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Abstract

Oscillations of clamped-clamped and free-free micro-electromechanical resonators and
resonator arrays have been studied in this effort. Piezoelectric actuation is used to excite
these resonator structures on the input side and piezoelectric sensing is carried out on the
output side. Composite structural models have been developed for these filters, and
analyses has been carried out to explain experimental observations of nonlinear
phenomena as well as to guide the design of these filters are presented. Semi-analytical
design tools for micro-electromechanical resonators and micro-electromechanical
resonator arrays have been developed. The phenomenon of intrinsic localized modes in
resonator arrays has also been studied, and it is shown that these modes can be explained
as forced nonlinear vibration modes. The research findings can open the doors to new
resonator array designs.

Keywords: microscale resonators, buckling, nonlinear phenomena, axial-load effects,
piezoelectric actuation, Doiffing oscillator, resonator arrays, intrinsic localized modes.

1. Introduction

Two types of piezoelectrically actuated micro-scale resonators, which are attractive for
communication and signal-processing applications [1], are considered in this research
effort. One type of resonators will be referred to as the AIGaAs resonator, and the other
type of resonators will be referred to as the PZT resonator. Both types of resonators are
composite structures, and the PZT resonators have asymmetric cross-sections, as shown
in Figure 1. During the fabrication of the resonators, residual stresses are likely to be



introduced and the effect of these
stresses is explored in this work.
As pointed out in the authors'
recent work, the resonators also
exhibit non-linear characteristics
[2-5]. These characteristics
include DUffing oscillator like
response during resonance
excitations [6], temporal harmonics
in the response, and spatial patterns 3.-- E,.0.WWMp8 -:=.

during forced oscillations that

cannot be explained by (b) ""cto"
conventional linear analysis. Piezoeoc

film
drive

The rest of this report is organized 0"
as follows. In Section 2, the first
component of the research activity . uaupo tded beamn

is described. This section contains ,,ha,,-,.
a discussion of a semi-analytical ,nchor
tool developed to study transverse Figure 1: (a) SEM of a PZT resonator (Courtesy, Maryland

free vibrations of clamped-clamped MEMS Laboratory) and a schematic showing the details [I].

resonators subjected to constant
axial loads. In Section 3, nonlinear analysis used to study dynamic buckling in microscale
resonators is presented. Following that, progress made towards using an experimentally
obtained frequency response for parametrically identifying a nonlinear oscillator model
of a micro-resonator is described. In Section 5, work being conducted with arrays of
composite microresonators is briefly discussed. A summary is provided in Section 6.
References including the publications that came out of this work are included in Section
7. The research participants are provided in Section 8 and transitions and interactions are
discussed in Section 9. A list of publications that have followed from this work is
provided in Section 10, and invention disclosure made through this work is provided in
Section 11.

2. Semi-Analytical Tool Development

Based on a formulation with ,. ..
geometric nonlinearities, a semi-...
analytical tool [7, 8] has been I ---------
developed for studying transverse .. .
free vibrations of clamped-clamped ...
and free-free resonators subjected Frquency (kHz)

to constant axial loads. It is shown 1 : - .%
that the consideration of axial loads P. . . . .. P

is important to predict the natural .......... P%"'"•,

frequencies of the resonators s i 1
observed in the experiments. In --

-a.N.

Frequency (kHz)

Figure 2: Response of a 400 pm AlGaAs for three different

values of the axial load [7].



addition, the developed model and the numerical implementation can be used to
understand the influence of uncertainties associated with the fabrication process.
Representative results obtained for a 400 pm long resonator are shown in Figure 2.
These results show how the center frequency of a filter can be shifted by using an axial
load. Additional details of the work can be found in the paper [8] included at the end of
the report.

3. Dynamic Buckling of Composite Micro-Scale Structures: Nonlinear
Analysis

The resonators considered in this effort are based on the piezoelectric effect (see Figure
1). In the case of the PZT resonators, the elastic substrate is a SiO2 layer, on top of
which a platinum electrode layer is deposited throughout the length of the structure. A
thin layer of sol-gel piezoelectric film is located on the top of this electrode layer. To
complete the structure, another platinum layer on the top of this piezoelectric film
extends over one quarter of the length from each anchor and the mid-section of the
resonator structure is free from this platinum electrode [1]. Due to the asymmetry of the
cross section, the position of the piezoelectric layer is offset from the neutral axis, and in
addition, (tensional) residual stress may also be introduced in each layer during the
manufacturing process. In some typical uses of this resonator, the structure is driven close
to its first resonance frequency with a DC bias in the input. So, the axial loads in a
resonator can be attributed to the DC bias as well as the residual stresses.

It is believed that some of the experimental observations made in previous efforts can be
explained by considering oscillations about a non-flat equilibrium position. Here, it is
assumed that this non-flat equilibrium position arises due to buckling. Hence, the
primary thrust of this component has been to examine if oscillations of a buckled system
can be used to explain experimentally observed nonlinear motions. Representative
results obtained through the analysis [9, 10, 11] are shown in Figure 3. These results are
in good agreement with the corresponding experimental observations. A more full
discussion of the analysis is provided in the papers [10, 11] included at the end of this
report.

(a) - - i

- -... . (: .I I .... ,"
I

Figure 3: (a) First natural frequency versus b of the 2001m PZT resonator around the fifth static buckling
mode, (b) Predicted spatial pattern when b = 4.65 x 1 O, where the corresponding natural frequency is 334
kHz, and (c) Analytical prediction for the frequency-response curve when b = 4.65 x 10'

4
, k = 4.65 x 10'-,

and A = 8.23x 10' ; the solid line represents the stable branch and dashed line represents the unstable
branch.



4. Experimental System Identification

The investigators have been able to use Dulling Frequency-Response Curve Fit to Experimental Data

experimentally obtained nonlinear - Stable Section

frequency-response data to determine the 40ObSction

linear and nonlinear parameters 0 UpwSweeping Data

governing a micro-resonator [12, 13]. 3w/

Representative results are shown in /

Figure 4. Through this work, the *
2M

different parameters such as modal mass,
linear stiffness, nonlinear stiffness,
equivalent damping coefficient, modal 10
forcing, and residual stress are identified so
for a microresonator excited close to its

30 305 310 315 320 32Z 330first natural frequency. The variations of Frequency, k zFrequency. kilz
these parameters with respect to theoheseperatin mcdtis withapect ao been Figure 4: Experimental data fit compared with predictionoperating conditions have also been from forced Dfiffilng mode[.

studied. Full details of the identification
scheme are included in the paper [13], which is included at the end of this report.

5. Analyses of Microresonator Arrays

Both linear and nonlinear analyses have been carried out to determine the responses of
micro-resonator arrays to different excitation conditions. In the linear analysis [e.g., 8],
the admittance functions of clamped-clamped AIGaAs resonator arrays (e.g., Figure 5) is
being studied to aid the analysis and design of these devices.

In the nonlinear analyses [14], the authors have recently examined the possibility of
realizing intrinsic localized modes (ILMs) in micro-resonator arrays. The hypothesis that
these modes may be forced nonlinear vibration modes of a resonator array has been
analytically and numerically studied, and it has been shown that can be realized as forced
nonlinear vibration modes. Additional details on this analysis is included in the paper
[14] included with this report.

6. Summary

It is believed that the numerical and analytical efforts discussed in this report can be used
as a basis to understand nonlinear phenomena such as dynamic buckling and nonlinear
vibration modes in composite microscale resonators and resonator arrays, parametrically
identify microresonators, and develop semi-analytical design tools for microresonators
and microresonator arrays. The present work can help take advantage of nonlinearities
for designing RF filters, mixers, switches, signal processors, and other MEMS devices.



•a

Figure 5: Illustrative plots of the admittance functions at different output ports of a microresonator array
with respect to different system parameters.
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Buckling and Free Oscillations of
Composite Microresonators

He Li and B. Balachandran, Fellow, ASME

Abstract-Free oscillations of piezoelectric, microelectrome- properties. The axial stiffness and bending stiffness values for
chanical resonators are considered in this effort. These resonators a resonator considered in this study are given in Table II. The
are modeled as clamped-clamped composite structures, with subscripts used for the different stiffness values correspond to
stepwise varying properties across the length of the resonator. The the sections shown in Fig. 2.
different features of the model development are discussed, and
buckling in these resonators is studied. A nonlinear analysis con-
ducted to study oscillations about a buckled position is presented.
The results of the analysis are found to compare well with the II. EXPERIMENTS AND OBSERVATIONS
experimental observations. [1482] For a 200-lim-long resonator, the first natural frequency, was

Index Terms-Buckled beam, clamped-clamped piezoelectric experimentally determined to be close to 334 kHz, while the
resonator structure, dynamic buckling, microelectromechanical model prediction for this resonator, without consideration of the
systems (MEMS) resonator, axial force and nonflat equilibrium position, is about 186 kHz. A

sketch of the experimental arrangement used to study forced os-
I. INTRODUCTION cillations of this resonator is shown in Fig. 3. A laser vibrometer

SCILLATIONS of microelectromechanical resonators is used to get a measure of the transverse vibrations at the mid-

fabricated as clamped-clamped composite structures are point of the resonator. The excitation signal fed into the input

studied here. These microresonators, which are to be used port of the resonator consists of a sinusoidal component close

as filters, are important for mobile communication systems to the first natural frequency and a dc bias offset. In Fig. 4, a

and signal processing applications (e.g., Fourier transform representative spatial response distribution of this resonator ob-

computations) [I]. Analytical studies of the nonlinear dynamic served in the experiments is shown [4]. This spatial distribution

response of electrostatically actuated microresonators modeled was measured by using a scanning laser vibrometer. The exper-

as beam-like structures have been recently carried out [2]. The imental observations suggest that the oscillations may be taking

resonators considered in this effort are based on the piezoelec- place around a nonflat equilibrium position.

tric effect, as shown in Fig. 1. The elastic substrate is a SiO 2  Here, the hypothesis that the nonflat equilibrium position

layer, and on the top of this layer, a platinum electrode layer is is caused by buckling is explored to explain the experimental

deposited throughout the length of the structure. A thin layer of observation shown in Fig. 4 and accurately predict the exper-

sol-gel piezoelectric film is located on the top of this electrode imentally obtained value of the first natural frequency. This

layer. To complete the structure, the top layer is a platinum hypothesis is motivated by prior work conducted with buckled

electrode layer that extends over one quarter of the length from microstructures [5]-[9] and large-scale structures [ 10], [ 11.

each anchor [3], [4]. Each resonator structure has three layers These prior studies on electrostatically actuated microstructures

in the mid-span where the top electrode layer is absent and four have by and large focused on the static case, and in addition,

layers elsewhere. Due to the asymmetry of the cross section, the modeling of the spatial information has not been carried

the position of the piezoelectric layer is offset from the neutral out in the dynamic case. Furthermore, in all of the previous

axis, and in addition, residual stress may also be introduced in studies, the structures considered have a uniform section unlike

each layer during the manufacturing process. the microstructures considered in the present work. Here, the

Here, the resonators considered typically range in lengths piezoelectrically actuated microstructures have stepwise axially

from 100 prm to 400 prm, with a width of 20 pm and a total thick- varying properties (see Table II).

ness of about 2.3 pam. For comparisons of model predictions To explain the response characteristics such as those shown

with experimental results, particular attention is paid to a 200 in Fig. 4, here, the buckling of a beam with stepwise axially

pm long resonator. The layer thickness values for this resonator varying properties is studied and the free oscillations about dif-

are provided in Table I. As shown in Fig. 2, each resonator is ferent buckling modes are examined. The model development

modeled as a composite beam with stepwise axially varying is presented in Section III, along with the buckling analysis and
treatment of free vibrations about a buckled position. This work
is of general nature and it can be used to study buckling in any

Manuscript received December 10, 2004; revised October 3, 2005. This work

was supported by DARPA under Contract F3060202C0016 and an AFOSR composite beam with stepwise axially varying properties and
Grant F49620-03-10181. Subject Editor N. C. Tien. free oscillations of such a structure about a buckled position.

The authors are with the Department of Mechanical Engineering, Univer- In Section IV, the model predictions for microresonators are
sity of Maryland, College Park, MD 20742 USA (e-mail: Jihe@wam.umd.edu; provided, compared with experimental observations, and dis-
balab@eng.umd.edu).

Digital Object Identifier 10.1 109/JMEMS.2005.863598 cussed.
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(a)
sense

piezoelectric
film

drive \....•

r substrate

(b)
Fig. I. Piezoelectric microresonator: (a) SEM picture of a 400-prm-long PZT resonator (courtesy, Maryland MEMS Laboratory) and (b) schematic of piezoelectric
resonator [3).

TABLE I S _um An. zer Lawre Doppler Vibrommetw

LAYER THICKNESS VALUES FOR A 200 pm COMPOSITE RESONATOR P -1
SiO, Bottom Pt PZT Top Pt
IJpnhJ html html [tml

1.030 0.085 1.09 0.090

Puer SupplylMI"
Sm Fig. 3. Experimental arrangement showing how a laser vibrometer is
P4p E Al &tl, E p4 , Fj, H'3 positioned to examine transverse vibrations of resonator. The resonator is

excited by signals input to the drive electrode.

Fig. 2. Clamped-clamped composite beam with siepwise axially varying a .ra
characteristics.

TABLE 11 -
AXIAL STIFFNESS AND BENDING STIFFNESS VALUES FOR A

200pAm LONG RESONATOR

EA, EA2 EA3 Ell Ell El3 Fig. 4. Laser vibrometer measurement of a spatial pattern observed in

[NI [NJ IN) IN-'] IN['-1 iNm'l experiments. The presence of spatial harmonics distorts the spatial pattern from

3.17 2.88 3.17 1.39x 10" 0.83x 10.72 1.39x 10." the typical mode shape associated with the fundamental mode of vibration of a
clamped-clamped beam [4) (courtesy, Maryland MEMS laboratory).



44 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 1, FEBRUARY 2006

III. MODELING AND QUANTITATIVE ANALYSIS of further analysis, the following dimensionless variables are
A. Governing Equations introduced:

In Fig. 2, a model of the resonator as a clamped-clamped X= , W = T, U = T,
beam has been presented. The axially varying properties along i (Ek N N0 12
the resonator can be expressed in the form tk =•V - I Nk - E(5)

n In terms of the dimensionless spatial variable x, the boundaries

m(:E) = E mkHk(i), of the structure are located at x0 = 0 and xn = 1. By using the
k=l nondimensional variables given in (5), (2)-(4), can be written in
n the following form:

EA(:) = Y EAkHk(i), 2 92 Uk 2 Uk [ r 0
k1rk t2  19X 0 = [I-rk2NkJ -

EI(i) = ZEIkHk (1) X [(I 0uko

k= 2 / a x
where ink, EIk, and EAk are constants, T is the spatial variable, X ( 1xk)2]
Hk(i) = [u(i - -ik-1) - u(- :4k)] is the Heaviside function Ox
and u(i) is the unit step function, and n is the total number k =1, 2,...,n. (6)
of beam sections, which is 3 here. The structure extends from 02 W[ -N 02 wNk Wk w [1 - r2Nk]

= 0 to in = 1, where I is the unbuckled structure's length. [ k -0-7 + Ox k =
For the considered composite structures, taking into account ok 2 1 a l

that the length to thickness ratio is more than ten, the width is x 5 X
much larger than the thickness in each section, it is assumed O x

that each section of the structure can be treated as an Euler- k = 1,2,...,n. (7)
Bernoulli beam and the lateral displacement along the y di- -uk auk 2

rection of Fig. 1(b) can be ignored. Then, for initially straight ek (X, tk) = OX ax
beams undergoing undamped and unforced motions, the non- 1 (Owk •
linear equations of motion can be written as [121 + -

a2fk(.,• t) (92fik (7, 0) k = 1,2,...,n. (8)
m, o2 k 2 In (6)-(8), the parameter rk = (VElIk/EAk/l) is the slender-

-1 0 [ a1 Ok,(i, t) abOwk(i, i))2] ness ratio of the kth section of the resonator.
[EAk - o] Tx [02 9 ai I For the resonator with a length of 200 pm and the stiffness

values provided in Table II, the kth section's slenderness ratio
k = 1,2,...,n (2) rk is of the order of 10- 3 ; this means that the longitudinal inertia

a2 k (, oa2 O) _(-i, +' Elkia4 Zbk (i, t) term is small compared to the longitudinal stiffness term in (6).
r 9j Oj 0 2  0 Oi4 Here, based on the small value of the slenderness ratio, it is

= [EA - i~o -2x [e(&j, X ,t1 assumed that uk = O(wk) [12]. Then, (8) can be reduced to

k = 1,2 . n 5X7(3) ek x 2 Ox) + .... (9)

where the nonlinear axial strain has the form Dropping the terms with rk and the cubic terms, (6) can be
integrated with respect to the spatial variable to obtain

_d__-_d Ouk 1 OWk\•2

ek( di) - di = I \ 2 _ -k(tk)" (10)
dAi ax 2~ (• ax ) ~k

Olik OUflk + 1 ( , aFrom (10), it is noted that the displacement uk can be

k=71,2. 7 + 2 ( 7 ] 2, regarded as a quasi-static motion, and that the expression for
k =1,2,..., n. (4) ck is equivalent to the expression for ek in (9), which has the

same form as the Green-Lagrange strain el [13]. Spatially
In (2)-(4), the symbol 0 has been used to indicate a dimensional integrating (10) one more time and evaluating the resulting
variable, tik(i, t) is the transverse displacement of the beam expression at x = xk, Ck can be determined as
in the kth section, fik(i, t) is the displacement along i axis in Uk (Xk, tk) - Uk (Xk-1, tk)

the kth section, i is the time variable, and N& is the prescribed Ek(t,.) = (

initial static axial load, which is assumed to be a constant with - 1 2

respect to i. In (4), di is the length of a differential element of + O x'W -x,
the undeformed beam and dA is the corresponding length of a 2_(XkXk-) ai
differential element of the deformed beam. For the convenience k = 1,2, . .. , n. (I)
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From (10), it had been noted that ek is constant with respect to (,;,J: Dynamdsiacwnnt k,): TotdispkacuOuit

x. Based on this observation, the force equilibrium condition at b' i: Stdl caimmac t

the interconnection of any two adjacent sections requires that the
axial load due to this strain is constant among all of the sections; P. P.
that is ---- . . ..

