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INTRODUCTION

Endocrine therapy is often the least toxic and most effective treatment for hormone receptor positive invasive
breast cancer. Such therapy includes antiestrogens (tamoxifen, fulvestrant) and aromatase inhibitors
(anastrozole, letrozole, exemestane). Tamoxifen (TAM) increases disease free and overall survival in the
adjuvant setting, reduces the incidence of estrogen receptor positive disease (ER+; unless otherwise noted
ER=ER0) in high-risk women, and reduces the rate of bone loss secondary to osteoporosis in postmenopausal
women [1,2]. Aromatase inhibitors are effective only in the absence of functioning ovaries - TAM can be used
regardless of menopausal status. Recent studies suggest that anastrozole may be superior to TAM in the
adjuvant treatment of postmenopausal women with ER+ breast cancer; other studies report higher overall
response rates with letrozole (LET) vs. TAM as first line therapy in the metastatic setting. Thus, a recent
controversy in the management of patients with ER+ disease is whether an aromatase inhibitor or TAM should
be given as first line endocrine therapy [3-9].

In this Clinical Translational Research award, we will build classifiers that accurately separate antiestrogen
sensitive from antiestrogen resistant breast tumors and begin to assist in the direction of specific endocrine
treatments (antiestrogen vs. aromatase inhibitor) to individual patients. We hypothesize that endocrine
responsiveness is affected by a gene network, rather than the activity of only one or two genes or signaling
pathways [10-12]. Since the key components of such a network are unknown, we must study 10,000s of genes.
We will use Affymetrix GeneChips. We will not identify mutational events, the presence of mRNA splice
variants, or post-translational protein modifications. However, these factors have major effects on the
transcriptome and their "footprints” should be identified by expression microarrays.

BobDy

Overview: We will build classifiers that separate antiestrogen sensitive from antiestrogen resistant breast
tumors and begin to assist in the direction of specific endocrine treatments (antiestrogen vs. aromatase inhibitor)
to individual patients. To achieve this goal, and consistent with a CTR award, we will complete a 4-year,
prospective, neoadjuvant study with Letrozole (LET) or TAM as the only systemic therapy. We will obtain
molecular profiles from Affymetrix GeneChips and further develop and apply our innovative bioinformatic and
biostatistic methods to explore these high dimensional data sets and build/validate new classifiers. A more
accurate predictor of endocrine responsiveness would have widespread clinical use, allowing women and
physicians to make more individualized and appropriate treatment decisions. For example, patients with tumors
predicted to be resistant to antiestrogens and/or aromatase inhibitors would be strong candidates for an early
intervention with cytotoxic chemotherapy.

In most predictive/prognostic marker studies investigators focus on a single factor and whether they obtain a p-
value that reaches conventional statistical significance. Our approach is different because we will determine
whether we can find joint gene subsets that can separate patients into sufficiently distinct groups that should
differ in their treatment. We will (1) analyze >33,000 genes on retrospective and prospective material, (2) apply
new biostatistical and bioinformatic methods to identify ~40 potentially informative "biomarkers,” (3) build
neural network and biostatistical model classifiers, (4) evaluate the joint discriminant power of selected genes
concurrently rather than as single biomarkers, (5) focus on prediction for individual patients where the
assessment of a p-value is less important than the classification rate of our predictors, (6) validate the classifiers
in independent data sets, and (7) explore the ability of predictors to refine the targeting of specific endocrine
therapies.

Evidence has begun to accumulate suggesting that an aromatase inhibitor might be a more effective first line
endocrine therapy for some breast cancer patients than the current standard of care (Tamoxifen). These data
have generated considerable interest and controversy, in part because unlike TAM, there are no long term
studies with aromatase inhibitors where definitive survival data are available. Our study could provide new and
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innovative insights into how to approach the more effective targeting of specific endocrine therapies to
individual patients.

Specific Aims (from the original application)
We will complete two clinical studies and collect gene expression profiles from which to build predictors of
endocrine responsiveness. Predictors will be built in Specific Aim 2 and validated in Specific Aim 3.

Aim 1: Clinical Studies - Clinical Study-1 (retrospective) is of pretreatment, single, frozen samples where we
will compare the molecular profiles of tumors that recurred on TAM with those of tumors that did not recur.
Each resistant sample is matched with a TAM sensitive sample by age, stage, and duration of follow-up. We
also have further, single (unmatched), frozen samples from patients already progressing on TAM. Clinical
Study-2 is a prospective study of breast tumor samples from patients treated with neoadjuvant TAM or LET.

Aim 2: We will apply novel bioinformatics and biostatistics to discover gene subsets that define the molecular
differences between endocrine sensitive and resistant breast tumors. These genes will be used, in combination
with established predictive/prognostic factors, e.g., ER, PgR, stage, to build innovative classifiers that can better
predict an individual tumor’s endocrine responsiveness.

AimM 3: We will test, optimize, and validate the performance of the classifiers from Aim 2 in retrospective
studies of human breast tumors. We must measure each gene individually by IHC, in situ RNA hybridization
(ISH), or real time PCR (RT-PCR).

KEY RESEARCH ACCOMPLISHMENTS

Progress on the clinical goals for this award was greatly delayed because of the time taken to obtain DOD
approval of our preexisting institutionally approved IRBs at Georgetown University and at the University of
Edinburgh. All institutionally approved protocols and requested material were submitted to the DOD in July
2004; additional information was requested by the DOD several months later and submitted in November 2004.
We did not receive final approval to proceed with the clinical studies until March 2005. Much of this delay
seems to have been entirely unavoidable and due, in part, to major personnel changes at the DOD (within
USAMRMC). Clearly, this has likely left us behind schedule in recruitment to the prospective studies. As noted
in the previous report and as is again apparent in this report, this did not affect our ability to proceed with the
informatics studies (algorithm development and optimization) and infrastructure development (database
development and installation). We have now published the completed studies presented in our preliminary data
and generated a novel optimization protocol for our multilayer perceptron-based classifiers (also now
published). The in silico tissue heterogeneity correction method described in the application was developed
sufficiently and submitted for publication — this is still in revision. We have been able to proceed with analysis
of some of the retrospective studies and have obtained data and performed initial unsupervised analyses of the
first 60 specimens. Publications supported since the commencement of this award are listed under “Reportable
Outcomes”; these constitute some of our major accomplishments in the past year. These and other key research
accomplishments are presented below.

Statement of Work (from the original application)
e TASK 1. Array breast tumor samples from Clinical Studies 1 (retrospective) and 2 (prospective)
To perform this task we will obtain breast tumor samples and clinical information from University of
Edinburgh, collect and quality test RNA using validated tissue acquisition and processing protocol, and array

RNA samples on oligonucleotide chips (i.e., U133A Affymetrix GeneChips). Please note that we originally
described analyses of approximately 12,000 genes in each sample and now indicate that we will measure
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almost 3-times as many genes. The increase is possible because Affymetrix improved their technology and now
produce single chips with 40,000 probe sets representing 39,000 transcripts, of which 33,000 are well-
substantiated genes. The cost of these chips, which essentially represent the probe sets previously included on
two chips (U133A and U133B), is the same as the original U133A GeneChips described when the application
was submitted. Since we were unable to start arraying in year 1 (see below), this proved very fortunate, since it
greatly increases the power of our study to detect meaningful predictive patterns and genes or networks
associated with the clinical outcomes.

We have received a total of 480 breast specimens (to date) from our collaborators at the University of
Edinburgh; these have arrived at different times and been banked so that they could be processed in the most
effective and logical manner. Of these 480 specimens, we have (to date) had 173 processed as frozen sections
and analyzed by the study pathologist. A further 67 have been processed as frozen sections and will be analyzed
by the study pathologist within days of the submission of this report. We have successfully extracted total RNA
from 172 specimens, and labeled 160 for analysis. We have also completed the hybridization and assessment of
microarray data quality control on 72 specimens; 60 were done on U133 plus 2 GeneChips (the other 12 were
used on older chips to test and optimize our methods for these specimens), representing sufficient data for our
first TAM study. We requested that the specimens be sent independent of the clinical information, so that we
could adequately and appropriately randomize the RNA preparation, labeling and hybridization and minimize
any operator-induced or technology-induced bias. All specimens were processed using our standard operating
procedures; each manipulation being performed by the same individual to further reduced inter-operator
variability.

Using industry-standard internal controls and spike-in controls as recommended by the manufacturer, the
microarray data obtained appears to be of very high quality and reproducibility. In the absence of the clinical
information required for supervised analysis these data, we have begun initial unsupervised analyses. These are
only exploratory and the choice to publish the results of these ongoing (unsupervised) will largely depend on
how well they capture treatment or recurrence status (when that information is available).

We used the current standard RMA algorithms to achieve a log2-based normalization of the data from the first
60 samples arrayed on the HU133 plus 2 Affymetrix GeneChip microarrays. The goal was to separate blindly
(without supervision) the composite signatures. Samples were initially clustered (Sample Clustering) using two
different methods — K-mean and Self Organizing Map (SOM) — and both methods produced consistent
representations of the data as comprising three main clusters. Sample Clusters 1 and 3 each contained 14
specimens, the remaining 32 specimens comprising Sample Cluster 2. We then performed Gene Clustering by
SOM and identified 65 potential gene clusters. From within these gene clusters, we identified those in which the
genes are highly expressed in one sample cluster and exhibit consistently low expression in the remaining two
sample clusters. Thus, we identified Gene Clusters that best define (by these criteria) Sample Cluster 1 (gene
clusters 49, 50), Sample Cluster 2 (gene cluster 19), and Sample Cluster 3 (gene clusters 58 and 59). Currently,
we are attempting to explore further these clusters and we will be in a better position to do so once we obtain
the clinical information. We have now requested this information on these samples, since there is no longer a
need to remain blinded to these clinical data.

We also attempted to apply the more common hierarchical clustering approach (also an unsupervised method)
to this data set but this was entirely uninformative. We also tried clustering using only those genes previously
reported to generate the groups commonly referred to as “luminal A”, “luminal B”, “basal-like”, “her2/neu2”,
and “normal like”. None of these clusters were evident in our data set using this approach. To some degree, this
may reflect the very high proportion of ER+ tumors, which would suggest that the “luminal A” and “luminal B”
groups would be present (perhaps two major clusters), but these two clusters also were not immediately evident.
However, this is a rather simplistic analysis method and is probably not capable of identifying what may be
more subtle differences among the phenotypes represented in our data set.
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e TASK 2. Store, process, and train/optimize classifiers from gene expression microarray data (modified
to reflect our adoption of caArray)

To perform this task we will install and modify the MIAME Compliant caArray database. We will also collect
and store de-identified clinical information and process gene expression data with “in house” state of art
algorithms (we will also further develop and optimize these algorithms throughout this award period). For the
initial studies, we will train/optimize initial neural network RNA classifier (MLP), the final classifier for the
microarray data will be built when we have completed arraying all samples.

As noted in our previous report, we continue to make significant progress on addressing this task, largely as a
consequence of our involvement in the National Cancer Institute Center for Bioinformatics (NCICB) led caBIG
project. The PI (Dr. Clarke) leads the Lombardi Comprehensive Cancer Center’s caBIG team and we have been
actively involved in the development of caArray (NCICB’s grid-enabled, MIAME compliant, microarray
database). The caBIG program is open source-open access and is widely supported by NCICB and teams of
collaborating scientists at other Cancer Centers across the country. We also have found the NCICB team highly
responsive when we identify bugs or problems with the software. While NCICB has had some problems with
the current version of caArray, we worked closely with their team and other Cancer Centers in caBIG to find
and address some of these issues. A new version of caArray will likely be operational at our center before this
report is fully reviewed, since we already are in the process of installation and testing. We anticipate that
continued collaboration through the caBIG community will prove a more cost and time efficient approach to
developing some components of the research infrastructure described in the original application. It is out intent
to build any additional components in a manner consistent with the guidelines established by the caBIG
community, since this will likely ensure long-term viability and the compatibility of our infrastructure.

With respect to the further development and optimization of data analysis algorithms, we have recently
completed and published a new method for optimizing the use of multilayer perceptron (MLP) classifiers.
MLPs are one of the most widely used and effective machine learning methods currently applied to diagnostic
classification using high-dimensional genomic data. Based on Fisher linear discriminant analysis, we designed
and implemented an MLP optimization scheme for a two-layer MLP that effectively optimizes the initialization
of MLP parameters and the MLP architecture. In comparison with a conventional MLP using random
initialization, we obtained significant improvements in major performance measures including Bayes
classification accuracy, convergence properties, and area under the receiver operating characteristic curve (Az).
This work is now published in the journal Bioinformatics.

We also continue to improve our existing algorithms. Our most recent studies in this regard have been to
improve the VISDA algorithms described in the initial application and to begin developing novel approaches
that will allow us to extract gene signaling networks from the microarray data. This will potentially allow us to
obtain mechanistic insights from the data we are generating from the clinical specimens. While we had not
included this possibility in the original application, which focused on classification, we see the potential to
obtain novel mechanistic insights as a significant advantage to our ongoing studies. We will provide additional
information in this regard in subsequent reports; relevant publications in this area are included below.

e TASK 3. Retrain/reoptimize classifiers using IHC data from Series 1 (Archival Tissues) and Series 2
(Scottish Adjuvant TAM Trial) for Validation

To perform this task we will obtain clinical information and breast tumor samples from University of Edinburgh
(formalin fixed/paraffin embedded). We will rank and prioritize selected joint genes from RNA classifier built
and optimized in TASK 2 (above) and retrain/reoptimize the initial neural network IHC classifier (MLP).
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Finally, we will validate IHC classifier on independent data sets (data sets not used to build and train the MLP
classifiers).

We will not be able to start this task on the timeframe as initially proposed here because of the delays in getting
approval to work with the clinical specimens. However, we expect to receive clinical information on the
samples already arrayed within the next 4-6 weeks. This will allow us to perform (and hopefully submit for
publication) an initial analysis of the first retrospective TAM study.

REPORTABLE OUTCOMES

Papers and Meeting Reports*

Updates (cited as “in press” in the last report and now in print)

New

Zhu, Y., Singh, B., Hewitt, S., Liu, A., Gomez, B., Wang, A. & Clarke, R. “Expression patterns among
proteins associated with endocrine responsiveness in breast cancer: interferon regulatory factor-1,
human X-box binding protein-1, nuclear factor kappa B, nucleophosmin, estrogen receptor-alpha, and
progesterone receptor.” Int J Oncol, 28: 67-76, 2006.

