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Introduction

1,25-dihydroxyvitamin Ds (1,25(OH),D3) and vitamin Ds analogs such as EB
1089 potentiate the response to ionizing radiation in breast tumor cells. The current
studies address the basis for this interaction by evaluating DNA damage and repair, the
impact of interference with reactive oxygen generation, the involvement of p53 and
caspase 3, signaling through c-myc, as well as the induction of senescence and multiple
modes of cell death.

Body

The outcomes of the studies supported under this training grant are presented in the
accompanying paper. The paper is in the form of PDF page proofs and therefore there are
some additional extraneous pages that could not be removed.

Key Research Accomplishments

The key observations of our studies supported by Army Award DAMDI17-03-1-0414
relating to vitamin D analogs and ionizing radiation are the following:

1. The vitamin D analog, EB 1089 ( and by extension, vitamin D3), converts an
accelerated senescence response to fractionated radiation to cell death.

2. The promotion of cell death by EB 1089 in irradiated cells attenuates and limits
the extent of proliferative recovery , which could prove to have an impact on
disease recurrence after irradiation.

3. The cell death response to EB 1089 followed by fractionated radiation is primarily
one of autophagy, a mode of cell death that has only recently been recognized as a
potentially important cell death pathway in solid tumors.

Reportable Outcomes

This work has been presented at the 2006 American Association for Cancer Research
meeting in Washington, DC.

The current findings have also been accepted for publication in Molecular Cancer
Therapeutics as a manuscript entitiled: Potentiation of radiation sensitivity in breast
tumor cells by the vitamin D3 analog, EB 1089 through promotion of autophagy and
interference with proliferative recovery.

This research will continue in Dr. Gewirtz’s laboratory through the support of the
American Institute for Cancer Research. The data generated by Gerald DeMasters
provided the foundation for this grant application.

Dr. DeMasters has been accepted to the Eastern Virginia Medical School.
Conclusions From these studies we conclude that vitamin D and vitamin D analogs have

the potential to improve the response to radiation therapy in breast cancer by promoting
autophagic cell death and interfering with proliferative recovery of the tumor cell.
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Potentiation of radiation sensitivity in breast tumor
cells by the vitamin D3 analogue, EB 1089, through
promotion of autophagy and interference

with proliferative recovery

Gerald DeMasters," Xu Di,! Irene Newsham,?
Robert Shiu,® and David A. Gewirtz"

'Departments of Pharmacology and Toxicology, Massey Cancer
Center, Virginia Commonwealth University, Richmond, Virginia;
2Brain Tumor Center, Department of Neuro-Oncology, The
University of Texas M.D. Anderson Cancer Center, Houston,
Texas; and 3Department of Physiology, University of Manitoba,
Winnipeg, Manitoba, Canada

Abstract

1,25-Dihydroxyvitamin D3 and vitamin D3 analogues, such
as EB 1089, potentiate the response to ionizing radiation
in breast tumor cells. The current studies address the basis
for this interaction by evaluating DNA damage and repair,
the effect of interference with reactive oxygen generation,
the involvement of p53 and caspase-3, signaling through
c-myc, as well as the induction of senescence and
multiple modes of cell death. EB 1089 failed to increase
the extent of radiation-induced DNA damage or to
attenuate the rate of DNA repair. The reactive oxygen
scavengers N-acetyl-L-cysteine and reduced glutathione
failed to protect the cells from the promotion of cell death
by EB 1089 and radiation. Whereas MCF-7 cells express-
ing caspase-3 showed significant apoptosis with radiation
alone as well as with EB 1089 followed by radiation, EB
1089 maintained its ability to confer susceptibility to
radiation-induced cell killing, in large part by interference
with proliferative recovery. In contrast, in breast tumor
cells lacking p53, where radiation promoted extensive
apoptosis and the cells failed to recover after radiation
treatment, EB 1089 failed to influence the effect of
radiation. EB 1089 treatment interfered with radiation-
induced suppression of c-myc; however, induction of
c-myc did not prevent senescence by radiation alone or
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radiation-induced cell death promoted by EB 1089. EB
1089 did not increase the extent of micronucleation,
indicative of mitotic catastrophe, induced by radiation
alone. However, EB 1089 did promote extensive auto-
phagic cell death in the irradiated cells. Taken together,
these studies suggest that the effect of EB 1089
treatment on the radiation response is related in part to
enhanced promotion of autophagic cell death and in part to
interference with the proliferative recovery that occurs
with radiation alone in p53 wild-type breast tumor cells.
[Mol Cancer Ther 2006:;5(11):1-12]

Introduction

Apart from the established role of vitamin D; in the
regulation of calcium homeostasis, numerous studies have
shown the metabolically active form of vitamin D3, 1,25-
dihydroxyvitamin Dz [1,25(OH);D;], to have strong
growth-inhibitory effects on a variety of tumor cell lines
(1). Because hypercalcemia limits the concentrations of
vitamin Dj; achievable in the clinic, several vitamin Ds;
analogues, such as EB 1089 (seocalcitol), have been
synthesized with reduced hypercalcemic activity. Although
it is uncertain whether EB 1089 will itself be used in the
clinic, the current studies use this compound as a prototype
of vitamin D; analogues that could ultimately contribute to
the effectiveness of conventional drug therapies.

Previous work from this laboratory has shown that
vitamin Dj [1,25(OH),D3; cholecalciferol] and vitamin Dj
analogues, such as EB 1089 and ILX23-7553, enhance the
response to both ionizing radiation (IR) and the antitumor
drug, Adriamycin, in breast tumor cells (2-5); for IR, the
effects of EB 1089 were also shown to occur in tumor cell
xenografts (6). These findings are consistent with previous
work by several research groups showing that vitamin Dj
and/or its analogues can potentiate the sensitivity to
chemotherapeutic drugs in various experimental tumor
systems (7-12).

