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Modeling Skill Growth and Decay in Edge Organizations:   
Near-Optimizing Knowledge & Power Flows (Phase Two) 

 
Abstract 
This paper outlines efforts to model, simulate and ultimately optimize knowledge flows in Edge 
organizations.  We begin by reviewing Phase I research which explored how knowledge inventory 
flows through organizations, analogously to perishable, physical goods inventory in a supply 
chain, and uncovered useful insights to clarify current understanding and permit initial 
quantification of knowledge management impacts on organizational performance.  Current Phase 
II efforts are then described that classify, quantitatively model, and simulate knowledge flows 
within and among individuals in Edge organizations.  Empirical, experimental data on rates of 
learning and forgetting drawn from the social and cognitive psychology literature provide the basis 
for defining and modeling agent learning and forgetting micro-behaviors in our POW-ER 
computational simulation model of organizations.  Phase II (micro-level skill acquisition) builds on 
Phase I (macro-level inventory control) by modeling the trajectories of individual knowledge flows 
associated with dynamic knowledge inventory increases and decreases.  Using this model, we 
conduct intellective experiments (using models of idealized work processes and organizations) 
and emulation experiments (to replicate outcomes of real work processes and organizations) for 
model refinement and validation.  The goal of these experiments is to determine organizationally, 
contingently optimal knowledge intervention strategies.  Cumulative Phase III efforts are 
introduced that integrate findings from prior phases to “engineer” knowledge management 
solutions in organizations via a Knowledge Chain Management approach.     
 
 
Introduction and Motivation 
Edge organizations [1] can only achieve their putative effectiveness through the thoughtful 
management of knowledge.  For instance, Alberts and Hayes implement the term agility to 
encompass the facets of robustness, resilience, responsiveness, flexibility, innovation, and 
adaptation.  For each of these Edge-like qualities to exist, the flows of knowledge among 
individuals and its contextual deployment to support shared awareness and self-synchronization 
in Edge organizations must first be explored, understood and managed. Toward this goal, our 
efforts are offered in Phases I, II, and III.  Phase I explored knowledge inventory [34].  In this 
phase we considered knowledge as a perishable set of skills like physical goods.  Using proven 
mathematical management science formulae and methods such as Economic Order Quantity 
(EOQ) and cost analysis, as well as inventory doctrines of Just-In-Case (JIC), Just-In-Time (JIT), 
and make vs. buy decisions, we examined knowledge flows using the metaphor perishable 
inventory with some success.  We closed by introducing the novel concept knowledge chain 
management via theoretical modeling. In Phase II we refine this effort through research described 
in the present article by considering cognitive learning and forgetting rates.  We model and test 
mechanisms for changing the level of participants’ knowledge by collating available experimental 
data in the social and psychological literature, and by observing knowledge workers in Edge 
organizations.  This effort more precisely informs our knowledge of growth and decay, and can be 
used within the Knowledge Inventory modeling of Phase I.  Phase III then looks forward by 
determining contingently optimal knowledge flows in different organizational contexts through 
developing a more precise methodology for Knowledge Chain Management. 

 
Background – Phase I Review 
A large body of research exists on information flow in organizations, going back to the pioneering 
work of Herbert Simon in the 1950’s [53]. However, the corresponding literature on the flow of 
knowledge in organizations is only just emerging (e.g. [33, 41, 44]) and remains inchoate.  To 
gain theoretical insight into knowledge (and therefore power) flows, we began our research efforts 
in Phase I by describing knowledge as a set of skills that grow and decay over time due to 
different environmental effects.  We sought to understand how such skills can be managed to 
maintain efficiencies required for edge-like qualities such as agility and robustness.  Specifically, 
as noted above, we posited a model of knowledge as perishable inventory, whereby we 
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discussed how parallel losses occur with respect to knowledge as a result of phenomena such as 
employee turnover, knowledge decay, and obsolescence, and how they aligned with perishable, 
physical goods.  Table 1 below pairs phenomena of knowledge interventions with their perishable 
physical goods counterparts.   

 
Table 1.   Knowledge vs. Perishable Goods  
 

Phenomena Knowledge 
Intervention 

Physical Goods Counterpart 

Additions (inflows) Mentoring Custom production (make) 
 Formal training Job shop production (make) 
 On-The-Job Training Assembly line production (make) 
 Personnel transfer Custom order (buy) 

Subtractions (outflows) Employee turnover Demand 
 Knowledge Decay Perishability 
 Obsolescence Obsolescence 

Holding costs Diffusion benefit Security, refrigeration, etc. 
Optimal Ordering EOQ EOQ 

Inventory System Operating costs (about the same) (about the same) 
Operating Doctrines JIT/JIC JIT/JIC 
 
We combined this framework with the proven mathematical formulae used in 

management science inventory control to explore how we might adapt methods to determine 
costs of knowledge inventory additions (i.e., knowledge inflows), subtractions (i.e., knowledge 
outflows), reordering as well as Economic Order Quantity (EOQ) decisions, holding costs, 
inventory doctrines of Just-In-Case (JIC), Just-In-Time (JIT), and make vs. buy decisions. Each of 
these elements is explained briefly and in turn. 

 
Knowledge Inflows 
Knowledge inventory represents the stock of knowledge [Dierickx and Cool, 1989] 

possessed at any point in time by people, groups and organizations. We say, “at any point in 
time,” to acknowledge expressly the dynamic nature of knowledge—and hence knowledge 
inventory—which is flowing constantly in and out (i.e., causing additions to and subtractions from 
knowledge inventory). Knowledge flows derive from a relatively small set of organizational 
processes and environment effects [41].  For instance, knowledge inflow processes include 
mentoring, classroom training, and On-the-Job Training (OJT; i.e., trial and error learning).  Each 
such inflow process serves to increase knowledge inventory, but at different rates and with 
different characteristics.  More specifically, mentoring provides relatively quick and personalized 
feedback on errors as well as individually tailored instruction, thus potentially enabling faster 
learning at the individual and (very small) group levels.  It also has beneficial effects in both tacit 
and explicit dimensions based on assiduous mentor contact.  However, mentoring is costly; it 
assumes that more knowledgeable employees are available, willing, and capable of serving as 
mentors, and that the organization can function temporarily without them, as they defer their own 
work tasks in order to provide assistance to others.  A cost is also incurred as a mentor’s tacit 
knowledge is converted into explicit knowledge, because of the incomplete or “filtered” nature of 
the exchange [46].  Hence mentoring, as with every knowledge inflow process, involves both 
costs and benefits, which the informed leader or manager must tradeoff—explicitly or implicitly—
when deciding which to use, when, and how often. 

Alternatively, employees may be formally trained (e.g., in a classroom setting).  The 
classroom training inflow process would offer its own, unique mix of costs and benefits. For 
instance, relatively large groups of people can be trained simultaneously in the classroom, 
whereas mentoring is limited to one-on-one or one-on-few modes. However, people must 
generally leave their workplaces—and hence stop working productively—while participating in 
classroom training, whereas the person being mentored works directly on job tasks. The informed 
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leader or manager must consider such tradeoffs when assessing the relative merits of assigning 
mentors versus sending employees to school for classroom training. Additionally, as implied by 
the name, the alternate knowledge inflow process of OJT involves instead each employee 
learning simply and directly while on the job. This process involves relatively slow accumulation of 
perfunctory knowledge—seen most often, and understood most easily at the individual level—and 
has been confirmed empirically through learning curves (e.g., see [Argote et al., 1990 and Wright 
1936]) to result in many errors along the way, particularly in the early phases of learning by doing.   