Xuan, J., Dong, Y., Khan, J., Hoffman, E., Clarke, R. & Wang, Y. “Robust feature selection by
weighted Fisher criterion for multiclass prediction in gene expression profiling.” Proc 17" Intl Conf
Pattern Recon, 2: 291-294, 2004.

Riggins, R.B., Bouton, A.H., Liu, M.C. & Clarke, R. “Antiestrogens, aromatase inhibitors, and apoptosis
in breast cancer.” Vit Horm, 71: 202-237, 2005.

Bouker, K.B., Skaar, T.C., Hamburger, D.S., Riggins, R.B., Fernandez, D.R., Zwart, A., Wang, A. &
Clarke, R. “Tumor suppressor activities of interferon regulatory factor-1 in human breast cancer
associated with caspase activation and induction of apoptosis.” Carcinogenesis, 26:1527-1535, 2005.

Publications (published and “in press” for the present reporting period)

Wang, Z., Wang, Y., Xuan, J., Dong, Y., Bakay, M., Khan, J., Clarke, R. & Hoffman, E.P. “Optimized
multilayer perceptrons for molecular classification and diagnosis using genomic data.” Bioinformatics, 22:
755-761, 2006.

Zhu, Y., Wang, A., Liu, M.C., Zwart, A., Lee, R.Y., Gallagher, A., Wang, Y., Miller, W.R., Dixon, J.M.
& Clarke, R. “Estrogen receptor alpha (ER) positive breast tumors and breast cancer cell lines share
similarities in their transcriptome data structures.” Int J Oncol, 29: 15812-1589, 2006.

Ressom, H.W., Zhang, Y., Xuan, J., Wang, Y. & Clarke, R. “Inference of gene regulatory networks from
time course gene expression data using neural networks and swarm intelligence.” Proc IEEE Symp Compl
Intel Bioinformatics Comput Biol, in press.

Ressom, H., Xuan, J., Wang, Y. & Clarke, R. “Classification of microarray data using machine learning
methods.” TIBETS, in press.

Xuan, J., Wang, Y., Clarke, R. & Hoffman, E.P. “Normalization of microarray data by iterative nonlinear
regression.” 5" IEEE Symposium on Bioinformatics and Bioengineering, Minneapolis, Minnesota, pp.
267-270, 2005
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*We include in the appendix reprints of those papers that are already published. Manuscripts cited as “in press”
will be included in the next annual report, once reprints are available. We do not list here or include in the
appendices any published abstracts, but can do so if requested. Several other manuscripts related to our
bioinformatic methods also are submitted and in preparation — these will be cited reported in the next report.
Please note that the papers published in the engineering literature are different from most conference
proceedings in the biomedical literature. These are not abstracts but fully peer-reviewed publications
comparable to short communications in biomedical journals.

Comment on Subcontracts: Please also note that the majority of our publications include coauthors from one or
both of our subcontracts. Thus, our program is working very effectively and collaboratively, this also should be
apparent in the development of new informatics methods (Catholic University of America — now Virginia
Polytechnic and State University subcontract — Dr. Xuan recently moved to Virginia Tech) and the large
number of high quality breast tumor specimens we have obtained from the University of Edinburgh.

CONCLUSIONS

We have made good progress on the research infrastructure goals and in the development or optimization of the
methods needed for data analysis. We also have completed and published most of the data presented as
preliminary data in the initial application. The clinical studies were held up by an unexpectedly long delay in
obtaining final approval for our existing protocols but this is now taken care of and we are poised to begin
analysis of our first series of breast cancer specimens.
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ABSTRACT

Motivation: Multilayer Perceptrons (MLP) represent one of the
widely used and effective machine learning methods currently ap-
plied to diagnostic classification based on high dimensional genomic
data. Since the dimensionalities of the existing genomic data often
exceed the available sample sizes by orders of magnitude, the MLP
performance may degrade due to the curse of dimensionality and
over-fitting, and may not provide acceptable prediction accuracy.
Results: Based on Fisher linear discriminant analysis, we designed
and implemented an MLP optimization scheme for a two-layer MLP
that effectively optimizes the initialization of MLP parameters and
MLP architecture. The optimized MLP consistently demonstrated its
ability in easing the cure of dimensionality in large microarray data
sets. In comparison with a conventional MLP using random initializa-
tion, we obtained significant improvements in major performance
measures including Bayes classification accuracy, convergence
properties, and area under the receiver operating characteristic
curve (Az).

Contact: yuewang@vt.edu

1 INTRODUCTION

Diagnostic classification with genomic data refers to the assign-
ment of a particular unknown tissue sample to a known disease
class based on its quantitative mRNA expression pattern from
microarrays. This classification can be performed by a trained
predictive classifier, such as a neural network classifier. This ap-
proach is particularly helpful for diagnosing complex genetic dis-
ease subtypes or stages whose subtle differences may be difficult
to recognize by traditional clinical and pathological approaches
(Bittner et al., 2000; Brown ef al., 2000; Khan ef al., 2001; Mjols-
ness et al., 2001; Ramaswamy et al., 2001; Shipp et al., 2002;
West et al., 2002; Linder, et al., 2004; O'Neill, et al., 2003; Weli, et
al., 2005). A common type of neural network classifier applied to
diagnostic classification is feed-forward back-propagation Multi-
layer Perceptrons (MLP) (Figure 1). Input vectors and the corre-
sponding target vectors are used to train an MLP, a process that
updates the weights and biases until the MLP can approximate a
mapping function that associates input vectors with specific output
vectors. The generalization property makes it possible to train an
MLP with a representative set of input/target pairs and get good

“To whom correspondence should be addressed.

results for predicting unseen input samples. The ability of an MLP
to learn complex (nonlinear) and multidimensional mapping from a
collection of examples makes it an ideal classifier for diagnostic
classification (Haykin, 1999; Khan et al., 2001; O'Neill, et al.,
2003; Wei, et al., 2005).

Despite reported successful studies on applying MLPs to diag-
noses with genomic data, such as gene expression microarray data
(Khan et al., 2001; Linder, et al., 2004; O'Neill, et al., 2003; Wei,
et al., 2005), the most critical problem, that of the curse of dimen-
sionality, has not been effectively addressed. The curse of dimen-
sionality is caused by the finite amount of training data available
relative to the large input feature space. Accordingly, when the
dimensionality increases considerably and the available informa-
tion remains inadequate, the large number of model parameters in
the classifier cannot be well-trained (Haykin, 1999, Jain et al.
2000). Consequently, the classifier performance may degrade be-
yond a certain point with the increasing inclusion of features or
dimensions. In mRNA microarray experiments, there is typically
an extremely ill-conditioned ratio of sample number (10’s to
100’s) to dimension number (probe or probe sets typically
>10,000), which greatly augments the impact of the curse of di-
mensionality (Fukunaga, 1990; Haykin, 1999). In current studies,
the approaches to avoiding the curse of dimensionality are gener-
ally limited to directly reducing the number of inputs. The com-
monly applied methods include conventional dimensionality reduc-
tion methods, such as principal component analysis (Khan, et al.
2001, Wei, et al., 2005), t-statistics (Golub, et al., 1999), correla-
tion measure (van't Veer, et al., 2002), and an MLP training-based
gene selection procedure that selects genes with greater influence
on the changes of outputs in an MLP (O’Neil ef al., 2003).

The design parameters in training an MLP include initial values
of the model parameters (synaptic weights and biases), stopping
rules, and MLP architecture, etc. Since no effective algorithms are
available to search for a global optimum and traditional MLP ini-
tialization is done randomly, classification performance depends
largely on the initial values of weights and biases. Furthermore, the
higher complexity of the classifiers often results in more local
minima in the error surface, and the classifier trainings can easily
be trapped into such local minima (Raudys and Skurikhina, 1992;
Raudys, 1994).

We hypothesized that developing an optimization of MLP ini-
tialization will allow the reduction of the curse of dimensionality,

© The Author (2006). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
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and therefore improve performance of the MLP. Our goal was to
find an effective nonrandom initialization scheme that places the
initial state of an MLP closer to the optimal solution that is later
sought by training (Wang, et al., 2004). This approach is bolstered
by previous studies in statistical pattern recognition field, where it
has been shown that nonrandom initializations of MLP weights
and biases resulted in the MLP with small generalization error
even when the number of samples is smaller than the number of
features or dimensions (Raudys, 1994; Raudys, 1997; Raudys and
Skurikhina, 1992).

2 THEORY AND METHOD
2.1 wFC-Based MLP Initializations

2.1.1 Linear Dimension Reduction and MLP Feature Ex-
traction — Hidden Layer Initialization

The MLP offers an integrated procedure for feature extraction and
Bayes classification by learning the decision boundary (Haykin,
1999). Its feed-forward auto-associative architecture can also be
used to construct nonlinear subspaces in a supervised or unsuper-
vised mode (Haykin, 1999; Jain et al., 2000). The output of the
hidden layer may be interpreted as a set of new features presented
to the output layer for classification (Haykin, 1999). On the other
hand, multi-class linear discriminant analysis provides a multivari-
ate prediction by estimating the density function. Its subspaces that
are extracted based on the weighted Fisher Criterion (WFC), retain
most closely the intrinsic Bayes separability (Loog, ef al., 2001). It
can be shown that the determination of the linear dimension reduc-
tion (LDR) transformation is equivalent to finding the maximum-
likelihood parameter estimates of a Standard Finite Normal Mix-
ture (SFNM) model (Loog, ef al., 2001). This motivates an explo-
ration of the connections between MLP and LDR. A natural hy-
pothesis is that the class labels used as targets during supervised
training force the outputs of the hidden layer to capture the most
discriminatory components or subspaces for distinguishing the
classes. Based on these theoretical observations, we suggest a
wFC-based initialization mechanism for the MLP hidden layer
(Wang, et al., 2004). To limit the complexity of the MLP, we as-
sume that the number of neurons in the hidden layer is smaller than
the number of inputs.

Given an my-dimensional input t-space with K, classes, the
multi-class LDR searches for a linear transformation W that trans-
forms the original input space to a lower m;-dimensional feature x-
space (m; < my); the extracted x-space should preserve the maxi-
mum amount of class discriminatory information. Since it is too
complex to directly use the Bayes error as a criterion, the most
common technique for finding this transformation is LDR that is
based on Fisher criterion (Jain et al., 2000; Haykin, 1999). This
method maximizes the ratio of the between-class scatter matrix to
the within-class scatter matrix, thereby guaranteeing maximal
separability. In this paper, we apply the wFC to the multi-class
classification problem (Loog ef al., 2001), and the wFC is defined
as,

K, -1 K,
Jwe W)=Y 3 z,m0(A,)trace(W'S,'S,, W), (1)

k=1 I=k+1

where W is the linear transformation matrix, =, and r, are the prior
probabilities of classes k and [/ respectively, S,, =Y z,C,, is the
total within-class scatter matrix, and S,, = (s, —p, )(Ry — 1) is the
between-class scatter matrix for classes & and /. @(A,)is the
weighting function defined as,

1 Ay
a2 erf(zﬁ) (@)
where A, =[(1; —1,)"So (1 —1,)]"?is the Mahanalobis distance
between classes k and / with class mean vector p, and covariance
matrix C, .

It has been shown that when there are more than two classes to
be classified, the conventional multi-class Fisher criterion (cFC)
for deriving dimension-reduced subspace is suboptimal with re-
spect to classification (Loog et al., 2001). The reason is that the
cFC treats class pairs with various between-class distances equally.
In contrast, the wFC incorporates a weight function that approxi-
mates the Bayes error rate between classes, and assigns larger
weights to the closer class pairs and smaller weights to the distant
pairs. Thus, in the extracted subspace found by wFC, the classes
with heavy overlap gain adequate emphases, and the distant pairs
remain well separated.

Finding a solution W that maximizes the wFC is essentially a
problem of eigenvalue decomposition of the total Fisher scatter
matrix,

(D)=

K,-1 K,
S;i Z Z ”k”/w(Akl )Su.-/ 3

k=1 I=k+1

By taking only the m, eigenvectors corresponding to the m larg-
est eigenvalues (m; < mg), we can form a transformation that not
only reduces the dimensionality of the original input space, but
also retains maximal class separability information. We call this
procedure wFC-Discriminatory Component Analysis (WFC-DCA).

With the transformation W (m, x m,) derived from LDR, the di-
mension-reduced feature subspace (x-space) with m; dimensions
becomes x, =W'(t,—b,,) , for i=1,...,N , where N is the number of
samples, x, is the representation of the sample vector t, in the x-
space withx  =w(t,-b,) forr=1...,m, and b, is the global
center of the data set. On the other hand, the outputs of the hidden
layer in the MLP (Figure 1) can be acquired as, a, =p(w,'p-5,,),

g
! Figure 1.
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where w! is the set of synaptic weights connecting m, inputs to
neuron » at the hidden layer, q, is the output of neuronn, pis the
MLP input vector, b, is the bias of hidden neuronn, and () is
an activation function (Haykin 1999). The connection between the
LDR and the MLP feature extraction mechanism now becomes
clearer, suggesting that the column vectors of the LDR matrix W
can be used to initialize the weights between the input and hidden
layer of an MLP, w) =w, , and their biases can be initialized as,
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Figure 2. The illustrations of the MLP output layer initialization

approach.

b,=W'b,,. The new features are further scaled by the activation
function ¢(-) that could be linear or nonlinear. It has been theoreti-
cally shown that the minimization of the Bayes error with respect
to the synaptic weights and biases of the MLP is equivalent to
maximizing the wFC (Eq. (1)), and it can be entirely determined
by the hidden neurons (Haykin 1999).

2.1.2 Linear Discriminant Analysis and Multi-class Percep-
trons — Output Layer Initialization

Since the outputs of the hidden layer serve as new features, Fisher
Linear Discriminant Analysis (LDA) determines a linear transfor-
mation for converting an m;-dimensional problem to a one-
dimensional problem (Haykin 1999). Consider the vari-
able y=w'x—b that is transformed from x-space to a one-
dimensional space via LDA, and the LDA is defined by

_ W'S, W
J(w) WIS, w (4)
that is known as the generalized Rayleigh quotient. The solution
that maximizes J(w) is simply w=S_ (n, —n,), which is also a
generalized eigenvalue problem.