Q(t) = EAkek(t). (12)

After substituting (11) for ek into (7) and simplifying, the
resulting equation of motion governing the transverse vibrations Fig. 5. Buckled beam configuration.
of the microresonator with stepwise axially varying properties
is obtained as

0 2
Wk a

4 Wk The associated boundary conditions follow from (14) as

-5t2 + __54 ( o ~Otk + 4 X(x) = 0 and dX(x) = o at x = O and x = 1. (17)dx

S+ Uk(Xk, tk) -- Uk(Xk-1, tk) In order to obtain the solution of (16), the critical buckling
rk(Xk - xk-1) force must be first calculated by attacking the linear buckling

1 ( 2dx problem for this composite resonator with axially varying prop-
+ L)J (-w'- ] w = 0, erties. To this end, after switching to the dimensional variable

- -) x, the critical buckling configuration 0(i) is determined with

k =1,2,..., n. (13) respect to the applied critical axial load P5. First, it is assumed

For the particular case of a clamped-clamped resonator, the that

associated boundary conditions are

Ow(x, t) at nx (4 -- la(i:)Ha(i). (18)
w(xt)= and = 0 at x = 0 and x = 1. (14) k=

The governing equation given by (13) is different from Then, noting that each of the k sections has uniform proper-
that treated in previous work [10], [I 11, since the resonator ties, the linear static buckling problem is written as
has axially varying properties. This equation along with the d 4 Pk -d2ýk

boundary conditions represents a nonlinear model that can be EI- d- 4 + Pc d• 2 = 0, k = 1, 2,..., n. (19)
used to study transverse vibrations of a beam with stepwise Introducing the dimensionless variables from (5) into (19)
axially varying properties and sections that have "small" slen- results in
dem ess-ratio values. d4  Ok 2 d2  k 0 = 2 .

+V __ =0, k=l,2,...,n (20)

B. Static Buckling Problem dx 4  dx2

wher • =P•,k= (i5Jl2/Ek.Tegnrlslto (0
To solve (13), the static buckling problem is first addressed. where (k = Pck = EIk). The general solution of (20)

It is assumed that the dimensionless static buckling deflection is given by

of the resonator can be expressed as Ok (x) = al,k + a2,kx + a3,k COS((kX) + a 4,k sin((ax). (21)
n To determine the arbitrary constants aj,A for j = 1,2,3,4

X(x) = E Xk(x)Hk(x) and k = 1, 2,..., n, the following boundary conditions for a
k=l clamped-clamped beam are used

7r(x) = Z 7rk(x)Hk(x) (15) 1 (x) = 0 and dtL(x) = 0 at x = x0 ,
k=1 dx

where Xk(x) and lrk(x) are the transverse and axial displace- d()0a (x) = 0 at x = xn. (22)

ment of the kth section of the beam, respectively. For the static dx
buckling analysis, the inertia term in (13) is dropped, and the In addition, as the beam is a continuous system, two adja-
static compressive axial forces -P50 and -Po,k are substituted cent sections have to share the same transverse displacement,

for No and Nk respectively in (5) and (13). After carrying these same slope, same bending moment, and same shear force at the

substitutions through, the nonlinear equation governing the respective connection point. This leads to the following nondi-

equilibrium of the beam subjected to a static axial force can be mensional form of the compatibility conditions [14]

written as k - I (x) =k (X),

d4Xk + P rk(xk) - 7rk(xk-1) dk- 1 (x) dVbk(x)

dX4 -- +X' -2 dx dx 2

12 dx] d2k -d (x) _ Elk dx 2
I (X)

2r2' d E -dx- dx 2
)

2r~xk-kl ]X~kdx Jd 3aek- 1 (x) t',d 3~k(x)

d2 k r(Xk Xk-1) d- EIk- 1  dx3  = EIk dx 3

Xd = k=,2,...,n. (16) atx=xk-1 , k=2,3,...,n. (23)
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Fig. 6. (a) First static buckling mode shape of the 200 im PZT resonator, (b) first natural frequency versus b, (c) first mode shape of free vibration about first
buckling mode for b = 0.001, and (d) first mode shape of free vibration about first buckling mode for b = 0.02.

For n = 3, after substituting (21) into (22) and (23), one ob- post-buckling deformation with respect to the shape of the crit-

tains a set of twelve homogeneous algebraic equations that de- ical buckling mode. From (9) and (24) along with (26), one can

fines an eigenvalue problem for the a3j,k and the eigenvalues Ck. obtain that
It is important to note here from the definition Of (k. provided in
the context of (20), that the different eigenvalues are functions 2

of the critical buckling force. From (9) and (12), it is noted that 2

in the kth section, the axial displacement 79k, the transverse dis- ek - -kk.

placement Ok and the longitudinal extension measure e,,k have
to satisfy Next substitution of (20), (24), and (26) into (16) results in

I Oi,, +1 2 2
-= 2 + (24) - r(POk - k=1,2,.. .,n. (28)Tx (2 a ec,k

Qc(i) = EAkec~k(t). (25)

After substituting (25) into (28), and returning to dimensional

After calculating the critical buckling force, the post-buck- variables, it is found that bk is the same constant with respect to
ling problem is considered. When the compressive axial force i for all the sections; that is
is larger than the critical buckling force, the linear buckling

problem given by (20) cannot be used to study the beam's defor- 2 (P60  (29)
mation. The nonlinear equation given by (16) needs to be con- b Q (29

sidered.
For solving (16), it is assumed that Therefore, the solution of (16) and (27) becomes

XF(x) = bk=k(X), k = 1, 2,..., ,n (26) XkX =ob bk(r),

where ba is a nondimensional factor, which is called the buck- irk(X) = b 2m Vk (X),

ling factor. This factor is a measure of the amplitude of the n= b2ek, k = 1,2,... ,n. (30)
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(e)

Fig. 7. (a) The third static buckling mode shape of the: 200 pim PZT resonator. (b) first natural frequency versus b, (c) fir!t mode shape of free oscillation about
third buckling mode for b = 0.001, (d) first mode shape of free oscillation about third buckling mode for b = 0.004, and (e) first mode shape of free oscillation
about third buckling mode for b = 0.01.

C. Free Linear Vibrations About the Postbuckled Position where va (x, tk) and fa (s, tk) are the kth component of the dy-
Freeoscllaion oftheundmpe reonaor odeed s a namic deflection, tek(X) and ik (x) are the kth component of the
Freeicoscillationsdofshthe undaaped resonatorecmodeled asdabeam with stepwise axially varying properties are consideredX

in this section. The equation of motion and the corresponding istebclnlvlfaordiedy(2)
boundary conditions for an undamped, unforced beam subjected Next, the natural frequencies • and mode shapes associated
to an axial load are given by (1 3) and (14). The solution of this with free oscillations around the postbuckled position be&(x)
system can be written as the sum of a static component and a are examined. To find the natural frequencies and mode shapes

from (13), (31) is substituted into (13). It is assumed that
dynamiccomponearVi ont [t te F. 5n wIva(x ,tk) a fl4(x, fk =O(V), and the separation of

variables is used to express the solution as
wb(x, th ) =sbtp (x) + va(x, tl),

Uk(xi))=b2ik(x)r+ f((1,3t), k(= 1,2,... ,ni (31) vk(X, tk)I= iak(x)emk (32)
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. . . . .... ..

(a) ( 5,)

Fig. 8. (a) The fifth static buckling mode shape of the 200 pm PZT resonator, (b) first natural frequency versus b, (c) first mode shape of free oscillation about
fifth buckling mode for b = 0.001, and (d) first mode shape of free oscillation about fifth buckling mode for b = 0.005.

where Ck(x) is the mode shape and wj. = •(mk/EIk)L2 & where
is the nondimensional quantity associated with section k =
1,2,....,n Making use of (20), (13), and (32), the following

-d 2 95+ dz--T (i, P~ w~. (6
EARL'2b2  dW. t b& f [ _dtP - .d_ 1]ci

EI X--X..1 x d dxJAfter substituting (34) and (35) into (33), the differential
k=1,2....,.n. (33) equation governing the particular solution . .,,(x) is obtained

as

The general solution of (33) is composed of a homogeneous

solution •)h,k(.T) and a particular solution e'P,k(x); that is, - ±•p~ + ¥ +-C,k dx2

EAkI~b2 d22,bk [k [ dip,_ dtkp ]d
4re(x) =qeh,kc(x) +q5 p,k(x). (34) -EI,.(x,-•kZx',_) dx2 

Jk,[ dx dx
. EA. ,b 2 d.iP, . k [d.__ __dp 1 .. dx.

As in the critical buckling case, the spatial displacement term EIsn(xo - xfa-cu ) dx2  shdpe of f a
ek(x) has to satisfy the boundary conditions and the compati- (37)

bility conditions that are similar to those given by (22) and (23).

The homogeneous solution is given by
It follows that the solution of (37) can be written as

eh,ti(x) = Cot sin(Ae,,.x) + C2,k cos(A+,,+X)
+C3 ,k sinh(A2,,x) + C4,k cosh(A2 ,,V) (35) -•,P(x) = Cs,(a 3 ,I cos(,x) + ak,ý sin(Cx)] (38)
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Fig. 9. Predicted spatial pattern for b = 0.00235, where the corresponding natural frequency is 333 kHz.

where the Cs,k are constants. Making use of (37) and (38), the for free oscillations about the fifth buckling mode of the res-
relations between the constants Cj,k, j = 1,2, ... , 5 are ob- onator. When b is equal to 0.002 35, the first natural frequency
tained as of the resonator is determined from the model as 333 kHz, which

is close to the experimental result; it is important to note that for
the same frequency value, the corresponding value of b depends

B1,kC1,k + B2,kC2,k + B3,kC3,k on the beam stiffness and geometric properties as well as how
+B 4,kC4,k + B5 ,kC5 ,k = 0 (39) one scales the static critical buckling mode shape. In this work,

the buckling factor b is obtained by normalizing the nondimen-

where the Bj,k s are defined in Appendix I. Equation (39) con- sional static critical buckling mode shape 4', so that its inner

stitutes an eigenvalue problem for the Cj,k and the natural fre- product over the nondimensional variable running from 0 to I

quencies wk. After determining these values for Cj,k, the ex- is 1. The corresponding deflection w = (bO + 0) is shown in

pression for the free vibration mode shape of the postbuckled Fig. 9. In this figure, the amplitude value of 0 is tuned to be

beam with stepwise axially varying properties can be written as 10-3, so that the highest displacement over the spatial coordi-
nate is 200 nm. This free oscillation mode shape is similar to the
spatial patterns observed during forced oscillations when the ex-

"n citation frequency is close to the first natural frequency of the
O(X) = E4k(x)Hk(x). (40) resonator (see Fig. 4).

k=1 The agreement between the analytical prediction and exper-

imental data suggests that the hypothesis that the nonflat equi-
librium position of the resonator is caused by buckling can be

IV. RESULTS AND DISCUSSION a valid one. Along with the work reported in reference [5], the

For the 200-gm-long resonator discussed in Sections I and present study provides the first evidence of such a phenomenon

II, the different buckling modes determined for different levels in microscale resonators. In addition, the present work can be

of the b factor are shown in Figs. 6-9. The shapes are similar to used as a basis to study buckling and free oscillations of res-

those determined at the macroscale for other structures [101. onators with stepwise axially varying properties.

As discussed in Section II, the first natural frequency of a
200-gm-long resonator was determined as 334 kHz [4]. The
amplitude of the forced oscillation was determined to be in the APPENDIX
range of 100 nm to 1 pm depending on the drive voltage am-
plitude of the sinusoidal signal. In Fig. 8(b), the variation of the Here, the details of the constants that arise in the context of
first natural frequency versus the scaling parameter b is shown (40) are provided. See the equation at the top of the next page.
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B1,k - EAkl
2 b2 Pc,k

EII(xk - Xk-1)

x { a 2 ,k sin(Alkx) + a3,kkAlkE cos[((k - Al,k)x] COSI((k + Al,k)x]]

+a4,•k•Ak •[sin[((k - AI,k)x] sin[((k + Al,k)X+
+ [ 2 ((k - Al,k) 2 (k + ¢ k- J -,

B2,k - EAk12 b2p',k
EIk(xk -- Xk-1)

S[sin[((k - Al,k)xI sin[((k + Al,k)x]

a, COS(AI~kT) ± a3,k2k(lk - Al,k) 2((ck + Al,k) J

a4kkk -cos[Q&k - Al,k)X] cos[((k + Al,k)X ]I[
+a4k l ' t 2((t - Al,k) 2((A + A1,k) J -,

B3 - EAk12b
2p P,k

EIk(xk - Xk-1)

x I{a2Ak sinh(A2 ,kX) - a , A2,k sin((kx) sinh(A2,kx)-(k cos((kx) cosh(A 2 ,kx)

A2 ++2
+ a4 ,k~kA2,k A2, cos((ix) sinh(A2,X) +(k sin((kX) cosh(A2,kX)]2,k 

-

EAkL2 b2 pc,k
B4,k = EIk(xk - xk-1)

X {a2,k cosh(A2 ,kx) - a,kkA2,k sin(kx) cosh(A2 ,kX)-(k COS(kX) sinh(A2 kX)

+ a4k(kA2,k A2, COS(kX) cosh(A 2,kx) +(k sin(Ckx) sinh(A2,kx)j } kA2,~ ~ 2, (+2 k +.

B5 - + EAk1
2b2 P,,k

EIk(Xk - Xk._)

aa{ 2X + ý2 ,ka3,k cos(Ckx) + a2,ka4,k sin((kx)

2 2
a3 ,k-aka ak

3 sin(2(kx) + a3 ka4 cos(2kx)
4 2JX ggk--1
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Abstract
Free and forced oscillations of piezoelectric, microelectromechanical
resonators fabricated as clamped-clamped composite structures are studied
in this effort. Piezoelectric actuation is used to excite these structures on the
input side and piezoelectric sensing is carried out on the output side. A
refined integro-partial differential model is developed for a
clamped-clamped composite beam structure and used for studying the
nonlinear transverse vibrations of these resonators. This model accounts for
the longitudinal extension due to transverse vibrations, distributed actuation
and axially varying properties across the length of the structure. Free
oscillations about a post-buckled position are studied, and for weak damping
and weak forcing, the method of multiple scales is used to obtain an
approximate solution for the response to a harmonic forcing. Analytical
predictions are also compared with experimental observations. The model
development and the analysis can serve as a basis for analysing the
responses of other composite microresonators.

(Some figures in this article are in colour only in the electronic version)

1. Introduction so that each resonator structure has three layers in the mid-
span where the top electrode layer is absent and four layers

Nonlinear oscillations of microelectromechanical resonators elsewhere. Due to the asymmetry of the cross section, the
fabricated as clamped-clamped composite structures are position of the piezoelectric layer is offset from the neutral
studied in this paper. These microresonators, which are to axis, and in addition, residual stress may also be introduced in
be used as filters, are important for mobile communication each layer during the fabrication process.
systems and signal processing applications (e.g., Fourier For comparisons of model predictions with experimental
transform computations) [I ]. While the nonlinear response results, particular attention is paid to a 200 Am long resonator.
of a microresonator subjected to an electrostatic actuation has The material properties and thickness values for the different
received considerable attention [21, the nonlinear response of layers are provided in tables I and 2. As discussed later in the
a microresonator subjected to a piezoelectric actuation has third section, each resonator is modeled as a composite beam
received limited attention recently 13]. with properties that vary in a stepwise manner from section to

The resonators considered in this effort are based on the section, as shown in figure 2. The values of axial stiffness,
piezoelectric effect, as shown in figure 1. Fabrication details bending stiffness and mass per unit length for the different
for these resonators can be found in [4]. The dimensions of the sections are given in table 3 and these values are identified by
resonators considered in this study typically range in length using the subscripts used in figure 2.
from 50 ,zm to 400 Atm, with a width of 20 Am, and a thickness The experimental observations that will be used for
of about 2.3 Am. The elastic substrate is an amorphous SiO2  comparison with the analytical predictions are collected
layer, on the top of which a thin platinum electrode layer is together in the next section. In the third section, the
deposited first, followed by a layer ofsol-gel piezoelectric film model development carried out to study buckling in a
throughout the structure's length. To complete the structure, a composite structure is presented, and in the fourth section,
platinum electrode layer that extends over one quarter of the analysis of linear free oscillations of the structure is
length from each boundary is deposited as the top layer [5], detailed. Forced oscillations are examined in the fifth section

0960-1317/06/020356+12530.00 © 2006 1OP Publishing Ltd Printed in the UK 356
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Spectrum Analyzer Laser Doppler Vibrometer

.,Miroreaonator
Power Supply

- : Figure 3. Experimental arrangement of laser vibrometer for
examining transverse vibrations at the mid-span of the resonator.
This structure is excited by signals input to the drive electrode.

(b)
.rod;lel Table 3. Values of axial stiffness, bending stiffness and mass per

drvpizo.l~t r< f unit length for the 200 pm long resonator of interest.

EA, (N) EA2 (N) EA 3 (N)

3.17 2.88 3.17

Ell (N M2
) El2 (N m2

) El3 (N m2
)

• -up-d@d b-a

1.39 x l0-12 0.83 x 10-12 1.39 x l0-12

m1 (kg m-') M2 (kg m-') m3 (kg m-')

Figure 1. Piezoelectric microresonator: (a) SEM of a 50 Am long 3.01 x 10-' 2.68 x 10-' 3.01 x 10-'

PZT microresonator [6] and (b) a schematic showing the details [5].

Table 1. Material properties for different layers of a 200 Am 2. Experiments and observations

composite resonator.

SiO 2  Bottom Pt PZT Top Pt In figure 3, a sketch of the experimental arrangement used

p (kg m- 3) 2194 17839 8800 18762 to study transverse vibrations of a microresonator is shown.