Exposure of MCE-7 breast tumor cells to IR (either a
single dose of 10 Gy or five fractionated doses of 2 Gy each)
results in a prolonged state of growth arrest that has cha-
racteristics of premature or accelerated senescence (5, 13);
this state of senescence arrest is followed by proliferative
recovery in at least a subset of the cell population (5, 13).
Exposure of the cells to EB 1089 before radiation promotes
extensive cell death and markedly delays (but does not
fully abrogate) the promotion of senescence, which is
evident in residual surviving cells; furthermore, prior
exposure to EB 1089 attenuates and delays the extent of
proliferative recovery (5).
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Multiple mechanisms have been shown to mediate the
genomic, receptor-mediated based actions of vitamin Dj
and its analogues in the tumor cell (1, 14). The current
studies were done in an effort to identify the specific
signaling pathways responsible for the observed interac-
tions of vitamin D5 and its analogues with radiation.

In view of the fact that EB 1089 converts a senescence
response, which is essentially growth arrest, to one of cell
death, the present studies were designed to focus on
elements that are thought to be involved in the regulation
of both growth arrest and cell death pathways. These include
DNA damage and repair, the generation of reactive oxygen
species (ROS), expression of the oncogene c-myc, and the
tumor suppressor p53. In addition, this work was designed
to address the multiple modes of cell death that could
mediate the actions of EB 1089 in irradiated cells, specifically
mitotic catastrophe and autophagy as well as apoptosis.

Materials and Methods

Materials

RPMI 1640 with L-glutamine, trypsin-EDTA (1x; 0.05%
trypsin, 0.53 mmol/L EDTA-4 Na), penicillin/streptomycin
(10,000 units/mL penicillin and 10 mg/mL streptomycin),
and fetal bovine serum were obtained from Life Technol-
ogies (Gaithersburg, MD). Defined bovine calf serum was
obtained from Hyclone Laboratories (Logan, UT). EB 1089
was provided by Dr. Lise Binderup of Leo Pharmaceuticals
(Denmark). Reagents used for the terminal deoxynucleo-
tidyl transferase—-mediated dUTP nick end labeling assay
(terminal transferase, reaction buffer, and fluorescein-
dUTP) were purchased from Boehringer Mannheim (Indi-
anapolis, IN). X-gal was obtained from Gold Biotechnology
(St. Louis, MO). The following materials were obtained
from Sigma Chemical (St. Louis, MO): trypan blue solution,
formaldehyde, acetic acid, albumin bovine (bovine serum
albumin), N-acetyl-L-cysteine, reduced glutathione (GSH),
4’ 6-diamidino-2-phenylindole (DAPI), DMSO, propidium
iodide, and bisbenzimide (Hoescht no. 33258). Acridine
orange was purchased from Invitrogen (Eugene, OR). Z-
VAD-fmk was purchased from Santa Cruz Biotechnology
(Santa Cruz, CA).

Cell Lines

The p53 wild-type (WT) MCF-7 human breast tumor cell
line was obtained from National Cancer Institute (Freder-
ick, MD). MCF-7/E6 cells were a gift from Dr. Lynne
Elmore of the Department of Pathology at Virginia
Commonwealth University (Richmond, VA). MCF-7 cells
engineered to express caspase-3 and MCF-7/35im cells
with doxycycline-inducible myc have been described
previously (refs. 13 and 15, respectively).

Cell Culture and Treatment

All cell lines were grown from frozen stocks in basal
RPMI 1640 supplemented with 5% FCS, 5% bovine calf
serum, 2 mmol/L L-glutamine, and penicillin/streptomy-
cin (0.5 mL/100 mL medium) at 37°C under a humidified,
5% CO2 atmosphere. Cells were exposed to various doses
of v-IR using a '*Ce irradiator. In the indicated studies,

cells were exposed to 100 nmol/L EB 1089 for 72 hours
before irradiation. This sequence of exposure was based on
the studies by Wang et al. (16) and our own previous work
(2-5), which have shown a requirement for prolonged
incubation with vitamin Dj or its analogues to promote
sensitivity to Adriamycin and irradiation.

In the cases where the radiation doses were fractionated,
five fractions of 2 Gy radiation were administered on three
consecutive days (two fractions separated by 6 hours on
the first 2 days followed by a fifth dose on the 3rd day).
Cells were routinely subcultured by trypsinization (0.25%
trypsin, 0.03% EDTA, Life Technologies) on reaching
confluence. All experiments were done using cells during
logarithmic growth and examined by microscope for
bacterial or fungal contamination before experimental
analysis. In addition, all cell lines were determined to be
free of Mycoplasma.

Determination of Viable Cell Number

Cell viability was determined by trypan blue exclusion
at various time points beginning 24 hours after the last dose
of radiation. Cells were harvested by trypsinization, stained
with 0.4% trypan blue dye, and counted using phase-
contrast microscopy.

Terminal Deoxynucleotidyl Transferase — Mediated
dUTP Nick End Labeling Assay for Apoptosis

The method of Gavrielli et al. (17) was used as an
independent assessment of apoptotic cell death in com-
bined cytospins containing both adherent and nonadherent
cells. Cells were fixed and the fragmented DNA in cells
undergoing apoptosis was detected using the In situ Cell
Death Detection kit (Boehringer Mannheim), where strand
breaks are end labeled with fluorescein-dUTP by the
enzyme terminal transferase. Cells were then washed,
mounted in Vectashield, and photographed using a Nikon
fluorescent microscope.

Propidium lodide Staining and Flow Cytometry

After treatment with EB 1089 and/or fractionated
radiation, cells were harvested by trypsinization, pelleted
by centrifugation, and washed twice with PBS. Cellular
DNA was labeled by resuspending 1 x 10° cells in 1 mL
propidium iodide staining solution (3.8 mmol/L sodium
citrate, 0.05 mg/mL propidium iodide, 0.1% Triton X-100,
and 9K units/mL RNase B). Cells were analyzed for DNA
content with a Beckman Coulter XL-MCL flow cytometer.
A minimum of 25,000 events was collected for each sample.