The neuron in the output layer behaves similarly as a perceptron
that can be considered as a decision making element that bears a
close resemblance to the Bayes classifier, and has been generalized
to multiple classes (Haykin 1999). Specifically, the outputs of the
neurons in the output layer are computed as, y, =p(w; a-b,,) for
i=1,...,m, , where a is the output vector of the hidden layer, w, is
the set of weights connecting the hidden layer and the output neu-
roni, b, is the bias of output neuroni, and m, is the number of
the output neurons, i.e., the number of classes (Figure (1)). Con-
sider a two-class case with a linear activation function ¢(-), we

1

have  y=w'x-b  with  w=S_(p,-n,) andb=w'b,,
where b,, = (p,, +1,,)/2 . We can use two output neurons to derive a
class-dependent representation by rearranging the output as,
y=w'x-b=(w"x=b)-(W,"x=b)=y,-»,, where w, =S_ln,, ,
w,=S.n,, b =wb,, andb, =wib_, , s0 we
have y, =w/x-b and y, =w,x—-b, . Figure 2a illustrates such an
interpretation. Based on the above derivation, the class-dependent
Fisher linear discriminant transformation w, can be again used to
initialize the weights between the hidden and output neurons as,
w.=S_'n,, and the biases of the output neurons can be,
b,,=wi'b, fori=1,2. Accordingly, for a three-class case, it is
straightforward to have w;=S_p,, b, =wib,, w;=S_n,,
bz.z = winxﬂ > and W§ = S;lvux} > bz,} = winxo > where
b, =(n, +p, +n,)/3. Figure 2b depicts this case. Notice that
such an initialization is readily applicable to single-layer percep-
trons.

2.1.3 Determining the size of the hidden layer

The wFC-based MLP initialization method may also suggest a
suitable number of hidden neurons, a key component of MLP ar-
chitecture. Neural networks, like other flexible nonlinear estima-
tion methods, are vulnerable to problems of under-fitting and over-
fitting (Haykin, 1999; Ripley, 1996). The over-fitting problem
occurs more easily when the number of samples in the training set
is small and the network is relatively large, which is the case for
most genomic data. Therefore, it is important to use a network that
is just large enough to provide an adequate fit. The resulting sub-
space represented by the outputs of the hidden layer should main-
tain as much class separability as possible (Haykin 1999): the re-
tained partial separability is given by J .. = (W) (Eq. (1)). Hence, it
is appropriate to let the number of pseudo genes (i.e., m, , the num-
ber of hidden neurons) be the number of significant eigenvalues
derived from wFC-DCA because the eigenvalues represent class
separability in feature space. In this study, we select the dominant
eigenvalue subset that contains 99% of the total separability, and
let the number of hidden neurons be equal to the number of se-
lected eigenvalues.

2.2 Selection of MLP Inputs

Input selection is a prerequisite for diagnostic classification using
genomic data; we apply our newly developed two-step wFC-based
input selection method (Xuan et al., 2004) that shares the same
theoretical basis (WFC) with the proposed MLP initialization ap-
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Figure 3. The classification rate curves of the oMLP and cMLP with various JDG sets as inputs, (a) LGMD, (b) leukemia, (c) CNS cancer. For all
JDG sets, oMLP consistently outperformed cMLP. The classification rate for each JDG set is the average of the 100 iterations of 3-fold cross valida-
tions. The JDG set corresponding to the maximal classification rate of the oMLP is considered as the optimal JDG set.
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proach. Firstly, we rank all genes based on their individual dis-
criminatory power measured by the one-dimensional wFC (Xuan
et al., 2004); a gene will be selected as an Individually Discrimina-
tory Gene (IDG) if its discriminatory power is above an empirical
threshold. Secondly, from the IDG pool, we select Jointly Dis-
criminatory Gene (JDG) subsets (with various sizes) whose joint
discriminatory power is the maximum among all sets of the same
size. The joint discriminatory power is also determined by the
multi-dimensional version of wFC (Eq. (1)). Furthermore, the JDG
sets are refined by testing on a trained MLP, which ultimately de-
termines the “optimal” diagnostic gene subset that minimizes the
generalization error. From the curve of classification rate vs. JDG
subsets, we pick the optimal JDG subset that corresponds to the
maximal classification rate as the final inputs for the MLP. This
step boosts the MLP performance, and also determines its number
of inputs (m,, Figure 1).

3 EXPERIMENTAL VERIFICATION

3.1 Data

To highlight the biological and clinical relevance, we chose diag-
nostic tasks that are difficult for standard clinical and pathological
methods alone. The following list summarizes the microarray data
sets tested in this study.

(1) Limb-girdle muscular dystrophy (LGMD, provided by

Children National Medical Center, Center for Genetic
Medicine): 4 diagnostic groups, Fukutin related protein de-
ficiency (FKRP) (homozygous missense for glycosylation
enzyme, limb-girdle muscular dystrophy sub-type, n = 7),
Becker muscular dystrophy (BMD, hypomorphic for dys-
trophin, n = 5), Dysferlin deficiency (putative vesicle traf-
fic defect, n = 9), and Calpain III deficiency (n = 11), total
32 samples, 22,283 genes.

(2) Leukemia (Kohlmann et al. 2004): 3 diagnostic groups, T-
ALL (n=9), MLL (n = 10), and BCR-ABL (n = 15), total
34 samples, 312 genes.

(3) Central nervous system (CNS) cancer (Pomeroy et al.
2002): 5 diagnostic groups, Medulloblastomas (n = 60),
Malignant glioma (n = 10), Rhabdoid tumours (n = 10),
Normal cerebella (n = 4), Supratentorial PNET (n = 6), to-
tal 90 samples, 7129 genes.

3.2 Results

The experiments were designed to show the impact of the proposed
MLP optimization method on two major aspects of MLP perform-
ance: prediction accuracy and training efficiency. For the predic-
tion accuracy, we examined classification rate and 4. from Re-
ceiver Operating Characteristic (ROC) analysis; to probe the train-
ing property we recorded initial error (mean squared error, MSE)
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between target and output before training, final error (MSE) after
training, total number of epochs needed for convergence, and per-
centage of converged training.

In all experiments with MLP training and testing, we applied
100 iterations of stratified 3-fold cross validations in order to en-
sure reliability, and all performance measures were calculated
based on the results from the cross validations. In the stratified 3-
fold cross validation, the data set is randomly divided into three
subsets of equal size, and the proportion of each class in each sub-
set remains the same as that in the entire set. In each fold, one of
the subsets is used for testing and the rest are combined for train-
ing; in each iteration, the training is repeated until all subsets have
been used for testing.

The optimized MLPs (o0MLP, wFC-based initialization) consis-
tently outperformed conventional MLPs (cMLP, conventional
random initialization) for all different tested JDG subsets (Figure
3). We selected 200 JDG subsets consisting of 1 to 200 genes as
inputs of the MLPs. Figure 3 plotted the curves of the classification
rate from the test set (those samples not used for MLP training) vs.
JDG subsets, which is part of the step 2 in the two-step input selec-
tion procedure. To determine the optimal JDG subset among the
200 candidate subsets, the oMLP and cMLP were trained with the
same training set and tested with the same test set in each fold for
fairness and reliability. The search of the optimal JDG subset was
considered sufficient when the classification rate of the oMLP did
not increase substantially and the classification rate of the cMLP
decreased consistently over 20 JDG sets. The oMLP was able to
maintain high classification rate as the size of the JDG increased,
whereas the cMLP performance degraded. Moreover, the smaller
standard deviation (STD) of the oMLP classification rate across all
cross validations indicated that the oMLP provided more stable
performance (Table 1).

Additionally, as ROC analysis (Metz, 1986) has been widely
recognized as the most meaningful assessment of medical diagnos-
tic performance (Metz, 1986), we also evaluated relative prediction
performance of the oMLP and cMLP using a one-against-rest ROC
analysis (Hand and Till, 2001) that was specifically designed for
the multi-class classification. The ROC analysis offers a descrip-
tion of the tradeoffs between true positive fraction (TPF) and false
positive fraction (FPF) of a detection test as the decision threshold
varies. In the one-against-rest ROC analysis, the approximated
posterior probabilities (the outputs of an MLP) of test samples
were recorded, and a two-class ROC analysis was applied to all

combinations of one class against the rest classes. For example,
there will be n ROC curves for an n-class classification task. A
ROC curve plots TPF vs. FPF; generally the larger the index, 4,
(area under the curve), the better the prediction performance of the
classifier. With the optimal JDG subset as inputs, the oMLPs had
greater A, values for all one-against-rest combinations than the
cMLPs, therefore showed better overall performance (Figure 4).
Within each individual case, the larger difference between the
prediction accuracies of the oMLP and cMLP corresponds to the
larger differences in A, values (Figure 4 and Table 1).

The evaluations of training properties on the oMLP and cMLP
with the optimal JDG subset as inputs clearly demonstrated the
effectiveness of the proposed initialization approach (Table 1 and
Figure 5). The smaller averages of initial and final MSE and the
smaller STD of the final MSE in the oMLP trainings, also shown
by the training curves (Figure 5), provided clear evidence that the
proper initialization offered a better starting training point so that
the trainings were led to a better and less diverse convergence
point. In addition, we monitored whether each training process
converged by recording the percentage of converged trainings.
Note that a training process is considered as converged only if it
meets the error goal or is stopped by a standard early stop proce-
dure we applied in all MLP trainings to prevent over-training. The
result showed that 100% of the oMLP trainings converged, but a
number of cMLP trainings were eventually terminated by a preset
maximal number of epochs (Table 1). Moreover, the smaller aver-
age and STD of the number of total epochs needed by the oMLP to
achieve convergence further confirmed that the oMLP needed less
computational resources to reach higher classification rate (Table
D).

The two-step input selection procedure is effective and computa-
tionally feasible in handling a large number of genes so that the
curse of dimensionality problem is significantly reduced to a more
manageable scale. The considerable change of the classification
rate over the entire curve (Figure 3) confirmed that the content and
size of the inputs strongly influenced MLP performance. Particu-
larly, since it shares the same theoretical criterion with the pro-
posed MLP initialization method (WFC), their joint influence is
augmented.

We further compared the oMLP to two of the most commonly
applied classifiers, K-Nearest Neighbor (KNN) and One-vs-Rest
Support Vector Machine (OVR-SVM) that is a typical type of
multi-class SVMs (Ramaswamy et al., 2001; Statnikov et al.,
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Figure 5. The training curves of the oMLP and cMLP with the optimal JDG set as inputs, (a) LGMD, (b) leukemia, (c) CNS cancer. The training prop-
erties, e.g., the convergence speed, initial and the final errors, can be clearly observed from the figures. The trainings of the oMLP usually started from
smaller initial errors and converged to smaller final errors, whereas the cMLP training started from and converged to larger and more diverse errors. All
these improved properties supported the advantage of the wFC-based initialization over the conventional random initialization.
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Table 1. The performance evaluation of the oMLP and cMLP with the optimal JDG set as inputs. MLP structure indicates the numbers of inputs (optimal
JDG set), hidden neurons, and output neurons. The transfer functions in hidden neurons and output neurons are linear and log-sigmoid respectively.

Prediction Initial error, MSE  Final error, MSE Total epochs
accuracy
Data MLP structure Classifier Ave., STD, Ave. STD Ave. STD Ave. STD Converged
(Input-hidden-output) % % training, %
LGMD 186-3-4 oMLP 98.69 4.39 0.1726  0.0796  0.0062 0.0146 761.0 1314 100
cMLP 42.05 18.96 04803 0.0718 0.1521 0.0747 16332 5146 50
Leukemia  7-2-3 oMLP 96.96 527 03313  0.1086 2.3x10" 2.1x10"7 7269 415 100
cMLP 87.37 15.77 0.4416 0.1085  0.0279 0.0465 981.0 3689 933
CNS 19-4-5 oMLP 89.82 4.46 0.2658 0.1076  0.0044 0.0057 873.4 2273 100
cancer cMLP 86.86 7.19 0.4527  0.0896  0.0097 0.0125 13683 4188 84.7

2005). Both KNN and OVR-SVM undertook rigorous optimiza-
tions for seeking optimal performance. We determined the parame-
ter K in the KNN model based on 100 iterations of 3-fold cross
validations. Each SVM unit in the OVR-SVM was tested for seven
different kernel functions (linear, second and third order polymo-
nials, and Gaussians with scale factors, 0.01, 0.1, 0.5, and 1.0), and
five penalty values C = 0.001, 0.01, 0.1, 1.0, and 10.0. The KNN
took the optimal JDG set as inputs; the OVR-SVM took two types
of inputs, optimal JDG set and all genes. In summary, the OVR-
SVM with optimal JDG set as inputs and the oMLP provided ex-
cellent and comparable accuracies and the OVR-SVM demon-
strated small improvements, whereas the KNN and cMLP gener-
ally showed inferior performances. Detailed results of these com-
parative experiments can be found in Appendix A (all appendices
are under http://www.cbil.ece.vt.edu/software).

Table 2. The classification rate of the model with the best performance for
the KNNs and OVR-SVMs. The results are listed as average (STD).

OVR-SVM
Data KNN Optimal JDG set All genes
LGMD 41.33 (12.66) 100.00 (0.00) 50.94 (12.58)
K=15 Linear, Gaussian 10.0 Gaussian 10.0
. 88.39 (8.73) 98.37 (3.76) 95.34 (5.97)
Leukemia K=6 Linear Linear
CNS 86.59 (4.65) 95.59 (3.25) 89.13 (3.49)
cancer K=4 Gaussian 10.0 Linear

4 CONCLUSIONS AND DISCUSSIONS

By suggesting an initialization technique based on the wFC and the
link between the MLP mechanism and Fisher LDA, together with
the input selection procedure, we offer an efficient and practical
MLP prototype that can ease the curse of dimensionality in multi-
class high dimensional genomic data classification and provide
excellent generalization performance. The wFC-based initialization
procedure initiates the MLP close to the optimal condition for de-
cision-making, which increases the likelihood that the MLP may
converge to a better local or global optimum. The curse of dimen-
sionality is a significant problem because it can easily lead to poor
predictions to test samples; classification using genomic data is
more prone to this problem due to the small ratio of sample size to
dimensionality. The reduction of curse of dimensionality in the
oMLP is clearly shown by our experimental results: the oMLP was
able to retain its classification rate to a very high level even when

the number of the inputs significantly increased, while the cMLP
performance degraded drastically. Besides, in the design of the
wFC-based initialization, we discussed the close connection be-
tween the classification by MLP and by LDA, and made contribu-
tions in the theoretical insight and experimental validation on how
the MLP actually works.

