cmse, defined as

Cmse = [Er (ô, ~o)]2 (2.2a)

= (ô− ~o)T (ô− ~o) (2.2b)
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which increases the cost quadratically as the estimate moves further away from the true

parameters; and the uniform cost function Cu defined as

Cu =





0, Er (ô, ~o) ≤ ∆
2

1, Er (ô, ~o) > ∆
2

(2.3)

which assigns an equal cost to all estimates outside of a neighborhood of width ∆ centered

about the true parameter vector, and assigns no cost to estimates within the neighborhood.

C(x)

x

(a) Mean-Square Error

∆/2 x−∆/2

C(x)

(b) Uniform

Figure 2.2: One-dimensional mean-square error and uniform cost functions for Bayesian
estimation.

Once the cost function has been selected, a Bayesian estimation rule can be formed

given that the joint probability of the parameters and observations p(~o, ~d) is known. The

Bayesian estimation rule is developed by minimizing the risk R defined as

R = E [C(~o, ô)]

=
∫∫ ∞

−∞
C(~o, ô)p(~o, ~d)d~dd~o

(2.4)

where E [·] represents statistical expectation.

As an example, the Bayesian estimation rule for a mean square error cost function

can be found by substituting (2.2) into (2.4) and minimizing

Rmse =
∫∫ ∞

−∞
(ô− ~o)T (ô− ~o) p(~o, ~d)d~dd~o (2.5)
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Noting that p(~o, ~d) = p(~o|~d)p(~d), (2.5) can be written

Rmse =
∫ ∞

−∞
p(~d)

∫ ∞

−∞
(ô− ~o)T (ô− ~o)p(~o|~d)d~od~d (2.6)

Because both p(~d) and the inner integral of (2.6) are non-negative, minimizing the inner

integral ∫ ∞

−∞
(ô− ~o)T (ô− ~o)p(~o|~d)d~o (2.7)

will also minimize Rmse. The value of ô that minimizes this integral is then the minimum-

mean-square estimate ôms.

To minimize the inner integral, (2.7) is differentiated with respect to ô and the result

set equal to zero. Using standard definitions from vector calculus, the derivative of (2.7) is

given by

d
dô

∫ ∞

−∞
(ô− ~o)T (ô− ~o)p(~o|~d)d~o =

∫ ∞

−∞

d
dô

(ô− ~o)T (ô− ~o)p(~o|~d)d~o (2.8a)

=2ô
∫ ∞

−∞
p(~o|~d)d~o− 2

∫ ∞

−∞
~op(~o|~d)d~o (2.8b)

Setting (2.8) equal to zero and noting that
∫∞
−∞ p(~o|~d)d~o = 1, the best estimate ôms is given

by

ôms =
∫ ∞

−∞
~op(~o|~d)d~o (2.9)

which is the expected value of the conditional probability distribution function p(~o|~d).

2.1.2 Maximum A Posteriori Estimation. Another noteworthy example is the

Bayesian estimator that results from the uniform cost function of (2.3) when ∆ is made

arbitrarily small. This estimation rule is given the special name maximum a posteriori

(MAP) estimation. The risk for the associated cost function is given by

Rmap =
∫ ∞

−∞
p(~d)d~d

[
1−

∫ ô+∆/2

ô−∆/2
p(~o|~d)d~o

]
(2.10)

As before, the integral can be minimized by minimizing the inner term, in this case the term

in the brackets. For an arbitrarily small ∆, it can be seen that the minimum of the term
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in brackets is achieved when the a posteriori probability distribution function p(~o|~d) is at a

maximum. The problem them becomes determination and maximization of the distribution.

Frequently, the distributions have the parameter of interest in an exponent, and it

becomes convenient to work with the logarithm of the distribution. Given that the loga-

rithm is a monotonically increasing function, maximization of the logarithm is equivalent

to maximizing the distribution function. Therefore at the MAP estimate value

∂ ln p(~o|~d)
∂~o

∣∣∣∣∣
~o=ômap

= 0 (2.11)

Bayes rule can then be used to separate (2.11) into a priori knowledge and observation

knowledge.
∂L(~o)
∂~o

∣∣∣∣
~o=ômap

=
∂

∂~o

(
ln p(~d|~o) + ln p(~o)

)∣∣∣∣
~o=ômap

= 0 (2.12)

where constant terms have been dropped and L(·) is known as the log-likelihood function.

2.1.3 Maximum Likelihood Estimation. Unfortunately, the parameter distribution

p(~o) is frequently unknown. Without prior information about the parameter distributions,

the best that can be done is to assume that the parameters are uniformly distributed

throughout the parameter space. Applying this to the MAP estimation described in the

previous section, p(~o) is constant and can be dropped. This results in the maximum likeli-

hood (ML) estimate given by

∂L(~o)
∂~o

∣∣∣∣
~o=ômap

=
∂ ln p(~d|~o)

∂~o

∣∣∣∣∣
~o=ômap

=0

(2.13)

2.1.4 Expectation Maximization Algorithm. In many cases, a closed form for

the maximum-likelihood estimate cannot be found because either the statistical model for

the data contains parameters that are unknown, or the likelihood function cannot be easily

differentiated. In these cases, an alternative approach must be taken. If something is known

about the statistics of the missing data, or the likelihood function can be simplified by adding
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additional “hidden” data, the Expectation-Maximization (EM) algorithm [5, 13, 15, 36, 42]

can be used to form an estimate.

Within the framework of the EM algorithm, the measured data ~d is termed the “in-

complete” data (ID), and is generated from a subset of “complete” data (CD) that includes

the unknown or “hidden” data d̃. The problem is modeled in terms of the joint probabil-

ity density function of the complete data conditioned on the parameters ~o that are to be

estimated

p(~d, d̃|~o) = p(d̃|~d, ~o)p(~d|~o) (2.14)

In the event that the “hidden” data is artificially inserted into the problem, the marginal

distribution p(d̃|~d, ~o) is chosen such that it puts the joint density function into a form

that is both convenient for calculation and statistically consistent with the measured data.

Otherwise, the marginal distribution is determined by the nature of the problem.

Once the joint probability distribution function has been determined, the CD log-

likelihood function for ~o can be formed such that

L(~o|~d, d̃) = ln p(~d, d̃, |~o) (2.15)

With the CD log-likelihood function defined, the statistical model for the system is complete

and the algorithm can proceed. As the name suggests, the algorithm consists of two com-

ponents; an expectation component, and a maximization component. In the expectation

step, the CD log-likelihood function given the incomplete data and the current estimate of

the parameters is expectated over the “hidden” data such that

Q(~o, ô(i)) = E
[

L(~o|~d, d̃)∣∣~d, ô(i)
]

(2.16a)

=E
[
ln

{
p(~d, d̃|~o)

} ∣∣~d, ô(i)
]

(2.16b)

=
∫

d̃∈D̃
p(d̃|~d, ô(i)) ln

{
p(~d, d̃|~o)

}
dd̃ (2.16c)

where ô(i) is the current estimate of the parameter, p(d̃|~d, ô(i)) is the marginal density of

the “hidden” data conditioned on the incomplete data and current parameter estimate,

and D̃ is the space over which d̃ is defined. One common problem is that the marginal
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density of the “hidden” data is unobtainable. In these cases, p(d̃|~d, ô(i)) is often replaced by

p(d̃, ~d|ô(i)) = p(d̃|~d, ô(i))p(~d|ô(i)) [5].

The second step of the EM algorithm is the maximization step in which the expected

value of the CD log-likelihood function Q(~o, ô(i)) is maximized with respect to ~o using any

appropriate optimization technique to generate an updated estimate of the parameter ~o(i+1)

such that

ô(i+1) = argmax
~o

Q(~o, ô(i)) (2.17)

2.2 Numerical Optimization Methods

Frequently the maximization involved in forming the MAP/ML estimates or the EM-

iterates cannot be efficiently accomplished analytically due to the size of the problem or

complex nature of the objective function being maximized. In these cases, iterative numer-

ical solution methods can be used to generate a sequence of estimates that converge to the

optimal solution. The iterative solution techniques in this section are adapted from [21]

chapter 4, and are used to minimize a scalar-valued objective function F (~o) such that

ô = argmax
~o

F (~o) (2.18)

To utilize these methods for maximization, the objective function is simply multiplied by

−1.

Nearly all numerical optimization techniques are based on the same basic algorithm

composed of the following major steps:

1. Develop/define an initial guess for the estimate ôk that is consistent with the problem.

2. Check the current estimate ôk of the solution ô for convergence. If the convergence

criteria are satisfied, stop the iteration.

3. Compute the “optimal” search direction ~pk given ôk and the objective function F (~o).

4. Compute the “optimal” step size αk.

5. Update the estimate ôk+1 = ôk + αk~pk to produce the next iterate.
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6. Repeat, beginning at step 2.

Determination of convergence criteria and the definition of “optimal” are based on the

specific method being used.

Additional terms that are frequently used are the gradient vector ~g (analogous to the

first derivative for a univariate function)

∇F ≡ ~g(~o) =




∂F
∂o1
...
∂F
∂on


 (2.19)

and the Hessian G (analogous to the second derivative for the univariate case)

∇2F ≡ G(~o) =




∂2F
∂o21

· · · ∂2F
∂o1∂on

...
. . .

...
∂2F

∂o1∂on
· · · ∂2F

∂o2n


 (2.20)

For convenience, ~g(ôk) and G(ôk) will be written ~gk and Gk respectively.

2.2.1 Newton’s Method. For purposes of iterative optimization, it’s usually suffi-

cient to approximate an arbitrary objective function F (ôk + αk~pk) as a quadratic function

through a Taylor-series expansion about ôk such that in a small region around ôk,

F (ôk + αk~pk) ≈ Fk + αk~g
H
k ~pk +

α2

2
~pHk Gk~pk (2.21)

Given this quadratic form, the minimum will occur when ~pk is a minimum of the quadratic

function

Φ(~pk) = αk~g
H
k ~pk +

α2
k

2
~pHk Gk~pk (2.22)

Differentiating and setting the result to zero, the minimum then satisfies

αkGk~pk = −~gk (2.23)

Setting αk = 1 results in Newton’s method for a multivariate function. If F is exactly

quadratic and G0 is positive definite, Newton’s method converges to the global minimum,
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F (ôk + ~pk) = F (ô), in a single step. Provided the approximation of (2.21) is relatively

accurate, the initial starting point ô0 is not too far from the minimum point ô, and Gk(ô) is

positive definite, Newton’s method will converge quadratically to the true minimum F (ô).

2.2.2 Quasi-Newton’s Methods. In cases where Newton’s method fails to converge

to a correct solution, alternative solution techniques can be used. For example, if the

Hessian Gk(ô) is not positive definite, Quasi-Newton’s methods can be used wherein a

positive definite “related Hessian” Ḡk, closely related to Gk, is formed at each iteration.

Generally, Ḡk is formed using some form of factorization on Gk. The search direction ~pk is

then determined by solution of the system

Ḡk~pk = ~gk (2.24)

The two most common factorizations used for forming Ḡk are the spectral decompo-

sition given by

G = UΛUH (2.25)

where U is a unitary matrix of eigenvectors and Λ is a diagonal matrix of the eigenvalues

of G, and a modification of the Cholesky factorization given by

G = LDLH (2.26)

where L is a unit lower-triangular matrix and D is a diagonal matrix. These factorizations

both provide clear indications of whether or not a given matrix is positive definite, and

what must be done to make it so. The “related Hessian” is then formed by making the

“smallest” changes possible to the true Hessian that will ensure positive definiteness. For

example, if the modified Cholesky factorization results in a diagonal matrix with negative

entries, those negative entries are replaced with an appropriately small positive number.

The magnitude of the replacement is selected based on the maximum acceptable condition

number. Once the related Hessian has been formed, the iterations proceed as with standard

Newton’s method solutions except that a new related Hessian is formed at each iteration.
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2.2.3 Other Common Methods. In cases where both Newton’s and quasi-Newton’s

methods fail to converge to a solution, alternative solution methods including gradient-

descent, conjugate gradient, multi-grid, and other related numerical solution methods can

be used. For descriptions and applications of these methods see for example [14,21].

2.2.4 Constrained Optimization. In many cases physical processes result in con-

straints on the solution vector ô that must be satisfied for it to be a valid solution. To

accommodate these situations, Lagrange multipliers can be used to incorporate the con-

straints into the problem [18]. The modified problem can then be passed to one of the

previously discussed solution methods to find the optimal solution given the constraints.

As a motivating example, define the objective function as

F (~o) = ~oHM~o (2.27)

where H is the hermitian transpose and M is a hermitian matrix, and constrain the solution

such that

~oH~o = n (2.28)

Without applying the constraints, (2.27) can be minimized by taking the derivative with

respect to ~o and setting the result equal to zero, resulting in

M~o = 0 (2.29)

If M is non-singular, the minimizing solution is then ~o = 0. However, the problem con-

straints eliminate this solution from consideration, and an alternative approach has to be

taken.

To accommodate constraints, the Lagrangian is formed using the objective function

F (~o), the constraints, and a vector of Lagrange multipliers such that

L(~o,~λl) = F (~o) + ~λTl c(~o) (2.30)
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where F (~o) is as defined in (2.27), ~λl is a vector of Lagrange multipliers, and c(~o) is a

vector-valued function that when the constraints are met satisfies

c(~o) = ~0 (2.31)

where ~0 is a vector of zeros. L(~o,~λl) is then minimized using any applicable method for

unconstrained problems, and ~λl is selected to satisfy (2.31) exactly. If (2.31) is satisfied for

multiple values of ~λl, the ~λl that results in the minimum value of the objective function

F (~o) is selected.

Considering the objective function of (2.27) with the associated constraint of (2.28),

the constraint function c(x) can be written

c(~o) = n− ~oH~o (2.32)

where n is the number of elements in ~o. In this case, c(~o) is a scalar-valued function, reducing

the vector of multipliers to a single scalar ~λl = λl. Applying this to (2.30) results in the

expression

L(~o, λl) = ~oHM~o− λl~o
H~o+ n (2.33)

Differentiating and setting this equal to zero results in

M~o = λl~o (2.34)

which is simply an eigenvalue problem. The eigenvector corresponding to the smallest

eigenvalue then minimizes F (~o) subject to the constraints of (2.28).

With a sufficient description of the required statistical estimation methods complete,

the next step in building an image reconstruction algorithm is development of a system

model. However, before a statistically-based system model can be built, an understanding

of the applicable physical processes is required, and will be developed in Chapters III and

IV.
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III. Optical Phenomena

Active imaging techniques, including those to be considered here, rely heavily on an

understanding of certain fundamental properties of light including polarization, prop-

agation and diffraction, and coherence. This chapter provides a brief overview of the optical

phenomena applicable to the active imaging problem. The chapter is broken up into four

main areas: the first covers polarization and depolarization phenomena, the second covers

propagation and diffraction of light, the third introduces the coherence theory that will be

used, and the fourth introduces laser speckle statistics that are integral to the active imaging

problem.

3.1 Polarization and Associated Effects

As a form of electro-magnetic radiation, the propagation of light is governed by

Maxwell’s equations, which in differential form are given by [51]

∇× ~E +
∂ ~B

∂t
= 0 (3.1a)

∇× ~H− ∂ ~D

∂t
= J (3.1b)

∇ · ~D = ρ (3.1c)

∇ · ~B = 0 (3.1d)

where ~E is the electric field vector, ~B is the magnetic flux density, ~H is the magnetic field

vector, ~D is the electric displacement, J is the free current density in the material, and ρ

is the free charge density in the material. Given the vector nature of these equations, it’s

clear that any electro-magnetic field will have intrinsically vector qualities. Specifically, in

free-space the wave vector, electric field vector, and the magnetic field vector are jointly

orthogonal and form the basis of a right-handed coordinate system [8]. This characteristic

translates into a “directional” property of the field that can be described by assigning

polarization directions and writing the field in terms of the components along each of the

assigned polarization directions.

3.1.1 Polarization. If the media through which the radiation is passing is homo-

geneous, linear, isotropic, and non-dispersive, the solution to (3.1) will satisfy the pair of
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vector Helmholz equations given by

∇2 ~E − ñ2

c2
∂2 ~E

∂t2
= 0 (3.2a)

∇2 ~H− ñ2

c2
∂2 ~H
∂t2

= 0 (3.2b)

where ñ is the index of refraction and c is the speed of light. Because both ~E and ~H obey the

same vector wave equation, an identical scalar wave equation can be written to completely

describe each vector component [25]

∇2U − ñ2

c2
∂2U

∂t2
(3.3)

where U can represent any of the field components. This implies that as long as the as-

sumptions of a homogeneous, isotropic, linear, non-dispersive media are accurate, the field

can be described by considering each component independently using scalar theory.

One consequence of this property is that specification of the electric field in free space

can be used to completely describe the magnetic field. Therefore, only the electric field will

be considered. Defining the polarization directions of a field propagating in the z direction

to be along x and y, the electric field can be written

~E = Exî+ Ey ĵ (3.4)

where î and ĵ are unit vectors along the x and y directions respectively. Ex and Ey are the

field components projected onto î and ĵ given by

Ex =A1 cos(ωt− kz + θ1)

Ey =A2 cos(ωt− kz + θ2)
(3.5)

where A1 and A2 are real scalar amplitudes, k is the wavenumber, ω is the angular frequency,

and θ1 and θ2 are arbitrary phases in the interval (−π, π].
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To suppress the time and z dependence of (3.5), they are written in the form

Ex
A1

=cos(ωt− kz) cos(θ1)− sin(ωt− kz) sin(θ1)

Ey
A2

=cos(ωt− kz) cos(θ2)− sin(ωt− kz) sin(θ2)
(3.6)

leading to

Ex
A1

sin(θ2)− Ey
A2

sin(θ1) = cos(ωt− kz) sin(θ2 − θ1)

Ex
A1

cos(θ2)− Ey
A2

cos(θ1) = sin(ωt− kz) sin(θ2 − θ1)
(3.7)

which are then squared and added to produce

(
Ex
A1

)2

+
(
Ey
A2

)2

− 2
ExEy
A1A2

cos(θ12) = sin2(θ12) (3.8)

where θ12= θ2 − θ1. Equation (3.8) describes an ellipse that has been rotated in the plane

by an angle Ψ, given by

Ψ =
2ExEy
E2
x +E2

y

cos θ12 (3.9)

and is known as the polarization ellipse [8], illustrated in Fig. 3.1.

Ey

Ex

E Ψ

ω t

Figure 3.1: The polarization ellipse describes the temporal evolution and polarization
state for elliptically polarized radiation. The eccentricity and angle describe the relationship
between the x− and y−polarized fields. The tip of the electric field vector traces the ellipse
with an angular frequency of ω.
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If the time-dependent nature of the field is again considered, it can be seen that the

tip of the electric field vector traces the ellipse, rotating with an angular frequency of ω and

the direction or sense of rotation depending on θ12 [8]. For 0 < θ12 < π, the electric field

vector would appear to rotate in a clockwise fashion when viewing the (x, y) plane from a

point on the positive z axis. By convention in the optical community this sense of rotation

is called a right-handed polarization. When π < θ12 < 2π the electric field vector would

appear to rotate in a counter-clockwise manner and be termed a left-handed polarization. It

should be noted that these conventions for right- and left-handed polarizations are reversed

from those normally used by the RF-microwave community.

One special case of interest is when the polarization state randomly changes on a

time scale that is fast compared with the time-resolution of the detection system, or when

the field is composed of a superposition of many randomly polarized components. This is

referred to as unpolarized radiation, and is characterized by a lack of observable “preferred

direction.”

3.1.2 Stokes Parameters. With the polarization ellipse and sense of rotation spec-

ified, the description of a fully polarized wave of frequency ω traveling through free-space

along the z direction is complete. However, the high frequencies and short wavelengths of

light make it impossible to directly measure the amplitude and phase of the incident field.

Conventional detection schemes rely on detecting the incident intensity/photon flux. Addi-

tionally, light that is only partially polarized needs additional information to satisfactorily

describe it.

One scheme that adequately deals with these complications is the characterization of

the light in terms of the Stokes vector ~S, defined by [8]

~S = [S0, S1, S2, S3] (3.10)
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where

S0 =A2
1 +A2

2

S1 =A2
1 −A2

2

S2 =2A1A2 cos(θ12)

S3 =2A1A2 sin(θ12)

(3.11)

Using a small amount of mental gymnastics, algebra, and intuition, it can be seen that S0 is

proportional to the total intensity of the light, S1 is the predominance of the x polarization

over the y polarization, S2 is the predominance of left-45o linear over right-45o linear po-

larization, and S3 is the predominance of right-circular over left-circular polarization. With

the aid of linear polarizers and a wave plate, all of these quantities can be directly measured

using conventional detection methods.

It should be noted that the polarization state of a fully polarized wave is completely

described by three parameters, A1, A2, and θ12; and that the Stokes parameters provide

four. In the event that the wave is fully polarized, S2
0 = S2

1 + S2
2 + S2

3 and one of the

parameters is degenerate. However, when the wave is partially polarized, the relationship

between S0 and the remaining parameters is no longer valid. The extra information now

available makes it possible to characterize partially polarized light as well.

Partially polarized light can be broken down into the sum of fully polarized and fully

unpolarized components. In this case, the stokes parameters can be written as

~S = ~Su + ~Sp

~Su = [(1− P)S0, 0, 0, 0]

~Sp = [PS0, S1, S2, S3]

(3.12)

where the degree of polarization P is the ratio of the polarized intensity with the total

intensity, and can be written

P =
S2

1 + S2
2 + S2

3

S2
0

(3.13)
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3.1.3 Depolarization. Because one of the imaging techniques being considered

relies heavily on the changes to the polarization state after reflection from a distant object, an

area of particular interest is the variation induced in the polarization state by the reflecting

object. The changes in the polarization state stem primarily from the same fundamental

process, manifested in three forms: change after reflection from a smooth surface induced

by the difference in material reflectivity for the two principle polarization components,

depolarization due to multiple reflections, and depolarization due to scattering from rough

surfaces [4].

The simplest depolarization mechanism, and the foundation for all the applicable

depolarization mechanisms, is caused by the variation between reflection coefficients for the

polarization components parallel (TM) and perpendicular (TE) to the plane of incidence.

For reflection of a wave from an interface between two materials with (possibly) complex

indices of refraction ñ1 and ñ2, the amplitude reflection coefficients are given by the Fresnel

equations [8]

rTE =
ñ1 cos θi − ñ2 cos θt
ñ1 cos θi + ñ2 cos θt

rTM =
ñ2 cos θi − ñ1 cos θt
ñ2 cos θi + ñ1 cos θt

(3.14)

where, θi is the angle between the incident propagation vector and the interface, and θt is

given by the law of refraction such that

ñ1 sin θi = ñ2 sin θt (3.15)

For the cases of interest, the reflecting interface is between free-space where ñ1 = 1, and an

arbitrary material where |ñ2| > 1.

As typical examples, the amplitude reflection coefficients and reflection phases for

500nm radiation reflected from an air-fused silica interface with ñ1 = 1 and ñ2 = 1.45 [26],

and an air-unoxidized aluminum interface with ñ1 = 1 and ñ2 = 0.62(1 + j4.8) [38] are

shown in Fig. 3.2 and Fig. 3.3. Unless the incident light is completely TM or TE polarized,

the incident field will have components containing both TM and TE components. As shown

in Fig. 3.2 and Fig. 3.3, the reflection coefficients differ between TM and TE polarizations.
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The change in relative amplitudes for each polarization component after reflection result in

different major and minor axes for the polarization ellipse, and the change in phase after

reflection shifts its rotation angle.
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Figure 3.2: Reflection amplitude and phase for 500nm radiation reflected from an air
(ñ1 = 1) fused silica (ñ2 = 1.45) interface. The difference between polarizations results in a
change in the polarization state of the reflected radiation.

If the observed field is made up of contributions from reflections off of several different

materials, or of reflections from differently oriented interfaces, the resulting field will be

partially depolarized. The degree of depolarization is then dependent on the number of

contributions and the degree of variance between the polarization of the contributions.

When reflection depolarization is taken to the micro-scale to describe scattering off of a

rough surface, the large number of contributions can significantly depolarize the field. For

a complete discussion of depolarization via rough surface scattering, see chapter 8 of [4].

3.2 Scalar Diffraction Theory

An additional consequence of the scalar Helmholz equation of (3.3) is that provided

the approximations of a linear, homogeneous, isotropic media are valid, diffraction and

propagation of the vector fields can be described using scalar theory for each polarization

component independently. Using this result, Green’s theorem can be used to solve (3.3)

for a given component U of the vector field using diverging spherical waves for the Green’s
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Figure 3.3: Reflection amplitude and phase for 500nm radiation reflected from an air
(ñ1 = 1) aluminum (ñ2 = 0.62(1 + j4.8)) interface. The difference between polarizations
results in a change in the polarization state of the reflected radiation

function [25]. Doing this leads to the most general expression describing scalar diffraction

of monochromatic radiation between two planes given by

U(x, y) =
1
jλ

∫∫ ∞

−∞
U (ξ, η)

exp (jkr01)
r01

χ (θ) dξdη (3.16)

where k = 2π
λ , χ (·) is an “obliquity” factor (typically cos (θ)), and θ is the angle be-

tween a vector normal to the source wavefront at the point (ξ, η) and the vector of length

r01 =
√
z2 + (x− ξ)2 + (y − η)2 connecting the point (ξ, η) in the source plane with the

point (x, y) in the observation plane [25].

Approximating χ (θ) ≈ z
r01

, the diffraction equation becomes

U(x, y) =
z

jλ

∫∫ ∞

−∞
U(ξ, η)

exp(jkr01)
r201

dξdη (3.17)
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Further simplification comes by using the binomial approximation
√

1 + ε ≈ 1 + ε
2 to ap-

proximate r01 in the exponential as

r01 =z

√
1 +

(
x− ξ

z

)2

+
(
y − η

z

)2

(3.18a)

≈z +
(x− ξ)2 + (y − η)2

2z
(3.18b)

and r01 ≈ z otherwise. The end result of these simplifications is the Fresnel diffraction

integral given by

U(x, y) =
ejkz

jλz
ej

k
2z

(x2+y2)

∫∫ ∞

−∞

{
U(ξ, η)ej

k
2z

(ξ2+η2)
}
e−j

2π
λz

(xξ+yη)dξdη (3.19)

An additional simplification can be made when the distance between the source and

observation planes is sufficiently large. Known as the Fraunhoffer diffraction integral, it’s

valid when the product of the object’s maximum dimension and the wavelength is sufficiently

small compared with the separation between the object and observation planes, i.e. when

z À 1
2
k(ξ2max + η2

max) (3.20)

where ξmax and ηmax are the maximum linear dimensions of the object along the ξ and η axes

respectively [25]. In this case, the quadratic phase term inside the integral is approximately

unity over the region of interest and can be safely ignored, resulting in the Fraunhoffer

diffraction equation given by

U(x, y) =
ejkz

jλz
ej

k
2z

(x2+y2)

∫∫ ∞

−∞
U(ξ, η)e−j

2π
λz

(xξ+yη)dξdη (3.21)

which is valid for the cases of interest here. Ignoring the scaling terms outside the integral,

this relationship can be recognized as a Fourier transform of the near-field distribution when

the frequency variables u and v are evaluated at u = x
λz and v = y

λz .
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3.3 Coherence Theory

The basic premise of coherence theory is the characterization of the statistical prop-

erties of radiation. In the most general form, optical coherence is defined as the correlation

between the field U at a point P1 at time t and at a second point P2 at time t+τ , described

by the mutual coherence function Γ12 [24], given by

Γ12(P1, P2, τ) = E [U(P1, t)U∗(P2, t+ τ)] (3.22)

From this general expression, temporal and spatial coherence effects can be described by

setting the variables appropriately. For example, temporal coherence effects can be described

using (3.22) and co-locating the observation points P1 and P2.

3.3.1 Mutual Intensity. The most significant coherence properties for the active

imaging problem are the spatial coherence properties obtained when the correlation is eval-

uated with τ = 0. In this case, the mutual coherence function is given a special designation

called the mutual intensity J12, defined by

J12(P1, P2) ≡ Γ12(P1, P2, 0) = E [U(P1, t)U∗(P2, t)] (3.23)

If P1 = P2, the mutual intensity J12(P1, P1) equals the average intensity in the observation

plane E [I(P1)].

3.3.2 Propagation of the Mutual Intensity. The specific character of the mutual

intensity function for light reflected from a distant object is dependent on both the nature

of the object being illuminated and the character of the illumination. Typically, the mutual

intensity at the object is easily described, and the problem becomes finding the mutual

intensity in the observation plane given the mutual intensity at the object.

For convenience, let P1 = (ξ1, η1) and P2 = (ξ2, η2) be points in the object plane, and

let Q1 = (u1, v1) and Q2 = (u2, v2) be points in the observation plane. Equation (3.16) can

be used to find the field at points Q1 and Q2 which can then be substituted into equation

(3.22) to find the mutual intensity. Doing this, interchanging the order of integration and

expectation, and expressing τ as a function of the path length difference from the source to
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points Q2 and Q2, results in an expression for the mutual intensity in the observation plane

given by

J12(Q1, Q2) =
∫∫ ∞

−∞

∫∫ ∞

−∞
J12(P1, P2) exp

[
−j 2π

λ
(r2 − r1)

]
χ(θ1)
λr1

χ(θ2)
λr2

dξ1dη1dξ2dη2

(3.24)

where r1 is the distance from the point Q1 to P1, r2 is the distance from the point Q2

to the point P2, and θ1 and θ2 are the angles between r1 and r2 and the surface normal

respectively [24].

3.4 Speckle Statistics

The speckled appearance of coherent light scattered from almost any surface is a well

known phenomenon. It was recognized early on that speckle was due to interference in

the detector plane [12]. When coherent light reflects from a rough surface, the differences

in surface profile result in slight differences in propagation distances as shown in Fig. 3.4.

These path-length differences are adequately represented mathematically by the addition

of a random phase to the wave front. Propagation of the field with the addition of this

phase results in the random interference patterns known as speckle. To understand the

implications and uses of speckle, its statistical properties need to be understood.
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Figure 3.4: When coherent light reflects from a rough surface, the slight differences in
path-length result in random phase-front variations that are manifest as speckle.

3.4.1 First-Order Speckle Statistics. The first property of interest for laser speckle

is the statistical distribution of the intensity at a point in the observation plane. To do this,

a rough object is defined such that the phase induced by surface roughness upon reflection
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is randomly distributed on the interval (−π, π]. Physically, this corresponds to an object

with an RMS surface roughness of one wavelength or more, a condition that is satisfied for

all but the most highly polished surfaces at optical wavelengths. When the assumption of

a rough object is valid, the field in an observation plane some distance away is given by a

superposition of contributions from the randomly phased fields in the object plane. In this

case, the problem can be viewed as the sum of complex phasors, which in the limit of many

scattering locations simplifies to complex circular Gaussian statistics given by [12]

p(Ar, Ai) =
1

2πσ2
exp

{
−A

2
r +A2

i

2σ2

}
(3.25)

where

Ar =Re{U} (3.26a)

Ai =Im{U} (3.26b)

are the real and imaginary parts of the complex field, σ2 is given by

σ2 =
E [Io]

2
(3.27)

and Io is the intensity reflected from the object.

Applying variable transformations to get the distribution in terms of intensity and

phase, and integrating out the phase to get the marginal intensity distribution leads to an

exponential distribution in intensity given by

p(Ip) =





1
E[Ip]

exp
(
− Ip

E[Ip]

)
Ip ≥ 0

0, else
(3.28)

where Ip is the intensity in the far-field [24]. One implication of this distribution is that the

standard deviation of the intensity is equal to the mean E [Ip].

3.4.2 Second-Order Speckle Statistics. An understanding of second-order speckle

statistics begins with a description of the mutual intensity at the object. Assuming that the
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correlation length of the surface roughness is small compared with the size of the object,

the mutual intensity in the object plane can be described by [24]

J12(P1, P2) = E [Io (P1)] δ (P1 − P2) (3.29)

where δ (P1 − P2) is the Dirac delta in Cartesian coordinates. If the object is uniformly

illuminated, E [Io] is proportional to the reflectivity of the object.

At this point (3.24) can be used to determine the mutual intensity in the observation

plane. Given the geometry being considered and the form of the mutual intensity, several

simplifications can be made. In the far-field, χ(θ0) and χ(θ1) are approximately 1, and
1

r1r2
≈ 1

z2
. Additionally, the standard paraxial approximations can be made for r1 and r2

in the exponential,

r1 =
√
z2 + (u1 − ξ1)

2 + (v1 − η1)
2

≈ z +
(u1 − ξ1)

2 + (v1 − η1)
2

2z2

r2 =
√
z2 + (u2 − ξ2)

2 + (v2 − η2)
2

≈ z +
(u2 − ξ2)

2 + (v2 − η2)
2

2z2

(3.30)

Applying these approximations and employing the sifting property of δ(P1−P2) results

in the final expression for the mutual intensity in the observation plane.

J12 (∆u,∆v) =
γe−jψp

(λz)2

∫∫ ∞

−∞
E [I(ξ, η)] exp

{
−j 2π

λz
[(∆uξ + ∆vη)]

}
dξdη (3.31)

where ∆u = u2 − u1, ∆v = v2 − v1, ψp= π
λz

[(
u2

1 + v2
1

)− (
u2

1 + v2
1

)]
, and γ is a scaling

constant. Although derived for coherent illumination scattered from a rough object, (3.31)

is functionally identical to the Van Cittert-Zernike theorem for incoherent light [24]. At this

point it’s also worth noting that the ensemble averaged intensity in the far-field is given by

E [Ip(u, v)] = J12(∆u = 0,∆v = 0) (3.32)

which is constant across the observation plane.
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One characteristic of interest is the pupil-plane Power Spectral Density (PSD) of the

speckled intensity. According to the Weiner-Khintchine theorem, the PSD and autocorrela-

tion of the speckle intensity are related through a Fourier transform relationship [46] such

that

ΦPP (x, y) = F{ΓPP (∆u,∆v)} (3.33)

where F{·} is the Fourier transform, ΦPP is the speckle PSD, and ΓPP (∆u,∆v) is the

speckle autocorrelation for point separations ∆u and ∆v.

Because the underlying fields obey complex Gaussian statistics, the autocorrelation

of the field amplitude and the intensity are related through the complex Gaussian moment

theorem [24] according to

ΓPP =E [Ip(u1, v1)] E [Ip(u2, v2)] + |J12(u1, v1, u2, v2)|2

=E [Ip]
2
[
1 + |µc|2

] (3.34)

where the complex coherence coefficient µc is given by

µc(u1, v1, u2, v2) =
J12 (u1, v1, u2, v2)

[J12 (u1, v1, u1, v1) J12 (u2, v2, u2, v2)]
1/2

(3.35)

Recognizing from (3.31) and (3.35) that µc is a scaled Fourier transform of the object

intensity, the normalized near-field intensity PSD Φ̂nf can be written

Φ̂nf (u, v) = |µc (∆u,∆v)|2 (3.36)

Substituting (3.36) into (3.34) and applying the Weiner-Khintchine theorem, the far-

field intensity (speckle) power spectral density can be written as

ΦPP (x, y) = E [Ip]
2
[
δ (x, y) + F{Φ̂nf (u, v)}

]
(3.37)

Because the near field intensity E [Ip] is real and non-negative, F{Φ̂nf} = F−1{Φ̂nf}, which

can be used with (3.33) to give

ΦPP (u, v) = E [Ip]
2 [δ(u, v) + Γn] (3.38)
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where Γn is the normalized autocorrelation of the near-field intensity given by

Γn(x, y) = γo(x, y) ~ o(x, y) (3.39)

and where ~ is a two-dimensional correlation.

Additional statistical properties of the far-field pattern can be found provided the

joint probability distribution function for the applicable quantity is known. Of particular

interest are the joint distributions for the complex amplitude, intensity, and phase. As

stated previously, the field in the detector plane follows joint complex circular Gaussian

statistics [12], resulting in a probability distribution function given by

P (U) =
1

(2π)n/2
√
|ΓU |

exp
{
−1

2
UHΓ−1

U U

}
(3.40)

where U is a vector of complex amplitudes, H is the Hermitian transpose, and ΓU is the

associated correlation matrix given by ΓU = E
[
UUH

]
[35]. From this, the joint statistics

of the amplitude, phase, and intensity can be derived.

To specify the second-order density function of the amplitude and phase, the complex

amplitudes U1 and U2 at two distinct points are written in as U1 = U
(r)
1 + iU

(i)
1 and U2 =

U
(r)
2 + iU

(i)
2 . The joint PDF of U1 and U2 is then given by

p(U (r)
1 , U

(i)
1 , U

(r)
2 , U

(i)
2 ) =

exp
[
− |U1|2+|U2|2−µcU1U∗2−µ∗cU∗1U2

2σ2(1−|µc|2)

]

4π2σ4
(
1− |µc|2

) (3.41)

where µc is the complex coherence factor from (3.35), and it has been assumed that

E [Ip (u1, v1)] = E [Ip (u2, v2)] = 2σ2 [12].
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The joint statistics of the intensity and phase are then related to (3.41) through the

variable transformations

U
(r)
1 =

√
I1 cos(θ1)

U
(r)
2 =

√
I2 cos(θ2)

U
(i)
1 =

√
I1 sin(θ1)

U
(i)
2 =

√
I2 sin(θ2)

(3.42)

Noting that the Jacobian of this transformation is 1/4, and defining µ= |µc| and ψ= ∠µc,

the resulting joint PDF for the intensity and phase is given by

pI,θ(I1, I2, θ1, θ2) =
exp

[
− I1+I2−2

√
I1I2µ cos(θ1−θ2+ψ)
2σ2(1−µ2)

]

16π2σ4(1− µ2)
(3.43)

which can be integrated to find the marginal joint densities for the intensity and phase.