Alkaline Unwinding Assay

Bulk damage to DNA was assessed by alkaline unwind-
ing following drug and radiation exposure as described in
detail previously (3). Before radiation exposure, cells were
harvested by trypsinization and washed in ice-cold PBS.
Approximately 7 x 10° cells per condition were then
resuspended in cold PBS and irradiated on ice. Cells were
maintained on ice until assessment for DNA damage
following the procedure described by Kantor and Schwartz
(18). In studies assessing DNA repair, the cells were
resuspended in fresh medium and irradiated at room
temperature. The cells were then incubated at 37° C for
4 hours before evaluation of DNA damage.
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3-Galactosidase Histochemical Staining

pH (6.0)-dependent R-galactosidase expression was used
as a marker for senescence (19). At the appropriate times
after treatment, cells were washed twice with PBS and fixed
with 2% formaldehyde and 0.2% glutaradehyde for 5
minutes. The cells were then washed again with PBS and
stained with a solution of 1 mg/mL 5-bromo-4-chloro-3-
inolyl-p-galactosidase in dimethylformamide (20 mg/mL
stock), 5 mmol/L potassium ferrocyanide, 5 mmol/L potas-
sium ferricyanide, 150 mmol/L NaCl, 40 mmol/L citric
acid/sodium phosphate (pH 6.0), and 2 mmol/L MgCl,.
Following overnight incubation at 37°C, the cells were
washed twice with PBS and photographed with a light
microscope.

Western Blot Analysis

After the indicated treatments, cells were washed in PBS
and lysed using 100 to 200 pL lysis buffer containing
protease inhibitors for 30 minutes on ice. Protein concen-
trations were determined by the Lowry method and equal
aliquots of protein (10 or 20 pg) were separated using 15%
SDS-PAGE. Proteins were transferred onto a nitrocellulose
membrane and blocked in TBS-Tween 20 buffer containing
5% nonfat dry milk. Membranes were immunoblotted with
respective antibodies and then incubated with horseradish
peroxidase—conjugated secondary antibody. Proteins were
visualized using an enhanced chemiluminescence kit from
Pierce.

Detection of 53BP1 Foci by Immunohistochemistry

MCEF-7 cells were seeded in eight-well chamber slides
24 hours before drug or radiation exposure (20). At the
appropriate times after irradiation, cells were rinsed twice
with PBS and then fixed with 3.7% paraformaldehyde in
PBS for 10 minutes at room temperature. Cells were
washed twice more with PBS and permeabilized in 0.5%
NP40 in PBS for 10 minutes at room temperature. After two
more washings with PBS, cells were blocked for 30 minutes
in PBS with gelatin. The chamber slide basket was then
removed before incubation with primary antibody.

53BP1 primary antibody was added onto cells, and slides
were covered with parafilm. After overnight incubation at
4° C, slides were washed 3 X 5 minutes with PBS. The
slides were then incubated with fluorescein-conjugated
secondary antibody in PBS with gelatin for 1 hour.
Following this 1 hour of incubation, slides were washed
3 x 5 minutes with PBS. Vectashield with DAPI was added
to slides and coverslips were placed over cells. 53BP1 foci
were visualized using an inverted fluorescent microscope.
The average number of foci per cell was determined by
dividing the total number of cells by the total number of
foci for three representative fields per treatment condition.

Detection of Reactive Oxygen Generation

Dichlorofluorescein diacetate was used to detect ROS
following exposure to EB 1089 and radiation (21). MCF-7
cells were seeded in T-25 flasks and treated as described in
the cell viability study above. At the appropriate times after
treatment, growth medium was removed and cells were
incubated for 30 minutes with medium containing 5 pmol/L
dichlorofluorescein diacetate. After 30 minutes, medium

Molecular Cancer Therapeutics

containing dichlorofluorescein diacetate was removed, and
fresh medium was added to the flasks. Fluorescence was
immediately visualized with an inverted fluorescent
microscope.

Detection of Autophagic Cells by Staining with Acri-
dine Orange

As a marker of autophagy, the volume of the cellular
acidic compartment was visualized by acridine orange
staining (22). Cells were seeded in T-25 flasks and treated
as described above for the cell viability study. At the
appropriate time points following treatment, cells were
incubated with medium containing 1 pg/mL acridine
orange (Molecular Probes, Eugene, OR) for 15 minutes.
After 15 minutes, the acridine orange was removed and
fluorescent micrographs were taken using an inverted
fluorescent microscope. The number of cells with increased
acidic vesicular organelle was determined by counting at
least three representative fields per treatment condition.

Scoring of Micronuclei as an Indication of Mitotic
Catastrophe

The induction of mitotic catastrophe was assessed by the
formation of micronuclei (23). MCE-7 cells were seeded on
glass coverslips and treated with EB 1089, 5 X 2 Gy IR, or EB
1089 followed by 5 x 2 Gy IR. At the appropriate times after
irradiation, the cells on the coverslips were fixed with 3.7%
paraformaldehyde in PBS for 10 minutes at room temper-
ature. Cells were then fixed to glass slides using DAPI-
containing Vectashield mounting medium. Pictures were
taken using a Zeiss laser scanning microscope. Micronuclei
were scored by first counting the percentage of binucleated
cells. Micronuclei formation was then expressed as the
fraction of binucleated cells, which contained micronuclei.

Statistical Analysis

Statistical differences were determined using StatView
statistical software. Comparisons were made using a one-
way ANOVA followed by Fisher’s protected least signifi-
cance difference post-hoc test. Ps < 0.05 were taken as
statistically significant.