The improved performance of our optimized MLP approach
does not imply that this method will be effective for any multi-
class nonlinearly separable problem. Such a classification problem
could be an intrinsically nonlinear problem, or may become a
nonlinear problem after dimensionality reduction according to
Cover’s theorem on the separability of patterns. Therefore, the
hidden layer of the MLP needs to perform the additional function
of transforming a nonlinearly separable problem into a linear clas-
sification. This may be achieved by the existing hidden layer
through dual-purpose training, or one additional hidden layer may
be required. An elegant yet simple method is to apply divide-and-
conquer principle to the data set and accordingly introduce some
pseudo-classes to the output layer, such that all class-pairs become
linearly separable. Notice that the discrete decision fusion can be
readily and effortlessly done without using any combiner, since the
pseudo-classes belong to some of the known classes a priori. It is
important to note that a net reduction in MLP complexity can still
be achieved when m, is large, since the total number of weights in a
two-layer MLP is m,(m,+m,) such that the reduction due to my
surpasses the generally limited increase due tom, . Refinements,
allowing a co-determination of m, and m, , may further reduce the
curse of dimensionality and improve the generalization perform-
ance.

A complex multi-class classification task is beyond the capabil-
ity of a single classifier. It is remarkable that the single classifier,
OoMLP, can compete with the OVR-SVM built with a collection of
single binary SVMs and show comparable outstanding perform-
ance when the number of classes is relatively small (<= 5, more
experimental results in Appendix A). However, the OVR-SVM is
generally expected to outperform most existing classifiers as the
number of classes increases (Statnikov et al., 2005).

As another verification of the effectiveness of the MLP initiali-
zation, we tested and compared the untrained oMLP and cMLP,
and the results showed that the untrained oMLPs considerably
outperformed the untrained cMLPs (Appendix B). Even without
training, the hidden layer of an untrained oMLP is able to extract
discriminant features derived from the wFC; then the neurons in
the output layer can perform linear one-vs-rest classifications
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based on these extracted features. We used linear transfer function
in the hidden neurons and log-sigmoid transfer function in the
output neurons. Hence, an untrained oMLP closely resembles
LDA, and the initial condition of the oMLP (i.e., performance of
the untrained oMLP) reflects the performance of LDA.

Using simulated data, we demonstrated that the proposed MLP
optimization method is not sensitive to the deviation of the distri-
bution of a diagnostic group from a standard single multivariate
Gaussian to a mixture of Gaussian (Appendix C). Although the
wFC may only find less precise discriminant components when the
distribution of each class cannot be closely modeled by a single
Gaussian distribution, such loss of information is expected to be
small and can be well compensated by further training of weights
and biases that offers extensive degrees of freedom in modeling
decision boundary.
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Abstract. Established human breast cancer cell lines are
widely used as experimental models in breast cancer research.
While these cell lines and their variants share many phenotypic
characteristics with human breast tumors, the extent to which
they reflect the underlying molecular biology of breast
cancer remains controversial. We explored this issue using
a probabilistic rather than heuristic approach. Data from gene
expression microarrays were used to compare the global
structures of the transcriptomes of three estrogen receptor
alpha positive (ER*) human breast cancer cell lines (MCF-7,
T47D, ZR-75-1) and 13 human breast tumors (11 ER*; 2 ER").
Linear representations of the respective data structures were
obtained by deriving those top principal components (PCs)
required to capture =280% of the cumulative variance for cach
data set (M PCs). We then identified those genes most highly
correlated with the M PCs (Pearson's correlation coefficient
r=0.800) and identified a group of 36 genes commonly
correlated with both the cell line (M = 5 PCs) and tumor (M
= 6 PCs) data structures. All 36 common genes were
correlated with PCI from the breast tumor data: 21/36 genes
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were correlated with PC1, 14/36 genes correlated with PC2,
and 1/36 genes correlated with PC3 from the cell line data.
Genes important in defining the data structures include NFxB
p65, IGFBP-6, omithine decarboxylase-1, and paxillin. When
data from MDA-MB-435 xenografts (ER") were included in the
analysis, we were unable to find any common genes between
these xenografts and the breast tumors. These data clearly
imply that MCF-7, T47D, and ZR-75-1 cells and ER* breast
tumors share substantial global similarities in the structures of
their respective transcriptomes, and that these cell lines are good
models in which to identify molecular events that are likely to
be important in some ER* human breast cancers.

Introduction

Human breast cancer cell lines, whether growing in vitro or
in vivo as xenografts in immun_é_)deficient rodents, are among
the most widely used experimental models in breast cancer
research (1-4). These cell lines and their variants have
been particularly useful as experimental models and enable
investigators to address hypotheses in ways that would be
technically difficult or ethically inappropriate in humans, We
and others have extensively reviewed the characteristics of
selected human breast cancer cell lines, their phenotypes, and
the extent to which these phenotypes reflect key components
of the human disease (2-4).

Almost 100 breast cancer cell lines have been described but
Lacroix and Leclercq estimated that over two-thirds of studies
involved work with only one or more of three models (4): the
estrogen receptor alpha positive (ER*), estrogen-dependent and
antiestrogen sensitive MCF-7 and T47D cell lines, and the
ER-, estrogen-independent and antiestrogen resistant MDA-
MB-231 cell line (3). All three cell lines are tumorigenic and
locally invasive in immunedeficient rodents (2) but only ortho-
topic xenografts of MDA-MB-231 cells produce spontaneous
metastases (5). ZR-75-1 is another commonly used ER* breast
cancer cell line and is phenotypically similar to MCF-7 and
T47D cells (3). MDA-MB-435 cells are widely used as a
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metastatic ER- model (5); while these cells are phenotypically
similar to MDA-MB-231 cells, the breast origin of the MDA-
MB-435 cell line has been questioned (6,7).

It is evident that human breast cancer cell lines reflect
important phenotypic characteristics present in the human
disease, and they have been central to discovering and
extending new knowledge in many areas of breast cancer
research (4). However, the extent to which biological insights
can be extrapolated from preclinical models to the human
disease remains somewhat controversial. Established breast
cancer cell lines exhibit substantial aneuploidy and genetic
instability, and variants can arise spontaneously over time (8).
While this is probably a reflection of the inherent molecular/
genetic instability of breast tumors, it is unclear how well
human breast cancer cell lines growing in vitro reflect the
underlying molecular biology of breast tumors. For example,
a study comparing the molecular profiles of 60 human cell
lines showed that, by unsupervised hierarchical clustering,
breast cancer cell lines do not cluster together but are scattered
across the entire dendrogram (6). These investigators also
reported a hierarchical clustering analysis of data restricted
to five breast cancer cell lines, four leukemia cell lines, two
breast tumors, one breast tumor metastasis, and one specimen
of normal breast tissue. The breast cancer cell lines clustered
together but this cluster was more similar to the leukemia cell
lines than to the breast tumors. Moreover, the normal breast
specimen and the breast tumors formed a single cluster distinct
from all the cell lines (6). A subsequent review of these and
other molecular profiles concluded that breast cancer cell
lines and tumors shared some gene expression patterns in
common. However, the authors took a largely intuitive rather
than probabilistic approach, looking for commonalities in
gene expression patterns in cell lines with predetermined
cellular phenotypes/functions. The authors acknowledged
that alternative interpretations of the data were possible (9).

In this study, our primary goal was to obtain a relatively
unbiased probabilistic assessment of the global similarities in
the transcriptomes of human breast cancer cell lines and breast
tumors. Rather than compare broadly defined phenotypic or
genetic characteristics, we asked directly whether similarities
cxist within the structures of their respective high dimensional
gene expression microarray data. To address this goal, we
first developed an application of principal components analysis
(PCA) (10) based on the general approach described by Jolliffe
(11). PCA is a technique that finds linear transformations of
data such that the first principal component (PC) is that linear
projection that best captures the greatest variance in the data.
The second PC is orthogonal to the first and captures the
second greatest variance, and so on. In this manner, PCA can
be used to find those projections that best capture the overall
structure of the data. We show that three of the most widely
used ER* human breast cancer cells lines (MCF-7, T47D,
ZR-75-1) exhibit substantial similarities in their transcriptome
data structures to a panel of mostly ER* breast cancer specimens
from patients.

Materials and methods

Human breast cancer cell lines. MCF-7 cells were originally
obtained from the Barbara A. Karmanos Cancer Institute

(Detroit, MI), T47D and ZR-75-1 cells were obtained from
the American Type Culture Collection (Manassas, VA), and
MB-MDA-435 cells were from Dr Janet Price (M.D. Anderson
Cancer Center, Houston, TX). All cell lines were maintained
at 37°C in cell culture medium (improved minimal essential
medium with phenol red and supplemented with 5% (v/v)
heat-inactivated fetal bovine serum; Biofluids, Rockville,
MD) in a 95% air/5% CO, atmosphere. All cell lines were
shown to be free of contamination with Mycoplasma spp.

Human breast tumor specimens. The 13 breast tumor
specimens and the associated microarray data used in this
study have been previously reported (12). Five of the 13
specimens were obtained from patients undergoing a diagnostic
core needle or excisional biopsy at Georgetown University
Hospital. All patients signed a written consent approved by
the Georgetown University Medical Center Institutional
Review Board. Core needle biopsies were either obtained
under mammographic or ultrasound guidance during a routine
diagnostic procedure, or obtained intraoperatively after surgical
exposure of the tumor. The study pathologist performed a
routine histopathologic analysis of frozen sections from all
biopsies as previously described (12); biopsies were released
for microarray analysis only if they did not contain any new
clinical information important for patient care. The other
eight breast tumor specimens were obtained at the Department
of Oncology, University of Edinburgh (Scotland, UK); samples
were collected with appropriate patient consent, and all
procedures were performed using guidelines consistent with
the relevant UK legislation. Once released for study, all patient
identifiers were removed from each sample. Information not
already published on these samples is included in Table 1. The
clinical material, mostly frozen in OCT, was directly provided
to the research laboratory for storage and/or processing,
whereupon tissue was either stored at -80°C or processed
immediately for RNA extraction.

MDA-MB-435 human breast cancer xenografts. Cells from
subconfluent monolayers were removed by trypsinization.
To establish xenografts, 1x10° viable cells, as estimated by
trypan-blue dye exclusion, were subcutaneously inoculated
into the region of the mammary fat pad as previously described
(2,13). Mice were 4-6 week old female, NCr nu/nu athymic
mice (~20 g body weight) and were housed 4 or 5 per cage
and fed sterilized, pelleted food and sterilized water ad libitum.
Nude mice (38) were used and tumors were observed at each
of the inoculation sites. Tumors were measured twice weekly
for 4 weeks post inoculum; consistently proliferating tumors
were identified and removed immediately post mortem using
sterile scissors and forceps. Studies were performed by the
Lombardi Comprehensive Cancer Center Animal Research
Shared Resource in a pathogen-free environment within a
central facility approved by the American Association for
Accreditation of Laboratory Animal Care. All work that
required the use of vertebrate animals was performed in
accordance with the current regulations and standards described
by the United States Department of Agriculture and the United
States Department of Health and Human Services, and with
the approval of the Georgetown University Animal Care and
Use Committee.
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Table I. Characteristics of the breast tumor specimens.

Tumor ER Lymph nodes % Cancer Source
| + + 90 GU
2 + - 80 GU
3 + + 90 GU
4 + + 90 GU
35 - ND 80 GU
6 + + 90 EU
7 + + 90 EU
8 + ND 99 EU
9 + - 90 EU

10 + + 90 EU

11 + - 70 EU

12 + + 90 EU

13 - + 90 EU

ER, estrogen receptor alpha (positive, +; or negative, -); lymph
nodes, presence (+), absence (-) of involved lymph nodes, or no
data (ND); % cancer, proportion of each specimen that contains
neoplastic breast epithelial cells; Source, center at which cases were
accrued; GU, Georgetown University; EU, Edinburgh University.
Additional information on selected cases has been previously
published (12).

RNA preparation and gene expression microarray studies.
Study materials were collected over a prolonged period
and were processed slightly differently. These differences
replicate some of the methodologic variability anticipated
across laboratories but might be expected to introduce some
noise into the data. For cell lines growing in vitro, each cell
line sample represents data from an independent cell culture
grown on a different day; no cultures were pooled, nor were
RNAs extracted from cultures grown at the same time. Sub-
confluent monolayers were rapidly trypsinized, cells were
centrifuged at 1,000 x g for 5 min in cell culture medium
and total RNA was extracted from the cell pellets using the
TRIzol reagent as described by the manufacturer (Invitrogen,
Carlsbad, CA). For MDA-MB-435 xenografts in athymic nude
mice, tumors were removed at necropsy, immediately placed
in RNALater™ (Ambion, Austin, TX) and stored at -80°C as
previously described (12). Frozen xenografts from mice were
placed in ‘1x1” plastic bags. pulverized on dry ice, transferred
to 35 ml conical Oakridge tubes (Nalgene, Rochester, NY),
and weighed. Frozen tissues were homogenized in TRIzol
using a polytron homogenizer (Brinkmann Instruments, Inc.
Westbury, NY) and total RNA isolated using the TRIzol
reagent. For the human tumors, frozen tissue was placed in
a “1x1’ plastic bag on dry ice, pulverized, and lysis buffer
added (Qiagen RNeasy kit; Qiagen Inc., Valencia, CA). Each
sample was then homogenized with a | ml syringe and 18
gauge needle, added to the Qiagen spin column, processed as
described by the manufacturer, and RNA eluted with dH,O.
None of the RNAs was amplified or pooled.

RNA concentrations were determined by comparing the
optical density ratios (OD,,/OD,g) obtained spectrophoto-
metrically using a Beckman DU640 Spectrophotometer
(Beckman, Fullerton, CA). RNA quality was assessed using
an Agilent 2100 Bioanalyzer and RNA 6000 LabChip Kits
(Agilent Technologies, New Castle, DE), which allows for
visual examination of both the 188 and 28S rRNA bands as
a measure of RNA integrity. We used high quality RNA as
assessed by standard measures (12).