From [12], the joint density for the intensity is given by

pI(I1, I2) =
exp

[
− I1+I2

E[I](1−µ2)

]

E [I]2 (1− µ2)
I0

(
2µ
√
I1I2

E [I] (1− µ2)

)
(3.44)

where I0 is a modified Bessel function of the first kind, zero order. Also from [12], the joint

density of the phase is given by

pθ(θ1, θ2) =
1− µ2

4π2(1− β2)3/2

(
β sin−1 β +

πβ

2
+

√
1− β2

)
(3.45)

where β = µ cos(θ2 − θ1 + ψ), and θ1 and θ2 are in the interval (−π, π).

This chapter introduced the basic building blocks of polarization, scalar diffraction,

and the statistical nature of light. With these tools in hand, the next step is to use these

tools to build up a system model for use in algorithm development.
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IV. Conventional Imaging and Atmospheric Turbulence

With an understanding of scalar diffraction and other optical phenomenon in hand,

the next step required to begin developing a reconstruction algorithm is forming a

model for the imaging system that includes the effects of aberrations on image formation.

Beginning with the diffraction theory developed in chapter III, a model for image forma-

tion using both coherent and incoherent illumination is developed. The effects of system

aberrations and the usage of Zernike coefficients for describing them are presented. Because

the primary aberrations of interest are caused by atmospheric turbulence, a statistical de-

scription of the turbulence is developed and again described in terms of Zernike modes. A

method for simulating the effects of turbulence using Zernike modes is presented. Finally,

conventional phase diversity techniques for reconstructing images from aberrated data are

presented for both Gaussian and Poisson dominated noise statistics.

4.1 Basic System Model

Before diffraction theory can be used to describe the imaging process, a model for

the imaging system through which the light will propagate must be developed. For an

achromatic imaging system, even complex configurations can be modeled using a single thin

lens located in the pupil-plane of the system as shown in Fig. 4.1 [8]. The object is described

by the field Uo(ξ, η) in a plane a distance zo from the imaging system pupil, the effective

lens and pupil-plane field Up(u, v) are located in the pupil plane of the imaging system, and

the image-plane field Ui(x, y) is in a plane a distance zi behind the pupil. Diffraction theory

as outlined in chapter III is used to translate the field between planes. The effect of the lens

can be described by multiplying the incident field with a real pupil function and complex

phase such that the field just after the lens is given by

U ′p(u, v) = Up(u, v)P (u, v)e−j
π
λfl

(u2+v2) (4.1)

where fl is the focal length of the effective lens and P (u, v) is the transmission function of

the imaging system’s pupil. Frequently, P (u, v) is a clear circular pupil described by
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U (u,v)p

i
(x,y)U

zo

zi
U ξ,η( )o

Figure 4.1: Simplified imaging system. Imaging systems can generaly be described by a
simple lens with a diameter equal to the imaging system pupil and a focal length equal to
the focal length of the imaging system.

P (u, v) =





1, u2 + v2 ≤ 1

0, else
(4.2)

where the coordinate system has been scaled such that the pupil-diameter is one to simplify

later work.

4.1.1 Coherent Imaging. Because diffraction is a linear operation, the effect of

diffraction through a linear system can be described in general by the superposition integral

Ui(x, y) =
∫∫ ∞

−∞
h(x, y; ξ, η)Uo(ξ, η)dξdη (4.3)

where the impulse response, h(x, y; ξ, η), is the image-plane field that would result from a

point source located at the point (ξ, η) in the object plane [25]. Using a point source object

to obtain h, the field in the pupil plane is simply a diverging spherical wave; which under

the paraxial approximation is given by

Up(u, v) =
1

jλzo
exp

{
j
π

λzo

[
(u− ξ)2 + (v − η)2

]}
(4.4)
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Applying the lens and using Fresnel diffraction to propagate the pupil plane field to the

image plane, the resulting impulse response for the imaging system is given by

h(x, y; ξ, η) =
1

λ2zizo
exp

[
j
π

zo

(
ξ2, η2

)]
exp

[
j
π

zi

(
x2, y2

)]

∫∫ ∞

−∞
P (u, v) exp

[
j
π

λ

(
1
zo

+
1
zi
− 1
fl

)(
u2 + v2

)]

exp
{
−j 2π

λ

[(
ξ

zo
+
x

zi

)
u+

(
η

zo
+
y

zi

)
v

]}
dudv (4.5)

Considering the quadratic phase term within the integral, when the Gauss lens law is sat-

isfied, i.e. when
1
fl

=
1
zo

+
1
zi

(4.6)

the phase term vanishes, leaving only the phase terms outside the integral to deal with. For

the term involving image-plane coordinates x and y, if the intensity is the final quantity of

interest this term can be neglected outright. The term involving the object-plane coordinates

ξ and η isn’t so easily neglected; however, this term can also be approximated as unity under

certain assumptions that will be invoked here [25].

To further simplify the impulse response, the system magnification M is defined as

M = − zi
zo

(4.7)

and the scale constants outside the integral are dropped, resulting in

h (x− ξ, y − η) =
∫∫ ∞

−∞
P (u, v) exp

{
−j 2π

λzi
(x−Mξ)u+ (y −Mη) v

}
dudv (4.8)

which when M = −1, is the impulse response function for a linear, shift-invariant system

that can be recognized as a scaled Fourier transform of the imaging system pupil-function.

Applying this impulse-response function to (4.3) results in the final model for the field in

the image plane

Ui(x, y) =
∫∫ ∞

−∞
Uo (ξ, η)h (x− ξ, y − η) dξdη (4.9)
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The instantaneous intensity, Ii, in the image plane is then given by

Ii(x, y) =
∣∣∣∣
∫∫ ∞

−∞
Uo (ξ, η)h (x− ξ, y − η) dξdη

∣∣∣∣
2

(4.10)

Because all detectors integrate for some period of time, the instantaneous intensity must be

averaged [24], resulting in

E [Ii(x, y)] =
∫∫ ∞

−∞
dξ1dη1

∫∫ ∞

−∞
dξ2dη2h(x−ξ1, y−η2)h∗(x−ξ2, y−η2) E [Uo(ξ1, η1)U∗o (ξ2, η2)]

(4.11)

For coherent illumination, the fields are deterministic and the expectation can be dropped.

The integrals can then be separated such that the final expression for the coherent image

reverts to the instantaneous intensity given by (4.10).

4.1.2 Incoherent Imaging. When the illumination is incoherent, the mutual inten-

sity is adequately described by

E [Uo(ξ1, η1)Uo(ξ2, η2)] = δ(ξ1 − ξ2, η1 − η2)Io(ξ1, η1) (4.12)

where Io(ξ1, η1) is the intensity in the object plane. Substituting this into (4.11) and em-

ploying the sifting property of the δ-function results in an expression for the intensity in the

image plane under incoherent illumination given by

Ii(x, y) =
∫∫ ∞

−∞
s(x− ξ, y − η)Io(ξ, η)dξdη (4.13)

where the point-spread function s is given by

s(x, y) = |h(x, y)|2 (4.14)

4.1.3 Aberrations and Zernike Polynomials. In general, the imaging system isn’t

completely described by a perfect thin lens, and consequently suffers from some form of

aberration which serves to widen the point-spread function and blur the resulting image.

The simplest approach to describing the effects of aberrations is to add their contributions

to the system model’s pupil function. The pupil function is allowed to be complex and
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defined as

P ′(u, v) = P (u, v)ejφ(u,v) (4.15)

where any obstructions or amplitude transmission variations are included in P (u, v), and

phase aberrations such as defocus, coma, astigmatism, etc... are included in the phase term

φ(u, v).

To simplify analysis, the phase aberration φ(u, v) is frequently projected against a basis

set to parameterize the aberrations. Because they coincide with the classical aberrations and

tend to efficiently represent the aberration with relatively few terms, Zernike polynomials

(modes) are often used as the basis set. For this work, the Zernike modes are as defined

and indexed by Noll [37] such that

Zj(r, θ) =





√
n+ 1Rmn (r)

√
2 cos(mθ) m 6= 0 and j even

√
n+ 1Rmn (r)

√
2 sin(mθ) m 6= 0 and j odd

√
n+ 1R0

n(r) m = 0

(4.16)

where

Rmn (r) =

n−m
2∑

s=0

(−1)s(n− s)!
s!

[
n+m

2 − s
]
!
[
n−m

2 − s
]
!
rn−2s (4.17)

r =
√
u2 + v2, θ = tan−1 (v/u), and 0 ≤ r ≤ 1, 0 ≤ θ < 2π. The sequence of modes defined

by the mode index j is such that incrementing j increments the angular mode number m

until it’s equal to the radial mode number n, at which point n is incremented and m reset

to zero. The progression in mode number for modes 1 through 16 is shown in Table 4.1

along with the corresponding common name (where applicable) for the particular aberration

represented by a given mode.

4.2 Atmospheric Turbulence

Quite frequently the limiting system aberration is the blurring caused by atmospheric

turbulence. This effect can be easily seen in the “twinkling” of stars and results in much

worse resolution than would be the case if the atmosphere were not a contributing factor.
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Table 4.1: First 16 Noll-indexed Zernike modes with the associated common aberration
names [41]

j n m Zj(r, θ) aberration
1 0 0 1 piston
2 1 1 2r cos (θ) tilt (x)
3 1 1 2r sin (θ) tilt (y)
4 2 0

√
3

(
2r2 − 1

)
defocus

5 2 2
√

6r2 sin (2θ) astigmatism (x)
6 2 2

√
6r2 cos (2θ) astigmatism (y)

7 3 1
√

8
(
3r3 − 2r

)
sin (θ) coma (x)

8 3 1
√

8
(
3r3 − 2r

)
cos (θ) coma (y)

9 3 3
√

8r3 sin (3θ)
10 3 3

√
8r3 cos (3θ)

11 4 0
√

5
(
6r4 − 6r2 + 1

)
3rd order spherical

12 4 2
√

10
(
4r4 − 3r2

)
cos (2θ)

13 4 2
√

10
(
4r4 − 3r2

)
sin (2θ)

14 4 4
√

10r4 cos (4θ)
15 4 4

√
10r4 cos (4θ)

16 5 1
√

12
(
10r5 − 12r3 + 3r

)
cos (θ)

4.2.1 Kolmogorov Turbulence Theory. A complete description of turbulence theory

would require an entire book, and multiple sources are available for more detailed descrip-

tions (see for example [2,41]). Only a brief overview of the relevant results will be presented

here.

Using dimensional analysis and physical insight, Kolmogorov developed a power spec-

trum for velocity fluctuations in a turbulent medium that was extended to describe the

power spectrum for index of refraction variations, Φn, given by [2]

Φn (κ) = 0.033C2
nκ

− 11
3 ,

1
Lo

¿ κ¿ 1
lo

(4.18)

where κ= 2π/
√
u2 + v2 is the spatial wavenumber, Lo is the turbulence outer scale which

corresponds roughly to the size of the largest turbulent area that can be analyzed indepen-

dently from the parent flow, lo is the turbulence inner scale which is roughly the size of the

smallest intact regions of turbulent flow, and C2
n is the index of refraction structure function

constant characterizing turbulence strength. In general, C2
n will be a function of altitude,

but a path-averaged value will be used here.
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To transition from index of refraction fluctuations to phase fluctuations, the aberration

phase due to propagating a distance L along the z axis through the turbulent flow is found

by adding up contributions from the varying optical path lengths caused by the changes in

refractive index according to

φ (u, v) = k

∫ L

0
dz ñ1 (u, v, z) (4.19)

where L is the thickness of the turbulent layer, the index of refraction for the flow is defined

as

ñ (u, v, z) = ñ0 + ñ1 (u, v, z) (4.20)

ñ0 is the mean index value, ñ1 is the small perturbation caused by turbulence, and L is the

distance along the propagation path. Assuming phase fluctuations are sufficiently small to

approximate their cumulative effect in a single layer, the field resulting from propagating a

unit-amplitude incident plane wave through the turbulence would then be given by

Ut (u, v) = exp [jφ (u, v)] (4.21)

Assuming wide-sense stationarity for the turbulence, the spatial correlation function for the

resulting field is then given by

Γφ(∆u,∆v) = E [exp [jφ(u, v)] exp [−jφ(u−∆u, v −∆v)]] (4.22)

=E
[
exp

[
jk

(∫ L

0
dz [ñ1(u, v, z)− ñ1(u−∆u, v −∆v, z)]

)]]
(4.23)

Assuming the index fluctuations follow Gaussian statistics, (4.22) can be simplified

using

E [exp (a+ jb)] = exp [(µa + jµb)] exp
[
1
2

(
σ2
a − j2ρσaσb − σ2

b

)]
(4.24)

where

ρ =
E [(a− µa)(b− µb)]√

σ2
aσ

2
b

(4.25)

and where µa and µb are the mean values of a and b respectively. Applying (4.24) to (4.22)

and recognizing that the real part of the exponent, a, is zero everywhere, µa = σa = 0 [41].
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The imaginary part, b, of (4.24) is seen to be only a function of ñ1, which from the definition

of (4.20) is zero mean. Applying this, µb = 0, and the resulting phase correlation function,

Γφ, is given by

Γφ(∆u,∆v) = exp

[
−1

2
k2 E

[(∫ L

0
dz [ñ1(u, v, z)− ñ1(u−∆u, v −∆v, z)]

)2
]]

(4.26)

= exp
[
−1

2
Dφ(∆u,∆v)

]
(4.27)

where the phase structure function Dφ(∆u,∆v) is defined

Dφ(∆u,∆v) =k2 E

[(∫ L

0
dz [ñ1(u, v, z)− ñ1(u−∆u, v −∆v, z)]

)2
]

(4.28)

= E
[
(φ(u, v)− φ(u−∆u, v −∆v))2

]
(4.29)

At this point it’s clear that describing the structure function is sufficient to completely

characterize the statistics of the phase.

Defining

r =
√

∆u2 + ∆v2 (4.30)

and assuming Kolmogorov statistics, the phase structure function is given by [41]

Dφ(∆u,∆v) = 2.91k2LC2
nr

5
3 (4.31)

Defining the Fried parameter r0 [41]

r0 = 0.185
[

4π2

k2C2
nL

] 3
5

(4.32)

the structure function reduces to

Dφ(∆u, v) = 6.88
(
r

r0

) 5
3

(4.33)

4.2.2 Representing and Simulating Turbulence with Zernike Polynomials. As with

other aberrations, it’s frequently convenient to describe turbulence effects in terms of Zernike
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modes. Using Kolmogorov statistics as given above, Noll wrote the power spectral density

for phase fluctuations as [37]

Φφ(κ) = 0.023r5/30 κ−11/3 (4.34)

Using this spectrum, Noll showed that the Zernike-mode expansion coefficients were Gaus-

sian distributed with zero mean and a covariance matrix, Γz, defined by

(Γz)j,j′ =
−0.145
π

(
D

r0

) 5
3 √

(n+ 1)(n′ + 1)(−δmm′)
n+n′−2m

2

∫ ∞

0
dk k−

5
3
Jn+1(2πk)Jn′+1(2πk)

k2

(4.35)

where D is the diameter of the imaging system pupil, αj is the coefficient for the jth mode, n

and m are the radial and angular mode numbers for the jth mode, and δmm′ is the Kronecker

delta. The integral in (4.35) can be analytically evaluated, and is given by [37]

∫ ∞

0
dk k−

5
3
Jn+1(2πk)Jn′+1(2πk)

k2
=

Γ
(

14
3

)
Γ

[
(n+n′)

2 − 23
6

]

214/3Γ
[

(n−n′)
2 + 17

6

]
Γ

[
(n+n′)

2 + 23
6

] (4.36)

One notable property of (4.35) is that the only dependence on the atmosphere or

imaging system is contained in the D/r0 term, which can be factored out as a scale constant.

The covariance matrix can then be computed forD/r0 = 1 and used for arbitrary turbulence

strengths by simply scaling the result by (D/r0)5/3. The normalized covariance matrix, for

modes 2-10 is given in Table 4.2.

Table 4.2: Normalized Zernike mode covariance for the first 10 modes excluding piston
and assuming Kolmogorov statistics. To obtain the true covariance, multiply these values
by (D/r0)5/3.

j 2 3 4 5 6 7 8 9 10
2 0.448 0 0 0 0 0 -0.0141 0 0
3 0 0.448 0 0 0 -0.0141 0 0 0
4 0 0 0.0232 0 0 0 0 0 0
5 0 0 0 0.0232 0 0 0 0 0
6 0 0 0 0 0.0232 0 0 0 0
7 0 -0.0141 0 0 0 0.0062 0 0 0
8 -0.0141 0 0 0 0 0 0.0062 0 0
9 0 0 0 0 0 0 0 0.0062 0
10 0 0 0 0 0 0 0 0 0.0062

One application of these results is the generation of simulated phase screens using

Zernike modes. To build a random phase screen with Kolmogorov statistics, a vector of
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Gaussian distributed random numbers characterized by the covariance of (4.35) is generated

and used to weight the Zernike modes which are then summed.

The correlated Gaussian random numbers can be generated by utilizing the fact that

any linear transformation of Gaussian random numbers is also Gaussian distributed [35].

Furthermore, given the joint Gaussian random vector ~x ∼ N (0,Σ), the transformation

matrix M, and defining ~y = M~x, the transformed vector ~y will be described by

~y ∼ N (0,MΣMH) (4.37)

If ~x ∼ N (0, I), as would be the case for computer-generated random numbers, MΣMH =

MMH . Because the correlation matrix is symmetric and positive definite, a vector of

random numbers with the desired correlation Γ can be generated by factoring the correlation

matrix into its Cholesky decomposition such that

Γ = CHC (4.38)

then generating a vector of uncorrelated random numbers and performing the vector-matrix

product

~y = CH~x (4.39)

at which point ~y has the desired statistics.

To simplify computation, a reduced set of Zernike modes may be used, sacrificing

some of the high-frequency content. While this is an incomplete representation, the results

shown in Table 4.2 clearly show that the parameter variance, and thereby the “power” in a

given mode, decreases rapidly with increasing order. Because of the ability of the Zernike

mode basis set to efficiently pack the majority of the aberration into the lowest order terms,

a truncated parameter vector can still accurately represent the aberration phase.

4.3 Phase Diversity Imaging

One successful approach to producing high-resolution images in the presence of atmo-

spheric and systemic aberrations is to use phase diversity (PD) techniques to post-process

aberrated data. First proposed by Gonsalves as a means for phase estimation [22,23], phase

42



diversity imaging uses information contained in both a conventional and an intentionally

aberrated image of the object, both of which have been degraded by the same unknown

aberration. Before modifying this approach to accommodate the active imaging scenario,

an understanding of the basic technique is required. Once the basic algorithm is understood,

it can be extended to work with active imaging data.

A conventional phase diversity imaging system is composed of a traditional imaging

system (in this case a telescope focused at infinity) with the addition of a second detector

plane which has been subjected to some known aberration. Because of easy implementation

and mathematical simplicity, system developers have traditionally chosen defocus for the

known aberration. A notional phase-diversity imaging system is illustrated in Fig. 4.3. The

following development of conventional phase diveristy imaging under Gaussian and Poisson

noise statistics is derived from that of Paxman et al. [39].

Known Defocus

Diversity PlaneUnknown Aberration

Object of Interest

Beam SplitterImaging System

Image Plane

Figure 4.2: A conventional phase diversity imaging system. Data is collected in the focal
plane and in a plane with some known amount of defocus added.

4.3.1 System Model. The initial step in developing a phase diversity algorithm is

to model the noiseless imaging system. Consistent with section 4.1.2 the system is modeled

in terms of its optical transfer functions

HFP (u, v) =P (u, v) exp [−jφ(u, v)] (4.40a)

HDP (u, v) =P (u, v) exp [−j (φ(u, v) + φD(u, v))] (4.40b)

where P (u, v) is the amplitude of the imaging system’s pupil-function, φ(u, v) is the unknown

aberration phase induced by the optical system or the atmosphere, and φD(u, v) is the known

diversity phase. To simplify analysis, the aberrating phase and diversity phase are written
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as an expansion in some suitable basis set such that

φ(u, v) =
∑

k

αkψk(u, v) (4.41)

and

φD(u, v) =
∑

k

βkψk(u, v) (4.42)

where αk and βk are scalar weights, and ψk is the kth basis function.

Because of their ability to describe complex aberrations with relatively few basis func-

tions, the Zernike modes as described in section 4.1.3 are used as the basis set. Selecting

defocus for the diversity aberration, the diversity phase is completely described by the fourth

Zernike mode such that

φD(u, v) = β4ψ4(u, v) (4.43)

Once the system model is complete, the PSF’s are given by

sm(x, y) = |hm(x, y)|2 (4.44)

where m ∈ {FP,DP} and the impulse response is defined by

hm(x, y) = F{Hm(u, v)} (4.45)

The incoherent images, gm, that would result in the absence of noise are then given by

gm(x, y) = o (x, y)⊗ sm(x, y) (4.46)

where o is the idealized image that would be formed under an aberration-free geometrical

optics approximation and ⊗ represents a two-dimensional convolution.

At this point in the development, it’s necessary to statistically describe the dominant

noise source; then, using the noise statistics, develop an appropriate estimator. In the

simplest cases such as when detector thermal noise is the dominant source, the noise is

described as an additive white Gaussian process. Alternatively, for low-noise detectors, the

dominant noise source would more likely be photon or shot noise characterized by Poisson
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statistics. Each noise source leads to a different estimator, both of which will be described

below.

4.3.2 Additive Gaussian Noise Limited Detection. When the noise is adequately

described using additive white Gaussian statistics, the data dm is modeled by

dm(x, y) =gm(x, y) + n̂m(x, y) (4.47a)

=o (x, y)⊗ sm(x, y) + n̂m(x, y) (4.47b)

where n̂m(x, y) is spatially uncorrelated Gaussian noise for the mth channel. The probability

distribution for the data is then given by

pD(D) =
∏
m

∏
x,y

1√
2πσ2

n̂m

exp

[
−(dm(x, y)− gm(x, y))2

2σ2
n̂m

]
(4.48)

where D is a complete data set containing both focal-plane and diversity plane intensity

measurements. From (4.48) the log-likelihood function is then

L(o, ~α) = −
∑
m

∑
x,y

[dm(x, y)− o (x, y)⊗ sm(x, y)]2 (4.49)

where ~α= {α1 . . . αk} is the vector of Zernike expansion coefficients for the aberration phase.

Applying both the convolution theorem and Parseval’s theorem, (4.49) can be written

L(o, ~α) = −
∑
m

∑
u,v

[Dm(u, v)−O(u, v)Sm(u, v)]2 (4.50)

where Dm, O, and Sm are Fourier transforms of dm, o, and sm respectively. The maximum

likelihood estimate for ~α and o is then found by maximizing (4.50). This is equivalent to

minimizing the mean squared error metric used by Gonsalves [23]. Furthermore, Gonsalves

showed that the dependence on o could be removed by forming a closed-form estimate for

the object given the data and aberration defined by

OM (u, v) =
DFP (u, v)S∗FP (u, v) +DDP (u, v)S∗DP (u, v)

|SFP (u, v)|2 + |SDP (u, v)|2 (4.51)
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which is essentially an application of a Weiner filter to the available data.

At this point, (4.51) can be substituted back into (4.50) resulting in a new objective

function that only depends on the aberration parameters, greatly reducing the space over

which maximization must be done. The reduced objective function is given by

LM (~α) = −
∑
u,v

|DFP (u, v)SFP (u, v)−DDP (u, v)SDP (u, v)|2
|SFP (u, v)|2 + |SDP (u, v)|2 (4.52)

Paxman et al. [39] showed that an equivalent objective function requiring fewer com-

putations could be written

LM (~α) =
∑

(u,v)∈ζ1

|∑mDm(u, v)S∗m(u, v)|2∑
m |Sm(u, v)|2 −

∑

(u,v)∈ζ2

∑
m

|Dm(u, v)|2 (4.53)

where the space ζ containing (u, v) has been partitioned into ζ = {ζ1 ∪ ζ2} where ζ2 contains

all points where Sm(u, v) = 0 for all values of m ∈ {FP,DP}. Either (4.52) or (4.53) is then

maximized over the space of aberration parameters to determine the unknown aberration.

The aberration is then used to generate the PSFs which are then substituted into (4.51) to

generate a reconstructed image.

The maximization of (4.52) or (4.53) can be done using any appropriate optimization

routine. However, most efficient nonlinear optimization methods, such as quasi-Newton’s

methods, require the computation or estimation of gradients. Paxman et al. [39] showed

that the required gradients were given by

∂LM
∂αk

= −4
∑
u,v

φk(u, v)Im

{∑
m

Hm(u, v) (Zm ⊗H∗
m) (u, v)

}
(4.54)

where Im {·} is the imaginary part of the argument and

Zm(u, v) =





P
l|Sl|2(

P
j DjS

∗
j )D∗m−|Pj DjS

∗
j |2S∗mP

l|Sl|2
, (u, v) ∈ ζ1

0, (u, v) ∈ ζ0
(4.55)

The dependence on (u, v) in (4.55) is implied, but for brevity has not been written out.

Because tractable analytic expressions for the gradients are available, standard optimization
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methods such as quasi-Newton’s methods can be used to determine the maximum likelihood

estimates for ~α and the associated reconstructed image o.

4.3.3 Poisson Noise Limited Detection. While additive Gaussian noise sources

lead to tractable estimates, in several operating regimes of interest the dominant noise

source is photon noise characterized by Poisson statistics. Assuming that the noise process

is spatially independent, the probability distribution for a data set is given by

pD(D) =
∏
m

∏
x,y

gm(x, y)dm(x,y) exp [−gm(x, y)]
dm(x, y)!

(4.56)

where as with the Gaussian noise case, D is the data set containing both FP and DP data.

Using (4.56), the log-likelihood function for the object and aberration is then given by

L(o, ~α) =
∑
m

∑
x,y

[dm(x, y) ln gm(x, y)− gm(x, y)] (4.57)

where terms that don’t depend on o or ~α have been dropped for convenience. Considering

the second term in (4.57)

∑
m

∑
x,y

gm(x, y) =
∑
m

∑
x,y

∑

ξ,η

o(ξ, η)sm(x− ξ, y − η) (4.58a)

=
∑
m

∑

ξ,η

o (ξ, η)
∑
x,y

sm(x− ξ, y − η) (4.58b)

=
∑
m

∑

ξ,η

o(ξ, η)
∑
u,v

|Hm(u, v) exp {−j2π [(x− ξ)u+ (y − η)v]}|2 (4.58c)

=
∑

ξ,η

o (ξ, η)
∑
m

∑
u,v

|Hm(u, v)|2 (4.58d)

=
∑

ξ,η

o(ξ, η)
∑
m

∑
u,v

P 2(u, v) (4.58e)

where Parseval’s theorem and the Fourier shift theorem have been used. Note that the

double sum over the pupil function P (u, v) is neither a function of the object o nor the

aberration ~α. Letting

γ ≡
∑
m

∑
u,v

P 2(u, v) (4.59)
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(4.58) becomes
∑
m

∑
x,y

gm(x, y) = γ
∑
x,y

o (x, y) (4.60)

and (4.57) simplifies to

L(o, ~α) =
∑
m

∑
x,y

[dm(x, y) ln gm(x, y)]− γ
∑
x,y

o (x, y) (4.61)

Removing explicit dependence on o from (4.61), as was done for additive Gaussian

noise, requires that the object that maximizes (4.61) for a given aberration ~α be found

and substituted back into (4.61). However, a closed form solution to that problem has not

been found. The approach then is to attempt to maximize the objective over the complete

space of pixel intensities and aberration parameters. With the expanded parameter space

over which to maximize, utilization of an efficient large-scale optimization routine becomes

even more important. To this end, computation of the gradients with respect to both the

aberrations and the object pixels is the next logical step.

Differentiating (4.61) with respect to o(xo, yo)

∂L
∂o (xo, yo)

=
∑
m

∑
x,y

dm(x, y)
∂ ln [gm(x, y)]
∂o (xo, yo)

− γ
∑
x,y

∂o (x, y)
∂o (xo, yo)

(4.62a)

=
∑
m

∑
x,y

dm(x, y)
gm(x, y)

∂gm(x, y)
∂o (xo, yo)

− γ (4.62b)

To compute the partial derivative of gm, (4.13) and the definition of discrete convolution

are applied to give

∂gm(x, y)
∂o (xo, yo)

=
∂

∂o (xo, yo)

∑
u,v

o (u, v) s(x− u, y − v) (4.63a)

=sm(x− xo, y − yo) (4.63b)

Substituting this into (4.62) gives the final form of the partial derivative of L with respect

to o (xo, yo)
∂L

∂o (xo, yo)
=

∑
m

∑
x,y

dm(x, y)sm(x− xo, y − yo)
gm(x, y)

− γ (4.64)
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Differentiating (4.61) with respect to aberration parameter αk results in an expression

similar to (4.62) with the exceptions that the constant term γ is dropped, and ∂
∂o(xo,yo)

is

replaced by ∂
∂αk

∂L
∂αk

=
∑
m

∑
x,y

dm(x, y)
gm(x, y)

∂gm(x, y)
∂αk

(4.65)

The partial derivative of gm(x, y) with respect to αk is then found by using (4.13) and the

definition of discrete convolution, resulting in

∂gm(x, y)
∂αk

=
∑
u,v

o (u, v)
∂sm(x− u, y − v)

∂αk
(4.66)

Using the definition of sm from (4.44) the partial derivative of sm(x, y) with respect to αk

can be written

∂sm(x, y)
∂αk

= h∗m(x, y)
∂hm(x, y)
∂αk

+ hm(x, y)
∂h∗m(x, y)
∂αk

(4.67)

Applying the definitions from (4.40) and (4.45) to the partial derivative of hm(x, y) and

interchanging the order of integration and differentiation results in

∂hm(x, y)
∂αk

= F
{
jψk(u, v)P (u, v) exp

[
j
(
βmψ4(u, v) +

∑
n

αnψn(u, v)
)]}

(4.68)

where βFP = 0 and βDP defines the defocus diversity phase. The partial derivative of sm

with respect to αk is then

∂sm(x, y)
∂αk

=2Re
{
h∗m(x, y)F

{
jψk(u, v)P (u, v) exp

[
j
(
βmψ4(u, v) +

∑
n

αnψn(u, v)
)]}

(4.69a)

=s′m(x, y) (4.69b)
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where Re {·} is the real part of the argument. Substituting (4.69b) back into (4.66) and

(4.65) results in the final form for the derivative of L with respect to αk

∂L
∂αk

=
∑
m,x,y

dm (x, y)
gm (x, y)

∑

ξ,η

o(ξ, η)s′(x− ξ, y − η) (4.70a)

=
∑
m,x,y

dm (x, y)
gm (x, y)

[
o (x, y)⊗ s′(x, y)

]
(4.70b)

At this point the objective function and gradients can be used with any applicable nonlinear

optimization routine to simultaneously develop an estimate of the object and aberration

parameters.

4.3.4 Multi-Frame Phase Diversity Reconstruction. Seldin and Paxman expanded

phase-diversity image reconstruction for Poisson statistics to allow for multiple data frames

where each frame has been corrupted by a different atmospheric aberration [45]. This re-

sulted in a hybrid between multi-frame blind deconvolution and conventional phase diversity

reconstruction that allowed for better handling of noisy data such as that encountered at

low light levels.

Defining the aberration set α as

α ≡ {
~α1, ~α2, . . . , ~αF

}
(4.71)

where ~αf is a vector describing the aberration for the f th frame, the point spread functions

are given by

sfm(x, y) =

∣∣∣∣∣F
{
P (u, v) exp

[
−j

(
βmψ4(u, v) +

∑

k

αfkψk(u, v)

)] }∣∣∣∣∣
2

(4.72)

resulting in

gfm(x, y) = o (x, y)⊗ sfm(x, y) (4.73)
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where m ∈ {FP,DP}. Assuming statistical independence between data frames, the joint

probability distribution for a set of F frames of phase diversity data is then given by

pD(D) =
∏

f

∏
m

∏
x,y

gfm(x, y)d
f
m(x,y) exp

[
−gfm(x, y)

]

dfm(x, y)!
(4.74)

where f ∈ {1 . . . F} and the data set D contains F sets of phase-diversity data. Other

than expanding the search space to include additional aberration parameters, the further

development of this formulation is identical to that presented in section 4.3.3 resulting in

an objective function given by

L(o, ~α) =
∑

f

∑
m

∑
x,y

[
dfm(x, y) ln gfm(x, y)− gfm(x, y)

]
(4.75)

where the f superscript indexes the data frames. The model images gfm(x, y) are determined

as before, using the aberration parameters for the current data frame. The gradients are

identical to those of (4.64) and (4.70) for any given value of f .

Seldin and Paxman [45] observed that the algorithm tended to converge to local max-

ima that did not represent the known object. In an effort to better condition the problem,

they incorporated a “sieve” to enforce some degree of smoothness on the reconstruction. In

its basic form, the sieve is a convolution kernel used to help eliminate local maxima in the

objective function. As implemented, the object was defined by

o (x, y) =
∑

ξ,η

o′(ξ, η)v(x− ξ, y − η) (4.76)

where v(x, y) was an otherwise unspecified two-dimensional Gaussian convolution kernel.

At this point, gfm(x, y) is then defined as

gfm(x, y) =
∑
u,v

∑

ξ,η

o′(ξ, η)v(x− ξ, y − η)sfm(u− ξ, v − η) (4.77)

The underlying o′ is estimated using the algorithm, then used in (4.76) to reconstruct the

image. Similar techniques have also been suggested to better condition single-frame phase

diversity [22].
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When the unknown aberration is due to atmospheric turbulence, the known statistics

of the atmosphere can be introduced into the problem to help further condition the prob-

lem. Assuming Kolmogorov statistics for the atmospheric aberration and a Zernike-mode

expansion, the covariance of the Zernike-mode turbulence coefficients is known [37] and can

be added as a regularization term to the objective function of (4.75).

Thelen et al. [48] proposed a framework for incorporating the prior knowledge about

the aberration into the objective function. Noting that the aberration parameters are cor-

related Gaussian random variates, the joint probability distribution function for a given set

of N aberrations is given by

p~αf (~α
f ) =

1√
(2π)N |Γz|

exp
(
−1

2

(
~αf

)T
Γ−1
z ~αf

)
(4.78)

where T is a transpose, ~αf is a vector composed of the Noll-ordered aberration parameters

for the f th frame, and |Γz| is the determinant of the covariance matrix Γz. This probability

distribution may then be converted into a log-likelihood function given by

L2(α) = −1
2

∑

f

(
~αf

)T
Γ−1
z ~αf (4.79)

which can then be incorporated into (4.75) resulting in a modified objective function for the

multi-frame case given by

L ′(o, α) =
∑

f

∑
m

∑
x,y

[
dfm(x, y) ln gfm(x, y)− gfm(x, y)

]
− 1

2

∑

f

(
~αf

)T
Γ−1
z ~αf (4.80)

The only additional information now required before passing (4.80) to a gradient-type opti-

mization routine is the gradient of (4.79). Given that (4.79) does not depend on the object

o, that portion of the gradient is clearly zero. For the partial derivatives with respect to to

individual aberration parameter αfn, Thelen et al. showed that

∂

∂αfn
L2 = −

(
Γ−1
z ~αf

)
n

(4.81)

i.e. the nth element of the vector that results from multiplication of the correlation matrix

inverse with the f th aberration vector.
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At this point, the tools required for building a system model are complete, and all of

the pieces are in place to begin development of a statistical image reconstruction algorithm.

The only remaining step is to combine the estimation and optimization methods given in

Chapter II with the system models developed in Chapters III and IV.
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V. Active Phase Diversity Imaging

One critical failure of conventional imaging techniques is their reliance on natural

illumination. There exist many scenarios of interest where the object to be imaged

is in the earth’s shadow and cannot be imaged using conventional methods. An approach

to overcoming this shortcoming is to use lasers to actively illuminate the target, in effect

implementing a “flash bulb” for the imaging system. However, the unique properties of

laser light introduce both complications and possibilities that are not present with natural

or incoherent light. With the understanding of estimation methods, diffraction, imaging,

and statistical properties of coherent light developed in chapters II through IV, it’s possible

to begin development of an image reconstruction algorithm appropriate for an active imaging

system.

Several techniques have been proposed over the years to utilize coherent illumination

to reconstruct an image including imaging correlography [17, 44, 50], sheared-beam inter-

ferometry [50], root reconstructors [31], reference-wave heterodyne detection [6,7], analytic

methods [28], iterative statistical estimation/deconvolution methods [30, 43], optimization

methods [34], and Fourier-telescopy [3, 29, 32, 50]. The configuration being considered is an

active PD imaging (APDI) system as shown in Fig. 5.1 and consists of a conventional PD

imaging system with a laser illuminator and an additional sensor to record PP-intensity.

The following sections detail the algorithmic modifications required to expand PD imaging

as described in Chapter IV to the case of active illumination.

Laser Illuminator

Image Plane

Object of Interest Known Defocus

Beam Splitters

Diversity Plane

Pupil Plane Image

Imaging System

Unknown Aberration

Figure 5.1: An active PD imaging system consists of a conventional PD system with an
additional sensor to record PP intensity and a laser illuminator
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5.1 Noise Model

The first, and possibly most significant difficulty in working with coherent illumination

is the introduction of speckle noise as described in chapter III. Because nearly all surfaces

are rough on the scale of an optical wavelength, the wave reflected from the object will have

a spatially random phase, that when propagated will cause the various field components to

interfere and produce the grainy speckle patterns characteristic of reflected laser light. As

shown previously, speckle noise follows exponential statistics such that for a given pixel

pI(I) =
1

E [I]
exp

[
− I

E [I]

]
(5.1)

where it has been assumed that I ≥ 0.

One of the biggest consequences of laser speckle is its extremely noisy nature as demon-

strated by the fact that the mean and standard deviation are equal. Defining the signal-to-

noise ratio (SNR) as the ratio of the mean signal with the noise standard deviation, speckle

noise maintains a SNR of 1 regardless of the signal strength. Unlike photon or detector noise

sources, SNR doesn’t improve with higher signal levels. As a result of the noisy nature of

active illumination, a multi-frame approach will be required to help mitigate noise effects.