E (Pa) 100 × 109 160 X l09 25 × 10 160 x l09 The silicon wafer containing the resonator is first placed on aprobe station, and the drive port of the resonator is electrically
connected to provide a sinusoidal excitation along with a dc

bias input. A laser vibrometer is used to measure the transverse
Table 2. Thickness values for a 200 pm composite resonator, vibrations at the mid point of the resonator, and the data are

SiO2 (gm) Bottom Pt (Am) PZT (Am) Top Pt (pm) collected by using a dynamic spectrum analyser.
For a 200 jm long resonator, the first natural frequency

1.030 0.085 1.09 0.090 was experimentally determined to be close to 313 kHz, while

the model prediction for this resonator, without consideration
of the axial force and possible nonflatness of static state, is
about 186 kHz. In figure 4(a), a representative spatial response

and the results and discussion are presented in the sixth distribution of another resonator obtained by using a scanning

section. laser vibrometer is shown. The resonator is excited by a

PA, EA,, El. pA,, EA,, EI, P"' EA x

Figure 2. Clamped-clamped composite structure model of piezoelectrically actuated resonator shown in figure 1.
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43,
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Frequency (kHz)

1 . ........................ .... ............ ............. ................ .. . .S, , .of ...... .....to , 1
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Figure 4. Microresonator response: (a) laser vibrometer measurement of a spatial pattern observed in experiments; (b) hardening
D~ffing-type frequency response of a 200jAm PZT resonator excited by a sinusoidal input signal with an amplitude of 0.398 V and
(c) spectrum of the laser vibrometer measurement at the mid-span of a 200 /m resonator, in response to an excitation with a frequency close
to the first natural frequency and an amplitude of 60 mV.

sinusoidal excitation with a frequency close to the first natural In this paper, the hypothesis that the nonflat static
frequency [6]. The presence of spatial harmonics distorts the equilibrium position is caused by buckling is pursued along
spatial pattern from the typical mode shape associated with the the lines of our recent work ([3]). This hypothesis is motivated
fundamental mode of vibration of a clamped-clamped beam. by prior work conducted with buckled microstructures
A typical frequency response observed in the experiments is [8-14] and large-scale structures [15]. The prior studies
shown in figure 4(b). The response amplitude varies from on microstructures have by and large focused on the static
a few hundred nanometers to a micrometer depending on the cases of electrostatically actuated microstructures [I 1-14],
excitation level. In figure 4(c), it is illustrated that the response and in addition, these structures were modeled as uniform
spectrum consists of second and third harmonics. beams. By contrast, in this work, the microstructures

The presence of second harmonics suggests that the are piezoelectrically actuated and these structures have
oscillations may be taking place about a nonflat static properties that vary stepwise in the axial direction. Here, a
equilibrium position (e.g., [7]). refined model of a composite structure with axially varying
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4i a - A (iJ) m(YLi A) 8i+V

,"Drive Electrode Piezoelectric Layer /I / ,/ ,

Substrate / L
Neutral Axis X

Figure 5. Free-body diagram of an infinitesimal beam section. The beam is deformed from an initial flat position. Af is the length of the
undeformed beam segment and A3 is the length of the corresponding deformed segment.

properties is developed and used to predict the spatial ( au a i aI. W
responses and temporal responses of microresonators and also = , 1 + H a, - - I H - I )
accurately predict the first natural frequency of the considered
microresonator. af [w a. 12

2 +22A - EA -a \

3. Model development and buckling analysis t x T YF)
w (0 ) k / a 02

Following that, this model is extended to apply to a structure + _ + - (El'0with stepwise variation of the properties along the length of 2 H U. aj 2 ai 2

the structure, such as that shown in figure 2.
Thismodelisusedtoexaminestaticbucklingincomposite a I1a (EI a a2iV aw ý

structures such as the microresonators considered in this = - E! a
paper, and after establishing the static-equilibrium position

as a buckled position, free oscillations are considered about [,3a• a24 (a*1" a&21
a buckled position in the fourth section. This work is of a 1+--El- I-xl +rh 1 ---
general nature and it can be used to study buckling in any 2 aI a. 2  a JJ
composite beam with axial properties that vary in a stepwise
fashion across the structure's length. The treatment presented + 1,i' I+ (2)

in this paper is a refinement of an earlier treatment presented + + fn 1 + -- (2)
by the authors [ 17]. Compared to the authors' earlier work,
the treatment of kinematics is different in this case. where the carat symbol '^' has been used to indicate a

dimensional variable; &(1, i) and 1W'(1, ) are the axial and
transverse displacements; I is the spatial variable and ? is the

3.1. Governing equations time; pA is the mass density per unit length; EA is the axial

To establish the governing equations, apart from the Euler- stiffness; El is the bending stiffness; A., and 12, are the viscous

Bernoulli beam assumptions, it is also assumed that the axial damping factors for motions along the axial and transverse

and transverse displacements are small compared to the length directions, respectively. As shown in figure 5, j, (I, i) and

and that the initial flat position shown in figure 5 is free of j.(I, 0) are distributed forces along the tangent and normal

stresses and external forces. The governing equations along directions, and in (1, i) is a distributed moment; the axial force

axial and transverse directions can be obtained as [ 19] Q(i, i) is given by

a2,& afi a I )t/W (I, ) = E A,, (3)
p AýW2 + A.EA + -+ (-a W-7)I a[ 2 ' where e is the Green-Lagrange strain measure [201,

a- - / aw • a Ea 2*V aW a&0'| corresponding to the elongation of the beam along the
+' - - longitudinal direction. The expression for e will be given

a• a a•" k "- 2  a• a1
1• later in this paper.
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written as
U(i,•) pA " "

6o, oA(1) =Z pAkHl(Y, EA(1) = Z EAkHk(.),
k=1 k=1

(8)

El(i) = ElkHk(i), hX H( )Q=kIl(),
k=1 kA=

where the subscript k represents the kth section of the
resonator and this index runs from I to 3. The quantities

Figure 6. Structure with clamped-clamped boundary conditions pAk, Elk, EAk and hk are constant over the section of
governing the transverse vibrations and clamped-sliding boundary interest. Furthermore, in equation (8), the function Hl (.Q) =
conditions governing the axial vibrations. [u(0 - h-1.-) - U(.Q - 1k)] is constructed by using the unit

step function u(Q).
For later use, the following dimensionless quantities are Following the earlier work on structures with piezoelectric

introduced: elements (e.g., [211), noting that the distributed actuation is

Sf = present in the first section of the microresonator, the distributed
x h 7' W loading is determined as (figure 2)

C' El jj r.,)=p)(.-k), P(i) = PO Cos W,?
---- , (9)!2 pA El ((., ) =f,(.f, )A(.i), fn,(-, i) =0,

j.p3 M !l2 fAI. 2  where Po is the input forcing amplitude, 2 is the input
l E = EIp-AE = ,'pAEI excitation frequency and S(t) is the Dirac delta function.

For the microresonator parameter values given in table 3, the For convenience of discussion, the following quantities are

slenderness ratio r = v lE-EA t1 is of the order of 10-3. introduced: EAk
Based on this observation, an additional assumption that U = Xk Uk (Xk), Kk =
O(W2 ) has been used, where O(-) is the Landau symbol that is (Xk - Xk-) '

used here to state that U is of the order of W2 [18]. It is also _1
assumed that W = 0(r) and e = 0(r 2 ). EA= K , 'No = EAM (10)

Introducing the dimensionless quantities given by
equation (4) into equations (1) and (2), dropping the higher- [n ]- [ ]-
order terms, and simplifying, the governing equation of a EA 1 = K7-1  , EA 2  K71

uniform beam with constant pA, El and EA values can be i= i=,,, J '
obtained as shown below. where means an average value.

I (;;)+ After using the boundary conditions given in (7), the
5X + fr = 0 (5) displacement compatibility conditions

a2 W a W e a2 W a4W am UL(Xk) = Uk+I(xk), Wk(Xk) = Wk+I(Xk) (11)

-t- 2  
-a7 - 2 5x 2 + a}x

4  - + f,. (6) and making use of equation (9) in (6), the result obtained is the

Here, noting that the resonator is actuated by a distributed following equation governing the transverse vibration field in

piezoelectric layer, as shown in figures 2 and 5, the boundary the kth section [19]:

conditions for axial and transverse vibrations are considered )2 Wk 2 Wt ek a2 W+ a4 
W =k

as shown in figure 6. 0t.-k r2 ax 2  ax = o

aW(x, t) x E [X-t,Xk), k = 1,2,3. (12)
W(x,t) =0, a = 0, U(x,t)=O atx= 0, Inequation(12),

W(x,t)=O, ax =0, U(x,t)= Z atx= l, ek(tk)=r2Nk +rk2qPkcos(2ktk)+ Aikj (OWI)2d]
(7)= '-

Equations (5) and (6) along with the boundary conditions x E [Xk.1,Xk), k = 1,2. n, (13)

(7) represent the governing equations of a clamped--clamped where

structure. From the form of equation (5), it is clear that EA i 6 k
the longitudinal dynamics is neglected but the dependence 2EAk(
of the longitudinal strain on the transverse excitation and E= I
displacement are captured. - -- + -i i k,2EA4  (x - xk.-.)'

3.2. Governing equationsfor microresonators with EA k~ m

stepwise varying properties I EA2 (qk = (5

For the microresonators shown in figure 2, as discussed in the k(EAm5

previous work of the authors [ 17], the axial properties can be lEA 1
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Nk= Fk(X)= =Ekhk -x
p 0k a pAxl 4

. (16) kjqi): Static ,isplecunt

Elk Elk I P.

Equations (I 2)-(I 6) are suitable for studies of structures
with axially varying properties and distributed actuation. In
addition, this model is applicable to structures with 'small' t
slenderness ratios such as the microresonators considered in
this work. Figure 7. Buckled beam configuration.

In sections 3.3, 4 and 5, solutions of equation (12) are
sought. First, the possibility for static buckling is explored and by making use of the following boundary conditions and
this corresponds to the situation when the resonator structure compatibility conditions:
is released from the Si wafer. Following that, free and forced d~l (x)
oscillation problems around the post-buckling state are then *i (x) = 0, = 0 at x = xo,
solved. The developments of sections 4 and 5 are applicable (22)
to any resonator with a non-flat equilibrium position. d,*(x)= . (x) =0 at x=x,.

*W=0,dx--=0 a .
di d~'t-(x) _d•'k(x)

3.3. Static buckling problem - I (x) = Mk (x), dIx = dX

In this section, the static buckling problem is addressed along Elk-, dd2
,kk_.(X) = Elk ) (23)

the lines of the authors' previous work [ 17]. It is assumed that dx2  dx 2

the dimensionless static buckling deflection of the resonator d3E, kI(x) d 3 , k(x)
can be expressed as Elt-t = Elk ----- T- at X = Xk-_

Here, it is important to note that in making the approximation

x(x) = XkW(x)Hk(x), (17) (19), the boundary condition for axial motions is held fixed
k=l at x = I instead of the sliding boundary condition shown in

where Xk (x) is the transverse displacement of the kth section of figure 6, previously.

the beam. For the static buckling analysis, the inertia, damping
and external actuation terms in equation (12) are dropped, 4. Free linear oscillations about the post-buckled
and the static axial forces (extensional) 1/o and Nk given in position
equations (10) and (16) are replaced by the static compressive
forces - P0 and - P0,k, respectively. After carrying these Free oscillations of the undamped resonator are considered in

substitutions through, the nonlinear equation governing the this section. The governing equation of motion in the presence

equilibrium of the beam subjected to a static axial force can of a compressive axial load is of the form

be written as a2wk 0k I Aik \ 211 dx Wk

d2k1  
2d I 2 2r 2

& 4 _' d x + a W k = 0 , k = 1,2 , . n . (24 )

k 1,2 ... , n. (18) ax4

where Wk is the overall transverse displacement in the free-
The associated boundary conditions follow the form of (7). vibration case. The corresponding boundary and compatibility

The approximate solution of the post-buckling system conditions are similar to those given by equations (22) and (23).
described by equation (18) can be obtained as given below, Following the authors' previous work ([17, 18]), the solution
in terms of a critical buckling mode shape with the amplitude of this boundary-value problem can be written as the sum of a
b, called the buckling factor. static component and a dynamic component (see figure 7).

Xk(x) = b/k(x). (19) wk(x, 1k) = bqk(x) + vk(x, ik), (25)

This is given by where vk (x, tk) is the kth component of the dynamic deflection.
Next, the natural frequencies (, and mode shapes

b2
= (PO- Pc) (20) associated with free oscillations around the post-buckled

EAk -= [Aik f_ (d*i/dx)2 dX] position bVi(x) are examined. To find the natural frequencies
and mode shapes, one first substitutes equation (25) into

where t(x) is the kth componentofthe staticcriticalbuckling equation (24), assumes that Ivk(x, tk)l << lb'k(x)l, and uses
separation of variables in the following form:

o'k(x) = al.k +a 2.kx +a3.k cos(fkx) +a4.k sin(4kx). (21) vk(x, tk) = Ok (x) ej"4, (26)

In equation (21), ý
2 = Pc.k = p6l 2 /Elk and the constants ai.t where j 2  1 -I, and Ok(x) and wk = 1 1pATElkl2 6 are

for i = 1, 2, 3, 4 and k = 1,2 ... , n can be determined the mode shape and the natural frequency associated with
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section k, respectively. Here, it is necessary to emphasize the From here onwards, the following notation and definitions are
relationship between wk and 6); that is, wktk = & Making used for convenience: 0) = a/ak, 0' = a/ax, (a, b)i =
use of equations (20), (24), (25) and (26), the following is fL, a(x)b(x)dx and (a, b) = f, a(x)b(x)dx. Again, the
obtained: boundary and compatibility conditions are similar to those

_2qkk + d 2ok + d 4gbk 2b2 d2 •'k given by (22) and (23). Next, assuming weak damping and
+k2 Pc.k--• dx 4  r 2 dx 2  forcing terms, the method of multiple scales [22] is used

k
[fl d- - to seek for an approximate solution of (33). The basic

x Ai f r dx4 = 0. (27) approach follows that presented in an earlier work [16], but
t ,_, ý dx dhere, the application is directed toward a composite microscale

The general solution of (27) is given by structure with varying axial properties. Different time scales

kk(x) = C1,k sin(X•.kX) + C2.k COS(X1 kX) + C3.k sinh(A.2.kX) are introduced by using a small, dimensionless book-keeping

+ C4.k cosh(k2.kx) + C5,k[a3.k COS(ýkx) + a4,k sin(4kx)], parameter E as follows:

(28) Tok = tk, Tik = elk, T,. = C •k, ..... (34)

where The time derivatives take the form

= ~ Pc.k + + 4w), /atk = DO + DlDk + 8
2 D2 +' + , DOk = a/aTik,

(29) (35)
(29 • where

,2k + 12(-] p+Ak aank-- .

and the C,.k, r = 1,2 ... , 5, are constants that satisfy Dik - b and EA (36)

n Ai(BI.iCIj + B2.iC 2.i + B 3.,iC3.i + B4 JC4 .i + DkiCs.i) To balance the effect of the nonlinearity, damping and
excitation, the following scaling is used:

0, (30) IN = E3Pk, -k = -2 Jk. (37)

where the Br.i and Dk,; (r = 1, 2, 3, 4 and k = 1,2 .... n) The approximate solution is then expanded as
are constants, the expressions for which are detailed in 2
[17, 19] along with the derivations for equations (24)-(30). r1k(X, 4) = Er7Ik(X, Tok, T1k, T2) + E 2 (x, Tok, Ttk, T2)

Equation (30) along with the associated boundary +E3
fl3k(X, TO, Tlk, Tk) +.... (38)

conditions and compatibility conditions forms an eigenvalue Introducing (34)-(38) into (33), rewriting the excitation term
problem for the eigenmodes C,.i and the natural frequencies in polar form, and collecting terms of the same power of E, the
Wk- After determining these values for C,.i, the expression for following hierarchy of equations is obtained:
the free vibration mode shapes of the post-buckled beam with O(E):
axially varying properties can be determined as

n C~~(71hk) = D,21?k + Pc~kl?)'j' + 1iu

W(x) = x _k(x )HA (x). (31) 2b2  ' P' = 0 (39)

lk Li=l
5. Forced oscillations O(e2 ):

Forced oscillations of a resonator modeled as a beam with C(r72A) = -- A •i, •Ii •lkaxially varying properties are considered in this section. The ri2 Akl _

equation of motion is given by equations (12) and (13), b n
the boundary conditions are given by equations (7), and +- Aik~:k(oi'l,1'lli *k' -2DokDiklhk (40)
the displacement compatibility conditions are similar to those rk i=1
given by (23). For solving (12), it is assumed that OW):

Wk(x, tk) = b Ik(x) + 11k(x, tk), (32) LOU) 2AkDokrhk -- 2DoDlkrlz - W + 2DOk Dzk ) Ikwhere JTk (X, tk) represents the dynamic deflection and b•Pk (x)I

is the static post-buckling deflection given by (19). Makinguse 2b[ " 1 , 2b [ •rm, kof the developmentgiven in section3.3and(3 2), equation(18) x 1 i= l1]2k + 2 7

can be rewritten as

+ P '- r"TI Ak(i, r)i 1,2 + (33 10 '7)d *

=[Pk +qkPk(b*"/+ Ok')lCOS(fktk)--2Atik [2
" ]+ Fk eint• + c.c, (41)

"+ 2br ni~ Aik(*/i, 10ii. "l + r n . i k 07, .i 1

b n quantity and

""- E Aik(1i,17)i k k= ,2...n. (33) F Pkhk x +bqk (42)
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Figure 8. Results of nonlinear analysis: (a) first natural frequency versus b, (b) predicted forced spatial response when b =4.65 x 10-' and
(c) frequency-response curve for b = 4.65 x 10-4, 1) = 4.65 x 10-5 and A = 8.23 x 10-4 . The solid and dashed lines represent stable and

unstable branches, respectively.

