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1. Introduction

All filters in radar system simulations are normally assumed to be at steady state when

subjected to deterministic and stochastic signals (the transient response has passed). The

simulation usually uses some multiple of the step time-response constant to determine

when the system enters steady state. This report shows a novel way to determine when

steady state has been reached when subjected to stochastic signals. The steady state is

defined as when the variance of the output has reached 95% of its steady state value.

The description of the transient response of a system subjected to noise is found in the

solution for the probability density function of the process Vout(t) described by the stochastic

differential equation

dnVout
dt2

+ an−1
dn−1Vout
dtn−1

+ ...+ a0Vout = Vin(t) (1)

where the forcing function Vin(t) is any stationary stochastic process.

The stochastic differential equation under this general forcing function does not have a

closed-form solution. As in most cases, to make the solution tractable, we assume that the

forcing function is a Gaussian distributed (stationary) stochastic process.

2. Theory

The transducer function H(s) for an nth order low pass filter in the s-domain (1 ) is

1

2

�
R2
R1

Vin(s)

Vout(s)
= sn + an−1sn−1 + ...+ a0 (2)

For ease of analysis we set the term 1
2

�
R2
R1
= 1. Under this assumption, equation 2

represents the left side of equation 1 in the s-domain.

Assuming Vin(t) is a random voltage with a spectral density W0(f) =W0, then equation 1

becomes the general nth order equation of the Langevin type. The solution for the

probability density function for Vout(t) using the Fokker-Planck equation found in Risken

(2 ) is difficult. However, D’Azzo and Houpis (3 ) offer a closed-form solution to the problem

if we convert equation 1 into an equivalent system of first-order differential equations.
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In order to use the solution offered by D’Azzo and Houpis (3 ) (p.155), we transform equation

1 by first defining the operator Dj = dj

dtj
, and then defining the phase variables in terms of

this operator we obtain

x1 = Vout, x2 = ẋ1 = DVout, ..., xn = ẋn−1 = Dn−1Vout (3)

Using the phase variables, equation 1 can be written as a system of N first-order differential

equations.

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1 0

0 1

0
. . .

0
. . .

0 1
−a0 −a1 −a2 −a3 · · · an−2 an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Vout (4)

From Risken (2 ) (section 3.2), equation 4 represents an Ornstein-Uhlenbeck process where

the ξ variables have replaced the x variables and

γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1 0

0 1

0
. . .

0
. . .

0 1
−a0 −a1 −a2 −a3 · · · an−2 an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Letting Vout(t) have a zero-mean value, and since the noise is white, we have out(t)Vout(t
I)
@
=

Dδ(t− tI) for the correlation function

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
0
. . .

0
0 0

D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

2



where D is the power spectral noise density of the white Gaussian process Vin(t).

From Risken (2 ) (p.153) we learn that the drift coefficient is linear in the Ornstein-Uhlenbeck

process. Note that Risken (2 ) uses the Einstein summation convention for the Latin indices

but not for Greek indices. We will do the same.

Di = −γijxj (7)

The diffusion coefficient is a constant, that is

γij, Dij = Dji (Constant matrix) (8)

Following Risken (2 ), for the derivation of the solution for the transition probability density,

we determine the complete biorthogonal set for the γ matrix,

γiju
(α)
j = λau

(α)
j ; γijν

(α)
i = λaν

(α)
j (9)

with the orthonormality and completeness relation

3
a

ν
(α)
i u

(α)
j = δij; u

(α)
i ν

(β)
i = δαβ (10)

Such a complete biorthogonal set exists if the N eigenvalues are all different.