While any one pixel in the image plane follows the statistics of (5.1), the joint statistics

of the detected intensity are required to develop a reconstruction algorithm. Given that

the complex field is Gaussian distributed in all planes, one could ideally perform variable

transformations on the joint-Gaussian distribution as was done for (3.40), and integrate out

all phase dependence. However, beyond the second-order distribution derived in Chapter

II the applicable integrations and transformations become intractable. As a result, an

approximate form for the joint-distribution must be developed.

The simplest approximation is to assume statistical independence between pixels, and

form the joint distribution by multiplying the marginals. For this simplification to be valid,

the correlation between data points must be negligibly small. In the active imaging case,

the required correlation can be found by using the mutual intensity in accordance with the

complex Gaussian moment theorem of (3.34). As shown in chapter III, the mutual intensity

in the PP of the imaging system can be described by a scaled Fourier transform of the
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object. This mutual intensity can then be propagated to the FP and DP of the imaging

system using the more general (3.24). However, the required integrals become prohibitively

difficult. Fortunately, it was shown by Zernike that in nearly all cases of interest, the light

in the PP of a coherent imaging system could be approximated as a constant intensity

incoherent source [24]. Under this assumption, the Van Cittert-Zernike theorem can be

used to determine the FP and DP mutual intensities.

Substituting the modulus squared of the imaging system’s pupil-function in for the

intensity in (3.31) and normalizing

µc(∆u,∆v) =
∫∫ ∞

−∞
|P (x, y)|2 exp

{
−j 2π

λf
(∆ux+ ∆vy)

}
dxdy (5.2)

where µc(∆u,∆v) is the complex correlation coefficient for points separated by (∆u,∆v).

For a clear circular aperture, this correlation is given by the scaled point-spread function

of the un-aberrated imaging system where the spatial variables (x, y) have been replaced

by (∆x,∆y). Assuming a clear circular pupil, the modulus of the mutual intensity falls off

rapidly with increasing point separation as shown in Fig. 5.2. Assuming that the pixel spac-

ing of the detector is small compared with the width of the PSF, measured pixel intensities

are hereafter assumed statistically independent.

One major failure of the assumptions used to generate Fig. 5.2 is that they provide

no insight into the average detected intensities. An alternative approach for finding these

quantities stems from the description of the mutual intensity in the object plane given

by (3.29). This description is identical to that of an incoherent source, and the effect of

averaging across many speckle realizations will be equivalent to that obtained for incoherent

illumination. Because of this, the modeled noiseless images representing the mean of the

statistical distributions are described by the incoherent image formation model of (4.13).

An additional consideration is the temporal correlation between speckle realizations.

In the absence of any relative motion between the object, illumination source, and imaging

system; the phase relationships that give rise to speckle will remain constant, and speckle

observed in the observation planes will be stationary. However, even small relative changes

on the order of a wavelength are sufficient to significantly change the speckle pattern. For

this work it’s assumed that the time over which speckle realizations become de-correlated
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Figure 5.2: Approximate normalized correlation magnitude as a function of point sep-
aration for a 1m F10 telescope operating at 1µm. The correlation falls off rapidly with
increasing point separation.

is small compared with the sampling time of the imaging system. Therefore, temporal

independence of speckle realizations is assumed.

Finally, to form the approximate joint probability distribution, independence between

observation planes is assumed. Though not rigorously justified, this assumption is necessary

to form a tractable reconstruction algorithm. Combining these simplifications and assump-

tions to form a joint distribution similar to (4.56), the joint probability distribution for a

multi-frame active PD data set is given by

pD(D) =
∏

f,m,x,y

1

gfm(x, y)
exp

[
−d

f
m(x, y)

gfm(x, y)

]
(5.3)

where gfm(x, y) is the ensemble average intensity in the FP or DP for the f th frame and is

as given in (4.13).
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5.2 Static Aberrations

The first reconstruction case considered is when the image is blurred by an aberration

that isn’t changing across data frames. This could represent a system that suffers from

an unknown aberration due to manufacturing defects or misalignment, or a system with a

slowly varying aberration.

5.2.1 Basic Objective Function. For a static aberration, the model blurred image

gm(x, y) is the same across all data frames, resulting in a slightly simplified probability

distribution given by

pD(D) =
∏

f,m,x,y

1
gm(x, y)

exp

[
−d

f
m(x, y)
gm(x, y)

]
(5.4)

Re-casting this as a likelihood equation for the object and aberration, the log-likelihood is

given by

L(o, ~α) = −
∑

f,m,x,y

(
ln gm(x, y) +

dfm(x, y)
gm(x, y)

)
(5.5)

Because only the data is frame-dependent, the summation over f can be distributed such

that for F frames of data

L(o, ~α) = −
∑
m,x,y


F ln gm(x, y) +

1
gm(x, y)

∑

f

dfm(x, y)


 (5.6)

5.2.2 Pupil Plane Data Regularization. The noisy nature of laser speckle makes

regularization particularly important. However, the speckle can also provide additional

information that can be used for regularization. Consider the object information encoded

in the speckle pattern observed in the PP of the imaging system as described in section

3.4.2. Restating (3.38), the normalized PP speckle PSD can be described by

Φ̂PP (x, y) = δ(x, y) + γo(x, y) ~ o(x, y) (5.7)

where the frequency variables of the PSD have been replaced with (x, y) for convenience

in later calculations, Φ̂PP (x, y) is the ensemble averaged PP-PSD, and ~ represents a two-
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dimensional autocorrelation. Consequently, a large amount of information about the object

is contained in the PP intensity which can be used to help regularize the problem.

Before this information can be used, a statistical model for the PSD must be formed.

As with all data from an actively illuminated system, the PP data will suffer from speckle

noise. Recall that the intensity in the PP is exponentially distributed with a constant mean

across the aperture. Using the definition for the PSD as

ΦPP (x, y) = |F{IPP (ξ, η)}|2 (5.8)

where IPP is the normalized intensity in the PP, we can consider the effect of speckle

statistics on the PSD.

Writing the Fourier transform in its integral form,

F{IPP (x, y)} =
∫∫ ∞

−∞
IPP (x, y) exp [−j (ux+ vy)] dxdy (5.9)

it can be interpreted as an infinite sum of unit-magnitude complex numbers weighted by

exponentially distributed scalars. If the IPP (x, y) pixels are independent, by the central

limit theorem the resulting real and imaginary components of the Fourier transform will

have Gaussian statistics. Though IPP isn’t strictly spatially independent, a histographic

analysis of simulated data shows that the transformed intensity closely follows Gaussian

statistics. To get the distribution of the PSD, the same variable transformations that were

used in (3.28) are applied consistent with (5.8), resulting in an exponential distribution for

any given point in the PSD.

In order to form a tractable joint distribution, spatial independence must again be

assumed. According to diffraction theory, propagation of light to the FP of an imaging

system is mathematically equivalent to a Fourier transform. Using this insight, the same

arguments that justified spatial independence for the FP and DP again apply. The mutual

intensity in the now mathematically defined FP is proportional to the Fourier transform of

the imaging system’s pupil, and consequently falls off rapidly for small point separations.

Statistical independence is again assumed, and the joint probability distribution for the
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PP-PSD is then given by

pΦPP (ΦPP ) =
∏
x,y

1
Φ̂PP (x, y)

exp

[
−ΦPP (x, y)

Φ̂PP (x, y)

]
(5.10)

To negate any numerical difficulties introduced by the δ(x, y) in (5.7), it’s subtracted

out of the PSD during computation. While doing so causes the PSD at the origin to no

longer follow the predicted statistics, this effect is ignored for simplicity. The probability

distribution for the modified speckle PSD is then given by

pdPP (dPP ) =
∏
x,y

1
gPP (x, y)

exp
[
−dPP (x, y)
gPP (x, y)

]
(5.11)

where the PP data for the f th frame is defined as

dfPP (x, y) =
∣∣∣F{IfPP (ξ, η)}

∣∣∣
2
− δ(x, y) (5.12)

and the model data is defined as

gPP (x, y) =Φ̂PP (x, y)− δ(x, y) (5.13a)

=o(x, y) ~ o(x, y) (5.13b)

It should be noted that in this case the model data doesn’t depend on the aberration,

resulting in a lack of dependence on either f or ~α. Additionally, gPP is invariant to rotation

of o through 180◦.

At this point, the log-likelihood function for the object given a PP data set can be

written

LPP (o) =
∑

f,x,y

[
ln gPP (x, y)− dfPP (x, y)

gPP (x, y)

]
(5.14)

This likelihood function can then be added to the likelihood function of (5.5) to produce

the regularized objective function for image reconstruction

L(o, ~α) = −
∑

f,m,x,y

[
ln (gm(x, y)) +

dfm(x, y)
gm(x, y)

]
(5.15)
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where now m ∈ {FP,DP, PP} to include the PP regularization term.

5.2.3 Optimization Methodology. As with the Poisson-noise limited case, this

objective function doesn’t lend itself to a reduction in parameter space as the Gaussian

noise model did. As a result, large-scale optimization methods must be employed to si-

multaneously solve for both the object and aberration parameters. Recognizing that the

most efficient optimization methods tend to require gradient information, the first step to-

wards optimization is gradient derivation. For the objective function of (5.15), the partial

derivative of L(o, ~α) with respect to any parameter x will be given by

∂L(o, ~α)
∂x

= −
∑

f,m,x,y

[
1

gm(x, y)
− dfm(x, y)

[gm(x, y)]2

]
∂gm(x, y)

∂x
(5.16)

The task then remains to compute the partial derivative of gm(x, y) with respect to x .

Because the model images for both the FP and DP are the same as those for conven-

tional PD imaging, the partial derivatives of gFP and gDP with respect to o(xo, yo) and αn

that were previously derived in (4.63) and (4.66) remain valid. They are re-stated here as

∂gm(x, y)
∂o(xo, yo)

= sm(x− xo, y − yo) (5.17)

and
∂gm(x, y)
∂αk

= o(x, y)⊗ ŝkm(x, y) (5.18)

where

ŝkm(x, y) = 2Re
{
h∗m(x, y)F

{
jψk(u, v)P (u, v) exp

[
j
(
βmψ4(u, v)+

∑
n

αnψn(u, v)
)]}

(5.19)

and m ∈ {FP,DP}.

Because gPP doesn’t depend on ~α its partial derivatives with respect to αk are zero.

The final piece required for the gradient is the partial derivative of gPP with respect to

o(xo, yo). The autocorrelation in (5.13) is written as

gPP (x, y) =
∑

ξ,η

o(ξ, η)o(x+ ξ, y + η) (5.20)
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differentiating (5.20) with respect to o(xo, yo) interchanging the order of differentiation and

summation, and applying the product rule, the partial derivative of gPP (x, y) with respect

to o(xo, yo) is given by

∂gPP (x, y)
∂o(xo, yo)

= o(xo − x, yo − y) + o(xo + x, yo + y) (5.21)

One final consideration before an optimization routine can be used to determine the

reconstructed object and the aberration parameters stems from the form of both (5.15) and

(5.16). In both of these expressions, the objective function becomes undefined any time

gm(x, y) goes to zero. In this case, the reconstruction becomes ill-conditioned, and the

numerical optimization routine will likely fail to converge to a satisfactory solution.

One possible solution, as suggested for Poisson noise limited PD reconstruction, is

the partitioning of the objective function into two discrete sets ζ = {ζ1 ∪ ζ2} where ζ0

contains all points where gm(x, y) = 0 for all values of m. All contributions to the objective

function from any point contained in ζ0 are then thrown out. However, this approach

doesn’t adequately deal with the case when the data supports a non-zero value but the

current guess object predicts a zero. In this case however, the gradient should indicate a

more optimal solution with a non-zero value but would instead indicate a zero slope and an

optimal answer. Furthermore, numerical roundoff and associated instability begin to have

significant negative impacts when gm(x, y) and dfm(x, y) → 0, which isn’t adequately dealt

with by partitioning the solution space.

As an alternative, a better conditioned homotopic problem [33] is formed by adding a

bias b to both the data and the model such that

L ′(o, ~α) = −
∑

f,m,x,y

[
ln(gm(x, y) + b) +

dfm(x, y) + b

gm (x, y) + b

]
(5.22)

and
∂

∂x
L ′(o, ~α) = −

∑

f,m,x,y

[
1

gm(x, y) + b
− dfm(x, y) + b

[gm(x, y) + b]2

]
∂gm(x, y)

∂x
(5.23)
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The homotopic problem converges uniformly to the original problem as b → 0. The added

bias can be viewed as an artificial detection dark-current or background illumination. The

modified objective function is then passed to the numerical routine to obtain reconstructed

images. The optimal value for b is explored in Chapter VI.

5.3 Dynamic Aberrations

To allow for a much broader range of operational scenarios, the unknown aberration

must be allowed to vary. For the cases of interest, the aberration evolves with the changing

atmosphere, blurring each data frame differently. The changing aberrations correspond with

a new set of aberration parameters for each frame that must be included in the objective

function. To deal with this, an expanded aberration set α is defined as in (4.71), such that

for F data frames

α =
[
~α1, ~α2, . . . ~αF

]
(5.24)

where ~αf is the aberration vector for the f th data frame.

5.3.1 Basic Objective Function. The only fundamental change to the likelihood

function of (5.15) required to extend the problem to include dynamic aberrations is to

modify the model data gm(x, y) such that it depends on the frame number f as in (4.73).

With this change, the basic objective function is given by

L(o,α) = −
∑

f,m,x,y

[
ln

(
gfm(x, y)

)
+
dfm(x, y)

gfm(x, y)

]
(5.25)

where m ∈ {FP,DP} and all other terms are as previously described.

5.3.2 Pupil Plane Data Regularization. Because the PP data is insensitive to

the phase aberration, the PP regularization term of (5.14) is added to the basic objective

function of (5.25) without modification. Incorporating this into the basic objective of (5.25)

results in the PP-regularized objective function

L(o,α) = −
∑

f,m,x,y

[
ln

(
gfm(x, y)

)
+
dfm(x, y)

gfm(x, y)

]
(5.26)
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where now m ∈ {FP,DP, PP}.

Without further changes, this objective function could be passed to the solving routine

to produce reconstructed images. However, additional information becomes available which

can be incorporated into the algorithm when multiple aberration realizations are allowed.

5.3.3 Phase Aberration Regularization. Kolmogorov theory for turbulence pre-

dicts a well-defined power spectral density for phase fluctuations caused by atmospheric

turbulence, parameterized by a measurable quantity r0 [2]. With multiple realizations of

the induced phase and information about r0, we can begin to form an estimate for this

PSD and penalize the objective function for realizations that deviate from the predicted

standard. However, given that the aberration is parameterized by Zernike-mode expansion

coefficients, a more efficient method is to directly relate the PSD to the expansion coeffi-

cients. Because the nature of the turbulence is not changed by the use of active illumination,

Thelen’s regularization term of (4.79) can be used without modification.

In addition to the inter-mode correlation, the temporal evolution of the aberration

may be similarly useful. Under Taylor’s frozen flow hypothesis [41], the internal structure

of turbulence changes slowly compared with the velocity at which it passes by the field

of view. With this hypothesis, and knowledge about the velocity and direction of the

wind moving the turbulence, the temporal behavior of the expansion coefficients can be

described. Roddier et al. [40] developed a description of the temporal correlation of the

Zernike expansion coefficients under Taylor’s hypothesis. Ten Brummelaar slightly modified

Roddier’s results [10]. Using ten Brummelaar’s formulation, temporal correlations for the

first 15 modes excluding piston and tip/tilt were computed and are shown in Fig. 5.3 for

a 1m aperture, 10cm r0, and a 10m/s x-axis oriented wind velocity. The correlations drop

rapidly with increasing separation and mode order.

At this point, a regularization term similar to (4.79) could be applied to the objec-

tive function by building the temporal correlation matrices for each aberration parameter.

However, there are several shortfalls of this approach that make it less attractive. First,

the rapid drop in the correlation with small time separations would make the regularization

term particularly susceptible to noise and other error sources for systems with a moderately

slow frame-rate. Second, and more significantly, this approach requires that the turbulent
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Figure 5.3: Predicted temporal correlations for the first 15 Zernike modes excluding piston
and tip/tilt assuming a 1m aperture, 10cm r0, and 10m/s x-oriented wind velocity. Note
that the correlation falls off rapidly with increasing time separation and mode-order.

flow be adequately described by a single layer of turbulence moving with an a-priori known

speed and direction. While the effects of turbulence on a single frame can be adequately

described by a single turbulence layer in the PP, realistic turbulence is a volume effect.

Given that wind velocities and directions vary with altitude, describing the effective motion

of the turbulence using a single layer becomes significantly difficult. As evidence of the

problems that can arise when predicting temporal statistics, ten Brummelaar encountered

difficulty attempting to fit his derived temporal power spectra to experimental data [9]. The

failure of predicted and measured power spectra to match indicates that any regularization

attempting to use temporal statistics could potentially have a significant negative impact

on image reconstruction. As a result, no information regarding the temporal evolution of

the atmospheric aberration is used during reconstruction.

5.3.4 Optimization Methodology. Applying both the PP-data regularization term

of (5.14) and the phase regularization term of (4.79), the regularized objective function for
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dynamic aberrations is given by

L(o,α) = −
∑

f,m,x,y

[
ln

(
gfm(x, y)

)
+
dfm(x, y)

gfm(x, y)

]
+

1
2

∑

f

(
~αf

)T
Γ−1
z ~αf (5.27)

where as before m ∈ {FP,DP, PP}. Once again, an efficient large-scale solution method

will be required to obtain the desired result. Aside from the introduction of the time-varying

aberation, the first term in (5.27) is identical (5.15), and as a result the gradients will be

essentially the same. The only impact of the dynamic aberration is to require computing

the gradient of gfm(x, y) with respect to the various unknowns for each frame.

As was the case with a static aberration, the objective function is ill-behaved for points

when the model object approaches zero. As a result, the same bias term, b, that was used

previously is again introduced to better condition the objective. The resulting modified

objective function is given by

L(o,α) = −
∑

f,m,x,y

[
ln

(
gfm(x, y) + b

)
+
dfm(x, y) + b

gfm(x, y) + b

]
+

1
2

∑

f

(
~αf

)T
Γ−1
z ~αf (5.28)

The modified gradient of the first term in (5.28) is the same as that given for static-aberration

case. Because the second term in (5.28) doesn’t include b, its gradient is as given in (4.81).
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VI. APDI Results

With the APDI algorithm complete, the next logical step is implementation and

performance characterization. Because the derived algorithm doesn’t have closed

form estimates for the object and aberration, an analytical characterization was impractical.

Consequently, a Monte Carlo approach was used to characterize algorithm performance. The

estimator was implemented using the L-BFGS-B optimization package [11] with a modified

convergence tolerance.

6.1 Chapter Overview

Based on a limited set of initial simulations, optimal conditioning bias and convergence

tolerance appeared mutually independent, and independence was assumed throughout. A

near-optimal convergence tolerance was selected based on preliminary simulations and used

with a set of 100 data realizations to determine the optimal bias under both static and

dynamic aberration conditions. Optimal biases for the static and dynamic aberration cases

were found to be b = 10% and b = 50% of the average intensity respectively.

Once the optimal bias was established, the optimal convergence tolerance was estab-

lished under a variety of conditions including SNR, source object, array size, and number

of data frames. The optimal convergence tolerance was found to be essentially insensitive

to SNR, source object, and the number of data frames. However, the optimal tolerance was

found to be strongly dependent on the size of the detector arrays. Optimal tolerance values

for the static and dynamic aberration cases for the baseline 64×64 configuration were found

to be γtol ≤ 6× 10−8 and γtol = 2× 10−7 respectively.

After determining approximately optimal system parameters, algorithm performance

for SNR values in the range 2 ≤ SNR ≤ 20 with 10, 20, 30, 40, and 50-frame data sets for

both Gaussian and Poisson dominated detection noise was evaluated. The algorithm proved

to be insensitive to detection noise for SNR ≥ 7, and still performed relatively well for SNR

values as low as 2. The selection of either Gaussian or Poisson dominated noise sources made

little difference in overall performance. As expected, adding additional frames to the data

set resulted in better reconstructions. For the static aberration case, only slight gains were

seen for more than 20 frames as the noise was averaged out. For the dynamic aberration
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case, as additional frames were added the image improved rapidly, but the improvement

with additional frames began to taper off for more than approximately 30 frames. While

the improvement tapered off, the increase in computational burden climbed nearly linearly

with the introduction of additional frames.

To quantify the impact of PP data on algorithm performance, variants of the APDI

algorithm that excluded either the PP or DP data were compiled. The PP-FP only and

DP-FP only variants were then run along with the original APDI algorithm on a set of 100

simulated data realizations. Performance of the PP-FP only and DP-FP only configurations

were then compared with the performance of the full APDI algorithm. As expected,

the complete APDI algorithm resulted in the best reconstructions. Reconstructions done

without PP data included resulted in 54% and 148% increases in average MSE compared

with the Full APDI algorithm for the static and dynamic aberration cases respectively. This

shows that the PP data has a dramatic impact on overall performance of the reconstruction.

Exclusion of the DP data from the APDI algorithm resulted in only a 11% and 24% increase

in MSE for the static and dynamic aberration cases respectively.

Finally, the impact of the aberration regularization term developed by Thelen et al. [48]

was determined by compiling a version of the APDI algorithm with the regularization term

disabled. Both the aberration-regularized and unregularized algorithms were then run on a

collection of 100 simulation data sets. The results showed that addition of the regularization

term resulted in neither a better reconstruction nor a lower computational burden.

This chapter is laid out as follows: section 6.2 describes algorithm implementation,

section 6.3 outlines data simulation techniques that were used, section 6.4 defines the perfor-

mance metrics used for analysis, section 6.5 describes results from including the aberration

regularization, section 6.6 shows the effect of the conditioning bias on the algorithm, sec-

tion 6.7 investigates the effect of system parameters on convergence tolerance, section 6.8

shows the benefits and costs incurred by including additional Zernike modes in the aber-

ration model, section 6.9 sows the impact of detection noise and the number of frames

on algorithm performance, section 6.10 shows the impact of PP and DP data on image

reconstruction, and section 6.11 describes overall algorithm performance.
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6.2 Algorithm Implementation

Given the large space over which optimization must be done, a pre-packaged bound-

constrained limited-memory quasi-Newton’s method, L-BFGS-B [11], was selected for op-

timization based on ease of use, demonstrated performance for large-scale problems, and

the ability to efficiently constrain the solution to be non-negative. For computational effi-

ciency, circular shifts were assumed and the FFTW3 [19] fast-Fourier-transform library was

used to implement the required convolutions and correlations. The objective function and

other components of the algorithm were programmed in C using the C99 standard to handle

complex numbers. Code used to implement the algorithm is included in Appendix A.

For the static aberration case, much of the computational burden of the reconstruction

can be lifted by collapsing the data set into a single set of averaged PP, FP, and DP data.

This moves many of the computationally expensive operations outside the solving loop

and increases speed, making the problem essentially a single-frame reconstruction. For

implementation purposes, static-aberration data was pre-averaged before being passed to

the multi-frame reconstruction algorithm as a single-frame data set.

Because the built-in stopping criteria in the L-BFGS-B algorithm depends on machine

precision, and because reconstructions were done on several different machine architectures,

the built-in stopping criteria terminated the iterations at different points on different ma-

chines. To establish a platform-independent stopping criteria, the L-BFGS-B algorithm was

set to terminate when

Lold − Lnew ≤ γtol |Lold| (6.1)

where γtol was selected for optimal performance, and the L-BFGS-B algorithm ensures

Lold ≥ Lnew.

6.3 Data Simulation

Simulated data was created in Matlabr by generating independent complex circular

Gaussian variates with a standard deviation equal to the file-object intensity consistent with

(3.25). The resulting complex field was then “propagated” to the imaging system PP using

an FFT to implement far-field diffraction. The PP intensity was then computed by taking

the magnitude squared of the field.
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To include the effects of atmospheric turbulence, temporally uncorrelated random

phase screens were generated assuming Kolmogorov statistics as described in section 4.2

using 200 Zernike modes and applied to the PP field for the FP and DP data channels. An

amount of defocus phase (Zernike mode 4) sufficient to introduce 0.5λ RMS phase diversity

was also applied the PP field for the diversity-channel data. The diversity and focal channel

fields were then “propagated” to the DP and FP using additional FFTs. The intensities

were then computed by taking the magnitude squared of the complex field.

To account for detection noise processes, both Gaussian-distributed read noise and

Poisson distributed shot noise were applied to the data. Gaussian detector noise was char-

acterized by the standard deviation σd. The average detection SNR including both noise

processes is then defined by

SNR =
p√
p+ σ2

d

(6.2)

where p is the average number of photo-electrons (e−) per pixel in the data set. To generate

data with a desired detection SNR, (6.2) was inverted and the data scaled to the required

average p. The scaled data was then used to generate Poisson-distributed random numbers

with mean p. Uncorrelated Gaussian random numbers with a standard deviation of σd were

then added to each pixel. For both the dynamic and static aberration cases, the δ-removed

PP-PSD was pre-computed as part of the data simulation routine. Before being passed to

the solver, and any negative pixels were set to zero, and the data frames were scaled such

that the average value in each set of frames (FP, PP, and DP) was one. Code used to

generate simulated data is included in Appendix B

6.4 Performance Metrics

Because of the large number of data realizations inherent in a Monte Carlo analysis,

easily computed performance metrics are key. Although there exist a myriad of quality

metrics for images, they are often subjective and require human interaction. Rather than

delve into the realm of choosing an “optimal” quality metric, a simple mean-squared error

metric, given by

MSE =
1
N2

∑
x,y

(o(x, y)− ô(x, y))2 (6.3)
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where o is the truth image, and ô is the resulting image estimate, was used for characterizing

the reconstructed images. While it’s easy to contrive scenarios where this metric would result

in a poor score for an essentially good image, most (if not all) simple image metrics suffer

from similar problems. Furthermore, in the few scenarios where the metric might show a

poor reconstruction, the reconstructed image can be subjectively evaluated.

To demonstrate the effectiveness of MSE as an image quality metric, reconstructions

with a low (1.83), medium (2.89), and high (6.86) MSE are shown in Fig. 6.1. Fig. 6.1(a)

shows the truth image. Fig. 6.1(b) represents a good reconstruction, and was obtained

with 50 frames of dynamically aberrated data, σd = 6e−, SNR=7, and 15 Zernike modes.

Fig. 6.1(c) represents an average reconstruction, and was obtained with 20 frames of aber-

rated data, σd = 6e−, SNR=7, and 15 Zernike modes. Fig. 6.1(d) represents a poor recon-

struction, and was obtained with 10 frames of aberrated data, σd = 6e−, SNR=3, and 15

Zernike modes. The image clearly becomes worse as MSE increases.

The other key performance characteristics considered were total computation time and

the number of objective function evaluations required for the maximization to converge. To

the extent possible, each scenario was run on the same machine architecture to facilitate

comparison of computation times. However, different scenarios were run on several differ-

ent machines, making comparison of computation times between them fruitless. In such

scenarios, comparison of function evaluations provides a better metric.

6.5 Aberration Regularization

Thelen’s atmospheric regularization term of (4.79) was initially implemented as part

of the algorithm. However, introduction of the regularization term decreased neither the

computational burden nor the residual error in the reconstruction. Because it had a net

negative effect on performance, all further analysis on the APDI algorithm was done with

aberration regularization disabled.

6.6 Optimal Conditioning Bias

The conditioning bias was implemented as a percentage of the average data value. To

determine optimal conditioning bias, 100 30-frame data sets of both static-aberration and
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Figure 6.1: (a) Truth image, (b) MSE=1.83, (c) MSE=2.89, and (d) MSE=6.76. (b)
was the lowest MSE reconstruction, (c) an average MSE reconstruction, and (d) the highest
MSE reconstruction obtained for dynamic aberrations with near-optimal b and γtol.

dynamic-aberration data were generated using SNR=7 and σd = 6e−. Each data set was

then processed with γtol = 1× 10−9 for static aberrations, and γtol = 2× 10−7 for dynamic

aberrations. In both the static- and dynamic-aberration cases, only 15 of the 200 Zernike

modes were included in the reconstruction.

Simulation results for MSE as a function of conditioning bias are shown in Fig. 6.2.

The results show that selecting too small a bias results in worse reconstructions. While a

small bias produces a problem that is closer to the statistically derived expression, the ob-

jective becomes poorly conditioned, and the results are worse. Large biases also worsen the
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reconstruction by moving the problem away from the statistics for which it was developed.

The spike in MSE for b = 10% of the average pixel value and the slight rise for b = 40% seen

for dynamic aberrations in Fig. 6.2(b) are unexplained. However, for the purposes of pro-

ducing low-MSE images, biases of b = 10% and b = 50% appear optimal for the static and

dynamic aberration cases respectively. The difference between optimal biases for the static

and dynamic cases likely stems from the noise reduction that results when static-aberration

data frames are pre-averaged. This reduction in effective noise serves to better condition

the problem and allow for a smaller bias before negative impacts are seen.
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Figure 6.2: Residual MSE versus conditioning bias b. Residual MSE increases for small
biases as the problem becomes less well-conditioned. MSE also increases for larger biases
as the problem moves away from the statistically derived objective.

Computation time as a function of conditioning bias is shown in Fig. 6.3. For both

static and dynamic aberrations the computation time drops almost exponentially with

increasing bias. As the bias increases and the problem becomes better conditioned, the

solver requires fewer and fewer iterations to converge to a solution. If computation time

is paramount, a large decrease in time can be obtained for a relatively small increase in

residual MSE by simply increasing the conditioning bias. This is particularly true for the

dynamic aberration case.
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Figure 6.3: Computation time versus conditioning bias b. Computation time decreases
almost exponentially with increasing bias as the problem becomes better conditioned.

6.7 Optimal Stopping Tolerance

With an established conditioning bias, the next step is characterization of the effect

that convergence tolerance has on performance. The effects of detection SNR, number of

frames, size of the data array, and object being imaged on the optimal convergence tolerance

were all investigated.

6.7.1 Detection SNR. The effects of detection SNR on the optimal stopping

tolerance were quantified by generating 100 30-frame data sets with σd = 6 and SNR equal

to 2, 3, 5, 7, 10, 15, 20, and ∞. The simulated data sets were then post processed using

15 Zernike modes, b = 0.5 and convergence tolerances ranging from γtol = 1 × 10−10 to

γtol = 1 × 10−4. The resulting MSE curves are shown in Fig. 6.4. As can be seen, the

only significant impact of detection SNR on the curves is a shift toward higher MSE with

decreasing SNR below SNR=7.

As shown in Fig. 6.5 and Fig. 6.6, computation time and function evaluations were

only moderately impacted by variations in SNR.

6.7.2 Number of frames. To investigate the effect of additional data frames on

optimal stopping tolerance, 100 data realizations with 10, 20, 30, 40, and 50 frames were
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Figure 6.4: MSE vs. convergence tolerance and SNR. The optimal convergence tolerance
doesn’t shift significantly with changes in detection SNR.
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Figure 6.5: Computation time vs. convergence tolerance and SNR. Computation time
shows a slight dependence on detection SNR.
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Figure 6.6: Function Evaluations vs. convergence tolerance and SNR. Function evalua-
tions show a slight dependence on detection SNR.

generated with SNR=7 and σd = 6e− for both static and dynamic aberrations. These data

sets were then post processed allowing for 15 Zernike modes and with b = 0.5. Residual

MSE as a function of γtol is shown in Fig. 6.7. As shown in Fig. 6.7(a), there is no penalty

for selecting tolerance values smaller than the optimal value of γtol ≈ 6×10−8. This is due to

the fact that at this point, the solver reaches a point where Lold = Lnew, and the iterations

stop regardless of γtol. However, for the dynamic aberration case shown in Fig. 6.7(b),

tolerances smaller than γtol ≈ 2× 10−7 result in increased MSE.

Another notable feature of Fig. 6.7(b) is that the relative deviation of MSE from its

optimal value caused by setting γtol too small is a strong function of the number of data

frames. The increase in MSE as γtol goes lower than the optimal value is likely because the

algorithm begins fitting the reconstruction to noise in the data. Visual inspection of the

results support this hypothesis by showing that the reconstructed image becomes more and

more speckled as the solver goes beyond the optimal result. As more and more frames are

added the effect of noise becomes less and less pronounced, and the reconstruction results

in a smaller deviation from optimum MSE values. A close inspection of the 10 frame line

for static aberrations in Fig. 6.7(a) shows the beginnings of the same rise in MSE with

decreasing γtol, bearing out the notion that the rise is due to excess noise in the data.
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Figure 6.7: MSE vs. convergence tolerance for 10, 20, 30, 40, and 50 frame data sets. (a)
The number of frames has little or no effect of optimal γtol for static aberrations. There is
no penalty for selecting a tolerance smaller than the optimum. (b) The number of frames
has little effect on the optimal tolerance for dynamic aberrations as well, with only a slight
shift for less than 20 frames. If the tolerance is set too low, the algorithm begins fitting to
noise and results in much worse reconstructions.

The number of function evaluations and convergence times for these computations are

shown in Fig. 6.8 and Fig. 6.9 respectively. As can be seen in Fig. 6.8(b) and Fig. 6.9(b),

judicious selection of convergence tolerance for the dynamic aberration case not only signifi-

cantly reduces the MSE, but can also reduce the number of function evaluations and associ-

ated computation time by as much as 50%. The static aberration results of Fig. 6.8(a) and

Fig. 6.9(a) indicate that as much as a 25% decrease in computational cost can be obtained

for no more than a 10% increase in MSE.

6.7.3 Array Size. To see the effect of detector array size on optimal convergence

tolerance, a 128 × 128 pixel object was resampled to 64 × 64, and 32 × 32 pixels. Each of

the objects was then used to generate 100 30-frame data sets for both static and dynamic

aberrations using SNR=7 and σd = 6e−. These data sets were then post-processed allowing

for 15 Zernike modes and setting b = 0.5. The resampled objects are shown in Fig. 6.10, and

the resulting MSE in Fig. 6.11. For static aberrations, the convergence tolerance appears

to be essentially insensitive to array size, but for dynamic aberrations the optimal tolerance
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Figure 6.8: Function evaluations vs. γtol and frames for (a) static aberrations and (b) dy-
namic aberrations. The number of frames has only a marginal effect on optimal convergence
tolerance.
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Figure 6.9: Computation time vs. γtol and frames for (a) static aberrations and (b)
dynamic aberrations. The number of frames has a significant impact on computation time
due to the increase in computational overhead for the dynamic aberration case.
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changes by as much as two orders of magnitude between the 128 × 128 and 32 × 32 pixel

images, generally shifting toward larger values for smaller data arrays.
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Figure 6.10: Truth objects used for evaluating the effect of object size on optimal con-
vergence tolerance.

The number of function evaluations and computation times for the varying object

sizes are shown in Fig. 6.12 and Fig. 6.13 respectively. As expected, both the number of

function evaluations and the computation time are strongly dependent on the object size.

As the array size increases, the number of unknowns grow and the optimization routine

takes more iterations to find the maximum. In addition to the increased number of function

evaluations required for convergence, the computational cost of each evaluation scales with

the image size.

6.7.4 Source Object. To verify that the optimal convergence tolerance is not

impacted by the source object, four different objects (shown in Fig. 6.14) were each used

to generate 100 30-frame data sets with SNR=7 and σd = 6e− for both static and dynamic

aberrations. These data sets where then post-processed using 15 Zernike modes and b = 0.5.

Fig. 6.15 shows that while the absolute MSE varies, the location of the optimum convergence

tolerance is essentially independent of the truth object, and remains within a factor of one

to two for all the tested objects.

Computation time and function evaluations as a function of γtol for the test objects

are shown in Fig. 6.16 and Fig. 6.17. The number of function evaluations, and consequently
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Figure 6.11: MSE vs. convergence tolerance for the file objects of Fig. 6.10 for (a) static
aberrations, and (b) dynamic aberrations. Optimal convergence tolerance for static aber-
rations appears essentially insensitive to the size of the data array, while the dynamic
aberration case shows a strong dependence.
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Figure 6.12: Function evaluations vs. γtol and array size for (a) static aberrations and (b)
dynamic aberrations. As expected, the increase in unknowns associated with larger arrays
has a significant impact on the number of iterations.
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Figure 6.13: Computation Time vs. γtol and array size for (a) static aberrations and (b)
dynamic aberrations. As expected, the increase in unknowns associated with larger arrays
has a significant impact on computation time.

the computation time, show a significant dependence on the object being imaged. However,

the optimal tolerance doesn’t appear to be similarly impacted.

6.8 Corrected Modes

To understand the trade-offs inherent in compensating additional aberration modes,

100 sets of 30-frame data were generated using SNR=7 and σd = 6. These data sets

were then post-processed with b = 0.5, and γtol = 1 × 10−9 for static aberrations and

γtol = 2 × 10−7 for dynamic aberrations. Each data set was processed allowing for 5,

10, 15, 20, 30, 50, and 100 compensated Zernike modes. The resulting MSE is shown in

Fig. 6.18. In both cases, MSE drops rapidly as more and more modes are compensated until

approximately 30 modes are included. After this point, MSE rises again. The reduction in

MSE is consistent with the results expected as the model of the blurring aberration becomes

more complete. However, by the time 50 modes are included, the mode variance for high-

order modes is approximately four orders of magnitude below that of the low-order modes,

and the algorithm is likely fitting to noise in the data.

