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Introduction 
 
An important initial screening step in the detection of breast cancer is the ability to identify select 
areas of atypical density that require further evaluation. Currently, mammography is the clinical 
standard for screening and provides useful but at times ambiguous information, which can 
necessitate further invasive workup of benign lesions. Alternative methods such as elastography 
have shown potential in enhancing the diagnostic process by providing information about the 
tissue composition [1, 2]. Modality-independent elastography (MIE) is a novel image processing 
technique that combines finite element models of soft-tissue deformation with measures of image 
similarity in order to reconstruct elastic property distributions throughout the tissue. The basic 
requirements for the method are two images of the tissue in different states of deformation (e.g. 
compression). MIE then updates the estimate of the material properties via a matching process 
between the two images. The final result is a map of the breast (or other tissue of interest) that 
reflects material inhomogeneity, such as in the case of a tumor mass that disrupts the surrounding 
structure of normal tissue. Because MIE works on probing the differences between images, it can 
be used to not only work in concert with more traditional screening techniques but also address a 
possible gap when those methods are unable to directly discern tissues of interest. 
 
 
Body 
 
As stated in the original proposal, three main aims of this project are to (1) expand and refine the 
current MIE technique to enhance its efficiency and capabilities, (2) to perform analyses on 
texture in input images and quantify statistical parameters capable of estimating and evaluating 
the success of elastographic reconstruction, and (3) to engineer a device that can accurately 
produce compressive forces necessary for phantom setups within current imaging systems, 
providing the basis for a future device that can be used in a clinical setting. In this past year, 
progress on all three aims has been made. The original specific aim and the relevant proposed 
work for each is listed below and addressed. 
 
Specific Aim #1 stated: “To expand and refine the current MIE technique to enhance its 
efficiency, as well as add new capabilities such as handling a full 3D or combined 2D/3D 
elastodynamic model for improved accuracy.” 
 
An improved framework is in progress utilizing parallel processing techniques. In order to 
accommodate the methodology of MIE in creating a Jacobian matrix fully sensitive to the 
discretization of the domain, a large number of solutions involving the finite element model and 
the subsequent imge deformation are required. With the proposed increase in dimensionality, the 
implementation complexity quickly increases beyond the capabilities of the original 
MATLAB/FORTRAN/LAPACK design. Therefore, the Portable Extensible Toolkit for 
Scientific Computation (PETSc) toolkit [3,4] was selected to provide the necessary framework 
for developing sparse matrix system solvers and split the Jacobian formation process. A separate 
C/C++ routine has also been written to perform a Gauss-Newton optimization and interface with 
PETSc solver structures. A current typical iteration involves the solution of a matrix system of 
approximately 1e5 equations, repeated some 3000 times. Utilizing parallel design and a share of 
100 CPUs on the Vanderbilt University Advanced Computing Center for Research and 
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Education cluster, this has been tested to be achieved on the order of 30 minutes, as opposed to 
original estimates on available sequential processing machines upwards of 5000 minutes. We 
note, however, that to effectively traverse the full multi-dimensional objective function space 
requires several (perhaps tens of) iterations, which underscores the high computational demand 
of the method. 
We have preliminary work that demonstrates the new MIE framework in action, using a test case 
of simulated deformation based on clinical data. Figure 1 shows orthogonal cuts in the three 
cardinal anatomic planes for an image volume obtained from a CT scan of a human breast. 
Fibroglandular tissue can be visually inspected to provide contrast and structure from adipose 
and other tissue types. The test case involves the simulated implantation of a 2-cm spherical 
tumor at the center of the breast that is not visible within the intensity field of the image. Guided 
by a finite element mesh deformation using prescribed boundary displacements (designed to 
mimic a compression source as described in Specific Aim 3), a target image volume is created. 
Discretizations of the model and image domains are then used in the optimization loop to 
reconstruct the inclusion. Figure 2 shows surface renderings of the image volumes and the results 
of a reconstruction based on 3200 spatially distributed elasticity regions. The areas delineated to 
be the true tumor extent contain entites that the algorithm designated as having stiffer properties 
(~2x). It may be initially seen to be an improper chacterization given that the faux tumor was 
actually six times stiffer than the surrouding tissues. However, in this test case, the inexact 
partitioning of the mesh elements actually caused the algorithm to search for a tumor about 3 cm 
in size, leading to a compensatory decrease in elasticity contrast. 
 
 

 
 
Figure 1.  Orthogonal cuts of a CT breast scan used as the source image volume for simulation studies. From left to 
right: axial, coronal, and sagittal views as designated by the standard anatomical planes.  
 
In order to further explain the relationship between discretization and reconstructed contrast, a 
partitioning of the mesh elements utilizing a priori knowledge of the location of the tumor was 
used to classify the tissue types, thereby reducing the reconstruction to two materials instead of 
the 3200. This reconstruction very favorably followed an objective function minimization to 
obtain an elasticity contrast of the inclusion being almost exactly six times stiffer as prescribed 
(see Figure 3 below). It is our current assertion that shaping the objective function by 
dynamically rearranging the spatial discretization of the model during the optimization can lead 
to improved elasticity contrast resolution, and studies are underway to address this issue. 
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Figure 2.  Top row: surface renderings in perspective of the breast image volume in both the native undeformed 
(left) and deformed (right) states. Bottom row: reconstruction mappings from a simulation experiment. Areas of high 
intensity reflect higher (stiffer) elasticity values; the boundary of the simulated tumor is overlaid by the circle. 
 
 
Proposed work involving the use of a combined 2D-3D model is under investigation but not 
completed at this time. It is hoped that reducing the scope of the problem by dimensionality will 
facilitate further analysis of the problem by alleviating the time and resource restrictions of the 
full implementation.  
 
Specific Aim #2 stated: “To perform texture analysis on input images in order to quantify a 
statistical parameter capable of estimating the success of elastographic reconstruction.” 
 
Texture analysis and noise tolerance testing has been performed with statistical quantification of 
reconstruction success. Our observations during the ongoing development and testing of the MIE 
method prompted questions concerning the quality of data necessary and sufficient to achieve 
satisfactory results (i.e., the fidelity of the reconstructed elasticity image). The primary inputs to 
the reconstruction method are the acquired images and the delineated boundary conditions on the 
domain. While it is clearly preferable to have idealized data, in reality, both inputs involve 
varying levels of manual interaction. As an initial study, we conducted tests on the effects of 
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(a) 

 
(b) 

 
Figure 3.  Reconstruction simulation experiment constrained to a two-material system demonstrating the importance 
of a priori information. Knowing the location of the inclusion allowed the algorithm to quickly search the objective 
function space and arrive (a) back at the original [correct] elasticity contrast (b). Note that the optimization had 
actually already converged at iteration 7.  
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degradation in data quality on the end reconstruction. The first experiment used additive image 
noise to obscure the underlying texture to reflect possible scenarios of corruption during 
acquisition. Noise fields were created from a zero-mean Gaussian random distribution along the 
variance of non-background pixels and scaled according to the total power at 1, 5, 10, 15, 20, 25, 
and 30%. The increasing noise had a confounding impact on the ability of the similarity metric to 
make a proper match. It was found that the reconstruction was tolerant of image noise up to 
approximately 10%. Figure 4 demonstrates the degradative effects of image noise.  
 
 

(a) (b) 
 
Figure 4.  (a) Example 2D reconstructions resulting from the distortion of the target image using additive Gaussian 
random noise (from top left: 1, 5, 10, 20, 25, 30%). The true elasticity distribution is a centrally located and roughly 
circular region, and the noise progressively confounds the reconstruction.  (b) The decreasing trend of reconstruction 
fidelity as determined by quantitative evaluation of localizing and characterizing the detected inclusion from a given 
trial.  [see Appendix B] 
 
The second experiment involved boundary condition selection error. Currently, point 
correspondence at the outer boundary of the domain is determined using a semi-automated fit; a 
polynomial interpolation is used to make the initial match, and then corrected manually based on 
salient features. By perturbing the displacements for each boundary node of the finite element 
mesh, typical user interaction (e.g. visual cues and input device control) can be simulated. A gold 
standard set of boundary conditions known to produce an accurate reconstruction was modified 
using randomized vectors of equal magnitude (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5, and 2.0 pixel 
units) reflecting a range of typical localization skill for users from poor to expert. It was noted 
that randomizing all vectors can actually result in twisting of elements that resulted in significant 
alterations of displacements in the interior of the mesh, leading to grossly inaccurate model 
deformations. However, boundary condition mismapping of less than 0.5 pixel units was 
generally tolerated by the reconstruction algorithm, a range that is relatively easily achieved for 
most users. For further detail, please see the full text of this work as listed in Appendix B.  
 
It should be noted that the ordinate axis in Figure 4(b) is a ‘quality of reconstruction score’ 
(QRS) that has been developed within the context of this project in order to quantify the 
localization accuracy of the method. In comparison and conjuction with more standard measure 
in the elastography field of contrast-to-noise ratio [5], QRS has been used to determine relevant 
positional and material characterization in both simulation and data studes. The metric is 
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determined by a classification of the reconstruction [6] that is then compared to the (known) 
segmentation of the actual elasticity distribution. By examining the rate of accurately selecting 
an element of the domain to be of the correct material class, a conditional probability closely 
related to the positive predictive value of the test is obtained; we have determined a posteriori 
that a QRS>80% is typically indicative of a successful reconstruction. The use of QRS can (and 
will be) similarly applied to the analysis of forthcoming 3D reconstuction experiments. For 
further discussion, please see material in Appendix A and B. 
 
Proposed work involving the use of a feature tracking and frequency domain analysis is under 
investigation but not completed at this time. As more data sets are collected, it is hoped that 
establishing a pattern for understanding the reconstruction algorithm behavior will become 
statistically relevant.  
 
Specific Aim #3 stated: “To engineer a device that can accurately produce compressive 
forces necessary for phantom setups within current clinical imaging systems, providing the 
basis for a future device that can be used in a clinical setting.” 
 
A compression device has been constructed and tested in magnetic resonance (MR) and X-ray 
computed tomography (CT) imaging systems using a polyvinyl alcohol phantom and contrast 
agents. The compression device is composed of a rectangular Plexiglas frame that traps the 
phantom in at least two directions with a sliding wall and the compression plate, which houses an 
air bladder in a polycarbonate frame. When inflated, the air bladder provides a deformation of up 
to 5 cm. The prototypical phantom used  has been fabricated as a polyvinvyl alcohol cryogel 
(~650 cc, 6-8% wt/vol, 1 or 2 free-thaw-cycles) in a manner consistent with the methods 
presented in [7, 8]. The result is a dome shape approximately 10-11 cm at the base and tapering 
over a depth of about 5-6 cm. The system has been imaged by both MR and CT scans, with 
contrast agents of copper sufate and iodine solution, respectively, having been used to enhance 
the signals. Volumetric renderings of example scans using minimal post-processing are shown 
below in Figure 5; note that the device frame is clearly present in the CT image because of its 
density but is invisible on MR. 
A prototype compression chamber that is more clinically oriented has been designed to fit into 
the chassis of a Philips Intera breast coil unit. It has just recently been fabricated from clear 
acrylic tube segments in which the air bladders are attached using polycarbonate pins and then 
covered with an expandable nylon sheet (see Figure 6). Image acquisition studies are currently 
being designed to utilize this system. 
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Figure 5.  Top row: Photographs of the polyvinyl alcohol phantom inside the compression device without (left) and 
with compression (right). Bottom row: Surface renderings of from image volumes obtained on a breast phantom in 
MR (left) and CT (right) scanners while enclosed in the compression device and with the air bladder engaged to 
provide a deformation. 
 