The corresponding boundary and compatibility conditions at where
all orders are similar to those given by equations (22) and 2 [••Ai (*,k 0', )i ] 0,,
(23). The excitation frequency is assumed to be close to the *,(x W -, i I

first natural frequency; that is,"

6= , + Ela, or fQ, = tOl, + E ak.- (43) + Ai (Oi Ol~ k(6

'Me solution of (39) can be written as ST = --j2('olk0Ik[DIkAl ejw'*O -- DIkAl e-jw°kTO].

r/1k = 101k(x)lAl (TIk, T~k) eial'*r°+A I (Tlk, T2k) e-j"*r 76k Setting the sum of the secular terms to zero one obtains
4 AI = A I_(T_), and solving (45) by assuming the approximate

Spatiasolution for the spatial term Of rl (x, am) to be a weighted

where is the complex conjugate ofy (A, which can be written summation of the free-oscillation mode shapes given by (28),

in polar form as Aon (Tcr, T2f) = 4a • l . On substituting (44) one has

into (40), the r ight-hand side of (40) can be expressed as the r12k = bAIAlti(x) + bA 2k(x)ej2-r-* + c.c., (47)

summation ofterms that produce non-secular terms and secular where (2)(x) and .(x) are defined as

terms (ST), to

2 j2.,, To (l)k=W T k,•,
2=) = b 1k((x)[A• a s e(4 +5A)I, +ac.c.]s+nST, (45) a=x

363



H Li er al

(c)

300

so

Excitation Frequency (kHz)

Figure 8. (Continued.)

v E r (*EA O,,, ((20, + ,, +] solution of the corresponding homogeneous adjoint problem

, i=l.A=I L , v' Ri" 1k k' p)rk~k from x = 0 to 1, which, from (26) and (31), is Ok(x)e*';
T=2 •(,, br) for the kth section and the rth mode. Multiplying the

(48) right-hand side of (50) by Olk (x) e-A', spatially integrating
0 the result from x = Xk-I to x = xk, adding all sections

42k(x) = E-SrO' together, and setting the sum of the secular terms to
zero, the following complex-valued modulation equation is

S(49) obtained:
+ * , , + ,, k

12[A2Ak - (2x)/,i](Or, 0,) 2j ((,zkA + D[,AI)wlk•k,,

Next, to solve (41), substituting (43), (44) and (47), one arrives =1 I
at =Fl~ jt+ A

£(-13k) = Ah Ik(x)ej3(I&iT0 + h2k(x, Tzk)ejcikr50 + c.c., ( Lk~l J k=1Fe
(50) (54)

where Further, substituting (4) and (36) into (54), and letting
y = 6t2 - fi, it is found that the approximate solution and

hIk(X) = - " Ak(O-'Ti frequency-response equation are respectively given by
rF_ Wk(X, k)n k,

i=1 Lk=1+~~~' i ~ •~~; )) and k

OI A (51) -= &,,,aG 24- 2 c22 ) (55)

where

h2k(x, 2k) = A Algk(x) - 2jok4'lk[/kkAj + D2kA] Wk(x, 4) = b[*'k(x)+Iba 4)Ik(x)] +aOlIk(x) cos(f2k -- Y)

I 2 jTu (52) + ba202k(x) cos[2 (Q2 ktk - y)] + (56)
2 b 2 n" R 1..£/ - p k4

gk(x)= r . Aik [24)" ('', ', )i + 0" (*', )i a8k= g &= I -E (01k,01k
'k ilk=1 A k= lk

"2" (*'A)'jj 14"
+ 

2 4
lk , i 4-qX, (i, )+2•'(#l, d tli (01k, Fk)k/[Z Akj (..k, " (

'',, 2 0(53) k=I k=1
+ k It)') + jb-2'I'k (01i, OIj~j (3

The solvability condition [22] requires the right-hand side C = (0 - k I0k)•k -- (4I. 1 (0 k)k].
of (50) and its boundary conditions be orthogonal to every = /L E
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Figure 9. Comparisons between experimental measurements and the predicted firequency responses: (a) thickness is 90 nm,
/2=8.23 x 10-4 , b = 4.65 x 10'4 and &.. = -2.73 x 10"; (b) thickness is 93.77 rim,/ A 8.23 x 10-', b = 4.65 x 10-4 and
8 = -2.84 x 1010; (c) thickness is 140 nm,/ft = 8.23 x 10-4 , b = 4.85 x 10-4 and et_ --2.77 x 10]]; and (d) thickness is 160 nrun,
/2=8.23 x 10-4 , b = 4.86 x 10-" and &,., = 4.36 x 10'0.

6. Results and discussion spatial response is similar to the experimentally observed
spatial pattern (see figure 4(a)). The frequency-response

In figure 8(a), the variation of the first natural frequency of a curve obtained from (55) is shown in figure 8(c). It resembles
200 ttm PZT resonator versus the buckling factor b is shown that of a Drifting oscillator with a hardening spring and this
for free oscillations about the fifth static buckling mode. It is qualitatively consistent with the experimental results of
is important to note that for the same frequency value, the figure 3(b). Guided by related work [23], the damping

corresponding value of b depends on the resonator's stiffness coefficient/A and the excitation force amplitude/P are chosen
and geometric properties as well as the normalization used to generate the predictions.
to define the static critical buckling mode shape. (Here, The agreement between the analytical predictions and
the normalization used for the static critical buckling mode experimental data suggests that the hypothesis of the non-

1 _

shape * (x) is fo' *, (x) dx = 1.) When b equals 4.65 x flat equilibrium position of the resonator caused by buckling

10-4=, the first natural frequency of the resonator is determined can be a valid one. The present work can be used as a

to be 313 kHz, which is close to the experimental result given in basis to study buckling and oscillations of microresonators

the second section of this paper. Ile corresponding deflection, with axially stepwise varying properties. For different values
b[* + ½ba'4)1] + aq~l, determined from equations (32) and of the top electrode thickness, the numerical values of atý,

23

(44), is shown in figure 8(b). In this figure, the amplitude a and C are found to vary. The associated comparisons
of mode shape 0 is scaled to be 10-3, so that the predicted between the experimentally observed frequency response and

dynamic displacement is of the same order as that seen in the predicted frequency response obtained from equation (55)
experiments. When the excitation frequency is close to the are given in figure 9. The dotted lines correspond to the

first natural frequency of the resonator, the predicted forced experimental measurements and the solid lines correspond
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Figure 9. (Continued.)

to model predictions. It is seen that the top electrode [2] Younis MlIand Nayfeh A H2003 Astudy ofthe nonlinear

thickness affects the frequency-response curve dramatically response of a resonant microbe~am to an electric actuation
Nonlinear Dyn. 31 91-117
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Abstract
In this paper, a computational mechanics model specifically tailored for
composite microresonators with piezoelectric actuation and piezoelectric
sensing is developed and used as a design tool for these microresonators.
The developed model accounts for the structural properties and the
electromechanical coupling effect through finite-element analysis. It is
assumed that the deflection is large and that the geometric nonlinearity must
be included. The dynamic admittance model is derived by combining the
linear piezoelectric constitutive equations with the modal transfer function
of the multi-layered microresonator structure. The resonator receptance
matrix is constructed through modal summation by considering a limited
number of dominant modes. The electromechanical coupling determination
at the input and output ports makes use of converse and direct piezoelectric
effects. In the development of the finite-element models, the boundary
conditions, the shapes of electrodes and distributed parameters such as
varying elastic modulus across the length of the structure have been taken
into account. The developed semi-analytical tool can be used to carry out
parametric studies with respect to the following: (i) the resonator beam
thickness and length, (ii) the influence of constant axial forces on the
transverse vibrations of clamped-clamped microresonators, (iii) the
geometry of the drive and sense electrodes and (iv) imperfect boundary
conditions due to mask imperfections and fabrication procedure. The
semi-analytical development has been validated by comparing model
predictions with prior results available in the literature for clamped-clamped
resonators and experimental measurements. A detailed discussion of
modeling considerations is also presented.

(Some figures in this article are in colour only in the electronic version)

1. Introduction of the structure. A thin layer of sol-gel piezoelectric film is
located on the top of this electrode layer. To complete the

Piezoelectrically actuated microscale resonators are attractive structure, another platinum layer is deposited on the top of

for communication and signal-processing applications [I]. this piezoelectric film and this layer extends over one quarter
Two types of resonators are considered here. One type of of the length from each anchor. The mid-section of the
resonators will be referred to as the AIGaAs resonator, and resonator structure is free from this platinum electrode layer
the other type of resonators will be referred to as the PZT [1]. Due to the asymmetry of the cross-section, the position
resonator. Both types of resonators are composite structures, of the piezoelectric layer is offset from the neutral axis, and in
and the PZT resonators have asymmetric cross-sections, as addition, (tensional) residual stress may also be introduced in
discussed in previous work [2, 3]. The considered resonators each layer during the fabrication process. The effect of these
are based on the piezoelectric effect, as shown in figure 1. stresses is explored in this work.
The elastic substrate is a SiO 2 layer, on the top of which a As pointed out in the authors' recent work, the
platinum electrode layer is deposited throughout the length resonators also exhibit nonlinear characteristics [4-6]. These

0960-1317/06/030512+14$30.00 © 2006 lOP Publishing Ltd Printed in the UK 512



A semi-analytical tool based on geometric nonlinearities for microresonator design

where K = KE + KG is the global stiffness matrix, KE is the
elastic stiffness matrix and KG is the geometrical stiffness
matrix that is obtained from the nonlinear component of
the strain-displacement relation. This matrix has not been
considered in the previous studies of microelectromechanical
systems (MEMs).

In the last several years, there has been a growing need for
accurate modeling and simulation of microelectromechanical
devices and systems that employ piezoelectric materials. This
comes from the need to reduce design iterations and speed
up the product development, and also to ensure reliability

3.. R.- 0- ;.0 ,*--,5 A of the final product. Finite-element analysis (FEA) plays an
Ulft- 4AK VV I,-4 ftvo :.4115

important role in the simulation of MEMs devices, and this
(b) oanalysis generally covers multiple domains for a single device,

such as structural, thermal, electrostatic, electromagnetic

fim and fluid domains, von Preissig and Kim [9] examined
techniques for modeling thin-piezoelectric MEMs devices
by using existing finite-element packages. In this work,
piezoelectrically actuated bending is examined. The authors

".,.- b..-, point out that, while it may seem that the sheet-like nature
"of structures in piezoelectric MEMs would make them good
candidates for conducting FEA with plate elements, solid or

'brick' elements can work remarkably well. Finite-element
Figure 1. (a) SEM of a PZT resonator (courtesy, Maryland MEMs model (FEM) errors associated with the discretization of the
Laboratory) and (b) a schematic showing the details [2]. model have also been analyzed. An important issue to note

is that meshing a thin sheet into low-aspect-ratio elements

SuspendedBeam Substrate Piezoelectric Film requires a prohibitively large number of elements, while too

Drive Electrode W (x,t) S . low a mesh density might result in severe discretization and

P• • p element-shape errors. A four-node, isoparametric, linear
(X, 0 --- - piezoelectric, plane-strain element from the ANSYS library

has been used in this work. Wang and Qstergaard [10] used
X finite elements to develop a coupled simulation method for

-L piezoelectric transducers with an attached electric circuit.
In this work, the weak form of the laws of conservation

Figure 2. A clamped-clamped composite resonator subjected to a of tum and elec h for a lar piezoelvctic

constant axial load P. of momentum and electric charge for a linear piezoelectric
medium are discretized by using the FEM. Their method

characteristics include Doiffing oscillator-like response during has been implemented in the ANSYS software. Chen et al

resonance excitations, temporal harmonics in the response [I I] presented a two-dimensional analytical model of a spiral-

and spatial patterns during forced oscillations that cannot be shaped PZT ceramic actuator. They used the FEA to validate

explained by a conventional linear analysts. The lengths of the results obtained from the analytical model. In this work,
the commercially available software packages PATRAN and

the resonators considered in previous studies typically range AA S are av a il ize as a e ns

from 100 ltrn to 400 Am, and the thickness of each platinum ABAQUS are used. PATRAN is utilized as a pre-processor

electrode is in the range of 90 nm to 180 nm [2-6]. In some and ABAQUS is used as a post-processor to perform the linear

typical uses of this resonator, the structure is driven close to its elastic, piezoelectric analysis. In order to capture bending

first resonance frequency with the input at the drive electrode effects accurately, the authors used eight-node, isoparametric,

having a dc bias in addition to the harmonic component. plane strain, linear elastic, piezoelectric elements. For
In this work, the authors discuss a semi-analytical finite_ achieving convergence, while keeping the length-to-width

element (e.g. [7, 8]) based formulation, in which transverse- ratio of the elements reasonable, they used meshes with at

free vibrations of composite and axially stepwise varying least ten elements across the spiral thickness. A typical finite

properties of microresonators subjected to constant axial loads 3000 elements.

are considered (see figure 2 for a clamped-clamped case). In this paper, the coupling of electrical and mechanical

It is shown that the consideration of axial loads is important fields that is intrinsic to a piezoelectric material is

to predict the natural frequencies of the resonators observed in accomplished in a non-traditional approach. From a filter

the experiments, design standpoint, the admittance function relating input

To take into account the effect of the axial load, a voltge toiotpu cu mtent function relaisna impot
geometrically nonlinear analysis needs to be performed. In voltage to output current 12(to)IVI(t) is an important

geomtriall noliner aalyis eed to e prfomed In frequency-response function to be determined (see figure 3).

such a case, the equations of motion for the microresonator This admittance function may be obtained by relating the

can be written in the following form: Ti ditnefnto a eotie yrltn h
mechanical transfer function of the microresonator structure

Md(t) + Cd(t) + Kd(t) = f(t), to the corresponding electrical input and output through the
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where r, s = 1, 2,. na, ndoo is the number of degrees of

freedom (dof) of the finite-element model, to1 is the Ith natural

, (W)) W frequency of the undamped system and ý' is the Ith damping
ratio of the microresonator, which is given by

Figure 3. Input and output quantities of interest for a clamped- 2(a 00l). (5)
clamped piezoelectric microresonator. In (4), 0ir and 0t, are, respectively, the r-component and the

piezoelectric constitutive equations. In the second section s-component of the Ith mass normalized mode shape of the

of this work, this admittance function is determined for microresonator and these modes satisfy

a composite microresonator with axially stepwise varying WTMWý = S_ Worlgo. = 3,.w' . (6)
properties. This microresonator is also subjected to constant M (

axial loads. The obtained admittance function has the form Further, in (4), nmod is the number of dominant modes. The

Y21 /(w) = 12(w_ C (w)HSA(.)FA, natural frequencies and mode shapes in (4) are determined

V1 () from

where HSA (to) is a 'block' of the complex frequency response
matrix for the considered microresonator (e.g. [7]); Cs(co) is K4, = MA, (7)
a matrix that depends on the material properties of the PZT where
material, the geometry of the sensor and the finite-element
discretization of the microresonator, and FA is a vector that , ... ,] A = [Wm,,atO . (8)
depends on the material properties of the PZT, the geometry of
the actuator, the geometry of the suspended beam substrate and The damping ratio in (4) is, in general, determined

the finite-element discretization of the microresonator. In the experimentally from the measured quality factor, Qt, which is
second section and the appendices, the expressions for these given by
matrices/vectors are derived. Comparisons with experimental
results and results available in the literature are presented in the Q1 = / (9)
third section. It is believed that the numerical and analytical Q - Q2

d

efforts presented in this work can be used as a basis to develop where the cutoff frequencies are iven b [ 3
design tools for piezoelectric microresonators. q g y [

2. Semi-analytical development 2c= •I - 22, - 2ý, I - (,2, (10a)

2.1. The equations of motion in the frequency domain If2cu Iv - 2C't2, + tIl - •t. (l0b)

The equations of motion of the microresonator in the frequency
domain are of the form

After substituting (10) into (9) and using a Taylor's series
(-W 2M + jtC + K)d(w) = f(w), (1) expansion about Qt = 0, the result obtained is

where j = ,./CT, K = KE + KCG is the global stiffness matrix, 1 3 9 3

M, KE and KG are the global mass matrix, elastic stiffness = t - 2 t - 4 + 0(ý) (11)
matrix and geometrical stiffness matrix, respectively, and d(to) 2t 2 4't
and f(ao) are the Fourier transforms of the nodal displacements Hence, for very lightly damped microresonators (high-Q
d(t) and the nodal forces f(t), respectively. The development microresonators), that is, 0 < << i, the quality factor can be
of the time-domain model with the geometric nonlinearity is approximated as
detailed in appendix A. From (1), one obtains

d(w) = H(to)f(w), (2) Q - . (12)2ý1
where

Now, in terms of the quality factors, it is possible to rewrite the
H(Mo) = (-'o 2 M +jtoC + K}-' (3) dof-to-dof mechanical complex frequency response function

is the complex frequency response matrix (the mechanical of the microresonator structure, H, (w), as
force-displacement transfer function) of the beam
microresonator [7]. Since proportional damping is assumed, H w) = (13)
the complex frequency response matrix can be constructed tot - (to/t) 2 +j/Q,(co/w,)]

from the modal summation as [12]
F•.d 1 At this point, one has the elements of the complex frequency
H,) [H01= 01" J, response matrix, which describes the resulting harmonicH(wa) = [H .(to)] = [ o[ - 0/0)) +j2ý1(l wfOfI)

L=, W (t/to, displacement of the rth dof caused by a unit harmonic force

(4) applied at the sth dof.
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Figure 4. A schematic view of the actuator port.

2.2. Admittance model
Figure 5. An external, transverse distributed force and generalized

In this section, a semi-analytical model describing the finite element nodal forces.

admittance function for a clamped-clamped piezoelectric
microresonator is developed. The semi-analytical admittance x = L-t1 x=L
model may be obtained by relating the (numerical) mechanicalL1
transfer function of the microresonator structure to the [ Eltr*# Piezo.e-ctric Fdn

corresponding electrical input and output through the
(analytical) piezoelectric constitutive equations. The overall W
frequency-response function describing the admittance Y21 (to) s ----,-- --- s----.

between the driven input (port 1) and the sense output (port 2)
of the beam resonator shown in figure 3 is defined as

Y21(to) = 12(t)W (14)v, (a)')•

where V, (w) is the voltage applied to the input port and 12(w) Figure 6. A schematic view of the sensor port.
is the current measured at the output port.