 
Knowledge Outflows 
Second, knowledge flows out of people, groups and organizations also. Such outflows 

represent subtractions from knowledge inventory, and arise from knowledge outflow processes 
such as employee turnover, knowledge decay and knowledge obsolescence.  More specifically, 
employee turnover causes all tacit knowledge of transferred employees, for instance, to flow 
completely out of the transferring organization. As with the alternate knowledge inflow processes 
described above, employee turnover—used generally as a negative or pejorative term—has costs 
as well as benefits also. For instance, turnover costs can include losses of productivity due to 
work disruption, reductions in organizational learning and memory due to tacit knowledge 
outflows, and search costs associated with identifying, recruiting and transferring one or more 
replacement employees. Benefits can include introducing new ideas and fresh perspectives to the 
organization, promoting tacit knowledge flows between organizations, and broadening the 
experience bases of employees who change jobs. Moreover, such costs and benefits are 
amplified in proportion to the number and frequency of personnel transfers, as well as the level of 
social aggregation involved. For instance from the Military, in addition to transferring individual 
people to and from organizational units and commands, it remains common practice to transfer 
whole units (i.e., relatively large groups and teams) into and out of different commands (i.e., large 
organizations), and to even change entire command organizations during the middle of military 
operations (e.g., consider the planned, periodic rotation of Carrier Strike Groups and 
Expeditionary Strike Groups who support operations in Iraq today). 

Knowledge decay at the individual level—and arguably also at the group and 
organization levels—occurs on a much slower scale than employee turnover and is caused by 
two phenomena – time and interference [2].  The rate at which forgetting occurs increases with 
skill complexity and time delay since last performed.  Interference considers the number of other 
tasks that have been accomplished between target events of interest, bumping out portions of the 
original knowledge that competes for the same memory resources.  For instance these two 
knowledge outflows can occur as a worker spends more time accomplishing one task while 
neglecting another.  And as the second task becomes necessary to perform, it may suffer from a 
lengthy delay of disuse and may be difficult to recall because of the routine performance and 
cognitive requirements of the first skill.  In a military setting, bridge watch standing takes place 
every day whereas anti-submarine warfare occurs infrequently.  The second skill may suffer from 
knowledge decay due to disuse, and may also suffer from interference due to well-practiced and 
memorized mathematical routines necessary to perform the first skill. 

Finally, knowledge obsolescence is a form of knowledge decay due to a growing field or 
environmental uncertainty.  What was once current knowledge is now outdated and must be 
refreshed and augmented.  This can require ever increasing levels of inventory and frequency of 
re-supply to keep pace with the growing field of available knowledge, and has the appearance 
and effect of a knowledge outflow due to decay.  Rapidly advancing, technological fields such as 
software engineering and biomedical research represent vivid, current examples. 

 
Holding Costs 
Within the physical realm, holding costs are associated with maintaining items in 

inventory, such as security, air-conditioning, and maintenance.  However, explicit and tacit forms 
of, knowledge - considered as perishable goods - sometimes exhibit a different set of holding 
costs.  For instance, when compared to that of most physical goods, the marginal cost of adding, 
duplicating and disseminating explicit knowledge is very low (if not zero).   However, in its tacit 
form, knowledge is much more nebulous to guard and maintain, since it resides in the minds of 
employees. Therefore the retaining of certain employees with critical or proprietary tacit 
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knowledge becomes a kind of holding cost which is paid through bonus salaries or other costly 
benefits.  Additionally, as tacit knowledge resides in memory, it is subject to knowledge decay if 
left unused; and it suffers obsolescence if the field grows.  Therefore, just as the organization 
must at times remove items from inventory, maintain and update them to keep them up to date, 
so it must also invoke methods to maintain and update its knowledge inventory.  The cost of 
performing remedies, such as conducting drills or refresher training, to resolve this knowledge 
atrophy is another kind of holding cost.   
 Conversely, as employees know more, they may be able to develop novel solutions to 
difficult problems that they otherwise would not discover solely based on their prior knowledge [9, 
14].  Therefore, it seems appropriate to consider that “holding” knowledge contains a hidden 
benefit derived from tacit knowledge stores that enable improved performance. 

 
EOQ  
For physical inventory, researchers have developed, and practitioners regularly use, 

Economic Order Quantity (EOQ) to determine the optimal amount of a physical good to order 
based on known demand, holding and set up costs.  This method remains sound for many 
different demand approaches.  For instance, Brill and Chaouch modeled demand using an 
exponential distribution in response to uncertain forecasts [6].  Interestingly, although some of the 
terms may be difficult to predict, the practitioner is comforted knowing that even a 25% error in 
EOQ results in only a 2.5 percent error in predicted inventory costs [39].  Therefore the method of 
EOQ is somewhat robust to input variability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Inventory Model showing inventory levels over a cycle time (T), with 
lead time (τ), and order quantity (EOQ).  The consistent and repeating reordering 
sequence shown allows for the maintenance of a static buffer or safety stock 
[39]. 
 
Figure 1 above illustrates the rise and fall of physical inventory levels given known 

demand, order lead time, and safety stock.  The optimal amount ordered in this case would 
remain consistent and should be determined using the EOQ model.  A short, qualitative example 
illustrates the use of EOQ with respect to knowledge inventory.  First, let us consider that the 
organization requires a certain type of knowledge and can determine the relative magnitude of 
the input variables.  For instance, this particular knowledge may exhibit relatively high knowledge 
subtractions (e.g., outflows resulting from decay and obsolescence), relatively low set-up costs 
(K), and relatively low holding costs (IC).  It is seen that a near-optimal amount of knowledge 
inflow (i.e., knowledge to order) is high.  Conversely, as knowledge subtractions remain relatively 
low due to a static environment, while keeping holding and setup costs equal, the optimal amount 
to order decreases. 
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Given the foregoing discussions concerning each of these costs, it seems that as the 
environment becomes more dynamic, a larger knowledge order (i.e., greater knowledge flow) is 
needed.  Although a seemingly intuitive finding, this predictive model uses knowledge flow 
variable definitions that closely follow a proven method for determining optimal ordering of 
perishable physical goods, and produces similar outputs. 

  
Inventory System Operating Costs  
Aside from the costs associated with EOQ, the organization may consider the overhead 

requirements to keep track of its knowledge inventory.  For instance, the operation of a physical 
inventory system includes the data collection system used to determine item demand and 
procurement lead-time and the cost of making decisions based on such data.  This cost is 
generally static and presents only a small investment once market demand has been established.  
This remains true until major changes to operating doctrine are considered, such as changes to 
lead-time, reorder point, and safety stock.  Assuming that the current re-supply doctrine is 
satisfactory, this cost is relatively predictable once demand for a particular item is known and 
remains predictable. 

However, as demand becomes uncertain for both physical and knowledge inventory, 
obtaining the data required to determine knowledge demand can involve considerable human 
interaction.  Specifically, accurate predictions of required knowledge inflows require clear insight 
into the future requirements of the organization and an accurate knowledge of what inventory the 
organization currently holds.  Because there are multiple available methods to acquire knowledge 
with different lead times, this task becomes challenging to accomplish. Yet it is critical to perform 
it well to optimize the organization’s use of scarce knowledge inflow resources.  Conducting this 
kind of analysis can help managers to exploit available individual knowledge inflows optimally.   

In a military setting for example, as a commander becomes more aware of the 
environment to be encountered and compares the knowledge demands of this environment to the 
available knowledge inventory and opportunity for knowledge inflows, s/he can achieve a more 
comprehensible understanding of unit readiness.   

 
Operating Doctrines 
Inventory operating doctrines provide the organization a framework to decide when, why, 

and how often reordering should be accomplished.  Two inventory operating doctrines, Just-In-
Time (JIT) and Just-In-Case (JIC), are well established in management science literature and in 
practice.  An abbreviated description of each is provided.    

Just-In-Time (JIT) began as a Japanese management philosophy chiefly to eliminate 
waste [39].  Its many beneficial results include reductions in physical inventory, thus saving 
holding costs and production as well as providing a more flexible organization capable of 
responding rapidly to changing customer demands.  It also leverages the savings found through 
the use of EOQ ordering.  JIT acts as a pull system [39, p. 351] using indications such as Kan-
ban cards to trigger the next order.  Ultimately, JIT seeks to provide resources, parts, and finished 
inventory just in time.   

Just-In-Case (JIC) considers instead the value of slightly increased inventory levels in the 
event a part may be needed, seeking to avoid costly stock-out conditions.  This extra inventory is 
indeed useful in uncertain environments with unknown demand.  Therefore, while JIT seeks to 
minimize excess inventory in situations where demand can be accurately assessed, JIC 
considers the cost versus the potential worth of holding excess inventory in uncertain situations.  
To illustrate this, consider the recent New Orleans hurricane Katrina of 2005.  The environmental 
change was unpredicted, and people holding surpluses of water and food benefited greatly from 
their extra inventory.  In this case, the value of the JIC inventory far exceeded the cost to hold it. 