 

 
 
Figure 6.  Left: Schematic of compression device designed for clinical use breast coil. Right: Photograph of 
assembly looking down into the Philips Intera chassis. 
 



 11

Key Research Accomplishments 
 
It has been observed both prior to and during the attempt to extend the MIE technique to cover 
fully three-dimensional data that the problem is potentially intractable due to the large 
computational demand and inherently ill-constrained system. The demonstration of a parallelized 
code base is for this project a significant finding in that it confirms that operating on volumetric 
images and models is a reasonable working hypothesis, albeit still challenging. 
 
 
 
Reportable Outcomes 
 
Work on the MIE method has so far resulted in two conference papers and an additional poster 
presentation. Prior work that was completed in the reporting timeline resulted in a peer-reviewed 
journal publication. These items are in part providing the foundation for a thesis proposal to be 
submitted in the near future. Didactic coursework requirements for the PhD degree have also 
been completed at this time.  
 
Poster presentations 
Vanderbilt University Institute of Imaging Science retreat (June 2005) 
Vanderbilt University Medical Scientist Training Program retreat (July 2005) 

 
Conference papers 
Ou JJ, Barnes SL, Miga MI, “Application of multi-resolution modality independent 
elastography for detection of multiple anomalous objects”, SPIE Medical Imaging 2006. 
 
Ou JJ, Barnes SL, Miga MI, “Preliminary testing of sensitivity to input data quality in an 
elastographic reconstruction method”, IEEE International Symposium on Biomedical Imaging 
2006. 
 
Schuler DR, Ou JJ, Barnes SL, Miga MI, “Automatic surface correspondence methods for a 
deformed breast”, SPIE Medical Imaging 2006. 
 
Journal publications 
Miga MI, Rothney MP, Ou JJ, “Modality independent elastography (MIE):  Potential 
applications in dermoscopy”, Medical Physics, vol. 32 (5), pp. 1308-1320, 2005. 
 
 
 
Conclusions 
 
The current results and progress denoted in this report are within the proposed statement of work 
and are encouraging towards completion of the overall objectives with further effort. No 
significant deviations are reported at this time.  
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ABSTRACT 
 
This work extends a recently realized inverse problem technique of extracting soft tissue elasticity information via non-
rigid model-based image registration. The algorithm uses the elastic properties of the tissue in a biomechanical model to 
achieve maximal similarity between image data acquired under different states of loading. A new multi-resolution, non-
linear optimization framework has been employed which allows for improved performance and object detection. Prior 
studies have demonstrated successful reconstructions from images of a tissue-like thin membrane phantom with a single 
embedded inclusion that was significantly stiffer than its surroundings. For this investigation, a similar phantom was 
fabricated with two stiff inclusions to test the effectiveness of this method in discriminating multiple smaller objects.  
Elasticity values generated from both simulation and real data testing scenarios provided sufficient contrast for detection 
and good quantitative localization of the inclusion areas.   
 
Keywords:  Elastography, elasticity imaging, multi-resolution methods, image similarity, finite elements 
 

1.  INTRODUCTION 
 
The practice of palpating soft tissue structures in the course of the clinical physical exam has had a long-standing 
history of providing correlation of improper stiffness with pathology.  The ability to characterize the mechanical 
properties of tissue is a potential source of additional information relevant for detection and diagnosis of a disease 
process, and has implications for the assessment of treatment.  One way in which this could be achieved in a minimally 
invasive manner is by analyzing tissue deformation through imaging and/or image processing techniques, which is a 
central goal of the field of elastography [1].  Application of such methods to the interrogation of the breast [2,3], skin 
[4-6], prostate [7], and other accessible organ systems is an emerging area of research.   

Many of the current elastography methods are founded in ultrasound (US) and magnetic resonance imaging 
(MR) and involve the estimation of induced displacements within the tissue of interest to infer the elasticity distribution.  
We have pursued the development of a reconstruction method utilizing quasi-static deformation and image similarity 
metrics that has been termed 'modality-independent elastography’ (MIE) [8-10] because of its potential to handle native 
anatomical image data from different modalities with simple modification to the acquisition procedure.  Common 
problems facing all of these methods involve limitations with the accurate recovery of elastic property values, detection 
of small lesions in tissue, and the resolution of multiple discrete lesions [11,12].  Building upon recent study involving a 
single focal lesion [6], the objectives of this work were to challenge the ability of the MIE method to reconstruct a 
scenario of two small inclusions embedded in a homogeneous domain and to further explore the feasibility of the 
method in handling image data from different imaging modalities.  This was accomplished by performing simulated 
reconstructions using images obtained from X-ray computed tomography (CT), MR, and digital photography and then a 
reconstruction from a real-world experiment using a thin phantom membrane. 

 
2.  METHODS 

 
2.1  Elastographic reconstruction framework 
 
The conceptual framework for our elastographic reconstruction has been previously described in [6,8-10]. In brief, an 
image of a tissue of interest (source) is deformed by a biomechanical computer model and compared against an 
acquired image of the same tissue in a mechanically loaded state (target). The deformation and comparison is repeated 

1



 

 

using systemic updates of elasticity parameters until a suitable match in intramodal image similarity is achieved in a 
least squares manner to satisfy a multi-resolution, non-linear optimization scheme. This process can be classified as an 
inverse problem, with model-based deformation of the source image representing the forward problem. Each of the 
three major components (model, image comparison, and optimization) is described in more detail in the following 
sections, and a flow chart representation of the overall process is included in Figure 1. 
 
2.1.1  Biomechanical model 
 
A central component to the model-based inverse problem is the manner in which the continuum is represented. While 
the constitutive model that best describes tissue deformation mechanics is more complex, for this work, linear isotropic 
elasticity has been employed. The partial differential equation that expresses a state of mechanical equilibrium can be 
written as [13]:  

0=•∇ σ  (1) 
 
where σ is the Cartesian stress tensor.  

For the purposes of the following experimentation, we also apply either the plane stress or plane strain 
approximations to the thin membrane and breast cross-section trials, respectively.  The direct consequence of this is a 
reduction of the 36 stiffness constraints in the general 3D formulation of Cauchy’s Law to the two parameters of 
Young’s modulus (E) and Poisson’s ratio (ν) in 2D.  These simplifications, while significant, are appropriate 
descriptions of sufficiently thin and thick systems under planar loading.   In plane stress, 
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describes the constitutive relationship between the Cartesian stress tensor [σx, σy, τxy] and strain tensor [εx, εy, γxy].  
Similarly, in plane strain, 
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(3) 

 
A finite element (FE) model using triangular elements is constructed from the source image and assigned appropriate 
boundary conditions based on estimated displacement or stress (i.e. Dirichlet and Neumann conditions, respectively).  
The standard Galerkin method of weighted residuals [14] is used to construct and solve the system. 
 
2.1.2  Image deformation and comparison 
 
To further describe the reconstruction process, we introduce some additional terminology at this point.  The model 
domain is equivalent to the total area of the FE mesh constructed using the source image as stated above and contains 
the relevant elasticity information.  The model domain is partitioned by a K-means clustering of the element centroids 
(MATLAB R14, Mathworks, Natick, MA) into N number of regions, each of which has a distinct set of spatially 
homogeneous elastic properties.  Subdividing in this manner allows for the implementation of the multi-resolution 
reconstruction whereby progressively finer spatial distributions of elasticity parameters are utilized in the process, a 
method that improves upon previous versions using only a single resolution [8-10].  Analogously, the comparison 
domain is an area specified by semi-automated segmentation on the target image and contains information pertaining to 
image similarity.  The comparison domain is separated into M number of rectangular zones containing approximately 
equal numbers of pixels. 

2



 

 

The reconstruction algorithm begins by assigning an initial Young’s modulus value to each of the regions at 
the coarsest resolution. Poisson’s ratio is held constant at ν = 0.485 to represent a nearly incompressible material.  The 
FE model is solved to determine the nodal mesh displacements, which are in turn used to deform the source image. This 
model-deformed image is then compared to the target image for every zone using an intensity-based image similarity 
metric.  While a number of methods are available for such a task, here, we utilize the correlation coefficient (CC) [15] 
throughout, as it has empirically demonstrated superior performance over other metrics such as the sum of squared 
differences and normalized mutual information. 
 
2.1.3  Optimization scheme 
 
Let T be a function that represents the model-based image deformation and takes as its input a vector of elastic modulus 
values E of length N that corresponds to the current distribution of regions in the model domain. Then for two 
distributions of modulus values E1 and E2, the similarity between the images produced by T(E1) and T(E2) is the vector 
S of length M containing evaluations of the correlation coefficient corresponding to the distribution of zones in the 
comparison domain. The elasticity parameter optimization can be written as the minimization of the least squares error 
objective function 

2
ESTTRUE SS −=Ψ  (4) 

 
where STRUE is the set of similarity values achieved when comparing the target image to itself, SEST is the similarity 
between the model-deformed source and the target images using current estimates of the elastic modulus distribution, 
and |•| denotes the vector L2 norm. By definition, STRUE is the maximum value for the similarity metric (max CC = 1). 
Using a Levenberg-Marquardt approach, the residual form of equation (4) becomes 
 

[ ]{ } [ ]{ }ESTTRUE
TT SSJEIJJ −=∆+ α  (5) 

 
where J = ∂SEST/∂E is the Jacobian matrix of size M x N and I is the N x N identity matrix. Because JTJ is typically an 
ill-conditioned term, the regularization parameter α is determined using the methods described in [16].  Modulus values 
of the regions at a given resolution are updated by ∆E until an error tolerance is reached or a maximum number of 
iterations have been completed. Upon reaching a stopping criterion, the material property description is interpolated 
onto the next (i.e. finer) resolution and the above steps are repeated. Spatial averaging of modulus values within the 
model domain and solution relaxation between successive resolution levels are also utilized to improve the stability of 
the optimization. 
 

 
 
Figure 1.  Flow chart of elastographic reconstruction framework. 
 
2.2 Reconstruction experiments 
 
A two-material phantom membrane of simulated skin had been previously constructed [6] using Smooth-On™ 
polyurethanes (Smooth-On, Easton, PA) designated by the manufacturer as Evergreen 10 and Evergreen 50. These 
materials have essentially indistinguishable colors but vary significantly in their elastic modulus values, so the former 
was used as the bulk material and the latter for stiff objects. From material testing, the elastic modulus contrast was 
expected to be approximately 5.7:1.  The phantom was made to contain two circular stiff inclusions 1.5 cm in diameter 
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embedded near opposing corners of a rectangular field of bulk material measuring 15 cm x 14 cm. A black permanent 
marker was used to place a pattern of regularly spaced (~1 cm) grid lines across the membrane. The thin membrane was 
securely clamped along two opposite edges and then subjected to a uniaxial tensile displacement (~8% strain) by means 
of a milling vise. A commercial webcam (Logitech QuickCam Pro 4000, 960 x 1280 pixel resolution) was rigidly 
mounted above the membrane to acquire image pairs of the pre- and post-stretched states. 
 To initially test the method regarding the two-inclusion scenario, a simulation using the source image of the 
membrane was performed by deforming it with a prescribed model (plane stress) of known boundary displacements and 
elasticity parameters to generate a target image; high modulus values were assigned to elements bounded by a 
segmentation of the inclusion locations. A reconstruction was then performed using the actual image data acquired as 
described above. In both cases, resolutions of N = 16, 64, 256, 512, and 800 regions and M = 400 zones were used.  The 
results of the idealized and real data reconstructions are shown in Figures 4 and 5, with further quantitative evaluation in 
Table 1.   
 In order to examine the robustness of the method regarding its use of data from differing sources, simulation 
reconstructions were performed using image slices extracted from breast image volumes obtained from CT and MR 
scans (see Figure 3).  Although these were taken from two different patients, the images were selected to be 
approximately corresponding slices ~2 cm away from the chest wall in the coronal orientation of the standard 
anatomical position.  The simulations were set up in the same manner as for the digital photographs, using either one or 
two inclusions of about 1 cm in diameter embedded within the true elasticity distribution and a small compression (~8% 
strain) in the cranial-caudal direction.  The relative stiffness of the inclusions was designated to be 5.7:1 for consistency 
with the material testing data and also because the value is fairly representative of breast tumor properties [17].  The 
plane strain model approximation was used in the breast simulation trials, progressing through resolutions of N = 24, 64, 
256, and 576 regions using M = 200 zones. The reconstruction method was then run for all four test cases, and the 
results are presented in Figures 6 and 7 and Table 2. 
 