2.3. Actuator side or

In this work, the active film under consideration is considered VI(M) = 0 , f2(0)) = F12 V(), (e _C QA, (18)

to be long, narrow and thin, so as to make the length L1 much where V, (wv), f, (w) and f'2(wo) are the Fourier transforms of
greater than the maximum value of the width b1 (x), which is V,(t), fV(t) and V2(t), respectively, and F2 is the frequency-
much greater than the thickness h, (figure 4). Next, attention independent vector of generalized element nodal forces
is focused on the case when the active film is driven by an defined as
ac voltage V, (t). The externally transverse distributed force d2 b(x)
fu(x, t) can be expressed in terms of the drive voltage V, (t) F'2 = !d3JEphe N2(x) dx, QC C_ 2AA. (19)
as

I d 2bI (x) By using (17) and the assembly operator, the sub-vector of
f 2(x, t) = d3Eph,-- - Vi(t)H(x), (15) generalized equivalent nodal forces can be written as follows:

where H(x) = U(x) - U(x - LI), and U(x - a) is the 102.1 1 Vt =_),
Heaviside step function. The basis for (15) is detailed in fAI(t) = A V|1 (w) = F e) E QA (20)
appendix B.

In view of( 15), the generalized element nodal forces, f'(t)
and f2(t), can be written in terms of the drive voltage V, (t) as 2.4. Sensor side

1(t) = 02.1, On the sensor side, the attention is focused on the direct

r2t W=Id3 Ephf db N 2(x) dx} V1(t), ,e C_ QA, piezoelectric effect. As described before, a key to developing
12 E Jh ,dx 2  ( a useful electromechanical model of a piezoelectric model is

(16) the determination of changes in electrode charges when the

where N2 (x) is a shape function matrix, as discussed in active film is strained due to the mechanical excitation of the

appendix A. Further, S2A = Ix I 0 _< x < LI) denotes the microresonator. At the sensor port, it is also considered that

sub-domain of 10, L] occupied by the sensor (figure 5). In the the active film is long, narrow and thin, so as to make the

frequency domain, (16) becomes length L 2 much greater than the maximum value of the width
b 2(x), which in turn is much greater than the thickness hIt

f I(t)= 02. 1, (figure 6).

f'2 W ld Ephf d2b I(x)N 2 WX) V.... , |, C QA Considering the relation between the output charge and

2 dx2  - the output current given by (B.7) in the frequency domain, the
(17) expression for the output current becomes
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0 -
x=L-L, x=L

F. E. Mesh ___

"Figure S. A schematic view of the clamped-clamped piezoelectric
fls microresonator and the finite-element mesh.

Figure 7. Transverse displacements of the centroidal axis and
generalized finite-element nodal displacements. By considering that in the present case, both fm (w) and

fS(w) are equal to zero, and using (20), it is possible to express

12(0)) = dS(w) in terms of the mechanical force-displacement transfer
L - Jc°Q2(h.) function and the driven voltage as follows:

jwd31E - b2(x) L Wx 2 xx2 ] . dS(w) = HSA(co)fA(to) = HSA (o)FA V, (co). (27)
JL-L2 a X

(21) Finally, combining (24) and (27), the admittance function
Y2 1 (w) relating input voltage to output current can be expressed

The integral in (21) can be split as as
JL " " au°(xW) f auo(x,0) dY2 M 12 (w) = Cs(w)HSA(w)FA. (28)f 2L ----- d~x=S b2 (x) (28))dx 12(-o - IW

L-L 2  ax k ax 21 W

b2( W d = b2w0 (x 2 w ) dx,

-L b ) aX2  3. Experimental results, comparisons and discussion

Q, _ Us (22) The developed coupled model enables one to investigate the

where Us = {x I L - L2 < x • L) denotes the sub-domain following: (i) the elastic stability of the resonator, (ii) the

of [0, L] occupied by the sensor port (figure 7). After using influence of a constant axial force on the transverse vibrations

(A20a) and (A20c), one obtains of a clamped-clamped resonator structure and (iii) the
1x influence of a constant axial force on the transverse vibrations

,b2u(X . )dx [fL b2 N W (x) dxld'((w), of a free-free structure.
jb() ax uA[Rc X i

b2 (x) W) dxa = f ) Xa 2&Jx Od(w). 3.1. Pre-stressed microresonators

[k a2 2(23)A case of interest is one where the geometric stiffness is driven

by a parameter A; for example, in the case of a microresonator

Hence, the expression for the output current becomes subjected to an initial axial force PO due to residual stresses
introduced during the fabrication of the resonators [14-16],

12(W) = E [Ae(w)d'(w) + Be(w)de(w)] one can write

P, = -kPo, e = 1, 2 ... , e, (29)
= cS()dS(w), e E Us, (24)

where P, is the axial force in the eth element and the number of

where the sub-matrices A'(&)) and B'(to) are given by elements is nl.. The geometric stiffness is itself proportional

A'(to)=ja~IE•f b2(xN 1 (x) dx, V12, C Us, to this parameter

E b x - KG = ).Ký. (30)

• = -jw , EýI , __ __ C Us_ The eigenvalues of the resulting problem

2 Jo, E 2 W (KE +AKý)ýp. = wý2MW. (31)

(25) then become functions of X. When o,,, = 0, one gets

At this point, it is convenient to rewrite the system (2) in the an eigenproblem with eigenvalues X,. corresponding to the

following block-partitioned form: critical loads,

dA(w) 1 HAA(ao)) HA(w) HAS(w) , fA(w) KEIP. = -A, K~ ',,,. (32)

dm(w) } - HMA(t) HMM(t) HMs(co) Hfm(a)) The eigenvalue A1 of the lowest mode yields the pre-stress

dS(a)) i LHSA(,) HSM(t) HSS(to) J fs(w) j state

(26) P"Cr = XI PO, e = 1, 2 .... n.e (33)

where A stands for 'actuator', M for 'midspan' and S for in which the system buckles. For free-free microresonators,
Isensor' (figure 8). one has an unconstrained structure, since the stiffness matrix
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Figure 9. Variations of natural frequencies with an axial load for an
AIGaAs microresonator (length = 120 pm, width = 15/pm, __,____-.________

L1 = L2 =--3Opm, Q =565, n0 = =[l020 10], *'
fo.J = (1.0427. 2.8743,.5.6348, 9.3146] kHz). PP

Figure 10. Variation of the first natural frequency with an axial load
Table 1. Characteristics of an AIGaAs resonator. P/P. for a clamped-clamped AIGaAs resonator (L 1 = L2=

Thickness Residual stress 25 pm).

Layer hk (p~m) eso (MPa)
Top AIGaA .:Si 0.5 -80 --..-..--.--.--.

M iddle AIGaAs (undoped) 1.5 -80,. . .... ..............................

Bottom AIGaAs:Si 2.0 -80

is singular. In this case, there are two zero frequencies for the ______i f :•i~ ii1

rigid-body degrees of freedom and one more zero frequency_________when the compressive load equals the buckling load. To k '...k z':.

J=1193259 kHz

remove the rigid-body modes from the solution of the semi- . ,l"Js~H :~ 3 :k~ .Agt;2

definite eigenvalue problem (KE + •.•g.= w2~. one

can perform a shift p > 0on KE + X.K• by calculating '• - - •OlHZto •:0~

ýr -- -- - ... ... ....-...... '

and then, considering the positive definite eigenproblem

P/.2 PrdodFt ooa ~L~ .S4 Hzt

(K + XK + pM)•,, = •. (35) ... .. Pie

where ,, = andc 2 
- ,,, r , -02 Figure 11. An expanded plot of figuref5 in the vicinity of the first

natural frequency of the AIGaAs resonator predicted without

3.2. Influence of a constant axial force on the transverse residual stresses.
vibrations of a clamped-clamped resonator structure Table 2. Experimentally obtained first natural frequencies for

In figure 9, for a clamped-clamped AIGaAs resonator, the d r

variations of the first four natural frequencies are shown with Angle
respect to the axial load. As expected, as the axial stretching Length 15' 21" 27 33 39

load increases, the natural frequencies increase. Similarly, 8 m 23 ~ 00kz24 ~ 90kz19 ~
they decrease with the increase of the compressive axial 180pmo 21390kHz 2360kHz 2300kHz 1270kHz 1200kHz

load. 120 pm 960 kHz 920 kHz 900 kHz 860 kHz 830 kHz
When the compressive axial force reaches the value of the

Euler's buckling load, Pc = 1.2489 x 10-2 N, the first natural
frequency goes to zero. The composite material properties and As a representative example, a 100 pzm long resonator
layer thickness values for the considered AIGaAs resonators with a 15 8m width is considered. From the results shown in

are listed in table 1. Each AIGaAs microresonator has a figure 10, it can be seen that the numerically calculated value
particular orientation on the wafer. The orientation on the of the first natural frequency is 1501.5 kHz, in the absence
wafer is indicated, with respect to a refrence orientation, by of axial stresses. The first natural frequency value shifts to
the so-called wafer-angle and this in turn leads to a certain 1319.3 kHz, when the experimentally obtained values of

crystallographic direction of the AIGaAs structure. The residual stresses are included in the model. In figure -1,
variation of the first natural frequency shown in table 2 has an expanded plot of a portion of figure 10 is shown. The

been obtained from experimental measurements for different horizontal lines represent the experimentally obtained values
resonatorsm of the first natural frequency corresponding to the 100 pm
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Figure 12. SEM of undercut introduced in a resonator anchor by the
etching processes during fabrication (courtesy, ARL, Adelphi, MD). Figure 14. An expanded plot of figure 13 around 1400 kHz.

Here, the undercut has been simply modeled as an increase
in the extension of the microresonator length. The change in
the cross-section area is not considered in this one-dimensional

FloAG&: -h.M 0. 4 pffl %. -80 R,
- - -. ,-0 ............... model. This effect has been included in a series of two-

6,,JO:.4 -0.• .... -00 .- dimensional models developed by the authors, and in these
:................ models, it is recognized that the undercut region cannot just

---------- ......... be modeled as a beam. Rather, a more refined finite-element
t. 131isZMe .. Or ..- T •k~zr model with plate elements needs to be used to model more" in'1240.9139 k'realistic boundary conditions which include changes in the

... . ................. ....... ........... cross-section area.

3.4. Material property variations from manufacturing
- ---- -- -- --- ---- - --- --- -- --- - --- --- -- --- -- uncertainties

; ~P~edclod FRat N otral

Hl- Fe, .r- 06Hiz As a third example, the effect of a +10% varying elastic
a_ c modulus across the length of the multi-layered microresonator

p/p, is considered. For micromechanical resonators, these
uncertainties in material properties come, in large, partly dueFigure 13. Variation of the first natural frequency with an axial load to the manufacturing process [17]. A resonator of 120 ksm

PIP, for a clamped-clamped AlGaAs resonator. t h auatrn rcs 11 eoao f10A
length is studied to model the effect of the varying elastic

modulus. In figure 15, the variation of the first natural
resonator for different wafer angles. It can be seen that frequency with respect to the axial load is shown for 90%E, E
the numerically obtained values fall within the range of and I I0%E. The experimentally obtained values of the first
experimental measurements, which are listed in table 2. natural frequencies are also shown in the figure as horizontal

lines for making the comparisons. In figure 16, an expanded
3.3. Imperfect boundary conditions due to mask portion of figure 15 is shown around the 900 kHz range. For
imperfections and fabrication procedure all wafer angles, the measured average residual stresses are

the same and they equal -80 MPa.
As a second example, the effect of a 2.5 Am to 5 jim undercut The residual stresses are based on lattice structure
introduced in each resonator anchor by the etching processes measurements, and these values were provided to the authors
during fabrication 117] is considered (for illustrative purposes by researchers in the Maryland MEMS Laboratory. Wafer
only, see figure 12). bow measurements have also been used to measure residual

Resonators of 105 Am and 110 ! /m lengths were studied stresses in this type of multi-layered microstructures [ 18].
to model the effect of the undercut. In figure 13, the
variation of the first natural frequency with respect to the 3.5. Predictions offrequency response
axial load is shown for 100 Am, 105 Am and 110 Aim
long microresonators. The experimentally obtained values The shapes of the drive and sense electrodes affect the
of the first natural frequencies are also shown in the figure as resonator admittance through bt (x) and b2 (x) in (19) and
horizontal lines for making the comparisons. In figure 14, an (25). For the resonators shown in this work, maximum
expanded portion of figure 13 is shown around the 1400 kHz electromechanical coupling is desired; that is, the electrodes
range. must be shaped such that Y21 (w) is maximized. This may be
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Figure 15. Variation of the first natural frequency with an axial load Figure 17. The response of a 400 i rm Ao GaAs resonator for three
P/P. for a clamped-clamped AIGaAs resonator, different values of the axial load (Q fn565. P, = 7.4930 x

10' N, L, = L2 = 100 m, NE s0n20s10], ft
________ ________[81.59 93.84 104.55] kHz).

Achotor Seta

I i Material E (GPa) p(kg m-
3

) u

1t 160-190 18000 0.35

PZT 25 or 35 8 800 0.30
Figure 16. An expanded plot of figure 15 around 900 kHz. SiCO2  100 2 200 0.27

achieved by clipping the electrodes at the quarter beam points,
as depicted in figure l(b). For this electrode geometry, b1 (x) In figure 17, for a 400 jim doubly clamped AIGaAs
and b2(x) can be written as resonator with quarter-beam electrodes, the response

r ( (magnitude and phase of the normalized admittance function
b1 (x) = bIU(x) -OU -- ] = bgi(x), (36a) Y 2 1 (w)/(½d3 1 Epheb)

2
) is shown for three different values

L ~ \ lJof the axial load. As expected, as the axial stretching load
b2x= [~ -L -U(x-L)]=b x,(6) increases, the first natural frequency increases. Similarly, it

t2x=bUx \(4/b decreases with the increase of the compressive axial load. The

wher b s te noina with f boh eectodesandU~x is composite material properties and layer thickness values for

the Heaviside unit step function. By using (36), the terms in thcosdrdA asrsntrsreltdinabe.
(19) and (25) involving the electrode shapes simplify to A eodeape 0 i lme-lme Z

resonator with quarter-beam electrodes (see figure I18) is
=(•i3 E~) f d 2gt(x) ( .... (37 considered and the responses obtained for three different- values of the axial load are shown in figure 19. Again,

and as expected, as the axial stretching load increases, the first
(½ )2x) natural frequency increases. Similarly, it decreases with the

Ae(w) = jw he3Epb g2(x) dx increase of the compressive axial load. The material properties

(38) and geometric properties used for finite-element modeling of.I (- Mt " " 2 N2 (x) the considered PZT resonator arelistedintables3 and4,

Be~~~co)~ = 814+0 PhdAEb gtx •

Maera E J g(ax respectively.
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Appendix A. The finite-element model

In this appendix, a geometrically nonlinear finite-element
.analysis (e.g. [19, 20]) is carried out to study transverse
vibrations of clamped-clamped and free-free resonators

--- - - subjected to constant axial loads. This is done in the context
of a planar beam, but a similar development can be carried

In- W ,out for the three-dimensional case. As discussed earlier,
Freq-any (k(I) the consideration of axial loads is important to predict the

first natural frequencies of the resonators observed in the

experiments. In addition, as also shown, the developed model

........... and the numerical implementation can be used to understand
o. - the influence of uncertainties associated with the fabrication

process. The effect of curvature shortening (e.g. [21]) is
incorporated in the developed numerical code.