NamedGenes GeneFilters (ResGen, part of the Invitrogen
Corporation, Inc., Huntsville, AL) that contain 4,132 known
c¢DNAs and 192 controls including total genomic DNAs
(tgDNA) on each filter were used. Probes were generated
as previously described (14). Briefly, total RNA (500 ng)
from experimental samples was reverse transcribed and
simultaneously radioactively labeled by incorporation of
[a-¥PJATP and [a-**P]CTP. This method radiolabels both
the sense and antisense probe strands. Probes were purified
and hybridized to a GeneFilter, and incubated for 12-18 h
at 42°C in a roller oven (Robbin Scientific, Sunnyvale, CA).
Each hybridized GeneFilter was washed twice in 2X SSC,
1% SDS at 50°C for 20 min and once at 55°C in 0.5X SSC,
1% SDS for 15 min. Hybridization signals were detected by
phosphorimage analysis using a Molecular Dynamics Storm
Phosphorlmager (Molecular Dynamics, Sunnyvale, CA).

Microarray data preprocessing. Pathways™ 4.0 software
algorithms (Research Genetics, Inc.) were used to acquire data
from microarray images. Briefly, this software geometrically
quantifies the intensities of both the spot and local background
for each gene. Local background correction is estimated by
subtracting local signals from areas devoid of target from the
raw intensity value of each target cDNA, and a value of one
is added to all non-negative values to conserve the relative
intensities with low expression values. Negative values
resulting from background subtraction were adjusted to one.
Background-corrected data were then normalized to account
for differences in probe specific activity, hybridization, and
other variables among replicates. The global mean method
was used to normalize the data from each array.

A signal bleeding effect from neighboring cDNA spots,
where signals from adjacent spots bleed into each other, is a
major confounding factor with this microarray technology.
To determine if a spot on the filter was affected by signal
bleeding, we used an in-house algorithm (programmed in
MatlLab version R13SP1; Mathworks, Natick, MA; unpublished
data). This algorithm calculates the difference between the
respective local background for a gene and global background
from the filter, expressed as a percentage of the raw intensity
value for that gene. Values above a predetermined threshold
indicate that the signal from neighboring spots bled into the
spot of interest. The digitized images for all spots flagged by
the algorithm were subjected to visual inspection to confirm
any signal bleeding. Genes with signals determined visually
and/or mathematically to be confounded by a bleed effect
were excluded from further analysis.

We used several criteria to identify and exclude likely non-
informative genes and construct a reduced dimensional data set
for analysis. The goal of these preprocessing steps was to
obtain a series of robust expression values for genes determined
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to be present in all three groups to be compared in the study (3
ER* human breast cancer cell lines; 13 breast tumors; 38
MDA-MB-435 xenografts). First, we excluded genes that
have expression values consistently in the undetectable range
in all microarrays or that have signals compromised by signal
bleed as defined above. If a gene was found to be free of
bleeding effects in at least 70% of arrays, data for this gene
were retained for further study. Genes in the undetectable
range were eliminated if their normalized expression levels
were <0.1 in all experimental groups. We did not attempt to
estimate and replace missing values. Application of these
criteria across all microarrays from the cell lines, breast tumors,
and MDA-MB-435 xenografts resulted in a list of 428 robust
gene signals for further analysis.

Data analysis: comparison of high dimensional data structures.
To estimate independently the data structures, we conducted
separate PCA on the robust gene expression data set (n=428
genes) for each of the three groups and determined the
essential dimensionality (M) for samples within the same
group. PCA was performed using the covariance matrices for
standardized gene expression levels. M is defined as the
number of principal components (PCs) needed to account for
the variation in the original data. Jolliffe proposed several
strategies to determine M (11); we applied the most commonly
used rule and selected those PCs that represent the smallest
value of M that captures a high cumulative percentage of the
total variance (=80%).

Once the M PCs were identified for a group, we calculated
the Pearson's correlation coefficient for each gene with each
PC and selected those genes with an absolute correlation
coefficient r=0.800 with at least one of the top M PCs (top
genes). While this approach is broadly comparable to the
method proposed by Jolliffe (11), we ranked the PCs such
that PC1 captured the highest proportion of data variance,
PC1 + PC2 captured the next highest proportion and we
continued until PC1 + PC2...PC,; captured =280% of the
total variance. Thus, we placed more weight on the top PCs,
whereas Jolliffe's method attributed equal importance to each
of the M PCs. Our approach appears reasonable, since genes
tend to have larger correlation coefficients with higher ranked
compared with lower ranked PCs.

Since we explored independently each group, the PCs and
the genes that best define these PCs reflect only the structure
of the data for that group. In this manner, we can compare
the relative importance of each gene expression value across
data structures. Thus, having selected the top genes from
each of the three groups, we compared the respective M PC-
derived gene lists among groups and created a ‘common
genes’ list. For example, if gene-/ was one of the top genes
for both breast tumor and celt line samples, we considered
gene-1 as a common gene between these two groups.

Results

Cell line and tumor data structures share similar essential
dimensionality. For this study, an unsupervised probabilistic
approach applied to each experimental group should have the
greatest potential to generate relatively unbiased, independent
representations of data structures. Since we do not predetermine

Table II. Principal component analysis and essential dimen-
sionality.

PCA Cell lines  Tumors  Cell lines/tumors
(% ) (%) {combined) (%)
M PCs n=5 n=6 n=10
PC1 31.8 35.8 28.8
PC1 + PC2 51.0 48.8 429
PC1...PC3 65.7 582 50.5
PCL...PC4 74.6 60.7 57.0
PCI1...PC5 80.9 74.5 62.6
PC1...PC6 85.7 814 67.5
PCL...PC7 89.9 87.1 71.8
PCl...PC8 93.0 91.3 75.9
PCL...PC9 95.8 942 79.1
PCI...PC10 98.1 96.5 §1.8
r=0.800 (M PC) n=103 n=106 n=65
genes genes genes

31 of the 36 com-
mon genes cor-
relate with PC1
of the combined

Common genes 36 genes are common

to the 103-genes (cell

lines) and 106-genes
(tumors)

group?

M PCs is the number of PCs required to capture 280% of the
cumulative variances in the data set (essential dimensionality).
Percentages are the cumulative variances captured by the sum of the
M PCs as indicated. The final row shows the number of genes in each
group that have a correlation coefficient r=0.800 with at least one of
the M PCs in that group. For example, there are 103 genes correlated
either with PC1, PC2, PC3, PC4 or PCS5 in the breast cancer cell line
data set. “For 22 genes r=0.800; for a further 9 genes r>0.750.

the number of PCs, only the percentage of cumulative variation,
and the M PCs are independently identified within each group,
the M PCs obtained should provide reasonable representations
by which to compare data structures. While we might expect
similar data structures to be defined by approximately similar
numbers of M PCs, this is an inadequate single measure
because the genes most closely correlated with each PC may
be different. Conversely, it is possible that a different number
of PCs may be required to satisfy M in each experimental
group but the genes correlated with the respective M PCs
may be very similar.

To address these issues, we compared the number of M
PCs, ranked these by their relative ability to capture data
variation, and then assessed the correlation of each gene with
each ranked PC. Data sets that exhibit similarities may be
defined by similar numbers of M PCs. More importantly,
data structures with substantial similarities will have the
same genes highly correlated with similarly ranked PCs;
for example, gene-I is highly correlated with PC1 in one
group and also is highly correlated with PC1, PC2, or PC3 in
another experimental group. The higher proportions of genes
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that are highly correlated with top ranked PCs in both groups,
the more similar are the data structures being compared.

In this data set there are over 420 possible orthogonal PCs
that can be explored as projections of the high dimensional
data. However, we would expect most of the data variation to
be captured by a much smaller number of M PCs. Using our
approach, we found that only six PCs are required to define
the breast tumor data structure by our criterion of 280%
cumulative variance (cumulative variance = 80.9%; Table II).
Similarly, only five PCs are required to describe the breast
cancer cell line data structure (cumulative variance = 81.4%;
Table II).

The top principal components of cell line and tumor data share
notable similarities. To compare the PCs, we then calculated
the correlation coefficient of each gene with each of the M PCs
and obtained two gene lists, one for each experimental group.
Thirty-six genes are important in describing independently
the data structures for both the tumor and cell line groups
(Table III). Surprisingly, all 36 common genes were cor-
related with the top ranked PC (PC1) from the tumor data set.
Of the genes from the ER* cell lines data set, 21 genes also
correlated with its PC1. Thus, there are striking similarities
between the top PC in both data sets; each of which capture
almost one-third of the variation in their respective data sets
(Table II). Of the remaining 15 genes, 14 genes are correlated
with PC2; only one gene is correlated with PC3 in the ER* cell
lines data. The sign of the correlation is less informative than
the absolute value of the coefficient; since we would not expect
the PCs to be identical, the direction of each gene's correlation
with a PC may vary in each data set and its absolute value
reflects the true significance. Nonetheless, 61% of the genes
(22/36) show the same directional correlation. Twenty-one of
these genes correlated with PC1, strongly suggesting substantial
similarities in the top PC. Taken together, these data provide
evidence of notable similarities between the human breast
cancer cell line and breast tumor transcriptome data structures.

To further support these observations, we combined the
cell line and tumor data sets and performed PCA on the
combined group. Since the tumors are more heterogeneous
than the cell lines, we would expect the combined data set
to require a higher number of M PCs and that fewer of the
previously identified common genes will be highly correlated
with these M PCs. Consistent with the general similarities,
Table II shows that only 10 PCs are required (cumulative
variance = 81.8%) to define the structure of the combined
data set. We then calculated the correlation coefficients for
the previously identified 36 common genes with the top PCs
derived from the combined group. Thirty-five genes could be
evaluated since one gene was not correlated with the top PCs.
Twenty-two of the common genes met the initial criterion of
r=0.800 and a further 9 genes had correlations of r=0.750
(Table III). All 31 of these genes were correlated with
PC1. The remaining 4 genes were correlated with PC2 (n=1)
or PC3 (n=3) but their coefficients were much lower. Thus,
most of the common genes important in separate group analysis
also are important in combined group analysis.

Since PCA can be used to perform multidimensional
scaling for visualization (12,15), we used the top two PCs to
visualize the combined data group. Fig. | shows that the cell

line and breast tumor samples do not form distinct separable
clusters in 2-dimensional PC space. These projections are
visually consistent with the PCA analysis described above.

We also performed similar independent M PC analyses
using data from 38 MDA-MB-435 xenografts growing in
the mammary fat pad regions of athymic nude mice (data
not shown). Capturing the essential dimensionality of the
data structure required 16 PCs and no genes met the criteria
for commonality between these xenografts and the breast
tumors. Only four genes were found to be in common with
the three other breast cancer cell lines: SI00A 11 (S100 calcium
binding protein A11), PTPN7 (protein tyrosine phosphatase,
non-receptor type 7), MRI (major histocompatibility complex,
class I-related), and DCI (dodecenoyl-Coenzyme A delta
isomerase; 3,2 trans-enoyl-Coenzyme A isomerase). The
notable lack of similarity with the breast cancer cell lines
and tumors is consistent with the putative non-breast cancer
origin (16), although the ER- status of this cell line and the
predominantly ER* status of the breast tumors and breast
cancer cell lines also may contribute to the lack of similarity
in MDA-MB-435 xenograft data structure with the breast
tumors and data sets of other cell lines.

While our approach was not designed to select genes for
their functional relevance or differential association among
specific breast cancer outcomes/phenotypes, we might expect
some of these genes to represent functions implicated in
other breast cancer studies. We used the six main gene
ontology functional categories as defined in the GO database
(http://www.geneontology.org) and applied by Pawitan et al
(17), who compared two gene lists implicated in predicting
breast cancer prognosis. This appears to be a reasonable
comparison as our data set included both lymph node positive
and negative cases (Table I); lymph node involvement is one
of the strongest independent predictors of a poor prognosis
(18,19). Since there are only three common genes between
the 64-gene (Pawitan) and 70-gene (van't Veer) gene lists,
despite the similarities between these two studies, it was not
surprising that we did not find any of those genes in common
with our 36 genes. However, we found 11/36 genes in 5 of
the 6 functional categories (Table IV). Thus, 31% of the genes
are represented in the 6 functional categories, compared
with 37% of the van't Veer et al genes (20) and 45% of the
Pawitan et al genes (21).

Discussion

Limitations in the ability of individual experimental models
to reflect fully the complexity of their corresponding human
cancer are widely acknowledged. For example, cellular
signaling in rodent cells may not be similar to that in human
cells. Human cells require notably more changes in genetic,
epigenetic, or gene expression events for malignant trans-
formation (22-24); the same may be true for post-transformation
events that drive malignant progression. While established
human breast cancer cell lines exhibit many phenotypic
characteristics of the human disease, the ability to use these
models to discover meaningful molecular insights into breast
cancer biology also remains controversial (8). Thus, the
primary goal of this study was to compare the transcriptome
structures, as derived from gene expression microarray data,
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Table III. Common genes correlated with the top M PCs in the breast tumors and cell lines.

