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Introduction

An important initial screening step in the detection of breast cancer is the ability to identify select
areas of atypical density that require further evaluation. Currently, mammography is the clinical
standard for screening and provides useful but at times ambiguous information, which can
necessitate further invasive workup of benign lesions. Alternative methods such as elastography
have shown potential in enhancing the diagnostic process by providing information about the
tissue composition [1, 2]. Modality-independent elastography (MIE) is a novel image processing
technique that combines finite element models of soft-tissue deformation with measures of image
similarity in order to reconstruct elastic property distributions throughout the tissue. The basic
requirements for the method are two images of the tissue in different states of deformation (e.g.
compression). MIE then updates the estimate of the material properties via a matching process
between the two images. The final result is a map of the breast (or other tissue of interest) that
reflects material inhomogeneity, such as in the case of a tumor mass that disrupts the surrounding
structure of normal tissue. Because MIE works on probing the differences between images, it can
be used to not only work in concert with more traditional screening techniques but also address a
possible gap when those methods are unable to directly discern tissues of interest.

Body

As stated in the original proposal, three main aims of this project are to (1) expand and refine the
current MIE technique to enhance its efficiency and capabilities, (2) to perform analyses on
texture in input images and quantify statistical parameters capable of estimating and evaluating
the success of elastographic reconstruction, and (3) to engineer a device that can accurately
produce compressive forces necessary for phantom setups within current imaging systems,
providing the basis for a future device that can be used in a clinical setting. In this past year,
progress on all three aims has been made. The original specific aim and the relevant proposed
work for each is listed below and addressed.

Specific Aim #1 stated: “To expand and refine the current MIE technique to enhance its
efficiency, as well as add new capabilities such as handling a full 3D or combined 2D/3D
elastodynamic model for improved accuracy.”

An improved framework is in progress utilizing parallel processing techniques. In order to
accommodate the methodology of MIE in creating a Jacobian matrix fully sensitive to the
discretization of the domain, a large number of solutions involving the finite element model and
the subsequent imge deformation are required. With the proposed increase in dimensionality, the
implementation complexity quickly increases beyond the capabilities of the original
MATLAB/FORTRAN/LAPACK design. Therefore, the Portable Extensible Toolkit for
Scientific Computation (PETSc) toolkit [3,4] was selected to provide the necessary framework
for developing sparse matrix system solvers and split the Jacobian formation process. A separate
C/C++ routine has also been written to perform a Gauss-Newton optimization and interface with
PETSc solver structures. A current typical iteration involves the solution of a matrix system of
approximately 1e5 equations, repeated some 3000 times. Utilizing parallel design and a share of
100 CPUs on the Vanderbilt University Advanced Computing Center for Research and



Education cluster, this has been tested to be achieved on the order of 30 minutes, as opposed to
original estimates on available sequential processing machines upwards of 5000 minutes. We
note, however, that to effectively traverse the full multi-dimensional objective function space
requires several (perhaps tens of) iterations, which underscores the high computational demand
of the method.

We have preliminary work that demonstrates the new MIE framework in action, using a test case
of simulated deformation based on clinical data. Figure 1 shows orthogonal cuts in the three
cardinal anatomic planes for an image volume obtained from a CT scan of a human breast.
Fibroglandular tissue can be visually inspected to provide contrast and structure from adipose
and other tissue types. The test case involves the simulated implantation of a 2-cm spherical
tumor at the center of the breast that is not visible within the intensity field of the image. Guided
by a finite element mesh deformation using prescribed boundary displacements (designed to
mimic a compression source as described in Specific Aim 3), a target image volume is created.
Discretizations of the model and image domains are then used in the optimization loop to
reconstruct the inclusion. Figure 2 shows surface renderings of the image volumes and the results
of a reconstruction based on 3200 spatially distributed elasticity regions. The areas delineated to
be the true tumor extent contain entites that the algorithm designated as having stiffer properties
(~2x). It may be initially seen to be an improper chacterization given that the faux tumor was
actually six times stiffer than the surrouding tissues. However, in this test case, the inexact
partitioning of the mesh elements actually caused the algorithm to search for a tumor about 3 cm
in size, leading to a compensatory decrease in elasticity contrast.

Figure 1. Orthogonal cuts of a CT breast scan used as the source image volume for simulation studies. From left to
right: axial, coronal, and sagittal views as designated by the standard anatomical planes.

In order to further explain the relationship between discretization and reconstructed contrast, a
partitioning of the mesh elements utilizing a priori knowledge of the location of the tumor was
used to classify the tissue types, thereby reducing the reconstruction to two materials instead of
the 3200. This reconstruction very favorably followed an objective function minimization to
obtain an elasticity contrast of the inclusion being almost exactly six times stiffer as prescribed
(see Figure 3 below). It is our current assertion that shaping the objective function by
dynamically rearranging the spatial discretization of the model during the optimization can lead
to improved elasticity contrast resolution, and studies are underway to address this issue.



Figure 2. Top row: surface renderings in perspective of the breast image volume in both the native undeformed
(left) and deformed (right) states. Bottom row: reconstruction mappings from a simulation experiment. Areas of high
intensity reflect higher (stiffer) elasticity values; the boundary of the simulated tumor is overlaid by the circle.