Frequeny (kHz) A.]. Kinematics of the motion

Figure 19. The response of a 200 Am PZT microresonator for three The equations governing the bending of Euler-Bernoulli
different values of the axial load (Q = 4000, P, = 3.3338 x 10-1 N,
L = L2 = 50 m, NE = [10 20 101, f, = 1255 303 344] kHz). beams with moderately large rotations but with small strains

can be derived using the following linearized displacement
field

Table 4. Geometric properties for finite-element modeling. a( t)
Layer Thickness hk u, = Uo(X, t) - z , = 0, u3 = Wo(X, 0),

SiO 2  1.0602 Am (A.1)
Bottom Pt 135.0 nm where (uj,u 2 , u 3) are the total displacements along the
PZT 0.5303 amTop Pt 200.0 3Mm coordinate directions (x, y, z), and uo and wo denote the axial

and transverse displacements of the centroidal (neutral) axis
(y = z = 0). Equation (A.l) is used in the majority of
existing nonlinear formulations. Although, linearization of

4. Summary beam kinematics is apparently incongruent with the notion
of geometric nonlinearity, the linearized field provides an

In this work, a semi-analytical computational mechanics adequate description for incremental static and dynamic
model of a composite microstructure with piezoelectric solutions. In a geometrically nonlinear analysis, using the
actuation and piezoelectric sensing has been developed finite-element method formulation, it is customary to use a
as a design tool for microresonators. The developed nonlinear strain-displacement relation of the form (sum on
dynamic model of microresonators accounts for structural repeated subscripts is implied)
properties and the electromechanical coupling effect through I ( alui + uj I ( au,. 1u,,,
finite-element analysis. The dynamic admittance model is 6ij = + - x 2 xj xi " (A.2)

derived by combining the linear piezoelectric constitutive

equations with the modal transfer function of the multi-layered Due to the assumption of small strains, no distinction is made
microresonator structure. The resonator receptance matrix is here between the material and the spatial coordinates [22].
microreson torstructdthroure. Tl rsomatior rceandemrixg sy aIn the case of planar motions, substitution of the linearized
constructed through modal summation by considering only a displacement field (A. I) into (A.2) yields

limited number of dominant modes. The electromechanical

coupling determination at the input and output ports makes use auo+ I •fauo2 ,2 auo a2WO
of the converse and direct piezoelectric effects. The developed ax[--ax ax ax2

model has been validated by comparing it with results
available in the literature for clamped-clamped resonators. + z2 5X2wo • wo 21 2

2wo
The numerical results are found to be in good agreement with axx2 

) + ax (A.3)

the experimental measurements. The numerical simulations and all other strains are zero. Note that the notation x, = x,
show that the consideration of axial loads is important to x2 = y and x3 = z is used. The first term in (A.3) represents
predict the natural frequencies of the resonators studied thecentroidal strain oftheelement according to the Lagrangian
in the experiments. A detailed discussion of modeling (Cauchy-Green) strain tensor, and the last term represents the
considerations has also been presented. The microresonators additional axial strain due to flexure for fibers at a distance
studied in this work, which are used as micromechanical filters, y from the centroid of the cross-section. For the considered
are important for mobile communication systems and signal microresonators, the longitudinal inertia is small compared
processing applications. It is believed that the numerical and with the restoring force, and hence, based on this hypothesis
analytical efforts presented in this work can be used as a basis it follows that uo = 0 (w2) (i.e. uo is of the order of w2) [23].
to develop design tools for such systems. Making use of this assumption and neglecting terms of order

520



A semi-analytical tool based on geometric nonlinearities for microresonator design

where nlayers denotes the total number of layers and E(t ) (x) is
_the modulus of elasticity of the kth layer. After substituting
[] A, (x) (A.8) into (A.7) and performing integration over the strain

C•e e '+e1 field P.,, the result is

X, - i - ZUe(t) = (EEL, dEx) dA dx

Figure 20. Geometry of a typical finite element. = E ,2dA dx. (A.9)

higher than 2; that is, ignoring terms that involve the square of After substituting (A.4) into (A.9), the expression obtained is

auo/ax and retaining the square of awo/ax (which represents I [(aUO\2 + (IaWO'\ 2
Z2

the rotation of a transverse normal line in the beam) yields UE(t) =2JjAELaX 2 2 Z

duo ;)2w o I ( w o 2 o2  axwo

ax X2 •• 2 ax) -2- ••-_-2 - d) Z+ (- ) ---La ax Z + -ýX -( 0 ] Ai0)
= [j + I+_O2 2W O4

4 1 O
--• +Zx,(A.4) 4 xI

where The higher-order term l/4(awo/ ax) 4 can be neglected in the
above expression. Although the strains are continuous through

0 = [auo +1 (ao,0\21 awo the thickness, stresses are not, due to the change in material[ax 2 -'ax J = ax2 " coefficients through the thickness (i.e. each lamina). Hence,
the integration of stresses through the laminate thickness
requires laminawise integration. Integrating (laminawise) over
the cross-sectional area A, and noting that since z is measured

A.2. Strain energy from the neutral axis of the multi-layered cross-section, all

For a given element, the strain energy U' is given by integrals of the form f z dA must vanish, one obtains

UeQ) = f aiJ dt.j dV. (A.6) Ue(t) = f (EA)ff( \ax)dx

Here Ve is the volume of the element, aij(x,z,t) and If (8 2wo
EO(x, z, t) denote the Cartesian components of the stress and + IJf (E l ( )a dx

the Green strain tensors, respectively. Due to the assumption 2 i 'x2 2
of small strains, no distinction is made here between the (EA)¢f- - x, (A.ll)
Cauchy and the second Piola-Kirchhoff stress tensors [22]. 2 a \ax]
The total volume of the laminated element is given by the where (EA).ff(x) and (EI)ca(x) denote the effective
tensor product A. x C2, where A, is the cross-sectional area, extensional and bending stiffness of a typical (generic) finite
and C2, = [xe, x,+j ] defines the length of the element. Here, element, respectively. One can note that the first two integrals
x. and x.,+ are the x-coordinates of the left and right nodes of in (A. I I) represent the linear strain energy while the third
the element, as shown in figure 20. integral is the contribution from the nonlinear component of the

In view of the explicit nature of the assumed displacement strain, 1/2(awo/ax) 2 . In order to derive the stiffness matrix
field (A. 1) in the thickness coordinate z and its independence from the expression for the strain energy given by (A. 11),
of coordinate y, the volume integral can be expressed as the it is necessary to express the displacement fields uo(x, t) and
(tensor) product of integrals over the length, x, <_ x _< x,+,, wo(x, t) in terms of the generalized nodal displacements de(t),
and the cross-sectional area of the element: i = 1, 2,..., 6 (see figure 21). This can be accomplished by

f(-)dV = ( dA dx. assuming a displacement field for uo(x, t) and wo(x, t). Byi v, i 
letting

Therefore, the expression for the strain energy can be
simplified as follows (for a beam element, the only nonzero uo(x, t) = ao(t) +a, (t)x, (A. 12)

components of strain and stress are El I I=E, and a1  - acx): wo(x,t) = bo(t)+bj(t)x+b2(t)x 2 +b 3()x
3 , (A.13)

Ue(t) = k k 1j (arx. dE..) dA dx, (A.7) and using the boundary conditions,

where ax. is the axial stress and Exx is the axial strain given by uo(x. t)%.=, = d'(t), uo(x, t)O..,., = d (t), (A. 14)
(A.4). Assuming that each layer is isotropic with respect to its a
material symmetry lines and linearly elastic, the axial stress wo(x, t)%=., = de(t), -wo(x, t)%=, = d(t),
and strain are related by Hooke's law ax

a
k,) (),2,)wo(x, t~ ... = d•(t), -xxw0 (x, t)I,..... = d()(7,(')(x, t) = E( (x)r,.;, (x, 1), k = 1, 2, ..... ntxde~)yaersde~)

(A.8) (A. 15)
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In view of (A. 18)-(A.20), the element strain energy U' can be

written as

ed. (t) Ue(t) dT) dE (t) dx

'" '.----4 f, d,(). ONr(x) ON2(X)de2(t 4de", 2 )n, ax ox

d, (f) - I f× EAr aj x de,(t)]

dN(t) (x)-X [d (t) ax×(t) dx. (A.21)

It is to be noted that even for relatively large deflections, the'7 d (t) term EAdl1.3N1(x)/3xdj(t) may be treated as a constant

equal to the axial tensile force in the element. Hence,

Figure 21. Generalized nodal displacements and finite-element introducing

basis functions. EA, aNi (x) [.I I d]ld(t)eo, If, (t ,t= EA t, - Id()
-4 -x 1,0= A [ 1i ] 1J d~) M

it can be shown that EAa[d4(,) - de(t)], (A.22)

dl d(t) 1,
uo(x, t) = [Ni(x) N4 (x)] Id,(t) (A.16) it is obtained that

I , aN I(x) aNT (x) 1
where U'(t) = 2 djT(t) Ei Ea (x ax dx]d'(t)2 n Ox Ox J

X X
Nt(x) = I-- N4(x)= lr t dN 2 (x) =N 2 (x)

+ 2 d t) U. El, 7X ax dx j (t)

are the linear Lagrange basis functions, 1, = x.+- x is the 2 r& N (x)(AN2(x)d 1
length of the element ý2, and + -d•T(t)P. U, Ox Ox dx] ( 2

[2<(t)If d• () 1 .. Kntceeg
wo(x,t)=1N 2 (x) N 3(x) Ns(x) N6(X)' d3(t) A.3. Kinetic energy

d,'(t) In this work, the effect of rotary inertia is ignored. Consistent

d6(t)) with this kinematic assumption, the kinetic energy is given by{[ro.0x,,1:+][O o.x,12
(A.T17) T.)= - fm.(x) 2 La L--T t--- 1dx,

where 
2 4 1 t

x2 X3  x 2  x 3  (A.24)
NAX) = 1 - 3 +2- , N 3(x) =x-2-+ -F2 where m,,f(x) is the effective mass per unit length of the multi-

x 2  x 3  x 2  x 3  layered element. In view of
Ns(x) = 3-, _ 2- N6() = -T + +1,, j auo(x, t) N (x)ddi(t) = Ni(x)d ,(t), (A.25a)

are the cubic Hermite basis functions. Symbolically, (A. 16) at dt

and (A. 17) can be written respectively as Ruwo(x, t) = .(dd2() (t)at N2tx) - - = N2(x)d2(t), (A.25b)
Ot dt

uo(x, t) = Ni(x)dI(t) (A.18) the element kinetic energy TP can be written as

and xP (t() l de•(t) [•. mff(x)Nr (x)Ni (x) dx de (t)

wo(x, t) = N2(x)d2(t), (A. 19) 2 U

where NI(x) and N 2(x) are referred to as shape function 2 2 k [[er(x)Nf(x)N2 (X)dx &(t). (A.26)
matrices. Furthermore, . Jn , .

Ouo(x, t) aN3 (x) A.4. Virtual work due to nonconservative distributed forces
Ox = - Ox dI(), (A.20a)
ax a"x The virtual work done by the nonconservative distributed

x wo, x d•()' (A.2Ob) forces has the form
a X ax ax (t)= f.f(x, t)Buo(x,t) & + fi•(x, t)Swo(x, t) dx,

0
2

w 0(x, t) 
2
N 2 (x) - ,

ax 2  = Ox2  d2 (t). (A.20c) (A.27)
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where fu(x, t) is the externally applied axial force per unit the geometrical stiffness KM. The elastic stiffness matrix K,
length, buo(x, t) is an arbitrary axial virtual displacement, is the same as that used in the linear analysis and its nonzero
fw(x, t) is the externally applied transverse force per sub-matrices are given by
unit length and Awo(x, t) is an arbitrary transverse virtual
displacement. In view of (A.18) and (A.19), the virtual F A. 3N(x) aNTN(x)
displacements Suo(x, t) and Aw0(x, t) can be written as KaII = (EA~e(x) "x ax x (A.37)

Suo(x, t) = N,(x)Sd,(t) (A.28) and

and aNT(X) aN2(X)
awo(x, t) = N2 (x)6d2(t), (A.29) KE22 = (EI)Jf(x) N - dx. (A.38)

f ax ax

respectively. On using (A.28) and (A.29) in (A.27), the virtualwork due to the nonconservative distributed forces has the form t r o componen oe
3fye,(t) = f.(x,t)N()dxl matrix, KI, is given byj] f~x, d~(t = P aNT(x) 8N2(x)

K22 = P, 2 dx. (A.39)

+ k[ fw,(x,t)N 2(x)dx W Ide(t) k ax ax
It is important to mention that the geometrical stiffness matrix

=,Ader(t)f(t) + 2d~r(t)f(t), (A.30) K' either increases or decreases the direct stiffness coefficients

where f, (t) and V (Q) are the generalized element nodal forces. (diagonal terms), depending on the sign of the axial force P_.
Note that the integration domain above is the small sub-domain After substituting (A.32), (A.33) and (A.36) into (A.3 1), one
(0 << x << 1,) of a typical finite element. obtains

A.5. Equations of motion in the time domain Med'(t) + [KIE + Kef]dl(t) = ft(t), (A.40)

In this section, Lagrange's equations [ 13, 24] are used to derive which is the equation of motion for element e in the global
the equations of motion. Treating the nodal displacements inertial reference system. Expanding this equation of motion
der(t) = {d~T(t), deT(t)) as the generalized coordinates, to system size and combining all the element equations, the
Lagrange's equations take the form equation of motion for the entire system can be written in the

d ( aT' aTe a U following form:

dti ad)T _ýdl +A.3)Md(t) + Cd(t) + Kd(t) = f(t), (A.41)

where

frT(t) = {ir(t), fT(t) (A.32) where

After using (A.26), one can write K = KE + KG (A.42)

d (laT1 '[M' 1  01.4 d(t) =Med(t), (A.33) is the global stiffness matrix, and M, KE, KG and f(t) are

dt [ 4. M' , the (global) mass matrix, elastic stiffness matrix, geometrical

where M' is the element consistent mass matrix, and its stiffness matrix and force vector, respectively. All these

nonzero sub-matrices M'1 and M•2 are defined as matrices and the force vector of the complete system are
obtained from the corresponding individual element matrices

= f mdff(x)Nr(x)Nj (x) dx (A.34) and load vector by using the direct stiffness method; that is,

and M= A(MW), KE=A(K ), KG=A (E)
e=1l e=1 =Il

M'22= fmefn(x)NT(x)N2(x)dx. (A.35)n 2 and

In this work, since the system is a natural system (the kinetic
energy has the quadratic form shown in (A.26)) [20, 21] f(t) = A (fW(t)),

and its mass distribution does not depend on the generalized
coordinates; hence aT'/ad'T = 06x I. By using (A.23), the where A is the so-called assembly operator [25] and nej is the
last term on the left-hand side of (31 ) can be written in the number of elements in our model.
following form: Here, the Rayleigh proportional damping is introduced in-U = d the equation of motion with the following formulation for the

=U I [K,,02 1 ]~ +[02x2 02x4 'I(tW damping matrix:
~deT 04x2 KI-22  04.2 Ke 22J I d2(t)I

= [Ke + Ke ]de(t). (A.36) C = aM + PK. (A.43)

Thus, one can clearly see that the total stiffness of the In (A.43), ca and ,8 are coefficients which can be obtained from
element consists of two parts, the elastic stiffness KM and the modal properties of the microresonator.
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Appendix B. Actuator and sensor models microresonator structure, and it is needed to bring that outside
as an externally distributed force that is structurally equivalent

The derivation of the electromechanical coupling at the input to M(x, t). From [27], it follows that the relationship between
and output ports makes use of the constitutive equations M(x, t) and f (x, t) is given by
of a linear piezoelectric material. The length direction of ai2M(x, t)
the piezoelectric film is chosen along the x-axis, the width fý(x, t) = ax 2  (B.6)
direction is chosen along the y-axis and the height direction is At the output port (i.e. the sensor side), the output current,
chosen along the z-axis. This choice of variables implies 12(t), can be written in terms of the output charge, Q2(t), as
that the structure of the constitutive equations of a linear follows:
piezoelectric material in the 'T-E' form is [26] d

,12(t) = ~-Q2(t). (B.7)
St = sT, + d3 E3, (B. Ia) The output charge is found by integrating the electric

D 3 =d3 TI + ,E33. (B.lb) displacement, D3(x,y,t), over the area of the sensing
electrode:

Here, the contracted (Voigt) notation is used to simplify the L fo2(x)
presentation of second- and fourth-order tensors. In (BI)S =s Q20) = fLL D3 dy dx
E., and T, =_ a, are the strain and stress in the x-direction L t )

of the beam; D3 and E3 are the electrical displacement and =fL f (d3 T+ CT3E3) dy dx. (B.8)
electrical field along the piezoelectric film in the z-direction L L-L2 O)

and sE, d31 and ET are the x-axis mechanical compliance at In the case of a noncollocated sensor, the voltage across the
a constant electric field, the transverse-piezoelectric-coupling sensor is maintained at E3(t) = 0. After using this fact and
coefficient and the permittivity at a constant stress of the film, appealing again to the actuator equation (B.8) simplifies to
respectively. fL b 2  ( x d

At the input port (i.e. the actuator side), through the Q2(0) = L-L2 0 d3,7T, (x, t) dy dx. (B.9)

converse piezoelectric effect, the voltage applied across the Here, the stress in the sensing layer, T, (x, t), can be written
active film causes a forced strain equal to in terms of the longitudinal strain, St (x, t), and the Young's

S1 (t) = d3 E3(t), (B.2) modulus of the piezoelectric film, Ep, as

where E3(t) is the electric field across the active film, which T, (x, t) = EPSx, (x, t). (B.10)

is given by Since we assume that the thickness of the piezoelectric sensing

V, (W) layer (h.) is relatively small compared to the thickness of the
E3(t) W -= (B.3) resonator substrate (he), the longitudinal strain in this layer is

jhp approximately equal to the longitudinal strain at the surface of
This forced strain is caused by the electric field, which is the microresonator structure. This total strain consists of both
uniform through the active film; hence, the forced strain is a bending strain and an extensional strain:
also uniform in the active film. This means that, if we restrain h, a2w 0 (x, t)
the active layer from an extension, the forced stress is also S t(x, t) = -- _2 (B.! la)
uniform through the layer, and it is equal to

SS,(t) , auo(x, t) II a ,o(X, t))2
Ts()= = S (t)E' (B.4) (X t) = ax + 2 ) . (B.llb)

Sit

where E, is Young's modulus of the piezoelectric film. Since In this work, the contribution from the nonlinear component

the film's offset from the neutral axis, the forced stress given by of the extensional strain to the output charge is neglected.