Results

I. Influence of EB 1089 on radiation-induced DNA
damage and DNA repair

We have reported previously that EB 1089 fails to
increase DNA damage induced by IR in MCF-7 cells (3).
However, although no difference was evident in the extent
of initial DNA damage by radiation alone and radiation
preceded by EB 1089, the possibility remained that EB 1089
might influence the rate of DNA repair. Furthermore, the
alkaline unwinding assay used to generate the previous
data does not discriminate between single-strand breaks
and double-strand breaks in DNA, where double-strand
breaks are thought to be the lesion responsible for the
cytotoxic effects of IR (24). We therefore examined whether
the induction of DNA double-strand breaks by IR might be
enhanced by EB 1089. Both alkaline unwinding (18) and
53BP1 foci formation (20) were used for assessment of DNA
damage and repair.
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Figure 1 shows the results of alkaline unwinding studies
to assess the extent of bulk DNA damage and repair after
radiation alone or EB 1089 followed by radiation. A single
10 Gy dose of radiation was used to increase the sensitivity
of the assay, as the influence of EB 1089 on the radiation
response is evident either with a single 10 Gy dose or with
five fractionated doses of 2 Gy each (3, 5). The F value is an
indicator of DNA damage, where an F value of 1 reflects
intact (undamaged) DNA (18). Figure 1 indicates that the
initial DNA damage induced by IR is not altered by prior
exposure of the cells to EB 1089, consistent with our
previous findings (3). In addition, the DNA damage is fully
repaired within 4 hours with either radiation alone or with
EB 1089 preceding the irradiation, indicating that EB 1089
does not influence the apparent rate or extent of DNA
repair.

Figure 2 presents the results of studies assessing 53BP1
foci formation in MCF-7 cells exposed to either 2 Gy
radiation alone or radiation preceded by treatment with 100
nmol/L EB 1089. A lower dose of radiation was used in
these studies to allow for detection of a possible increase in
damage with EB 1089. (In other studies, not shown, we
have shown potentiation of the response to radiation by EB
1089 at a dose of 2 Gy). The initial induction of foci was
assessed at 6 hours after irradiation. Figure 2A and B
indicates that there was approximately one focus point in
each control cell and that EB 1089 alone did not affect the
number of foci formed. EB 1089 followed by radiation
increased 53BP1 formation to an average of 4.5 foci per cell,
a value that was not significantly different from that
induced by radiation alone. These findings indicate that EB
1089 does not increase the extent of dsDNA damage
induced by radiation, which is consistent with the data
presented in Fig. 1.

To evaluate the effect of EB 1089 on repair of double-
strand breaks in DNA, the decline in 53BP1 foci was
monitored over a period of 48 hours. Figure 2A and B
shows that the rate of decline in foci was essentially
identical in cells treated with radiation alone and in cells
exposed to EB 1089 before irradiation, indicating that the
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Figure 1. Assessment of DNA damage and repair by alkaline unwinding.

MCF-7 cells were exposed to 10 Gy irradiation with and without EB 1089
(EB) pretreatment. Cells were assessed for irradiation-induced DNA
fragmentation immediately after irradiation as well as 4 h after irradiation.
Columns, average of three independent experiments; bars, SE.
*, significantly different from control, P < 0.05.

rate of DNA repair (presumptively the repair of double-
strand breaks) was unaltered by EB 1089. Again, these data
are consistent with the findings relating to the overall
repair of DNA damage monitored by alkaline unwinding
as shown in Fig. 1.

Il. ROS Generation in Potentiation of the Response to
Radiation by EB 1089 in the Breast Tumor Cell

Several studies have implicated the generation of ROS in
the enhancement of the response to the antitumor drug,
doxorubicin, and tumor necrosis factor by 1,25(0OH),D;
as well as by vitamin D3 analogues (25, 26). To determine
whether EB 1089 might influence reactive oxygen genera-
tion in cells exposed to IR, MCF-7 cells were treated with 10
Gy radiation alone or radiation preceded by EB 1089;
dichlorofluorescein diacetate was used as a fluorescent
probe to measure overall oxidative stress, which would
reflect ROS generation in the cells. Figure 3 indicates that
minimal ROS was detected after radiation alone; in
contrast, when the cells were first treated with EB 1089, a
significant degree of ROS was detected 72 hours after
irradiation. Figure 3 further shows that GSH blocks the
generation of ROS by EB 1089 plus radiation. (It should be
emphasized that these experiments are not measuring
direct ROS generation by irradiation but ROS that could be
the consequence of, for example, delayed DNA damage
effects on mitochondrial function).

To determine whether ROS generation might contribute
to the radiation-induced cell death promoted by EB 1089,
cell viability was determined after either radiation alone or
EB 1089 followed by radiation in the presence of GSH. As
shown in Fig. 3B, the cell death that occurred in the cells
exposed to EB 1089 followed by radiation was not
attenuated by the GSH treatment. Similarly, the free radical
scavenger, N-acetyl-L-cysteine, blocked free radical gener-
ation but failed to alter the promotion of cell death in cells
treated with EB 1089 before irradiation (data not shown).
As a positive control, both GSH and N-acetyl-L-cysteine
were shown to interfere with the cytotoxicity of H,O, (data
not shown).

lll. Influence of Caspase-3 Expression on the Differen-
tial Response to Radiation and EB 1089 followed by Ra-
diation in the MICF-7 Breast Tumor Cells

We have reported previously that exposure to the vitamin
D; analogue EB 1089, before either radiation or Adriamycin,
promotes apoptosis in MCF-7 breast tumor cells in culture
(2-5); the combination of EB 1089 with radiation also pro-
motes apoptosis in breast tumor xenografts (6). However,
apoptotic cell death is unlikely to play a significant role in the
response to this sequence of treatment given that the
maximal extent of apoptosis observed at any given time
point represents no >6% of the cell population (5). This low
level of apoptosis may relate, in part, to the fact that MCF-7
cells do not express the executioner caspase, caspase-3 (27).
Although we have shown previously that EB 1089 poten-
tiates the response to radiation in ZR-75 breast tumor cells
that express caspase-3 (3), we deemed it important to assess
the nature of the temporal response in MCF-7 cells
engineered to express caspase-3.
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Figure 2. Assessment of DNA damage and repair by A
53BP1 foci formation. MCF-7 cells were exposed to 2
Gy IR with and without pretreatment with EB 1089. At
6, 24, and 48 h after irradiation, cells were fixed and
53BP1 foci were visualized with immunohistochemistry
as described in Materials and Methods. A, pictures
were taken with the blue (488 nmol/L) excitation light.
Magnification, x20. B, average number of foci per cell.
Columns, average of three representative fields per
treatment condition; bars, SE. *, significantly different
from untreated control, P < 0.05. Similar results were
obtained in a replicate experiment.