Proposed work involving the use of a combined 2D-3D model is under investigation but not
completed at this time. It is hoped that reducing the scope of the problem by dimensionality will
facilitate further analysis of the problem by alleviating the time and resource restrictions of the
full implementation.

Specific Aim #2 stated: “To perform texture analysis on input images in order to quantify a
statistical parameter capable of estimating the success of elastographic reconstruction.”

Texture analysis and noise tolerance testing has been performed with statistical quantification of
reconstruction success. Our observations during the ongoing development and testing of the MIE
method prompted questions concerning the quality of data necessary and sufficient to achieve
satisfactory results (i.e., the fidelity of the reconstructed elasticity image). The primary inputs to
the reconstruction method are the acquired images and the delineated boundary conditions on the
domain. While it is clearly preferable to have idealized data, in reality, both inputs involve
varying levels of manual interaction. As an initial study, we conducted tests on the effects of
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Figure 3. Reconstruction simulation experiment constrained to a two-material system demonstrating the importance
of a priori information. Knowing the location of the inclusion allowed the algorithm to quickly search the objective
function space and arrive (a) back at the original [correct] elasticity contrast (b). Note that the optimization had
actually already converged at iteration 7.




degradation in data quality on the end reconstruction. The first experiment used additive image
noise to obscure the underlying texture to reflect possible scenarios of corruption during
acquisition. Noise fields were created from a zero-mean Gaussian random distribution along the
variance of non-background pixels and scaled according to the total power at 1, 5, 10, 15, 20, 25,
and 30%. The increasing noise had a confounding impact on the ability of the similarity metric to
make a proper match. It was found that the reconstruction was tolerant of image noise up to
approximately 10%. Figure 4 demonstrates the degradative effects of image noise.
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Figure 4. (a) Example 2D reconstructions resulting from the distortion of the target image using additive Gaussian
random noise (from top left: 1, 5, 10, 20, 25, 30%). The true elasticity distribution is a centrally located and roughly
circular region, and the noise progressively confounds the reconstruction. (b) The decreasing trend of reconstruction
fidelity as determined by quantitative evaluation of localizing and characterizing the detected inclusion from a given
trial. [see Appendix B]

The second experiment involved boundary condition selection error. Currently, point
correspondence at the outer boundary of the domain is determined using a semi-automated fit; a
polynomial interpolation is used to make the initial match, and then corrected manually based on
salient features. By perturbing the displacements for each boundary node of the finite element
mesh, typical user interaction (e.g. visual cues and input device control) can be simulated. A gold
standard set of boundary conditions known to produce an accurate reconstruction was modified
using randomized vectors of equal magnitude (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5, and 2.0 pixel
units) reflecting a range of typical localization skill for users from poor to expert. It was noted
that randomizing all vectors can actually result in twisting of elements that resulted in significant
alterations of displacements in the interior of the mesh, leading to grossly inaccurate model
deformations. However, boundary condition mismapping of less than 0.5 pixel units was
generally tolerated by the reconstruction algorithm, a range that is relatively easily achieved for
most users. For further detail, please see the full text of this work as listed in Appendix B.

It should be noted that the ordinate axis in Figure 4(b) is a ‘quality of reconstruction score’
(QRS) that has been developed within the context of this project in order to quantify the
localization accuracy of the method. In comparison and conjuction with more standard measure
in the elastography field of contrast-to-noise ratio [5], QRS has been used to determine relevant
positional and material characterization in both simulation and data studes. The metric is




determined by a classification of the reconstruction [6] that is then compared to the (known)
segmentation of the actual elasticity distribution. By examining the rate of accurately selecting
an element of the domain to be of the correct material class, a conditional probability closely
related to the positive predictive value of the test is obtained; we have determined a posteriori
that a QRS>80% is typically indicative of a successful reconstruction. The use of QRS can (and
will be) similarly applied to the analysis of forthcoming 3D reconstuction experiments. For
further discussion, please see material in Appendix A and B.

Proposed work involving the use of a feature tracking and frequency domain analysis is under
investigation but not completed at this time. As more data sets are collected, it is hoped that
establishing a pattern for understanding the reconstruction algorithm behavior will become
statistically relevant.

Specific Aim #3 stated: “To engineer a device that can accurately produce compressive
forces necessary for phantom setups within current clinical imaging systems, providing the
basis for a future device that can be used in a clinical setting.”

A compression device has been constructed and tested in magnetic resonance (MR) and X-ray
computed tomography (CT) imaging systems using a polyvinyl alcohol phantom and contrast
agents. The compression device is composed of a rectangular Plexiglas frame that traps the
phantom in at least two directions with a sliding wall and the compression plate, which houses an
air bladder in a polycarbonate frame. When inflated, the air bladder provides a deformation of up
to 5 cm. The prototypical phantom used has been fabricated as a polyvinvyl alcohol cryogel
(~650 cc, 6-8% wt/vol, 1 or 2 free-thaw-cycles) in a manner consistent with the methods
presented in [7, 8]. The result is a dome shape approximately 10-11 cm at the base and tapering
over a depth of about 5-6 cm. The system has been imaged by both MR and CT scans, with
contrast agents of copper sufate and iodine solution, respectively, having been used to enhance
the signals. Volumetric renderings of example scans using minimal post-processing are shown
below in Figure 5; note that the device frame is clearly present in the CT image because of its
density but is invisible on MR.