As shown in Fig. 6.19 and Fig. 6.20, the number of corrected modes has a dramatic

effect on the computation time, and to a lesser extent on the number of function evaluations
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Figure 6.14: Truth objects used for evaluating the effect of the object on optimal conver-
gence tolerance.
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Figure 6.15: MSE vs. convergence tolerance for the file objects of Fig. 6.14 for (a) static
aberrations, and (b) dynamic aberrations. Optimal convergence tolerance appears essen-
tially insensitive to the object being imaged.
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Figure 6.16: Function evaluations vs. γtol and truth object for (a) static aberrations and
(b) dynamic aberrations. The truth object has a moderately strong impact on the number
of evaluations required for convergence.
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Figure 6.17: Computation time vs. γtol and truth object for (a) static aberrations and
(b) dynamic aberrations. The truth object has a moderately strong impact on computation
time.
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Figure 6.18: MSE initially drops with increasing modes, then slowly climes beyond 30
modes for (a) static aberrations, and (b) dynamic aberrations.

84



required for convergence. Because a great deal of the computational time is spent comput-

ing the gradients with respect to the aberration parameters, the increase in computation

time is expected. The increase in function evaluations can be attributed to the increased

dimensionality of the parameter space. The dip in function evaluations for 100 modes with

static aberrations is likely due to the optimizer terminating iterations prematurely.
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Figure 6.19: Function evaluations vs. modes for (a) static aberrations and (b) dynamic
aberrations. Increasing the number of included modes initially improves MSE at the cost
of a moderate increase in function evaluations.

6.9 Number of Frames and Dominant Detection Noise

To characterize the effects of the number of data frames and type and severity of

detection noise sources, 100 static and dynamic aberration data sets with 10, 20, 30, 40,

and 50 frames were generated with SNR values of 2, 3, 5, 7, 10, 15, and 20 using both

σd = 6e− and σd = 100e−. The static aberration data sets were post processed using 15

Zernike modes, b = 0.1 and γtol = 1 × 10−8. Dynamic aberration data sets were post-

processed using 15 Zernike modes, b = 0.5, and γtol = 2 × 10−7. Results for the static

aberration case are shown in Fig. 6.21 and Fig. 6.23. Dynamic aberration results are shown

in Fig. 6.22 and Fig. 6.24.

For both the static and dynamic aberration data sets, there was little difference be-

tween the Poisson dominated (σd = 6e−) and Gaussian dominated (σd = 100e−) detection
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Figure 6.20: Computation time vs. modes for (a) static aberrations and (b) dynamic
aberrations. Increasing the number of included modes initially improves MSE at the cost of
a significant increase in computation time caused by the computational burden of including
the extra modes in the system model.

noise. The slight improvement seen for the static-aberration 10-frame Poisson-dominated

case is likely due to the fact that for low signal levels, Poisson statistics are closer than

Gaussian statistics to the exponential distribution for which the algorithm was derived.

While working with static aberrations, there is little benefit gained by adding more than

20 frames to the dataset. Adding additional frames to the dynamic aberration data sets

has a more significant effect. Though the magnitude of the MSE reduction tapers off, there

continues to be a significant reduction through 50 frames.

Another notable feature is the overall lower MSE and tighter error bars obtained with

dynamic aberration data compared with static aberration data. This can be understood

by considering incoherent phase diversity imaging [39] and multi-frame blind deconvolution

[42]. With moderate to strongly aberrations, multi-frame blind deconvolution tends to

produce better results than phase diversity. With static aberrations, the APDI algorithm is

essentially an incoherent phase diversity algorithm with additional data included. When the

aberration changes in time, the system begins to look more like a multi-frame deconvolution

with the associated increase in performance.
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Figure 6.21: Static aberration MSE vs. SNR for 10, 20, 30, 40, and 50 frame data sets. (a)
represents Poisson and (b) Gaussian dominated detection noise. For SNR ≥ 7 there is little
improvement in MSE, and little is gained by averaging more than 20 frames of data. Low
SNR performance appears better for Poisson than Gaussian dominated noise, but results in
similar results for higher SNR values.
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Figure 6.22: Dynamic Aberration MSE vs. SNR for 10, 20, 30, 40, and 50 frame data sets.
(a) represents Poisson and (b) Gaussian dominated detection noise. For SNR ≥ 7 there is
little, if any, improvement in MSE. Results for the Poisson and Gaussian dominated cases
are statistically indistinguishable. Adding extra frames to the dataset initially decrease
MSE rapidly, but the reduction tapers off for more than approximately 30 frames.
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Figure 6.23: Static aberration computation time vs. SNR. Aside from the 10 frame case,
additional frames have little or no impact on computation time.
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Figure 6.24: Dynamic aberration computation time vs. SNR. SNR has only a slight impact
on computation time. The overall scale difference between the σd = 6e− and σd = 100e−

cases is because the two scenarios were run on different computer architectures.
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6.10 Impact of PP and DP Data Planes on Reconstruction

One of the most radical changes from conventional phase-diversity imaging was the

introduction of PP data. Because introduction of an additional data channel implies ad-

ditional hardware and the lower light levels associated with splitting off another channel,

it’s important to quantify the improvement offered by adding the new channel. To test

the effects of the PP data, 100 data realizations were generated with 30 frames, SNR=7,

and σd = 6e−. The resulting datasets were then processed with 15 compensated Zernike

modes, b = 0.5, and γtol = 1× 10−9 and γtol = 2× 10−7 for static and dynamic aberrations

respectively using the full APDI algorithm, the APDI algorithm including just conventional

FP and DP data, and with the APDI algorithm using just FP and PP data. The resulting

MSE as a function of data planes is shown in Fig. 6.25.
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Figure 6.25: Residual MSE for the full algorithm, without the DP data, and without the
PP data for (a) static aberrations, and (b) dynamic aberrations.

Because of the large amount of information in the PP intensity that hasn’t been

corrupted by the unknown atmosphere, the PP data has a much more significant impact

on system performance than the conventional DP data. For both the static and dynamic

aberration cases, the residual MSE was only slightly higher for the FP-PP configuration

than it was for the complete FP-DP-PP configuration. Reconstructions done without PP

data included resulted in 148% and 54% increases in average MSE compared with the Full
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APDI algorithm for the dynamic and static aberration cases respectively. This shows that

the PP data has a dramatic impact on overall performance of the reconstruction.

Exclusion of the DP data from the APDI algorithm resulted in only a 11% and 24%

increase in MSE for the static and dynamic aberration cases respectively. In cases where

low-light levels force a poor SNR, the marginal gain in performance obtained by using

all three data planes may be swamped by the decrease in performance caused by a low

detection SNR. This indicates that a two-channel system comprised of a FP and PP sensor

might be optimal for these kinds of scenarios. Even when SNR isn’t a factor, the additional

computational burden and hardware requirements for a complete three-channel system may

not be justified by the marginal gain in system performance.

As shown in Fig. 6.26 and Fig. 6.27, in addition to the gain in low-light performance,

elimination of the DP data for the dynamic aberration case also serves to reduce the com-

putation time required for convergence. Because the PP data is insensitive to the changing

aberration, it can be pre-averaged, and much of the computational burden lifted. However,

the DP data depends on the atmosphere, and a reasonably large amount of computation

must be performed at every iteration to include this channel. Because of this disparity,

the FP-PP configuration converges faster than the other configurations in spite of requiring

more function evaluations. For the static-aberration case, the data frames are pre-averaged

in all channels, and the computational burden for the DP data becomes less than that of

the PP data.

6.11 Overall Performance

Of interest is the reduction in MSE relative to the raw frame-averaged FP intensity.

Ideally, the reconstruction should be universally better than the raw data, and result in

a lower MSE for the reconstruction than for the averaged raw data. The pre- and post-

processed MSE for all of the 14,000+ realizations used to generate Fig. 6.21 and Fig. 6.22

are shown in the scatter plot of Fig. 6.28. The solid line marks the point where the pre-

and post-processed MSE are equal. For the static aberration case, approximately 3% of

the reconstructions result in an MSE greater than the pre-processed MSE. As the averaged

focal plane data becomes worse and worse, the frequency of poor reconstructions increases.
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Figure 6.26: Function evaluations vs. data planes for (a) static aberrations and (b) dy-
namic aberrations. For the dynamic aberration case, elimination of the DP data reduces
the computational burden. The same effect is not seen for static aberration data.
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Figure 6.27: Computation time vs. data planes for (a) static aberrations and (b) dynamic
aberrations. For the dynamic aberration case, elimination of the DP data reduces the
computational burden. The same effect is not seen for static aberration data.
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However, in many of the cases where post-processed MSE is higher than the averaged FP

MSE, visual inspection of the reconstruction shows that these points are a result of the

error-metric being inadequate. In a few cases, the question of whether the or not the

reconstruction is worse than the raw data becomes subjective, and it might be argued that

the reconstruction diverged. For the dynamic aberration case, all of the reconstructions

result in an MSE that is lower than the frame-averaged FP MSE in spite of the fact that

the averaged FP data typically had a higher MSE than was the case for static aberrations.
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Figure 6.28: Pre- and post-processed MSE for 7,000+ (a) static aberrations, and (b)
dynamic aberrations. The solid line marks the point where pre- and post-processed MSE’s
are equal. Approximately 3% of the reconstructions with static aberrations had a higher
MSE than the raw data. The prevalence of high-MSE reconstructions increases as the
averaged FP MSE increases. None of the dynamic aberration reconstructions resulted in an
MSE that was higher than the raw data.

The lowest, average, and highest MSE reconstructions for static aberration data are

shown in Fig. 6.29, Fig. 6.31, and Fig. 6.33 respectively. The lowest, average, and high-

est MSE reconstructions for dynamic aberrations are shown in Fig. 6.30, Fig. 6.32, and

Fig. 6.34. The best reconstruction from static aberration data has the lowest MSE of any

reconstruction done as a part of this work, represents a fairly benign aberration, and could

be considered a “glory shot” for the system.
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Figure 6.29: Lowest MSE reconstruction from static aberration data. Generated with
SNR=20, 30 frames, and σd = 6e−. (a) Truth object. (b) Frame-averaged FP data with
MSE=4.65. (c) 15-mode reconstruction with MSE=1.67
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Figure 6.30: Lowest MSE reconstruction from dynamic aberration data. Generated with
SNR=7, 50 frames, and σd = 6e−. (a) Truth object. (b) Frame-averaged FP data with
MSE=6.59. (c) 15-mode reconstruction with MSE=1.83

93



10 20 30 40 50 60

10

20

30

40

50

60

(a) Truth

10 20 30 40 50 60

10

20

30

40

50

60

(b) FP Data (MSE=5.54)
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Figure 6.31: Average MSE reconstruction from static aberration data. Generated with
SNR=3, 20 frames, and σd = 100e−. (a) Truth object. (b) Frame-averaged FP data with
MSE=5.54. (c) 15-mode reconstruction with MSE=3.77
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Figure 6.32: Average MSE reconstruction from dynamic aberration data. Generated with
SNR=2, 50 frames, and σd = 100e−. (a) Truth object. (b) Frame-averaged FP data with
MSE=6.69. (c) 15-mode reconstruction with MSE=2.79
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Figure 6.33: Worst MSE reconstruction from static aberration data. Generated with
SNR=2, 10 frames, and σd = 100e−. (a) Truth object. (b) Frame-averaged FP data with
MSE=7.29. (c) 15-mode reconstruction with MSE=10.18
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Figure 6.34: Worst MSE reconstruction from dynamic aberration data. Generated with
SNR=3, 10 frames, and σd = 6e−. (a) Truth object. (b) Frame-averaged FP data with
MSE=6.90. (c) 15-mode reconstruction with MSE=6.76
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VII. Polarization Data in Active Imaging

In addition to conventional intensity measurements used for the APDI algorithm, the

spatially resolved polarization state of the incident light can be measured, and might

potentially provide valuable information for use in an image reconstruction algorithm. This

chapter covers the development of three approaches to using PP polarization data in image

reconstruction. First, a statistical description for PP polarization data was developed and

an EM-algorithm developed to reconstruct the image by estimating the field correlation

matrix and relating it to the original object intensity. While this is the most direct and

mathematically rigorous approach to using PP polarization data, the derived algorithm

proved to be far too complex for implementation.

As an alternative, PP polarization data was mathematically shaped to fit into the basic

structure of the APDI algorithm, and minor modifications were made to generate a lensless

APDI (LAPDI) variant. Given a good starting guess, the LAPDI algorithm converged to a

good reconstruction in a few iterations. When a random starting guess was used however,

the algorithm stalled at a local maximum after one iteration, resulting in a reconstruction

that was useless. In addition to converging to false reconstructions, the LAPDI algorithm

is extremely computationally expensive and would require significant changes in order to be

practical.

Finally, a statistical description of the polarization phase was developed with the

intent of replacing the PP imaging sensor with a four-channel imaging polarimeter. The

relationship between the polarization phase PSD and the truth object was established,

and an approximate numerical form developed. Though there is a significant amount of

information about the truth object encoded in the PP polarization phase, the developed

implementation resulted in worse reconstructions and had a higher computational burden.

7.1 Direct Image Estimation From Pupil Plane Polarization State Measurements

The first question considered is the feasibility of reconstructing an image directly from

the spatially resolved PP polarization state. For the purposes of model development, rough

surface scattering is assumed to be the dominant factor in depolarization, and statistical

independence between polarizations is assumed. Similar to the statistical description of
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laser speckle, it’s assumed that the size of a scattering surface on the object is sufficiently

small that contributions from a large number of scatterers are observed at all points located

any significant distance from the object. After reflection from the object, a linear, homoge-

neous, isotropic propagation media is assumed, and scalar diffraction theory is used to treat

polarization components independently.

Treating polarizations independently, the polarized portion of the field in the PP is

completely described by projecting it against the primary s and p polarization directions

Us =Asejθs (7.1a)

Up =Apej(θs+θ12) (7.1b)

where θs is the unknown propagation phase for the s polarization, As and Ap are the PP

amplitudes for the two polarizations, and θ12 is the known polarization phase. Assuming

the spatially resolved Stokes vector is measured, the available data are given by

As =

√
1
2
(S′0 + S1) (7.2a)

Ap =

√
1
2
(S′0 − S1) (7.2b)

θ12 =arctan
S2

S3
(7.2c)

where as before

S′0 =
√
S2

1 + S2
2 + S2

3 (7.3a)

=PS0 (7.3b)

and each of As, Ap, and θ12 are N ×N data arrays.

To use statistical methods to estimate the lost phase information, an adequate sta-

tistical model for the data must be developed. For the linear-algebra approach used here,

two-dimensional data arrays must first be re-ordered or “lexicographically stacked” [1] into

an N2×1 column vector which is built up by “raster scanning” the image and dumping the
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elements sequentially into the output vector such that




a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aN1 aN2 · · · aNN



⇒




a11

a12

...

a1N

a21

...

aNN




(7.4)

Once the data has been restructured, a statistical model can be formed using familiar linear

algebra notation.

From Chapter III, the statistics in both the object and detector planes obey circular

complex Gaussian statistics, described by

P (U) =
1

(2π)N2/2
√
|Γ| exp

{
−1

2
UHΓ−1U

}
(7.5)

where U is the field component along either polarization direction and Γ is the associated

correlation matrix where the (i, j)th element is E [U∗(i)U(j)], which can also be interpreted

as the mutual intensity J12(Pi, Pj) of the field components at the points represented by the i

and j indexes in the PP. To specify the joint probability of the two polarization components,

independence is assumed, and the probability density functions for each component are

multiplied. This results in a joint probability distribution function given by

P (Us, Up) =
1

(2π)N2
√|Γs| |Γp|

exp
{
−1

2
(
UHs Γ−1

s Us + UHp Γ−1
p Up

)}
(7.6)

Given that As, Ap, and θ12 are known to within the uncertainty of noise in the data,

it makes sense to separate these quantities out of (7.6) and isolate the common phase θs.

To do this, individual field elements Us(i) = As(i)ejθs(i) and Up(i) = Ap(i)ejθs(i)ejθ12(i) can

be written Us(i) = As(i)ϑ(i) and Up(i) = Ap(i)ejθ12(i)ϑ(i) where ϑ(i) = ejθs(i). In the vector
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representation this can be written

Us =Asϑ (7.7a)

Up =Apϑ (7.7b)

where ϑ is an N2 × 1 vector defined by

ϑ = ejθs (7.8)

and

As =diag {As} (7.9a)

Ap =diag {Ap}diag
{
ejθ12

}
(7.9b)

where diag {·} is a diagonal matrix composed of elements of the argument. The exponent

of (7.6) can then be written

UHs Γ−1
s Us + UHp Γ−1

p Up = ϑHMϑ (7.10)

where

M = AH
s Γ−1

s As + AH
p Γ−1

p Ap (7.11)

Using these simplifications, the probability distribution of ϑ, As, Ap, and θ12 given Γs, and

Γp is given by

P (θs, As, Ap, θ12|Γs,Γp) =
1

(2π)N2
√|Γs| |Γp|

exp
{
−1

2
ϑHMϑ

}
(7.12)

7.1.1 Phase Estimation With a Known Correlation Matrix. After completing the

statistical system model, the next step is to construct an estimation rule that will result

in the best possible reconstruction of the object being imaged. One approach is to form

an estimate of the phase and reconstruct the image through inverse-transforming the now

complete PP field distribution. Alternatively, the correlation matrices Γs and Γp can be

estimated and used to get an estimate of the object intensity distribution by noting that
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the (i, j)th element of Γ is the mutual intensity for the field at the points represented by

the i and j indexes. Once an estimate for the mutual intensity has been formed, the object

can be reconstructed using (3.31) via an inverse Fourier transform.

Assuming the full conditional probability is available, the best possible estimate for

the lost phase information can be found by forming the ML estimate in accordance with

section 2.1.3. The ML estimation rule for the complex phasor ϑ is given by

ϑ̂ = argmax
ϑ

P (ϑ|As, Ap, θ12) (7.13)

where ϑ̂ is the ML estimate of ϑ. To eliminate exponentials, the log-likelihood is maximized

such that

ϑ̂ = argmin
ϑ

[
ϑHMϑ

]
(7.14)

A quick look at the form of (7.14) shows it to be an N2-dimensional quadratic that is

centered on zero, implying that the corresponding minimum would be located at the point

ϑ̂ = 0. However, the definition of ϑ from (7.8) places constraints on the possible solutions,

and results in non-trivial estimates.

In a previous implementation of an estimator for ϑ [20], a constraint was imposed that

required ‖ϑ‖2 = N or otherwise expressed

ϑHϑ = N2 (7.15)

Applying this constraint,

ϑ̂ = argmin
ϑHϑ=N2

[
ϑHMϑ

]
(7.16)

Using the constrained optimization method outlined in section 2.2.4, the optimum estimate

for ϑ is found by solving the eigenvalue problem

Mϑ = λlϑ (7.17)

and setting the estimate ϑ̂ equal to the eigenvector associated with the minimum eigenvalue.
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While the constraint given by (7.15) gives the problem a convenient form and limits

the set of possible solutions to a set including the possible valid values of ϑ, it also includes

a much larger set of possible solution vectors that do not correspond to valid estimates.

Given that ϑ is a unit-magnitude complex phasor, the correct constraint function for the

optimization can be written

gi(ϑ) = 1− ϑ∗iϑi (7.18)

where gi(ϑ) is the ith element of the vector valued function g(ϑ), ϑi is the ith element of

ϑ, and ∗ denotes complex conjugation. Using this constraint function, the Lagrangian for

optimization is given by

L(ϑ,~λl) = ϑHMϑ+ ~λlg(ϑ) (7.19)

which is nonlinear and requires special care. One approach to solving the correctly con-

strained problem was presented by Szeto [47], and is paraphrased here.

Given that piston (a constant phase across the reconstruction) is an unobservable

quantity that does not directly impact the image reconstruction, it’s constrained to be zero

to eliminate any ambiguity in the reconstruction result. To implement this, the solution is

constrained such that
n∑

i=1

Im{ϑi} = 0 (7.20)

To add this constraint to the Lagrangian, an additional multiplier µl is added, resulting in

L(ϑ,~λl, µl) = ϑHMϑ+ ~λTl g(ϑ) + µl1T Im{ϑ} (7.21)

where 1 is an N2-vector of ones and µl is a scalar multiplier.

To eliminate the need for complex algebra, ϑ is written in terms of its real and imag-

inary parts such that

ϑ = u + jv (7.22)

and M is split into its real and imaginary parts such that

A =Re{M} (7.23a)

B =Im{M} (7.23b)
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where A is symmetric and B is skew-symmetric. Substituting these definitions into (7.21)

and simplifying results in the modified Lagrangian

L(u,v, ~λl, µl) = uT (Au−Bv) + vT (Av + Bu) + ~λTl g(u,v) + µl1Tv (7.24)

At this point it’s convenient to define

Λ = diag
{
~λl

}
(7.25)

as a diagonal matrix built from the vector of Lagrange multipliers, and write g(u,v) in a

form more convenient for linear algebra operations

g(u,v) = 1− (Uu + Vv) (7.26)

where U and V are diagonal matrices such that

U =diag {u} (7.27a)

V =diag {v} (7.27b)

Differentiating (7.24) with respect to u, v, ~λl, and µl and setting the results equal to

zero produces the system of equations

Au−Bv =−Λu (7.28a)

Av + Bu =−Λv − µl1 (7.28b)

Uu + Vv =1 (7.28c)

1Tv =0 (7.28d)

the solution of which will yield the optimum estimate for ϑ which can then be used in

conjunction with the remaining data to form an image. Szeto showed that for his application,

this system of equations converged quadratically using Newton’s method.
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7.1.2 Correlation Matrix Estimation. One critical assumption in the previous

approach is that the correlation matrix Γ is known. Alternatively, assuming that the prop-

agation phase is known, the correlation matrix can be estimated using the complex field.

Considering (3.31) and ignoring scaling and phase terms, Γ is only a function of the separa-

tion (∆u,∆v) between the two points being correlated. Assuming that both the amplitude

and phase information are available, the correlation matrix can be estimated using the fact

that there are multiple data pairs within a data set with the same separation. An effi-

cient method for forming this estimate is to use FFT’s to generate the autocorrelation of

the N ×N complex field arrays assuming circular shifts, then using the autocorrelation to

populate the Γ matrix based on point separations.

Unfortunately, the phase information is not available. What is available, however, is

the polarization phase. To consider the relationship between the propagation phase and the

polarization phase, the phases at two points P1 and P2 are written

θ1
s =S-polarization phase @ P1 (7.29a)

θ1
p =P-polarization phase @ P1 (7.29b)

θ2
s =S-polarization phase @ P2 (7.29c)

θ2
p =P-polarization phase @ P2 (7.29d)

The polarization phases are then given by

θ1
12 =θ1

s − θ1
p (7.30a)

θ2
12 =θ2

s − θ2
p (7.30b)

Evaluating the polarization phase correlation in terms of the propagation phases

E
[
θ1
12θ

2
12

]
=E

[
(θ1
s − θ1

p)(θ
2
s − θ2

p)
]

(7.31a)

=E
[
θ1
sθ

2
s − θ1

sθ
2
p − θ2

sθ
1
p + θ1

pθ
2
p

]
(7.31b)

=E
[
θ1
sθ

2
s

]− E
[
θ1
sθ

2
p

]− E
[
θ2
sθ

1
p

]
+ E

[
θ1
pθ

2
p

]
(7.31c)

103



Assuming statistical independence of orthogonal polarizations, E
[
θ1
sθ

2
p

]
= 0 and E

[
θ2
sθ

1
p

]
=

0 resulting in

E
[
θ1
12θ

2
12

]
= E

[
θ1
sθ

2
s

]
+ E

[
θ1
pθ

2
p

]
(7.32)

which when E
[
θ1
sθ

2
s

]
= E

[
θ1
pθ

2
p

]
is twice the average of the phase correlation for each

polarization. If the two polarizations have similar reflectivities the correlations will be very

similar, and the polarization phase correlation will closely match the true phase correlation.

Given the relationship between polarization phase correlation and propagation phase

correlation, and that the polarization phase correlation is easily estimated from measured

data, the next logical step is to relate the phase correlation to the field correlation. Given

the two-point joint phase probability distribution function of (3.45) the correlation between

the phases θ1 and θ2 at points P1 and P2 is given by

E [θ1θ2] =
∫∫ ∞

−∞
θ1θ2

1− µ2

4π2(1− β2)3/2

(
β sin−1 β +

πβ

2
+

√
1− β2

)
dθ1dθ2 (7.33)

where µc is the complex correlation coefficient, µ = |µc|, β = µ cos(θ2 − θ1 + ψ), and

ψ = ∠µc. Unfortunately, (7.33) does not lead to a closed-form relationship between E [θ1θ2]

and µc. Numerical evaluation of (7.33) over the range of µ and ψ results in Fig. 7.1, which

shows the predicted strong dependence. However, it can be seen that the correlation is

not invertible, having multiple possible values of µc for a given value of E [θ1θ2]. As a

consequence, direct estimation of µc or equivalently Γ from polarization data using this

approach is not possible.

7.1.3 Iterative Refinement. Given that there are two unknowns in the statistical

model, a common approach to generating an estimate is to optimize the first unknown given

a current estimate of the second, then update the second based on the results of the first.

In a previous implementation developed at the Air Force Research Laboratory (AFRL) [20]

this method was used to iteratively refine estimates for the common phase term and the

correlation matrix. Given an initial estimate for the correlation matrix, an estimate for the

phasor ϑ is formed then used with the remaining data to develop a better estimate for the

correlation matrix. This process is then iterated in an attempt to converge to the optimal

solution.
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Figure 7.1: Functional dependence of E [θ1θ2] on the magnitude and phase of the field
correlation µc.

7.1.4 EM-Algorithm Correlation Matrix Estimation. A more mathematically rig-

orous approach than alternating estimation of the two unknowns is to develop an EM-

algorithm in accordance with section 2.1.4. The EM algorithm is explicitly designed to deal

with estimation of parameters when there is some form of unobservable data; and has been

shown to converge to a local maximum in general, and to the true maximum likelihood

estimate if the likelihood function is convex over the space of possible solutions [15]. In the

problem of interest, the correlation matrices Γs and Γp are the parameters to be estimated,

the common phase/phasor ϑ is the unobservable or hidden data, and As, Ap, and θ12 are the

incomplete or measured data. In contrast to the AFRL implementation, ϑ is not estimated.

Rather, estimates of the parameters Γs and Γp are developed using the measured data and

the statistical description of the system.

In this case, the complete data are described by the joint-density function of (7.12),

or

P (θs, As, Ap, θ12|Γs,Γp) =
1

(2π)N2
√|Γs| |Γp|

exp
{
−1

2
ϑHMϑ

}
(7.34)

which leads to a log-likelihood function given by

L(Γs,Γp|ϑ,As,Ap, θ12) = −ϑHMϑ (7.35)
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where as in (7.11)

M = AH
s Γ−1

s As + AH
p Γ−1

p Ap (7.36)

and where As and Ap are as defined in (7.9). The conditional expectation over which the

maximization is performed is then given by

Q(M,M(i)) =E
[

L(Γs,Γp|M)|M(i)
]

(7.37a)

=− E
[
ϑHMϑ|M(i)

]
(7.37b)

=−
∫

ϑ∈Θ
ϑHMϑp(ϑ|M(i))dϑ (7.37c)

where Θ is the space of all unit-magnitude complex phasors.

To complete the expectation, the conditional probability distribution p(ϑ|M(i)) must

be known. Using Bayes’ rule, this conditional distribution is given by

p(θs|M(i)) =
p(θs, As, Ap, θ12|Γs,Γp)
p(As, Ap, θ12|Γs,Γp) (7.38)

however, the marginal distribution p(As, Ap, θ12|Γs,Γp) for this problem is not easily ob-

tainable. As was previously mentioned, because the marginal distribution used for the

expectation is not a function of the updated parameter estimate, it’s effectively constant

and the expectation can be performed using p(ϑ,As, Ap, θ12|Γs,Γp). Applying this and

dropping the constant multiplier (with the exception of the negative sign), the expectation

becomes

Q(M,M(i)) = −
∫

ϑ∈Θ
ϑHMϑ exp

{
−1

2
ϑHM(i)ϑ

}
dϑ (7.39)

Continuing to the maximization step of the EM algorithm, the updated estimate for M is

then given by

M(i+1) = argmax
M

Q(M,M(i)) (7.40)

7.1.5 Sparse Solution Approach. In order to implement this EM-algorithm, the

N ×N data set must be re-ordered into an N2×1 vector, and then the N2×N2 correlation

matrix must be formed. For large images this can result in a problem that is too large to solve

directly. For example, a 256× 256 image would lead to a 65536× 65536 correlation matrix
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requiring 32Gb of memory to store in 64-bit double-precision floating point format. Given

that the addressable memory on a 32-bit processor is capped at 4Gb, the required space for

simply storing the correlation matrix puts the problem out of the reach of many currently

available computers. Additionally, the computation time involved in directly operating on

such a large matrix would be significant.

Based on the definition of Γ, the correlation matrix takes on a Toeplitz-block-Toeplitz

form. Furthermore, because the magnitude of the correlation depends only on the absolute

separation between the points, the magnitude of each block will be identical with only a

known phase difference between them. This introduces a large amount of redundancy that

can substantially reduce the storage requirements for Γ. If the solution algorithm can be

customized to take advantage of the structure and redundancy in the matrix, the storage

and computational requirements can be reduced significantly.

One approach to utilizing this redundancy is to pose the problem as sets of two point

data pairs characterized by a common point separation. This can be done without loss in

generality because of the Gaussian statistics which are completely characterized by their

first and second moments. An estimator can be built for each point separation, and used to

incrementally build up an estimate for the full correlation matrix. To do this, the statistical

model is modified to only include the joint two-point distribution of intensity and phase

given by (3.43) re-written here as

p(I1, I2, θ1, θ2) =
1

4Ī2π2(1− µ2)
exp

[
−I1 + I2 − 2

√
I1I2µ cos (θ1 − θ2 + ψ)
Ī(1− µ2)

]
(7.41)

where µ = |µc|, ψ = ∠µc, and Ī is the average intensity in the detector plane.

Assuming independence of orthogonal polarizations and defining the fields along the

s- and p-polarizations as

Us =Aseiθs (7.42a)

Up =Apeiθs+θ12 (7.42b)
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the joint pdf for any set of data pairs from each polarization is given by

p(I1
s , I

2
s , I

1
p , I

2
p , θ

1
s , θ

2
s , θ

1
12θ

2
12) =

1
(4π2ĪsĪp)2(1− (µs)2)(1− (µp)2)

×

exp

[
− I1

s + I2
s − 2

√
I1
s I

2
sµs cos

(
θ1
s − θ2

s + ψs
)

Īs(1− (µs)2)

−
I1
p + I2

p − 2
√
I1
pI

2
pµp cos

(
θ1
s − θ1

12 − θ2
s + θ1

12 + ψp
)

Īp(1− (µp)2)

]
(7.43)

Point pairs with the same separation are treated independently, and the joint distribution

for N point pairs with set separations is given by

p(~I1
s , ~I

2
s , ~I

1
p
~I2
p ,
~θ1
s ,
~θ2
s ,
~θ1
12,
~θ2
12) =

∏
n

p(I1
s (n), I2

s (n), I1
p (n), I2

p (n), θ1
s(n), θ2

s(n), θ1
12(n)θ2

12(n))

(7.44)

This distribution can then be used to develop a more tractable EM-algorithm for estimation

of µc. To simplify development of an EM-algorithm for this distribution, only one point

pair is used at present. The result will be expanded later to include multiple pairs.

Using the joint PDF of (7.43) and throwing out terms that are not functions of the

correlation coefficients, the CD log-likelihood function is given by

L(µsc, µ
p
c) = − ln

{
(1− (µs)2)(1− (µp)2)

}− I1
s + I2

s − 2
√
I1
s I

2
sµs cos

(
θ1
s − θ2

s + ψs
)

Īs(1− (µs)2)

−
I1
p + I2

p − 2
√
I1
pI

2
pµp cos

(
θ1
s + θ1

12 − θ2
s − θ2

12 + ψp
)

Īp(1− (µp)2)
(7.45)

To carry out the expectation of (2.16), the conditional PDF for θ1
s , and θ2

s , given I1
s , I

2
s , I

1
p ,

I2
p , θ

1
12, and θ2

12 must be found using Bayes’ rule such that

p(θ1
s , θ

2
s

∣∣I1
s , I

2
s , I

1
p , I

2
p , θ

1
12, θ

2
12) =
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1
12θ
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p(I1
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2
p , θ

1
12θ

2
12)

(7.46)

which requires the joint marginal distribution of the known parameters I1
s , I

2
s , I

1
p , I

2
p , θ

1
12,

and θ2
12.
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Because the fields are independent, the marginal distributions for each polarization

will also be independent and can be found individually and multiplied to find the desired

quantity rather than attempting to integrate (7.43) directly. Doing this and temporarily

ignoring the constants in front of the exponential in (7.41), the desired marginal distributions

are given by

p(I1
s , I

2
s ) =

∫∫ π

−π

1
4Ī2π2(1− (µs)2)

exp

[
−I

s
1 + Is2 − 2

√
Is1I

s
2µs cos

(
θ1
s − θ2

s + ψs
)

Īs(1− (µs)2)

]
dθ1

sdθ
2
s

(7.47)

and

p(I1
p , I

2
p , θ

1
12, θ

2
12) =

∫∫ π

−π

1
4Ī2π2(1− (µp)2)

×

exp
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p
1 + Ip2 − 2

√
Ip1I

p
2µp cos

(
θ1
s − θ2

s + θ1
12 − θ2

12 + ψp
)

Īp(1− (µp)2)

]
dθ1

sdθ
2
s (7.48)

Using the results of Equation (2.94) in [12], these integrals are the same, and ultimately

have no dependence on θ1
12 and θ2

12, with the final result for the joint-marginal PDF given

by

p(I1
s , I

2
s , I

1
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2
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1
12θ

2
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1
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 2
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pI

2
pµp

Īp(1− (µp)2)


 (7.49)

where I0(·) is a modified Bessel function of the first kind, zero order.

Because the conditional distribution is conditioned on the current estimate for the

parameter µc in the expectation step, this marginal distribution is a constant, and can be

ignored. The expectation can be taken using the complete joint-probability given by (7.43)

such that

Q(µc, µ(old)
c ) =

∫∫ π

−π
L(µc)p(θ1

s , θ
2
s , I

1
s , I

2
s , I

1
p , I

2
p , θ

1
12, θ

2
12|µ(old))dθ1

sdθ
2
s (7.50)
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Applying (7.43) and (2.15) to (7.50), assuming for simplicity that the correlation

coefficients for each polarization are the same, and pulling all factors that are independent

of the phase terms θ1
s and θ2

s out of the integral, the expectation is then given by

Q(µc, µ(old)
c ) = f1(µ) + f2(µ, µ(old))f3(ψ) (7.51)

where the term of current interest is

f3(ψ) =
∫∫ π

−π

[√
I1
s I

2
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s − θ2
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√
I1
pI

2
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]
×

exp
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2
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s − θ2
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√
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2
p cos(θ1
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s + θ1

12 − θ2
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]
dθ1

sdθ
2
s (7.52)

Because f1 and f2 are everywhere nonnegative, (7.51) can be maximized over the space of

possible correlation coefficients by maximizing f3 with respect to ψ first, then using this

result in (7.51) and maximizing over µ. To expand the problem to include multiple data

pairs, independence of point pairs is assumed, and the integral of f3 becomes

∫
~θ1s(1)

· · ·
∫
~θ1s(N)

∫
~θ2s(1)

· · ·
∫
~θ2s(N)

f ′3(~θ
1
s ,
~θ2
s , ψ) exp

[
f ′3(~θ

1
s ,
~θ2
s , ψ

(old))
]
d~θ1

sd~θ
2
s (7.53)

where there are twice as many integrals as there are point pairs with the specified separation,

f ′3(~θ
1
s ,
~θ2
s , ψ) =

N∑

n=1

[√
~I1
s (n)~I2

s (n) cos
(
~θ1
s(n)− ~θ2

s(n) + ψ
)

+

√
~I1
p (n)~I2

p (n) cos
(
~θ1
s(n)− ~θ2

s(n) + ~θ1
12(n)− ~θ2

12(n) + ψ
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(7.54)

~θ1
s , ~θ

2
s , ~I

1
s , ~I

2
s , ~I

1
p , ~I

2
p , ~θ

1
12, and ~θ2

12 are vectors containing the polarization phase for all point

pairs with a given separation, and the integration is over all the unknown phase variables.

Because this integral has no known solution, numerical integration was considered.

However, assuming for simplicity that the nested integrals could be separated, a 20 frame

64 × 64 pixel image maximization of (7.51) at all point pair separations would require

approximately 1.3×109 numeric integrations per iteration. This also assumes that the result
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of (7.51) has a well defined maximum on the interval (−π < ψ < π] which may or may not

be the case. Because of the extreme cost of forming this estimate, further work on an EM

algorithm for PP polarization data was halted at this point.

7.2 lensless APDI

Another approach to reconstructing images from PP polarization state data is to

mathematically shape the problem to look like a phase-diversity (PD) problem and generate

a lensless APDI (LAPDI) algorithm. Recall that the fields in the system PP immediately

after the effective lens for a PD system were described by

UFP = Uo exp [jφ] (7.55a)

UDP = Uo exp [j (φ+ φD)] (7.55b)

where Uo = A exp [jθ1], θ1 is the vacuum propagation phase, φ is the unknown aberration

phase and φD is the known diversity phase. If all data is taken in the PP, the system is

insensitive to the aberration phase, and the aberration phase can be arbitrarily set such

that φ = −θs. In this case, the PP field could be written

UFP = A (7.56a)

UDP = A exp [jφD] (7.56b)

The FP and DP intensities would then be given by

dFP ∝ |F{A}|2 (7.57a)

dDP ∝ |F{A exp [j (φD)]}|2 (7.57b)

Allowing the amplitudes of (7.56) to have channel-dependent noise, (7.56) becomes

UFP = As (7.58a)

UDP = Ap exp [jφD] (7.58b)
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Comparing (7.58) and (7.2), the data available from PP polarization state field can

completely describe the field if we let φD = θ12. The field description for each polarization

is simply the square-root of the intensity. The operations in (7.57) required to generate an

aberrated image can then be mathematically performed, and the APDI algorithm can be

modified to work with only polarization data. The updated noiseless model data is given

by

gfm = o⊗ sfm (7.59)

where m ∈ {FP,DP}, and

sfFP = |F{exp [−jφ]}|2 (7.60a)

sfDP = |F{exp [−j (φ+ θ12)]}| (7.60b)

The “measured data” for the FP and DP channels is defined as

dfFP (x, y) =γ1

∣∣∣F{Afs}
∣∣∣
2

(7.61a)

dfDP (x, y) =γ2

∣∣∣F{Afp}
∣∣∣
2

(7.61b)

where γ1 and γ2 are normalization constants, Afs and Afp are the measured field amplitudes

for the principle polarizations in the f th frame, and θf12 is the polarization phase for the f th

frame. To account for the non-zero average of As and Ap, it is subtracted out before the

model images are formed. Another notable change is that the “diversity phase” is now a

part of the data set, and changes with each frame. The modulus squared of Afs and Afp can

be passed into the APDI PP-regularization term without additional changes.