 
 
Figure 2.  (Left to right): Phantom membrane in undeformed state (source image), under deformation (target image), and difference 
image.  Arrows in the left panel indicate the positions of the two stiff inclusions. 
 
 
2.3  Reconstruction evaluation 
 
The fidelity of the elasticity reconstruction was evaluated on its ability to detect the presence of an inclusion based on 
classification of the material property distribution, and the retrospective accuracy of localizing the lesions.  The elastic 
properties as a whole were treated as a Gaussian mixture of two classes and separated by a threshold established via the 
method described in [18].  The likelihood of detecting a lesion in the elasticity image was found using the contrast-to-
noise ratio as defined by [12,19]: 
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Figure 3.  Images slices of breast tissue extracted from a CT volume (left) and MR volume (right) used in simulation study of the 
ability of the reconstruction method to utilize disparate image data types.  
 
 
 
where µ and σ 2 are the sample mean and variance of a material property distribution and the subscripts L and B denote 
the lesion and bulk material classes, respectively.  As a quantitative assessment of the localization of the lesion(s), the 
positive predictive value of correctly identifying a lesion material within the known segmented region of the inclusions 
was used as a 'quality of reconstruction score' (QRS).  This value is significant because identification of the lesion 
border and material classification are done independently, so any user knowledge of the test scenario does not influence 
the performance of the measure.  Cutoffs for successful detection and localization were set at CNR≥2.2 as noted by [12] 
and QRS≥80% as determined by prior study in our laboratory.  The average modulus contrast is found from the ratio of 
the means of the two material classes, and a peak modulus contrast value is also reported by taking the ratio of two 
manually selected homogeneous regions of approximately equal area known to be representative of the two materials.  
It should be noted that in other work not presented here, the definition of QRS included a weighting factor provided by 
the estimated reconstruction modulus contrast, but for the current purposes, only localization accuracy was considered 
to maintain an objective evaluation of inclusion detection. 
 
 

3.  RESULTS 
 
Figure 4 demonstrates the ability of the reconstruction method to produce an elasticity map from the simulation data 
with good localization of the inclusions that are easily visually distinguishable from the surrounding bulk material. The 
progression through resolutions of N = 64, 256, 512, and 800 regions shows improving delineation of the inclusions and 
elastic contrast.  Figure 5 demonstrates a similar behavior for the reconstruction of the acquired phantom membrane 
data, with both spatial definition and modulus contrast increasing with the finer discretization.  Table 1 summarizes the 
quantitative evaluation of the reconstructions in both simulation and phantom trials, including CNR, contrast ratio, and 
QRS values.  The CNR values are sufficient to allow for discrimination of the two materials and the identification of the 
inclusions was determined to be accurate in both cases.  The reconstruction of the phantom membrane does show some 
misclassification along the border where the deformation was applied as well as in the corner adjacent to one of the 
inclusions (see Figure 5d). 

Figures 6 and 7 show the final reconstruction results for the CT and MR breast slice simulations using either 
one or two inclusions.  In both test scenarios, the resolvability of the stiffer material was found to be adequate according 
to the CNR threshold, but definitely higher in the MR-derived elasticity images.  Localization of the inclusions yielded 
excellent QRS values in reconstructions using either modality, again higher (though slightly) for the MR images. 
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Figure 4.  Reconstruction of the simulated membrane deformation using idealized model parameters, progressing through finer 
resolution distributions (a)-(d) of 64, 256, 512, and 800 regions. 
 
 

 
 
Figure 5.  Reconstruction of the actual membrane data. A faint contour in (d) is present to demarcate the actual position of the stiff 
inclusions.  Again, panels (a)-(d) demonstrate the effect of the multi-resolution method in utilizing 64, 256, 512, and 800 regions to 
better capture the shape and location of the inclusions. 
 

 
 

Table 1.  Quantitative reconstruction evaluations. 
 Avg CR Max CR CNR QRS (%) 
Simulation 2.7 4.0 4.4 97.7 
Phantom 2.6 4.1 2.8 88.5 

 

6



 

 

 

 
Figure 6.  Reconstructions of simulation trials for the CT breast slice using a single inclusion (left) and two inclusions (right). The 
true inclusion boundaries are overlaid in each elasticity image. 
 

 
Figure 7.  Reconstructions (bottom row) of simulation trials for the MR breast slice using a single inclusion (left) and two inclusions 
(right).  The true elasticity distributions are also shown (top row) for comparison. 
 
 

Table 2.  Quantitative reconstruction evaluations. 
 Avg CR Max CR CNR QRS (%) 
CT (1 inclusion) 2.1 3.1 3.0 97.6 
CT (2 inclusions) 2.0 2.6 3.5 96.9 
MR (1 inclusion) 2.8 3.7 20.0 100 
MR (2 inclusions) 2.7 3.7 5.7 99.8 
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4.  DISCUSSION 
 
The results of the phantom membrane experiment are encouraging because of their similarity to the idealized 
simulation. Despite nonlinear model-data mismatch, out-of-plane distortions during stretching, and possible boundary 
condition inaccuracies, the elasticity reconstruction demonstrated good localization of the two small inclusions.  The 
majority of the problems in reconstruction are mostly likely due to noise incurred in the mapping of the boundary 
displacements. It should be noted that the phantom reconstruction was achieved with a non-pigmented lesion (see 
Figure 2, arrows), indicating that deflections of the image structure are capable of driving the image similarity metric of 
the reconstruction process.  This does intuitively suggest that some metric for rating the complexity and density of 
image pattern in relation to algorithm success may be important and is currently under investigation.  Preliminary data 
not presented in this work indicates that such a threshold does exist for image data that can be properly analyzed by the 
current framework.  The modality independence of the method is also supported by the results here; clearly, the 
Hounsfield units of CT, floating point values from an MR volume, and the luminance captured by the CCD sensor of a 
digital camera are quite different types of data to handle because they are based on different physical principles.  The 
simulation reconstructions demonstrate that the method is indifferent to these differences by treating the data as an 
arbitrary range of intensities and will converge towards the true elasticity distribution based on the image pattern 
available.  This is a possible explanation for the qualitatively more satisfactory results from the MR simulations 
compared to the CT trials because the distribution of intensities from the former modality yielded a more diversified 
histogram, an attribute that should naturally aid an intensity-based metric. 

While an ideal reconstruction would also be accurate in characterizing a lesion by its modulus contrast, our 
focus in the study was to test the ability of the method to detect and localize the inclusions.  In previous experimentation 
with reconstructions of single focal lesions, we have been generally successful in achieving a contrast ratio within 25% 
of the true/expected value. It is somewhat troubling that the contrast ratios calculated here did not meet that criterion, 
although the experiments with the phantom membrane came fairly close (28%).  However, these results underscore the 
difficulty of the scenarios in not only having to deal with multiple inclusions but quite small ones in both the true 
physical sense and also the scale of the domain.  Any of the given inclusions tested in simulation and with the real data 
were detected within a homogeneous domain approximately an order of magnitude larger (e.g., 1.5-cm lesions in a 15 
cm x 14 cm domain for the phantom).  The expectation of being able to identify with any confidence the presence of the 
inclusion is comparable to the observations made in [12] where the test of finding a single 5-mm lesion within a 4 cm x 
5 cm domain proved to be the most problematic.  Therefore, the localization of the lesions as determined by the CNR 
and QRS metrics is deemed to be a success, and further investigation into the nature of the method with respect to the 
scale of the lesion and domain is warranted. 

   
5.  CONCLUSIONS 

 
In this work, we have presented further testing of a method for recovering elasticity parameters by maximizing the 
similarity between images of a tissue of interest acquired under two different states of quasi-static loading within the 
context of an inverse problem.  The specific experiments presented here examined the effectiveness of the technique for 
the detection of multiple small discrete focal lesions embedded in an otherwise homogeneous medium, as well as 
further proof-of-concept work in its applicability to utilize image data from various modalities.  In both cases, the 
method provided accurate localization of the lesions based on the reconstruction of relevant elasticity contrast.  Because 
the biomechanical model, multi-resolution optimization, and image acquisition are each modular components of the 
framework, this elastographic reconstruction technique is readily extensible for added sophistication, and there is 
ongoing work to enhance the methodology with more complex models and advances in imaging technology. 
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Application of Multi-resolution 
Modality Independent Elastography

for Detection of
Multiple Anomalous Objects
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• (Solid) tumors are usually stiffer than surrounding 
tissue

• Soft tissue interrogation of various organ systems 
(e.g. skin, liver, prostate, breast) for tumor
detection

• Elastography gives representation of a structure 
according to its mechanical properties 

• Deformation processes indicative of material 
inhomogeneity can be captured by imaging and 
approximated with modeling

• Associate form and function through image analysis 
separate from modality acquisition

Modality Independent Elastography
(MIE) Concepts
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MIE Components

• (1) Biomechanical FE model of 
soft-tissue deformation

• Conservation of stresses (continuum)

• Constitutive stress-strain relation (Hooke’s Law)

0=•∇ σ

εσ E=

MIE Components (cont.)

• (2) Similarity measure for 
comparing images 

• Acquired “pre-” (source) & “post-” (target) 
quasi-static deformation

• Intensity-based registration metrics
• MI, NMI, SSD, CC, GC
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MIE Components (cont.)

• (3a) Optimization routine to update 
material properties in the model

• Objective function based on similarity

• Levenberg-Marquardt

∑
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MIE Components (cont.)