EB+2Gy 6Hhr .

Figure 4A shows that the response to radiation alone in
MCEF-7/caspase-3 cells was quite similar to that observed in
the WT MCEF-7 cells (5), albeit with increased cell killing by
radiation alone. Initially, cell proliferation was only slightly
perturbed as the cells continued to divide, albeit at a
slightly reduced rate compared with controls (data not
shown); subsequently, a significant degree of cell death was
detected, with substantial apoptosis evident 3 days after the
last radiation dose (~20% apoptosis based on cell cycle
analysis; data not shown). In addition, similar to our
observations in WT MCEF-7 cells, radiation promoted
senescence in the MCF-7/caspase-3 cells (Fig. 4B). Finally,
and again as with the WT MCF-7 cells, proliferative reco-
very was evident between 12 to 15 days after irradiation.

Figure 4A indicates that treatment of the cells with EB
1089 before radiation eliminated the early proliferative
phase and furthermore resulted in an immediate decline in
cell number, similar to our previous observations in WT
MCEF-7 cells (5). Senescence was detected in the residual cell

53BP1 focilcell
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Control EB 1089

2Gy 24hr

2Gy 48hr

EB+2Gy 24hr EB+2Gy 48hr

population (Fig. 4B and C), again consistent with our
findings in WT MCEF-7 cells (5). It should be noted that no
senescent cells were observed in untreated cell cultures or
cells treated with EB 1089 alone (data not shown). The ex-
tent of radiation-induced apoptosis was slightly increased
by EB 1089 at both 24 (2.7-6.4%) and 72 (21.8-27.9%) hours
after radiation (data not shown); more importantly, EB 1089
seemed to entirely eliminate the capacity of the cells to
recover proliferative capacity. As a consequence, there was
a pronounced reduction in viable cell number under the
conditions of EB 1089 preceding irradiation compared with
radiation alone.

IV. Response to IR and EB 1089 followed by IR in MCF-
7 Cells Lacking p53

In previous studies, we reported that potentiation of the
response to IR by EB 1089 is dependent on the cells
expressing functional p53 (3, 4); however, the basis for the
lack of effect of EB 1089 on sensitivity to radiation in cells
that are either mutant or null for p53 was not understood.
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To more definitely characterize the nature of the response
in cells lacking functional p53, we evaluated the temporal
response to both IR and EB 1089 followed by IR in MCF-7/
E6 cells with attenuated p53 function. The absence of
radiation-induced increases of both p53 and its transactiva-
tional target, p21, was confirmed by Western blotting (data
not shown).

Figure 5 shows that the MCF-7/E6 cells exposed to
radiation alone initially respond similarly to the WT
MCF-7 cells and continuing to proliferative; however,
subsequently, cell death occurs but without evidence for
proliferative recovery. In response to EB 1089 followed
by radiation, the MCF-7/E6 cells undergo extensive cell
death. Consequently, after 7 days, there is no detectable
difference in cell number with radiation alone and with
EB 1089 preceded by radiation. IR alone promotes
apoptosis in MCF-7/E6 cells, but EB 1089 does not increase
the extent of radiation-induced apoptosis (data not shown).
Taken together with our findings in both the WT MCEF-7
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Figure 3. Effects of GSH on the response to EB 1089 plus 10 Gy IR.
MCF-7 cells were exposed to 10 Gy IR with or without prior treatment with
100 nmol/L EB 1089 for 72 h. Where indicated, cells were also exposed to
GSH (5 mmol/L) for 3 h before irradiation. A, ROS generation was
determined by dichlorofluorescein diacetate fluorescence. B, cell viability
was determined at the indicated times after IR. Viability is expressed as a
percentage of initial cell number. Points, average of two independent
experiments; bars, range.

and the MCEF-7/caspase-3 cells, these studies suggest
that the sensitizing effects of EB 1089 on the response to
IR seem to be related primarily to interference with the
proliferative recovery that is evident in cells expressing
functional p53.

V.The Potential Involvement of c-myc in Senescence
by Radiation and Cell Death by EB 1089 Plus Radiation

MCE-7 cells treated with IR or the antitumor drug,
Adriamycin, undergo a senescent-like growth arrest
(5, 13, 28). In previous work, we determined that both
Adriamycin and IR suppress the expression of the c-myc
oncogene (29-31). Furthermore, the extent of c-myc sup-
pression was found to correlate quite closely with growth
arrest (30, 31). Consequently, it seemed possible that drug-
and radiation-induced down-regulation of c-myc might
promote senescence; furthermore, we postulated that
pretreatment with the vitamin D5 analogue EB 1089 might
interfere with the down-regulation of c-myc, thereby
preventing senescence and promoting cell death (5).

To determine whether c-myc might be differentially
regulated after treatment with radiation alone versus
radiation preceded by EB 1089, MCE-7 cells were treated
with 10 Gy IR, 100 nmol/L EB 1089, or 100 nmol/L EB 1089
followed by 10 Gy IR. Figure 6A (fop) indicates that 10 Gy
IR causes suppression of the c-myc protein after both
24 and 48 hours, whereas pretreatment with EB 1089
attenuates the capacity of radiation to suppress c-myc
expression.