The only major change to algorithm development is modification of the aberration

parameterization. Because the aberrations being considered for the APDI algorithm were

somewhat smooth and had a power spectrum that was predictable, a reduced representation

for them could be easily found and the aberration represented with only a few parameters.

However, when the unknown phase is the vacuum propagation phase, the complex structure

of the phase makes projecting it against Zernike modes counterproductive. A suitable

representation would require roughly as many parameters as there are pixels, and numerical

roundoff and aliasing of the high-order modes would adversely impact the representation.
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As an alternative, the natural basis set (shifted δ-functions) is used, making each phase pixel

in each frame a variable of optimization. Other than expanding the variable space, the only

change required is in the computation of the objective function gradient with respect to

phase parameters.

Restating (5.18) and (5.19) for the partial derivative of gm with respect to phase

parameter φ(u0, v0) and substituting ψn = δ(u− u0, v − v0),

∂gm(x, y)
∂φ(u0, v0)

= o(x, y)⊗ ŝkm(x, y) (7.62)

where

ŝkm(x, y) = 2Re
{
h∗m(x, y)F

{
jδ(u− u0, v − v0)P (u, v)×

exp
[
j
(∑

n

(βmφD(u, v) + φ(u, v)) δ(u− u0, v − v0)
)]}

(7.63)

βm = 1 when m = DP and 0 otherwise, and the aberration phase has not been param-

eterized. Assuming P (u, v) = 1 for all points in the data array, using the definition for

the discrete Fourier transform, and employing the sifting property of the δ-function, (7.63)

becomes

ŝkm(x, y) =
2
N2

Im

{
(h∗m(x, y))∗ exp

{
−j

[
2π
N

(u0x+ v0y) + βDφD(u0, v0) + φ(u0, v0)
]} }

(7.64)

One major consequence of shifting from a truncated Zernike mode representation to

a pixel-value representation for phase is that the computational costs skyrocket. For the

original APDI implementation, each iteration requires (6M + 12)F + 5 FFTs, where there

are F data frames, and M Zernike modes are compensated. This translates to 3065 FFTs

per iteration for a 30-frame data set of any size with 15 modes per frame. By contrast, the

LAPDI algorithm requires (4N2 + 12)F + 5 FFTs for each iteration using an N ×N data

set, translating to roughly 5×105 FFTs per iteration for a 30-frame 64× 64 pixel data set,

and 2×106 for a 128× 128 pixel 30-frame data set.

Because of the extreme computational cost, a 16×16 test image, shown in Fig. 7.2(a),

was used for initial algorithm performance analysis. The reconstruction shown in Fig. 7.2(b)
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resulted from using the truth for the starting guess, and converged after six iterations. Given

the inherently noisy data, the reconstruction is quite good. However, when starting with a

random guess, the algorithm stalled at a local maximum after one iteration. The resulting

reconstruction bore no resemblance to the original object. To get a better starting guess,

the polarization phase PSD was used for the truth object and uniform random numbers

were generated for the phase guess. Again, the optimization stalled after one iteration. The

starting guess and reconstruction are shown in Fig. 7.3(a) and Fig. 7.3(b) respectively.
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(b) Reconstruction from Truth

Figure 7.2: LAPDI (a) Truth object/initial guess, and (b) reconstruction. The algorithm
converged after 6 iterations.
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Figure 7.3: LAPDI (a) Initial guess from θ12 PSD, and (b) reconstruction. The algorithm
stalled after 1 iteration.
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The failure to converge is likely due to the fact that there are only 3FN2 data points

for (F + 1)N2 unknowns, a ratio of slightly less than three to one for any realistic N

and F . While this should be sufficient in a nearly noiseless system, speckle noise caused

by laser statistics creates local minima that trap the optimization routine. Because each

additional frame introduces N2 additional unknowns while only adding 3N2 data points, the

problem won’t be significantly better conditioned by simply adding frames. An alternative

approach must be taken to regularize the objective if this approach is to work. Because of

its prohibitively expensive nature and failure to converge to satisfactory solutions, further

work on the LAPDI algorithm was terminated.

7.3 Polarization Enhanced ADPI

An implication of the relationship between the polarization phase correlation, phase

correlation, (3.35) and Fig. 7.1, is that there is a large amount of information about the

object encoded in the polarization phase measurements. An alternative approach to incor-

porating this information into an image reconstruction algorithm is to replace the PP sensor

in the APDI system described in Chapter V with an imaging polarimeter. The intensities

for the two polarizations can then be used as PP intensities in the APDI algorithm without

modification. The remaining step is to form a statistical description for the polarization

phase that will fit in the framework of the APDI algorithm.

Rather than work directly with the (unknown) joint PDF of the polarization phase,

the spatial PSD of the polarization phase is used. Though there is no known analytic

expression for the distributions of the PSD or autocorrelation, the definition of the PSD as

the modulus square of the Fourier transform can be used to develop an approximate form.

As before, the Fourier transform is written in integral form, and the power spectrum of the

polarization phase is given by

d12 (x, y) =
∣∣∣∣
∫∫ ∞

−∞
θ12(u, v) exp [−j2π (ux+ vy)] dudv

∣∣∣∣
2

(7.65)

Assuming for simplicity that the θ12 values are independent and viewing the integral as an

infinite sum of randomly weighted unit-magnitude complex phasors, the central limit theo-

rem indicates that the integral will be a complex Gaussian random variable. Applying the
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same transformations used for (3.28), the power spectrum will be exponentially distributed.

As with the PP-PSD data, a histographic analysis agrees with exponential statistics. To

maintain tractability, spatial independence is again assumed.

As an indication of the object information contained in d12, the truth object and 100

averaged simulation realizations are shown in Fig. 7.4. To relate d12 to the object being

imaged, define

µ′ (∆ξ,∆η) = E [θ12 (ξ1, η1) θ12 (ξ2, η2)] (7.66)

where E [θ12 (ξ1, η1) θ12 (ξ2, η2)] is a function of µ and ψ, and is shown in Fig. 7.1. Applying

the Weiner-Khintchine theorem to relate the autocorrelation and the PSD such that the

noiseless model data is given by

g12 (x, y) = F{µ′ (∆ξ,∆η)} (7.67)

where µ′ is as given in (7.66). As previously stated, µc is a normalized Fourier transform of

the object given by

µc =
F{o (x, y)}∑
ξ,η o (ξ, η)

(7.68)

and µ = |µc| and ψ = ∠µc.
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Figure 7.4: (a) Truth object, and (b) 100 averaged polarization phase PSD realizations.
It’s clear that a large amount of object information is encoded in the polarization phase
PSD.
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Statistical independence between data frames is assumed, and the joint distribution

for the polarization phase PSD is given by

p (D12) =
∏

f,x,y

[
1

g12 (x, y)
+
d12 (x, y)
g12 (x, y)

]
(7.69)

leading to a log-likelihood given by

L (o) =
∑

f,x,y

[
ln g12 (x, y) +

df12 (x, y)
g12 (x, y)

]
(7.70)

The only remaining pieces required for incorporation into the APDI algorithm are develop-

ment of a method for efficiently determining µ′ (µ, ψ), and computation of the gradient of

g12 with respect to the object pixels and aberration parameters. Because the polarization

phase is insensitive to the aberration, the partial derivative with respect to the aberration

parameters is zero.

Initial attempts to fit µ′ (µ, ψ) to analytical expressions including Gaussian, Lorentzian,

and cosine series didn’t produce a good fit. Furthermore, evaluation of the partial deriva-

tives of the fit were unacceptably computationally expensive. As an alternative, µ′ and its

partial derivatives with respect to µ and ψ were numerically evaluated by integrating (3.45)

and its derivatives on a linearly spaced 256 × 256 grid covering the ranges (−π < ψ < π)

and (0 ≤ µ < 1). The results of the numeric integration are shown in Fig. 7.5. The map-

ping between µc and µ′, and the gradients of µ′ with respect to µ and ψ were obtained by

performing a 2-D linear interpolation using nearest neighbor points.

The remaining pieces required for integration are the partial derivatives of µ and ψ

with respect to a given object pixel. Using the definition of the discrete Fourier transform,

µc (x, y) =
1∑

ξ,η o (ξ, η)

∑
u,v

o (u, v) exp
[
−j2π
N

(ux+ vy)
]

(7.71)

and defining

µ = (µ∗cµc)
1/2 (7.72)
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Figure 7.5: Numerical evaluation of µ′ (µ, ψ), ∂µ′/∂µ, and ∂µ′/ψ. 2-D linear interpolation
is used for µ and ψ values that don’t correspond to grid points.

and

ψ = tan−1

(
Im {µc}
Re {µc}

)
(7.73)

the partial derivatives of µ and ψ with respect to object pixel o (xo, yo) are given by

∂µ (x, y)
∂o (x0, y0)

=
1∑

ξ,η o (ξ, η)

[
cos

(
2π
N

(x0x+ y0y) + ψ (x, y)
)
− µ (x, y)

]
(7.74)

and
∂ψ (x, y)
∂o (x0, y0)

=
1∑

ξ,η o (ξ, η)
− sin

(
2π
N (x0x+ y0y) + ψ (x, y)

)

µ (x, y)
(7.75)

Finally, to produce the required partial derivatives (7.74) and (7.75) were passed through a

Fourier transform such that

∂g12 (x, y)
∂o (x0, y0)

= F
{
∂µ′

∂µ

∂µ

∂o (x0, y0)
+
∂µ′

∂ψ

∂ψ

∂o (x0, y0)

}
(7.76)

This regularization term was coded and included in a modified Polarization Enhanced

(POLE) APDI algorithm using only PP and FP measurements. Because the regularization

term requires O(N2) computations per iteration whereas the remaining terms are computed

using FFTs with O(N logN) computations, the regularization is rather expensive. To de-

termine if the cost of this regularization term is worthy of further investigation, 100 sets of

30-frame data were generated with a D/r0 = 15 and assuming perfect detection, then pro-
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cessed with and without polarization phase regularization and without DP data. Results of

the simulations are shown in Table 7.1. Introduction of the polarization phase term causes

a significant increase in both computation time and MSE.

Table 7.1: Performance comparison between POLE and FP-PP APDI
Metric POLE APDI FP-PP APDI
MSE 4.1032 1.7865
Time (s) 5523.2 304.37
Function Eval’s 181 367

Even though it appears that much information is contained in the regularization term,

this implementation has an overall negative effect. The approximations made for the func-

tional form of µ′ and its gradients likely caused deviations from the desired behavior. If

this form of regularization is to be used, a better statistical relationship between the object

and the polarization phase must be found. If an inexpensive analytic solution were found,

the error caused by approximation would be reduced and computational burden could be

less of a factor. However, because the APDI algorithm performs exceptionally well as is,

the trade-off in signal strength implied by addition of a 4-channel detector in the PP would

likely drown out any benefit gained.

7.4 Future Directions

In order to reconstruct images from only PP polarization data, an alternative approach

must be found. The computational burden associated with the methods developed here

make them impractical. Ideally, the EM-algorithm approach should be simplified and made

tractable. There is likely remaining structure and redundancy in the problem that can be

used to cut down the costs and make it a practical alternative.

For the LAPDI algorithm, a possible avenue for progression might be to investigate

the ability of alternative basis sets to efficiently represent the propagation phase with fewer

terms. Looking at things like JPEG compression techniques, Huffman coding, or other sim-

ilar techniques to represent the phase with fewer terms might help to reduce the number of

phase variables. If the number of problem unknowns can be reduced, the LAPDI approach

will become better conditioned, less costly, and more likely to converge to an acceptable

solution. In addition to considering additional basis sets, introduction of auxiliary informa-
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tion about the object such as physical support like that done for correlography [17] might

provide the extra information needed to lead to proper convergence.

Finally, if an inexpensive and accurate model for the polarization phase PSD and its

gradients can be found, inclusion of PP data in the POLE algorithm might produce better

results. To evaluate the possibility of improved reconstructions with a better model, the

numeric integrations used to produce the mapping and gradients shown in Fig. 7.5 should

be evaluated on a much finer mesh and with tighter tolerance on the numeric integration.

This was attempted, but was aborted due to time constraints and equipment malfunctions.

120



VIII. Conclusions

Coherence properties of laser illumination were used to develop an algorithm for produc-

ing imagery of objects using laser illumination. A maximum-likelihood multi-frame

active phase-diversity imaging algorithm was derived for coherent statistics induced as a

consequence of active illumination. A statistical model for object information encoded in

the pupil-plane intensity distribution was developed and incorporated into the derivation.

The resulting algorithm was characterized by use of Monte Carlo simulations and shown to

perform exceptionally well. Pupil-plane data was shown to have a dramatic positive impact

on algorithm performance and be a major contributor to overall system performance. Pro-

vided that the algorithm functions as well operationally as it does in simulation, it will be

a unique and invaluable tool for imaging satellites or other space-based objects obscured by

the earth’s shadow and will expand overall Space Situational Awareness.

In addition to developing a functioning algorithm for use with conventional measure-

ment techniques, approaches for using polarization data were developed and presented;

establishing a baseline for future work. The groundwork for an EM algorithm to directly es-

timate the object from polarization measurements was laid, but proved too cumbersome to

implement. The APDI algorithm was modified to process polarization state data indepen-

dent of other measurements, but proved too ill-conditioned to produce satisfactory results.

Finally, the APDI algorithm was extended to utilize polarization state measurements in

place of the pupil-plane measurements, and areas ripe for improvement were identified.

8.1 Summary of Results

Monte Carlo analysis of the APDI algorithm showed that the impact of target object,

number of data frames, detection SNR, and detector array size on the optimal convergence

tolerance is minimal. Under static aberrations, the optimal convergence tolerance was in-

sensitive to variations in system parameters. For the dynamic aberration case, the optimal

convergence tolerance was independent of all but the detector array size, indicating that

minimal characterization is required for a specific system configuration.

For both the dynamic and static aberration cases, the optimal conditioning bias was

found to dramatically impact computation time, and to a lesser extent MSE. For the static
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aberration case, conditioning biases below 10% of the average frame intensity resulted

in worse reconstructions and longer computation times as the problem became less well-

conditioned. For conditioning biases above 10% of the average frame intensity, the residual

error climbed steadily and the computation time dropped quickly as the objective function

moved further away from the statistically derived objective function and became better

conditioned. For the static aberration case, the optimal conditioning bias was found to be

10%.

For the dynamic aberration case, anomalous results for bias values of 40% and 10% are

unexplained. However, the general trend is consistent with that seen in the static aberration

data with the exceptions that the increase for smaller biases begins at larger values and is

slower than with the static aberration case, and that the increase in MSE with increasing

bias is less pronounced. For the dynamic aberration case, the optimal bias was found to be

50%.

The APDI algorithm is robust under a broad range of scenarios. With over 7,000

realizations each for static and dynamic aberrations including realizations with as few as

ten data frames and detection SNR values as low as 2, none of the dynamic-aberration

reconstructions converged to an image that was worse than the average of the focal-plane

data. For static aberrations, roughly 3% of reconstructions resulted in an MSE that was

higher for the reconstruction than the averaged data. However, in most of those cases

a visual comparison of the reconstruction with the averaged raw data showed that the

reconstruction was significantly better than the raw data in spite of the poor quality metric.

In all other cases, the judgment of whether or not a reconstruction was “worse” than the

raw data became somewhat subjective.

Simulations using varying detection noise conditions, including both photon and ther-

mally dominated noise sources, showed that the algorithm is essentially insensitive to noise

for SNR values above approximately 7, and that it still performs relatively well for SNR

values as low as 2. Given that the algorithm is designed to deal with data that has a noiseless-

detection SNR of 1, it’s no surprise that it performs well under noisy-detection/low-light

conditions.
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Comparing results from the PP-FP APDI and DP-FP APDI algorithms with the

complete APDI algorithm, it’s clear that the PP data has a much more significant impact

on estimator performance than the conventionally used DP data. Reconstructions done

without PP data included resulted in 148% and 54% increases in average MSE compared

with the Full APDI algorithm for the dynamic and static aberration cases respectively. This

shows that the PP data has a dramatic impact on overall performance of the reconstruction.

Exclusion of the DP data from the APDI algorithm resulted in only a 11% and 24%

increase in MSE for the static and dynamic aberration cases respectively. In cases where

low-light levels force a poor SNR, the marginal gain in performance obtained by using

all three data planes may be swamped by the decrease in performance caused by a low

detection SNR. This indicates that a two-channel system comprised of a FP and PP sensor

might be optimal for these kinds of scenarios. Even when SNR isn’t a factor, the additional

computational burden and hardware requirements for a complete three-channel system may

not be justified by the marginal gain in system performance.

The framework developed for an EM algorithm proved too complex and computa-

tionally expensive to be implementable. Even after making simplifying assumptions, the

maximization step for the unknown correlation phase required O(N3) integrations per point

separation, resulting in O(N4) numeric integrations per iteration. Without development of

a simplified statistical model or derivation of an analytic maximum, the EM algorithm

approach is intractable and impractical.

Attempts to use an APDI-type algorithm to post-process PP polarization state mea-

surements did not result in satisfactory results. As implemented, the algorithm is poorly

conditioned and converges to local maxima that are not satisfactory reconstructions of the

object. To illustrate the poorly conditioned nature of the problem, F frames of N ×N PP

polarization state data consists of 3FN2 extremely noisy data values for a problem with

(F + 1)N2 unknowns. In a noiseless world, this should be sufficient to solve the system.

However, in the presence of noise, it appears that more measurements per unknown are

required for convergence to an adequate solution. Because every additional frame of N ×N
data introduces 3N2 data points and an additional N2 unknowns, the problem will not be

significantly better conditioned by simply adding additional frames.

123



In addition to being ill-conditioned, the computational burden for making each phase

pixel an optimization variable is considerable. For the original APDI implementation, each

iteration requires (6M + 12)F + 5 FFTs, where M is the number of modes being compen-

sated. This translates to to 3065 FFTs per iteration for a 30-frame data set of any size with

15 modes per frame. By contrast, the LAPDI algorithm requires (4N2 +12)F +5 FFTs for

each iteration, translating to roughly 5×105 FFTs per iteration for a 30-frame 64× 64 pixel

data set, and 2×106 for a 30-frame 128× 128 pixel data set. If this approach is to work, a

condensed form for the unknown phase, similar to the Zernike representation used for the

unknown turbulence phase in the APDI algorithm, must be developed to reduce the param-

eter space and allow for a better conditioned problem. Alternatively, additional auxiliary

information about the object being reconstructed must be included in the algorithm.

While the original APDI algorithm was demonstrated to produce good results, inclu-

sion of PP polarization data did not result in better performance. Because of mathematical

difficulties with the statistical description of the polarization data, approximations were

made which adversely impacted estimator performance. Addition of the polarization data

to the estimator resulted in fewer function evaluations, but the additional computational

burden more than counterbalanced this improvement. Furthermore, the resulting recon-

structions were significantly worse than those obtained using the original APDI algorithm.

If polarization data is to be used in place of PP intensity measurements in the APDI al-

gorithm, a better statistical description and/or a formulation with a smaller computational

burden must be developed and incorporated into the estimator.

8.2 Significant Contributions

The following items summarize the significant contributions, extensions, and develop-

ments made as a result of this investigation:

1. The first phase diversity algorithm utilizing PP intensity measurements and designed

specifically to deal with the unique statistics of data from an active imaging system

was developed. This advancement will enable imaging of exo-atmospheric objects over

a broad range of engagement scenarios that are impossible using conventional imaging

techniques.
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2. It was demonstrated that for image reconstruction, PP data has a more significant

impact on performance than the conventional DP data. PP data provides a 34% re-

duction in MSE with static aberrations and a 60% reduction in MSE with dynamic

aberrations over a conventional FP-DP phase diversity geometry. Additionally, simul-

taneous utilization of FP, DP, and PP data planes produced results that were only

marginally better than those obtained with just a FP-PP configuration.

3. It was demonstrated that the APDI algorithm is robust under a broad range of detec-

tion SNR, and performance was characterized under a range of scenarios. The optimal

conditioning bias and stopping criteria were found, and were shown to be essentially

insensitive to system configuration and operating conditions.

4. Multiple frameworks for utilizing polarization data to improve image reconstruction

from actively illuminated targets were developed, and areas worthy of future consid-

eration were identified.

8.3 Future Work

Opportunities for future work can be broken into two major areas: continued work on

the APDI algorithm and work related to using PP polarization data for imaging. Primary

tasks inviting future work on the APDI algorithm were identified and include:

1. Modify the PP-data model to better account for non-square and partially obscured

pupil functions.

2. Design and construct a laboratory experiment to test the ADPI algorithm with labo-

ratory data.

3. Perform a Cramér-Rao bound analysis on the estimator.

The most promising areas for future work related to image reconstruction from PP-polarization

data include:

1. Numerically evaluate the mean and gradients of the polarization phase autocorrelation

on a finer mesh for use in the POLE algorithm and compare with results from the

APDI algorithm.
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2. Derive an analytic expression for the polarization-phase autocorrelation and its gra-

dients for use in the POLE algorithm.

3. Develop an inexpensive approximation for the polarization-phase and its gradients for

use in the POLE algorithm and compare with the APDI algorithm.

4. Incorporate prior information into the LAPDI algorithm to better condition the re-

construction.

5. Investigate techniques for reducing the number of parameters required to represent

the phase in the LAPDI algorithm including evaluationg basis-sets other than Zernike

modes for use in representing the unknown propagation phase.

6. Simplify and implement the PP-EM algorithm.

8.4 Summary

As a consequence of this work, A multi-frame active phase diversity imaging (APDI)

algorithm was derived for coherent light statistics and demonstrated. In addition to con-

ventional focal-plane and diversity-plane data, a statistical description for pupil-plane (PP)

intensity was formed and included in the derivation. The algorithm was implemented and

characterized via Monte Carlo simulation. Analysis showed that the algorithm is robust,

insensitive to detection noise for SNR ≥ 7, performs well for SNR’s as low as 2, and that the

effect of system configuration on optimal parameters is minimal. Furthermore, introduction

of PP data resulted in a 60% better reconstruction from dynamically aberrated data than

obtained using only focal-plane and diversity-plane data. Both an EM-algorithm and a

lensless-APDI approach were presented for generating imagery directly from PP polariza-

tion measurements. However, both approaches are currently impractical. Suggestions for

improvement were offered. Finally, the APDI algorithm was modified to use PP polarization

data in place of PP intensities. An initial statistical model was offered, and suggestions for

performance improvement were presented.
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Appendix A. APDI Code

This appendix contains the code sections used to build the APDI algorithm. The

algorithm was built using Gnu Make and gcc 3.4.6. Both the FFTW3 and gsl software

packages are required to build the executable. If the phase regularization term is disabled,

gsl can be removed from the build. The routines.f file containing the L-BFGS-B code

must be placed in the same directory as objective solver.f.

Listing A.1: Makefile
1 # set up directory variables

#HOME =~ pjohnson

CROOT=.

FROOT=$(CROOT)/solver

MLIB=$(CROOT)/lib

6
# set up the relative paths

psd_reg=$(CROOT)/psd_reg

solver=$(FROOT)

objctive=$(CROOT)/regd_objective

11 myhdrs=$(CROOT)/lib

core_reg=$(CROOT)/core_objective

phase_reg=$(CROOT)/phs_reg

# set up compilers and flags ...

16 CC=gcc

FC=g77

CFLAGS=-O3 -march=prescott -Wall -std=c99

FFLAGS=-O3 -march=prescott -Wall

#CFLAGS=-g

21 #FFLAGS=-g

LIBS=-L$(HOME)/lib/ -L/usr/local/lib

INC=-lfftw3 -lm -lgsl -lgslcblas

FINC=-lfrtbegin -lg2c -lm -lgcc_s -lgcc -lc

SEARCH=-I$(myhdrs) -I$(psd_reg) -I$(solver) -I$(objctv) -I$(core_reg)\

26 -I$(CROOT) -I$(phase_reg)

# set up other things that we ’ll use ...

mylib=$(MLIB)/mylibs

psdreg=$(psd_reg)/psd_reg

31 objctv=$(objctive)/regd_objective

slvr=$(solver)/objective_solver

main=$(solver)/freestanding_solver

routines=$(solver)/routines

core=$(core_reg)/core_objective

36 zerns=$(MLIB)/zernikes

phs_reg=$(phase_reg)/phs_reg

# define the objects needed to build APDIsolve

OBJS=$(mylib).o $(psdreg).o $(objctv).o $(slvr).o $(main).o $(routines).o \

41 $(core).o $(zerns).o $(phs_reg).o

# now set up what we need to build the program

APDIsolve: $(OBJS)

$(CC) $(OBJS) $(CFLAGS) $(INC) $(FINC) $(SEARCH) $(LIBS) -o APDIsolve

46
$(phs_reg).o:$(phs_reg).c $(phs_reg).h

$(CC) -c $(phs_reg).c $(CFLAGS) $(SEARCH) -o $(phs_reg).o

$(psdreg).o:$(psdreg).c $(psdreg).h $(mylib).o

51 $(CC) -c $(psdreg).c $(CFLAGS) $(SEARCH) -o $(psdreg).o
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$(threg).o:$(threg).c $(mylib).o

$(CC) -c $(threg).c $(CFLAGS) $(SEARCH) -o $(threg).o

56 $(slvr).o:$(slvr).f $(routines).o

$(FC) -c $(slvr).f $(FFLAGS) $(SEARCH) -o $(slvr).o

$(routines).o:$(routines).f

$(FC) -c $(routines).f $(FFLAGS) $(SEARCH) -o $(routines).o

61
$(objctv).o:$(objctv).c $(objctv).h

$(CC) -c $(objctv).c $(CFLAGS) $(SEARCH) -o $(objctv).o

$(main).o:$(main).c

66 $(CC) -c $(main).c $(CFLAGS) $(SEARCH) -o $(main).o

$(core).o:$(core).c $(core).h

$(CC) -c $(core).c $(CFLAGS) $(SEARCH) -o $(core).o

71 $(mylib).o:$(mylib).c

$(CC) -c $(mylib).c $(CFLAGS) $(SEARCH) -o $(mylib).o

$(zerns).o:$(zerns).c

$(CC) -c $(zerns).c $(CFLAGS) $(SEARCH) -o $(zerns).o

76

.PHONY: clean

clean:

rm $(OBJS) APDIsolve

Listing A.2: config.h
/* Peter Johnson

* 6 Sep 2006

*

* config.h

5 *

* this file is for configuration options that affect all of the modules of

* the APDI algorithm ...

*/

10 // decide if this is the top -level or not for global variables ...

#ifdef LOCAL

double bias =0.5;

double *inverse;

int inverse_exists =0;

15 #else

extern double bias;

extern double *inverse;

extern int inverse_exists;

#endif

Listing A.3: freestanding solver.c
1 /* ====================================================================

* Peter Johnson

* 16 Feb 2006

*

* this program is for implementing the APDI imaging algorithm

6 * without matlab. The motiviation for this is for debugging and

* speed. Output from the L-BFGS -B algorithm cannot be fed into

* matlab , and seg -faults and the like are difficult to debug when

* running under matlab. Instead , the simulated data are pre -computed

* with matlab , and loaded via data files here.

11 *================================================================== */

#define LOCAL

#include "config.h"
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#include <stdio.h>

#include <stdlib.h>

16 #include <string.h>

/* include the prototype for the fortan solving function */

void apdslv_(double *L, double *guess , double *G, double *data ,

21 int *frms , double *div , int *dim , int *k, double *Dr0 ,

double *tol );

// prototype for the help print function

void prnthelp ();

26
int main(int argc , char *argv [])

{

FILE *out_fl=NULL , *data_fl=NULL; // file pointers

31 FILE *guess_fl=NULL; // file pointers

size_t dbl=sizeof(double); // sizes

size_t cntr; // counter

36 int m, k, f, mm; // objective parameters

int fl_error; // file error flag

int c0; // loop counter

int runk =0; // aberrations to correct

41 extern double bias; // conditioning bias

double tol; // tolerance for convergence

double L, div , Dr0 , Dr0d; // objective variables

double *guess , *G, *data; // ptr to data , guess , grad

double tmp1;

46
char outfl [256], dtafl [256], gssfl [256]; // filenames

// set the default command -line parameters

bias = 0.5;

51 tol = 2e-7;

strcpy(outfl ,"results.dat");

strcpy(dtafl ,"data.dat");

strcpy(gssfl ,"guess.dat");

runk = 15;

56 Dr0 = 0;

// ////////////////////////////////////////////////////////////////////////

// parse the command -line arguments

// ////////////////////////////////////////////////////////////////////////

61
if ( argc >1 )

{

for (c0=1; c0<argc; c0++)

{

66 // see if we were passed a bias

if (! strcmp(argv[c0],"-bias"))

{

bias = atof(argv[c0+1]); // convert bias to a double

c0++;

71 }

// see if we were passed a convergence tolerance

else if (! strcmp(argv[c0],"-tol"))

{

76 tol = atof(argv[c0+1]); // convert tolerance to a double

c0++;

}
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// see if we were passed an output filename

81 else if (! strcmp(argv[c0],"-o"))

{

cntr = strlen(argv[c0+1]);

if (cntr <=256)

strcpy(outfl , argv[c0+1]);

86 c0++;

}

// see if we were passed an initial guess file name

else if (! strcmp(argv[c0],"-guess"))

91 {

cntr = strlen(argv[c0+1]);

if (cntr <=256)

strcpy(gssfl , argv[c0+1]);

c0++;

96 }

// see if we were passed a datafile name

else if (! strcmp(argv[c0],"-data"))

{

101 cntr = strlen(argv[c0+1]);

if (cntr <256)

strcpy(dtafl , argv[c0+1]);

c0++;

}

106
// see if we were passed a number of modes to correct

else if (! strcmp(argv[c0],"-modes"))

{

runk = atoi(argv[c0+1]); // convert modes to int

111 c0++;

}

// see if we were passed a Dr0 to run for aberr regulation

else if (! strcmp(argv[c0],"-Dr0"))

116 {

Dr0 = atof(argv[c0+1]); // convert Dr0 to a double

c0++;

}

121 // print help message if asked for

else if (! strcmp(argv[c0],"-help") || !strcmp(argv[c0],"-h"))

{

prnthelp ();

return 0;

126 }

// print help message if we’re confused

else

{

131 printf("\nInvalid Command Line Option\n\n");

prnthelp ();

return 0;

}

}

136 printf("\n");

printf("Bias = %g\n",bias);

printf("Tolerance = %g\n",tol);

printf("Output File = %s\n",outfl);

printf("Guess File = %s\n",gssfl);

141 printf("Data File = %s\n",dtafl);

}

// /////////////////////////////////////////////////////////////////////////
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146 // load the data

// /////////////////////////////////////////////////////////////////////////

// open the data file

data_fl = fopen(dtafl ,"r");

151
if (data_fl == NULL)

{

printf("\nError: Could not open the data file for reading\n");

return 1;

156 }

// load the data from the file ...

fread(&tmp1 , dbl , 1, data_fl); // read the array dim

m = (int)tmp1; // cast it to an int

161 fread(&tmp1 , dbl , 1, data_fl); // get number of frames

f = (int)tmp1; // cast it

fread(&tmp1 , dbl , 1, data_fl); // read # of aberrations

k = (int)tmp1; // cast it

fread(&Dr0d , dbl , 1, data_fl); // get D/r0

166 fread(&div , dbl , 1, data_fl); // read the diversity factor

mm = m*m; // compute number of pixels

data = malloc ((2*f+1)*mm*dbl); // allocate data array

cntr = fread(data , dbl , (2*f+1)*mm , data_fl); // read in data frames

if( cntr != (2*f+1)*mm)

171 {

printf("\nError: Couldn ’t read right number of pixels from file");

printf("\n\t%d elements requested , %d elements read\n", (2*f+1)*mm,

cntr);

return 1;

176 }

// close the data file

fl_error = fclose(data_fl);

if (fl_error)

181 {

printf("\nError closing data file\n");

return 1;

}

186 // ////////////////////////////////////////////////////////////////////////

// load or generate the initial guess data

// ////////////////////////////////////////////////////////////////////////

// try to open the guess file

191 guess_fl = fopen(gssfl ,"r");

// if we can ’t open the guess file , generate a starting guess

if (guess_fl == NULL)

{

196 printf("\nCouldn ’t open guess file , generating guess internally\n");

guess = calloc ((mm+f*k),dbl); // allocate memory for the guess

// set obj pixels to a constant unit -average

for (c0=0; c0<mm; c0++)

201 *(guess+c0) = 1.0; // constant initial obj guess

// set the number of modes if called for

if (runk >0)

k = runk;

206
// allocate memory doe the guess

guess = calloc ((mm+f*k),dbl);

// set the aberration guess to zero

211 for (c0=mm; c0 <(mm+f*k); c0++)

131



*(guess+c0) = 0; // zero aberration initial guess

}

// otherwise open the data file and read in the guess

216 else

{

printf("\nReading guess data from %s\n",gssfl);

// read and verify m

221 fread(&tmp1 , dbl , 1, guess_fl);

if ((int)tmp1 != m)

{

printf("\nError: Object dimensions don’t match data dimensions");

return 1;

226 }

// read and verify f

fread(&tmp1 , dbl , 1, guess_fl);

if((int)tmp1 != f)

231 {

printf("\nError: Different number of frames from data file");

return 1;

}

236 // read k don ’t need to verify ... will work with whatever is provided

fread(&tmp1 , dbl , 1, guess_fl);

// read and verify Dr0

fread(&tmp1 , dbl , 1, guess_fl);

241 if(tmp1 != 0 && tmp1 != Dr0d)

{

printf("\nError: D/r0 is different or not zero");

printf("\n\tData => %g\nGuess => %g",Dr0d ,tmp1);

return 1;

246 }

if (Dr0==-1) // use the data Dr0 to run if called for

Dr0 = Dr0d;

// read and verify div

251 fread(&tmp1 , dbl , 1, guess_fl);

if(tmp1 != div)

{

printf("\nError: Diversity is different from data file");

printf("\n\tData => %g\nGuess => %g",div ,tmp1);

256 return 1;

}

// allocate memory for the guess and read it in

guess = malloc ((mm+f*k)*dbl); // allocate guess array

261 cntr = fread(guess , dbl , mm+f*k, guess_fl); // read in the guess

if (cntr != mm+f*k)

{

printf("\nError: Could not read from data file");

printf("\n\t%d elements requested , %d elements read",mm+f*k, cntr);

266 return 1;

}

// close the data file

fl_error = fclose(guess_fl);

271 if (fl_error)

{

printf("\nError: Error closing connections to guess file.\n");

return 1;

}

276 }
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// ////////////////////////////////////////////////////////////////////////

// call the solver routine ...

// ////////////////////////////////////////////////////////////////////////

281
// put out some info

printf("\nImage is %d by %d",m,m);

printf("\nProcessing %d frames", f);

printf("\nProcessing %d aberrations per frame",k);

286 printf("\nUsing D/r0 = %g",Dr0);

printf("\nUsing %g waves of diversity\n",div);

// allocate the gradient array

G = malloc ((mm+f*k)*dbl);

291
// call the solver routine

apdslv_ (&L, guess , G, data , &f, &div , &m, &k, &Dr0 , &tol);

// ////////////////////////////////////////////////////////////////////////

296 // write the results to the output file

// ////////////////////////////////////////////////////////////////////////

out_fl = fopen(outfl ,"w");

if(out_fl ==NULL)

{

301 printf("\nError: Could not open output file for writing\n");

return 1;

}

else

printf("\nWriting results to output file\n");

306
tmp1 = m;

cntr = fwrite (&tmp1 , dbl , 1, out_fl);

if(cntr != 1)

{

311 printf("\nError: Could not write to output file\n");

return 1;

}

else printf("\nm = %d",m);

316 tmp1 = f;

cntr = fwrite (&tmp1 , dbl , 1, out_fl);

if(cntr != 1)

{

printf("\nError: Could not write to output file\n");

321 return 1;

}

else printf("\nf = %d",f);

tmp1 = k;

326 cntr = fwrite (&tmp1 , dbl , 1, out_fl);

if(cntr != 1)

{

printf("\nError: Could not write to output file\n");

return 1;

331 }

else printf("\nk = %d",k);

cntr = fwrite (&Dr0d , dbl , 1, out_fl);

if(cntr != 1)

336 {

printf("\nError: Could not write to output file\n");

return 1;

}

else printf("\nD/r0 = %g",Dr0d);

341
cntr = fwrite (&div , dbl , 1, out_fl);

if(cntr != 1)
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{

printf("\nError: Could not write to output file\n");

346 return 1;

}

else printf("\nDiversity = %g",div);

cntr = fwrite(guess , dbl , mm+f*k, out_fl);

351 if(cntr != mm+f*k)

{

printf("\nError: Could not write to output file\n");

return 1;

}

356 else printf("\nWrote %d object and aberration mm\n",cntr);

// close the output file

fl_error = fclose(out_fl);

if(fl_error)

361 {

printf("\nError: Error closing connections to data files.\n");

return 1;

}

366 // free up working arrays

free(G);

free(data);

free(guess);

371 return 0;

}

void prnthelp ()

{

376 printf("\n input options :\n");

printf("\t-bias [double] == bias offset for regularizaiton\n");

printf("\t-tol [double] == convergence tolerance\n");

printf("\t-o [filename] filename for the resulting output data\n");

printf("\t-guess [filename] filename with initial guess data in it\n");

381 printf("\t-data [filename] filename with measured data in it\n");

printf("\t-modes [int] == number of Zernike modes to correct. This\n");

printf("\t can’t be used with an external starting guess\n");

printf("\t If a guess is supplied , it’s mode number wins.\n");

printf("\t-Dr0 [double] == Dr0 for running phase regularization term.\n");

386 printf("\t set to -1 to use Dr0 from the data");

printf("\t set to 0 to disable regularization (default)");

printf("\t-help == print this message\n");

printf("\t-h == print this message\n");

391 }

Listing A.4: objective solver.f
C Peter Johnson

C 15 Feb 2006

C

4 C This section of fortran code is intended to call the objective

C function and the numerical solver routine. The objective function

C is written in C, but should be callable from fortran as -is. The

C numerical solver routine is the LBGFS -B code available from

C argonne national labs , and is used as -is. This file is based on

9 C the driver1.f file that is provided with the numerical solver

C package.