The spectral decomposition of the matrix γ is

γij =
3
α

λαu
(α)
i ν

(α)
j (11)

and we have

Gij(t) =
J
e−γt)
o
ij
=
3
α

e−λαtu(α)i ν
(α)
j (12)
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Using Risken (2 ) (eq. 6.118) for the matrix σ

σij(τ) = 2Dks ·
τ8
0

Gik(τ
I)Gjs(τ I)dτ I (13)

we obtain

σij(t) = 2
3
α,β

1− e−(λα+λβ)t
λα + λβ

D(α,β)u
(α)
i u

(β)
j (14)

where

D(α,β) = ν
(α)
k Dklν

(β)
l (15)

By using equations 7-14 and performing the integration (explained in Risken (2 ), section

2.3.3), we arrive at the expression for the transition probability density function

P ({x}, t|{xI}, tI) =

w
2

π

W−N
2

[Det σ(t− tI)]− 12 (16)

· exp

w
l − 1

2
[σ−1(t− tI)]ij[xi −Gjk(t− tI)xIk]

·[xj −Gjl(t− tI)xIl]
W

To solve equation 16 in closed-form will require closed-form solutions for the eigenvalues of

γ and for the inverse of the σ matrix (4 ). Modern symbolic processors can accomplish this,

but it will prove very difficult for a symbolic processor to integrate out the (n− 1) variables
to obtain the probability density function for x. If this closed-form is obtained, an

additional integration will be required to obtain the mean and variance of the variable x.

Since the joint probability density function is Gaussian, the mean, variance, and

probability density function can be obtained from the characteristic function. Since the D

matrix contains only one constant element, the expressions for the mean, variance, and

probability density function of x can be simplified.

From Middleton (5 ) (section 7.3) we see that the mean and correlation matrices in terms

of the variables in Risken (2 ) (eq 6.113) for the characteristic function (keeping with the

Einstein summation convention) can be expressed as sums. This step is necessary so that

symbolic and numerical calculations can be performed.
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mean =Mi(t− tI) = Gij(t− tI)xIj =
3
α

e−λαtu(α)i ν
(α)
j xIj (17)

where the xIj are the initial conditions for the random variable xj(at t = t
I) for the differential

equation for the probability density function (Risken (2 ) (eqs. 16.108, 16.109).

K = σij = 2
3
α,β

1− e−(λα+λβ)t
λα + λβ

p
ν
(α)
k Dklu

(β)
j

Q
u
(α)
i ν

(β)
j (18)

Using equation 17 we obtain for the mean of the variable x1

Mx1 =
N3
k=1

G1kxk =
N3
k=1

N3
j=1

e−λjtuk1ν
k
j xk (19)

Using equation 18 we obtain for the variance of variable x1

V ar1 = o11(t) = 2
3
α,β

1− e−(λα+λβ)t
λα + λβ

p
ν
(α)
N DN,Nu

(β)
N

Q
u
(α)
1 ν

(β)
1 (20)

From Middleton (5 p.16) we have the result that the marginal characteristic function cor-

responding the marginal probability density function for x1 is just the joint characteristic

function with all the ks, except k1 is set equal to zero. Thus the marginal characteristic

function for x1 is

mcfx1 = e
−iMx1k1+011k21 (21)

Taking the inverse Fourier transform of equation 19 we obtain the marginal probability

density function for the variable x1. Using the fact that the joint probability density

function is Gaussian and the properties of the joint characteristic function, we can obtain

the mean and variance of the variable x1 by simple summation, and the marginal

probability density function by a single one-dimensional Fourier transform.

3. Comparison of Simulation and Theoretical Results

To compare simulation and theoretical results of the means, variances and marginal

probability density function for the variable x1, second-, third-, and fourth-order

5



Butterworth transfer function were used. The 3dB cutoff frequency in all three cases was

ω = 1. To obtain the simulation results, 4,000 representations of the non-stationary

stochastic process x1 were generated. The value of D used was 2.5 and the initial condition

for x1 was 2.