• (3b) Discretization of elasticity
distribution and image data

• Multi-resolution K-means clustering of elements 
(“regions”)

• Sampling of image comparison area (“zones”)

regions zones

FE mesh Target
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MIE Framework

NO

Calculate Displacement Field 
Deform Source Image

Image Acquisition Generate FE Model

Compare:  Deformed Source
== 

Target Image

Calculate Elasticity Update

for n=1:N resolutions

Multi-res complete 

AND 

Error tolerance reached

OR Max iterations complete

YES

END

Medical Physics, vol. 32, no. 5, pp. 1308-1320, 2005

inclusion

Prior Work – Single Inclusion

13



Source Target

Medical Physics, vol. 32, no. 5, pp. 1308-1320, 2005

multi-res

without 
multi-res

• Modality independence
– Digital photography

– X-ray computed tomography (CT)

– Magnetic resonance (MR)

• Two (small) inclusions
• Simulation and phantom membrane 

study

Study Objectives:
Further Testing of MIE
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• Classify reconstruction 
Two-class Gaussian mixture model

• Detectability via elasticity image contrast

• Localization accuracy
– Positive predictive value of identifying lesion 

material in correct location

Evaluating MIE

Source Target1 Target2

CT breast slice - simulation
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Source Target1 Target2

MR breast slice - simulation

Source Target Diff

Two inclusion membrane
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Summary

• Modality independence via simulation for 
handling various data types

• Multi-resolution approach potentially 
improves optimization convergence

• Two small stiff inclusions reconstructed in 
phantom membrane experiment

• Detectability accomplished via CNR
• Localization successful as evaluated by QRS
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Future Directions / Research Questions

• Biological tissues are not typically linearly 
elastic

• Need for accurate boundary conditions 
creates dependence on segmentation 
methodology

• Not all data sets necessarily contain 
sufficient information for elastographic
reconstruction
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ABSTRACT 

An elastographic reconstruction method has been developed 

to recover the material properties of soft tissue by model-

based analysis of image data acquired at different states of 

mechanical loading. The algorithm utilizes image similarity 

as part of the cost function for a multi-resolution, non-linear 

optimization. Previous work with a phantom membrane 
used for simulated dermoscopic application has prompted 

this preliminary investigation of the relative effects of 

additive image noise and boundary condition determination 

errors on the performance of the method. The results as 

quantified by elasticity contrast and localization accuracy 

indicate that the reconstruction process is robust in the 

presence of realistic levels of image corruption and tolerates 

the majority of boundary condition mapping errors. 

1. INTRODUCTION 

The practice of palpating soft tissue structures in the course 

of the physical exam for assessing tissue health has had a 
long-standing clinical history of providing correlation 

between improper stiffness and pathology. The ability to 

characterize the mechanical properties of tissue is therefore 

a potential source of information relevant for both diagnosis 

and prognosis. One way in which this could be achieved in a 

non-invasive manner is through analysis of tissue 

deformation with imaging and image processing techniques, 

which is a central goal of the field of elastography [1].  

The conceptual framework for our elastographic 

reconstruction has been previously described in [2-4]. In 

brief, images of a tissue of interest are acquired in an initial 
(source) and then mechanically loaded state (target). The 

source image is deformed by a prescribed computational 

model and compared to the target. This is repeated in an 

iterative process using updates to the elasticity parameters of 

the model as generated by a multi-resolution, non-linear 

optimization scheme in order to achieve a suitable match in 

image similarity. Because the goal of the reconstruction is to 

determine a spatial mapping of tissue elasticity, this process 

can also be classified as an inverse problem.   

Our observations during the ongoing development and 

testing of this method have prompted questions concerning 

the quality of data necessary and sufficient to achieve 

satisfactory results (i.e. fidelity of the reconstructed 

elasticity image). The primary inputs to the reconstruction 

method are the acquired images and the delineated boundary 
conditions on the region of interest. While it is clearly 

preferable to have idealized data, in reality, both inputs 

involve varying levels of manual interaction. As an initial 

study, we have sought to test the effects of degradation in 

data quality on the end reconstruction by using additive 

image noise and randomized boundary condition selection 

error. 

2. METHODS 

2.1. Elastographic Reconstruction Framework 

There are three major components in the reconstruction 

framework: a biomechanical model of tissue response to 

applied deformation, a method of image comparison, and an 

optimization scheme. For the current version, a continuum-

based model of mechanical equilibrium using isotropic 

Hookean linear elasticity with a plane stress approximation 

is employed [5]. This allows for a reduction of the general 

3D formulation of Cauchy’s Law to the two parameters of 

Young’s modulus and Poisson’s ratio in 2D. The 

displacement solution of the finite element representation of 

the model, solved using the standard Galerkin method of 
weighted residuals [6], is then applied to the nodes of a 

simple triangular mesh based on the source image domain in 

order to perform image deformation. The mesh is 

partitioned by K-means clustering (MATLAB R14, 

Mathworks, Nattuck, MA) into N number of regions, each 

of which describes a distinct set of homogeneous elastic 

properties for a grouping of adjacent elements. This allows 

for implementation of the multi-resolution approach by 

creating a hierarchy of increasingly finer spatial 

distributions of elasticity parameters, which has been shown 

to be an improvement upon previous versions using only a 

9480-7803-9577-8/06/$20.00 ©2006 IEEE ISBI 2006
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single resolution [2,3]. A second discretization is performed 

to divide the target image into M number of rectangular 

zones containing approximately equal numbers of pixels. 

The deformed source image is compared to the target using 

an intensity-based image similarity metric (here, the 

correlation coefficient [7]) in the evaluation of the least 
squares error objective function  

∑
=

−
M

m

ESTTRUE SS
1

2
)( (1)

where STRUE is an Mx1 vector of the (maximum) similarity 

values achieved when comparing the target image to itself 

and SEST is the Mx1 vector of similarity between the target 

and model-deformed source image created using current 

estimates of the elastic modulus distribution. It should be 

noted that STRUE has by definition a value of 1 for the 

correlation coefficient. 

The minimization of equation (1) using a Levenberg-

Marquardt approach takes the form  

[ ]{ } [ ]{ }ESTTRUE

TT SSJEIJJ −=∆+ α (2)

where J is the Jacobian matrix of size MxN estimating 

∂S/∂E, ∆E is the Nx1 vectors of updates to the current 

elasticity values, and α is the scalar regularization term for 

the Hessian matrix as described in [8].  

2.2. Material Preparation and Image Acquisition 

For our simulation purposes, a two-material skin phantom 

had been previously constructed [2] as a thin membrane 

measuring 15 cm x 15 cm, with a single 5-cm circular stiff 
inclusion embedded in the center (Figure 1). The phantom 

was manufactured with Smooth-On™ polyurethanes 

(Smooth-On, Easton, PA) Evergreen 10 and Evergreen 50. 

These materials have essentially indistinguishable colors but 

vary significantly in their elastic modulus values, so the 

former was used as the bulk material and the latter for the 

inclusion. Based on material testing, the expected contrast 

ratio of Young's modulus values was determined to be 

approximately 5.7:1.  A black permanent marker was used 

to place a pattern of regularly spaced (~1 cm) grid lines on 

the membrane. The membrane was clamped along two 

opposite edges and then stretched in a uniaxial fashion by 
means of a milling vise. A commercial webcam (Logitech 

QuickCam Pro 4000) was mounted above the assembly to 

acquire image pairs of the membrane in pre- and post-

stretched states (960 x 1280 pixel resolution, 8-bit 

grayscale). 

2.3. Reconstruction Experiments 

Based on prior work, a data set consisting of a 

particular image pair and associated boundary conditions 

known to produce a satisfactory reconstruction was 

designated as the gold standard for the remainder of the 

experiments (Figure 1). In order to test the effect of 

increasing amounts of additive noise on the reconstruction 

algorithm, Gaussian random fields of 1, 5, 10, 15, 20, 25, 

and 30% noise were applied to the base target image in three 

separate trials. This presents a challenge that ascertains the 

ability of the similarity metric and objective function to 

discern a proper match.  

The current method for selecting Dirichlet boundary 

conditions on the finite element mesh is semi-automated and 
requires the user to make a final determination on point 

correspondence. The second experiment was intended to 

simulate the targeting error of the user (e.g. visual cues and 

input device control). Each test involved applying 

randomized vectors of equal magnitude to alter the 

boundary conditions of the gold standard data set. Errors of 

0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5, and 2.0 mesh units (scaled 

to be equivalent to pixel coordinates) were used in two 

separate trials for a total of 16 reconstructions. Sub-pixel 

magnitudes were included after determining that the 

accuracy of selecting a feature point in the image/mesh was 

typically less than or equal to 0.5 units for users ranging 
from moderate to expert skill. 

For all reconstructions, resolutions progressing through 

N = 16, 36, 64, 144, 256, and 400 regions and M = 9 

similarity zones were used; domains were initialized to 

homogeneous elasticity and Poisson’s ratio held constant at 

0.485 to represent nearly incompressible material(s).  

2.4. Reconstruction Analysis 

The final reconstructed elasticity values were modeled as a 

mixture of two Gaussian distributions, and a threshold was 
established to maximize inter-class variation [9] and 

subsequently classify each region as bulk or stiff material. 

Because Dirichlet boundary conditions are exclusively used 

in these reconstructions, the method is only sensitive to 

relative differences in elasticity. The quantities used in 

evaluating reconstruction success are the elasticity contrast 

ratio, localization accuracy of the inclusion, and an overall 

measure designated the ‘quality of reconstruction score’ 

(QRS).  The elasticity contrast ratio (CR) was calculated 

Figure 1.  Experimental phantom membrane system (left) and
input image with overlaid finite element mesh (right). The 
inclusion location is indicated by the arrow and dotted line. The 
mesh designates the actual region reconstructed.
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from the mean values of the two material classes, and the 

positive predictive value of identifying stiff material within 

the independently segmented boundary of the inclusion 

gives a measure of localization accuracy (LA). The quality 

of reconstruction is simply then the product QRS = CR*LA, 

which allows the user to consider the other two measures in 

conjunction. 

3. RESULTS 

Figures 2 and 3 show examples of reconstructions achieved 
under various image noise and boundary condition errors, 

and individual localization errors and contrast ratio values 

are listed in Table 1. Note that the data for the image noise 

experiment was averaged from the three trials, and that the 

data presented for the boundary condition experiment is 

from one [representative] trial. Figure 4 is a plot of the 

reconstruction quality decreasing with increasing image 

noise, and Figure 5 shows the reconstruction quality trend 

plotted against the change in initial alignment error (detailed 

in the following section) relative to that of the gold standard. 

4. DISCUSSION 

From visual inspection of Figure 2, it is apparent that the 

achieved reconstruction becomes more inaccurate with 
increased image noise. However, the ability to identify and 

localize the stiff inclusion is not significantly impaired until 

a noise field of greater than 10% is applied. The threshold 

was found by determining which level of noise provided the 

best minimum sum squared error fit of two lines to the 

distribution of reconstruction quality in Figure 4. This 

would indicate that the similarity metric and objective 

function are robust to intensity deviations of about 6 gray 

levels. While Gaussian noise is one of several possible types 

and may not always be an ideal model, it is still relevant to 

acquisition inaccuracy and corruption processes that may be 

encountered across several medical imaging modalities. The 
use of an intensity-based similarity metric appears to give 

the method an advantage in being generally insensitive to 

reasonably expected amounts of image noise.  

Figure 3 demonstrates that because of the random 

nature of the boundary condition errors, the magnitude is 

itself not an accurate indicator of reconstruction quality. 

This necessitated the introduction of a more suitable 

parameter that accounts for the net effect of the altered 

boundary conditions in order to perform fair evaluations. In 

essence, randomizing the vectors at every node causes the 

optimization to use an unpredictable starting pose and 
increases its chance of converging to an improper minimum. 