C This currently can handle a 128 x128 pixel array with up to a total

C of 128^2 aberration parameteres evenly distributed across all the

14 C frames. To expand that , increase nmax below.
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subroutine apdslv(f, x, g, dta , frms , div , dim , k, Dr0 , mytol)

integer frms , dim , k;

19 double precision f, x(dim*dim+frms*k), g(dim*dim+frms*k),

+ dta ((2* frms +1)*dim*dim), div , Dr0 , mytol

C set up some solver parameters

24 integer pixels

integer nmax , mmax

parameter (nmax =32786 , mmax =15)

C mmax is the dimension of the largest problem to be solved

C nmax is the maximum number of limited memory corrections

29
C Declair variables needed by the solver ...

character *60 task , csave

logical lsave (4)

integer n, m, iprint ,

34 + nbd(nmax), iwa(3* nmax), isave (44)

double precision factr , pgtol ,

+ l(nmax), u(nmax), dsave (29),

+ wa(2* mmax*nmax +4* nmax +12* mmax*mmax +12* mmax)

character *10 interI , interG

39
C declair any additional variables ...

integer c0 , iter

double precision fold , myfctr

44 iter = 1

c0 = 0

fold = 0

interI=’i0000.dat ’

interG=’g0000.dat ’

49
C squelch output ...

C iprint = -1

C or output every iteration

iprint = 1

54

C specify the tolerances in the stopping criteria

C factr = frms *1.0d+10

C pgtol = 1.0d-3

59 factr = 0

pgtol = 0

myfctr = mytol

C specify the size of the problem and the number of corrections

64 pixels=dim*dim

n = pixels+frms*k

m = 15

C now set up nbd , and the upper and lower bounds on the variables

69 C nbd(i) is the type of bound for this variable

C nbd = 0 => no bound 1 => lower bound 2=> upper and lower bound 3

C => upper bound only

C

C l(i) is the lower bound on the i’th variable

74 C u(i) is the upper bound on teh i’th variable

C set the lower -bound on the pixel intensities ...

c lower -bound the image positive

79 do 10 c0=1,pixels

nbd(c0) = 1

l(c0) = 0
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10 continue

84 C set the aberration variables to be unbounded

do 12 c0=1,frms*k

nbd(c0+pixels) = 0

12 continue

89 C Start the iteration by initializing task

task = ’START ’

C ----------- Begin the solving loop -------------

94 110 continue

C call the L-BFGS -B code

call setulb(n,m,x,l,u,nbd ,f,g,factr ,pgtol ,wa,iwa ,task ,iprint ,

+ csave ,lsave ,isave ,dsave)

99
if (task (1:2) .eq. ’FG ’) then

C if we get to this point it is because the solver wants the

C objective value and the gradient at the current guess

104
f = objctv(g, x, dta , div , frms , k, dim , Dr0)

C go back to the minimization routine

goto 110

109 endif

if (task (1:5) .eq. ’NEW_X ’) then

C if we make it here , the solver has come up with a new guess and

C wants to continue execution ...

114
C kill the iterations if we have evaluated the objective too many times.

if (isave (34) .ge. 10000)

+ task=’STOP: exceeded 10000 function evals ’

119 C kill iterations if we don ’t make enough progress ... have to do it

C here because machine precision is different across platforms so b/in

C factr doesn ’t work

if (abs(fold -f) .le. abs(f*myfctr))

124 + task="STOP: relative reduction too small to continue"

C reset fold to the current guess for the next iteration

fold = f

129 C go back to the top of the loop and keep going

goto 110

endif

C if the task isn ’t NEW_X or ’FG ’, then we are done , and we stop.

134
end subroutine

Listing A.5: regd objective.h
/* Peter Johnson

* 27 Feb 2006

*

* This is the header file for the function that is intended to combine all

5 * of the regularizaiton and objective terms into one function that can be

* called from fortran for use with the numerical solver.

*

* The measured psd data passed to this function needs to be averaged across

* all of the frames before being passed to this function.
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10 *

* The focal - and diversity plane data should all be passed in as a single

* array with the focal -plane and diversity plane interleaved in the

* following order ...

*

15 * focal1 , div1 , focal2 , div2 , etc ...

*

* The guess -object pixel values and the unknown phase aberration parameters

* are contained in a single array with the phase aberration parameters

* concatenated to the end of the object array. The gradient array is

20 * identically distributed .

*

* Because this needs to be callable from fortran , all arguments are passed

* by reference , and the function name is mangled appropriately

*/

25

#include "core_objective.h"

#include "psd_reg.h"

30 double objctv_(double *G, double *guess , double *data , double *div ,

int *f, int *k, int *m, double *Dr0);

/* double objctv_(double *G, double *guess , double *data , double *div ,

* int f, int *k, int *m, double Dr0)

*

35 * This function returns the value of the regularized objective function

* give the focal -plane , diversity -plane , and pupil -plane data from the

* active -imaging problem. The input data array should contain the

* focal -plane and diversity plane intensity frames interleaved as described

* above , followed by the final frame of averaged pupil -plane speckle psds.

40 * The first 2*f*m^2 elements of the data array contain the focal and

* diversity terms , and the final m^2 elements contain the averaged

* pupil -plane speckle psd.

*

* The current guess for which the objective function is to be evaluated is

45 * contained in the guess array , and consists of the object pixel values in

* the first m^2 elements , and the aberration parameters in the remaining

* f*k elements.

*

* The known aberration for the diversity plane is described by the value

50 * contained in div. This is the maximum number of wavelengths of phase

* added to the phase -front in the pupil -plane (i.e. the amount of phase

* added in the corners of the array).

*

* The computed gradient at the current guess is evaluated and returned via

55 * the G array. This has the same structure as the guess array , with the

* gradients wrt to pixel values returned in the first m^2 elements , and the

* gradients wrt the aberration parameters given in the final k elements.

*

* The estimate for D/r0 needs to be passed in for the phase - regularization

60 * to work. If it is unknown , set D/r0 ==0 to bypass that part of the

* regularization .

*/

Listing A.6: regd objective.c
/* Peter Johnson

2 * 27 Feb 2006

*

* Because this needs to be callable from fortran , all arguments are passed by

* reference , and the function name is mangled appropriately

*/

7
#include "mylibs.h"

#include "regd_objective.h"

#include "phs_reg.h"
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12
double objctv_(double *G, double *guess , double *data , double *div ,

int *f, int *k, int *m, double *Dr0)

{

int c0 , abers; // counter

17 int pixels = *m * *m; // pixels in the object

double *aberr , *obj; // pointers to guess obj and aberr

double *focal , *psd; // pointers to measured data

double *G_I , *G_pp , *G_phs , *G_p; // pointers to gradient components

double L=0; // objective function value

22
abers = *f * *k;

// reset the gradient to zero

for (c0=0; c0 <pixels + abers; c0++)

*(G+c0) = 0;

27
// break out the different pieces of the data and the gradients from

// the passed -in data and guess arrays

obj = guess; // object in the first mxm slots

aberr = guess+pixels; // aberration in the last f*k slots

32 G_I = G; // obj grad in first mxm slots

G_phs = G+pixels; // aberr grad in last f*k slots

focal = data; // focal -plane data in first 2*f*m^2 slots

psd = data +(2*(*f)*pixels); // psd data in last m^2 data slots

37 // call the core objective function to get the initial values

L = objective(obj , aberr , *div , focal , G_I , G_phs , *f, *k, *m);

// add the regularization terms

42 // do the intenisty regularization

G_pp = calloc(pixels ,sizeof(double)); // allocate working array

L += *f * psd_reg(obj , psd , G_pp , *m); // compute the contribution

for (c0=0; c0 <pixels; c0++) // add the gradient contrib

*(G_I+c0) += *f * *(G_pp+c0);

47
// do the phase regularization if we know D/r0

if (*Dr0 != 0)

{

G_p = calloc(abers , sizeof(double)); // allocate memory

52 L += covar_reg(aberr , G_p , *k, *f, *Dr0); // compute the contribution

for (c0=0; c0<abers; c0++) // add the grad contrib

*(G_phs+c0) += *(G_p+c0);

free(G_p); // free memory

}

57
// free working arrays

free(G_pp);

// return the objective function value

62 return L;

}

Listing A.7: core objective.h
/* Peter Johnson

2 * 25 Jan 2006

*

* core_objective .h

*

* This file is the header file containing the function prototypes for

7 * calling the non - regularized active focal -plane phase - diversity image

* reconstruction objective function and gradient.

*/
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/* #include "mylibs.h" */

12
double objective(double *obj , double *aberr , double div , double *data ,

double *G_I , double *G_phs , int f, int k, int m);

/* ========================================================================

* double objective(double *obj , double *aberr , double *data , double

17 * *G, int k, int m);

*

* master function for computing the focal -plane PD objective function value

* and associated gradients. The function returns the value of the

* objective function , and stores the gradients wrt to each object pixel in

22 * the array pointed to by G.

*

* double *obj == pointer to m x m object array (current guess)

* double *aberr == pointer to the k-element unknown aberration

* parameter array

27 * double div == number of waves of KNOWN defocus on the diversity

* channel

* double *data == pointer to m x m x 2 array of avgd speckle data

* the first frame is the avg of the in -focus images ,

* and the second is the avg of the diversity images.

32 * double *G == pointer to m x m gradient array

* int f == number of frames of data begin processed

* int k == number of aberration parameters (zernike modes)

* int m == number of pixels along each dimension of the input array

*/

37

void mkscreen(complex *screen , int *msk , int m, double *aberr , int k);

/* ========================================================================

42 * void mkscreen(complex *screen , int m, double *aberr , int k);

*

* generate an m x m phase screen using the first k zernike modes , with the

* zernike mode weights contained in the array pointed to by aberr. Piston

* is not counted in the aberr array , so the first element of the array

47 * corresponds to the weight of the 2nd Noll -indexed zernike mode (tilt).

*

* complex *screen == pointer to m*m complex array to store result in int m

* == number of pixels in each dimension of the array double *aberr ==

* pointer to Noll -indexed zernike mode weights int k == number of elements

52 * in the weight array/number of modes

*/

57 void conj_dotmultiply(complex *out , complex *in, int m);

/* ========================================================================

* void conj_dotmultiply (complex *out , complex *in , int m)

*

* does a dot -multiply where the result overwrites the first input , and the

62 * result is the 2* creal(out * conj(in))

*

* complex *out == pointer to the output/first input array

* complex *in == pointer to the second input array

* int m == number of elements in the arrays.

67 */

void flip(complex *in, complex *out , int m);

/* ========================================================================

* void flip(complex *in , complex *out , int m)

72 *

* flips the array over fft -style so f(x,y) => f(-x,-y) with the origin

* still in the right place ...

*/
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Listing A.8: core objective.c
/* Peter Johnson

* 7 Nov 2006

*

* this file contains the functions used for evaluation of the

5 * un - regularized focal -plane objective function and gradient.

*

* as of 8 Nov 2006 this has been verified completely , and appears to work

* as expected.

*

10 * see core_objective .h for calling sequence and parameter details.

*/

#include "config.h"

#include "mylibs.h"

15 #include "core_objective.h"

#include "zernikes.h"

double objective(double *obj , double *aberrin , double div , double *datain ,

double *G_obj , double *G_phsin , int f, int k, int m)

20 {

int c0 , c1, c2; // counters

int mm=m*m; // number of pixels in each frame

int *msk; // binary mask array

25 size_t dbl = sizeof(double); // some sizes for malloc and friends

size_t cplx = sizeof(complex);

extern double bias; // bias away from zero

double L=0; // objective function value

30 double *divaberr; // storage for div aberr coefficients

double defocus; // multiplier for z-mode 4 defocus

double dtmp , gtmp; // scratch

double *zmode; // zernike mode array

double *data , *aberr; // working pointers

35
complex *g1, *g2 , *psf1 , *psf2; // cmplx array ptrs

complex *f1, *f2; // conv kernel for grads

complex *H1, *H2 , *h1, *h2; // arrays for OTF ’s & impuls resp.

complex scl1 , scl2; // psf scaling constants

40 complex *otmp; // storage for fft(obj)

complex *scratch; // complex scratch array

// allocate storage arrays. All arrays that are fft ’d need to be allocated

// with fftw_malloc () and freed with fftw_free (), others can be allocated

45 // with malloc () and freed with free ()

g1 = fftw_malloc(mm*cplx); // model array

g2 = fftw_malloc(mm*cplx); // div model

psf1 = fftw_malloc(mm*cplx); // psf array

psf2 = fftw_malloc(mm*cplx); // div psf array

50 H1 = fftw_malloc(mm*cplx); // focal OTF

H2 = fftw_malloc(mm*cplx); // div OTF

h1 = fftw_malloc(mm*cplx); // impulse resp.

h2 = fftw_malloc(mm*cplx); // div impuls resp.

f1 = fftw_malloc(mm*cplx); // conv kernel for obj

55 f2 = fftw_malloc(mm*cplx); // conv kernel for G_obj

scratch = fftw_malloc(mm*cplx); // complex scratch

otmp = fftw_malloc(mm*cplx); // fft(obj)

divaberr = malloc(k*dbl); // div aberration

zmode = malloc(mm*dbl); // zernike mode

60 msk = malloc(mm*sizeof(int)); // mask array

// initialize variables and do frame - independent stuff

L = 0; // initialize L to zero ...

defocus = div*M_PI/sqrt (3); // amount of z4 to add to div chanel

65
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// compute the fft of the object

rl_to_cmplx_copy(obj ,g1 ,mm);

fft2(g1 ,otmp ,m,m);

70 // cycle through the frames of data and accumulate the results ...

for (c0=0; c0 <f; c0++)

{

// get pointer to this frame ’s data , div , and aberr array

data = datain + c0*2*mm; // pointer to data frames

75 aberr = aberrin + c0*k; // pointer to frame aberration

// ///////////////////////////////////////////////////////////////////

// make the OTF ’s, asf ’s, psf ’s and the blurred images

// The OTF ’s and asfs are stored for use in the gradient

80 // calculation . The psf ’s are stored for use in the gradient wrt

// intensity calculations . .

// ///////////////////////////////////////////////////////////////////

// -------------------------------------------------------------------

85 // start with channel 1

mkscreen(H1 , msk , m, aberr , k); // make the first OTF

ifft2(H1,h1 ,m,m); // make the first asf

cmplx_fftshift(h1, m, m); // recenter

for (c1=0; c1<mm; c1++)

90 *(psf1+c1) = *(h1+c1) * conj (*(h1+c1)); // mod -square

scl1 = 1/ cmplx_sum(psf1 ,mm); // get scale const

cmplx_sclr_mult(psf1 ,scl1 ,mm); // scale to unit -sum

cmplx_sclr_mult(H1,csqrt(scl1),mm); // scale H1

cmplx_sclr_mult(h1,csqrt(scl1),mm); // scale h1

95
// -------------------------------------------------------------------

// now do channel 2

rl_copy(aberr , divaberr , k); // copy aberr params

*( divaberr +2) += defocus; // add defocus

100 mkscreen(H2 , msk , m, divaberr , k); // make 2nd OTF

ifft2(H2,h2 ,m,m); // make 2nd asf

cmplx_fftshift(h2, m, m); // recenter

for(c1=0; c1 <mm; c1++)

*(psf2+c1) = *(h2+c1) * conj (*(h2+c1)); // mod -square

105 scl2 = 1/ cmplx_sum(psf2 ,mm); // get scale const

cmplx_sclr_mult(psf2 ,scl2 ,mm); // scale to unit -sum

cmplx_sclr_mult(H2,csqrt(scl2),mm); // scale H2

cmplx_sclr_mult(h2,csqrt(scl2),mm); // scale h2

110
// ///////////////////////////////////////////////////////////////////

// make the model data by convolving obj with psf ’s

// ///////////////////////////////////////////////////////////////////

115 // -------------------------------------------------------------------

// start with channel 1

fft2(psf1 , f1, m, m);

cmplx_dotmultiply(f1 , f1, otmp , mm);

ifft2(f1, g1, m, m);

120 cmplx_fftshift(g1, m, m);

// -------------------------------------------------------------------

// do channel 2

fft2(psf2 , f2, m, m);

125 cmplx_dotmultiply(f2 , f2, otmp , mm);

ifft2(f2, g2, m, m);

cmplx_fftshift(g2, m, m);

// ///////////////////////////////////////////////////////////////////

130 // compute L and f1 , and f2 for the gradient

// ///////////////////////////////////////////////////////////////////
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for (c1=0; c1<mm; c1++)

{

135 // ---------------------------------------------------------------

// do channel 1 contribs

dtmp = *(data+c1) + bias; // add bias to the data

gtmp = creal (*(g1+c1)) + bias; // model + bias

L += log(gtmp) + dtmp/gtmp; // compute L contribution

140 *(f1+c1) = (1 - dtmp/gtmp)/gtmp; // store this for gradient

// ---------------------------------------------------------------

// do channel 2 contribs (same as above)

dtmp = *(data+mm+c1) + bias; // add bias

145 gtmp = creal (*(g2+c1))+bias; // get model + bias

L += log(gtmp) + dtmp/gtmp; // compute L contrib

*(f2+c1) = (1-dtmp/gtmp)/gtmp; // get f2 for gradient

}

150 // ///////////////////////////////////////////////////////////////////

// compute gradient wrt I, use g1 and g2 as complex scratch arrays.

// ///////////////////////////////////////////////////////////////////

// -------------------------------------------------------------------

155 // start with channel 1

fft2(f1 , g1 , m, m); // fft f1

flip(psf1 , scratch , m); // flip the psf

fft2(scratch , psf1 , m, m); // fft the psf

cmplx_dotmultiply(g1 , psf1 , g1, mm); // multiply

160 ifft2(g1, scratch , m, m); // ifft the result

cmplx_fftshift(scratch , m, m); // recenter

for (c1=0; c1<mm; c1++)

*(G_obj+c1) += creal (*( scratch+c1)); // add up contributions

165 // -------------------------------------------------------------------

// now do channel 2

fft2(f2 , g2 , m, m); // fft f2

flip(psf2 , scratch , m); // flip the psf

fft2(scratch , psf2 , m, m); // fft the psf

170 cmplx_dotmultiply(g2 , psf2 , g2, mm); // multiply

ifft2(g2, scratch , m, m); // ifft the result

cmplx_fftshift(scratch , m, m); // recenter

for (c1=0; c1<mm; c1++)

*(G_obj+c1) += creal (*( scratch+c1)); // add up contributons

175

// ////////////////////////////////////////////////////////////////////

// calculate the gradient wrt the aberration parameters now ...

// use g1 , g2 , psf1 , and psf2 for scratch arrays

180 // ////////////////////////////////////////////////////////////////////

for (c1=2; c1<k; c1++) // cycle through aberration parameters

// start at 2 to skip tip/tilt

185 {

// make the zernike mode for the current derivative

zernike_grid(zmode , msk , c1+2, m); // add 2 to skip piston

// ----------------------------------------------------------------

190 // do channel 1 contribs

rl_cmplx_dotmultiply(psf1 , zmode , H1, mm); // phi_n*H1

cmplx_sclr_mult(psf1 , I, mm); // multiply by j

// do the ifft and multiply by the impulse responses

195 ifft2(psf1 , g1 , m, m); // ifft

cmplx_fftshift(g1, m, m); // recenter

conj_dotmultiply(g1, h1 , mm); // 2*Re(conj(h1)*...)
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// convolve with the object

200 fft2(g1, psf1 , m, m); // fft

cmplx_dotmultiply(g1 , psf1 , otmp , mm); // multiply

ifft2(g1 , psf1 , m, m); // ifft

cmplx_fftshift(psf1 , m, m); // recenter

205 // add the contributions

for (c2=0; c2 <mm; c2++)

*( G_phsin+c0*k+c1) += *(f1+c2)*creal (*( psf1+c2));

// ----------------------------------------------------------------

210 // now do channel 2 contribs

rl_cmplx_dotmultiply(psf2 , zmode , H2, mm); // phi_n*H2

cmplx_sclr_mult(psf2 , I, mm); // multiply by j

// do the ifft and multiply by the impulse responses

215 ifft2(psf2 , g2 , m, m); // ifft

cmplx_fftshift(g2, m, m); // recenter

conj_dotmultiply(g2, h2 , mm); // 2*Re(conj(h2)*...)

// convolve with the object

220 fft2(g2, psf2 , m, m); // fft

cmplx_dotmultiply(g2 , psf2 , otmp , mm); // multiply

ifft2(g2 , psf2 , m, m); // ifft

cmplx_fftshift(psf2 , m, m); // recenter

225 // add the contributions

for (c2=0; c2 <mm; c2++)

*( G_phsin+c0*k+c1) += *(f2+c2)*creal (*( psf2+c2));

}

230 }

// ///////////////////////////////////////////////////////////////////////

// free up the allocated arrays

// ///////////////////////////////////////////////////////////////////////

235
fftw_free(g1);

fftw_free(g2);

fftw_free(psf1);

fftw_free(psf2);

240 fftw_free(H1);

fftw_free(H2);

fftw_free(h1);

fftw_free(h2);

fftw_free(f1);

245 fftw_free(f2);

fftw_free(scratch);

free(divaberr);

free(zmode);

free(msk);

250
// ///////////////////////////////////////////////////////////////////////

// return L. The gradients are passed out as arrays

// ///////////////////////////////////////////////////////////////////////

return L;

255 }

void mkscreen(complex *screen , int *msk , int m, double *aberr , int k)

{

int c0 , c1, mm=m*m;

260 double *screentmp;

screentmp = malloc(mm*sizeof(double));
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// make the phase screen

265 for (c0=2; c0 <k; c0++) // start defocus to avoid & tip/tilt

{

zernike_grid(screentmp , msk , c0+2, m); // make the circular mode

rl_sclr_mult(screentmp , *(aberr+c0), mm); // scale it

270 if (c0==2)

rl_to_cmplx_copy(screentmp , screen , mm); // preload 1 mode

else

for (c1=0; c1 <mm; c1++)

*( screen+c1) += *( screentmp+c1);

275 }

// turn it into a phasor ...

for (c0=0; c0 <mm; c0++)

{

280 if (*(msk+c0) == 1)

*( screen+c0) = cexp(I*creal (*( screen+c0)));

else

*( screen+c0) = 0;

}

285
// free up working memory

free(screentmp);

}

290

void conj_dotmultiply(complex *out , complex *in, int m)

{

int c0;

295 for (c0=0; c0 <m; c0++)

*(out+c0) = 2*creal (*(out+c0) * conj (*(in+c0)));

}

300 void flip(complex *in, complex *out , int m)

{

int x,y,u,v;

// this fctn is for mapping f(x,y) => f(-x,-y) with the origin remaining

305 // at x=0 and y=0 using circular shifts (fft -style)

for (x=0; x<m; x++)

{

if (x==0)

u=0;

310 else

u = m-x;

for (y=0; y<m; y++)

{

if (y==0)

315 v = 0;

else

v=m-y;

*(out + u + m*v) = *(in + x + m*y);

}

320 }

return;

}

Listing A.9: psd reg.h
1 // #include "mylibs.h"

/* This file should contain the functions needed to compute the
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* intensity regularization based on the pupil -plane speckle data and

* the current object autocorrelation data.

6 */

double psd_reg(double *obj , double *datain , double *G, int m);

/* ==================================================================

* double psd_reg(double *obj , double *data , double *G, int m, int f);

11 *

* master function for computing the speckle -psd regularization term

* and associated gradients. The function returns the value of the

* objective function , and stores the gradients wrt to each object

* pixel in the array pointed to by G.

16 *

* double *obj == pointer to m x m object array

* double *data == pointer to m x m array of averaged p-p speckle psd ’s

* double *G == pointer to m x m gradient array

* int m == number of pixels along each dimension of the input array

21 * int f == number of frames used to generate the data array

*/

Listing A.10: psd reg.c
/* This file should contain the functions needed to compute the

2 * intensity regularization based on the pupil -plane speckle data and

* the current object autocorrelation data. See psd_reg.h for calling

* sequence etc ...

*

* this has been verified agains finite differences for the gradient , and the

7 * objective is correct as well. Need the input data to be unit -mean

*/

#include "mylibs.h"

#include "config.h"

12

double psd_reg(double *obj , double *datain , double *G, int m)

{

extern double bias; // bias away from 1/0

17 int c0; // counters

int mm=m*m; // pixels in each frame

double *ocor; // working arrays

double L; // return objective function value

double gtmp , dtmp; // scratch double variables

22 complex *ftmp , *otmp; // complex working arrays

complex *tmp1 , *tmp2 , *tmp3; // more complex working arrays

double *data; // working array for data ...

// allocate temporary arrays

27 ocor = malloc(mm*sizeof(double));

tmp1 = fftw_malloc(mm*sizeof(complex));

tmp2 = fftw_malloc(mm*sizeof(complex));

tmp3 = fftw_malloc(mm*sizeof(complex));

ftmp = fftw_malloc(mm*sizeof(complex));

32 otmp = fftw_malloc(mm*sizeof(complex));

data = malloc(mm*sizeof(double));

/* compute the object autocorrelation */

rl_autocorr(obj , ocor , m); // do the autocorrelation

37
/* copy the data to a working array */

rl_copy(datain ,data ,mm);

/* scale the correlation and data to be a mean of 1 */

42 gtmp = 0;

for(c0=0; c0 <mm; c0++)

{
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*(ocor+c0) /= (double)mm;

gtmp += *(data+c0);

47 }

for(c0=0; c0 <mm; c0++)

*(data+c0)/=( gtmp/(double)mm);

52 /* compute the objective function contribution

*

* The objective function is derived by assuming spatially

* independent negative exponential statistics on the psd , where the

* parameter is determined by the scaled object autocorrelation .

57 * The log - likelihood of the joint negative exponential distribution

* is used as the likelihood function

*

* also compute a term (ftmp) that will be used for the gradient ...

*/

62

// compute the objective and the convolution function for the grad

L = 0;

for (c0=0; c0 <mm; c0++)

67 {

gtmp = *(ocor+c0)+bias; // get the model value

dtmp = *(data+c0)+bias; // get the data value

L += log(gtmp) + dtmp/gtmp; // compute contributon

*(ftmp+c0) = (1 - dtmp/gtmp)/gtmp; // term for use in gradient

72 }

// Now compute the gradients

// do the required convolutions / correlations

77 rl_to_cmplx_copy(obj , tmp1 , mm); // copy the obj to cmplx arry

fft2(tmp1 , otmp , m, m); // fft the object

fft2(ftmp , tmp1 , m, m); // fft ftmp

cmplx_dotmultiply(tmp2 , tmp1 , otmp , mm); // multiply for conv

82 ifft2(tmp2 , tmp3 , m, m); // inverse fft it

cmplx_fftshift(tmp3 , m, m); // fft -shift it

for (c0=0; c0 <mm; c0++) // conjugate for correlation

*(tmp1+c0) = conj (*( tmp1+c0));

87 cmplx_dotmultiply(tmp2 , tmp1 , otmp , mm); // multiply for corr

ifft2(tmp2 , tmp1 , m, m); // inverse fft it

cmplx_fftshift(tmp1 , m, m); // fft -shift it

// sum the contributions and spit out the result

92 for (c0=0; c0 <mm; c0++)

*(G+c0) = (creal (*( tmp3+c0)) + creal (*( tmp1+c0)))/(double)mm;

/* free up all the working arrays */

97 free(ocor);

fftw_free(tmp1);

fftw_free(tmp2);

fftw_free(tmp3);

fftw_free(ftmp);

102 fftw_free(otmp);

free(data);

/* return the objective function contribution */

return L;

107 }
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Listing A.11: phs reg.h
/* Peter Johnson

2 * 19 Dec 2006

*

* This file contains the stuff required for phase - regularization of the

* image reconstruction problem.

*

7 */

#include "config.h"

#include "mylibs.h"

#include "zernikes.h"

#include <gsl/gsl_linalg.h>

12 #include <math.h>

// extern int inverse_exists =0; // logical for use later set it to zero here

// extern double *inverse; // storage for the inverse covariance matrix

17 void calc_covar_inverse(double *inv , double Dr0 , int k);

/* void calc_covar_inverse (double *inv , double Dr0 , int k) compute the

* inverse of the noll - covariance matrix for a given number of modes , k, and

* a specified D/r0. Allocate the array prior to calling this fctn.

*/

22
void make_inv_covar(double Dr0 , int k);

/* allocate the inverse covariance matrix , compute it , and set the flag

* saying that we allready computed it. The matrix and flag are stored in

* global variables *inverse and inverse_exists respectively

27 */

void free_inv_covar ();

/* free the inverse covariance matrix and unset the flag

*/

32

double noll_covariance(int n, int m);

/* C = noll_covariance (int n, int m);

* compute the zernike -mode covariance between the n’th and m’th Noll -indexed

37 * zernike modes and assuming Kolmogorov turbulence. This can be used to

* build the covariance matrix , which in turn can be used to generate phase

* screens. To get the true covariance , this needs to be multiplied by

* (D/r0)^(5/3).

*

42 * inputs:

* int n == noll -index of the first mode

* int m == noll -index of the second mode

*

* output:

47 * double C == covariance of the requested modes

*/

double covar_reg(double *aberr , double *grad , int k, int f, double Dr0);

/* L = covar_reg(double *aberr , int k, int f, double Dr0);

52 *

* compute the regularization term derived from the expected intermodal

* covariance.

*

* inputs:

57 * double *aberr == pointer to the aberration array

* int k == number of aberrations per frame

* int f == number of frames

*

* outputs:

62 * L == regularization contribution

* double *grad == pointer to the output gradient array

*/

147



Listing A.12: phs reg.c
1 /* Peter Johnson

* 8 Mar 2006

*

* This file contains the stuff required for phase - regularization of the

* image reconstruction problem. This should eventually encapsulate the

6 * inter -modal and the temporal statistics.

*

*/

#ifndef M_PI

11 #define M_PI 3.14159265358979323846 /* pi */

#endif

#include <math.h>

#include <stdlib.h>

#include "phs_reg.h"

16
// int inverse_exists =0; // logical for use later

// double *inverse // storage for the inverse covariance matrix

void calc_covar_inverse(double *inv , double Dr0 , int k)

21 {

int c0 ,c1; // counters

int s; // signum for the LU decomp

26 double *covar; // pointer to covariance matrix

double tmp;

double Dr053 = pow(Dr0 ,5.0/3.0);

// allocate the covariance matrix

31 covar = malloc(k*k*sizeof(double));

// make gsl_style matricies out of the arrays

gsl_matrix_view covarm = gsl_matrix_view_array(covar ,k,k);

gsl_matrix_view invm = gsl_matrix_view_array(inv ,k,k);

36 gsl_permutation *p = gsl_permutation_alloc(k);

// fill in the covariance matrix

for (c0=0; c0 <k; c0++)

{

41 for (c1=0; c1 <=c0; c1++)

{

// get the covariance

// have to index starting at two to skip piston ...

tmp = Dr053*noll_covariance(c0+2,c1+2);

46 // matrix is symmetric so don ’t overdo it ...

*(covar + c0 + k*c1) = tmp;

if (c1!=c0)

*(covar+c1 + k*c0) = tmp;

}

51 }

// use gsl to compute the inverse .....

// start by LU factoring the covariance , then compute the inverse

gsl_linalg_LU_decomp (& covarm.matrix , p, &s);

56 gsl_linalg_LU_invert (& covarm.matrix , p, &invm.matrix);

gsl_permutation_free(p); // free permutaiton matrix

free(covar); // free up covariance array

}

61
void make_inv_covar(double Dr0 , int k)

{

extern double *inverse;

extern int inverse_exists;
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66
// allocate memory

inverse = malloc(k*k*sizeof(double));

inverse_exists =1;

71 // compute the covariance matrix

calc_covar_inverse(inverse , Dr0 , k);

return;

}

76
void free_inv_covar ()

{

extern double *inverse;

extern int inverse_exists;

81 free(inverse);

inverse_exists = 0;

return;

}

86 double noll_covariance(int i, int j)

{

double C, A, B, D; // working doubles

int ni , mi, nj, mj; // radial and angular orders for the modes

int tmp , one;

91
// compute the radial and angular mode numbers

zernikemode(i, &ni, &mi);

zernikemode(j, &nj, &mj);

96 // see if we even need to bother

if (((i-j)%2==0) && (mi==mj))

{

// get the exponent on the negative 1 and decide if -1^m is negative

tmp = (ni + nj - 2*mi)/2;

101 if (tmp%2 == 0)

one = 1;

else

one = -1;

106 A = 0.0072* one*sqrt((ni+1)*(nj+1))*pow(M_PI ,(double)8/3);

B = tgamma (( double)14/3)*tgamma ((ni+nj -(double)5/3) /2);

D = tgamma ((ni-nj+(double)17/3) /2)*tgamma ((nj-ni+(double)17/3) /2) *

tgamma ((ni+nj+(double)23/3) /2);

C = A*B/D;

111 }

else

C = 0;

return C;

}

116
double covar_reg(double *aberr , double *grad , int k, int f, double Dr0)

{

// make sure the grad vector is zeros before passing it to this fctn

121 int c0 , c1, c2; // counters

extern int inverse_exists; // logical 1 if the covariance inverse has

// already been computed

double L=0; // objective value

double *frmaber; // pointer to frame aberration params

126 double *frmgrad; // pointer to frame aberration gradient

extern double *inverse; // pointer to covariance inverse array

// make the inverse covariance matrix if we need it ... make sure you free

// it in the main program ...

131 if (! inverse_exists)
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make_inv_covar(Dr0 ,k);

// loop over the number of frames

for (c2=0; c2 <f; c2++)

136 {

// get pointers

frmaber = aberr + c2*k; // point to this frame ’s aberr vector

frmgrad = grad + c2*k; // point to this frame ’s aberr gradient

141 // compute alpha^T*inv*alpha for the regulation term

// and -inv*alpha for the gradient ...

for (c0=2; c0<k; c0++) // start at 2 to skip tip/tilt

{

for (c1=2; c1 <k; c1++) // start at 2 to skip tip/tilt

146 {

// do first vector multiply

*( frmgrad+c0) += *( inverse+c1+k*c0) * *( frmaber+c1);

}

L += *( frmgrad+c0) * *( frmaber+c0); // add objective contribs

151 *( frmgrad+c0) *= 2.0; // multiply by 2

}

}

156 // return the objective function value ...

return L;

}

Listing A.13: mylibs.h
/* Header file containing all of the function prototypes for the routines

2 that I have built in c. Most of these are to implement MATLAB -like

routines. */

#include <stdlib.h>

#include <math.h>

7 #include <complex.h>

#include <fftw3.h>

#include <time.h>

/* define some constants */

12
#ifndef M_PI

#define M_PI 3.14159265358979323846 /* pi */

#endif

17 /* set up function prototypes */

void rl_copy(double *from , double *to, int n);

/* rl_copy(from , to , n) copies the array pointed to by from into the array

pointed to by to. Both arrays need to be real and contain n elements */

22
void rl_to_cmplx_copy(double *from , complex *to, int n);

/* rl_to_cmplx_copy (from , to , n) copies the array pointed to by from into

the array pointed to by to. Both arrays need to be of size n. From needs

to be a pointer to a double , and to a pointer to a complex. */

27
void cmplx_to_cmplx_copy(complex *from , complex *to, int n);

/* cmplx_to_cmplx_copy (from , to , n) copies the array pointed to by from into

the array pointed to by to. Both arrays need to be of size n, and both

of type complex. */

32
void cmplx_to_rl_copy(complex *from , double *to , int n);

/* cmplx_ro_rl_copy (from , to , n) copies the real part of the array pointed

to by from into the array pointed to by to. Both arrays need to be of

size n. From needs to be a pointer to a complex , and to a pointer to a
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37 double. */

void cmplx_abs_copy(complex *from , double *to , int m);

/* cmplx_abs_copy (complex *from , double *to , int m); copies the absolute

value of an m-element array from the complex array pointed to by *from to

42 the double array pointed to by *to */

void abssq(complex *array , int m);

/* abssq(array , m, n) computes the magnitude squared of every element in the

m-element array pointed to by array. The array must be complex. */

47
void rl_sclr_mult(double *array , double c, int n);

/* rl_sclr_mult (array , c, n) multiplies every element of the n-element array

by the scalar c. array must point to an array of type double */

52 void cmplx_sclr_mult(complex *array , complex c, int n);

/* cmplx_sclr_mult (array , c, n) multiplies every element of the n-element

array by the scalar c. array must point to an array of type complex */

void rl_fftshift(double *array , int n, int m);

57 /* implement the fftshift for 2-D arrays to put the origin at the center of

the array. Only works for even -sized double arrays. */

void cmplx_fftshift(complex *array , int n, int m);

/* implement the fftshift for 2-D arrays to put the origin at the center of

62 the array. Only works for even -sized complex arrays. */

void fft2(complex *in, complex *out , int m, int n);

/* wrapper for the fftw to make 2-d fft ’s easier. If coupled with the

ifft2 () function below , this is a scaled transform pair , with all the

67 scaling done in the inverse transform. For optimal performace , the arrays

should be allocated with the fftw_malloc () function. */

void ifft2(complex *in , complex *out , int m, int n);

/* wrapper for the fftw to make inverse 2-d fft ’s easier. When paired with

72 fft2 () above , this is a scaled transform pair with all of the scaling

done in the ifft.For optimal performace , the arrays should be allocated

with the fftw_malloc () function. */

void inplace_fft2(complex *in, int m, int n);

77 /* wrapper for in -place fftw 2-d transform. When paired with

inplace_ifft2 () below , this is a scaled transform pair with all of the

scaling done in the ifft. For optimal performace , the arrays should be

allocated with the fftw_malloc () function. */

82 void inplace_ifft2(complex *in , int m, int n);

/* wrapper for in -place fftw inverse 2-d transform. When paired with

inolace_fft2 () above , this is a scaled transform pair with all of the

scaling done in the ifft. For optimal performace , the arrays should be

allocated with the fftw_malloc () function. */

87
void dotmultiply(double *out , double *in1 , double *in2 , int m);

/* void dotmultiply (double *out , double *in1 , double *in2 , int m)

*

* out == pointer to the output array

92 * in1 == pointer to the first input array

* in2 == pointer to the second input array

* n == integer number of elements in the array

*

* implements the equivalent of the .* operator in matlab such that

97 * out(i) = in1(i).* in2(i)

*/

void cmplx_dotmultiply(complex *out , complex *in1 , complex *in2 , int m);

/* void dotmultiply (double *out , double *in1 , double *in2 , int m)

102 *
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* out == pointer to the output array

* in1 == pointer to the first input array

* in2 == pointer to the second input array

* n == integer number of elements in the array

107 *

* implements the equivalent of the .* operator in matlab such that

* out(i) = in1(i).* in2(i)

*/

112 void rl_cmplx_dotmultiply(complex *out , double *in1 , complex *in2 , int

m);

/* void dotmultiply (complex *out , double *in1 , complex *in2 , int m)

*

* out == pointer to the output array

117 * in1 == pointer to the first input array

* in2 == pointer to the second input array

* n == integer number of elements in the array

*

* implements the equivalent of the .* operator in matlab such that

122 * out(i) = in1(i).* in2(i)

*/

double factorial(double n);

/* uses recursion to compute the factorial of an integer. Will crap

127 out for large integers ... */

void rl_autocorr(double *in, double *out , int n);

/* ==================================================================

* void rl_autocorr (double *in , double *out , int n)

132 *

* This function computes the autocorrelation function of a

* real -valued n x n array using the fft. The function must be square

* for this to work as advertised.