(BA4) is translated into a distributed internal bending moment When the input at the drive electrode has a dc bias, in addition

M(x, t). To obtain an approximation for the distbute to the time varying excitation, the effect of the nonlinear term

moment, one can follow along similar lines of earlier work. is included in the model as a constant axial load. With this

The distributed bending moment is given by the product of the assumption, the output charge is found by combining (B.9)-

lateral force caused by the piezoelectric film, T,(t)hpb,(x), (B.l ), resulting in
and the distance between the film and the neutral axis of Q2(t) = d3, Ev ] [x - 2 dy dx
the microresonator. Assuming that the thickness of the JL-L 21 ( LaX 2 1x2

piezoelectric layer (hp) is relatively small compared to the L x~b(x , t) h, a2w°(x.'t)1
thickness of the resonator substrate (h,), after using (B.2)- = d3cE] ,2 (x) x 2 ax2Jdx
(B.4), the expression for M (x, t) becomes (B 12-

(B. 12)

M(x, t) = [T, (t)hpbl (x)]- = [S, (t)EvhPbj (x)]h-' and, in the frequency domain,
2 2 Q2w LL

j d3lEph,bi (x) V, (t). (B.5) Q )= d3 E1  -Lb 2(x)

It is known that an externally transverse distributed force, × [iiuo(x, w) h, a 2wo(x, &)1 dx, (B.13)
f.(x, t), leads to an internal bending moment at each section [ ax 2 ax2  J
of the microresonator structure, but here one has the reverse; where Q2(Mo), wo(x, w) and uo(x, w) are the Fourier
one has an internally generated distributed moment inside the transforms of Q2(t), wo(x, t) and uo(x, t), respectively.
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Abstract
Piezoelectrically actuated and sensed microscale resonators have been
widely studied for filtering, communication and sensing applications. In this
effort, to characterize these resonators, the nonlinear frequency-response
behavior of these resonators is examined and parametric identification is
carried out. A nonlinear beam model is used with a single-mode
approximation to produce a forced Duffing oscillator. Nonlinear analysis is
used to obtain the frequency-response equation, and this equation is used
along with a least-squares minimization scheme to identify the linear and
nonlinear parameter values in oscillator models describing the microscale
structures. A linearized analytical model of the stepwise axially varying
resonator is also used to obtain additional system parameters. The
experimentally identified parameter values are found to be in agreement with
predicted values obtained from a nonlinear beam model. Parameter values
obtained from multiple sets of data for PZT and AIGaAs microresonators
are used to observe trends with respect to a variety of operating conditions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction Ayela and Foumier [12] proposed a method, in which a
DOffing oscillator model is used to determine the parameter

Piezoelectric microscale resonators and resonator arrays values for microstructures exhibiting nonlinear behavior.
are currently being developed through a number of In their identification scheme, seven parameter values are
different efforts. These devices are manufactured by determined by using seven equations. These equations
using microelectromechanical systems (MEMS) fabrication correspond to the amplitude and frequency of the maxima
techniques with the goal of replacing the bulky macroscale associated with the increasing (or forward) and decreasing
resonators currently in use. With microscale dimensions, they (or backward) frequency sweeps, the frequency difference
require only a fraction of the space, and in addition, the power between the location of the maximum determined during the
requirements are low compared to those of their macroscale beasin or focard f the poinere the
counterparts. A number of different resonator devices of increasing or forward frequency sweep and the point where the
various geometries are currently being developed. A few response drops to the lower branch of the response curve and
of these include clamped-clamped resonators [I], film bulk the critical force and amplitude values. These critical values

acoustic wave resonators (FBARs) [21, ring-shaped contour- correspond to the separation of the responses observed during

mode resonators [3] and various disk resonators [4, 5]. During increasing and decreasing frequency sweeps into two unique

their development, the presence of nonlinear behavior has been curves. By using a large number of data points, the method

observed in many of these devices [6, 7]. Modeling and proposed in this paper allows for a better representation of

identification of the nonlinear behavior of dynamic systems the response in the presence of noise and/or small deviations

has been the focus of a large number of studies. These from the 'ideal' case, where the experimental data align
efforts include both non-parametric identification methods perfectly with a frequency-response curve determined by using
[8] and parametric identification methods [9-1 ]. Here, a the forced DOffing equation. Furthermore, the scheme does
parametric identification scheme is developed and applied to not require data points collected during the backward (or
study the nonlinear dynamic behavior of clamped-clamped decreasing) sweep of the excitation frequency. Also, the
microresonators. method developed here provides additional information such

0960-1317/06/081593+09$30.00 © 2006 IOP Publishing Ltd Printed in the UK 1593
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Figure 1. Structure of the piezoelectric, microscale hEl
clamped-clamped resonator.

1/4-1 -1/4-1 he Figure 3. Structure of the AIGaAs microresonator.

h, Dynamic Signal Analyzer

Laser Doppler Vibrometer

Figure 2. PZT resonator and geometry.

as the average residual stress levels in a microscale structure. Microscals
A parametric identification scheme was also proposed by Resonator
Malatkar and Nayfeh [ 13] to study systems exhibiting similar -
nonlinear dynamic behavior. However, unlike the scheme Power Supply

described in this paper, the identification scheme of Malatkar
and Nayfeh was meant to be applied to frequency-response Figure 4. Experimental arrangement utilized to excite and monitor
data that did not exhibit jumps. the transverse oscillations of a microscale resonator.

In the next section, the microscale structures of interest Table 1. Representative PZT resonator dimensions.
are discussed and the experimental arrangement is described.
In the third section, the model development is presented. Dimension Symbol Value

The identification scheme is discussed in the fourth section. Resonator length 1 200 pm
Preliminary studies of parameter trends are presented in the Width of all layers b 20 Am

fifth section. In the last section, remarks are collected and Thickness, SiO 2  h, 1.06 gm
Thickness, bottom Pt h2  135 nm

presented. Thickness, PZT h3  530 nm

Thickness, top Pt h4  200 nm

2. Piezoelectric microresonators
Table 2. Representative AIGaAs resonator dimensions.

The microresonator design studied in this work consists of a
clamped-clamped microstructure machined out of acomposite Dimension Symbol Value (pm)
wafer [ I ], as shown in figure 1. The dynamic characteristics of Resonator length 1 200
the resonators provide spectral filtering of the electrical signals. Width of all layers b 10

In order to produce the desired piezoelectric actuation and Thickness, bottom AIGaAs:Si h, 2.0
Thickness, AIGaAs h2  1.0

sensing capabilities, the device is fabricated from a composite Thickness, top AIGaAs:Si h3  0.5
wafer [14]. The different layers of one style utilizing the
piezoelectric properties of lead zirconate titanate (PZT) are
shown in figure 2. The suspended structure is produced by being fabricated to be thicker than the PZT resonators. This
removing a portion of the silicon substrate from underneath results in a stiffer device with higher resonance frequencies,
the oxide layer. This silicon dioxide layer, which provides and the onset of nonlinear behavior in this device occurs at
the primary stiffness for the resonator, offsets the neutral axis higher excitation levels. This design also helps eliminate some
of the structure from the centerline of the piezoelectric film, of the problems that can arise when materials with different
and the two platinum layers serve as electrodes for the PZT. lattice structures are placed together on a composite wafer. The
The top electrode is separated to create input and output arrangement of the three layers of the AIGaAs microresonators

ports for the microresonator. Representative dimensions of is shown in figure 3. One set of dimension values for this
geometry corresponding to figure 2 are presented in table 1. resonator type are presented in table 2.

In a second type of microresonators that is studied, The arrangement of some of the key components of
aluminum gallium arsenide (AIGaAs) is used for the the experimental setup is illustrated in figure 4. With the
piezoelectric layer [15]. For this style of resonator, the two sample fixed in an RF probe station, a function generator
electrode layers are produced by doping AIGaAs with silicon or dynamic signal analyzer is used to apply a harmonic
(AIGaAs:Si). The thickness of the bottom layer of AIGaAs:Si signal while the response is monitored by using laser
is increased in this design to provide additional stiffness for the interferometry. After initially conducting the frequency sweep
resonator and eliminate the need for an additional layer, such in a quasi-static fashion, simulations are conducted with
as SiO 2 in the PZT resonators. Some of these resonators are the identified parameter values and it is determined that a
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4 _0 Furthermore, h(x) is a discontinuous function that describes
the separation between the neutral axis and the applied axial

400. -• ou. Ff, n- force. This separation produces the distributed moment that

350 -G excites the resonator [7]. The subscripts n and m are used to
S identify the sections of the stepwise axially varying geometry

25 of the structure and M is the total number of sections. The
250 summation is required to calculate the total axial stretching

, 200 within all of the sections. Subscripts following a comma ','
indicate partial derivatives. To complete the model, boundary
conditions and compatibility conditions are required. The

S100 boundary conditions constrain the displacement and slope of
r 50 the beam at each end to be zero. Since these resonators are

30 5 made up of three different segments, the displacement profile
300 3s 310 315 320 325 330 is separated into three sections that require continuity at the

Frequency (kHz) two intersections. In order to accomplish this consistency,

Figure 5. Frequency-response data for a 200 Aim PZT resonator, the compatibility conditions require that the displacement,
Data obtained during an increasing frequency sweep are represented slope, moment and shear be equal on both sides of each of the
by asterisks and data obtained during a decreasing frequency sweep connections. The composite structure of the resonators also
are represented by circles, requires additional calculations to obtain averaged properties

such as the bending stiffness and the axial stiffness. These
swept-sine signal from the analyzer can be used to obtain values are calculated based upon the assumption that the
valid results. The signal produced by the laser vibrometer effect of the coupling between bending and stretching is
is sent back to the analyzer to produce a frequency-response negligible. With the nonlinear partial differential equation,
plot. A representative frequency-response data set is shown in the boundary conditions, the compatibility equations and the
figure 5, where the response amplitude is given in nanometers averaged properties, the model of the resonator is complete.
and the excitation frequency is given in kilohertz. Data In order to facilitate the analysis of this model, the
represented by asterisks '*' correspond to an increasing (or Galerkin procedure is employed. Noting that the response
forward) frequency sweep and data represented by circles o' range of interest is close to the resonator's first natural
correspond to a decreasing (or backward) frequency sweep. frequency, a single-mode approximation is used. Through
Although data are shown for both forward and backward this procedure, the simplified model takes the form of a forced
frequency sweeps, only the forward sweep data are used in Duffing oscillator, shown as (2) where z(t) is the temporal
the parametric identification scheme. amplitude. The coefficients of this equation, to be identified

through the parametric identification scheme are the following:

3. Resonator model the modal mass in, the viscous damping coefficient E, the linear
stiffness coefficient k, the nonlinear stiffness coefficient a3 and

The frequency-response data obtained from the microscale a modal force parameter F.
With this model, a number of the parameters can

resonators clearly reveal nonlinear characteristics. Although b icted by usng the ro rg met ersal

the dimensions of each resonator may suggest that a plate

model may be appropriate, a beam representation is found to properties and the resonator's modeshape function. With

adequately model the dynamic behavior of the device. To either a target frequency or an independent measurement of

account for the nonlinear behavior of the resonators within the axial force PO, the modeshape can be determined and
used to calculate the values of ,is, k and cr3. An approximate

the model, both axial stretching and nonlinear curvature

are considered [16]. By applying a single-mode Galerkin value of PI, and subsequently F, can be calculated by using

approximation to the nonlinear beam model, it is found that the piezoelectric property of resonator and the magnitude of

the contribution of the nonlinear curvature to the coefficient the applied sinusoidal signal. This is discussed in depth in

of the resulting cubic term is more than thr orders of section 5. With the aid of the parametric identification scheme

magnitude smaller than the contribution of the axial stretching to be presented in section 4, the parameters Af, e, k, a3, F and

term. For this reason, the nonlinear curvature is considered PO can be identified from experimental frequency-response

to be negligible. Because of this, only the axial stretching data of the piezoelectric microscale resonators.

is included when modeling the traverse deflection W. as a inhj(t) + ez(t) + kz(t) + Co3z3 (t) = F cos(wt). (2)
function of axial position x and time t. The overdots in (2) are used to represent time derivatives.

[P.(t)h(x)]..• = pA. W., +cW,,, + (El. W,.), + poW,,. A harmonic excitation is assumed in arriving at (2). The
M tdifferent modal coefficients are defined byE.21 (W ...2 ,XIWX 1 .

-~ ~/(~)j(w)~] a,,inI F f 0ji 4(.) [pA~. . (.)1]dx} (3)
Within (1), the parameters and variables used are as ,=l

follows: mass per length pA., viscous damping coefficient 3 1
c, bending stiffness El4, compressive axial force Po, axial Y_= 0,,(x)[cO,(x)]dx (4)
stiffness EA. and axial force from piezoelectric layer P,. _ ,

1595



A J Dick et al

k= 3 = 4p.(x)[E [P'V(x)-hPO.Z(x)] dx ()

a3 =. (X) 0. x)I
E( EA. f'(X 2 })L (6)

3 2 Frequency

E ,0t)X I TX1 8 2 1~~xl d) (7) Figure 6. Thick lines are used to show the analytically predicted
frequency-response curve, and the stable and unstable response

segments are shown by solid lines and dashed lines, respectively.
where the primes in (5) and (6) indicate spatial derivatives and The thin lines are the critical-point curves, which are independent of
0, (x) is the considered modeshape function. Previous studies the excitation level. The encircled intersections of these lines
have shown that a forced Duffing oscillator with a hardening- represent the critical points of the frequency-response curves.

type nonlinearity is capable of producing a frequency-response
curve with a structure similar to the experimental frequency- (a) M
response data obtained from the piezoelectric microscale
resonator [17]. Assuming the nonlinearity, damping and
forcing to be weak and focusing on excitation frequencies close
to the first natural frequency, the method of multiple scales E
is used to obtain an approximate solution to the nonlinear - rni+Fi+kx+cax 3 = Fcos((Ot)

differential equation (2) [18]. The approximate solution for c (d)
this case is found as (8) where HOT stands for higher order
terms and the amplitude and phase are governed by (9) and
(10), respectively.

z(t) = a(t) cos(tot - y (t)) + HOT (8) Frequency

Figure 7. The effects of increasing parameter values on the
a (t) = -1a (1) + K sin(y, (1)) (9) analytical response curve. The curve depicted by using solid lines

a(t)k(t) = ara(t) - ýora 3(t) + K cos(y(t)). (10) corresponds to the nominal case, and the curve illustrated by using
dashed lines corresponds to the effect of increasing the following:
(a) viscous damping coefficient, (b) nonlinear stiffness coefficient,

Periodic responses of the microresonator correspond to (c) linear stiffness coefficient and (d) modal force parameter.
the fixed points (ao, yo) of(9) and (10), that is, 6 (t) = k(t) =
0. The fixed-point equations provide the frequency-response
equation (11), which shows how the amplitude of the periodic 4. Identification scheme

response changes with respect to the excitation amplitude and
the excitation frequency. The parameter values at which the With the aid of the nonlinear beam model, the systemfixed points lose stability are given by the critical points' parameters are examined to determine how they affect
equation (12). the structure of the frequency-response curve. In order to

determine how best to design the parametric identification

[A' + (a2o'_)a2 ]a02 = K' (11) process, the damping coefficient, the linear stiffness
8 0 8  0  coefficient, the nonlinear stiffness coefficient and the modal

,+ (a - laa0)(a - 2aao) = 0. (12) force parameterare examined. The influence of the modal mass

is not examined because the modal mass is calculated from
The variables within (I 1) and (12) are related to the the nominal geometry, material properties and approximated

parameters of (2) by the following relations: mode shape of the resonator. Frequency-response curves

= .•kT"7ý, 12 = o/w0", o = 0 - , ( showing the effects of an increase in each of these parameters
=(13) are displayed in figures 7(a) through 7(d). As expected

S= •/( 2#wo), at = c3 /k, K = F/(2k). and shown in figure 7(a), the damping coefficient affects

The critical points, where bifurcations occur, are satisfied by the amplitude of the peak of the frequency-response curve
both (11) and (12). Analytical curves produced by using these while leaving much of the rest of the curve unchanged.
equations are displayed in figure 6. The nonlinear stiffness coefficient influences the amount by

In order to determine the spatial function needed to which the peak of the frequency-response curve leans away
calculate the coefficients for the forced Drifting equation from from the neutral position corresponding to the first natural
the nonlinear beam model, the linearized system is considered frequency, as illustrated in figure 7(b). Changing the value of
and from analysis of this system along with the boundary and the linear stiffness results in a shifting of the system's linear
compatibility conditions, the first natural frequency and the natural frequency and this causes the horizontal position of the
associated mode shape are determined. This mode shape is peak of the frequency-response curve to change, as shown in
used as the spatial function. figure 7(c). The modal force represents the general magnitude
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bifurcation point by tuning the viscous damping coefficient.
Frequency-ase Slet Inisti Parameter As previously mentioned, the identification procedure isont c Folle Im Values to Approximate

Da eafpa anromVlto p rData designed specifically to study nonlinear dynamic behavior

that experiences jumps in the frequency-response data.

CLwea sFt-wit uLea Ft Frequency Experimental data sets that do not experience jumps can be
Curve Fitwith SquaresF.tU Synciont.ation studied with one of the identification schemes previously

Equation Point Analytical Model discussed, such as the method developed by Malatkar and
- mP Nayfeh [13]. Here, a similar tuning procedure is used but only

No Fthe analytically predicted amplitude of the upper bifurcation

No Npoint is compared with the amplitude of the last experimental
Deaslre Yes Global Ye Fit Parameter Values data point before the jump. Although this does not take into

S11i ia, Z, k, a,, F, P account any difference in the frequency, additional iterations of

the identification process account for this discrepancy through
Figure 8. A flow chart depicting an overview of the parametric tuning of the linear stiffness coefficient. While both the modal
identification scheme utilized to quantify the behavior of the force parameter and the viscous damping coefficient affect the
microscale resonators. Starting from the top left corner,
experimental data and initial parameter value guesses are input into amplitude value at the peak of the frequency-response curve,
the identification scheme. The three-part identification process is only the modal force parameter significantly affects the portion
employed to tune the parameter values by comparing the of the curve away from the peak. As a result, it is possible to
experimental data with an analytical model. These three steps are determine a unique combination of these two parameters for a
repeated until the desired precision is attained. The resulting
parameter set is varied and reanalyzed to ensure that they given set of experimental data.
correspond to the global optimum. In the final of the three stages within the identification

scheme, the linearized system is used to obtain an approximate

of the force being applied to the system and a change in the mode shape. This mode shape is determined by tuning the

value of this parameter affects the response amplitude of the axial force within the linearized system to synchronize the

entire frequency-response curve most notably at the peak; this first resonance frequency of the model with the frequency

is illustrated in figure 7(d). calculated from the identified parameter values. The axial
force value is tuned in the same fashion as the other parameters.