Therefore, the ‘initial alignment error’ (AE) is defined as the 

relative percent change between the objective function 

evaluation using the gold standard boundary conditions and 

those of the test case. An as example, it could be assumed 

that vectors of magnitude 0.5 would be a much more 

tolerable error than 2.0, but it is the significantly larger AE 

Figure 2.  Representative reconstructions with image noise. From 

top left: 1, 5, 10, 20, 25, and 30% additive Gaussian noise. The 
reconstructions are visualized as two materials, with whiter areas 

indicating higher elasticity contrast values. 
Figure 3.  Representative reconstructions with boundary condition 
error. Left to right: 0.1, 0.2, 0.3 units (top row); 0.75, 1.0, 2.0 units 
(middle row, trial #1); 0.75, 1.0, 2.0 units (bottom row, trial #2). 
Error magnitudes greater than or equal to 0.5 mesh units are not 

accurate predictors of reconstruction quality.  Table 1.  Reconstruction quality under noise conditions 

Additive image noise 

% Noise 1 5 10 15 20 25 30 

LA 0.92 0.90 0.91 0.70 0.69 0.66 0.56 

CR 3.56 3.45 3.45 3.24 2.88 2.83 2.68 

Gold standard: LA = 0.95, CR = 3.60 
Boundary condition error

Err 0.1 0.2 0.3 0.5 0.75 1.0 1.5 2.0 

AE 0.96 3.32 2.21 102 0.93 32.2 12.6 7.66 

LA 0.87 0.92 0.88 0.59 0.94 0.86 0.86 0.96 

CR 3.63 3.68 3.44 2.91 3.46 3.71 3.78 3.30 

CR = elasticity contrast ratio, LA = localization accuracy 
AE = initial alignment error (%), Err = error magnitude. 
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of the former that actually predicts the poor outcome. 

However, it should also be noted (results not shown here) 

that even if the same set of error vectors are scaled over 

varying magnitudes, there is no clear trend in alignment 

error or reconstruction quality. This appears to imply that 

certain boundary nodes, most likely those in the direction of 

largest strain, have a greater effect on reconstruction and 

merit particular care in selection. Other factors influencing 

unfavorable reconstructions are most likely nonlinear effects 

not predicted by the current model as well as an inherent 

lack of discrimination by intensity-based similarity metrics 
in analyzing the regularity of the imposed grid pattern. 

Nevertheless, for the error magnitudes tested that best 

approximate realistic inaccuracies (i.e. <0.5 units), the 

alignment errors were small and quality of the end 

reconstruction was seen to be quite good. This qualitatively 

validates the current method of determining point 

correspondence as a reasonable procedure with an 

accommodating margin (factor of four) in light of typical 

user interaction.  

5. CONCLUSIONS 

In this work, we have presented a method for recovering 

elasticity parameters from image data of thin membrane 

structures by maximizing the image similarity between two 

different states of mechanical loading within the context of 

an inverse problem. The biomechanical model, multi-

resolution optimization, and image acquisition are each 

modular components of this elastographic reconstruction 

framework, making it extensible to added sophistication. 

Tests were conducted to examine the tolerance of the 

method to degraded or improper inputs. The results indicate 

that the gold standard data set was mostly optimal for 
obtaining a successful reconstruction. Widening disparities 

in either image data or boundary condition selection from 

that in the gold standard caused observable trends of 

declining     reconstruction    quality.       Based    on     these  

observations, it appears that the method handles most 

expected variations encountered in image acquisition as well 

as the majority of typical user inaccuracies. Because there 

are complicated effects associated with mapping of the 

Dirichlet boundary conditions in constraining the 

displacement solution of the model, further study on inter-

rater variability in selection as well as comparisons with 

more automated point correspondence methods is ongoing.  
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Figure 4.  Reconstruction quality vs. percent additive image noise. 

The drop-off after 10% additive noise indicates the threshold of
tolerance for the method. 

Figure 1 

Figure 5.  Reconstruction quality vs. percent change in initial 
alignment relative to gold standard.  The majority of errors tested

produced satisfactory reconstructions.
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BACKGROUND

PRELIMINARY TESTING OF SENSITIVTY TO INPUT DATA QUALITY IN 
AN ELASTOGRAPHIC RECONSTRUCTION METHOD

Jao J. Ou, Stephanie L. Barnes, and Michael I. Miga
Vanderbilt University, Department of Biomedical Engineering, Nashville, TN  37235

Changes to the local cytoarchitecture induced in a variety of pathologies can manifest 
as alterations in tissue elasticity that are relevant in clinical examination and evaluation. 
Many elastography methods are typically dependent on the specific modality around
which they were developed (e.g. magnetic resonance and ultrasound imaging). We 
have developed ‘modality-independent elastography’ (MIE) as a reconstruction method 
that recovers the material properties of soft tissue via model-based analysis of image 
data acquired at different states of mechanical loading. The algorithm utilizes image 
similarity in the performance of a multi-resolution, non-linear optimization. Previous 
work with a phantom membrane used for simulated dermoscopic applications prompted 
this preliminary investigation of the relative effects of additive image noise and 
boundary condition determination errors on the performance of the method. The results 
as quantified by elasticity contrast and localization accuracy indicate that the 
reconstruction process is robust in the presence of realistic levels of image corruption 
and tolerates the majority of boundary condition mapping errors.

The inputs to the reconstruction process are in two major forms: image data and 
boundary condition estimation. Inadequate fidelity in either quantity is capable of 
affecting the success of the reconstruction through some form of model-data mismatch. 
We proposed to test the sensitivity of the algorithm to various levels of an applied noise 
process by altering either the intensity distribution of the target image or the 
displacement vectors defining the Dirichlet boundary conditions.

This work was supported in part by a Whitaker Foundation Young Investigator Award and a Congressionally Directed Medical Research Program Breast Cancer 
Research Program Pre-doctoral Fellowship.

inclusion

PURPOSE

Figure 1.  Flow chart of MIE.  After acquisition, source and target images (A) are discretized into regions and zones, respectively. The reconstruction process 
involves updating elastic modulus values (B,E) to drive a finite element model-based image deformation (C) until the best match is found (D).
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Figures 3 and 5 show that the achieved reconstruction becomes more inaccurate with increased image noise. However, the ability to 
identify and localize the stiff inclusion is not significantly impaired until a noise field of greater than 10% is applied. The threshold was 
found by determining which level of noise provided the best minimum sum squared error fit of two lines to the distribution of 
reconstruction quality. This would indicate that the similarity metric and objective function are robust to intensity deviations of about 6 
gray levels in an 8-bit image. While Gaussian noise may not always be an ideal model, as a preliminary point of investigation, it is still 
relevant to acquisition inaccuracy and corruption processes that can be encountered across several medical imaging modalities. 

Figure 4 demonstrates that the magnitude of the random vectors is itself not an accurate indicator of reconstruction quality because 
the multiple degrees of freedom afforded by the boundary nodes cause the optimization to use an unpredictable starting pose, 
increasing the chances of converging to an improper local minimum. This necessitated the introduction of the initial alignment error 
(AE) to provide a consistent means of comparison between trials (Figure 6). As a further example, it could be assumed that vectors 
of magnitude 0.5 would be a much more tolerable error than 2.0, but it is the significantly larger AE of the former that actually 
predicts the poor outcome. It should also be noted (results not shown here) that even if the same set of error vectors are scaled over 
varying magnitudes, there is no clear trend in alignment error or reconstruction quality. This appears to imply that certain boundary 
nodes, most likely those in the direction of largest strain, have a greater effect on reconstruction and merit particular care in 
selection. Nevertheless, for the error magnitudes that approximate inaccuracy in boundary condition demarcation (i.e. <0.5 units), the 
quality of those reconstructions was satisfactory. This qualitatively validates the current method of determining point correspondence 
as a reasonable procedure with an accommodating margin (factor of four) in light of typical user interaction. Further research is 
ongoing into validation and control of boundary conditions, as well as more automated methods of point correspondence.

Figure 5.  Reconstruction quality vs. image noise.
Three trials of image noise were performed (shown averaged and with 
standard error bars); the drop-off in reconstruction quality indicates 
the presence of a threshold at approximately 10% additive Gaussian 
noise. 

Figure 6. Reconstruction quality vs. boundary condition 
noise.
Two trials of eight levels of noise ranging from 0.1 to 2.0 mesh units 
were performed. Each reconstruction was treated as a separate data 
point based on its initial alignment error, defined here as the relative 
change between the objective function evaluation using the gold 
standard boundary conditions and those of the [randomized] test 
case. 

Figure 4.  MIE boundary condition noise reconstruction experiment.
Randomized vectors of a particular magnitude were applied to the boundary condition specifications of the same finite element mesh used for all reconstructions. This 
simulates targeting error by the user in the currently semi-automated method of point correspondence selection, and the effect is illustrated in the top row: from left to 
right, the gold standard boundary and then with mis-estimation of 0.75, 1.0, and 2.0 mesh units (equivalent to pixel coordinates) in the Dirichlet conditions (slightly 
exaggerated scale for visual effect). The corresponding reconstructions in the middle and bottom rows demonstrate that two different trials using the same magnitude of 
randomized vectors can effect very different levels of reconstruction quality. 

% additive noise initial alignment error (AE)

Figure 3.  MIE image noise reconstruction experiment.
Gaussian random fields of variable strength with respect to the 
variance of non-background pixel values were applied in an 
additive fashion to the target image. Shown in the left column 
from top to bottom are the original target and then with 10%, 
20%, and 30% noise. In the right column are the corresponding 
elasticity reconstructions after application of a thresholding
scheme to classify bulk (black) and inclusion materials 
(white/gray). The known segmentation of the inclusion was used 
to retrospectively calculate the positive predictive value of 
identifying the correct material type within the proper boundaries 
as well as the mean elasticity contrast of the overall distribution. 
For this work, our overall evaluation of reconstruction quality is 
expressed as the product of these two quantities. The effect of 
additive noise is to decrease reconstruction quality as evidenced 
in the progressively poorer localization of the inclusion. 

Figure 2.  MIE reconstruction experiment.
(Left panel) A two-material phantom mimicking 
skin was constructed as a thin membrane 
measuring 15 cm x 15 cm, with a single 5 cm 
circular stiff inclusion embedded in the center. The 
phantom was manufactured with like-colored 
polyurethanes which have an inclusion-to-bulk 
elasticity contrast of approximately 5.7:1. The 
membrane was stretched in a uniaxial fashion 
while a CCD camera mounted above acquired 
image pairs of the membrane in pre- and post-
deformed states (960 x 1280 pixel resolution, 8-bit 
grayscale).

(Right panel) Top row: Source and target images 
with overlay of finite element mesh boundaries 
(red) that demarcate the area reconstructed. 
Below: Reconstruction progression over increasing 
number of regions (N = 16, 64, 256, 400) to refine 
the spatial distribution of elasticity values. This 
reconstruction serves as the gold standard for the 
remainder of this work.
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Modality independent elastography „MIE…: Potential applications
in dermoscopy
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The use of palpation information for skin disease characterization is not as commonly used as in
other soft tissues, although mechanical differences within lesions have been noted. For example,
regions of hyperkeratosis have the potential to transform into cancerous lesions and likely feature
different material properties from those of surrounding normal tissue due to varying cytoarchitec-
ture. As a result, the spatial distribution of lesion mechanical properties may serve to assist a
diagnosis or enhance visualization of the complete extent of a cancerous region, i.e., accurate
information regarding the margins of disease for surgical therapy. In this work, a multiresolution
extension to a novel elastographic imaging method called Modality Independent Elastography
sMIEd is used to characterize the mechanical properties of a skin-like phantom embedded with a
mock stiff lesion. Simulation studies were also performed to investigate the potential for charac-
terizing realistic melanoma lesions. Elasticity image reconstructions from the phantom experiments
localized the stiff inclusion and had good correlation between the Young’s modulus contrast ratio
and experimental measurements from material testing. In addition, multiresolution MIE was shown
to be a more robust framework than its single-resolution version. Results from the melanoma
simulation demonstrate the potential for using multiresolution MIE with dermoscopic

images. ©2005 American Association of Physicists in Medicine. fDOI: 10.1118/1.1895795g
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I. INTRODUCTION

Skin cancers are a growing health concern in the Un
States, with total annual cases being reported in the mil
by the American Cancer Society. There are three major t
of skin cancersfbasal cell carcinomasBCCd, squamous ce
carcinomasSCCd, and melanomag, with melanoma estimate
to be the sixth most prevalent cancer and an estim
55,100 new casesswithin the United Statesd to be diagnose
in 2004.1 In general, skin cancers develop from precance
lesions of the epidermis that have dysplastic changes d
the damage inflicted by ultraviolet solar radiation. As w
other cancers, the dysfunctional cells may aggressively
pete with normal tissue for nutrients and space. The pro
sion from a benign to malignant state depends upon th
gree of cellular differentiation and the spatial extent of
growth, which approximately translates into the patholog
determination of grade and stage.