With respect to knowledge inventory, each policy exhibits both desirable and undesirable 
traits.  JIT seeks to accrue knowledge inflows just as they are needed, thereby saving time and 
money invested in holding knowledge that is unnecessary and reducing time available for 
knowledge outflows via decay and obsolescence.  However, if the lead time for a certain type of 
knowledge is long or unpredictable, this may cause an unwanted stock-out condition which could 
be difficult and very expensive to remedy.  However, if we implement JIT policies for short term, 
predictable lead time training to counter the effects of knowledge outflows due to decay, thus 
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providing critical knowledge for a project just as it is needed, this may serve the organization’s 
knowledge inventory purposes well.  This is true in the case of dynamic projects whose 
environments at the beginning may not be known or predictable – a circumstance that is common 
for today’s military missions.  Additionally, JIT could be used to represent how the organization 
distributes its specialist personnel to projects just as they are needed, thus avoiding the cost of 
educating too many to become specialists. 

The JIC operating doctrine however provides for a “safety stock” [27] of many physical 
items to be maintained in the event of unexpected demand.  Therefore, with respect to knowledge 
inventory, an organization may wish to retain some employees with graduate level education in 
the event that their broad and deep knowledge might become beneficial.  Although this policy 
causes the organization to hold knowledge that may never be used, it provides flexibility for an 
organization to respond quickly to unforeseen circumstances.  Alternatively, implementing a JIC 
policy organization-wide, whereby all employees are formally and generally educated, would be a 
very costly proposition.  However, there is reason to suspect that at least some of the employees 
should be generally educated in the event that unforeseen circumstances require their 
knowledge.  Additionally, as more knowledge is held, more knowledge is available for potential 
diffusion.  Therefore, the organization must balance the usefulness of holding many kinds of 
knowledge versus the caustic effects of decay and obsolescence. 

Both doctrines are useful at times and must be weighed carefully by the organization.   
Because of their inherent decentralization, Edge organizations place a high premium on 
appropriate knowledge distribution and sharing and are highly sensitive to stock-outs of required 
knowledge.  We, therefore, argue that a combination of JIT and JIC should be considered by the 
organization to provide near-optimal inventory policies.   We postulate that a JIT policy should be 
followed when the environment is static and can be predicted.  However, to the extent that the 
environment is dynamic and cannot be predicted, the organization should leverage the cost 
savings of JIT with the supportive policies of JIC.  For instance, many scholars argue that both 
specialist and generalist knowledge are required to enable organizational success [47].  As 
predictable but difficult issues are encountered by the organization, the specialist is needed.  
However, if the circumstance has never been encountered, the specialist may be unable to solve 
the issue, whereas the generalist may be able to abstract from similar knowledge to determine 
the best method to resolve the issue.   

 
Issues with the Analogy of Knowledge Inventory as Perishable Goods  
Although insightful theoretically, using this metaphor perishable goods inventory to 

conceptualize the dynamics of knowledge stocks and flows in the organization suffers from two 
limitations. First, when knowledge is “demanded” in an inventory sense, it can actually increase 
due to its diffusion among workers.  In fact, the more it is used, the more it tends to grow!  Cohen 
& Levinthal (1990) [14, p.129], state that “as more objects, patterns, and concepts are stored in 
memory, the more readily is new information about these constructs acquired and the more facile 
is the individual in using them in new settings.”  Therefore we refrain from using the term 
“knowledge demand” but instead refer to “knowledge inventory subtractions” or “outflows” to refer 
to losses mentioned above such as employee turnover, knowledge decay, interference, and 
obsolescence.   

Second, knowledge can be used by many people yet not be depleted, making knowledge 
inventory difficult to quantify.  Thus, certain kinds of (esp. explicit) knowledge also exhibit the trait 
of a public, collective or nonrivalrous good [24] and exhibit the quality of jointness of supply [38]. 
Alternatively, other kinds of (esp. tacit) knowledge cannot be shared at all. This difference is best 
resolved considering the bounds of the organization [24].  For instance, if an individual belonging 
to an organization shares knowledge within the organization (or partner organizations), the 
organization has not lost its competitive advantage gained by his expertise. Indeed, such 
advantage would likely increase as the shared knowledge expands its reach through the 
organization. Yet if he shares this knowledge outside the organization, a potentially damaging 
loss has occurred.  This loss could be prevented or at least made illegal through the use of non-
disclosure statements, patents, and copyrights.  Ultimately, we seek the diffusion of knowledge 
within the firm and consider knowledge inventory as the holdings of the firm and its employees.            

 



 8

Phase II 
Current research refines the theoretical framework to describe, model and simulate knowledge 
flows in Edge organizations by computationally modeling the dynamic phenomenon of skill 
acquisition and decay for individuals.   

We concede that illustrating, managing, and quantifying knowledge is challenging. 
Knowledge considered as a collective set of skills held by organizations must first be 
characterized and classified amongst its individual members.  Cohen and Levinthal argue that 
“An organization’s absorptive capacity depend on the absorptive capacities of its individual 
members” [14].  We therefore seek to improve our understanding of how to model individual skill 
acquisition and decay and inform practitioners why each occurs.  Specifically, during Phase II we 
seek to understand: 

 
 How individual skill acquisition and decay can be computationally modeled, calibrated, 

and validated and,  
 How Edge organizations and projects are effected by the sum of individual participants’ 

skill growth and decay.  
 
In order to measure knowledge level quantitatively, we seek to measure knowledge via 

the performance of skill.  Skill accounts for both tacit and explicit knowledge, and by leveraging 
well-substantiated learning and forgetting curves, converts knowledge into a form capable of 
being quantitatively measured – via the speed of processing, and perhaps also via error rates.  

This exploratory effort draws from the literatures of cognitive psychology (e.g. [18, 21, 23, 
29, 48, 49, 61]), organizational simulation [30, 32, 33] and organizational knowledge and power 
(e.g. [16, 17, 20, 22, 44]).  We have begun to aggregate and synthesize findings from research 
that further discusses skill acquisition and decay [7, 8, 13].  This effort seeks to build upon the 
knowledge inventory framework discussed above and refines and informs individual knowledge 
growth and decay. As a necessary first step, we begin by considering the different means and 
contexts by which others have modeled knowledge inflows and outflows through the use of 
learning and forgetting curves.  We instantiate and categorize learning and forgetting curves [21] 
based on well substantiated, empirically based, learning and forgetting curves (e.g. [2, 52, 61]) 
and the latest developments of learning classifications using skill categorization, whereby skills 
and their concomitant learning curves are placed in categories (e.g., learning or forgetting of 
motor vs. cognitive skills) based on their context [18, 28, 52].      

One limitation of organizational learning curves is that they are highly aggregated and 
can lack the level of granularity available through the analysis of individual agents.  We seek to 
overcome this limitation and inform organizational learning by imbuing agents with skills 
necessary to accomplish assigned tasks within an organization.  We also allow these skills to 
increase and decrease dynamically as knowledge interventions cause inflows and outflows.  This 
refinement allows us to analyze the effectiveness of different knowledge flow management 
approaches computationally by using a set of extensions to the Virtual Design Team (VDT) Monte 
Carlo, discrete event organization simulation [30, 32, 33].   

New software entitled POW-ER (Process, Organization, Work for Edge Research) is 
used and initial learning parameters are embedded in POW-ER agents based on micro-behaviors 
found through a review of social and cognitive psychology literature on learning and forgetting.  
We test our representation and reasoning of knowledge flows by executing synthetic gedanken or 
thought experiments for initial validation, followed by a series of simulations that further serve to 
validate, calibrate and refine the POW-ER parameters [57]. Finally we seek further refinement as 
well as validation through ethnographic, empirical studies held within the context of shipboard 
operations to be conducted in June 2006.  Through POW-ER, we expect to predict the impacts of 
alternative knowledge flow interventions (such as formal training, on-the-job training, and 
mentoring) as well as the effects of knowledge decay (due to time, interference, employee 
turnover, and obsolescence) on the effectiveness of Edge and other military organizations for 
different skill and environmental contexts.   