The experiments presented in Fig. 6A raised the
possibility that maintenance of c-myc expression could
convert the senescence response to one of cell death. To
address this question, studies were designed using MCF-7/
35im cells with a doxycycline-inducible myc transgene (15).
Figure 6A (bottom) shows that 1 pg/mL doxycycline
induces c-myc in the MCF-7/35im cells and that 10 Gy
irradiation fails to suppress the doxycycline-induced myc
expression. The resurgence of c-myc levels is most
pronounced at 72 hours, an effect that has been reproduced
in similar studies using Adriamycin (data not shown).

MCF-7/35im cells were treated with 10 Gy irradiation in
the absence or presence of 1 pm/mL doxycycline and cell
viability was determined as a function of time by trypan
blue exclusion. Figure 6B indicates that the 35im cells, in
which c-myc levels were maintained with doxycycline,
respond to radiation in an essentially identical manner as
the MCEF-7 cells where c-myc was suppressed by irradia-
tion, with an initial period of continued proliferation
followed by growth arrest. Figure 6C further indicates that
the growth arrest response in the MCF-7/35im cells had
characteristics of senescence (p-galactosidase expression,
enlarged and flattened cells), both with and without c-myc
induction.

To determine whether maintenance of c-myc levels by EB
1089 interferes with the promotion of radiation-induced cell
death, the effects of EB 1089 followed by irradiation were
evaluated in the c-myc-inducible cells. Figure 6B shows
that the temporal response to EB 1089 plus irradiation
was identical with and without induction of c-myc by

Mol Cancer Ther 2006;5(11). November 2006

Ql11



Molecular Cancer Therapeutics 7

A_"™ B 5X2G
g 100 —o—EB1089+5X2Gy  ——5X2Gy Day 3 post-IR Day 5 post-IR Day 7 post-IR
O 140 e T 3 - TS " - g
(8] - L] . # e i (eat % , S
s 120 1\.‘. L i . -" / : Ty » ‘.- . - . o
E 100 e " _ ', : AR
£ 80 "o e . Sl s -
2 1 'd il e T e
= 60 % o ] - A ® ’ 1
2 40 L ™ ) a .
z s I ' . & S a
] n . . . A :
o
0 T * 5 10 1‘5 20
bave EB 1089 +5 X 2 Gy
Y
Day 3 post-IR Day 5 post-IR Day 7 post-IR
c 35 ¥ '.:" "! : - ;—. i -_I_' . ‘_‘ S
o 307 W5X2Gy . S g B
2 254 DEB +5X 2 Gy o ¥ VA S 1 ia WY
® 5 ophe - * y. ¥
° | =2 N % ® )
<Y % @ v 44
s ] #4 A . 20 4 ¥ 2t B9
g 15 . 2 : . L Rw et 3 v ’j ot 19
@ i - ” . F T
o 10 ’ " y r z
N | e 5 - v . " La & ’ ‘4
5
0 Day 3 ‘ Day 5 ‘ Day 7
Day Post-IR
Figure 4. Influence of EB 1089 on the response to radiation in MCF-7/caspase-3 cells. Cells were exposed to 5 x 2 Gy IR or EB 1089 followed by 5 x 2

Gy IR. A, viable cell number was determined by exclusion of trypan blue at the indicated days following the initiation of radiation exposure. Arrows, days
on which cell irradiation was done. Points, average of three experiments; bars, SE. B, at the indicated times after IR, cells were assessed for
{-galactosidase expression as described in Materials and Methods. Pictures taken with inverted microscope at x20. C, percentage of p-galactosidase-
positive cells. Columns, average of four representative fields taken from two independent experiments; bars, SE. *, significantly different from untreated
control, P < 0.05; #, combination treatment is significantly different from radiation alone, P < 0.05.

doxycycline. Taken together, these studies seem to rule out
a central role for c-myc in either the senescence response to
radiation or the cell death response in cells exposed to EB
1089 before irradiation.

VI. Assessment of Mitotic Catastrophe in Response
to Radiation Alone and EB 1089 Plus Radiation

Our previous studies suggested that apoptosis is likely to
play only a small role in the cell death response to EB 1089
plus radiation (5). Other forms of cell death are known to
occur after both EB 1089 and radiation treatment, including
mitotic catastrophe (32) as well as autophagy (33, 34). To
characterize this nonapoptotic cell death, the role of mitotic
catastrophe and autophagy were assessed after EB 1089
plus radiation treatment.

Mitotic catastrophe is characterized by the formation of
micronuclei (32). These can be visualized as decondensed
chromatin in small micronuclei lying outside of the main
nucleus in cells that have attempted but failed to divide. To
determine the role of mitotic catastrophe in the response to
fractionated radiation as well as whether EB 1089 may
increase radiation-induced mitotic catastrophe, MCF-7 cells
were grown on glass coverslips and exposed to 5 x 2 Gy IR
with and without prior exposure to 100 nmol/L EB 1089 for
72 hours. At 1, 3, 5, and 7 days after irradiation, cells were
stained with DAPI to visualize their nuclear content and
micrographs were taken using a laser scanning microscope.
As shown in the representative experiment presented in
Fig. 8A, micronuclei were observed in cells treated with
5 X 2 Gy as well as EB 1089 plus 5 X 2 Gy. There are clearly
small micronuclei lying outside of the main nuclei in these

binucleated cells, which are not visible in the micrographs
taken of untreated control cells (Fig. 7A) or when cells were
exposed to EB 1089 alone (data not shown). The micro-
nuclei were scored as described in Materials and Methods,
and the percentage of micronucleated binucleated cells is
presented in Fig. 7B. One day after exposure to radiation,
~75% of the binucleated cells contain micronuclei. This
suggests that the cells that have attempted to undergo
mitosis at this time have subsequently undergone mitotic
catastrophe. The percentage declines to below 50% by day 7
after irradiation, as more cells are able to successfully
complete mitosis. EB 1089 does not seem to alter the
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Figure 5. The influence of EB 1089 on the temporal response to
fractionated radiation in MCF-7/E6 cells. Viable cell number was
determined by exclusion of trypan blue at indicated days following the
initiation of radiation exposure. Arrows, days on which irradiation was
done. Points, average of two to four experiments; bars, SE.
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Effects of EB 1089 and 10 Gy on the expression of myc in MCF-7 cells. A, MCF-7/WT and MCF-7/35im cells were treated with 10 Gy IR and

the expression of myc was assessed by Western blotting at the indicated time points after irradiation. Where indicated, the MCF-7/35im cells were also
coincubated with 1 ng/mL doxycycline (Dox). The expression of actin was used as a loading control. B, cell viability was determined at the indicated time
points following irradiation by trypan blue exclusion. Points, average of two independent experiments; bars, range. C, at the indicated
times after irradiation, cells were assessed for B-galactosidase expression as described in Materials and Methods. Pictures were taken with an inverted

microscope at x20.