A prototype compression chamber that is more clinically oriented has been designed to fit into
the chassis of a Philips Intera breast coil unit. It has just recently been fabricated from clear
acrylic tube segments in which the air bladders are attached using polycarbonate pins and then
covered with an expandable nylon sheet (see Figure 6). Image acquisition studies are currently
being designed to utilize this system.



Figure 5. Top row: Photographs of the polyvinyl alcohol phantom inside the compression device without (left) and
with compression (right). Bottom row: Surface renderings of from image volumes obtained on a breast phantom in
MR (left) and CT (right) scanners while enclosed in the compression device and with the air bladder engaged to

provide a deformation.

Fits inside Philips Intera 3T
breast coil chassis

Uses air-inflated bladder to
apply external pressure
(up to ~3 cm of
compression)

Figure 6. Left: Schematic of compression device designed for clinical use breast coil. Right: Photograph of
assembly looking down into the Philips Intera chassis.
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Key Research Accomplishments

It has been observed both prior to and during the attempt to extend the MIE technique to cover
fully three-dimensional data that the problem is potentially intractable due to the large
computational demand and inherently ill-constrained system. The demonstration of a parallelized
code base is for this project a significant finding in that it confirms that operating on volumetric
images and models is a reasonable working hypothesis, albeit still challenging.

Reportable Outcomes

Work on the MIE method has so far resulted in two conference papers and an additional poster
presentation. Prior work that was completed in the reporting timeline resulted in a peer-reviewed
journal publication. These items are in part providing the foundation for a thesis proposal to be
submitted in the near future. Didactic coursework requirements for the PhD degree have also
been completed at this time.

Poster presentations
Vanderbilt University Institute of Imaging Science retreat (June 2005)
Vanderbilt University Medical Scientist Training Program retreat (July 2005)

Conference papers
Ou JJ, Barnes SL, Miga MI, “Application of multi-resolution modality independent
elastography for detection of multiple anomalous objects”, SPIE Medical Imaging 2006.

Ou JJ, Barnes SL, Miga MI, “Preliminary testing of sensitivity to input data quality in an
elastographic reconstruction method”, IEEE International Symposium on Biomedical Imaging
2006.

Schuler DR, Ou JJ, Barnes SL, Miga MI, “Automatic surface correspondence methods for a
deformed breast”, SPIE Medical Imaging 2006.

Journal publications
Miga M1, Rothney MP, Ou JJ, “Modality independent elastography (MIE): Potential
applications in dermoscopy”, Medical Physics, vol. 32 (5), pp. 1308-1320, 2005.

Conclusions
The current results and progress denoted in this report are within the proposed statement of work

and are encouraging towards completion of the overall objectives with further effort. No
significant deviations are reported at this time.
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Application of multi-resolution modality independent elastography for
detection of multiple anomalous objects

Jao J. Ou, Stephanie L. Barnes, Michael 1. Miga
{jao.ou,steph.barnes,michael.i.miga} @vanderbilt.edu
Vanderbilt University, Department of Biomedical Engineering, Nashville, TN 37235

ABSTRACT

This work extends a recently realized inverse problem technique of extracting soft tissue elasticity information via non-
rigid model-based image registration. The algorithm uses the elastic properties of the tissue in a biomechanical model to
achieve maximal similarity between image data acquired under different states of loading. A new multi-resolution, non-
linear optimization framework has been employed which allows for improved performance and object detection. Prior
studies have demonstrated successful reconstructions from images of a tissue-like thin membrane phantom with a single
embedded inclusion that was significantly stiffer than its surroundings. For this investigation, a similar phantom was
fabricated with two stiff inclusions to test the effectiveness of this method in discriminating multiple smaller objects.
Elasticity values generated from both simulation and real data testing scenarios provided sufficient contrast for detection
and good quantitative localization of the inclusion areas.

Keywords: Elastography, elasticity imaging, multi-resolution methods, image similarity, finite elements
1. INTRODUCTION

The practice of palpating soft tissue structures in the course of the clinical physical exam has had a long-standing
history of providing correlation of improper stiffness with pathology. The ability to characterize the mechanical
properties of tissue is a potential source of additional information relevant for detection and diagnosis of a disease
process, and has implications for the assessment of treatment. One way in which this could be achieved in a minimally
invasive manner is by analyzing tissue deformation through imaging and/or image processing techniques, which is a
central goal of the field of elastography [1]. Application of such methods to the interrogation of the breast [2,3], skin
[4-6], prostate [7], and other accessible organ systems is an emerging area of research.

Many of the current elastography methods are founded in ultrasound (US) and magnetic resonance imaging
(MR) and involve the estimation of induced displacements within the tissue of interest to infer the elasticity distribution.
We have pursued the development of a reconstruction method utilizing quasi-static deformation and image similarity
metrics that has been termed 'modality-independent elastography’ (MIE) [8-10] because of its potential to handle native
anatomical image data from different modalities with simple modification to the acquisition procedure. Common
problems facing all of these methods involve limitations with the accurate recovery of elastic property values, detection
of small lesions in tissue, and the resolution of multiple discrete lesions [11,12]. Building upon recent study involving a
single focal lesion [6], the objectives of this work were to challenge the ability of the MIE method to reconstruct a
scenario of two small inclusions embedded in a homogeneous domain and to further explore the feasibility of the
method in handling image data from different imaging modalities. This was accomplished by performing simulated
reconstructions using images obtained from X-ray computed tomography (CT), MR, and digital photography and then a
reconstruction from a real-world experiment using a thin phantom membrane.