VDT is project-focused and thus models individual knowledge levels in its organization 
simulations as static for each individual (low, medium, and high) for the duration of a single 
project.  We use POW-ER to model and simulate knowledge as a continuous and dynamic 
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variable and attempt to develop new understanding about how to facilitate, enhance and measure 
knowledge flows and organizational power.   

Our computational experiments are designed to (1) begin validating and calibrating the 
knowledge flow parameters and algorithms in POW-ER; and (2) develop some initial insights 
about promising organizational interventions to optimize the design of Edge organizations with 
respect to future elaboration and validation of knowledge and power flows.  In his paper to the 
10th ICCRTS conference, Nissen examines computational models using a theoretically defined 
Edge organization [39].  We build upon this work, using many of the same definitions and 
modeling techniques as we continue forward with our line of research. 

  
This next section provides background into what is known in the social and cognitive 

psychology literature about skill acquisition and decay.  We begin by reviewing individual 
cognitive learning and forgetting, followed by our exploration of different knowledge interventions.  
We close this section with a discussion of field growth and skill classification. 
  

Learning and Forgetting Theory 
There is much to consider in how people learn.  We would be naïve to consider that we 

might answer the modeling concerns about all that there is to know about how humans learn and 
forget.  For instance studies show that experts differ from novices in how they learn, specifically 
that they look for patterns that can more easily be recalled and used for future advantage, in a 
chess game for example [8].  Organization of knowledge or chunking [37] has also been posited 
as a means by which more experienced knowledge workers are able to store increasing amounts 
of information.  It is also interesting to note how experts approach problems in terms of available 
responses considered first and, through the use of flexible heuristics, finally reach a solution [9].  
It is also argued that experts and talent are not innately granted their abilities, but achieve the 
level of virtuoso or recognized expert through deliberate practice [23] over many years.    

Each of these and many other thoughts about how learning takes place are intriguing, but 
very difficult to model, given the individuality of each participant and the timing of individual 
strategies as they are employed.  We instead use models that have been replicated via repeated 
empirical experimentation [e.g. 4, 19] as a point of departure and extend them toward modeling 
skill acquisition and decay.  The following figure illustrates for instance the Power Law of Learning 
[45] derived from empirical studies that appears ubiquitously in cognitive psychology texts (e.g. 
[2]). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Power Law of Learning.  Over increasing days of practice, a simple 
recognition task (time required to recognize sentences) requires ever decreasing 
amounts of time [as found in 2]. 
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 For virtually all learned skills, we observe that a skill may require many hours to 
perform at first, whereas on the second and third attempt, less and less time is required 
to perform the same skill with the same outcome.  It is also observed that no matter how 
much the participant practices, most skills never improve past a certain, required amount 
of time as Figure 2 illustrates.     
 There are three knowledge interventions we model that serve to increase 
individual knowledge.  They are: (1) mentoring which requires the time of an expert who 
closely observes and teaches the worker, (2) formal training which occurs in a focused 
form to improve skill and in short duration, and (3) On-the-Job Training (OJT) which 
arises from performing the skill.  Additionally, there are four that serve to decrease 
knowledge they are: (1) decay from lack of usage, (2) interference, (3) employee 
turnover, and (4) obsolescence.   

While each knowledge intervention serves to alter knowledge inventory, 
observed through the lens of skill acquisition and decay, they do so at different rates and 
with different characteristics.  Table 2 provides a summary of these characteristics with a 
more detailed discussion in the section that follows.    
 
Table 2.   Knowledge Intervention Characteristics  
 

Skill Effect Knowledge 
Intervention Characteristics 

Growth Mentoring Fast transfer of knowledge, yet has limited reach and 
requires expert’s time 

Growth Formal training 
Medium transfer of knowledge with improved reach 
among employees and removes employees from 

production 

Growth On-The-Job 
Training 

Slow transfer of knowledge, yet production is 
uninterrupted 

Decay Decay from time Variable for different skills 
Decay Interference Caused by competing tasks 
Decay Employee Turnover Complete loss of individual’s knowledge 
Decay Obsolescence Caused by a growing field of knowledge 

 
 
With respect to skill growth, mentoring provides quick and personalized feedback on 

errors as well as tailored training, thus enabling faster learning at the individual and potentially 
group levels [2].  It also has beneficial effects in both tacit and explicit knowledge dimensions 
based on assiduous mentor contact, and because the level of knowledge being transferred is 
likely highly evolved in terms of life cycle [41] or maturity.  However, mentoring is costly; and 
assumes that more knowledgeable employees are available and that the organization can 
function temporarily without them.  Mentoring in this instance refers only to that process by which 
individual transfer of expert knowledge is conducted and does not include other forms such as 
career planning or counseling.   

Alternatively, employees may be formally trained, where unlike learning on the job (OJT); 
a worker must stop performing his job and attend a temporary yet helpful educational session 
where we can expect his skill to improve moderately.  An example of this might be short weekly 
lectures or practical demonstrations.  While not as expansive in terms of amount and type of 
knowledge transferred, it provides a low cost solution toward increasing knowledge in the short 
term and provides reasonably strong benefits to the individual and organization.   

Finally, as a project continues, each employee simply learns on the job (OJT), which 
involves relatively slow transfers of perfunctory knowledge at the individual level and which may 
result in many errors along the way.   

 
Decreases in skill arise from a lack of usage, interference due to other tasks, and from 

obsolescence.  Employee turnover also causes all individually held knowledge of that employee 
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to be lost to the organization.  We therefore deem these as appropriate means by which 
employees decrease their knowledge within an organization.  

Knowledge decay at the individual level—and arguably also at the group and 
organization levels—occurs on a much slower scale and is caused by two phenomena – time and 
interference [2].   

Directly stated, time delay causes employees to forget.  The rate at which forgetting 
occurs increases with task complexity and with simple failure to recall an item or procedure with 
some frequency [28].  To understand forgetting, we first turn to the earliest writings and findings 
of Ebbinghaus [21] who posited that forgetting functions occur in a logarithmic form.  Alternatively, 
Wickelgren [60] argued that forgetting functions occur and are better described using a power law 
such as: R(t) = at-b where t is time and a and b are scalars.  Proven through myriad empirical 
examples, most researchers [61] concur that individual forgetting can be modeled via the power 
law, as shown in Figure 3 below.    

  
 

 

 

 

 

 

 

 

 

 
Figure 3: Power Law of Forgetting.  Over time what is known decays at a 
negatively accelerated pace. 
 
These examples and many like them captured in cognitive psychology literature (e.g. [2]) 

exhibit the phenomenon of list learning where a participant is asked to recollect and recite 
memorized items from a list and over time, begins to forget them.  This same effect is seen, yet 
more difficult to control, in the recall and performance of complex skills.  It is our position that 
skills follow this same pattern of growth and decay as shown through the study by Smith [54] with 
regard to the knowledge half-life for a physician as well as McKenna’s inquiry of decay in 
cardiopulmonary resuscitation (CPR) skills [34].  

 
Coupled with forgetting is the phenomenon of interference.  Interference [3] considers the 

number of other tasks that have been accomplished between target events of interest, bumping 
out portions of the original knowledge [2] or by selecting portions of knowledge viewed by the 
user to be more useful in the current context [3].  Although decay results in reduced skill levels, it 
can be remedied through frequent (re)training [29].   

Individuals may fail to practice a given skill for a relatively long period of time; however, in 
many domains, just a small amount of practice is sufficient to quickly return knowledge to the 
level reached before [2].  Moreover, in cases of experimental cognitive remembering, once an 
item has been recalled, it tends to remain neurologically available for some amount of time 
thereafter [58].   