4.1. Stages of identification This provides an approximation of the microresonator's mode
shape for this natural frequency and an axial force value that

Based on the information presented in figure 7, the parametric can be used to calculate the average residual stress in the
identification scheme is developed so that the parameters resonator. By using this approximate mode shape, the modal
with the most influence over the response are fit before the mass value can be recalculated. This new modal mass value is
parameters that affect the response the least. A flow chart then used in the next iteration ofthe identification process to aid
depicting an overview of the parametric identification scheme in the further refinement of the values of the other parameters.
is presented in figure 8. First, it is necessary to select initial Upon completion of these three stages of the identification
values for each parameter so that the peak of the analytical scheme, the parameter values are examined to determine if
curve is located within the same frequency range as the the desired level of precision has been obtained. If the
experimental data and exhibits a similar structure. While parameter values are not determined to sufficient precision,
the selection of these values has a very large effect on the the identification scheme is returned to the first stage of the
results of the parametric identification process, the initial three-stage process by using the cufient parameter values for
values are easily determined by using relations obtained from thee-stag process Sing the currentiparameter alues f
the Galerkin procedure and by using a visual comparison ofthiniavlusSnctesyemsnoieradhsa
the predictedanaly l p cdurve and the experavimenal datpa.n o multi-dimensional parameter space, the possibility exists thatthe predicted an alytical curve and the expe rim ental data. t ei e tfc to c e e m y c n eg ol cl o t m n

Once the initial values are selected, a three-stage nthe identlfiation scheme may converge to local optima and
parametric identification scheme is applied to determine the not the global optimum. To avoid selecting local optima, after
optimal combination of parameter values in order to fit the the scheme has gone through a sufficient number of iterations
analytical curve to the experimental data. In the first stage, to produce the desired level of precision, each of the key

the frequency-response equation (I1) is utilized for a least- parameter values, t, k, a 3 and F, is perturbed both positively

squares curve fitting process. The parameters determined in and negatively to produce eight different sets of parameter

this section, in the order identified, are the linear stiffness values. These eight sets are then used as initial values and

coefficient, the nonlinear stiffness coefficient and the modal the results of the nine cases are compared. If the first set of

force parameter. These parameters are identified by tuning parameter values is found to have the best values, then it is

each parameter as long as the difference between the analytical considered to represent the 'global optimum'. The quality

curve and the entire experimental data set continues to of each set of parameter values is determined by calculating

decrease. The parameters are tuned both positively and an RMS error from comparisons of the resulting analytical
negatively for a number of different adjustment sizes. values with the experimental data. In the event that the best

In the second stage of the identification process, set is one of the eight perturbed sets, these optimized values
the frequency-response equation (11) as well as the are perturbed to produce eight new sets and the same process
critical points equation (12) are utilized to fit the upper is repeated.
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Figure 9. Nonlinear frequency-response curves: (a) a 200 pum PZT microresonator and (b) a 200 gm AIGaAs microresonator.
Experimental data are represented by asterisks and circles. Analytical curves that are plotted with solid and dashed lines correspond to
parameters obtained with the parametric identification scheme and the nonlinear beam model, respectively.

4.2. Identified parametersfor PZT and AIGaAs Table 3. Comparison of parameter values for the PZT resonator.
microresonators Parameters Parametric Beam model

The same experimental arrangement and procedures are and units identification Beam model (bow stress)

employed for both PZT and AIGaAs microresonators. In i (kg x 10-") 1.58 1.58 1.58
figure 9(a), a comparison of the experimental data and e(Nsm-l x10- 8) 7.81 - -

frequency-response curves obtained on the basis of the k (N m-') 60.91 60.88 69.78
identified parameter values and beam model parameter values a3 (N m- 3 x10* 2) 32.4 3.54 3.53

P (N x 10-3 ) 1.50 1.50 1.87
is shown for a PZT microresonator. The large difference " (kHz) 312.61 312.55 334.61
between the beam-model response and the identified response Qs397.15 - -
is reflected by the parameter values and this is discussed c,,., (MPa) 43.56 43.56 54.29
shortly. For the PZT microresonator, a minimal RMS error
value of 1.0943 nm is calculated from the forward sweep Table 4. Comparison of parameter values for the AIGaAs resonator.
data and the identified parameter values. Although only the
forward sweep data are used to determine the parameter values, Parametric
the analytical curve plotted with identified parameter values Parameters identification Beam model

in figure 9(a) shows agreement with both the forward sweep

data and the backward sweep data. For this particular data Fn (kg xlO-") 1.13 1.13 1.12
set, the RMS error calculated for the backward sweep data e (N s m` x10-) 1.55 - -

has an even smaller value of 1.0814 nm. This indicates k(N m-) 54.02 54.02 45.83
a3 (N m- 3 x10,12 ) 24.6 2.84 2.84

that although the backward sweep data are not taken into P (N xl0-') -2.68 -2.68 -5.88
account, the identification scheme is able to predict the correct " (kHz) 347.58 347.58 321.42
frequency response in the lower branch, including the jump Q,,•,,,, 1599.19 - -
location. 7,,,, (MPa) -8.94 -8.94 -19.6

In figures 9(b), the experimental data collected from a
200 Am AIGaAs resonator are presented with analytical curves
produced with the parameter values identified by using the measurement method (e.g., [19]). From comparisons of the
authors' identification scheme and those calculated by using identified resonance frequencies, it can be confirmed that the
the nonlinear beam model. The difference seen between the AlGaAs microresonator is stiffer than the PZT microresonator.

beam model response and the identified response is similar The experimental AIGaAs data also show lower response

to that seen for the PZT device. Once again, the parametric amplitude values than the PZT resonator data for equivalent
identification scheme is able to match the analytical curve to input signals. This observation is consistent with the fact
the experimental data well. For the data shown in figure 9(b), that the AIGaAs resonators are stiffer and experience smaller
an extremely small RMS error value of 0.5666 nm is transverse deflections and that the piezoelectric coupling of
calculated. the AIGaAs material is not quite as strong as that of the

In tables 3 and 4, the parameter values determined by PZT material. However, as seen from tables 3 and 4, the
using the parametric identification scheme and numerical AIGaAs resonator has a higher effective quality factor Q
values calculated from the nonlinear beam model are shown compared to the PZT resonator. This higher Q-amplification
for the PZT microresonator and AIGaAs microresonator, for the AlGaAs resonators compensates substantially for the
respectively. The second column of each table contains increased stiffness and reduced piezoelectric coupling.
parameters calculated by using the identified axial force In the case of the PZT microresonator, for the identified
value. The parameters in the third column correspond to axial force, the numerically obtained parameter values from
residual stress levels determined by using the wafer bow the beam model generally agree with the identified values with
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the largest discrepancy being between the values obtained

for the nonlinear stiffness coefficient. For the numerical
0.9

values calculated with the residual stress from the wafer bow
0.8

measurements, the increased stress/axial force values affect
the linear stiffness coefficient, and subsequently, the first E 0.8

resonance frequency. ®
20.o

For the AlGaAs microresonator, there is also a difference " 0.4

between the residual stress levels that affect the linear "0.3
stiffness coefficient and frequency. When comparing the 0.

parameter values within table 4, the deviation between the O.

identified and calculated values for the nonlinear stiffness _ _ __Z_ _ _

parameter is consistent with results obtained for the PZT 0 0.2 0.4 D .v ot. 1 1.t 1.4

resonators. A number of possible sources of this discrepancy

are investigated. A single-mode Galerkin approximation is Figure 10. Approximating a linear force-voltage relation. The

selected because the frequencies examined are in close circles 'o' represent modal force values for different data sets andthe solid line is a linear curve fit to these data points.
proximity to the resonators first natural frequency and the

second natural frequency has a value of more than twice the
value of the first. Studies have shown that the use of 5.1. Modal force and piezoelectric coefficient

,the domain method with the device's modeshapes is one of In order to understand how changes in the amplitude of
the more successful means to produce a reduced order model the applied signal affect the modal force parameter, the
[20]. In addition, aprofile assembled from multiple single point corresponding term in the nonlinear beam model is examined.
measurements is found to most closely match the first linear The excitation results from the distributed moment produced
modeshape. When conducting the perturbation analysis, a by the piezoelectric material. The excitation term in (1) is
weak nonlinearity is initially assumed and found to match well separated into a time-dependent function P. (t) and a position-

to the experimental data. Plotting the RMS error against the dependent function h(x). Following the application of the
excitation amplitude shows that low excitation levels produce Galerkin procedure, the modal force function F(t) given by
nearly linear behavior, moderate excitation levels produce (7) is produced. After carrying out integration by parts twice
weakly nonlinear behavior and higher levels of excitation with respect to x, (14) is obtained.
produce stronger nonlinear behavior that diverges from the P(t) = P-(t)h0'(xj). (14)
model and produces higher RMS error values. The curvature
nonlinearity is not included in the nonlinear beam model for By using the block force method to obtain the axial force
the reason stated in section 3. The consistent deviation between from the piezoelectric material, the definition of the modal
the nonlinear beam model and the experimental data suggests excitation term can be further expanded to include material
that there may be an additional source of nonlinearity that must properties, additional device geometry and the applied voltage.

be taken into account in the nonlinear beam model to more The block force method is a highly approximate method that
accurately represent the dynamic behavior of the considered treats a piezoelectric actuator as a line force without accounting
microresonators. for any spanwise variation of stress or strain. This form of the

Overall, as demonstrated here, it has been possible to modal force is given in

produce a successful curve fit to the experimental data by P(t) = EA(d 3 t/t)V(t)h0'k(xl). (15)
using the parametric identification scheme constructed on the
basis of the Doiffing oscillator. This equation can be used to gain addition information

about the device. From a number of data sets collected from

the same device for increasing drive voltage values, a complete
5. Trends of identified parameters set of parameter values can be identified. A plot of the modal

force parameters versus the drive voltage amplitude yields a
Here, results of preliminary investigations conducted into the near-linear set of points under 'ideal' conditions. An example
variations of the identified parameters with respect to the of this data is displayed in figure 10. Rearranging (15) to

selected inputs or operating conditions are reported. By solve for the piezoelectric coefficient, d3 l, reveals a term that
studying the parameter trends caused by changes in the input directly corresponds to the slope of the data points. Because
signal and operating conditions, it is possible to determine this term consists of two temporal functions, it is important to
how to improve the resonator design and how to preprocess the note that the slope of the data points represents the ratio of the
input signal to improve the resonator performance. Different amplitudes of the two harmonic functions and a negative sign
swept-sine signals with increasing amplitudes and the addition must be included to account for the phase difference. This

of various dc bias levels to fixed amplitude sinusoidal signals form of the equation is shown in (16), where the actuator area
are considered. The application of a dc voltage has been used A = bh, F0 is the amplitude of P(t) and V0 is the amplitude
to control the stiffness of a MEMS device [21]. The addition of V(t).
of a dc bias to the excitation signal is also used to account
for remanent polarization of the piezoelectric material. The d3t = -(Fo/Vo)(Ebh'(xj))-. (16)
parameters examined include the modal force parameter, the With additional information about the resonator, it is
linear stiffness parameter and the nonlinear stiffness parameter. possible to calculate values for the piezoelectric coefficient.
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Figure 11. Trends of the first, linear natural frequency for different PZT microresonators. Diamonds correspond to 10 0 Am resonators,
squares correspond to 200/pm resonators and circles correspond to 400 /m resonators. Identified parameter values are presented in (a) and
model parameter values are presented in (b) showing how the model is capable of explaining the parameter trends.
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Figure 12. Trends of the nonlinear stiffness coefficient for different PZT microresonators. Identified parameter values are presented in
(a) and model parameter values are presented in (b) showing how the model is partially capable of explaining the parameter trends.

This is useful since material properties of thin-film materials refined values of this voltage-force ratio can be used to
often differ from their macroscale counterparts and the determine the piezoelectric coefficient d 3t for the devices.
properties of these materials can be dependent on the various By using the ratio values from this basic model, piezoelectric
fabrication procedures to which they are exposed. In initial coefficient values ranging from -93.3 x 10-12, to -163 x
applications of the identification scheme, the determined 10-12' are determined for the PZT microresonators.
piezoelectric coefficient values range from -116 x 10-12n Although this is merely a coarse approximation, these values
to -192 x 10-12-'. These thin-film material values are of are of a magnitude common for the piezoelectric coefficients
the same order of magnitude as the piezoelectric coefficient of bulk PZT materials.
values associated with bulk ceramic materials. However, To qualitatively compare the identified parameters with
the thin-film material piezoelectric coefficients are smaller in those of the nonlinear beam model, the changes in the
magnitude. identified first natural frequencies are shown in figure 1 I(a)

for a range of dc bias levels and the changes in the first natural

5.2. Axial force, linear stiffness and nonlinear stiffness frequencies obtained from the model are shown in figure I 1 (b)
for a range of axial force values. Within these figures, the

The addition of a dc bias to the applied signal produces a diamonds 'C>' correspond to a 100 Am PZT resonator, the
constant axial force in the microresonator. As the value of squares 'Fl' represent the frequency values of a 200 Am PZT
the dc bias increases, the peak of the frequency-response resonator and the changes in the frequency values of a 400 Am
curve shifts to the right. Based on the parametric study PZT resonator are represented by the circles V'.
previously discussed, the axial force produced by the addition Another parameter that is significantly affected by the
of the dc bias affects the linear stiffness of the resonator. addition of a dc bias is the nonlinear stiffness parameter.
This behavior agrees with the fundamental understanding of Increasing the level of dc bias causes the identified nonlinear
the effects of an axial force within clamped-clamped beam stiffness parameter values to decrease. The nonlinear stiffness
structures. By using the nonlinear beam model, it is possible parameter values also appear to be influenced by the hysteresis
to calculate linear natural frequency values that qualitatively of the piezoelectric material. Again, by using only a basic
and quantitatively agree with the frequency changes observed model, a range of axial force values is found where the value
in the experimental data. While the model utilized within of the nonlinear stiffness decreases as the axial force increases.
this work does not include the effects of the hysteresis of To qualitatively compare the identified parameters with those
the piezoelectric material, a basic linear approximation is of the nonlinear beam model, the identified nonlinear stiffness
compared with identified parameter values to obtain a rough values are shown in figure 12(a) for a range of dc bias levels
range for the dc bias and the axial force. By using the block and the nonlinear stiffness parameters from the model are
force method, that is, axial force = EA(d 3u/t)(dc Bias), shown in figure 12(b) for a range of axial force values, both
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normalized with respect to their initial parameter values. The [2] Kirby P B. Su Q X, Komuro E, Zhang Q, Imura M and
axial force values are normalized with respect to the buckling Whatmore R W 2001 PZT thin film bulk acoustic wave

force so that buckling occurs at a normalized axial force value resonators and filters Proc. IEEE Inter. Freq. Ctrl.
Symp. & PDA Exhibition (Seattle, USA, 6-8 June)

of negative one. pp 687-94
In this section, parameter trends with respect to the [31 Piazza G, Stephanou P J, Porter J M, Wijesundara M B J and

resonator inputs have been examined by applying the Pisano A P 2005 Low motional resistance ring-shaped
parametric identification scheme to a series of data sets. These contour-mode aluminum nitride piezoelectric

parameter trends included modal force parameter values for micromechanical resonators for UHF applications Proc.
IEEE Inter. Conf. MEMS (Miami, USA, 30 Jan-3 Feb)

various drive voltage amplitudes and linear and nonlinear pp 20-3
stiffness variations with respect to dc bias. By using the [4] Hao Z and Ayazi F 2005 Support loss in micromechanical disk
nonlinear beam model, it has been possible to explain the resonators Proc. IEEE Inter. Conf. MEMS (Miami, USA, 30
trends of each of the parameters and produce numerical values Jan-3 Feb) pp 137-41
that qualitatively agree with the identified values. While 15] Yan L, Wu J and Tang W C 2005 A 1.14 GHz piezoelectrically

transduced disk resonator Proc. IEEE Inter. Conf. MEMS
further work will be necessary to develop more complete (Miami, USA, 3OJan-3 Feb) pp 203-06
models of the trends, identifying this qualitative agreement [6] Balachandran B and Li H 2003 Nonlinear phenomena in
is important in validating the selection of the nonlinear beam microelectromechanical resonators Proc. IUTAM Symp. on
model and determining the course of future work. Chaotic Dynamics and Control of Systems and Processes in

Mechanics (Rome, Italy, 8-13 June) pp 97-106
[7] Li H, Preidikman S, Balachandran B and Mote C D Jr 2006

6. Concluding remarks Nonlinear free and forced oscillations of piezoelectric
microresonators J. Micromech. Microeng. 16 356-67

In this paper, a parametric identification scheme is developed [8] Masri S F and Caughey T K 1979 Nonparametric
with the capability of analyzing nonlinear systems that exhibit identification technique for non-linear dynamic problems

J. Appl. Mech. 46 433--47umsin their frequency-response behavior. In addition toJ.Ap.Mc.4334
jumps Jaksic N and Boltezar M 2002 An approach to parameter
its ability to identify the parameter values corresponding to a identification for a single-degree-of-freedom dynamical
nonlinear model, this identification scheme can also provide system based on short free acceleration response J. Sound
additional information about a device such as the average Vib. 250 465-83
residual stress level. The identification scheme is applied [10] Nayfeh A H 1984 Parametric identification of nonlinear

to frequency-response data collected from piezoelectric dynamic systems Comput. Struct. 20 487-93
111] Yasuda K, Kamiya K and Komakine M 1997 Experimental

microscale resonators in order to quantify their nonlinear identification technique of vibrating structures with
behavior. Methods are developed to determine the values geometric nonlinearity J. Appl. Mech. Trans. ASME 64
of an equivalent viscous damping coefficient, a linear stiffness 275-80
coefficient, a nonlinear stiffness coefficient, a modal force [121 Ayela F and Foumier T 1998 An experimental study of

anharmonic micromachined silicon resonators Meas. Sci.
parameter as well as the level of axial force and the modal Technol. 9 1821-30
mass of the resonator. The identification scheme has been [13] Malatkar P and Nayfeh A H 2003 A parametric identification
successfully applied to data obtained from both PZT and technique for single-degree-of-freedom weakly nonlinear
AIGaAs microscale resonators. The parameter values are also systems with cubic nonlinearities J. Vib. Control 9
compared to numerical values obtained from a beam model 317-36
and agreement is seen. The identification scheme is applied to [14] Piekarski B, DeVoe D, Dubey M, Kaul R and Conrad J 2001

Surface micromachined piezoelectric resonant beam filters
multiple data sets and parameter trends have also been studied. Sensors Actuators A 91 313-20

In future work, it is conceivable that a parametric 1151 Kumar P, Li L, Calhoun L, Boudreaux P and DeVoe D L 2004
identification scheme such as that discussed in this work can Fabrication of piezoelectric Ale 3Gao.7As microstructures

be used to tailor the characteristics of a MEMS array, so that Sensors Actuators A 1115 96-103
phenomenon such as localization [22, 231 can be engineered [16] Thomsen J J 1997 Vibrations and Stability: Order and Chaos

(UK: McGraw-Hill)
to improve the performance of the considered devices. [17] Nayfeh A H and Balachandran B 1995 Applied Nonlinear

Dynamics: Analytical, Computational, and Experimental
Methods (New York: Wiley)
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