2. METHODS
2.1 Elastographic reconstruction framework
The conceptual framework for our elastographic reconstruction has been previously described in [6,8-10]. In brief, an

image of a tissue of interest (source) is deformed by a biomechanical computer model and compared against an
acquired image of the same tissue in a mechanically loaded state (targef). The deformation and comparison is repeated



using systemic updates of elasticity parameters until a suitable match in intramodal image similarity is achieved in a
least squares manner to satisfy a multi-resolution, non-linear optimization scheme. This process can be classified as an
inverse problem, with model-based deformation of the source image representing the forward problem. Each of the
three major components (model, image comparison, and optimization) is described in more detail in the following
sections, and a flow chart representation of the overall process is included in Figure 1.

2.1.1 Biomechanical model

A central component to the model-based inverse problem is the manner in which the continuum is represented. While
the constitutive model that best describes tissue deformation mechanics is more complex, for this work, linear isotropic
elasticity has been employed. The partial differential equation that expresses a state of mechanical equilibrium can be
written as [13]:

Veog=0 (M

where o is the Cartesian stress tensor.

For the purposes of the following experimentation, we also apply either the plane stress or plane strain
approximations to the thin membrane and breast cross-section trials, respectively. The direct consequence of this is a
reduction of the 36 stiffness constraints in the general 3D formulation of Cauchy’s Law to the two parameters of
Young’s modulus (E) and Poisson’s ratio (v) in 2D. These simplifications, while significant, are appropriate
descriptions of sufficiently thin and thick systems under planar loading. In plane stress,
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describes the constitutive relationship between the Cartesian stress tensor [Gy, Gy, Txy] and strain tensor [g, &y, Vxy].
Similarly, in plane strain,
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A finite element (FE) model using triangular elements is constructed from the source image and assigned appropriate
boundary conditions based on estimated displacement or stress (i.e. Dirichlet and Neumann conditions, respectively).
The standard Galerkin method of weighted residuals [14] is used to construct and solve the system.

2.1.2 Image deformation and comparison

To further describe the reconstruction process, we introduce some additional terminology at this point. The model
domain is equivalent to the total area of the FE mesh constructed using the source image as stated above and contains
the relevant elasticity information. The model domain is partitioned by a K-means clustering of the element centroids
(MATLAB R14, Mathworks, Natick, MA) into N number of regions, each of which has a distinct set of spatially
homogeneous elastic properties. Subdividing in this manner allows for the implementation of the multi-resolution
reconstruction whereby progressively finer spatial distributions of elasticity parameters are utilized in the process, a
method that improves upon previous versions using only a single resolution [8-10]. Analogously, the comparison
domain is an area specified by semi-automated segmentation on the target image and contains information pertaining to
image similarity. The comparison domain is separated into M number of rectangular zones containing approximately
equal numbers of pixels.



The reconstruction algorithm begins by assigning an initial Young’s modulus value to each of the regions at
the coarsest resolution. Poisson’s ratio is held constant at v = 0.485 to represent a nearly incompressible material. The
FE model is solved to determine the nodal mesh displacements, which are in turn used to deform the source image. This
model-deformed image is then compared to the target image for every zone using an intensity-based image similarity
metric. While a number of methods are available for such a task, here, we utilize the correlation coefficient (CC) [15]
throughout, as it has empirically demonstrated superior performance over other metrics such as the sum of squared
differences and normalized mutual information.

2.1.3 Optimization scheme

Let T be a function that represents the model-based image deformation and takes as its input a vector of elastic modulus
values E of length N that corresponds to the current distribution of regions in the model domain. Then for two
distributions of modulus values E; and E,, the similarity between the images produced by 7(E,) and T(E,) is the vector
S of length M containing evaluations of the correlation coefficient corresponding to the distribution of zones in the
comparison domain. The elasticity parameter optimization can be written as the minimization of the least squares error
objective function

2 4
Y= STRUE_SEST “)

where Stryg is the set of similarity values achieved when comparing the target image to itself, Sgsr is the similarity
between the model-deformed source and the target images using current estimates of the elastic modulus distribution,
and |e| denotes the vector L, norm. By definition, Strug is the maximum value for the similarity metric (max CC = 1).
Using a Levenberg-Marquardt approach, the residual form of equation (4) becomes

[JTJ * aI]{AE} = [JT ]{STRUE - SEST} (5)

where J = 0Sgs1/0E is the Jacobian matrix of size M x N and I is the N x N identity matrix. Because J"J is typically an
ill-conditioned term, the regularization parameter a is determined using the methods described in [16]. Modulus values
of the regions at a given resolution are updated by AE until an error tolerance is reached or a maximum number of
iterations have been completed. Upon reaching a stopping criterion, the material property description is interpolated
onto the next (i.e. finer) resolution and the above steps are repeated. Spatial averaging of modulus values within the
model domain and solution relaxation between successive resolution levels are also utilized to improve the stability of
the optimization.
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Figure 1. Flow chart of elastographic reconstruction framework.
2.2 Reconstruction experiments