 
We have recently begun to develop a new software (POW-ER) that takes as input the 

skill level of an agent and allows that level to change dynamically based on performing (or not 

Power Law of Forgetting (d = cT^-a)
(Wickelgren, 1975; Wixted and Ebbesen, 1991)
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performing) the skill.  It also allows us to decrease skill level based upon interference from a 
competing task.  Thus far, the microbehaviors of individual skill growth and decay are 
implemented in POW-ER and appear to be working qualitatively correctly, but are not yet fully 
calibrated or validated.  Figure 7 below graphs the output result from a simulation of one agent 
using one skill.  OJT knowledge flow initially causes the skill level (measured as Agent 
Processing Speed on the vertical axis) to rise.  In turn, the agent begins to enhance its second 
skill and neglects the first, causing the first skill to decrease in processing speed and allowing the 
second to increase.  In this proof of concept case, the agent begins at a skill level of medium 
(Agent Processing Speed = 1.0) and at times rises to a level of 1.4 as a result of practice in using 
the skill.  Each agent’s processing speed has far reaching implications throughout the 
organizational simulation that will directly affect expected project cost, length, rework and project 
risk.  Agent exception probabilities change with changes in skill levels in the opposite direction 
from changes in processing speed, thus further amplifying the effects of knowledge flows on 
organizational performance.  
 

 
 
Figure 7: Dynamic agent increase and decrease in two skills as a result of 
learning by doing followed by forgetting as well as interference between the two 
skills.  The horizontal axis models repetition of tasks over time; the vertical axis 
shows Agent Processing Speed, where a value of 1.0 corresponds to an agent 
with a “Medium” skill level for a given task.  
 
 
Obsolescence 
Within this Phase II effort to model skill acquisition and decay, the notion arises that 

although skills may be caused to increase via many knowledge interventions, it may also be the 
case that knowledge obsolescence can occur due to the volatility or dynamism of an uncertain 
environment [12], thus causing what is currently known to be increasingly less useful.  For 
example, knowledge of plumbing may remain current for some time because it is slowly changing 
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field, whereas knowledge of software engineering may only remain current for a year or two due 
to a more dynamic technology and market environment.  And knowledge available about how to 
locate and avoid enemy anti-aircraft sites may need be revised daily. Therefore, to maintain a skill 
such as avoiding anti-aircraft sites may require much more frequent training.  Obsolescence 
affects all levels of knowledge reach (individual, group, organization and intra-organization) [41].   

To operationalize this idea we begin by considering a percent of knowledge held by each 
individual with respect to the field.  Therefore, we must define numerator and a denominator.  The 
numerator is the amount of knowledge held by the individual in a certain field of expertise and is 
noted as (k).  The denominator is the amount of knowledge in the total field and is noted as (K).  
We consider a beginner’s percent of knowledge to be relatively low (e.g. 10%), and conversely, 
an expert’s percent of knowledge to be relatively high (e.g. 90%).  We next consider how each of 
these variables k and K may change.  The rate of change of individually held knowledge (k) is 
managed by the knowledge additions and subtractions discussed earlier.  For instance, k would 
increase given the type of knowledge intervention, amount and recency of learning accomplished; 
however it would decrease due to knowledge decay caused by elapsed time and interference.  
Field-wide knowledge (K) would also change.  As the environment becomes dynamic, more 
knowledge is created thus proportionally increasing K.  This manifests the type of skill 
improvement to be pursued in uncertain environments.  This idea also invokes a theory of 
continuous improvement, where firms “unceasingly strive to improve performance” [63, p.919].  
Figure 4 below illustrates this idea.   
 
 

 
 
 
 
 
 
 
 
 

Figure 4: Knowledge Growth.  We consider that as time continues and the 
knowledge in a field (K) increases, more individual skill (k) must be achieved just 
to maintain current k/K knowledge levels.  Therefore, levels of required skill may 
either be static or growing. 
 
Some research has been published on the rate of obsolescence of technical knowledge 

[51] in which a rate change for patent applications was used as a surrogate means to detect field 
obsolescence or growth.  Our inquiry is limited to theoretical extensions of skill obsolescence that 
may indicate the frequency and depth of re-training required to keep pace with the evolution of 
knowledge in a given field.  As we observe a knowledge level increasing with days of practice 
[23], we anticipate movement along the existing knowledge metric curve, illustrating how an 
individual would progress toward 100% (k/K) as time and learning continues.  Figure 4, contains 
an anticipated curve that would result from the calculated knowledge metric, where formula 
coefficients are approximated at present for illustrative purposes.  This illustration offers a useful, 
yet somewhat theoretical tool for demonstrating how an individual’s knowledge may or may not 
be sufficient toward achieving and/or maintaining a certain knowledge level in a growing field. 
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To move forward, we need a calibrated and validated computational model of the effects 
of alternative knowledge flow interventions on individual performance and hence on 
organizational performance of teams.  Building such a model is the goal of the current phase of 
the research. Conceptually, we do not attempt to quantify knowledge as a metric, but instead 
measure processing speed as a surrogate measure of knowledge held.  And, as mentioned in the 
obsolescence section above, we also consider knowledge as a percent of what can be known in 
a specific field of expertise.  By considering both individual knowledge (k) and field-wide 
knowledge (K), the organization has a metric of more than just how much knowledge its 
employees possess, but how that knowledge amount compares to the total knowledge available 
and required for successful performance.   

Considering the behavior of individual knowledge (k), we first observe an opportunity to 
view an aggregate and intriguing method of illustrating organizational knowledge.  By using 
percent knowledge metric (k/K), we can conceive how organizational knowledge flow modeling 
may be improved.  From this we postulate that close approximations to k and K that allow us to 
determine individual as well as organizational knowledge.  Taken one step further this enables a 
promising heuristic for studying organizational learning as well. 

 
Skill Classification  
Certainly not all skills are learned with equal speed.  Dar-El et al. [18] provide an 

interesting finding in their classification of skills in the four following categories: (1) highly 
cognitive, (2) more cognitive than motor, (3) More motor than cognitive, and (4) highly motor.  
Their finding was also tested against earlier data taken by other experiments and shown to be 
predictive of the learning curve shape for that particular type of skill.  We build on this theory by 
providing a skill classification to improve the prediction of the learning curve shape, and thereby 
improve the prediction of skill levels over time.  Figure 5 below illustrates their findings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Learning Curves for different types of skill (replicated from Dar-El 
et al., 1995).  As skills become increasingly motor rather than cognitive, they 
tend to be learned quicker [18]. 
 
In closing this background section and further motivating our research, let us consider the 

necessary planning to achieve project (or mission) success in terms of worker knowledge.  
Specifically, most decision makers have at their disposal the ability to determine present worker 
education and training levels in considering needs and requirements toward accomplishing a new 
project.  This static representation of a list of skill-sets, though seemingly complete, fails to inform 
the decision maker about how to interpret future knowledge requirements.  Nor does this kind of 
static skills model provide a means to consider the volatility of the knowledge currently held by 
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workers, or an alternative means whereby resources may be most effectively used to add to 
current knowledge.   
 
 
Integration of Phases I and II 
Here we discuss how Phases I and II are brought together to inform organizational level 
experimentation.  A short discussion beginning with cost analysis provides the basis of the 
discussion and comparisons among different knowledge interventions.  This comparison leads 
logically then to selection of near-optimized knowledge and power flows.  We also include a 
revised graph of knowledge inventory using what we have learned from cognitive skill acquisition 
and decay.   We close this section by outlining our planned experiments - the findings of which 
are to be included and analyzed in the final draft of this paper. 

 
Costs 
Through experimentation using our model, we show costs of skill acquisition and decay through 
resulting project length and levels of exception handling.  For instance, if an organization suffers 
from decreased levels of skill it will likely perform assigned projects more slowly and with more 
errors.  Conversely if skill is maintained at high levels via constant mentoring and training, 
workers spend less time working.  And, as mentioned above, skill levels also affect the quality 
and safety of task outcomes.  Thus, each situation has a different optimal set of knowledge flow 
interventions that are the most advantageous in terms of duration to complete the task, total cost, 
and quality of outcomes.   Table 3 pairs knowledge interventions with their putative organizational 
costs and benefits. 
 