Gene Gene name Cells r Tumors r Comb R
METAP2  Methionyl aminopeptidase 2 PC2 0.964 PCl  -0.857 -0.394 PC3
A2M Alpha-2-macroglobulin PCl  -0.885 PC1 -0.835 -0.804 PCl
IGFBP6 Insulin-like growth factor binding protein 6 PC2 0.956 PC1 -0900 0.844 PCl
KRT13 Keratin 13 PC2 0.869 PCl -0.844 -0.822 PClI
DRAPI DR1-associated protein 1 (negative cofactor 2 alpha) PC2 0.979 PC1  -0908 0.754 PClI
GPCl1 Glypican 1 PCl  -0.805 PCl  -0.957 -0.901 PClI
PCOLN3  Procollagen (type III) N-endopeptidase PCl  -0.825 PCl  -0.805 -0.786 PClI
ATP5] ATP synthase, H* transporting, mitochondrial FO complex, = PC2 0.960 PC1 -0874 0778 PClI
subunit F6
MRPLA49  Mitochondrial ribosomal protein 49 PC1  -0.875 PCl  -0927 -0.903 PClI
RELA NFxB (p653) PC2 0.969 PCl -0.861 -0.758 PCl
PTHRI1 Parathyroid hormone receptor 1 PC1  -0.886 PC1  -0.857 -0.793 PClI
FST Follistatin pC2 0.930 PCI  -0.881 -0.349 PC3
POLA Polymerase (DNA directed), alpha PCl  -0.854 PC1 -0.858 -0.826 PCl
CREBLI1 cAMP responsive element binding protein-like 1 PC1  -0.937 PC1 -0862 -0.873 PClI
GOLGA2  Golgi autoantigen, golgin subfamily a, 2 PC2 0.809 PCI -0816 0.562 PC3
SF3A1 Splicing factor 3a, subunit 1, 120 kDa PC2 0.962 PC1 -0841 0494 PC2
uSp4 Ubiquitin specific protease 4 (proto-oncogene) PCl  -0.889 PCl1 -0912 -0.898 PClI
CR2 Complement component (3d/Epstein-Barr virus) receptor2 ~ PC1  -0.835 PC1  -0.818 - -
NRID1 Nuclear receptor subfamily 1, group D, member 1 PCl  -0.885 PCl -0874 -0.884 PClI
ODC1 Ornithine decarboxylase 1 PC1  -0.870 PCl -0945 -0.901 PCl
ORM2 Orosomucoid 2 pC2 0.962 PCl1 -0972 0876 PClI
AMFR Autocrine motility factor receptor PC1  -0.824 PCl1 -0.883 -0.887 PCl
RYRI Ryanodine receptor 1 pC2 0.981 PC1  -0927 -0.772 PClI
PPMIF Protein phosphatase 1F PC1  -0.820 PCl -0.845 -0.843 PClI
KCNN4 Potassium intermediate/small conductance calcium-activated PC1  -0.802 PCl1  -0929 -0.886 PClI
channel, subfamily N, member 4
NT5E 5' nucleotidase (CD73) PC2 0.912 PC1 -0.819 -0.786 PCl
ITGB2 Integrin beta 2 PC1  -0.908 PCl1 -0.885 -0.876 PCl
ABCCI1 ATP-binding cassette, subfamily C (CFTR/MRP), member 1 PC2 0.953 PCI -0.923 -0.827 PCI
PXN Paxillin PCl1  -0.889 PC1  -0951 -0.929 PCI
STAM Signal transducing adaptor molecule (SH3 domain and PC2  0.899 PC1 -0882 -0817 PCl
ITAM motif) 1
COX6BI1 Cytochrome ¢ oxidase subunit VIb PC3  -0.813 PCl1  -0980 -0.895 PCl
ACTRIA  Actin-related protein 1 homolog A PC1  -0.837 PC1  -0.906 -0.882 PCl
LOC56311 Ankyrin repeat domain 7 PCl1  -0911 PCl -0.854 -0.796 PClI
KIAA1641 Chronic lymphocytic leukemia-associated antigen KW-1 PC1  -0.845 pPCl  -09507 -0.797 PCl
CSTA Cystatin A (stefin A) PCl  -0.892 PC1  -0928 -0.910 PCI
B7 B7 protein PC1  -0.845 PCl -0.850 -0.804 PClI

For comparison of the cell lines and tumors, each gene selected must exhibit a correlation coefficient of r=0.800 with one of the top M PCs.
For example, a gene in common between breast tumors and breast cancer cell lines must be correlated (r=0.800) with PCl, PC2, PC3, PC4
or PC5; there are only 5 M PCs in the breast cancer cell line group (see Table II); there are 36 genes in common by these criteria. The gene
CR2 was not associated with the top M PCs in the combined group. Gene, gene symbol as designated by the human gene ontology (HUGO)
gene nomenclature committee. Comb, data from the combined cell line (MCF-7, T47D, ZR-75-1) and tumor data set. The four genes in the
combined data set where r<0.75 are indicated.
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Figure 1. Multidimensional scaling of cell line and tumor data. (A), 428
dimensional data set; (B), 36 dimensional data set. A, breast tumors; O, cell
lines.

Table IV. Gene functions among the 36 common genes.

Biological function Genes

DNA replication/transcription CREBLI, NR1DI, POLA,

RELA, RYR1

ITGB2, PPMIF, RELA,

RYRI1

Cell cycle/proliferation/growth IGFBP6, RYRI1

Cell adhesion/motility AMFR, ITGB2, PXN, RYRI

Signal transduction AMFR, CREBLI1, IGFBPS,
ITGB2, PTHRI, PXN,
RELA, RYRI, STAM

Apoptosis

The GO database was used to annotate the gene functions (http://www.
geneontology.org). The GO categories are based on the six used by
Pawitan et al (17) to compare their breast cancer predictive gene
list with that of van't Veer et a/ (20). We found no genes in the
‘angiogenesis’ category; Pawitan et a/ reported only one gene from
their 64-gene data set and a different gene from the 70-gene van't
Veer et al data set in this category (17).

of predominately ER* breast tumor specimens from patients
and the three most widely used ER* human breast cancer cell
lines MCF-7, T47D, ZR-75-1).

Breast tumor specimens can include multiple different
cell types such as epithelial, myoepithelial, fibroblastic, myo-
fibroblastic, and reticuloendothelial (25), whereas cell lines
are, in comparison, biologically more homogeneous. Thus,
the goal of comparing cell lines and tumor specimens, using
direct comparisons of gene expression levels, is potentially
confounded by tissue heterogeneity. In breast tumors, a
gene's signal will reflect the sum of values from all cell types
included in the specimen. Earlier microarray studies did not
account for this heterogeneity and this may partly explain the
greater similarity reported between normal breast and breast
cancer specimens than between the breast cancer specimens
and human breast cancer cell lines (6). Furthermore, earlier
studies used unsupervised hierarchical clustering methods to
solve the high dimensional data structures and identify putative
relationships among samples. Since these hierarchies can be
built using different distance measures and the data points
linked by different measures (26-28), different clustering
methods may provide different solutions to the same data
sets (29,30). With no goodness-of-fit for the data solutions
(29) or comparisons with other methods that may provide
more accurate or more complete solutions, the inability of
breast cancer cell lines to cluster together or to cluster with
breast cancers may reflect the limitations inherent in the
analytical approaches applied. The lack of consideration of
specimen heterogeneity also may have confounded the analysis.

Rather than apply heuristic rules to deduce similarities or
differences based on broad phenotypic characteristics or other
observations, we applied a relatively unbiased probabilistic
approach to compare transcriptomes. Unlike most prior
microarray studies that focus upon finding differential gene
expression patterns among groups, we were most interested
in those genes that are commonly important in defining data
structure. While we would expect differences in the absolute
levels or patterns of expression of some genes, our main goal
was to explore the similarities in overall data structures.
Differences in absolute gene expression values could lead to
the appearance of differential gene expression values that
may more closely reflect the cellular rather than molecular
differences between relatively homogeneous cell lines and
heterogeneous tumors.

The probabilistic approach we used compares the M PC
projections in the data sets and those genes that best define
these respective PCs. Thus, the method should capture, in a
largely unbiased manner, those PCs and genes that best define
the structure of each high dimensional data set - at least as
defined by its total variation. Our data show that the three
most widely used ER* human breast cancer cell lines, even
when growing in vitro, exhibit marked similarities to a panel
of ER* breast tumor specimens. These molecular observations
on the primary structure of the breast tumor and cell line
transcriptomes appear consistent with the widely reported
biological similarities between these cell lines, their variants,
and the human disease (2-4).

The genes identified in these tumors and models reflect
the specimens and microarray technology used; similar data
collected from other breast tumors, cell lines, or microarray
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platforms may or may not find the same genes to define the
M PCs of those data sets. However, we would anticipate that
such studies may find genes that exhibit similar statistical
properties, or perhaps broadly similar molecular functions,
to be associated with the top PCs. Since we identified genes
that best define the PCs from a small but robust subset of
expression measures, their selection reflects a probabilistic
assessment only of their contribution to global data structure.
Thus, there is no compelling biological rationale why these
specific genes must reflect key biological processes in breast
tumors. The use of PCA for gene selection in mechanistic
studies is potentially flawed for several reasons, some of which
are discussed elsewhere (31). Nonetheless, it is intuitively
reasonable to expect some genes closely associated with data
structure to broadly reflect key molecular processes and/or
include genes already implicated in breast cancer.

Several of the genes or gene functions represented in
the 36 common genes identified herein have been directly or
indirectly implicated in affecting key breast cancer phenotypes.
For example, we found 11 genes in 5 of the 6 gene function
categories implicated in separating good prognosis from poor
prognosis breast cancers (17). While our study would not be
expected to find the same genes as these two previous studies
- we did not look for such discriminant genes nor did we use
similar microarray platforms - the data in Table IV suggest
that the 36 common genes and/or the functional categories
they represent are important in both human breast cancer and
human breast cancer cell lines. Examples of specific genes
from the 36 common gene list include RELA (NFxB p65),
ornithine decarboxylase-1 (ODC1), paxillin (PXN), and
insulin-like growth factor (IGF) binding protein-6 (IGFBP-6).
RELA is implicated in estrogen independence (32,33) and
acquired antiestrogen resistance in cell culture models
(15,34,35), and is readily detected by immunohistochemistry
in breast tumors (36). The polyamine ODCI is estrogen
regulated (37,38), is a target for drug development (38,39),
and is a potential breast cancer biomarker (40). The focal
adhesion protein PXN is regulated by heregulin, a key effector
of breast cancer cell growth (16). PXN expression also is
regulated by activation of the IGF-type 1 receptor (41). This
receplor is activated by IGF-II, a major mitogen for breast
cancer cells (42); IGFBP6 has a notably high affinity for
binding IGF-IL, inhibits its activity (43), and also is a candidate
breast cancer biomarker (21).

The data we present here suggest that well-established ER*
human breast cancer cell lines and breast tumors share global
similarities in the structures of their respective transcriptomes.
The strong correlations of similar genes with the top PC
projections in each data set clearly imply that MCF-7, T47D,
and ZR-75-1 cells are good models in which to identify
molecular events that also are important in some ER* human
breast cancers.
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Abstract. Interferon regulatory factor-1 (IRF-1), human X-box
binding protein-1 (hXBP-1), nuclear factor kappa B p65
(NFkB p65) and nucleophosmin (NPM) have been implicated
in a signaling network of endocrine responsiveness. Expression
of these proteins was measured by immunohistochemistry in
tissue microarrays of 54 breast tumors. Correlations between
each protein and established prognostic markers were assessed
by Spearman’s rank order correlation coefficient and partial
correlation coefficient analyses. Moderate/strong staining is
seen for hXBP-1 (79% of tumors) and NFkB p65 (57%).
NPM exhibits nuclear staining (95%); IRF-1 exhibits both
cytosolic (IRF-1c; 90%) and nuclear staining (IRF-1n; 51%).
IRF-1c is associated with age (p=0.034); IRF-1n and PgR
expression are correlated (p=0.014). NFxB p65 shows a border-
line association with S phase (p=0.062). Coexpression of
IRF-1c and hXBP1 (p=0.001), IRF-1¢ and NF«B (p=0.002),
and hXBP-1 and NFkB (p=0.018) is observed. An inverse
correlation exists between IRF-1n and NFkB (p=0.034). All
four proteins are detected in breast tumors and their expression
patterns support their role(s) in a key signaling network.

Introduction

Endocrine therapy, usually either the antiestrogen, Tamoxifen
(TAM), ovariectomy or more recently an aromatase inhibitor

Correspondence to: Dr Robert Clarke, Department of Oncology,
Georgetown University School of Medicine, Room W405A Research
Building, 3970 Reservoir Rd, NW, Washington, DC 20057, USA

E-mail: clarker@georgetown.edu

Kev words: immunohistochemistry, antiestrogen, Faslodex,
tamoxifen, gene network

or one of the newer selective estrogen receptor modulators
(SERM) or ‘pure’ antiestrogens, is an effective means to
manage hormone-dependent breast cancer (1-3). An under-
standing of the mechanisms of resistance to endocrine therapies
could identify better ways to predict responsiveness. We have
previously hypothesized that endocrine responsiveness is
affected by a complex gene network, rather than the activity
of only one or two genes or signaling pathways (4-6). To
identify the key components of such a network, we first
derived variants of the MCF-7 human breast cancer cell line
with different estrogen (7,8) and antiestrogen response
profiles (9,10). Initial transcriptome and proteome analyses
of these variants implicate several genes in endocrine
resistance, including interferon regulatory factor-1 (IRF-1)
(11,12), nuclear factor kappa B p65 (NFxB) (11,13), human
X-Box binding protein-1 (hXBP-1) (11) and nucleophosmin
(NPM) (14,15), which appear to function as part of a broader
gene expression network (Fig. 1).

In the proposed network, NPM is predicted to inhibit
IRF-1 activity, which reduces the ability of IRF-1 to activate
apoptosis, most likely through inducing a caspase cascade.
Inhibition of IRF-1 activity also may eventually contribute to
increased activity of the survival factor NFxkB (Fig 1). Increased
NFxB may, in turn, induce a second survival factor, hXBP-1
(16). Evidence from experimental models has begun to show
the likely functional relevance of the altered IRF-1 (12),
NF«B (11,13,17), and hXBP-1 activities (Gomez BP, et al,
Proc Am Assoc Cancer Res, abs. 3498, 2004) in affecting
endocrine responsiveness. Studies to identify other members
of this network and their interrelationships are currently in
progress. The known functions of the key components of the
network are described below.

IRF-1 is a transcription factor that exhibits tumor suppressor
activities in several cancers (18,19). In breast cancer cells,
IRF-1 signaling can reduce both the rate of cell proliferation
and the incidence of human breast cancer xenografts in athymic
nude mice (manuscript submitted). We have shown that a
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Figure 1. Components of a putative signaling network associated with endo-
crine responsiveness in breast cancer cells (adapted from ref. 6). T, increased;
1, decreased; L, blocks; —, reduced ability to affect target. The network
component incorporates the known protein/protein interactions between
NPM and IRF-1 (NPM binds to IRF-1 and inhibits IRF-1 activity) and the
predicted regulation of hXBP-1 by NFxB. Down-regulation of IRF-1 activity
would reduce the activity of IRF-1/NFxB heterodimers that are known to
regulate the transcription of several genes implicated in breast cancer, such
as RANTES, VCAM-1, and IL-6. Down-regulation of TNFR1 (tumor
necrosis factor receptor 1) and its ligand, TNFa (tumor necrosis factor
alpha), were previously described (11), signaling from this complex is a
major inducer of IRF-1 transcription. A full description of this network
component and its anticipated function can be found in ref. 6.

dominant negative IRF-1 blocks antiestrogen-induced apoptosis
in sensitive breast cancer cells and reduces their antiestrogen
sensitivity (12); a similar role for IRF-1 has been recently
reported in normal mammary cells (20). These activities of
IRF-1 are probably mediated through its proapoptotic effects,
which can occur in a p53-dependent or -independent manner
(21,22) and involve its ability to induce a caspase cascade
that includes caspase-1 (20,22), caspases-3/7 (20,23), caspase-8
(24) and/or Fas ligand (25). Caspases are known to affect
antiestrogen responsiveness (26). Lower levels of IRF-1 protein
have been reported in high-grade ductal carcinoma in situ or
invasive ductal carcinoma of the breast when compared with
adjacent normal breast epithelium (27).