A two-material phantom membrane of simulated skin had been previously constructed [6] using Smooth-On™
polyurethanes (Smooth-On, Easton, PA) designated by the manufacturer as Evergreen 10 and Evergreen 50. These
materials have essentially indistinguishable colors but vary significantly in their elastic modulus values, so the former
was used as the bulk material and the latter for stiff objects. From material testing, the elastic modulus contrast was
expected to be approximately 5.7:1. The phantom was made to contain two circular stiff inclusions 1.5 cm in diameter



embedded near opposing corners of a rectangular field of bulk material measuring 15 cm x 14 cm. A black permanent
marker was used to place a pattern of regularly spaced (~1 cm) grid lines across the membrane. The thin membrane was
securely clamped along two opposite edges and then subjected to a uniaxial tensile displacement (~8% strain) by means
of a milling vise. A commercial webcam (Logitech QuickCam Pro 4000, 960 x 1280 pixel resolution) was rigidly
mounted above the membrane to acquire image pairs of the pre- and post-stretched states.

To initially test the method regarding the two-inclusion scenario, a simulation using the source image of the
membrane was performed by deforming it with a prescribed model (plane stress) of known boundary displacements and
elasticity parameters to generate a target image; high modulus values were assigned to elements bounded by a
segmentation of the inclusion locations. A reconstruction was then performed using the actual image data acquired as
described above. In both cases, resolutions of N =16, 64, 256, 512, and 800 regions and M = 400 zones were used. The
results of the idealized and real data reconstructions are shown in Figures 4 and 5, with further quantitative evaluation in
Table 1.

In order to examine the robustness of the method regarding its use of data from differing sources, simulation
reconstructions were performed using image slices extracted from breast image volumes obtained from CT and MR
scans (see Figure 3). Although these were taken from two different patients, the images were selected to be
approximately corresponding slices ~2 cm away from the chest wall in the coronal orientation of the standard
anatomical position. The simulations were set up in the same manner as for the digital photographs, using either one or
two inclusions of about 1 cm in diameter embedded within the true elasticity distribution and a small compression (~8%
strain) in the cranial-caudal direction. The relative stiffness of the inclusions was designated to be 5.7:1 for consistency
with the material testing data and also because the value is fairly representative of breast tumor properties [17]. The
plane strain model approximation was used in the breast simulation trials, progressing through resolutions of N = 24, 64,
256, and 576 regions using M = 200 zones. The reconstruction method was then run for all four test cases, and the
results are presented in Figures 6 and 7 and Table 2.

Figure 2. (Left to right): Phantom membrane in undeformed state (source image), under deformation (farget image), and difference
image. Arrows in the left panel indicate the positions of the two stiff inclusions.

2.3 Reconstruction evaluation

The fidelity of the elasticity reconstruction was evaluated on its ability to detect the presence of an inclusion based on
classification of the material property distribution, and the retrospective accuracy of localizing the lesions. The elastic
properties as a whole were treated as a Gaussian mixture of two classes and separated by a threshold established via the
method described in [18]. The likelihood of detecting a lesion in the elasticity image was found using the contrast-to-
noise ratio as defined by [12,19]:
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Figure 3. Images slices of breast tissue extracted from a CT volume (left) and MR volume (right) used in simulation study of the
ability of the reconstruction method to utilize disparate image data types.

where z and o are the sample mean and variance of a material property distribution and the subscripts L and B denote
the lesion and bulk material classes, respectively. As a quantitative assessment of the localization of the lesion(s), the
positive predictive value of correctly identifying a lesion material within the known segmented region of the inclusions
was used as a 'quality of reconstruction score' (QRS). This value is significant because identification of the lesion
border and material classification are done independently, so any user knowledge of the test scenario does not influence
the performance of the measure. Cutoffs for successful detection and localization were set at CNR>2.2 as noted by [12]
and QRS>80% as determined by prior study in our laboratory. The average modulus contrast is found from the ratio of
the means of the two material classes, and a peak modulus contrast value is also reported by taking the ratio of two
manually selected homogeneous regions of approximately equal area known to be representative of the two materials.
It should be noted that in other work not presented here, the definition of QRS included a weighting factor provided by
the estimated reconstruction modulus contrast, but for the current purposes, only localization accuracy was considered
to maintain an objective evaluation of inclusion detection.

3. RESULTS

Figure 4 demonstrates the ability of the reconstruction method to produce an elasticity map from the simulation data
with good localization of the inclusions that are easily visually distinguishable from the surrounding bulk material. The
progression through resolutions of N = 64, 256, 512, and 800 regions shows improving delineation of the inclusions and
elastic contrast. Figure 5 demonstrates a similar behavior for the reconstruction of the acquired phantom membrane
data, with both spatial definition and modulus contrast increasing with the finer discretization. Table 1 summarizes the
quantitative evaluation of the reconstructions in both simulation and phantom trials, including CNR, contrast ratio, and
QRS values. The CNR values are sufficient to allow for discrimination of the two materials and the identification of the
inclusions was determined to be accurate in both cases. The reconstruction of the phantom membrane does show some
misclassification along the border where the deformation was applied as well as in the corner adjacent to one of the
inclusions (see Figure 5d).