When skin cancers are identified at an early stage an
still small in size, surgical excision is usually straightforw
and effective. If the disease has progressed to invade d
levels of the skin, treatment becomes more difficult and
involve more invasive surgery, radiation, and/or che
therapy. It is clear that the early detection of cancer is cri
in order to formulate a proper treatment plan and achiev
most favorable clinical outcome. However, detection and
agnosis still rely primarily on visual inspection followed b
biopsy of suspect areas for histological analysis. Therefo
significant proportion of diagnostic technological advan
have been concerned with obtaining a better view of
lesion via improved opticssi.e., dermoscopyd or more ad

vanced and novel imaging systems ranging from high-
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frequency ultrasound to confocal laser microscopy.2,3 Addi-
tional strategies involving electrical impedance misma4

Raman spectroscopy,5 and cytological smears3 have also
been forthcoming.

As opposed to other methods mentioned above w
capitalize on electrical, optical, and biochemical phenom
we have chosen to pursue an alternative approach to
health assessment which is based on its mechanical beh
Detecting changes in tissue by palpation and then assoc
them with a disease state has had a longstanding histo
clinical medicine. Although a health assessment of skin
palpation is performed to a lesser degree, utilizing chang
the mechanical properties to characterize the skin does
precedent within clinical dermatology. One thoughtful
view by Edwards and Marks discusses the complex mec
cal behavior of skin when subjected toin vitro and in vivo
testing.6 Their review highlights extensive methodologies
ing used to quantify skin mechanical propertiesse.g.,
uniaxial and biaxial extensometry, torsion stimulators, in
tometery, ballistometric tests, shear wave application
vices, dynamic suction methods, ultrasonics, and elect
namometryd and also indicates the difficulties in compar
across these methods. As a result, Edwards and Mark
phasize the necessity for quantitative, reproducible met
to assess skin health given the wide subjectivity in clin
analysis.6 For example, the work by Draaijerset al. suggest
that reliable subjective assessment of the pliability of s
requires more than one observer while measurements u
noninvasive suction device can be accomplished wi
single observer.7 This type of work qualitatively confirms th

Edwards and Marks conclusion that the need for technology

1308308/13/$22.50 © 2005 Am. Assoc. Phys. Med.
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and automation in skin assessment will be essential fo
ducing inter-rater variability.

While the characterization of skin cancer for diagno
purposes and possibly surgical intervention is an intere
prospect, other investigations have begun to suggest rel
ships between skin elasticity parameters and other dise
In a recent study using a noninvasive suction device, Pi
et al. demonstrated a correlation between bone mass de
sBMDd and skin elasticity parameters. Specifically, in a 1
woman study in which a portion of the subjects were par
pating in hormone replacement therapy, a positive correl
existed between BMD of the hip and femoral neck and
elasticity parameters. The authors clearly state that their
was not to develop a surrogate BMD assessment test, b
results are nevertheless intriguing.8,9 Using a similar device
Yoon et al. demonstrated a relationship between skin ela
ity parameters and patients afflicted with diabetes mellit10

Other work has been forthcoming11–16 that demonstrates th
potential for using noninvasive measurements of skin
chanical parameters as diagnostic information.

To this end, the field of elastography has establis
methods to spatially characterize the mechanical prope
of tissues under various states of deformation with the
of developing functional parameters to characte
disease.17,18In skin cancer, increases in cell density, atypi
the morphology and orientation of cells, and compositio
alterationsse.g., hyperkeratosisd contribute to changes in th
local cytoarchitecture. These changes in mechanical stru
can propagate from microscopic to macroscopic levels
may manifest as a distortion of the normal anatomy. G
the influence of mechanical structure on the behavior o
forming tissue, elastographic imaging methods may be
suited for detecting and monitoring the growth of these
cerous anomalies. In fact, advances in applying ultras
elastography and sonography techniques to skin are
reported.3,19–22Most recently, Gennissonet al. demonstrate
the use of a new sonoelastographic probe that measu
distinct difference between dermis and hypodermis s
wave velocities which was subsequently used to esti
Young’s modulus.22 Although interesting, this work is n
completely applicable to the clinical goals of understan
the spatial extents of a melanoma lesion.

Following previous work in Ref. 23, we are using a n
elastographic method we have termed “moda
independent elastography”sMIEd that combines nonrigid im
age registration with an elasticity inverse problem. More
cifically, image similarity metrics routinely used with ima
registration methods are recast within a nonlinear optim
tion algorithm whereby mechanical propertiesse.g., Young’s
modulusd within a biomechanical model of the deformi
tissue become the driving parameters for improved im
registration. In this way, the MIE method circumvents
potential limitations of current elastographic techniqu
First, it is not inherently dependent on preprocessing s
such as homologous feature selection and tracking w
drive active contour models19–21 or other traditiona
displacement-based iterative methods24–29 showever, it doe

require the determination of boundary conditionsd. Second,
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because it is an image processing technique, MIE is no
liant on a particular imaging modality such as in ultraso
and magnetic resonance elastography, as long as the ac
images provide a sufficient pattern to allow for registrat
Building on recently completed work with a dual-me
implementation,30 in this paper we present a simplified m
tiresolution elasticity imaging framework for Young’s mod
lus reconstruction. In addition, phantom and simulation
periments demonstrate its utility as a dermoscopic im
analysis tool for evaluating skin lesions based on mat
elasticity.

As a final point, the work presented here represen
potentially new application of the MIE approach for
characterization of skin lesions using optical images.
may have significant implications at many length sc
ssubcellular, cellular, matrix level, and gross tissued. For ex-
ample, properly designed, optically based MIE could be
to characterize the structural development of tissues a
cellular scale. This could be important for therapies suc
Mohs micrographic surgery. Mohs is a surgical techn
which combines surgery and pathological investigatio
more effectively remove skin tumors. More specifically, a
removing visibly cancerous regions, the surgeon remov
additional thin layer of the site margin and creates a “m
of the border. Upon pathological examination of the remo
layer, the “map” can be used to target the remaining ca
ous cells. Currently, the Mohs technique is a time-consu
procedure, but the success of the procedure is comp
and has been shown to be cost effective with ce
considerations.39 If MIE skin imaging could accurately ass
or replace the pathologic characterization of the marg
less time, this would be of great value for this surg
therapy.

II. METHODS

A. Model of phantom/skin elasticity

One critical component within all model-based inve
problem frameworks is the selection of a computati
model to represent the continuum of interest. In our phan
and simulation studies, we have elected to employ a l
elastic model to simulate the skin. These assumptionsse.g.,
symmetry, isotropy, etc.d allow the simplification o
Cauchy’s law from 36 stiffness constants to 2 and emplo
equation

= · s = 0, s1d

wheres is the two-dimensionals2-Dd Cartesian stress tens
and is defined as

s = Fsx txy

txy sy
G . s2d

The constitutive relationships for the material can be wr

as
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4 , s3d

whereE is the Young’s modulus,n is Poisson’s ratio, andu,
v are displacements in thex and y directions, respectivel
For this work, Poisson’s ratio was assumed to be consta
0.485 for our skin phantoms and tissue simulations.
value was found by searching the reconstruction param
space for an optimal value that achieved maximum simil
when comparing the homogeneous model-deformed im
to its acquired counterpart. The constitutive relationships
pressed ins3d represent a two-dimensional approximation
a three-dimensional system which assumes a symmetric
tropic, thin specimen in equilibrium and stresses that
constrained to lie within the plane, i.e. the classic plane s
approximation.31 Using the Galerkin method of weighted
siduals to integrate this set of partial differential equation
finite element framework is generated and can be solve
represent a displacement field for a given distribution
Young’s modulus values.32 The boundary conditions for o
studies below were either manually derived from a struct
grid representation as in the phantom system or presc
by the user in the case of the simulation studies.

B. Modality-independent elastography „MIE…

The MIE framework begins with the acquisition of
baseline predeformed “source” image and a post-defo
“target” image. The “source” image set is used to crea
well-resolved finite element mesh of the tissue domain
previous work, a second coarse mesh was also specifi
the domain and was used specifically as the mecha
property reconstruction grid.30 In this work, a new single
mesh region-based multiresolution MIE approach has
employed which simplifies previous dual-grid techniq
with the generation of a structured regionalization usin
K-means clustering algorithm based on the element cen
of the well-resolved mesh. AK-means clustering algorith
iteratively partitions the element centroids into a given n
ber sKd of regions swhereK is the user-defined number
desired clustersd such that the sum of all point-to-regioncen-
troid distances over allregionsis minimized. The advantag
of using theK-means clustering approach as opposed
regular grid is that the clustering approach can more ap
priately fit irregular domainsse.g. the circular domain for th
dermoscopic image setd. For this work, the implementatio
in the MATLAB sMathWorks, Natick, MA—
www.mathworks.comd statistics toolbox was used. Figure
illustrates an example of this approach on a circular dom
whereby the element centroids have been clustered in
separate homogeneous, isotropicregions.

The method has been adapted to a multiresolution str

whereby coarser resolutionssi.e., fewerregionsd can be ini-
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tially reconstructed to provide better initial guesses to su
quent resolutions. The use of hierarchical multiresolu
structures within both rigid and nonrigid registration al
rithms has a longstanding precedent and lends credence
application here.33–35 In this work, six progressively fine
resolutions were used within each reconstructions16, 36, 64
144, 256, 400regionsd.

Once the mesh andK-means resolutions have been sp
fied, the reconstruction algorithm begins by assigning an
tial modulus value to eachregion sa homogeneous initializ
tion is assumedd at the first resolution, weighted resid
equations are integrated, boundary conditions are ap
and the matrix equation system is generated:

fAsEW Edghuj = hbj, s4d

wherefAsEW Edg represents the model stiffness matrix base

the current distribution of propertiesEW E, huj is the vector o
unknown tissue displacements, andhbj is the vector o
known forces acting on the system and boundary condit
Upon the calculation of tissue displacements, the sourc
age can be deformed. This model-deformed source ima
then compared to the target image using an image simi
method23,30 which is calculated over a number of discr
spatialzonesse.g., for all reconstructions, approximately 4
similarity zoneswere designated within the image for a co
parisond. Modulus values in theregionsare updated based
maximizing the similarity between the deformed source
age and the target image over all the similarityzonesuntil a
tolerance is reached or the desired number of iteration
been completed.