Table 3.   Knowledge intervention costs   
 

Knowledge 
Intervention 

Costs Benefits 

Mentoring Lost time of expert for the duration 
of mentoring, incomplete or 
“filtered” mentor tacit knowledge 
converted into explicit knowledge 

Fastest means of personalized, 
tacit, mentor knowledge inflow to 
worker plus productive work still 
continues (by the worker) 

Formal training Trainer salary plus the temporary 
loss of worker 

Wider reach of knowledge transfer 
to many individuals, relatively low 
cost 

On-The-Job training Relatively slow knowledge flow 
occurs;  less capable worker than 
if trained and/or mentored 

Minimal cost  

Time delay of skill Loss of skill over time Allows opportunity for other skills to 
be performed  

Interference Rapid loss of skill over time May provide a method for workers 
to purposefully forget inferior 
practices  

Environmental 
changes 

Requires skill growth to maintain 
current performance level 

Provides potential advantage if 
skills are already available among 
workers 

 
From Table 3, each knowledge intervention has a unique set of relative costs and 

benefits.  Therefore, there exists a delicate balance between costs and benefits in determining 
the appropriate mix of knowledge flow interventions for a given situation.  Different combinations 
of knowledge inflows are highly situation-specific, and depend on the nature of work, the existing 
skill levels of workers and expert mentors, and the opportunity costs for mentors’ time away from 
other tasks, leading to potential for delay and quality failures.  Through organizational simulation 
we seek to determine the contingently optimal combination and level of skill acquisition that 
should be pursued in order to reap the benefits, and overcome the costs, of knowledge inflows.  
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For instance on a short project, there is not time enough for workers to all attend training; on a 
longer project, there may be both the need for workers to be trained and enough time for the 
organization to benefit from the costs invested toward improved knowledge inventory.  Just as the 
organization considers overall project cost, it must also consider how often and at what level it 
must require inflows of knowledge to occur to maintain a level of proficiency required to be 
successful in a given environment.   

 
This next section considers how learning and forgetting rates inform our knowledge 

inventory framework.  
 

Applying Knowledge Inventory Curves to Command and Control  
Alberts and Hayes state that command is that which is “involved in setting initial 

conditions and providing overall intent.” Control is separate from command: “an emergent 
property that is a function of the initial conditions, the environment, and the adversaries” [1, p. 
217] (emphasis mine).  Using our findings from research efforts thus far, we consider an example 
that seeks to enhance initial conditions through informing the Commander of knowledge inventory 
holdings. 

Starting with the inventory illustration shown above in Figure 1, we develop a revised 
illustration of how a military organization’s knowledge inventory might appear using cognitive, 
learning and forgetting curves as a guide.  We also combine the aspects of a how a field of 
knowledge that is growing due to environmental uncertainty might affect the original graph in 
Figure 6 below.  

 

 
Figure 6: Knowledge Inventory Model showing learning and forgetting rates 
(dotted lines) that occur within a framework of a growing field of available 
knowledge. 

 
From this illustration we note that knowledge decays quickly at first, then decreases at a 

decreasing rate.  This is followed by a re-supply period of fast knowledge growth that also occurs 
quickly at first yet increases at a decreasing rate afterwards.  The entire slope however is caused 
to rise, as illustrated in Figure 6 above, due to the increasing level of knowledge in a growing field 
of available knowledge – and the desire to maintain an adequate knowledge inventory to cope 
with this changing environment.  Observe in Figure 6 that, unlike for physical goods – even 
perishable ones - instantaneous re-supply does not occur.  In the case of knowledge inflow, we 
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observe that a longer amount of time is required to build inventory which may explain why it may 
be risky to allow reduced levels of proficiency to develop. Also note that knowledge outflows 
occur relatively quickly.  We must consider the means and lead times of inflows available to us to 
remedy the knowledge outflow in a timely manner.  For instance mentoring may provide the 
fastest means to provide knowledge inflow, but incurs a high cost of experts’ time.  Formal 
training may be employed and is relatively inexpensive, but is somewhat slower.  In contrast, on-
the-job training is a slow but very inexpensive form of knowledge inflow that allows productive 
work to continue.  We might also consider the slope at which knowledge outflow occurs with 
regard to knowledge decay, interference and obsolescence.  If we observe relatively slow decay, 
on-the-job-training may be a sufficient form of inflow to maintain the requisite knowledge level.  If, 
however, the observed skill is highly complex and therefore subject to rapid decay, we may need 
to provide mentoring and frequent formal training to maintain proficiency.  We may also identify 
that some workers are simply overburdened and suffer from too much interference.  In this case, 
organizational design and task assignments may be altered to avoid the knowledge outflow 
caused from excessive interference.      

Note also that the safety stock must rise to keep pace with the growing field of 
knowledge; and shorter cycle times (T) must be maintained through more frequent skill 
performance or training to maintain required higher levels of knowledge inventory.  From the 
obsolescence discussion in the previous section, we observe that increases in field-wide 
knowledge (K), for instance, would cause longer amounts of time to transition upward in Figure 6. 

These ideas are illustrated and analyzed via a current, command and control example.  
There are myriad different required skills for a strike group operating at sea - each with varying 
levels of growth and decay that should be managed – a difficult and nearly insurmountable 
problem to manage.  If however, each unit commander or Captain were to analyze his own ship’s 
personnel knowledge inventory using the framework of knowledge flows and cognitive methods 
outlined above, he or she would be able to prioritize which knowledge inflows might be needed 
and when.  The Captain would also benefit from consideration of the constant inflows and 
outflows associated with each required type of skill.  Interestingly, required skills are assigned by 
hull type and delineated in Navy publications and are available to each Commanding Officer.  
Prior to sailing, each Captain might therefore create a tailored plan for his ship given the 
personnel knowledge inventories and his resources to affect knowledge inflows via mentoring, 
formal training, and on-the-job training.  The lead time for each of these knowledge outflows 
would also be important when considering which inflow might be implemented to resolve them.   

For instance, just before the ship gets underway, mentoring might be used with new crew 
members to develop urgently needed skills such as ship driving and navigation until a high level 
of proficiency is reached. As an alternate instance, while the ship has considerable time before its 
scheduled departure, mentoring may give way to or be augmented by formal training. Further, 
less frequently used and less critical skills may be learned via formal training at first, while the 
ship remains pierside, followed then by periods of on-the-job-training as appropriate, to maintain 
proficiency as the ship’s underway date nears.    

As part of this planning, the Captain might also consider knowledge outflows caused by 
personnel turnover, knowledge decay, interference, and obsolescence.  The identification of 
turnover dates of experts and the identification of their prospective reliefs would be a first step 
toward overcoming knowledge outflows from employee turnover.  The second step would be to 
ensure that the prospective experts receive the knowledge inflows they need to become as 
proficient as an expert.  It seems a high percentage of mentoring combined with a decreased 
percentage of formal training with on-the-job training would be in order here.  With regard to all 
other skills, knowledge decay rates from more complex tasks, measured against the likelihood of 
their use would be informed from this analysis process.  Organizational design might also be 
altered to allow for reduced interference by reducing the number of skills required by each 
worker.  Obsolescence would also be considered in determining which mission areas are subject 
to growth from uncertain environmental effects such as new tactics in controlling and coalescing 
available data from Unmanned Air Vehicles (UAV’s).  This process would cause the commander 
to require increased time learning and practicing in these areas and to spend less time on the 
more static areas where knowledge is not subject to growth or environmental uncertainty. 
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As a result of this effort, the Captain would be informed of the weaknesses in readiness 
in certain mission areas prior to the performance or assignment of his mission.  This sort of 
analysis would also enable the Captain to consider the type and usefulness of his organizational 
design.  Even today’s military is granted some autonomy to decide how to configure its own chain 
of command (organization design).   

 These inventories, accompanied by their prioritized requirements for knowledge inflows, 
once aggregated, might also inform the Strike Group Commander as to the readiness of the 
Group in each mission area and where to spend time training.  And if this knowledge inventory 
were shared throughout the Strike Group, ships could communicate among themselves in an 
edge-like fashion to enable improved training and honest sharing of strengths and weaknesses, 
thus supporting the ideals of self-synchronization and shared-awareness [1].  If this effort is 
accomplished early enough in the training cycle prior to deployment and the Commander is 
informed of potential strengths and weaknesses with regard to future skill levels, s/he can make 
improved use of critical and limited resources – personnel, time and money.  Thus through these 
efforts, initial conditions may not only be known, they may be controlled and improved.    