Figures 6 and 7 show the final reconstruction results for the CT and MR breast slice simulations using either
one or two inclusions. In both test scenarios, the resolvability of the stiffer material was found to be adequate according
to the CNR threshold, but definitely higher in the MR-derived elasticity images. Localization of the inclusions yielded
excellent QRS values in reconstructions using either modality, again higher (though slightly) for the MR images.
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Figure 4. Reconstruction of the simulated membrane deformation using idealized model parameters, progressing through finer

resolution distributions (a)-(d) of 64, 256, 512, and 800 regions.
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Figure 5. Reconstruction of the actual membrane data. A faint contour in (d) is present to demarcate the actual position of the stiff
inclusions. Again, panels (a)-(d) demonstrate the effect of the multi-resolution method in utilizing 64, 256, 512, and 800 regions to
better capture the shape and location of the inclusions.

Table 1. Quantitative reconstruction evaluations.
Avg CR Max CR | CNR QRS (%)
Simulation 2.7 4.0 4.4 97.7
Phantom 2.6 4.1 2.8 88.5
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Figure 6. Reconstructions of simulation trials for the CT breast slice using a single inclusion (left) and two inclusions (right). The
true inclusion boundaries are overlaid in each elasticity image.

Figure 7. Reconstructions (bottom row) of simulation trials for the MR breast slice using a single inclusion (left) and two inclusions
(right). The true elasticity distributions are also shown (top row) for comparison.

Table 2. Quantitative reconstruction evaluations.
Avg CR Max CR | CNR QRS (%)

CT (1 inclusion) 2.1 3.1 3.0 97.6
CT (2 inclusions) 2.0 2.6 3.5 96.9
MR (1 inclusion) 2.8 3.7 20.0 100

MR (2 inclusions) | 2.7 3.7 5.7 99.8




4. DISCUSSION

The results of the phantom membrane experiment are encouraging because of their similarity to the idealized
simulation. Despite nonlinear model-data mismatch, out-of-plane distortions during stretching, and possible boundary
condition inaccuracies, the elasticity reconstruction demonstrated good localization of the two small inclusions. The
majority of the problems in reconstruction are mostly likely due to noise incurred in the mapping of the boundary
displacements. It should be noted that the phantom reconstruction was achieved with a non-pigmented lesion (see
Figure 2, arrows), indicating that deflections of the image structure are capable of driving the image similarity metric of
the reconstruction process. This does intuitively suggest that some metric for rating the complexity and density of
image pattern in relation to algorithm success may be important and is currently under investigation. Preliminary data
not presented in this work indicates that such a threshold does exist for image data that can be properly analyzed by the
current framework. The modality independence of the method is also supported by the results here; clearly, the
Hounsfield units of CT, floating point values from an MR volume, and the luminance captured by the CCD sensor of a
digital camera are quite different types of data to handle because they are based on different physical principles. The
simulation reconstructions demonstrate that the method is indifferent to these differences by treating the data as an
arbitrary range of intensities and will converge towards the true elasticity distribution based on the image pattern
available. This is a possible explanation for the qualitatively more satisfactory results from the MR simulations
compared to the CT trials because the distribution of intensities from the former modality yielded a more diversified
histogram, an attribute that should naturally aid an intensity-based metric.

While an ideal reconstruction would also be accurate in characterizing a lesion by its modulus contrast, our
focus in the study was to test the ability of the method to detect and localize the inclusions. In previous experimentation
with reconstructions of single focal lesions, we have been generally successful in achieving a contrast ratio within 25%
of the true/expected value. It is somewhat troubling that the contrast ratios calculated here did not meet that criterion,
although the experiments with the phantom membrane came fairly close (28%). However, these results underscore the
difficulty of the scenarios in not only having to deal with multiple inclusions but quite small ones in both the true
physical sense and also the scale of the domain. Any of the given inclusions tested in simulation and with the real data
were detected within a homogeneous domain approximately an order of magnitude larger (e.g., 1.5-cm lesions in a 15
cm x 14 cm domain for the phantom). The expectation of being able to identify with any confidence the presence of the
inclusion is comparable to the observations made in [12] where the test of finding a single 5-mm lesion within a 4 cm x
5 cm domain proved to be the most problematic. Therefore, the localization of the lesions as determined by the CNR
and QRS metrics is deemed to be a success, and further investigation into the nature of the method with respect to the
scale of the lesion and domain is warranted.

5. CONCLUSIONS

In this work, we have presented further testing of a method for recovering elasticity parameters by maximizing the
similarity between images of a tissue of interest acquired under two different states of quasi-static loading within the
context of an inverse problem. The specific experiments presented here examined the effectiveness of the technique for
the detection of multiple small discrete focal lesions embedded in an otherwise homogeneous medium, as well as
further proof-of-concept work in its applicability to utilize image data from various modalities. In both cases, the
method provided accurate localization of the lesions based on the reconstruction of relevant elasticity contrast. Because
the biomechanical model, multi-resolution optimization, and image acquisition are each modular components of the
framework, this elastographic reconstruction technique is readily extensible for added sophistication, and there is
ongoing work to enhance the methodology with more complex models and advances in imaging technology.
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Modality Independent Elastography
(MIE) Concepts

(Solid) tumors are usually stiffer than surrounding
tissue

(e.qg. skin, liver, prostate, breast) for tumor

Soft tissue interrogation of various organ systems &
detection

Elastography gives representation of a structure
according to its mechanical properties