With respect to the optimization framework for MIE,
can be represented as a least squared error objective
tion:

fsEW d = minhiSsEW td − SsEW Edi2j, s5d

whereSsEW td is the similarity value achieved when compar
the target image to itselfsi.e., the maximum value for th

similarity metricd and SsEW Ed is the similarity between th
model-deformed source image and the target image usin

current estimate of the elastic modulus,EW E. Equations5d can

FIG. 1. K-means material property clustering for a circular domain wit
property regions designated.
be solved by employing a Newton–Raphson-based approach:



nt

g
d
e

e
-
. 37.
IE

e of
imi-
red

1311 Miga, Rothney, and Ou: Modality independent elastography „MIE… in dermoscopy 1311

27
ffJTgfJg + afIgghDEW j = fJTghSsEW td − SsEW Edj, s6d

where fJg is the M 3N Jacobian matrix of the formJ

=]SsEW Ed /]EW , M is the number of similarity measureme
zones, andN is the number of material propertyregionsand
is equivalent toK as designated in theK-means clusterin
algorithm. The details of Eq.s6d have been reporte
previously.23,30 BecausefJTgfJg san approximation to th

Hessian matrixd tends to be ill conditioned, it is regularized

Medical Physics, Vol. 32, No. 5, May 2005
with an empirically determineda parameter found in th
standard Levenberg–Marquardt approach.36 The determina
tion of this regularization parameter is described in Ref
Figure 2 is a flow chart of the new multiresolution M
approach.

In previous work, we have analyzed the performanc
our MIE algorithm with respect to four standard image s
larity metrics found within the literature: the sum of squa

FIG. 2. Multiresolution MIE algorithm
flow chart where “R=1,2,3… ,RMAX”
is the resolution level withRMAX the
most well resolved; and “K” is the
number of materialregions within a
particular resolution “R”.
differences, normalized mutual information, the correlation
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coefficient sCCd, and the gradient correlation coefficie
sGCd.30 Within this work, the correlation coefficient and g
dient correlation coefficient were used for the similarity m
surements.

Briefly stated, the CC operates on the distribution
mean intensity values of the overlapping regions of two
ages whereI1 would represent the intensity values within
“target” image andI2 would be the model-deformed “sourc
image. The correlation coefficient can be calculated by
expression

CC =
oisI1sid − I 1̄dsI2sid − I 2̄d

ÎoisI1sid − I 1̄d2sI2sid − I 2̄d2
, ∀ [ I1 ù I2, s7d

whereI 1̄, I 2̄ are the mean intensity values within each res
tive image, andi is theith pixel within the respective imag
The GC metric is calculated by applying the correlation
efficient to images that have been processed by any o
standard edge detection functionsse.g., Canny, Sobel, etc.d.

C. Phantom construction

A phantom was constructed that was approximately 25
long, 15 cm wide, and approximately 2 mm thick. T
inclusion-surrounding bulk material of the phantom w
Smooth-On™ Evergreen 10 polyurethane with an additiv
allow permanent marker to adhere to the material su
sSmooth-On, 2000 Saint John Street, Easton, PAd. A cylin-
drical inclusion was placed centrally within the membr
phantom that was approximately 5 cm in diameter and
made of a stiffer polyurethane materialsSmooth-On™ Ever
green 50d. The inclusion material was chosen for its rela
stiffness to that of Evergreen 10 and its color which is
samesto study the case of non-pigmented lesionsd. After the

FIG. 3. Experimental data from the skin-stretching setup sh
phantoms had set, a permanent marker was used to dra

Medical Physics, Vol. 32, No. 5, May 2005
e

15 cm315 cm grid with 1 cm31 cm squares on the pha
tom surface. Figure 3sad shows the skin phantom used
data collection in this series of experiments.

D. Image acquisition protocol

To acquire the pre- and post-deformed images of
stretched skin phantom, the membrane was first secur
customized clamps attached to a milling vise to form a tr
lation stage and then brought level with a nominal app
load to define the baseline position. Images were taken
commercial web camerasLogitech QuickCam Pro 400
96031280 pixel resolutiond that was rigidly mounted abo
the membrane at a single location to ensure a fixed fie
view and frame of reference for the duration of the exp
ment. A series of five total images was collectedseight-bit
grayscaled via laptop control of the camera—the base
predeformation position and four subsequent positions
incremental stretches of approximately 5 mm each. Figu

in Fig. 4:sad baseline,sbd 5 mm, scd 10 mm,sdd 15 mm,sed 20 mm.
wFIG. 4. An illustration of the skin-phantom setup for image acquisition.
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is a schematic of the experimental setup, while Fig. 3sad–3sed
shows an example dataset.

E. Material testing protocol

Material testing was performed in order to determine
accuracy of the reconstructed Young’s modulus val
When the phantoms were poured, specimens of both the
and stiff polyurethane were allowed to cure in separate
tainers from the membranes. These samples were the
into 1 cm31 cm31 cm cubes. Compression testing w
performed on an EnduraTEC ELF 3200 material testersEn-
duraTEC Systems Group, Minnetonka, MNd. The polyure
thane was assumed to be elastic, homogenous, and iso

The Enduratec material testing protocol involved ramp
the actuator linearly from the zero position to 24% strai
2% strain increments. The max strain value was chose
extend slightly beyond the range of observed strain in
experiment shown in Fig. 3 which was approximately 2
strain for the bulk material. Although the stiffer inclusi
material only experienced approximately 1%–2% str
stress values were reported for the full strain range u
24%. Between each change in axial position a three se
dwell time was imposed to allow viscoelastic response
subside. Stress–strain plots were produced for both the
material and the inclusion material. Three samples of
material were tested and an average curve was calcula

F. Phantom experiment

To quantitatively test the MIE method within the cont
of dermoscopic applications using optical images, a seri
studies using the elastic membrane of Fig. 3 were empl
within the setup of Fig. 4. The single inclusion phantom
considered to be representative of a single lesion on the
surface snonpigmented in this cased. The multiresolution
MIE technique was used at each successive deformatio
a total of four elasticity image reconstructions per simila
metric sin this case CC and GC onlyd. The computationa
domain for these calculations involved 1051 nodes and

FIG. 5. sad Melanoma lesion, reproduced with the permission of Dr. Le
horizontal andscd vertical displacements shownsaxis references are in me
within the border represents the spatial regions of stiffness in this sim
elements. Boundary conditions were generated by analyzin
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the pre- and post-deformed structured grid and estimatin
domain’s deformation. The Young’s modulus reconstruct
were then compared to the elasticity values as gene
from the material testing protocol. It should be noted
only Young’s modulus contrast was compared in these e
ations. This is due to the manner in which boundary co
tions are prescribed in the model system. Currently, the
proach is driven by displacement boundary conditionssi.e.,
Dirichlet typed which consequently make the elastic mo
only sensitive to Young’s modulus contrast. Without kno
edge of an applied stress at the boundary or a presc
material property within the domain, absolute properties
not be determined. In addition, it must also be noted tha
reconstructions were constrained to a region of the pha
that was smaller than the overall phantom. This was a r
from observing that at higher stretch states, out-of-plane
tortions of the membrane became more prominent in th
riphery.

G. Simulation experiments

In an effort to test the algorithm within the context o
more realistic image acquisition scenario for skin canc
simulation study was performed on an image of the 1
melanoma lesion shown in Fig. 5sad. In addition, a grid struc
ture was not specifically applied to the lesion image so
test whether the natural skin-texture itself contained s
cient image information for reconstruction. The lesion
provided by the Dermatology Image Atlas projectswww.der-
matlas.org, Image Name: melanoma_1_040510, Contrib
by Eric Ehrsam, M.D.d and represents a 1 cmpigmented
melanoma plaque, located on the left arm of a 35-yea
woman.38 For the simulation boundary conditions,
annulus-shaped mechanical stretching device was ass
which would systematically stretch two semicircular reg
apart by 2 mm. The melanoma was assumed to have
elasticity contrast level with normal tissue, i.e., the m
noma was twice as stiff as the surrounding skin. The c
putational domain for the inverse problem contained 1
nodes and 2459 elements. In addition, the mesh used to

n, M.D., © Dermatlas, www.dermatlas.org, melanoma_1_040510.sbd Simulated
while the gray scale is in micronsd. It should be noted that the contained reg
on and was not contained within image data provided to the MIE algo.
hman
ters
gerate the forward-problem data was approximately 10%
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more resolved than the mesh used for reconstruction.
introduced a small degree of variability to the boundary c
ditions and image deformation to simulate potential acq
tion noise. Figure 5sbd and Fig. 5scd illustrates the localize
application of the stretching and the simulated solution
both horizontal and vertical displacements, respecti
Upon completion, these image data was used as input
multiresolution MIE algorithm. Results are reported us
the CC and GC image similarity methods.

III. RESULTS

A. Material testing

During the material testing phase, additional cyclic tes
was performed in which viscoelastic behavior was noted
a result, a waiting period was utilized at each strain leve
allow viscoelastic responses to subside. The stress/stra
haviors at these quasistatic time periods for the bulk ma

FIG. 6. sad Stress versus strain behavior for bulk material,sbd stress versu
various levels of bulk material strainsfor all ratio determinations, the incl
maximum strain reached in the inclusion based on experiment observ
and inclusion are shown in Figs. 6sad and 6sbd. In addition,
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s

.
e

e-
l

discrete finite difference approximations were made a
various strain levels to estimate a Young’s modulus va
Table I represents a distribution of values calculated w
the strain ranges tested. Once each modulus was calc
for each acquired strain level, a distribution of Youn
modulus contrast ratios was calculated and is express
Eq. s2d:

ain behavior for inclusion material, andscd inclusion-to-bulk contrast ratio
’s 2% strain value for Young’s modulus was used which was the appr
s

TABLE I. Young’s elastic modulus values at several experimental strain
els.

Material strains%d Bulk materialskPad Inclusion materialskPad

2 112.5 868.0
8 154.3 1635.0

12 180.0 2125.0
16 182.5 2375.0
23 206.3 2412.5
s str
usion
ationd.
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CRs«bulkd =
uEincu«=0.02

Ēbulk

, s8d

whereby the inclusion’s 2% strain valuesapproximate max
mum strain reached in the inclusion based on experim
observationsd for Young’s modulus was used and the b
material was allowed to vary over the entire strain ra
This contrast ratio formulation reflects the reality of
membrane experiments shown in Fig. 3 whereby the
surrounding material experienced the majority of defor
tion with the inclusion remaining relatively unchanged o
all applications of stretch. The distribution of the cont
ratios as described by Eq.s8d at differing strain levels i
shown in Fig. 6scd.

TABLE II. Contrast ratios for each experimental strain level.

Bulk material strain Contrast ratio

Stretch 1: 8% 5.7
Stretch 2: 12% 5.0
Stretch 3: 16% 4.6
Stretch 4: 23% 4.2

FIG. 7. An illustration of elasticity image reconstructions using CC w
represents the stretch from base to the first incrementd. The top image sho
with Young’s ModulussPad. The middle row represents the reconstructe
location. The bottom row shows the elastic property contrast ratio as

along the transectT.

Medical Physics, Vol. 32, No. 5, May 2005
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To assist in determining inclusion-to-bulk contrast ra
for different bulk strain levels in each experimental stretc
reflected in Fig. 3, an exponential curve fit was prescrib

CRs« = «bulkd = A + Be−C«, s9d

wherebyA=4.0,B=5.0,C=13.8. The root mean square c
trast ratio error between model and acquired data ove
entire acquired strain range was 0.093. The quality o
exponential model can be seen in Fig. 6scd. Using the expres
sion described ins9d, a series of Young’s modulus contr
ratios values could be tabulated as a function of the sp
strain levels used within the experiments of Fig. 1. Th
levels were determined by manually measuring strain le
within regions of the bulk material from the optical imag
Table II reports the approximate contrast ratio for You
modulus at the various bulk material strain levels experi
during the stretching experiments using Eq.s9d.