response to radiation in terms of the induction of mitotic
catastrophe. The percentage of micronucleated binucleates
for the combination of EB 1089 plus radiation is essentially
the same as radiation alone (Fig. 7B).

Although a high percentage of the cells that continue
through mitosis subsequently undergo mitotic catastrophe
after either radiation or EB 1089 plus radiation, the per-
centage of mitotic cells (as measured by the percentage of
binucleated cells) never exceeds 20% of the total cell
population. This indicates that the percentage of cells that
undergo mitotic catastrophe is a small fraction of the
overall cell population. These data further suggest that
mitotic catastrophe likely plays a relatively limited role, if
any, in the overall cell death response following either
fractionated irradiation alone or the combination of EB 1089
plus radiation.

VII. EB 1089 Increases Radiation-Induced Autophagy

To determine whether autophagy might contribute to the
effects of EB 1089 on the response to IR (22, 33), cells were
treated with EB 1089, 5 x 2 Gy IR, or the combination of EB
1089 followed by 5 X 2 Gy IR, and the lysosomotropic agent
acridine orange was used as a marker for detecting the
acidic compartments of the cells. When acridine orange
encounters an acidic environment, such as a lysosome or
autophagosomes, its fluorescence changes from green to
red (22, 35). As shown in Fig. 8, vital staining of MCF-7 cells
with acridine orange revealed the appearance of acidic

vesicular organelle (after exposure to both 5 x 2 Gy and EB
1089 followed by 5 x 2 Gy IR. The 4-day exposure to 2.5
umol/L tamoxifen was used as a positive control, as this
agent has been shown previously to induce autophagy in
MCEF-7 cells (33). Dye in the acidic vesicular organelle
fluoresces bright red, whereas the nucleus and cytoplasm
stain predominantly green. Fig. 8A and B indicates that the
increase in acidic vesicular organelle occurred earlier and
to a much greater extent in irradiated cells pretreated with
EB 1089 compared with cells treated with radiation alone.
Over 50% of the cells treated with the combination of
EB 1089 plus radiation had increases in acidic vesicular
organelle, similar to that detected with exposure to
tamoxifen. Untreated control cells as well as cells treated
with EB 1089 alone show minimal red fluorescence. These
data indicate that EB 1089 increases radiation-induced
autophagy.

Discussion

DNA Damage and Repair

The current studies using alkaline unwinding and 53BP1
foci formation support the conclusion that EB 1089 fails to
increase the extent of DNA damage induced by radiation.
The current work also indicates that EB 1089 does not
interfere with DNA repair. Taken together, these studies
strongly suggest that the cell death induced by radiation
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under conditions where radiation is preceded by exposure
to EB 1089 is likely to be a consequence of alterations in cell
signaling pathways downstream of the initial induction of
DNA damage.

Generation of Free Radicals

In view of several reports indicating a role for reactive
oxygen in potentiation of the response to antitumor
compounds, such as doxorubicin (25) and tumor necrosis
factor (26) by vitamin D3 and its analogues, we evaluated
both the generation of ROS by EB 1089 and radiation as
well as the effect of free radical scavengers on the tumor
cell response to treatment. We clearly detected ROS
generation in cells exposed to EB 1089 before irradiation.
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Figure 7. Detection of micronuclei in MCF-7 cells treated with radiation
alone and radiation preceded by EB 1089. MCF-7 cells were treated with
100 nmol/L EB 1089, 5 x 2 Gy IR, or EB 1089 followed by 5 X 2 Gy IR.
Micronuclei formation was assessed by DAPI staining. A, pictures were
taken using a Zeiss laser scanning microscope. Arrows, micronuclei.
Magnifications, x40 (control) and x100 (IR and EB 1089 + IR). B, at the
indicated days after irradiation, the percentage of binucleated cells (CB)
and the percentage of binucleated cells with micronuclei (CB-MN/CB)
were determined as described in Materials and Methods. Points, average
of two independent experiments; bars, range.
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It should be emphasized that this is not ROS generation
associated with the initial damage to DNA but subse-
quent and delayed ROS that is presumably related to
mitochondrial dysfunction (36). This suggests that ROS
are not a direct consequence of radiation interaction with
the tumor cell but are likely to be part of a signaling
response pathway. The free radical scavengers, N-acetyl-
L-cysteine and GSH, blocked the generation of reactive
oxygen but failed to alter the temporal response after EB
1089 followed by radiation. Based on the lack of
protection by free radical scavengers as well as the
relatively low level of ROS generation, we conclude that
the enhanced response to radiation that is promoted by
EB 1089 is unlikely to be a consequence of increased
reactive oxygen.

Senescence and Apoptosis

We have reported recently that IR (both a single dose of
10 Gy as well as a cumulative dose of 10 Gy from frac-
tionated doses of 2 Gy) promotes an accelerated senescence
response in MCF-7 breast tumor cells (5, 13). One possible
explanation for this observation is that senescence is a
default response in cells that are refractory to apoptosis as a
consequence of the lack of caspase-3. However, we as well
as others have reported accelerated senescence in response
to chemotherapy and radiation in cells expressing func-
tional caspase-3 (37, 38). Furthermore, our current work
indicates that senescence is the primary response to
radiation alone even in cells expressing caspase-3.