Deformation processes indicative of material
inhomogeneity can be captured by imaging and
approximated with modeling

Associate form and function through image analysis
separate from modality acquisition




MIE Components

* (1) Biomechanical FE model of
soft-tissue deformation

» Conservation of stresses (continuum)

» Constitutive stress-strain relation (Hooke’s Law)

MIE Components (cont.)

e (2) Similarity measure for
comparing images

» Acquired “pre-" (source) & “post-" (target)
quasi-static deformation

* Intensity-based registration metrics
* MI, NMI, SSD, CC, GC




MIE Components (cont.)

e (3a) Optimization routine to update
material properties in the model

* Objective function based on similarity

q)(E) = Z(S(ET)m _S(EE)m)Z

* Levenberg-Marquardt

(J"J +al)AE =37 (S(E;) - S(E.))

MIE Components (cont.)

(3b) Discretization of elasticity
distribution and image data

* Multi-resolution K-means clustering of elements
(“regions”)

» Sampling of image comparison area (“zones”)

regions (e zones

FE mesh




MIE Framework

Image Acquisition

Multi-res complete
AND
Error tolerance reached

OR Max iterations complete

—p Generate FE Model

for n=1:N resolutions

Deform Source Image




- 4 ! i
IH' 1711
- 11
n_:n_l 4
| ]!Ill_
|
——i
EEIE
|
I
1

Study Objectives:

Further Testing of MIE

* Modality independence
Digital photography
X-ray computed tomography (CT)

Magnetic resonance (MR)
« Two (small) inclusions

« Simulation and phantom membrane
study




Evaluating MIE

» Classify reconstruction
Two-class Gaussian mixture model
» Detectability via elasticity image contrast

» Localization accuracy

Positive predictive value of identifying lesion
material in correct location

P

ORS =
TP+ FP

CT breast slice - simulation

Source Targetl Target2

: | Targetl | Target2
[CNR 30 |35 _
| QRS | 97.6% |96.9% |




MR breast slice - simulation

Source Targetl

| Target] Target2
| CNR | 20.0 | 5.7 |
|QRS | 100% [99.8% |

Two inclusion membrane

Source




Summary

Modality independence via simulation for
handling various data types

Multi-resolution approach potentially
Improves optimization convergence

Two small stiff inclusions reconstructed in
phantom membrane experiment

Detectability accomplished via CNR
Localization successful as evaluated by QRS
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Future Directions / Research Questions

» Biological tissues are not typically linearly
elastic

Need for accurate boundary conditions
creates dependence on segmentation
methodology

Not all data sets necessarily contain
sufficient information for elastographic
reconstruction




PRELIMINARY TESTING OF SENSITIVITY TO INPUT DATA QUALITY IN AN
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ABSTRACT

An elastographic reconstruction method has been developed
to recover the material properties of soft tissue by model-
based analysis of image data acquired at different states of
mechanical loading. The algorithm utilizes image similarity
as part of the cost function for a multi-resolution, non-linear
optimization. Previous work with a phantom membrane
used for simulated dermoscopic application has prompted
this preliminary investigation of the relative effects of
additive image noise and boundary condition determination
errors on the performance of the method. The results as
quantified by elasticity contrast and localization accuracy
indicate that the reconstruction process is robust in the
presence of realistic levels of image corruption and tolerates
the majority of boundary condition mapping errors.

1. INTRODUCTION

The practice of palpating soft tissue structures in the course
of the physical exam for assessing tissue health has had a
long-standing clinical history of providing correlation
between improper stiffness and pathology. The ability to
characterize the mechanical properties of tissue is therefore
a potential source of information relevant for both diagnosis
and prognosis. One way in which this could be achieved in a
non-invasive manner is through analysis of tissue
deformation with imaging and image processing techniques,
which is a central goal of the field of elastography [1].

The conceptual framework for our -elastographic
reconstruction has been previously described in [2-4]. In
brief, images of a tissue of interest are acquired in an initial
(source) and then mechanically loaded state (targer). The
source image is deformed by a prescribed computational
model and compared to the target. This is repeated in an
iterative process using updates to the elasticity parameters of
the model as generated by a multi-resolution, non-linear
optimization scheme in order to achieve a suitable match in
image similarity. Because the goal of the reconstruction is to
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determine a spatial mapping of tissue elasticity, this process
can also be classified as an inverse problem.

Our observations during the ongoing development and
testing of this method have prompted questions concerning
the quality of data necessary and sufficient to achieve
satisfactory results (i.e. fidelity of the reconstructed
elasticity image). The primary inputs to the reconstruction
method are the acquired images and the delineated boundary
conditions on the region of interest. While it is clearly
preferable to have idealized data, in reality, both inputs
involve varying levels of manual interaction. As an initial
study, we have sought to test the effects of degradation in
data quality on the end reconstruction by using additive
image noise and randomized boundary condition selection
error.