The NFxB pS50/p65 heterodimer complex comprises two
homologous proteins encoded by different genes; the p105
precursor of p50 (NFxB1) is on chromosome 4, while the
p65 (RelA) gene is on chromosome 11. The predominant
form in human breast cancer cell lines is NFxB (pS0/p65);
another member of the family (p52) is also expressed in some
breast cancers (28). NFkB (p50/p65) is implicated in several
critical cellular functions including cell survival (29); these
functions are often cell context specific (30). We have shown
differential expression and activation of NF«B expression
with both acquired antiestrogen resistance (11) and estrogen
independence in breast cancer cells (13). Other studies also
show increased expression of NFkB in endocrine-resistant
breast cancer cell lines (31,32). We have begun to establish
the functional relevance of these observations. For example,
estrogen-independent cells significantly up-regulate NFxB;
when its inhibitor IxBa is overexpressed in these cells their
xenografts regress upon estrogen withdrawal (13). Anti-
estrogen-resistant cells are more sensitive to growth inhibition
by parthenolide, a small molecule inhibitor of NFxB, than
their antiestrogen sensitive parental cells (11). Furthermore,

parthenolide can reverse the antiestrogen resistance phenotype
and synergistically interact with antiestrogens in vitro (17).

As a member of the ATF/CREB transcription factor
family that activate promoters containing specific cyclic
AMP responsive elements (CRE) (33), hXBP-1 regulates the
expression of several tissue-specific genes, including tissue
inhibitor of metalloproteinases, osteopontin and osteocalcin
(34). Potentially downstream of NFxB activation in some
cells (35), hXBP-1 is associated with increased proliferation
and reduced apoptosis (16), which implies a survival function.
Changes in cAMP concentrations and CRE activation have
been widely implicated in carcinogenesis and endocrine
signaling, including affecting signaling from ERa and PgR
(36). While the role of hXBP-1 in the normal/neoplastic breast
has not been studied in detail, hXBP-1 is part of a cluster of
genes associated with some ERa-positive breast tumors (37,38)
and a recent study suggests it may be expressed in breast
cancer cells (39). We have previously implicated increased
expression of hXBP-1 in acquired antiestrogen resistance (11).
More recently, we have shown the ability of hXBP-1 to induce
an estrogen-independent phenotype and to confer antiestrogen
resistance (unpublished data).

The oncogenic nucleolar phosphoprotein, NPM, is a DNA-
binding protein (40) that inhibits the ability of the YY1 (41)
and IRF-1 transcription factors to regulate gene expression
(42). NPM also serves as a substrate for several important
serine-threonine kinases, including protein kinase C (43),
p344 kinase (44,45) and casein kinase II (46). Insulin, which
is a major mitogen for breast cancer cells, also increases NPM
phosphorylation (45). Overexpression of NPM is sufficient to
transform NIH/3T3 fibroblasts (47), and chromosomal trans-
locations fusing NPM to either an anaplastic lymphoma kinase
(48) or the retinoic acid receptor-a (49) have been reported
in some cancers. We have shown that NPM is induced by
estradiol (14) and expressed at higher levels in estrogen-
independent breast cancer cells (11); a putative estrogen
responsive element in the NPM promoter has now been
recently described (50). In breast cancer patients, auto-
antibodies to NPM are lower in patients treated with the anti-
estrogen Tamoxifen and increase six months prior to recurrence
(15). Of particular relevance is the reduced expression of
IRF-1 and concurrent increased expression of NPM, an endo-
genous IRF-1 inhibitor, in antiestrogen-resistant breast cancer
cells (11).

We have now measured the expression of IRF-1, NFxB
(p65), hXBP-1 and NPM in breast cancer specimens from
women diagnosed at our institution. Using tissue microarrays
and immunohistochemistry, we asked if these proteins could
be detected in breast cancer, whether their expression might
be correlated with other known prognostic markers, and
whether the four proteins are expressed in patterns consistent
with their known functions and/or our putative gene expression
network. We find several proteins to be either coexpressed or
inversely expressed in patterns consistent with our network
hypothesis.

Materials and methods

Tissue specimens. Tissue microarrays were constructed using
fifty-four, untreated, primary breast cancer cases diagnosed
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between 1998 and 1999 from the breast cancer tumor bank at
the Lombardi Comprehensive Cancer Center Histopathology
Shared Resource at Georgetown University Medical Center.
The cases were initially selected to determine the number of
cores from a tumor needed to give the same estimation of
ERa and PgR positivity as the entire section (51). Hence, the
proportion of steroid hormone receptor-positive specimens
(81% ERa; 44% PgR) are higher than might be expected
from a random sampling of breast cancer cases. While we
cannot exclude the possibility of some selection bias in these
cases, this selection should have identified cases most relevant
to our initial hypothesis, implicating the proteins of interest
in endocrine responsiveness (52). Differentiation/nuclear grade
(53), DNA index (54) and S Phase (55) were determined as
previously described. The categories for each end-point in
Table I were selected prior to data analysis and are consistent
with other studies (56,57). All material and information was
collected and used in accordance with approved Institutional
Review Board protocols. Clinical-outcome data and additional
prognostic marker data are not available for these cases;
available data are shown in Table I.

Tissue microarrays. Tissue microarrays were constructed
with a Beecher Instruments manual tissue arrayer (Beecher
Instruments, Inc., Sun Prairie, WI) as previously described
(58,59). The instrument punches holes in the recipient paraffin
block and acquires tissue cores from the donor block. Briefly,
a thin-walled needle with an inner diameter of 0.6 mm was
held in an X-Y precision guide. The cylindrical sample was
retrieved from the selected region in the donor block and
extruded directly into the recipient block with defined array
coordinates. A solid steel wire, which closely fits the tube,
was then used to transfer the tissue cores into the recipient
block. The transfer was made under direct visual control with a
stereotactic microscope using an additional bright light source.
This cycle was repeated to obtain the appropriate number of
cores. An adhesive-coated tape system (Instrumedics, Inc.,
Hackensack, NJ) was then used to cut 5 um sections of the
tissue microarray block. The microtome knife cut underneath
tape placed over the block surface. Thin tissue sections adhered
to the tape, which was then rolled on an adhesive-coated
microscope slide to transfer the section onto the slide. For
this study, tissue microarrays were built with 480 cores from
fifty-four breast carcinomas. Regions of invasive carcinoma
were marked on each hematoxylin-and-eosin-stained slide.
Ten cores were made from these areas of the paraffin block
for 42 cases; for 12 additional cases, five cores were made.
Thus, either 10 or 5 cores represented each tumor.

Antibodies and immunohistochemistry. The following
commercial antibodies were used: ERa (ER1DS, Immunotech)
(60), erbB2 (CB11, Zymed, San Francisco, CA) (61), hXBP-1
(sc-7160; Santa Cruz); IRF-1 (sc-497; Santa Cruz) (27), and
NFaB p65 (sc-109; Santa Cruz) (28). The NPM monoclonal
antibody was kindly donated by Dr P-K Chan (62). Tissue
microarray sections were deparaffinized in two 5-min changes
of xylene and rehydrated through graded alcohol to distilled
water. lmmunohistochemistry was performed by a standard
biotin-streptavidin-horseradish peroxidase method (63,64).
Briefly, microarrays were treated with 1% H,0, in methanol

Table I. Patient/tumor characteristics.

n Range
Age 54 36-85 (56)°
<50 years 25
250 years 29
Tumor grade 49 0-2
Grade 1 13
Grade 2 26
Grade 3 10
Tumor size 54 0.2-6.8 (1.35)
<2cm 39
22 cm 15
Lymph nodes 40 0-4
Negative (0) 28
Positive (21) 12
DNA index 47 1-2.89
<1.5% 27
21.5% 20
S-phase 28 1.64-27.00 (5.09)
<5% (low) 14
>5% (high) 14

*Values in parentheses are median values.

for 30 min to block endogenous peroxidase activity. Before
applying the primary antibody, microarrays were boiled for
antigen retrieval in 10 mM citrate buffer (pH 6.0) for a total
10 min. Microarrays were washed in phosphate-buffered
saline containing 3% biotinylated goat antiserum to the
appropriate IgG and 0.3% Triton X-100 (pH 7.4) for 30 min.
Subsequently, tissue microarrays were incubated with the
primary antibody at a 1:500 dilution (or as appropriate for the
antibody) in PBS for 48 h at 4°C. After several washes,
microarrays were treated with the appropriate secondary
antibody (1:800; Vector Laboratories, Burlingame, CA) for
2 h, followed by a 1 h incubation with streptavidin-peroxidase
conjugate (Vector Laboratories). Antigen-antibody complex
was visualized by incubation with the VIP Kit (DAB Kit;
Vector Laboratories). Finally, microarrays were counter-
stained with either methyl green or hematoxylin, mounted and
examined. All immunostaining was first optimized in single
tissue slides. Negative controls were obtained using a standard
method where microarrays are processed as described above
but without incubation with the appropriate primary anti-
body.

Data analysis. The level of specific immunostaining, as
determined relative to negative controls, was measured as an
ordinal variable according to the nominal scale O, 1+, 2+, 3+;
where 0 is undetectable, 1+ refers to weak (barely perceptible)
staining, 2+ to moderate staining, and 3+ to strong staining.
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For nuclear staining, the scale applied was 1 = 0-25% of nuclei
with detectable staining, 2 = 26-50%, 3 = 51-75%, 4 = 276%.
The average score for all cores representing a tumor was used
for data analysis. The relationships among staining values for
each protein were compared using Spearman's rank order
correlation coefficient analysis. All statistical tests are two-
sided. We considered comparisons where p<0.05 to be
statistically significant; estimates of p>0.05 and p<0.10 were
considered to indicate borderline statistical significance and
potential biological relevance; comparisons where p>0.10
were considered to be insignificant.

Pairwise correlation analyses could not account for the
possibility that the associations of IRF-1n or IRF-1c may
confound each other, since the expression of these two IRF
measures may be correlated. To address this issue, we applied
a novel use of partial correlation coefficient analysis, the partial
correlations being calculated as shown in Eq 1:

ry =(r)r.)

= Eq1l

B = (Y

Where r,, . = the correlation coefficient between x and y while
controlling for the correlations between x and z and between
yand z.

Partial correlations are most widely applied in the analysis
of small signaling networks of 3-5 variables, and allow an
estimate of the correlation between two variables while
controlling for a third, fourth and/or fifth. Since we make
functional assessments based upon cellular location, the use
of partial correlations appears reasonable in the context of
IRF-1n and IRF-1c. For the correlations between IRF-1c or
IRF-1n and age, ER, PgR, NFxB and hXBP-1 the partial
correlations were calculated with either IRF-1c or IRF-1n as
the controlling variable.

Results

ERa and PgR expression. Measurements of ERa and PgR
expression are the most widely used predictive factors in
directing breast cancer therapy. The specimens in this study
were originally selected to study ERo and PgR expression
(51) and these two proteins are coexpressed in a substantial
proportion of breast cancers. The expression of ERa (81%) and
PgR (44%) using our criteria (Table II), and their significant
coexpression in the tumors used in this study (Table V;
p<0.001) implies that the samples are likely to be broadly
representative of ERa-positive breast cancers and appropriate
for exploring protein expression patterns in cases likely to be
selected for endocrine therapy.

IRF-1 expression. As a putative tumor suppressor, we might
expect activated IRF-1 protein to be in the nucleus (IRF-1n)
and inactive protein to be in the cytosol (IRF-1c). Whether
these relationships are true for the IRF-1 signals we have
measured is not known but we might expect the inactive
form to predominate. In this context, and consistent with its
putative tumor suppressor activities, the primary form of
IRF-1 in breast tumors in this study appears to be IRF-1¢

Table II. Immunohistochemical staining scores of five proteins
detected in the cytosol.

Score ERa PgR NFxB °*IRF-lIc hXBP-1
0 9 22 2 0 1
1+ 1 7 18 4 9
2+ S 3 14 21 27
3+ 37 20 13 17 10
Total 52 52 47 42 47
Detected  81% 44% 57% 90% 79%
(42/52) (23/52) (27/47) (38/42) (37/47)

*Values represent the number of cases in each category; scoring
categories are described in Materials and methods. *IRF-1¢, IRF-1
cytoplasmic staining. “Detected, proportion of cases with weak or
stronger cytosolic staining.

(Fig. 2A). Of the tumors, 90% express detectable (2+ or 3+)
IRF-Ic¢ in their neoplastic cells, almost half of which have 3+
IRF-1 staining in the cytosol. In contrast, only 51% of the
tumors in our study express detectable IRF-1n in >50% of
the tumor cells and no tumors express IRF-In in >75% of
cells (Tables II and III). While 98% of the specimens express
both detectable IRF-1c and IRF-1n, only 2% express IRF-1c
alone and none express only IRF-1n. The inverse relationship
between IRF-1n and IRF-1c (p=0.088), while of borderline
statistical significance, suggests that some breast tumors may
differentially regulate the activation state of IRF-1 (Table V).
This potential correlation raises the possibility that some
associations implicating IRF- I¢ or IRF-1n may be confounded
by the effect of the other. Our observations also are broadly
consistent with a study reporting higher levels of IRF-1 protein
in adjacent normal breast epithelium when compared with
high-grade ductal carcinoma in situ or lymph node-positive
invasive ductal carcinoma of the breast (27).