*

137 * double *in == pointer to input array

* double *out == pointer to output array

* int n == number of elements along each dimention of the input array

*/

142 void spec_psd(double *in, double *out , int n);

/* ===================================================================

* void spec_psd(double *array , double *rslt , int n)

*

* This function computes the non - normalized delta -removed speckle

147 * psd. In theory this psd is related to the reflecting object ’s

* autocorrelation through a simple scaling constant.

*

* double *in == pointer to the input array

* double *out == pointer to the output array

152 * int n == number of pixels along each dimention of the input array

*/

void rl_normalize(double *in, int m);

/* ===================================================================

157 * void rl_normalize (double *in , int m) normalizes a real -valued array

* of m elements such that the maximum value of any element is 1.

*

* double *in == pointer to the first array element

* int m == integer number of elements in the array

162 */

double rl_max(double *in, int m);

/* ===================================================================

* double rl_max(double *in , int m) returns the value of the largest

167 * element of the input array

*
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* double *in == pointer to the input array

* int m == integer number of elements in the array

*

172 * returns mx == maximum value in the array

*/

void cmplx_normalize(complex *in, int m);

/* =========================================================================

177 * void cplx_normalize (complex *in , int m) normalizes a complex -valued array

* of m elements such that the maximum absolute value of any element is 1.

*

* complex *in == pointer to the first array element

* int m == integer number of elements in the array

182 */

double cmplx_max(complex *in, int m);

/* ===================================================================

* double cplx_max(complex *in , int m) returns the largest absolute value

187 * of the input array

*

* complex *in == pointer to the input array

* int m == integer number of elements in the array

*

192 * returns mx == maximum absolute value in the array

*/

double rl_sum(double *in, int m);

/* ==================================================================

197 * double rl_sum(double *in , int m);

*

* computes the sum of the elements in the array pointed to by *in

*

* double *in == pointer to the array

202 * in m == number of elements in the array

*

* returns S = sum(in);

*/

207 complex cmplx_sum(complex *in, int m);

/* ==================================================================

* double cmplx_sum(double *in , int m);

*

* computes the sum of the elements in the array pointed to by *in

212 *

* double *in == pointer to the array

* in m == number of elements in the array

*

* returns S = sum(in);

217 */

double unit_scale(double *in, int m);

/* ==================================================================

* double unit_scale(double *in , int pixels)

222 *

* scales the input array to have unit -average values and returns the

* required scaling constant.

*

* double *in == pointer to the array

227 * int m == number of elements in the array

* double (return value) == multiplicative scaling constant used to

* get unit -average intensity.

*/

Listing A.14: mylibs.c
#include "mylibs.h"
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5 /* functions to copy the contents of arrays */

void rl_copy(double *from , double *to, int m)

{

int c0;

10
for (c0=0; c0 <m; c0++)

*(to + c0) = *(from + c0);

return;

}

15
void rl_to_cmplx_copy(double *from , complex *to, int m)

{

int c0;

complex tmp;

20
for (c0=0; c0 <m; c0++)

{

tmp = *(from+c0);

*(to+c0) = tmp;

25 }

return;

}

void cmplx_to_cmplx_copy(complex *from , complex *to, int m)

30 {

int c0;

for (c0=0; c0 <m; c0++)

*(to + c0) = *(from + c0);

35 return;

}

void cmplx_to_rl_copy(complex *from , double *to , int m)

{

int c0;

40
for (c0=0; c0 <m; c0++)

*(to + c0) = creal (*( from + c0));

return;

}

45
void cmplx_abs_copy(complex *from , double *to , int m)

{

int c0;

for (c0=0; c0 <m; c0++)

50 *(to + c0) = cabs (*( from + c0));

return;

}

/* function to compute the magnitude squared */

55 void abssq(complex *array , int m)

{

int c0;

complex tmp;

for (c0=0; c0 <m; c0++)

60 {

tmp = *( array + c0);

*(array + c0) = tmp * conj(tmp);

}

return;

65 }

/* scalar dot multiply functions for arrays */
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void rl_sclr_mult(double *array , double c, int m)

{

70 int c0;

for (c0=0; c0 <m; c0++)

*( array + c0) = c * (*( array + c0));

return;

}

75

void cmplx_sclr_mult(complex *array , complex c, int m)

{

int c0;

80 for (c0=0; c0 <m; c0++)

*( array + c0) = *( array+c0) * c;

return;

}

85 /* routine to do the fft -shift (i.e. put dc at the center of the

shift) */

void rl_fftshift(double *array , int m, int n)

{

int c0 , c1;

90 double *tmp;

tmp = malloc(m*n*sizeof(double));

int x, y, xm,ym;

95 x = m/2;

y = m/2;

for (c0=0; c0 <m; c0++)

{

for(c1=0; c1 <n; c1++)

100 {

xm = c0 - x; if (xm < 0) xm += m;

ym = c1 - y; if (ym < 0) ym += n;

*(tmp + c0 + m*c1) = *(array + xm + m*ym);

105 }

}

rl_copy(tmp , array ,m*n);

free(tmp);

110 return;

}

void cmplx_fftshift(complex *array , int n, int m)

{

int c0 , c1;

115 complex *tmp;

tmp = malloc(m*n*sizeof(complex));

int x, y, xm,ym;

120 x = m/2;

y = m/2;

for (c0=0; c0 <m; c0++)

{

for(c1=0; c1 <n; c1++)

125 {

xm = c0 - x; if (xm < 0) xm += m;

ym = c1 - y; if (ym < 0) ym += n;

*(tmp + c0 + m*c1) = *(array + xm + m*ym);

130 }

}

cmplx_to_cmplx_copy(tmp , array ,m*n);
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free(tmp);

135 return;

}

void fft2(complex *in, complex *out , int m, int n)

{

140 /* wrapper for the fftw to make 2-d fft ’s easier */

/* for best performance make sure that the "in" and "out" arrays are

allocated with the fftw_malloc () function. */

fftw_plan pf;

145
/* set up the fft routine */

pf = fftw_plan_dft_2d(m,n,in,out ,FFTW_FORWARD ,FFTW_ESTIMATE);

/* 19 Jan 2006... for some reason the fft routine called with FFTW_MEASURE

gives inconsistent results ... doesnt ’ always work. FFTW_ESTIMATE seems

150 to be OK*/

fftw_execute(pf); /* do the transform */

// fftw_cleanup ();

fftw_destroy_plan(pf);

155 }

void ifft2(complex *in , complex *out , int m, int n)

{

/* wrapper for the fftw to make inverse 2-d fft ’s easier */

160 /* for best performance make sure that the "in" and "out" arrays are

allocated with the fftw_malloc () function. This also implements the

scaling required to make this a scaled transform pair when paired with

fft2 () above. */

165 fftw_plan pf;

/* set up the fft routine */

pf = fftw_plan_dft_2d(m,n,in,out ,FFTW_BACKWARD ,FFTW_ESTIMATE);

/* 19 Jan 2006... for some reason the fft routine called with FFTW_MEASURE

170 gives inconsistent results ... doesnt ’ always work. FFTW_ESTIMATE seems

to be OK*/

fftw_execute(pf); /* do the transform */

cmplx_sclr_mult(out , 1/( double)(m*n), m*n); /* fix the scaling. */

175 // fftw_cleanup (); /* cleanup fftw */

fftw_destroy_plan(pf);

}

180
void inplace_fft2(complex *ary , int m, int n)

{

/* inplace ffts are slower than the others ... */

185 /* in -place 2-d fft , see fft2 () above */

fftw_plan pf;

pf = fftw_plan_dft_2d(m,n,ary ,ary ,FFTW_FORWARD ,FFTW_ESTIMATE);

fftw_execute(pf);

fftw_cleanup ();

190 fftw_destroy_plan(pf);

}

void inplace_ifft2(complex *ary , int m, int n)

195 {

/* inplace ffts are slower than the others ... */

/* in -place 2-d inverse fft with normalization , see ifft2 () above */

fftw_plan pf;

156



200 pf = fftw_plan_dft_2d(m,n,ary ,ary ,FFTW_BACKWARD ,FFTW_ESTIMATE);

fftw_execute(pf);

cmplx_sclr_mult(ary ,1/( double)(m*n), m*n); // fix scaling

fftw_cleanup ();

fftw_destroy_plan(pf);

205

}

/* matlab like dot multiply */

210 void dotmultiply(double *out , double *in1 , double *in2 , int m)

{

int c0;

for (c0=0; c0 <m; c0++)

215 *(out+c0) = *(in1+c0) * (*(in2+c0));

}

void cmplx_dotmultiply(complex *out , complex *in1 , complex *in2 , int m)

{

220 int c0;

for (c0=0; c0 <m; c0++)

*(out+c0) = *(in1+c0) * (*(in2+c0));

}

225 void rl_cmplx_dotmultiply(complex *out , double *in1 , complex *in2 , int m)

{

int c0;

for (c0=0; c0 <m; c0++)

*(out+c0) = *(in1+c0) * (*(in2+c0));

230 }

double rl_sum(double *in, int m)

{

int c0;

235 double S=0;

for (c0=0; c0 <m; c0++)

S += *(in+c0);

return S;

}

240 complex cmplx_sum(complex *in, int m)

{

int c0;

complex S=0;

for (c0=0; c0 <m; c0++)

245 S += *(in+c0);

return S;

}

/* factorial function for ints */

250 double factorial(double n)

{

if((int)n==0) return 1;

else return (n*factorial(n-1));

}

255
/* scaled autocorrelation function for real data */

void rl_autocorr(double *in, double *out , int n)

{

complex *tmp1 , *tmp2; // pointer to complex data type

260
tmp1 = fftw_malloc(n*n*sizeof(complex));

tmp2 = fftw_malloc(n*n*sizeof(complex));

rl_to_cmplx_copy(in , tmp1 , n*n); // copy input to working array

fft2(tmp1 , tmp2 , n, n); // do the fft

265 abssq(tmp2 , n*n); // get mag squared
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ifft2(tmp2 , tmp1 , n, n); // do inverse fft

cmplx_to_rl_copy(tmp1 , out , n*n); // copy the real part to out

rl_fftshift(out , n, n); // fftshift it

fftw_free(tmp1); // deallocate working arrays

270 fftw_free(tmp2);

}

/* normalization function */

void rl_normalize(double *in, int m)

275 {

int c0;

double mx;

mx = rl_max(in ,m); // find the maximum

280 for (c0=0; c0 <m; c0++)

*(in+c0) = *(in+c0)/mx; // divide it out

}

285 double rl_max(double *in, int m)

{

int c0;

double mx;

mx = *in;

290 for (c0=1; c0 <m; c0++)

if (*(in+c0) > mx)

mx = *(in+c0);

return mx;

}

295
/* normalization function for compelx data */

void cmplx_normalize(complex *in, int m)

{

int c0;

300 double mx;

mx = cmplx_max(in ,m); // find the maximum ( magnitude)

for (c0=0; c0 <m; c0++)

*(in+c0) = *(in+c0)/( complex)mx; // divide it out

305 }

double cmplx_max(complex *in, int m)

{

int c0;

310 double mx, tmp =0;

mx = cabs(*in);

for (c0=1; c0 <m; c0++)

tmp = cabs (*(in+c0));

if (tmp > mx)

315 mx = tmp;

return mx;

}

/* delta -removed speckle psd calculation function */

320 void spec_psd(double *in, double *rslt , int n)

{

complex *tmp1 , *tmp2; // pointer to complex data type

complex delta = n*n;

325
tmp1 = fftw_malloc(n*n*sizeof(complex)); // allocate memory

tmp2 = fftw_malloc(n*n*sizeof(complex));

rl_to_cmplx_copy(in , tmp1 , n*n); // copy to the working array

fft2(tmp1 , tmp2 , n, n); // do the fft

330 *tmp2 = *tmp2 - delta; // remove the delta

abssq(tmp2 ,n*n); // get the mag squared
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cmplx_to_rl_copy(tmp2 ,rslt ,n*n); // copy rslt to output array

fftw_free(tmp1); // free memory up

fftw_free(tmp2);

335 rl_fftshift(rslt ,n,n); // fftshift the result

return;

}

/* delta -removed speckle psd calculation for a circular aperture */

340 void circle_spec_psd(double *in, double *rslt , int n)

{

complex *tmp1;

complex *subarray;

complex delta;

345 int m, strt;

int c0 , c1;

m = n/sqrt (2); // dimension of the largest inscribed square

strt = n/2-m/2; // where the sub -array starts

350
// allocate working arrays

subarray = fftw_malloc(m*m*sizeof(complex));

tmp1 = fftw_malloc(n*n*sizeof(complex));

355 delta = m*m; // how big is the delta ...

for (c0=0; c0 <m; c0++) // copy out the sub -array w/in pupil

for(c1=0; c1 <m; c1++)

*( subarray+c0+m*c1) = *(in + c0+strt + (c1+strt)*n);

inplace_fft2(subarray , m, m); // take the fft

360 *subarray = *subarray - delta; // take out the delta at zero freq

abssq(subarray , m*m); // get the absolute -value squared ...

cmplx_fftshift(subarray , m, m); // fft -shift it

// now interpolate it back to the right size by fft -zeropad -ifft

365 inplace_fft2(subarray , m, m); // go back to fft -land

cmplx_fftshift(subarray , m, m); // fft -shift

for (c0=0; c0 <n; c0++) // zero -pad

{

for(c1=0; c1 <n; c1++)

370 {

if(c0 <strt || c0 >=m+strt || c1<strt || c1 >=m+strt)

*(tmp1+c0+n*c1) = 0;

else

*(tmp1+c0+n*c1) = *( subarray + (c0-strt) + (c1 -strt)*m);

375 }

}

// copy the result out to the result array

cmplx_abs_copy(tmp1 , rslt , n*n);

380
// free the working arrays

fftw_free(subarray);

fftw_free(tmp1);

385 }

// scale the input array to have unit -average values

double unit_scale(double *in, int pixels)

{

390 double sum=0;

int c0;

for (c0=0; c0 <pixels; c0++)

sum += *(in+c0);

395 sum = (double)pixels/sum;

for (c0=0; c0 <pixels; c0++)

*(in+c0) = *(in+c0)*sum;
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return sum;

400 }

Listing A.15: zernikes.h
double zernike_val(double r, double theta , int P);

/*

double val = zernike_val (double r, double theta , int , n, int m);

4 evaluates Z_n^m(r,theta), the n,m order zernike polynomial at the radial

point r, and the angular point theta.

inputs:

double r == radial position. note: these are only defined for

9 r<1, it will return a value ,

but it is not valid.

double theta == angular position. 0<=theta <2pi

int P == Noll -indexed zernike mode number

14 returns:

val == value of the (n, m) zernike mode at location (r, theta)

*/

void zernikemode(int P, int *n, int *m);

19 /* returnes the radial and frequency indices n and m for a given

noll -indexed zernike mode P

inputs:

P == int noll -indexed mode number

24
outputs:

n == int ptr to radial zernike index

m == int ptr to frequency zernike index */

29 void zernike_grid(double *arry , int *mask , int P, int m);

/* evaluate the P’th zernike mode across the m x m grid assuming the array

extends from -1 to 1 in both directions , and mask the result outside of

the unit -circle.

34 inputs:

array == double pointer to the allocated output array

mask == int pointer to the mask array

P == int noll index of the desired mode

m == int number of pixles across the array

39 */

void masked_zscreen(double *arry , double *mask , int P, int m);

/* evaluate the P’th zernike mode across the m x m grid assuming the array

extends from -1 to 1 in both directions , and mask the result in

44 accordance with the analog mask array *mask. For the zernike screen to

be valid , the mask must be zero for all pixels that lie completely

outside the unit -circle.

inputs:

49 array == double pointer to the allocated output array

mask == double pointer to the mask array

P == int noll index of the desired mode

m == int number of pixles across the array

*/

54
void zscreen(double *arry , int P, int m);

/* make a zernike mode screen that is valid across the entire grid.

i.e. the unit -circle completely encompases the grid.

59 this just like zernike_grid with the spatial limits such that -1/ sqrt (2)

<= (x,y) <= 1/ sqrt (2) so that the entire grid fits inside the unit circle
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inputs:

array == double pointer to the allocated output array

64 P == int noll index of the desired mode

m == int number of pixles across the array

*/

Listing A.16: zernikes.c
/* this file is for development and testing of zernike -mode generation

code ... */

3
#include "mylibs.h"

#include "zernikes.h"

/* see zernikes.h for details about calling these functions */

8

/* ***************************************************************** */

13 double zernike_val(double r, double theta , int P)

{

int n, m, s;

int odd;

double R, num , den , scl;

18 double tmp1 , tmp2;

/* use hard -coded zerikes for p<45, otherwise compute with the sum */

switch (P)

{

23 case 1: R = 1; break;

case 2: R = 2*r*cos(theta); break;

case 3: R = 2*r*sin(theta); break;

case 4: R = sqrt (3) *(2*r*r-1); break;

case 5: R = sqrt (6)*r*r*sin(2* theta); break;

28 case 6: R = sqrt (6)*r*r*cos(2* theta); break;

case 7: R = sqrt (8) *(3*r*r*r - 2*r)*sin(theta); break;

case 8: R = sqrt (8) *(3*r*r*r - 2*r)*cos(theta); break;

case 9: R = sqrt (8)*r*r*r*sin(3* theta); break;

case 10: R = sqrt (8)*r*r*r*cos(3* theta); break;

33 case 11: R = sqrt (5) *(6*r*r*r*r - 6*r*r +1); break;

case 12: R = sqrt (10) *(4*r*r*r*r - 3*r*r)*cos(2* theta); break;

case 13: R = sqrt (10) *(4*r*r*r*r - 3*r*r)*sin(2* theta); break;

case 14: R = sqrt (10)*r*r*r*r*cos (4* theta); break;

case 15: R = sqrt (10)*r*r*r*r*sin (4* theta); break;

38 case 16: R = sqrt (12) *(10*r*r*r*r*r-12*r*r*r+3*r)*cos(theta); break;

case 17: R = sqrt (12) *(10*r*r*r*r*r-12*r*r*r+3*r)*sin(theta); break;

case 18: R = sqrt (12) *(5*r*r*r*r*r - 4*r*r*r)*cos(3* theta); break;

case 19: R = sqrt (12) *(5*r*r*r*r*r - 4*r*r*r)*sin(3* theta); break;

case 20: R = sqrt (12)*r*r*r*r*r*cos(5* theta); break;

43 case 21: R = sqrt (12)*r*r*r*r*r*sin(5* theta); break;

case 22: R = sqrt (7) *(20*r*r*r*r*r*r-30*r*r*r*r+12*r*r-1); break;

case 23: R = sqrt (14) *(15*r*r*r*r*r*r - 20*r*r*r*r +

6*r*r)*sin (2* theta); break;

case 24: R = sqrt (14) *(15*r*r*r*r*r*r - 20*r*r*r*r +

48 6*r*r)*cos (2* theta); break;

case 25: R = sqrt (14) *(6*r*r*r*r*r*r - 5*r*r*r*r)*sin(4* theta); break;

case 26: R = sqrt (14) *(6*r*r*r*r*r*r - 5*r*r*r*r)*cos(4* theta); break;

case 27: R = sqrt (14)*r*r*r*r*r*r*sin (6* theta); break;

case 28: R = sqrt (14)*r*r*r*r*r*r*cos (6* theta); break;

53 case 29: R = 4*(35*r*r*r*r*r*r*r - 60*r*r*r*r*r + 30*r*r*r -

4*r)*sin(theta); break;

case 30: R = 4*(35*r*r*r*r*r*r*r - 60*r*r*r*r*r + 30*r*r*r -

4*r)*cos(theta); break;
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case 31: R = 4*(21*r*r*r*r*r*r*r - 30*r*r*r*r*r +

58 10*r*r*r)*sin(3* theta); break;

case 32: R = 4*(21*r*r*r*r*r*r*r - 30*r*r*r*r*r +

10*r*r*r)*cos(3* theta); break;

case 33: R = 4*(7*r*r*r*r*r*r*r - 6*r*r*r*r*r)*sin (5* theta);

case 34: R = 4*(7*r*r*r*r*r*r*r - 6*r*r*r*r*r)*cos (5* theta);

63 case 35: R = 4*r*r*r*r*r*r*r*sin(7* theta); break;

case 36: R = 4*r*r*r*r*r*r*r*cos(7* theta); break;

case 37: R = 3*(70*r*r*r*r*r*r*r*r - 140*r*r*r*r*r*r +

90*r*r*r*r - 20*r*r + 1); break;

case 38: R = sqrt (18) *(56*r*r*r*r*r*r*r*r - 105*r*r*r*r*r*r +

68 60*r*r*r*r - 10*r*r)*cos(2* theta); break;

case 39: R = sqrt (18) *(56*r*r*r*r*r*r*r*r - 105*r*r*r*r*r*r +

60*r*r*r*r - 10*r*r)*sin(2* theta); break;

case 40: R = sqrt (18) *(28*r*r*r*r*r*r*r*r - 42*r*r*r*r*r*r +

15*r*r*r*r)*cos(4* theta); break;

73 case 41: R = sqrt (18) *(28*r*r*r*r*r*r*r*r - 42*r*r*r*r*r*r +

15*r*r*r*r)*sin(4* theta); break;

case 42: R = sqrt (18) *(8*r*r*r*r*r*r*r*r -

7*r*r*r*r*r*r)*cos(6* theta); break;

case 43: R = sqrt (18) *(8*r*r*r*r*r*r*r*r -

78 7*r*r*r*r*r*r)*sin(6* theta); break;

case 44: R = sqrt (18)*(r*r*r*r*r*r*r*r)*cos(8* theta); break;

case 45: R = sqrt (18)*(r*r*r*r*r*r*r*r)*sin(8* theta); break;

default:

/* get the zernike indices and figure out if p is odd */

83 zernikemode(P, &n, &m);

if (P%2==0)

odd=0;

else odd =1;

88 /* use the equations from Noll to compute the zernike val */

R = 0;

for (s = 0; s<=(n-m)/2; s++)

{

if (s%2==0) // even power ...

93 scl = 1;

else // odd power

scl = -1;

num = scl * factorial(n-s);// * pow(r,(n -(2* c0)));

den = factorial(s) * factorial ((double)(n-m)/2 - s) *

98 factorial (( double)(n+m)/2 - s);

R += (num/den)*pow(r,(n-(2*s)));

}

if (m==0)

103 R *= sqrt(n+1);

else if (odd == 1)

R *= sqrt (2*(n+1))*sin(m*theta);

else

R *= sqrt (2*(n+1))*cos(m*theta);

108

}

return R;

}

113
void zernikemode(int P, int *n, int *m)

{

int cntr=1, reuse =0;

int n0=0, m0=0;

118 while (cntr <P)

{

n0 +=1;

if ((n0 - 2*(n0/2)) == 0) /* if n is even start at m=0 */

{
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123 m0 = 0;

reuse = 0;

cntr ++;

if (cntr >=P)

{ *n = n0; *m = m0; return ;}

128 while (m0 <n0 || reuse ==1)

{

if (reuse ==1)

{

reuse = 0;

133 cntr ++;

if (cntr >=P)

{ *n = n0; *m = m0; return ;}

}

else

138 {

reuse = 1;

m0 +=2;

cntr ++;

if (cntr >=P)

143 { *n = n0; *m = m0; return ;}

}

}

}

else /* n is odd ... */

148 {

reuse = 1;

m0 = 1;

cntr ++;

if (cntr >=P)

153 { *n = n0; *m = m0; return ;}

while (m0 <n0 || reuse ==1)

{

if (reuse ==1)

{

158 reuse = 0;

cntr ++;

if (cntr >=P)

{ *n = n0; *m = m0; return ;}

}

163 else

{

reuse = 1;

m0+=2;

cntr ++;

168 if (cntr >=P)

{ *n = n0; *m = m0; return ;}

}

}

}

173 }

*n = n0;

*m = m0;

}

178 void zernike_grid(double *arry , int *mask , int P, int m)

{

int c0 ,c1; // counters

double dx; // point spacing along the grid

double x,y,r,theta =0; // coordinate variables

183 double pi = M_PI; // shorthand for pi

double *tmp = arry; // output array

int *tmp2=mask; // mask array

dx = (double)2/(m-1); // dx

188
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x = -1;

y = -1;

for (c0=0; c0 <m; c0++)

{

193 for (c1=0; c1<m; c1++)

{

r = sqrt(x*x + y*y); // get the radius

if (r>1)

{

198 *tmp = 0; // zero outside unit -circle

*tmp2 = 0; // make the mask

}

else

{

203 *tmp2 = 1; // make the mask

// figure out what quadrant we are in

if (x == 0) // avoid divide by zero

{

if (y>=0)

208 theta = pi/2;

else if (y<0)

theta = 3*pi/2;

}

else

213 if (x>0) // take care of 1st & 4th quadrants

theta = atan(y/x);

else // second and third quadrant

theta = pi + atan(y/x);

*tmp = zernike_val(r, theta , P); // value inside circle

218 }

x += dx; // increment x

tmp++; // increment grid pointer

tmp2 ++; // increment mask pointer

}

223 x = -1; // reset x

y+=dx; // increment y

}

}

228 void masked_zscreen(double *arry , double *mask , int P, int m)

{

int c0 ,c1; // counters

double dx; // point spacing along the grid

double x,y,r,theta =0; // coordinate variables

233 double pi = M_PI; // shorthand for pi

double *tmp = arry; // output array

double *tmp2=mask; // mask array

dx = (double)2/(m-1); // dx

238
x = -1;

y = -1;

for (c0=0; c0 <m; c0++)

{

243 for (c1=0; c1<m; c1++)

{

r = sqrt(x*x + y*y); // get the radius

if (*tmp2 == 0)

*tmp = 0; // zero outside unit -circle

248 else

{

// figure out what quadrant we are in

if (x == 0) // avoid divide by zero

{

253 if (y>=0)

theta = pi/2;
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else if (y<0)

theta = 3*pi/2;

}

258 else

if (x>0) // take care of 1st & 4th quadrants

theta = atan(y/x);

else // second and third quadrant

theta = pi + atan(y/x);

263 *tmp = *tmp2*zernike_val(r, theta , P); // value inside circle

}

x += dx; // increment x

tmp++; // increment grid pointer

tmp2 ++; // increment mask pointer

268 }

x = -1; // reset x

y+=dx; // increment y

}

}

273
void zscreen(double *arry , int P, int m)

{

int c0 ,c1; // counters

double dx, xmax; // point spacing along the grid

278 double x,y,r,theta =0; // coordinate variables

double pi = M_PI; // shorthand for pi

double *tmp = arry;

283 xmax = 2.0/ sqrt (2.0); // twice the max x or y value

if ((m-2*(m/2))==0) // for an even sized grid

dx = xmax/m; // make sure we hit zero at the right spot

else // for an odd -sized grid

dx = xmax/(m-1);

288
x = -1/sqrt (2);

y = x;

for (c0=0; c0 <m; c0++)

{

293 for (c1=0; c1<m; c1++)

{

r = sqrt(x*x + y*y);

// figure out where we are first

if (x == 0) // avoid divide by zero

298 {

if (y>=0)

theta = pi/2;

else if (y<0)

theta = 3*pi/2;

303 }

else if (x>0) // talke care of 1st & 4th quadrants

theta = atan(y/x);

else // second and third quadrant

theta = pi + atan(y/x);

308
*tmp = zernike_val(r, theta , P);

x += dx;

tmp++;

}

313 x = -1/sqrt (2);

y+=dx;

}

}
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Appendix B. Simulation, Data Generation, and Data Reduction Code

This appendix contains the code sections used to generate simulated data, run the

APDI algorithm, and post-process the results. Matlabr code and associated mex files

were compiled using Matlabr R14SP3, Gnu make and gcc 3.4.6. The FFTW3 library is

required to build several of the mex files.

B.1 Simulation Code

Simulated data was generated using Matlabr . The uniform and normal random

number generators were seeded using random bits read from the Linux /dev/urandom device

file, or alternatively with the system time.

Listing B.1: writePDdata.m
function [] = writePDdata(snr ,frms , det_sigma ,varargin)

% ===========================================================================

% Peter Johnson

4 % 10 Jul 2006

%

% writePDdata (snr ,frms ,det_sigma) generates simulated active phase - diversity

% data and a starting guess for the APD reconstruction algorithm.

%

9 % snr is the overall detection SNR encompasing poton and gaussian

% read noise , frms is the number of indpendent noise realizations to

% generate , det_sigma is the number of rms noise electrons/read for

% the gaussian read noise.

%

14 % writePDdata (snr ,frms ,det_sigma ,’objfl.mat ’) will generate data using the

% object contained in objfl.mat

% ===========================================================================

% compute the average number of photo - electrons required to get the desired

19 % snr. This comes from inverting snr = k/sqrt(k+sigma ^2)

photons = max(roots ([-1/snr^2 1 det_sigma ^2]));

% randomize the random number generators ...

% inlcude system time in case /dev/urandom is depleted of entropy

24 Rfile = fopen(’/dev/urandom ’,’r’); % pull from the linux random

r = fread(Rfile ,2,’uint32 ’); % device for seeds. will only

fclose(Rfile); % work with linux

rand(’state ’,sqrt(r(1)*sum (100* clock))); % seed uniform -rand

randn(’state ’,sqrt(r(2)*sum (100* clock))); % seed normal -rand

29
% load the test object

if nargin >3

sat = char(varargin (1)); % see if we were passed a truth object

else

34 sat = ’medsat.mat’; % if not , load the default object

end

load(sat);

s = size(obj);

obj = obj/mean(mean(obj));

39
% set up some constants

modes = 15; % number of zernike modes to compensate for

calcmodes = 200; % number of modes to blur data with
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D_r0 = 15; % D/r0 for the phase screen

44 div = 2; % add waves of defocus to the div channel

% get indexes/make arrays for clear parts of aperture for the pp -psd

m = floor(s(1)/sqrt (2));

strt = fix(s(1)/2-m/2);

49 ind = strt +1: strt+m+1;

tmp1 = zeros(s); % working array

tmp2 = zeros(m); % temp array for clear part of pupil

tmp3 = zeros(s); % working array

54 % make working arrays

dta = zeros([s,2* frms]); % storage array for the data ...

wghts = zeros(1,modes*frms); % storage for aberration parameters

calcwghts = zeros(1, calcmodes); % storage for aberration parameters

psd = zeros(s); % storage for averaged speckle psd

59
% make frames of data and put them in the output array

for c0=1: frms

% make the focal and diversity phase screen

64 inds = [1: modes ]+(c0 -1)*modes; % index to aberr parameters

% make the FP phase screen

[scrn ,msk ,calcwghts] = circle_phasescreen(D_r0 , s(1), calcmodes);

wghts(inds) = calcwghts (1: modes); % save the aberr parameters

divwghts = calcwghts; % copy aberr for div screen

69 divwghts (3) = divwghts (3) + div*pi./sqrt (3); % add defocus

% build up the DP phase screen

scrn2 = zeros(s);

for c1=3: length(divwghts)

[tmp , msk] = zernike_grid(c1+1,s(1));

74 scrn2 = scrn2 + divwghts(c1)*tmp;

end

% get the pupil -plane field

fld = fieldsim(obj);

79
% get the PP intensity , add noise , throw out negatives and normalize

I_pp = abssq(fld(ind ,ind)); % get the field inside the aperture

if snr <100

I_pp = poissrnd(I_pp*photons); % photon noise

84 I_pp = I_pp + det_sigma*randn(size(I_pp)); % read noise

I_pp = I_pp/photons; % normalize

I_pp(find(I_pp <0)) = 0; % kill negative

end

89 % compute and average the pupil -plane speckle psd

tmp2 = fftshift(fft2(spec_psd(I_pp)));

tmp3(ind ,ind) = tmp2;

psd = psd + real(ifft2(ifftshift(tmp3)));

94 % make the in -focus data frames , add noise and normalize

I_fp = prod(s)*abssq(ifft2(msk.*fld.*exp(j*scrn)));

if snr <100

I_fp = poissrnd(I_fp*photons); % photon noise

I_fp = I_fp + det_sigma*randn(size(I_fp)); % read noise

99 I_fp = I_fp/photons; % normalize

I_fp(find(I_fp <0)) = 0; % kill negative

end

dta(:,:,2*c0 -1) = I_fp;

104 % make the diversity data frames , add noise and normailze

I_dp = prod(s)*abssq(ifft2(msk.*fld.*exp(j*scrn2)));

if snr <100

I_dp = poissrnd(I_dp*photons); % photon noise

I_dp = I_dp + det_sigma*randn(size(I_dp)); % read noise
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109 I_dp = I_dp/photons; % normalize

I_dp(find(I_dp <0)) = 0; % kill negative

end

dta(:,:,2*c0) = I_dp;

end

114
% make an initial guess array ...

guess_obj = .05* ones(s);

guess_aber = 0.5* randn(1,length(wghts));

for c0=0:frms -1

119 guess_aber(modes*c0+1: modes*c0+2) = 0;

end

% open the output files

guess = fopen(’guess.dat’,’w’,’native ’);

124 data = fopen(’data.dat’,’w’,’native ’);

truth = fopen(’truth.dat’,’w’,’native ’);

% The data.dat file contains the data in the follwing configuration the first

% element is m, the dimension of the array , the second is f, the number of

129 % frames of data , the third is the number of aberration parameters , k, used

% to generate the phase screen , the fourth is the number of waves of defocus

% used to generate the diversity images. The remainder of the file contains

% the data values in the following format ... The contiguous block of f*m^2

% values are the focal and diversity intensities , and the final m^2 values

134 % are the averaged delta -removed and unit -average normalized pupil -plane

% speckle psd.

%

% The contiguous block of focal and diversity plane data are broken into 2m^2

% blocks , each block containing the data from one realization /frame. The

139 % first m^2 values are the focal -plane data for this frame and the second m^2

% values are the diversity plane data.

%

% The guess and truth data files are identical with the exception that the

% truth data file contains the true object and aberration , and the guess file

144 % contains the initial guess. The first element in the guess file is m, the

% dimension of the object , the second element is the number of frames f, the

% third the number of aberration parameters k, the next m^2 elements are the

% object data values , and the last f*k elements are the aberration parameters.

149 % write the initial guess file ...

m = s(1);

fwrite(guess , m, ’double ’);

fwrite(guess , frms , ’double ’);

fwrite(guess , modes , ’double ’);

154 fwrite(guess , D_r0 , ’double ’);

fwrite(guess , div , ’double ’);

cnt = fwrite(guess , guess_obj , ’double ’);

cnt = fwrite(guess , guess_aber , ’double ’);

159 % write the truth data file ...

fwrite(truth , m, ’double ’);

fwrite(truth , frms , ’double ’);

fwrite(truth , modes , ’double ’);

fwrite(truth , D_r0 , ’double ’);

164 fwrite(truth , div , ’double ’);

cnt = fwrite(truth , obj , ’double ’);

cnt = fwrite(truth , wghts , ’double ’);

% write the data file ...