 
Experimentation: Present and Future  
We have begun work to combine Phase I (inventory control) and Phase II (skill 

acquisition), and have conducted our first set of intellective (or idealized) experiments.  In this 
exploratory effort we simulate one Edge organization and one Hierarchy organization, each with 
the same volume of work observed in executing joint command missions using surface, air and 
ground forces.  Command functions are added only to the traditional Hierarchy organization.  Our 
models attempt to follow the organizational framework and work processes implemented by 
Nissen [42].  Our results for the comparable scenarios are qualitatively similar to Nissen’s but 
diverge in certain details, since they are implemented in a different simulation tool (POW-ER 
V1.1.6).   

We next describe our modeling efforts to experiment with different lengths of training that 
result in increased skill levels for the trained agents. We use as our baselines and source of 
control, models of both an edge and a Hierarchy organization without training, shown in the first 
column of each table.  We then add training tasks that improve agents’ skill levels, but incur a 
fixed amount of time and cost to accomplish.  For instance, we add 0.5 days of training that each 
agent must attend which results in agent skill level increasing from low to medium.  In a third run, 
we require 2.5 days of training for each agent, which results in skill changing from low to high.  
Our preliminary findings are listed in Tables 4 and 5 below.     

        
Table 4.   Preliminary Experimental Results for Hierarchy Organization modeled in 

the 21st Century with training that lasts .5 days and 2.5 days. (The number beside each 
datum is standard deviation and the number below each datum is the percent of baseline.)   
 

Measure 
Hierarchy 

Organization:  
21st Century 
(baseline) 

.5 Days of Training 
(skill goes from low 

to medium) 

2.5 Days of Training 
(skill goes from low 

to high) 

Duration 447 days (364) 
- 

332 days (448) 
(74%) 

314 days (564) 
(70%) 

Cost $149M (28M) 
- 

$114M (26M) 
(77%) 

$94M (23M) 
(63%) 

Project Risk .756 (.196) 
- 

.757 (.194) 
(100%) 

.760 (.226) 
(100%) 

Work Volume 77K days (0) 
- 

83K days (0) 
(109%) 

110K days (0) 
(143%) 

Rework Volume 10K days (6K) 
- 

17K days (10K) 
(163%) 

20K days (14K) 
(191%) 
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Table 5.   Preliminary Experimental Results for Edge Organization modeled in the 21st 
Century with training that lasts .5 days and 2.5 days. (The number beside each datum is 
standard deviation and the number below each datum is the percent of baseline.)   
 

Measure 
Edge Organization:  

21st Century 
(baseline) 

.5 Days of Training 
(skill goes from low 

to medium) 

2.5 Days of Training 
(skill goes from low 

to high) 
Duration 45 days (2) 

- 
37 days (3) 

(82%) 
30 days (3) 

(68%) 
Cost $123M (3M) 

- 
$97M (4M) 

(79%) 
$79M (4M) 

(65%) 
Project Risk .780 (.148) 

- 
.780 (.152) 

(100%) 
.751 (.200) 

(96%) 
Work Volume 75K days (0) 

- 
82K days (0) 

(108%) 
107K days (0) 

(142%) 
Rework Volume 6K days (2K) 

- 
13K days (4K) 

(209%) 
15K days (5K) 

(246%) 
 

The terms duration and cost refer to the length of time and the total cost required for 
performance of a mission.  Project risk measures mission-level rework tasks left incomplete at the 
end of a mission.  Work volume indicates the total amount of work accomplished by the end of 
the mission by all agents, whereas rework volume indicates the amount of work that had to be 
spent to fix mistakes.   

From these preliminary results, we note that for each organization type, as skill increases 
as a result of training, mission duration and cost decrease while work volume and rework volume 
increase when compared to each simulation’s baseline.  It seems likely that project duration 
should decrease as an agent’s skill rises.  This reduction in duration results in reduced overall 
cost, yet provides an increase in work volume because as agent skill increases, work volume 
increases, driven by the response to rework which seeks to be completed, rather than being 
ignored. Rework volume, as a fraction of the total work volume, seems to remain constant at 
approximately 1% to 2% over the duration of each mission.  As agents become more skilled, their 
processing speed also increases, making them more productive and able to accomplish more 
work in less time.  Since cost is based on agent salary multiplied by working duration, and we 
make the assumption that salaries remain the same a skill changes, costs decrease with 
increased skill.  Another source of increased work volume is training time required for every 
agent.   

Note that, consistent with Nissen (2005) [42], the Edge organization provides a much 
better fit for the 21st century mission environment than the Hierarchy does, with the key 
performance measure mission duration reflecting an order of magnitude greater speed.  Given 
the importance of speed in warfare, this represents a very noteworthy finding.  We expect to 
continue and refine these preliminary findings as our work toward understanding the effects of 
agent skill continues.   

Over the next three months we will carry out additional intellective experiments as well as 
conduct emulation (empirical) experiments to refine and validate our learning and forgetting 
model with the goal of determining organizationally, contingently optimal knowledge intervention 
strategies. More specifically, once we have validated individual micro-behaviors, we will perform 
organizational level computational experiments within different contexts and different 
organizational designs to explore and overlay the costs and benefits of OJT, formal training, and 
mentoring, combined with knowledge decays of time delay, interference, and obsolescence.  
Each of these factors will be varied separately, then combined in pairs, then modeled with 
multiple interventions acting simultaneously to achieve a full-factorial design.   

Our experiments will be designed to explore: 
1. Evolution of trans-specialist knowledge [47], which is modeled as knowledge of 

other specialists objectives and constraints, and should therefore enable 
decreased work stoppages (exceptions) due to lack of knowledge related to task 
interdependencies and, consequently, to reduced rework. 
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2. Minimum levels of knowledge adequate to commence a project within a fixed 
amount of time; and optimal intervention strategies to shorten project time.   

3. The cost of maintaining knowledge levels too high as a result of constant 
mentoring and training.   

4. The effects of knowledge stock-outs, to determine the organizational knowledge 
levels beyond which recovery may exceed available resources. Because of their 
inherent decentralization, Edge organizations place a high premium on 
appropriate knowledge distribution and sharing and are highly sensitive to stock-
outs of required knowledge. 

5. The policies of Just-In-Time (JIT) versus Just-In-Case (JIC).  We will start with all 
generalists; then, as knowledge increases above a certain level, we will allow for 
mentoring beginning at ever increasing frequencies, and evaluate overall project 
performance.   

6. The effects of employee turnover up to the loss of all employees during a project, 
and the best intervention mix to remedy the loss. 

Future Steps: Phase III and Beyond  
Knowing in advance the skills required is of critical importance to any project. However; 
determining a project’s success solely on the basis of the levels of knowledge of its participants 
has not yet been accomplished and needs to be supported by research [42, 43].  Our future 
research phases plan to build upon integrated Phase I (inventory methodology) and Phase II 
(individual cognitive skill acquisition and decay) findings to improve our understanding of 
organizational knowledge flows.  We seek to “engineer” knowledge management solutions in 
organizations via a Knowledge Chain Management approach.  Our goal is to provide new theory 
and tools to support a contingent approaches for designing organizations to determine optimal 
knowledge flow interventions for a variety of task and organizational contexts.  

To enable Phase III of this research effort, we build upon Nissen’s knowledge flow model 
below [41].  It takes as its premise that science and engineering each consistently and 
successfully contribute to informing practice.  Precise, explanatory mathematical flow models 
exist in the physical sciences such as fluid mechanics, electromagnetic wave propagation and 
light emissions.  However, in stark contrast, we are currently hindered by the imprecise and 
ambiguous, natural language and textual descriptions of knowledge flows [36].   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Nissen’s Notional Knowledge–Flow Trajectories (2006).  This 4-D 
graph provides decision makers a means to understand and manage 
organizational knowledge via Knowledge Chain Management (KCM) using 
trajectories within the axes of explicitness, reach, and lifecycle.  
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As we consider Nissen’s knowledge flow model in Figure 8, we are able to conceptualize 
and measure knowledge flows from given knowledge interventions (OJT, formal training, 
mentoring, etc.) and environmental effects (decay, interference, obsolescence, etc.).  For 
instance, two, contrasting inflow trajectories are delineated in the figure: OJT and Classroom 
Training. The OJT trajectory is modeled as a recurring sequence of tacit knowledge application 
(i.e., work performance) at Point A and subsequent tacit knowledge creation (i.e., learning from 
work performance) at Point C. Notice this trajectory lies within the tacit plane. Alternatively, the 
Training trajectory rises up from the tacit plane, as knowledge is formalized (e.g., through books, 
course materials, computer programs), and attains broad reach, as explicit knowledge is 
disseminated widely through the organization. Notice also the OJT knowledge flow (esp. the 
learning part from Points A to C) is relatively slow (i.e., thick line in the figure) and narrow in reach 
(e.g., limited to individuals and small groups), whereas the Training flow (esp. after tacit 
knowledge has completed formalization at Point F) is relatively fast (i.e., thin line in the figure) 
and broad in reach (e.g., spreading organization-wide). The trajectory for mentoring (not shown) 
would reflect something of a combination between these two, and would have its own set of 
properties of interest to the manager (esp. flow time, reach). 