NFkB expression. We measured NFxB p65 expression, which
is the predominant form of NFxB in human breast cancer cells
(28) and the form associated with both estrogen independence
(13) and acquired antiestrogen resistance (11). While active
in breast cancer cell lines, NFxB p65 has been reported as
being cytosolic (potentially inactive) whereas NFxB p50 has
been reported to be primarily nuclear (active) in a prior study
of n=17 breast tumors (28). While the pattern of NFxB p65
staining is broadly consistent with this observation in many
of our breast tumors (Fig. 2C), we found 57% of the tumors
to express detectable (2+ or stronger) NFxB in their neoplastic
cells (Table 11).

hXBP-1 expression. Increased expression of hXBP-1, a nuclear
transcription factor that activates cyclic AMP responsive
elements (33), is associated with some forms of acquired anti-
estrogen resistance (11). hXBP-1 expression is detected in
79% of the breast tumors in this study (Table II), with the
strongest staining seen in the cytosol (Fig. 2E). This observation
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Figure 2. Representative immunostaining of IRF-1, NFkB p65, hXBP-1 and
NPM in breast cancer. (A) IRF-1 staining where the inset shows typical
patterns of cytosolic and nuclear staining; (B) Control for IRF-1 staining;
(C) NFxB p65 staining where inset shows the primarily cytosolic staining
pattern; (D) Control for NFxB p65 staining; (E) hXBP-1 staining where
inset shows the primarily cytosolic staining pattern; (F) Control for hXBP-1
staining; (G) NPM staining where the inset shows the nuclear staining
pattern for NPM; (H) Control for NPM staining. Figures of tissue microarray
cores are at x10 magnification; inset at x100 magnification; control at x40
magnification.

is consistent with a small study of hXBP-1 expression in
primary breast cancers (n=11) and breast cancer cell lines
(n=5). In this recent study, expression was detected in all
tumors and cell lines studied but hXBP-1 was almost un-
detectable in non-cancerous breast tissue (33).

NPM expression. NPM is a nucleolar phosphoprotein that is
induced by estradiol (14) and expressed at higher levels in
breast cancer cells with acquired antiestrogen resistance (11).
In breast cancer patients, autoantibodies to NPM increase six
months prior to recurrence and are lower in patients treated
with TAM (15). Consistent with its nucleolar localization in
cell culture, NPM staining is strongly nuclear in breast tumors
(Fig. 2G). Of the breast cancers in this study, 95% express
NPM in >50% of their neoplastic cell nuclei, the majority
expressing NPM in >75% of their cells (Table II).

Table III. Immunohistochemical nuclear staining scores of
IRF-1 and NPM.

Score IRF-In NPM
1 2 1

2 22

3 25 3

4 0 39
Total 49 44
*>50% 51% 95%

(25/49) (42/44)

®Values represent the number of cases in each category; scoring
categories are described in Materials and methods. "IRF-1n, IRF-1
nuclear staining. “>50%, proportion of cases where data are available
that exhibit >50% of cell nuclei staining positive relative to the
negative controls (NPM and IRF-1n are data for nuclear staining).

Correlation among proteins and patient/tumor characteristics.
Several correlations among existing prognostic markers are
known and are apparent in our data set (Table IV). Both
PgR-positive (p=0.03) and ERa-positive tumors (borderline)
are associated with a greater degree of differentiation and
better prognosis (65). Borderline relationships between
DNA index and both PgR-positivity and ERa-positivity
(inverse correlation), and between NFxB and S phase (direct
correlation) are also evident. A higher incidence of ERa-
positive tumors is seen in older women (66) but our study
was probably underpowered to detect this relationship.
Nonetheless, the significant association between IRF-1c and
age (Table 1V; p=0.034) and the potential association between
IRF-1c and ERa (p=0.079), may reflect the underlying relation-
ship between ERa and age. We found no other associations
among IRF-1, NFxB, hXBP-1 and NPM with either tumor
grade, tumor size, DNA index, lymph node status, or S-phase
fraction.

Correlation among protein expression patterns. Expression
of several of the four proteins is correlated in breast tumors.
Since our study is limited in size and power, we present those
associations that reach conventional statistical significance
and those where the association is of borderline statistical
significance but of potential biological relevance. The data in
Table V show coexpression of ER and IRF-1c (borderline),
PgR and IRF-1n (p=0.014), IRF-1c and hXBP1 (p=0.001),
IRF-1c and NFxB (p=0.002), and hXBP-1 and NFxB (0.018).
Inverse correlations were seen between NPM and erbB2 (not
shown; p=0.016), IRF-In and NF«B (p=0.034), IRF-1n and
IRF-1c (borderline), and IRF-1n and hXBP-1 (borderline).
We estimated the partial correlations for each IRF-1n and
IRF-1c¢ correlation of interest; no effect is present when the
sign and magnitude of the partial correlation coefficient is
comparable to the original correlation coefficient. In each
case, the partial coefficients were very similar to the original
coefficients and shared the same sign. Hence, IRF-1c and
IRF-1n are not antecedent, intervening, or suppressing variables
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Table IV. Correlation among proteins and patient/tumor characteristics.

ERa PgR IRF-1c IRF-1In NFxB hXBP-1 NPM
Age - - P=0.034 - - - .
(r=0.28)
Tumor grade P=0.067 P=0.028 - - - - -
(r=0.22) (r=0.28)
Tumor size - - - - -
Lymph nodes - - - - - - -
DNA index P=0.077 P=0.086 - - - - -
(r=0.22) (r=-0.21)
S phase - P=0.016 - - P=0.062 - -
(r=0.41) (r=0.33)

2Values in parentheses are Spearman rank correlation coefficients. Comparisons where p<0.05 are statistically significant; estimates of
p=0.05 and p<0.10 are considered of borderline statistical significance and of potential biological relevance; comparisons where p>0.10

were considered to be insignificant.

Table V. Correlation among protein expression patterns.

ERa PgR *IRF-1c IRF-1n NFxB hXBP-1
PgR P<0.001 1
(r=0.46)"
IRF-1c P=0.079 - 1
(r=0.23)
IRF-1n - P=0.014 P=0.088 » 1
(r=0.32) (r=-0.21)
NFxB - - P=0.002 P=0.034 1
(r=0.44) (r=-0.27)
(r=0.42) (r=0.22)
hXBP-1 - - P=0.001 P=0.082 P=0.018 1
(r=0.49) (r=-0.21) (r=0.31)
(r=0.40) (r=-0.23)
NPM - - - - -

#Values in parentheses are Spearman rank correlation coefficients; comparisons where p<0.05 are statistically significant; estimates of
p20.05 and p<0.10 are considered of borderline statistical significance and of potential biological relevance; comparisons where p>0.10
were considered to be insignificant. Values in parentheses are the estimated partial correlation coefficients. Use of partial correlation
coefficients in networks can be found in De Ja Fuenta, er al: Bioinformatics 20: 3565-3575, 2004. *IRF-1c, cytoplasmic staining; IRF-1n,

nuclear staining.

for the correlations indicated, they exhibit respectively with
hXBP-1 or NFxB (Table V).

Discussion
One approach to exploring the potential relevance of

observations from experimental models is to determine
whether similar relationships may also arise in tumors from

patients. While not directly informative in a mechanistic
sense, identification of expression patterns in tumors that
reflect patterns seen in xenografts and cell cultures can
support mechanistic observations in these models. Further-
more, such studies may identify candidate biomarkers for
further investigation. We have explored the expression levels
and patterns of coexpression of a subset of four genes (IRF-1,
NFxB p65, hXBP-1, NPM) implicated in endocrine resistance
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from our prior studies in experimental models (11-14).

Of the four genes we have previously implicated, IRF-1,
NFkB and hXBP-1 are transcription factors and NPM is a
DNA-binding nucleolar phosphoprotein. Knowledge of a
signal's cellular localization can provide mechanistic insight
and all four proteins would be expected to exhibit some degree
of nuclear staining that could reflect active protein. For
example, NFxB is maintained in the cytosol in an inactive state,
complexed with members of the IkB family (67). However,
correctly identifying subcellular localization by immunohisto-
chemistry can be confounded by fixation artifacts, leading to
nuclear antigen redistribution during tissue processing. A
fixation artifact is responsible for the apparent cytosolic
localization of the NPM-anaplastic lymphoma kinase fusion
antigen (68) but NPM staining is robust and primarily nuclear
in our breast cancer specimens. In contrast, the activation state
of hXBP-1 and NFkB (p65) is difficult to determine because
the staining is primarily cytosolic and any weak nuclear
staining was not sufficient for further analysis. In this study,
we chose to focus on the localization of IRF-1, which exhibits
readily detectable nuclear and cytosolic staining patterns that
appear inversely correlated (borderline; p=0.088). Furthermore,
these patterns of staining for IRF-1 also make biological sense
when considered in the context of putative active (nuclear)
and inactive (cytosolic) states (see below).

Since there are only very limited published data on the
expression of IRF-1, NFxB, hXBP-1 and NPM in breast
cancer, we first determined whether we could detect these
proteins and estimate the extent to which they are expressed
in this series of predominately ER+ breast tumors. All four
proteins are detectable in the cases used in this study; NPM
expression is detected in >25% of the neoplastic cells in
almost all the breast cancers (95%). Consistent with recent
reports, IRF-1 also is detected in breast tumors (90%) (27,69),
as is hXBP-1 (79%}) (39). NFkB (p65) expression is the least
frequently detected among the four proteins yet is detectable
in 57% of the tumors. Thus, these four proteins are present
in high proportions of breast cancer and are candidate
biomarkers that merit further evaluation as both independ-
ent biomarkers and as a possible panel to be concurrently
measured.

We have previously hypothesized that the proteins of
interest are associated with affecting endocrine responsiveness
(6,11,12). Acquired antiestrogen resistance primarily occurs
in tumors that continue to express sufficient levels of ERa to
be considered ERa-positive. While the primary form of de novo
endocrine resistance is the absence of both ERa and PgR, a
significant proportion of de novo-resistant tumors also are
ERa-positive (52). The functional importance of continued
receptor expression in either acquired or de novo endocrine
resistance is unclear, but we might expect to find some of our
network members to be coexpressed in the breast tumors
used in this study (6).

A significant positive association between IRF-1n and
PgR (p=0.014) and a borderline positive association between
ERa and IRF-Ic (p=0.079) are evident. Those PgR-positive
tumors that coexpress IRF-1n may have a better prognosis
and/or a better response to antiestrogens. For example, we
have recently shown that the ability of the steroidal anti-
estrogen IC1 182,780 (Faslodex; Fulvestrant) to signal apoptosis

is mechanistically related to its ability to regulate IRF-1
expression and function in breast cancer cells (12).

We could not confirm coexpression of ERa and hXBP-1
(p=0.244), an association predicted from hierarchical cluster
analysis of cDNA expression microarray data from human
breast tumors (37,38). Several explanations for this outcome
are possible. The nature of the signals from gene expression
microarrays that measure mRNA and tissue microarrays that
measure protein are very different. It also is not clear how
closely the levels of mMRNA and protein are related for hXBP-1.
Furthermore, some of the associations/relationships identified
in gene expression microarray studies were found by simple
hierarchical clustering and these may not be correct or
complete. The use of these clustering methods to identify gene
expression patterns from within the very high dimensional
data spaces generated by gene expression microarrays has
been seriously questioned (70,71).

hXBP-1 expression is positively correlated with IRF-1c
expression (p=0.001) but inversely associated with IRF-In
(borderline; p=0.082). These observations suggest a balance
between IRF-1's inhibitory activity and hXBP-1's mitogenic
activity. For example, tumors where hXBP-1 activity pre-
dominates may have a poor prognosis and/or poor response
to antiestrogens. Some antiestrogen-resistant cells exhibit
down-regulated IRF-1 activation and up-regulated hXBP-1
activity (western; promoter-reporter data) (11,12).

Expression of hXBP-1 and NFkB (p65) are positively
correlated (p=0.018). If we assume that NFxB is inactive
because of its cytosolic location, the coexpression of hXBP-1
might compensate for any lack of NFxB in affecting cell
survival since both are antiapoptotic. However, hXBP-1
expression appears to be downstream of NFkB, at least in
plasma cell differentiation (35), implying a potential induction
of hXBP-1 by NFkB. If this occurs in breast cancer cells and
NF«kB is active, as suggested by the potential correlation
between NFxB and S-phase (p=0.062), it may explain the
coexpression of hXBP-1 and NFxB in Table V. We also
cannot exclude the possibility that NFkB p50 and/or NFxB
p52 expression are activated and may compensate for any
loss of NFkB p65 activity (28).

IRF-1 and NFxB proteins form heterodimers that can
regulate gene expression and we might expect to find these
coexpressed in the same tumors. We found a significant
coexpression of NFkB and IRF-1c (p=0.002) and an inverse
association between IRF-1n and NFxB (p=0.034). Where both
proteins are primarily sequestered in the cytosol, the ability
of IRF-1:NFxB heterodimers to regulate gene transcription
could be inhibited. Several genes regulated by these hetero-
dimers are implicated in breast cancer, including RANTES
(regulated upon activation, normally T-Expressed and
presumably secreted) (72), VCAM-1 (vascular cell adhesion
molecule-1) (73) and IL-6 (interleukin-6) (74). RANTES
expression correlates with a poor prognosis in breast cancer
(75). VCAM-1 is involved in angiogenesis and metastasis in
breast tumors (76), and an autocrine production of IL-6 is
associated with drug resistance in breast cancer cells (77).
The inverse relationship between IRF-1n and NFkB suggests
that some tumors may have activated IRF-1 in the absence of
active NFxB; such tumors may have a good prognosis and/or
be sensitive to antiestrogens.
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We obtained limited expression data for erbB2 (not shown).
We detected a significant inverse association between erbB2
and NPM (p=0.016), suggesting that the oncogenic properties
of NPM may be important in erbB2 non-overexpressing breast
tumors, which represent the majority of breast cancer. No
association was seen between erbB2 and either IRF-1, hXBP-1
or NFxB.

The present study represents the first analysis of the
coexpression patterns of a subset of genes associated with
acquired endocrine resistance in breast cancer cells. We
could not adequately assess the activation state of each of the
proteins and clinical-outcome data are not available in this
data set. Despite these limitations, the data clearly show that
all four proteins are detectable in a high proportion of the
breast tumors used in this study. The data are consistent with
a role for IRF-1, NFxB, hXBP-1 and NPM and their inter-
actions in breast cancer, and are broadly supportive of the
proposed component of a larger signaling network as outlined
in Fig. 1. Further analysis of the expression patterns of IRF-1,
NFkB, hXBP-1 and NPM as potential biomarkers for further
defining endocrine response profiles in some breast cancer
patients is warranted.
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