169 fwrite(data , m, ’double ’);

fwrite(data , frms , ’double ’);

fwrite(data , modes , ’double ’);

fwrite(data , D_r0 , ’double ’);

fwrite(data , div , ’double ’);

174 cnt = fwrite(data , dta , ’double ’);
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cnt = cnt+fwrite(data , psd , ’double ’);

% output status and close the files

fprintf(’\nwrote %d %dx%d frames using %d modes\n’,frms ,m,m,modes);

179 fclose(’all’);

Listing B.2: circle phasescreen.m
function [screen , mask , X]= circle_phasescreen(D_r0 ,n,k)

% ===========================================================================

% Peter Johnson

% 7 Mar 2006

5 %

% [screen , mask , X] = circle_phasescreen (D_r0 ,n,k)

%

% Generate an nxn tilt -removed circularly -obscured phase screen for a D/r_0

% ratio of D_r0 using the first k Zernike polynomials (the first 3 are

10 % actually ingored , but counted anyway ...) and the covariance (Noll) matrix

% for the Zernike coefficients

%

% the weights used for the zernike modes are returned in the vector X. The

% first two elements are ignored as tip and tilt. Piston is not calculated

15 % nor carried along as a term ...

% ===========================================================================

% covariance matrix for the zerike coefficients

K = D_r0 ^(5/3)*nollmatrix(k); % make the noll -matrix for modes 2 => k+1

20 K = chol(K)’; % Cholseky Factorize K

X = randn(k,1); % Generate gaussian random numbers

X = K*X; % "color" them with K

X(1:2) = 0; % throw out tip/tilt

25 % now buld up the phase -screen and mask

screen = zeros(n);

for c0=1:k

if (X(c0)~=0)

[tmp ,mask] = zernike_grid(c0+1,n);

30 screen = screen + X(c0)*tmp;

end

end

return

Listing B.3: fieldsim.m
1 function obj = fieldsim(obj);

% Peter Johnson

% 16 Nov 2005

% obj = fieldsim(obj); Uses AFRL gausspec style speckle simulation to

% generaterate the complex fields in the pupil plane assuming an optically

6 % rough object. The object array must be square for the scaling to be

% correct. The resulting field should have unit -average intensity.

%

% It uses the object to produce circular complex RV ’s with statistics

% consistent with the object , then propagates the RV ’s to the far -field to

11 % generate the pupil -plane complex field. A speckle realization is found

% by taking the square modulus of the field. This implementation is set to

% give a unit -average intenisy in the pupil plane.

%

% This is faster , and agrees better with theory than the original upsample

16 % - add phase - propagate - down select method I used before. Definitely the

% better option.

obj = obj/mean(mean(obj)); % scale to unit average intensity

sigma = sqrt(obj /2); % standard deviation for RV ’s

21 s = size(sigma); % size of the object array
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rl = sigma .*randn(s); % make circular complex gaussian RV ’s

im = sigma .*randn(s);

obj = rl + i*im;

26
obj = fftshift(fft2(obj)); % propagate to far -field

obj = obj./s(1); % re -scale it to unit average intensity at this point

% this is a result of MATLAB ’s implementation of FFT ’s

31 return

Listing B.4: Makefile for Matlabr MEX files
# set up variables

HOME=~ pjohnson

CC=gcc

4 MATLAB =/apps/Linux86/matlab14sp3

MEX=$(MATLAB)/bin/mex

MATLABINC=-I$(MATLAB)/extern/include

MATLIBS=$(MATLAB)/extern/lib

CCFLAGS=-O3 -march=i686 -fPIC -Wall

9 LIBPATH=

SEARCHPATH=-I$(HOME)/lib/ -I$(HOME)/lib/headers

INCLUDE=-lfftw3 -lm

MATLIB =./ matlab

MYLIB=mylibs.o

14
# the mex files that can be built/cleaned/etc ...

MEXFLS=spec_psd.mexglx zernike_grid.mexglx nollmatrix.mexglx\

circle_spec_psd.mexglx

MXOBJS=psdmex.o zernike_gridmex.o nollmatrixmex.o circle_spec_psdmex.o

19 OBJECTS=zernikes.o mylibs.o

# options for the different kinds of files

MEXOPTS=$(LIBPATH) $(SEARCHPATH) $(INCLUDE) -output

OOPTS=-c $(SEARCHPATH) $(CCFLAGS) $(MATLABINC)

24
# rule to make all the mex files

.PHONY: mex

mex: $(MEXFLS)

mv *. mexglx ./ matlab/

29
# rule to make all object files

.PHONY: objs

objs: $(OBJECTS)

34 # stuff for making mylibs.o

mylibs.o: mylibs.c

$(CC) -c mylibs.c -o $(MYLIB) $(OOPTS)

# stuff for making a circular -aperture zernike mode

39 ZGRIDOB=zernikes.o $(MYLIB) zernike_gridmex.o

zernike_grid.mexglx: $(ZGRIDOB)

$(MEX) -cxx $(ZGRIDOB) $(MEXOPTS) zernike_grid

zernike_gridmex.o: $(MATLIB)/zernike_gridmex.c zernikes.o

$(CC) $(MATLIB)/zernike_gridmex.c $(OOPTS)

44
# stuff for making the psd functions

PSDOBJ=psdmex.o mylibs.o

spec_psd.mexglx: $(PSDOBJ)

$(MEX) -cxx $(PSDOBJ) $(MEXOPTS) spec_psd

49 psdmex.o: $(MATLIB)/psdmex.c

$(CC) $(OOPTS) $(MATLIB)/psdmex.c

# stuff for making the circle_spec_psd mexfunction

CRCPSDOBJ=circle_spec_psdmex.o mylibs.o
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54 circle_spec_psd.mexglx: $(CRCPSDOBJ)

$(MEX) -cxx $(CRCPSDOBJ) $(MEXOPTS) circle_spec_psd

circle_spec_psdmex.o: $(MATLIB)/circle_spec_psdmex.c

$(CC) $(OOPTS) $(MATLIB)/circle_spec_psdmex.c

59 # stuff for making the noll - covariance matrix

NOLLOBJ=nollmatrixmex.o zernikes.o mylibs.o

nollmatrix.mexglx: nollmatrixmex.o

$(MEX) -cxx $(NOLLOBJ) $(MEXOPTS) nollmatrix

nollmatrixmex.o: $(MATLIB)/nollmatrixmex.c

64 $(CC) $(OOPTS) -std=c99 $(MATLIB)/nollmatrixmex.c

# clean up stuff

.PHONY : clean

clean:

69 rm $(OBJECTS) $(MEXOBJS)

cd matlab; rm $(MEXFLS)

Listing B.5: zernike gridmex.c
/* ====================================================================

* Wrapper function for matlab to run subroutines written in C. */

4 #include "mex.h"

#define LOCAL

#include "mylibs.h"

#include "zernikes.h"

9 void mexFunction(int nlhs ,mxArray *plhs[],int nrhs ,const mxArray *prhs [])

{

double *arry , *mask , *m, *P;

int mi , p, *msk , c0;

14 /* check for complex input field */

if (mxIsComplex(prhs [0]))

mexErrMsgTxt("Input must be real");

/* error check the number of input and output arguments */

19 if (nrhs != 2)

mexErrMsgTxt("need 2 input args");

if (nlhs != 2)

mexErrMsgTxt("Must have 2 output args");

24 /* get a pointer to the input arrays */

P = mxGetPr(prhs [0]);

m = mxGetPr(prhs [1]);

mi = *m;

p = *P;

29
/* make the mask array */

msk = malloc(mi*mi*sizeof(int));

/* make the output arrays to go back to matlab and set the pointer */

34 plhs [0] = mxCreateDoubleMatrix(mi,mi ,mxREAL);

plhs [1] = mxCreateDoubleMatrix(mi,mi ,mxREAL);

arry = mxGetPr(plhs [0]);

mask = mxGetPr(plhs [1]);

39 /* call the subroutine */

zernike_grid(arry , msk , p, mi);

/* copy the mask to the matlab array */

for (c0=0; c0 <mi*mi; c0++)

44 *(mask+c0) = *(msk+c0);

free(msk);
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return;

49
}

Listing B.6: psdmex.c
/* ====================================================================

* Wrapper function for matlab to run subroutines written in C . */

#define LOCAL

4 #include "mylibs.h"

#include "mex.h"

void psdtest(double *array , double *rslt , int n);

void mexFunction(int nlhs ,mxArray *plhs[],int nrhs ,const mxArray *prhs [])

9 {

int n,m;

double *speckle , *psd;

/* check for complex input field */

14 if (mxIsComplex(prhs [0]))

mexErrMsgTxt("Input speckle field must be real");

/* error check the number of input and output arguments */

if (nrhs != 1)

19 mexErrMsgTxt("Only one input is allowed");

if (nlhs !=1)

mexErrMsgTxt("Must have one output argument");

/* get the dimension of the field */

24 n = mxGetN(prhs [0]);

m = mxGetM(prhs [0]);

if (n != m)

mexErrMsgTxt("Input must be square");

29 /* get a pointer to the input array */

speckle = mxGetPr(prhs [0]);

/* make the output array to go back to matlab and set the pointer */

plhs [0] = mxCreateDoubleMatrix(m,n,mxREAL);

34 psd = mxGetPr(plhs [0]);

/* call the psd subroutine */

spec_psd(speckle ,psd ,n);

39 return;

}

Listing B.7: circle spec psdmex.c
/* ====================================================================

* Wrapper function for matlab to run subroutines written in C.

3 *

* this mex file is for computing the delta -removed speckle psd for the case

* when the pupil is circular. This is done by using the largest inscribed

* rectangle of data available in the pupil , computing the delta -removed psd ,

* then interpolating using an fft -zeropad -ifft approach.

8 */

#define LOCAL

#include "mylibs.h"

#include "mex.h"

void psdtest(double *array , double *rslt , int n);

13
void mexFunction(int nlhs ,mxArray *plhs[],int nrhs ,const mxArray *prhs [])

{
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int n,m;

double *speckle , *psd;

18
/* check for complex input field */

if (mxIsComplex(prhs [0]))

mexErrMsgTxt("Input speckle field must be real");

23 /* error check the number of input and output arguments */

if (nrhs != 1)

mexErrMsgTxt("Only one input is allowed");

if (nlhs !=1)

mexErrMsgTxt("Must have one output argument");

28
/* get the dimension of the field */

n = mxGetN(prhs [0]);

m = mxGetM(prhs [0]);

if (n != m)

33 mexErrMsgTxt("Input must be square");

/* get a pointer to the input array */

speckle = mxGetPr(prhs [0]);

38 /* make the output array to go back to matlab and set the pointer */

plhs [0] = mxCreateDoubleMatrix(m,n,mxREAL);

psd = mxGetPr(plhs [0]);

/* call the psd subroutine */

43 circle_spec_psd(speckle ,psd ,n);

return;

}

Listing B.8: nollmatrixmex.c
/* ==========================================================================

* Peter Johnson

3 * 9 March 2006

*

* Mex function for computing the noll - covariance matrix for atmospheric

* turbulence. This is approximately 55 times faster than the matlab code

* Pete Crabtree wrote , and gives the same results to within machine

8 * precision.

*

* Calling Sequence:

* M = nollmatrix(n)

*

13 * this will produce the nxn noll - covariance matrix , which must be scaled by

* (D/r0)^(5/3) before it represents the covariance of zernike terms in

* atmospheric turbulence.

*/

18 #ifndef M_PI

#define M_PI 3.14159265358979323846 /* pi */

#endif

#include "mex.h"

#define LOCAL

23 #include "mylibs.h"

#include "zernikes.h"

double noll_covariance(int n, int m);

/* C = noll_covariance (int n, int m); compute the zernike -mode covariance

28 * between the n’th and m’th Noll -indexed zernike modes and assuming

* Kolmogorov turbulence. This can be used to build the covariance matrix ,

* which in turn can be used to generate phase screens. To get the true

* covariance , this needs to be multiplied by (D/r0)^(5/3).
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*

33 * inputs:

* int n == noll -index of the first mode

* int m == noll -index of the second mode

*

* output:

38 * double C == covariance of the requested modes

*/

void mexFunction(int nlhs ,mxArray *plhs[],int nrhs ,const mxArray *prhs []);

43 /* mex wrapper function */

double noll_covariance(int i, int j)

{

48 double C, A, B, D; // working doubles

int ni , mi, nj, mj; // radial and angular orders for the modes

int tmp , one;

// compute the radial and angular mode numbers

53 zernikemode(i, &ni, &mi);

zernikemode(j, &nj, &mj);

// see if we even need to bother

if (((i-j)%2==0) && (mi==mj))

58 {

// get the exponent on the negative 1 and decide if -1^m is negative

tmp = (ni + nj - 2*mi)/2;

if (tmp%2 == 0)

one = 1;

63 else

one = -1;

A = 0.0072* one*sqrt((ni+1)*(nj+1))*pow(M_PI ,(double)8/3);

B = tgamma (( double)14/3)*tgamma ((ni+nj -(double)5/3) /2);

68 D = tgamma ((ni-nj+(double)17/3) /2)*tgamma ((nj-ni+(double)17/3) /2) *

tgamma ((ni+nj+(double)23/3) /2);

C = A*B/D;

}

else

73 C = 0;

return C;

}

void mexFunction(int nlhs ,mxArray *plhs[],int nrhs ,const mxArray *prhs [])

78 {

int n, c0, c1;

double C, *M;

/* check for complex input data */

83 if (mxIsComplex(prhs [0]))

mexErrMsgTxt("Input must be real");

/* error check the number of input and output arguments */

if (nrhs != 1)

88 mexErrMsgTxt("need 1 input arg: number of modes");

if (nlhs != 1)

mexErrMsgTxt("need 1 output args: noll -matrix");

/* figure out how many modes we are processing */

93 n = *( mxGetPr(prhs [0]));

/* make the output array to go back to matlab and set the pointers */

plhs [0] = mxCreateDoubleMatrix(n,n,mxREAL);

M = mxGetPr(plhs [0]);
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98
/* build up the noll covariance matrix */

for (c0=0; c0 <n; c0++)

{

for(c1=c0; c1 <n; c1++)

103 {

C = noll_covariance(c0+2,c1+2);

*(M+c1+n*c0) = C;

if (c0 != c1)

*(M+c0+n*c1) = C;

108 }

}

return;

113
}

B.2 Data Generation and Reduction Code

This section contains code used to generate and post-process the data used for the

SNR vs. frames analysis shown in Fig. 6.22. The snr frms test and batchsub.sh scripts

are typical of the scripts used to run all of the scenarios described in chapter VI. The data

generation scripts were run on a 64 node dual Opteron 248 Linux cluster and a 45 node

Athlon 3000+ Linux cluster using the PBS batch processing system. Additional runs were

done on a dual 2.8 GHz Pentium 4 Linux workstation and a dual 3.02 GHz Pentium 4 Linux

workstation using screen and bash scripting.

Listing B.9: snr frms test for bash or PBS
#!/ bin/bash

#PBS -m ae

#PBS -M peter. johnson@afit .edu

#PBS -l nodes =1: ppn=1, walltime =40000:00

5 #PBS -S /bin/bash

#PBS -r n

#PBS -V

#PBS -e err

#PBS -o out

10 # this file is for running the APDI alg on a given dataset for several

# conditioning bias levels for comparison. The resulting output files are

# gzip ’d together and stored in a directory for later analysis

# unset the DISPLAY env var

15 unset DISPLAY;

# set up some other variables

export HOME=/home/afit6/engphd07/pjohnson

export PROC=‘uname -p‘; # decide what arch we are running on ...

20 DATE=‘date +%G%m%d‘; # date the script was run for filename

# see if the number of iterations was defined ...

if [ ! -n "$ITERS" ]; then

ITERS =100; # number of realizations to generate

25 fi

175



# check to see that we got snr , frms , and sigma from the environment

if [ -n "$SNR" ]; then

export SNR # get the SNR from the caller

30 else

export SNR =7; # otherwise set a default SNR

fi

if [ -n "$FRM" ]; then # get number of frames from caller

35 export FRM;

else

export FRM =30; # otherwise set a default number of frms

fi

40 if [ -n "$SGMA" ]; then # get the detector sigma from the caller

export SIGMA

else

export SGMA =6; # otherwise set a default detector Sigma

fi

45
# set the directory to save the results in

BASEDIR=$HOME/dynamicaberr_data/snr_frms_test

SAVEDIR=$BASEDIR/${SNR}_snr/${FRM}frm/${SGMA}sgma

50 # make sure the directory is there to save stuff in

if [ ! -d $BASEDIR/${SNR}_snr ]; then

mkdir $BASEDIR/${SNR}_snr

fi

if [ ! -d $BASEDIR/${SNR}_snr/${FRM}frm ]; then

55 mkdir $BASEDIR/${SNR}_snr/${FRM}frm

fi

if [ ! -d $SAVEDIR ]; then

mkdir $SAVEDIR

fi

60

# figure out which directory to run in from the environment , devault to 1 if

# not set. This is so we don ’t overwrite files ...

if [ -n "$WORKDIR" ]; then

65 WORK=$BASEDIR/runtmp/$WORKDIR

else

WORKDIR =1

WORK=$BASEDIR/runtmp/$WORKDIR

fi

70
# make the directory if it isn ’t there

if [ ! -d $WORK ]; then

mkdir $WORK;

fi

75
# change directory to the working directory

cd $WORK;

# set up architecture dependent stuff ...

80
if [[ $PROC = x86_64 ]]; then

MATLAB="/apps/Linux86_64/matlab14sp3/bin/matlab -nodisplay >& /dev/null"

APDI=$HOME/bin/APDIsolve_64

echo "64-bit Processor"

85 else

MATLAB="/apps/Linux86/matlab14sp3/bin/matlab -nodisplay >& /dev/null"

if [[ $PROC == athlon ]]; then

APDI=$HOME/bin/APDIsolve_athlon

echo "AMD Processor"

90 else

APDI=$HOME/bin/APDIsolve

echo "Intel Processor"
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fi

fi

95
# loop over the iterations

for ((i=0; i<$ITERS; i++)); do

100 # call matlab to write the data files ...

$MATLAB << EOF

proc = getenv(’PROC ’); % get the arch

home = getenv(’HOME ’); % find home

if strcmp(proc ,’x86_64 ’) % set proc depend stuff

105 addpath(genpath(strcat(home ,’/lib64 ’)));

fprintf(’\nx86_64\n’);

else

addpath(genpath(strcat(home ,’/lib ’)));

fprintf(’\ni686\n’);

110 end

rand(’state ’,sum (100* clock)); % initialize rand number generator

randn(’state ’,sum (100* clock)); % same for gaussian random numbers

snr = str2num(getenv(’SNR ’)); % get the SNR

frms = str2num(getenv(’FRM ’)); % get # of frames

115 det_sigma = str2num(getenv(’SGMA ’)); % gaussian noise std

writePDdata(snr ,frms ,det_sigma); % generate data and write output files

% remove the unneeded guess data

!rm guess.dat

120 exit;

EOF

wait

# call the APDI algorithm

125 $APDI

wait

# set the filename for this realization

FILENAME=${DATE}_${WORKDIR}_${SNR}snr_${FRM}frms_${i}.tgz

130
# tar -gzip the data files together and move them

tar -czf $FILENAME *.dat

rm *.dat

mv $FILENAME $SAVEDIR

135
done

Listing B.10: batchsub.sh
#!/ bin/bash

# Peter Johnson

# this launches a bunch of runs to the pbs server for queing

4
SNRVALS =( 2 3 5 7 10 15 20 );

snrlen =7;

FRMVALS =( 10 20 30 40 50 );

frmlen =5

9 export SGMA =100;

for ((i=0;i<$snrlen; i++)); do

export SNR=${SNRVALS[${i}]}

for ((j=0;j<$frmlen; j++)); do

14 export FRM=${FRMVALS[${j}]}

export WORKDIR=${i}${j}

qsub snr_frms_test

wait

done

19 done
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Listing B.11: datareduce.m
1 % Peter Johnson

% 23 May 2006

% datareduce.m

%

% this file cycles through the results directory and grinds up the data to

6 % get the MSE , mean MSE , and standard_deviation

clear; clc; close all hidden;

% set this to to save the graphics to files ...

11 prnt =1; % set to 1 to save individual pics

subfgs = 0; % set to 0 to have all the figures in individual windows

% set up parameters

fname = ’64 x64_mse.csv’; % file name for results

16 SNR = {’2’, ’3’, ’5’, ’7’, ’10’, ’15’, ’20’}; % snr values

snrval = [2,3,5,7,10,15,20];

frms = {’10’, ’20’, ’30’, ’40’, ’50’}; % the number of frames

frmval = [10 ,20 ,30 ,40 ,50];

sgma = {’6’,’100’}; % detector variances

21 sgmaval = [6 100];

base = ’../’; % base dir

workdir = strcat(base ,’tmp/’); % working directory

stordir = strcat(base ,’analysis/’); % directory to store results in

ind = 1: length(snrval) -1;

26
% make some storage arrays

l1 = length(SNR);

l2 = length(frms);

l3 = length(sgma);

31
raw_mse = zeros(l1 ,l2 ,l3);

adj_mse = zeros(l1 ,l2 ,l3);

scl_fact = zeros(l1 ,l2,l3);

36 raw_mse_sigma = zeros(l1,l2,l3);

adj_mse_sigma = zeros(l1,l2,l3);

slc_fact_sigma = zeros(l1,l2,l3);

raw_mse_stderr = zeros(l1,l2,l3);

41 adj_mse_stderr = zeros(l1,l2,l3);

scl_fact_stderr = zeros(l1,l2,l3);

46 mean_time = zeros(l1 ,l2,l3);

mean_time_sigma = zeros(l1,l2,l3);

mean_time_stderr = zeros(l1,l2,l3);

% define the awk command to look for the run time int the iterate.dat file

51 cmd = [’echo ‘awk ’,char (39),’/Total User time/{print $4}’ ,...

char (39),’ iterate.dat ‘’];

% open the file to store the results in and write colum titles

resfile = fopen(strcat(stordir ,fname),’w’);

56 fprintf(resfile ,...

’File ,Frms ,SNR ,SGMA ,Modes ,Div ,Dr0 ,Unproc_MSE ,Scl_Cnst ,Adj_MSE ,Time\n’);

% change to the work directory

cd(workdir);

61
% cycle through the frame numbers and SNR ’s

for c0=1: length(SNR)

for c1=1: length(frms)

for c4=1: length(sgma)
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66 srcdir = char(strcat(base ,SNR(c0),’_snr/’,frms(c1),’frm/’ ,...

sgma(c4),’sgma/’)); % src dir

fls = dir(strcat(srcdir ,’*.tgz’)); % file listing

fls = {fls.name}; % strip out names

71 nruns = length(fls);

if nruns >0

% make a temp storage array for the mse ’s

% unproc_mse_tmp = zeros (1, nruns(fls));

76 adj_mse_tmp = zeros(1,nruns);

raw_mse_tmp = zeros(1,nruns);

scl_fact_tmp = zeros(1,nruns);

time_tmp = zeros(1,nruns);

81 for c2=1: nruns

file = char(fls(c2));

fprintf(strcat(file ,’\n’));

copyfile(strcat(srcdir ,file),’.’); % copy dta to wrking dir

unix(strcat(’tar -xzf ’,file)); % untar the data

86 delete(file); % delete the data file

% now read in the data and compute the desired metrics ...

% open the files for reading

91 fl1 = fopen(’results.dat’,’r’,’ieee -le’);

fl2 = fopen(’truth.dat’,’r’,’ieee -le’);

fl3 = fopen(’data.dat’,’r’,’ieee -le’);

% read in the truth data

96 m = fread(fl2 , 1, ’double ’);

f = fread(fl2 , 1, ’double ’);

k = fread(fl2 , 1, ’double ’);

Dr0 = fread(fl2 , 1, ’double ’);

div = fread(fl2 , 1, ’double ’);

101 trth = reshape(fread(fl2 , m*m, ’double ’),m,m);

fclose(fl2);

% read in the results

m = fread(fl1 , 1, ’double ’); % frame dimension

106 f = fread(fl1 , 1, ’double ’); % number of frames

k = fread(fl1 , 1, ’double ’); % number of aberrations

Dr0 = fread(fl1 , 1, ’double ’); % D/r0

div = fread(fl1 ,1,’double ’); % diversity

obj = reshape(fread(fl1 , m*m, ’double ’),m,m); % resulting obj

111 fclose(fl1);

% read in the unprocessed data

m = fread(fl3 , 1, ’double ’); % frame dimension

f = fread(fl3 , 1, ’double ’); % number of frames

116 k = fread(fl3 , 1, ’double ’); % number of aberrations

Dr0 = fread(fl3 , 1, ’double ’); % D/r0

div = fread(fl3 ,1,’double ’); % diversity

tmpdata = reshape(fread(fl3 ,2*m*m*f,’double ’),m,m,2*f); % data

fclose(fl3);

121 focal = zeros(m);

for frmcntr =1:f

focal = focal + tmpdata (:,:,2*frmcntr -1);

end

focal = focal./f;

126 clear tmpdata;

% compute the raw MSE , scale factor , and adjusted MSE

unproc_mse_tmp(c2) = mean(mean((trth -focal).^2)); % unprocessed mse

raw_mse_tmp(c2) = mean(mean((trth - obj).^2)); % raw mse

131 scl_fact_tmp(c2) = sum(sum(trth.*obj))./sum(sum(obj .^2));

179



obj = scl_fact_tmp(c2).*obj; % adj object

adj_mse_tmp(c2) = mean(mean((trth -obj).^2)); % adjusted mse

% get the computation time for this run

136 [status ,t] = unix(cmd);

if (length(t) >1)

time_tmp(c2) = str2num(t);

else

time_tmp(c2) = NaN;

141 end

% write the results to the output file

fprintf(resfile ,strcat(file ,’,%g,’,char(SNR(c0)),’,’, ...

char(sgma(c4)),’,%g,%g,%g,%g,%g,%g,%g\n’) ,...

146 f,k,div ,Dr0 , unproc_mse_tmp(c2), scl_fact_tmp(c2), ...

adj_mse_tmp(c2),time_tmp(c2));

% clean up tmp directory

unix(’rm *.dat’);

151 end

% compute the statistics

raw_mse(c0 ,c1,c4) = mean(raw_mse_tmp);

raw_mse_sigma(c0,c1 ,c4) = std(raw_mse_tmp);

156 raw_mse_stderr(c0,c1,c4) = raw_mse_sigma(c0,c1,c4)/sqrt(nruns);

adj_mse(c0 ,c1,c4) = mean(adj_mse_tmp);

adj_mse_sigma(c0,c1 ,c4) = std(adj_mse_tmp);

adj_mse_stderr(c0,c1,c4) = adj_mse_sigma(c0,c1,c4)/sqrt(nruns);

161
scl_fact(c0,c1,c4) = mean(scl_fact_tmp);

scl_fact_sigma(c0,c1,c4) = std(scl_fact_tmp);

scl_fact_stderr(c0,c1,c4) = scl_fact_sigma(c0 ,c1,c4)/sqrt(nruns);

166 timeind = find(isnan(time_tmp)==0);

mean_time(c0 ,c1,c4) = mean(time_tmp(timeind));

mean_time_sigma(c0,c1,c4) = std(time_tmp(timeind));

mean_time_stderr(c0,c1,c4) = mean_time_sigma(c0,c1,c4)/sqrt(nruns);

171 else

raw_mse(c0 ,c1,c4) = NaN;

raw_mse_sigma(c0,c1 ,c4) = 0;

raw_mse_stderr(c0,c1,c4) = 0;

176 adj_mse(c0 ,c1,c4) = NaN;

adj_mse_sigma(c0,c1 ,c4) = 0;

adj_mse_stderr(c0,c1,c4) = 0;

scl_fact(c0,c1,c4) = NaN;

181 scl_fact_sigma(c0,c1,c4) = 0;

slc_fact_stderr(c0,c1,c4) = 0;

mean_time(c0 ,c1,c4) = NaN;

mean_time_sigma(c0,c1,c4) = 0;

186 mean_time_stderr(c0,c1,c4) = 0;

end

end

end

end

191 % close the files.

fclose(’all’); % just in case ...

% save the results for later playing

save snr_frm_reduced_data

196
% return to the analysis directory
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cd(stordir)

% plot some of the reduced results

201 set(0,’DefaultAxesLineStyleOrder ’,{’-^’,’-*’,’-o’,’-x’,’-+’,’-d’})

linestyles =[’b-^’;’g-*’;’r-o’;’k-p’;’c-d’;’m-+’];

% expand the snrval matrix

snrmat = repmat(snrval ’,1,length(frmval));

206
% make on plot with all the mean MSE ’s v.s. SNR and frames

for c33=1: length(sgma)

h1 = figure;

hold on

211 s = size(snrmat);

for c0=1:s(2)

errorbar(snrmat(ind ,c0),adj_mse(ind ,c0 ,c33) ,...

adj_mse_stderr(ind ,c0,c33), linestyles(c0 ,:))

%plot(snrmat(ind ,c0),adj_mse(ind ,c0 ,c33),linestyles(c0 ,:));

216 end

hold off

xlabel(’SNR’,’FontSize ’ ,14);

ylabel(’MSE’,’FontSize ’ ,14);

221 title([’MSE v.s. Detection SNR , \sigma_d=’,char(sgma(c33))],’FontSize ’ ,14)

a = axis;

a(2) = max(snrval(ind))+1;

a(1) = min(snrval(ind)) -1;

axis(a)

226
grid on;

legend ([char(frms (1)),’ frms’],[char(frms (2)),’ frms’],...

[char(frms (3)),’ frms’],[char(frms (4)),’ frms’],...

[char(frms (5)),’ frms’],’Location ’,’NorthEast ’);

231 if prnt

prntfname = strcat(char(sgma(c33)),’sgma_snr_frms_mse_dynamic.eps’);

print(h1 ,’-depsc ’,prntfname);

end

236
% make on plot with all the mean times v.s. SNR and frames

h2 = figure;

hold on

s = size(snrmat);

241 for c0=1:s(2)

errorbar(snrmat(ind ,c0),mean_time(ind ,c0,c33) ,...

adj_mse_stderr(ind ,c0,c33), linestyles(c0 ,:))

% plot(snrmat(ind ,c0),mean_time(ind ,c0 ,c33),linestyles(c0 ,:));

end

246 hold off

xlabel(’SNR’,’FontSize ’ ,14);

ylabel(’Computation Time (s)’,’FontSize ’ ,14);

title([’Time v.s. SNR , \sigma_d=’,char(sgma(c33))],’FontSize ’ ,14)

a = axis;

251 a(2) = max(snrval(ind))+1;

a(1) = min(snrval(ind)) -1;

axis(a)

grid on;

legend ([char(frms (1)),’ frms’],[char(frms (2)),’ frms’],...

256 [char(frms (3)),’ frms’],[char(frms (4)),’ frms’],...

[char(frms (5)),’ frms’],’Location ’,’ne’)

if prnt && ~subfgs

prntfname = strcat(char(sgma(c33)),’sgma_snr_frms_time_dynamic.eps’);

print(h2 ,’-depsc ’,prntfname);

261 end

end
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% put out a plot with the computation time for the noiseless case v.s. frms

h3 = figure

266 errorbar(frmval ,mean_time(end -1,:,1),mean_time_stderr(end -1,:,1))

xlabel(’Frames ’,’FontSize ’ ,14)

ylabel(’Time (s)’,’FontSize ’ ,14)

title(’Mean Computation Time vs. Number of Frames ’,’FontSize ’ ,14)

grid on

271 if prnt

prntfname = strcat(char(SNR(end -1)),’snr_frms_time_lineplot_dynamic.eps’);

print(h3 ,’-depsc ’,prntfname)

end
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Index

The index is conceptual and does not designate every occurrence of a keyword.

Aberrations, 2, 36–37, 58, 60, 62, 63, 111, 112,
117

Evolution of, 64
Active Phase Diversity, see APDI
APDI, 54

Aberration Regularization, 64, 68, 71
Computational Costs, 68, 69, 73, 74, 77,

79, 81, 85, 86
Conditioning Bias, 3, 62, 66

Optimal, 67, 71
Convergence Tolerance, 3, 67, 69

Optimal, 67, 74–81
Corrected Modes, 81
DP Data Significance, 68, 89–90
Dynamic Aberration log-likelihood, 63, 66
Gradients, 61–62
Image Model, 56
Noise Model, 55
Noise Sensitivity, 85
Overall Performance, 90
PP-PSD Significance, 68, 89–90
Static Aberration log-likelihood, 58

Bayesian Estimation, 7–9
Binomial Approximation, see Paraxial Approx-

imation

Central Limit Theorem, 28, 59, 115
Cholesky Factorization, 14, 42
C2

n, see Turbulence
Coherent Image Model, 36
Complete Data, see EM Algorithm
Complex Coherence Coefficient, see Complex

Correlation Coefficient
Complex Correlation Coefficient, 30, 31, 56,

104, 107–110, 116, 117
Complex Gaussian Distribution, 28, 31, 55

Complex Gaussian Moment Theorem, 30, 55
Conjugate Gradient, 15
Constrained Optimization, 15–16, 100

Constraint Function, 16, 100
Lagrange Multiplier, 15
Lagrangian, 15, 101, 102

Constraint Function, 101
Cost Function, 6–8

MSE Cost Function, 7
Scalar Absolute Error, 7
Uniform Cost Function, 8

Degree of Polarization, 21
Depolarization, 21–23
Discrete Convolution, 48, 49

EM Algorithm, 10–12, 96, 105, 108, 111
Complete Data, 11, 105
Hidden Data, 11, 105
Incomplete Data, 11, 105

Estimation Rule, 7
Expectation Maximization Algorithm, see EM

Algorithm
Exponential Distribution Function, 28

Far-Field Approximation, see Scalar Diffrac-
tion

Fourier Shift Theorem, 47
Fourier Transform, 30, 35, 45, 55, 59
Fraunhoffer Diffraction, see Scalar Diffraction
Fresnel Diffraction, see Scalar Diffraction
Fresnel Reflection, 22
Fried Parameter, see r0
Frozen Flow Hypothesis, 64

Gaussian Noise, 45, 67, 85
Gaussian Statistics, 41, 42, 98
Gauss Lens Law, 35
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Glory Shot, 92
Gradient Descent, 15
Gradient Vector, 13, 14

Helmholz Equation, 18
Hessian, 13
Hidden Data, see EM Algorithm
Homotopic, 62

Impulse Response, 34, 44
Incoherent Image Model, 36
Incomplete Data, see EM Algorithm

Lo-Turbulence Outer Scale, see Turbulence
lo-Turbulence Inner Scale, see Turbulence
Lagrange Multiplier, see Constrained Optimiza-

tion
Lagrangian, see Constrained Optimization
LAPDI, 96, 111–115

Computational Costs, 113
Diversity Phase, 112
Model Data, 112
Results, 114

Law of Refraction, 22
Lexicographically Stacked, 97
log-likelihood, 45, 47, 100, 105, 117

Magnification M , 35
MAP Estimate, see Maximum a Posteriori Es-

timation
Maximum A Posteriori Estimation, 9–10
Maximum Likelihood Estimation, 10, 100, 105
Maxwell’s Equations, 17
Mean-Squared Error, see MSE
ML Estimate, see Maximum Likelihood Esti-

mation
MMSE Estimation Rule, 8
MSE, 3, 70, 86
µ-Complex Correlation Magnitude, 32, 104,

107, 110, 116, 117
µc, see Complex Coherence Coefficient
Multi-Frame Phase Diversity, 50–52
Multi-Grid, 15
Mutual Coherence Function, 26

Mutual Intensity, 26–27, 29, 36, 55, 56, 59, 98
Propagation of, 27

Natural Basis, 113
Newton’s Method, 13, 102
Noll Covariance, 41

Observation Space, 7
Optical Transfer Function, see OTF
OTF, 43

Parameter Space, 6
Paraxial Approximation, 25, 29, 34
Parseval’s Theorem, 45, 47
Partially Polarized, 20, 21
Phase Diversity, 2, 42–52
Photo-Electrons, 70
Point Spread Function, see PSF
Poisson Noise, 47, 67, 85
Polarization Ellipse, 19, 20
Polarization Phase, 19
ϑ-Polarization Phasor, 99
Polarized Field, 97
POLE, 115–119

Computational Costs, 117, 118
Data Model, 116
Results, 119

PP-PSD, 58, 70
Data Model, 60
log-likelihood, 60
Statistics, 59

Probabilistic Mapping, 6
PSF, 36, 44, 50, 56
ψ-Complex Correlation Phase, 32, 104, 107,

110, 116, 117
Pupil-Plane PSD, see PP-PSD
Pupil Function, 33, 37, 56

Quasi-Newton’s Method, 14, 47
Related Hessian, 14

r0-Fried’s Parameter, 40
r0-Fried Parameter, 64
Related Hessian, see Quasi-Newton Methods
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Risk, 8
Rough Object, 28

Scalar Diffraction, 23–25, 33, 59
Far-Field Approximation, 25
Fraunhoffer Diffraction, 25
Fresnel Diffraction, 25, 35
Huygens-Fresnel Diffraction, 24

Sieve, 51
Simulation, 69

Aberration, 69
Detection Noise, 70

Snell’s Law, see Law of Refraction
SNR, 3, 55, 67, 70, 74, 85
Speckle, 2, 17, 27, 55, 56, 58, 59

Distribution, 55
DP & FP Spatial Correlation, 56
First Order Statistics, 27–28
Second Order Statistics, 28–32
SNR, 55
Temporal Decorrelation, 56

Spectral Decomposition, 14
SSA, 1
Stokes Vector, 20–21, 97
Structure Function, 40
Structure Function Constant, see C2

n

Taylor Series, 13
Thin Lens, 33
Turbulence, 2, 37–42

C2
n, 38

Kolmogorov PSD, 38, 41, 52, 64
Lo-Turbulence Outer Scale, 38
lo-Turbulence Inner Scale, 38
Simulation, 42

Van Cittert-Zernike Theorem, 29, 56

Weiner-Khintchine Theorem, 30, 116
Weiner Filter, 46

Zernike Modes, 37, 41, 44, 52, 64, 112
Zernike Polynomials, see Zernike Modes
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