B. Multiresolution MIE phantom reconstructions

Figures 7 and 8 are representations of the multiresol
elasticity image reconstruction performance for each o
different stretch states shown in Fig. 3 using CC and G
the basis for image similarity, respectively. The bound

each column represents the respective stretch relative to Fig. 3se.g., 3a–3
he location of a transect as designated by theT and the gray scale associa
sticity images at each stretch state with the contour showing the actu

pared to that predicted with the material testingsshown as dark box-like contoud
here
ws t
d ela
com
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contour represents the inclusion location as shown within
image. The contrast ratios designated within the transec
ages of Figs. 7 and 8 were based on Table II.

Figure 9 shows elasticity images at varying stage res
tions within the multiresolution MIE reconstructionsrecon-
struction shown is the GC–3a–3b stretch regimed.

To test the effect of the multiresolution framework,
same optical images were provided to our algorithm usi
400 propertyregion resolution with an initial guess of hom
geneity si.e., coarser resolution solutions were not use
initial guessesd. In results not reported here, the CC rec
struction was able to localize and quantify the stiff reg
similar to that of Fig. 7 at the high stretch states but
much worse with respect to the initial stretch statesi.e.,
3a–3b image reconstructiond.

Figure 10 represents the GC result for the four str
states using the single 400region high resolution parametr
zation. In Fig. 10sad s3a–3b stretch stated, the inclusion is

FIG. 8. Illustration of elasticity image reconstructions using GC where
the stretch from the base to the first incrementd. The top row represents t
elastic property contrast ratio as compared to that predicted with the
designated in Fig. 7.

FIG. 9. Elasticity image reconstruction for the GC 3a–3b reconstruction
at various resolutions of the multiresolution algorithm. The gray scale

same as in Fig. 7.

Medical Physics, Vol. 32, No. 5, May 2005
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localized but the contrast resolution is poor compared
its multiresolution counterpart in Fig. 8, first column. At s
sequent stretch statess3a–3c, 3a–3d, and 3a–3ed, the elastic
ity image has not converged to an acceptable represen
of the inclusion. Interestingly, the distance traveled by
squares within the homogenous regions near the stret
edge within the second stretch states3a–3cd is approximately
the size of one grid squares,1 cmd.

It is evident that by using a single high resolution par
etrization as opposed to a multiresolution approach, a
minimum is found and the elasticity image degrades co
erably. Consequently, the error magnitude for the im
shown in Fig. 8, the second column is a factor of 5
smaller than that of Fig. 10sbd thus demonstrating that F
10sbd indeed represents a local minimumsit should be note
that all parameters were identical—number of simila
zones, filtering, regularization, relaxation, etc.d.

C. Multiresolution MIE melanoma reconstruction
simulations

In addition to the experimental results shown above,
eral similar simulations were executed using a pigme
melanoma image. Figure 11 shows the elasticity imag
construction and transect results using the multiresol
MIE framework for both CC and GC. Figure 12 illustra
the inter-resolution results from the GC reconstruc
shown in Fig. 11.

IV. DISCUSSION

The elasticity image results from phantomsFigs. 7–9d and
simulation sFigs. 11 and 12d studies demonstrate the util

column represents the respective stretch relative to Fig. 3se.g., 3a–3b represen
constructed elasticity images at each stretch state. The bottom row
erial testingsshown as a dark box-like contourd along the transectT which was
each
he re
mat
of the multiresolution MIE approach. In addition, comparing
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the results in Figs. 8 and 10 clearly illustrates that insta
can exist in which a single-resolution approach will
whereas the mutliresolution succeeds. A separate but re
concern which is still under investigation is the degree
content of the image pattern needed to facilitate recons
tion; however, the preliminary elasticity image results fr
the melanoma simulations reported herein suggest that
ficient intensity content exists in standard dermoscopic
ages.

Another important advance in this paper over prev
work is the comparison between reconstructed elastic p
erties and their separately measured counterparts. The s
strain curves shown in Figs. 6sad and 6sbd and modulus va
ues in Table I demonstrate a nonlinear elastic behavio
good representative exponential fit to the Young’s mod
contrast ratio data was achieved in Fig. 6scd and provides
direct comparison to MIE-derived Young’s modulus prop
ties. One shortcoming is that because MIE is comple
driven by displacement boundary conditions, only the c
trast in Young’s modulus values can be compared. How
the goal within this work is to investigate elastic proper
as a mechanism for contrast within medical images.

Overall, the elastic image reconstructions shown in F
7 and 8 demonstrated good localization with a varied pe
mance in maintaining lesion shape integrity for both the
and GC similarity methods, respectively. It appears tha
high strain levels, MIE was less successful at capturing
anticipated contrast ratio. In fact, in both CC and GC,
ratio was overestimated, thus producing more contra
should be noted that the reconstructions shown were
formed on a domain that represented only a portion o
image that surrounded the inclusionss,3–4 cm from the
inclusion borderd. This was due to our inability to complete
control the physical boundaries of the phantom given
large mismatch between the stiffness values of the two

terials. This manifested itself as out-of-plane warping of the

Medical Physics, Vol. 32, No. 5, May 2005
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phantoms, i.e., a wrinkling at edges as the strain on the
phantoms increased. The spatial location of these mem
distortions was more prominent with the distance from
inclusion. By making a more localized reconstruction reg
the influence of these distortions was minimized altho
some effects are undoubtedly present. Ultimately, these
of-plane motions would be interpreted as planar strains i
optical image acquisition system shown in Fig. 4. Altho
this variability in shape integrity existed, successful loca
tion was achieved for all stretch states. It was encoura
that at small stretch states, where the model is most a
priate, proper quantitative contrast ratios were achi
sstretch states 3a–b, 3a–c in Figs. 7 and 8d. Further encour
agement was provided by successful localizations at
stretch states whereby nonlinear behavior is undoub
present and the small-strain assumptions are compro
salthough the quantitative contrast ratio was not as sa
ingd. Undoubtedly, a large-deformation model is necessa
these higher strains to match contrast ratios at this l
however, if proper empirical characterizations could be d
using the linear model over many stretch states, effe
contrast thresholds could be determined for the charact
tion of lesions. In addition, these results were also prom
in that successful Young’s modulus contrast and localiza
was achieved with a nonpigmented lesion. This indicates
only the deflections of the surrounding image pattern an
the lesion image intensity itself are responsible for
changes in the elastic modulus values. This enthusiasm
be tempered by the realization, however, that thein vivo
model may require more thought with respect to boun
conditions. Undoubtedly, the influence of subcutaneous
sue connectivity would influence the results here if th
additional constraints were applied. Given the inherent
between the image formation and the validity of the com
tational model, more work needs to be performed prio

FIG. 10. GC reconstructions using single 400 prop
zone resolution forsad 3a–3b,sbd 3a–3c,scd 3a–3d, an
sdd 3a–3e, respectively. The gray scale is the same
Fig. 7.
clinical deployment.
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Although these results are encouraging, not all recons
tions exhibited the same peak modulus or lesion localiza
One reason could be the accuracy to which boundary c
tions were determined for each stretch state. It is pos
that the manual delineation of boundary conditions or
observed wrinkling at high stretch states resulted in s
boundaries being mapped less precisely than others. In
of the reconstructions, significant boundary artifacts ca
observed. For example, in the second and fourth colum

FIG. 11. Elasticity image reconstruction of melanoma usingsad CC and
respectively. The location of transect is designated by theT shown insad a

FIG. 12. An example of mutli-resolution solution development using GC

melanoma simulation.

Medical Physics, Vol. 32, No. 5, May 2005
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e

e

f

Fig. 7, a Young’s modulus peak is shown in the lower r
hand region of the boundary. A second candidate for re
struction inaccuracies across stretch states could be th
gree of model-data mismatch. It is interesting to note
correlation between increased stretch and the marke
crease in accuracy of the contrast-ratio transect plots. A
smaller stretches, 3a–b and 3a–c, both CC and GC r
structions perform better in both localization and quanti
tion while both show overpredictions within transects
stretch states, 3a–d and 3a–e. A model-data mismatch
seem a likely source for this change in performance, co
ering that the elastic model used is a small-strain mode
the levels of strain are less in the first two stretch states.
somewhat qualitative observation that can also be ma
that the GC-based method appears to reconstruct som
better than the CC-based method. This is also the case w
the melanoma simulations. Interestingly, in Ref. 30, a sim
experience was found in that the GC method outperfor
other methods with respect to our phantom reconstruct
The principal difference between the CC and GC simila
methods is the form of the image to be used when calcul
the correlation coefficient. GC employs the edge map o
image while CC uses the raw acquired image. The incre

C with contrast ratio values along the transect forscd CC and sdd GC,
d.
sbd G
nd sb
performance by GC may indicate that areas of structured
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sharp gradient intensities influence the MIE approach m
significantly than more gradual intensity changes. Howe
this statement must be tempered with the realization of
10 whereby structural decorrelation has occurred alth
arguably at much larger length scales as compared to tho
traditional USE.

The results from the melanoma simulations provid
more realistic representation of the types of images tha
be acquired within the clinic. These images provide t
own challenge in that although the lesion is pigmented
surrounding structured pattern of the grid used in the p
tom was not present. In this case, it was desirable to test
without the presence of the structured grid. Overall, the
ticity images and transects were satisfying, with the
qualitatively outperforming the CC method. One interes
observation is related to the apparent suppression of mo
noise within the GC elasticity image as compared to the
This is more than likely due to the suppression of l
frequency image characteristics associated with extra
edges within the source and target images.

Figures 9 and 12 demonstrate the multiresolution as
to our approach by showing the reconstructions at al
resolutions used within the generation of our images.
beneficial aspect is the availability of intraresolution elas
ity images which represent accurate, albeit coarse, as
ments of image progression. In addition, these in
resolution images could be used to dynamically alter
K-means clustering approach to locally refine the recons
tion process for the next resolutionsalthough not done in th
studyd. This would alter the algorithm representation in F
2 by replacing precomputed resolution maps with an inte
process block which calculatedK-meansregions dynami-
cally based on areas of interest found during the recons
tion process.

V. CONCLUSIONS

In this paper, a novel multiresolution extension to Mod
ity Independent ElastographysMIEd has been implemente
which simplifies previous worksa dual-grid techniqued and
is shown to be more robust than the single-resolution
sion. In addition, the multi-resolution architecture imp
mented facilitates the monitoring of reconstruction qualit
intermediate resolutions. To test the approach, a mem
experimental setup was created which utilizes sets of op
images for the reconstruction process. The use of op
images to generate Young’s modulus reconstructions
represent a new modality within MIE development and co
potentially be used within dermoscopic applications.

Results from phantom and simulation experiments d
onstrated that the multiresolution MIE approach is via
within the context for both nonpigmented and pigmented
sions, respectively. The nonpigmented phantom experi
highlighted direct comparisons between images of You
modulus contrast and their independently measured cou
parts, as provided by mechanical testing. Overall the re
indicated good localization and quantification. However

sults did indicate a dependence on the fidelity of the recon
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struction and the degree of applied deformation. In add
to the phantom experiment, a simulation using a clinical
age of a pigmented melanoma were reported and illust
excellent localization and quantification.

Despite potential limitations in elasticity image resolu
when compared to traditional MRE and USE, MIE’s ad
ability to an optical image-registration platform at multi
scales is an intriguing possibility. Furthermore, this exten
to another modality demonstrates that MIE-based appro
to elastography represent a new class of algorithms tha
yield potentially new frameworks for disease characte
tion.
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