The MCF-7/caspase-3 cells also have a similar response
to EB 1089 plus radiation as the parental MCF-7 cells, that
of cell death. Again, as with parental MCEF-7 cells, sene-
scence is evident in the residual surviving cell population.
Perhaps of greatest interest is the fact that EB 1089
essentially obliterates the proliferative recovery observed
in cells exposed to radiation alone. This suggests that the
effect of EB 1089 treatment on the radiation response is also
likely to be evident in cells that are highly “apoptotic
competent,” such as the MCF-7 cells expressing functional
caspase-3.

c-myc

c-myc is an oncogene that is critically important for
several signal transduction pathways involved in differen-
tiation, growth arrest, and cell death (39). Under physio-
logic conditions, c-myc may promote cellular replication by
activating positive regulators of cell division, such as cyclin
D1 and D2, as well as cyclin-dependent kinase 4 and E2F2
(40). c-myc may also suppress growth-inhibitory genes,
such as the cyclin-dependent kinase inhibitors p21, p27,
and p19 (41).

c-myc also seems to be an important component of the
signal transduction pathways responsible for the DNA
damage response. c-myc has been implicated in the cell
cycle arrest resulting from exposure to agents that cause
DNA damage, such as UV and IR as well as Adriamycin
(42). Previous studies from our laboratory have shown that
suppression of myc expression in MCF-7 breast tumor cells
correlates closely with the extent of growth arrest induced
by either Adriamycin or IR (30, 31). Suppression of c-myc
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EB 1089
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Figure 8. Detection of acidic ve-
sicular organelle (AVO) by vital
staining with acridine orange in
MCF-7 breast tumor cells. MCF-7
cells were treated with 100 nmol/L
EB 1089, 5 x 2 Gy IR, or EB 1089
followed by 5 X 2 Gy IR. The
induction of acidic vesicular organ-
elle was assessed at the indicated
days after irradiation by staining for
15 min with 1 pg/mL acridine
orange. A, pictures were taken using
a fluorescent microscope with a
magnification of x20. B, the per-
centage of cells with increased acidic
vesicular organelle were counted at
the indicated days after irradiation.
Columns, average of at least four
representative fields per treatment
condition; bars, SE. Similar results
were obtained a replicate experi-
ment.
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has also been linked to down-regulation of hTERT, the
catalytic subunit of telomerase, the enzyme that extends the
telomere and thereby prevents the induction of senescence
(43). In contrast, maintenance or overexpression of c-myc
has been associated with the promotion of apoptotic cell
death (44).

We found that whereas c-myc protein levels were
suppressed by radiation alone, c-myc levels were sustained
with prior exposure to EB 1089. This raised the intriguing
possibility that maintenance of c-myc expression by EB 1089
might be responsible for the promotion of cell death,
possibly through apoptosis, whereas suppression of c-myc
could be linked to senescence. However, this does not
seem to be the case. When MCF-7 cells with doxycycline-
inducible c-myc were exposed to radiation, an identical
senescence response was noted as in parental MCE-7 cells.
Furthermore, when these cells were exposed to EB 1089
before radiation, we noted cell death and interference with
proliferative recovery. An identical senescence response

Q 1 3 *In preparation.

was seen following Adriamycin treatment with and
without doxycycline as well.A Consequently, c-myc does
not seem to play a central role in either senescence or cell
death in irradiated breast tumor cells.

Autophagic Cell Death and Proliferative Recovery

Our findings relating to the promotion of autophagic cell
death in irradiated cells with prior exposure to EB 1089 lead
to several tentative conclusions and open the way for
additional experiments to elucidate the signaling pathways
involved in potentiation of radiation sensitivity. It seems
possible that the capacity of EB 1089 to confer sensitivity to
radiation is primarily a function of the promotion of
autophagy. Consequently, it is likely that EB 1089 may
influence signaling molecules associated with regulation of
autophagic cell death. Furthermore, there is evidence that
autophagy may be dependent on functional p53 (45), which
might further explain the lack of sensitization in p53-
mutant or p53-null breast tumor cells.

It is also necessary to consider the effects of EB 1089 on
proliferative recovery. In our hands, we observe prolifer-
ative recovery only in cells that express functional p53 (13,
46). This is not a uniform observation, as others have
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reported recovery or escape from senescence in p53-null
lung cancer cells (47). At this juncture, we do not fully
understand the lack of recovery in the cells without
functional p53, although this may relate to the ability of
these cells to undergo apoptosis (and potentially, an
inability to effectively repair the DNA due to apoptosis).
However, as both MCF-7/E6 and MCF-7/caspase-3 cells
die in part by apoptosis, this again argues in support of the
idea that recovery might be related to the presence of p53,
where the presence of p53 could possibly be permissive for
DNA repair.

Potential Clinical Ramifications

In general, the conventional therapies of breast cancer
that involve surgery, radiation, and/or chemotherapy are
quite effective in elimination of the primary tumor,
particularly in the context of early detection. Unfortunately,
although many patients are cured, there is a subset of
patients that experience morbidity and mortality as a
consequence of disease recurrence or metastatic spread of
the disease, often to the brain or bone. The potential clinical
significance of the current studies lie in the possibility that
the inclusion of vitamin D; or vitamin Dj; analogues in
association with radiotherapy and chemotherapy may
promote cell death through alternative pathways, such as
autophagy and thereby prevent (or at least attenuate and
delay) the proliferative recovery that could contribute to
disease recurrence. In terms of the potential selectivity
involved in the use of vitamin Dj; or its analogues, previous
work from this laboratory has shown the radiosensitizing
effects of vitamin D5 analogues to be selective for the tumor
cell, as radiation sensitivity was not altered in normal
breast epithelial cells or BJ fibroblasts (5, 48).
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