A relationship between the value of D used in the theoretical results and the variance of

the Gaussian noise source used in the simulation has to be established. The Dtheo used in

the theoretical results is one half the noise density obtained by dividing the total power by

the bandwidth. The noise density used in the simulation is the variance (total power) of

the Gaussian noise generator divided by the simulation bandwidth. Thus, the simulation

noise density is (Dsim − σsim)δt, where the simulation sample time is δt. Since the two D’s

must be the same, we have

σsim =
2Dtheo
δt

(22)

Figures 1 and 2 show the analytical and simulated results for the mean as a function of

time.

Figure 1. Analytical results for the means.

Figure 2. Simulation results for the means.

Figure 1 shows the expected result that the transient response of the filter increases as the

order of the filter is increased.
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The simulation results agree with the theoretical results. Note that the higher the order of

the filter, the longer it takes to reach steady state. In order to simulate the initial condition

for the stochastic variable x1, it was necessary to drive the filter with a direct current (DC)

voltage equal to the initial condition xI1 and then let the output of the filter reach the
steady state value xI1. When steady state was reached, the stationary Gaussian process (D
= 2.5) was applied to the input of the filter.

To show just how close the simulation was to theoretical values, the simulation results are

overlaid the theoretical for the third order filter in figure 3. The simulation results are

shifted in time to match the theoretical.

Figure 3. Comparisons of results for the mean for the third-order Butterworth filter
response.

Figures 4 and 5 show the analytical and simulation results for the variance as a function of

time.

Both figures 4 and 5 show that as the order of the filter is increased, the time for the

variance of the output to reach steady state increases.

Figure 4. Analytical results for the variances.
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Figure 5. Simulation results for the variances.

As in the mean calculations, in order to simulate the initial condition for the variable x1,

the output of the filter, it was necessary to drive the filter with the initial condition voltage

and let it stabilize to the initial condition. Again, at the stabilization time the stationary

Gaussian process (D = 2.5) was applied.

To show just how close the simulation is to theoretical values of settling time of the

variance, the simulation results for the third-order filter are superimposed on the analytical

in figure 6. Again, the results were shifted in time to compare the simulation against the

analytical results.

Figure 6. Comparison of results for the variances for the third-order Butterworth filter
response.

Figure 6 shows that we have a very close match between simulates and analytical in the

transient response of the variance.

Figure 7 shows the theoretical probability density function for as a function of four time

values.

Figure 8 shows simulation and theoretical results for the probability density function of x1
for two values of time.

Figure 8 shows that the theoretical and simulation histograms are in good agreement.
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Figure 7. Theoretical probability density for the third-order Butterworth filter response.

Figure 8. Theoretical probability density and simulation for the third-order Butterworth
filter response.

Figure 9 shows the theoretical step response and variance as a function of time for a

third-order Butterworth filter. The step response is amplitude scaled so that both plots

approach the same steady state value.

Figure 9. Variance of the step function input response of a third-order Butterworth filter.
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Figure 9 shows that for the third-order system that the time for both the variance and step

response to approach steady state are of the same order. This is important because we see

that steady state, as measured by the variances, is reached before the classic definition of

steady state for a deterministic input. This allows the step response for complex systems to

be used as a measure of the transient response of the complex system to stochastic

processes.

Does this hold in general? Since both responses are control by the eigenvalues, a heuristic

argument indicates it does. A mathematical argument will have to wait for a later report.

4. Conclusions

We have shown that the simulation and predicted results are in very close agreement with

each other when calculating the transient response of a stable low pass filter output. The

theory shows that we are not limited to this case only. We can easily create unstable

Gaussian processes. By varying the initial conditions in a periodic manner we can create

stable and unstable periodic Gaussian processes for use in evaluating communication and

radar simulations.

Soong (6 ) shows how to extend the results of this report to the case where the processes

are not white noise defined by Soong (6 ), equation 7.199.

dY (t) = g(Y (t), t)dt+ dB(t) (23)

The limitation of this analysis is in not showing the exact relationship between the step

response to filters described by equation 2 and the transient response of the variance of the

output for this class of filters. This is needed to use the easily obtained step response as an

upper bound for the transient of the variance of the output of the filter.
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