We strive to provide knowledge managers with a useful methodology to perform 
Knowledge Chain Management (KCM).  This effort begins by considering the properties of each 
knowledge intervention and environmental effect using Phases I and II and potentially allow 
optimal knowledge flows to be selected by the manager.  Leveraged in a C2 environment, this 
methodology also has directly beneficial effects in uncoupled command and control within Edge 
organizations [1] by providing a method for shared awareness.  We expect to contribute toward a 
more effective practice of knowledge management, and to enhance understanding of knowledge 
flow phenomena, by extending the capability of computational modeling to reflect knowledge flow 
in Edge organizations.  

Conceptualization using inventory control and modeling of skill as dynamic over time has 
already given us new theoretical insights. It also offers potential for immediate practical 
application toward the management of individual and organizational knowledge [31].  We will 
continue our exploration of how near-optimization of knowledge and power flows can be enabled 
and enhanced in both military and business Edge organizations.   

Conclusions  
This paper describes our initial steps in specifying the key variables and variable relations 
necessary to apply extant skill acquisition and decay models toward understanding knowledge 
management.  Through an extension to the POW-ER model framework we capture the dynamics 
of individual knowledge gained and lost in Edge organizations.  The micro-behaviors found in the 
literature, refined by empirical behaviors observed in a set of shipboard experiments, are being 
embedded in the POW-ER computational model.  This unique approach employs organizational 
simulation to validate, calibrate and refine the POW-ER parameters.  We envision a line of inquiry 
that informs organizational learning, based on aggregated individual learning.   

Phase II of this inquiry extends organization simulation research conducted by the Virtual 
Design Team (VDT) research group via a new simulation framework, POW-ER (Project 
Organization Workflow model for Edge Research).  VDT agents have a static knowledge levels 
for each skill type modeled as an ordinal variable (None, Low, Medium, or High) [33].   The 
improved POW-ER framework provides development of the finer-grained, numerical skill metric, 
and simulates additions and deletions to agents’ knowledge as knowledge inflow and outflow 
events and managerial interventions take place. 

Integrating our findings from Phase I (micro-inventory methodologies) with Phase II 
(micro-dynamic, cognitive skill acquisition and decay theories) into an organizational simulation 
model affords a promising scientific approach to begin to “engineer” knowledge management 
solutions in organizations – the goal of Phase III.  Once validated and, calibrated, through a set of 
synthetic intellective and emulation experiments, such an extension of theory can provide 
researchers and practitioners a solid framework to further analyze and develop near-optimal 
knowledge management strategies in a variety of organizational contexts and designs.   
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Our over-arching goal is to identify for managers and researchers where deficiencies in 
knowledge flows exist prior to project commencement and help them plan in advance for project 
success by applying principles of Knowledge Management developed into a supply chain 
framework which we refer to as Knowledge Chain Management.  Progress toward this goal will 
enable managers to design progressively more optimal knowledge management strategies for a 
variety of organizational designs in different environmental contexts.  
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Motivation

Edge Organization definition
4No headquarters to rely upon
4Requires: shared awareness / self synchronization

Developing and maintaining adequate levels of critical skills 
is especially crucial for Edge Organizations
4High levels of strategic & operational knowledge needed at nodes
4Enables “agility” in an uncertain environment
4Understanding knowledge growth & decay in Edge organizations -

critical for optimizing performance
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Research Questions

Phase I:
4How can inventory theory help to inform our understanding of 

knowledge flows in Edge Organizations?

Phase II:
4How can individual skill acquisition and decay be 

computationally modeled, calibrated, and validated? 
4How is the performance of Edge project organizations affected 

by the aggregation of individual participants’ skill growth and 
decay? 
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Phase I: Inventory Theory
Analysis and Insights

For a supply chain of perishable goods, 
managers gain insights considering
4Economic Order Quantity (EOQ = Q*)
4Reorder point 
4Make vs. Buy decisions
4 Inventory policies 

• Just-in-Time
• Just-in-Case
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Extensions to POW-ER computational modeling 
Develop fine-grained agent knowledge metric (k/K)
Provide for dynamic, continuous knowledge over time
Develop framework to account for agent knowledge 
4 Inflows (OJT, formal training, mentoring)
4Outflows (decay, interference, obsolescence, personnel 

turnover)
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Phase II: Conceptual Model
Individual Skill Acquisition and Decay

Inflows Outflows
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Phase I and II Integration
New conceptual model
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Phase II: Theoretical Point of Departure 
Skill Context (Dar-El et al., 1995)

Different skill types seem to have different learning curves
4 Ranging from highly cognitive to highly motor skills

Modeling High Cog to High Motor 
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Empirical Validation of Learning Rates

Dar-El Learning Curves Plotted Against 
Observed Individual & Group Learning Rates
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Empirical Validation of Learning Rates

Dar-El Learning Curves Plotted Against 
Observed Individual & Group Learning Rates
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Computational Model 

Dynamic Skill Acquisition and Decay
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Organizational Level POW-ER Experiments

Consider the effects on skills and task duration of:
4Employee training 
4Maintaining knowledge level too high  
4Minimum knowledge level adequate for project



CCRTS Conference — San Diego, CA, June 20-22, 2006 — C2 Concepts and Organizations Track 13

Results from POW-ER Experiments

Edge employee training 
4 Baseline with no training —

45 day project duration  
4 Consider impact on project 

duration of providing  training 
that takes different lengths of 
time to raise skills from:

• Low to medium
• Low to high

4 Graph shows tradeoff of:
• Production time lost to 

training vs. 
• Production time gained by 

increase in production rate 
with higher skill after training
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Results from POW-ER Experiments
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Edge employee training 
4 Baseline with no training —

45 day project duration  
4 Consider impact on project 

duration of providing  training 
that takes different lengths of 
time to raise skills from:

• Low to medium
• Low to high

4 Graph shows tradeoff of:
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C2 Application

Knowledge as perishable inventory provides framework
Example: Crew training (deployment preparation) 
4Consider inventory model with learning curves

• Knowledge interventions
– Inflows and outflows

• Lead time consideration
• Safety stock
• Frequency and magnitude of “reordering” increases to maintain proficiency

– Example: ASW vs. Damage Control training
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Phase III: Next Steps

Compare empirical findings to extant cognitive 
psychology literature
Leverage results to develop and validate a computational 
model 
4To predict project lengths for a single project 
4Based on agent growth and decay of skills and interactions 

between agents (e.g., mentoring)
Develop MatLabtm model
4To predict knowledge inventories in a project team 

• Given knowledge growth and decay interventions   
4Based on supply chain theory for perishable goods

Make predictions about organizational knowledge 
inventories 
4 In a set of Just-In-Time/Case scenarios
4Compare predictions from MatLabtm model to simulation model
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Theoretical Contributions
Phase I
4New knowledge concerning how inventory theory can inform 

knowledge flows in Edge organizations

Phase II
4Extend the capability of computational modeling to reflect 

optimally contingent knowledge flow in Edge and other 
organizations

4Provide preliminary computational model to predict how Edge 
organizations and projects are effected by the sum of individual
participants’ skill growth and decay 

Phase III
4Produce “engineering” knowledge management solutions in 

organizations via a Knowledge Chain Management approach
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