2. METHODS
2.1. Elastographic Reconstruction Framework

There are three major components in the reconstruction
framework: a biomechanical model of tissue response to
applied deformation, a method of image comparison, and an
optimization scheme. For the current version, a continuum-
based model of mechanical equilibrium using isotropic
Hookean linear elasticity with a plane stress approximation
is employed [5]. This allows for a reduction of the general
3D formulation of Cauchy’s Law to the two parameters of
Young’s modulus and Poisson’s ratio in 2D. The
displacement solution of the finite element representation of
the model, solved using the standard Galerkin method of
weighted residuals [6], is then applied to the nodes of a
simple triangular mesh based on the source image domain in
order to perform image deformation. The mesh is
partitioned by K-means clustering (MATLAB RI14,
Mathworks, Nattuck, MA) into N number of regions, each
of which describes a distinct set of homogeneous elastic
properties for a grouping of adjacent elements. This allows
for implementation of the multi-resolution approach by
creating a hierarchy of increasingly finer spatial
distributions of elasticity parameters, which has been shown
to be an improvement upon previous versions using only a

ISBI 2006



single resolution [2,3]. A second discretization is performed
to divide the target image into M number of rectangular
zones containing approximately equal numbers of pixels.
The deformed source image is compared to the target using
an intensity-based image similarity metric (here, the
correlation coefficient [7]) in the evaluation of the least
squares error objective function

M 5 !
E(STRUE _SEST) M
m=1

where Srrye 1s an Mx1 vector of the (maximum) similarity
values achieved when comparing the target image to itself
and Sgsr is the MxI vector of similarity between the target
and model-deformed source image created using current
estimates of the elastic modulus distribution. It should be
noted that Srpyr has by definition a value of 1 for the
correlation coefficient.

The minimization of equation (1) using a Levenberg-
Marquardt approach takes the form

[JTJ"'O[I](AE}: [JT}STRUE _SEST} @

where J is the Jacobian matrix of size MxN estimating
JS/JE, AE is the NxI vectors of updates to the current
elasticity values, and o is the scalar regularization term for
the Hessian matrix as described in [8].

2.2. Material Preparation and Image Acquisition

For our simulation purposes, a two-material skin phantom
had been previously constructed [2] as a thin membrane
measuring 15 cm x 15 cm, with a single 5-cm circular stiff
inclusion embedded in the center (Figure 1). The phantom
was manufactured with Smooth-On™ polyurethanes
(Smooth-On, Easton, PA) Evergreen 10 and Evergreen 50.
These materials have essentially indistinguishable colors but
vary significantly in their elastic modulus values, so the
former was used as the bulk material and the latter for the
inclusion. Based on material testing, the expected contrast
ratio of Young's modulus values was determined to be
approximately 5.7:1. A black permanent marker was used
to place a pattern of regularly spaced (~1 cm) grid lines on
the membrane. The membrane was clamped along two
opposite edges and then stretched in a uniaxial fashion by
means of a milling vise. A commercial webcam (Logitech
QuickCam Pro 4000) was mounted above the assembly to
acquire image pairs of the membrane in pre- and post-
stretched states (960 x 1280 pixel resolution, 8-bit
grayscale).

2.3. Reconstruction Experiments

Based on prior work, a data set consisting of a
particular image pair and associated boundary conditions
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Figure 1. Experimental phantom membrane system (left) and
input image with overlaid finite element mesh (right). The
inclusion location is indicated by the arrow and dotted line. The
mesh designates the actual region reconstructed.

known to produce a satisfactory reconstruction was
designated as the gold standard for the remainder of the
experiments (Figure 1). In order to test the effect of
increasing amounts of additive noise on the reconstruction
algorithm, Gaussian random fields of 1, 5, 10, 15, 20, 25,
and 30% noise were applied to the base target image in three
separate trials. This presents a challenge that ascertains the
ability of the similarity metric and objective function to
discern a proper match.

The current method for selecting Dirichlet boundary
conditions on the finite element mesh is semi-automated and
requires the user to make a final determination on point
correspondence. The second experiment was intended to
simulate the targeting error of the user (e.g. visual cues and
input device control). Each test involved applying
randomized vectors of equal magnitude to alter the
boundary conditions of the gold standard data set. Errors of
0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5, and 2.0 mesh units (scaled
to be equivalent to pixel coordinates) were used in two
separate trials for a total of 16 reconstructions. Sub-pixel
magnitudes were included after determining that the
accuracy of selecting a feature point in the image/mesh was
typically less than or equal to 0.5 units for users ranging
from moderate to expert skill.

For all reconstructions, resolutions progressing through
N = 16, 36, 64, 144, 256, and 400 regions and M = 9
similarity zones were used; domains were initialized to
homogeneous elasticity and Poisson’s ratio held constant at
0.485 to represent nearly incompressible material(s).

2.4. Reconstruction Analysis

The final reconstructed elasticity values were modeled as a
mixture of two Gaussian distributions, and a threshold was
established to maximize inter-class variation [9] and
subsequently classify each region as bulk or stiff material.
Because Dirichlet boundary conditions are exclusively used
in these reconstructions, the method is only sensitive to
relative differences in elasticity. The quantities used in
evaluating reconstruction success are the elasticity contrast
ratio, localization accuracy of the inclusion, and an overall
measure designated the ‘quality of reconstruction score’
(QRS). The elasticity contrast ratio (CR) was calculated
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Figure 2. Representative reconstructions with image noise. From
top left: 1, 5, 10, 20, 25, and 30% additive Gaussian noise. The

reconstructions are visualized as two materials, with whiter areas
indicating higher elasticity contrast values.

Table 1. Reconstruction quality under noise conditions

Additive image noise

% Noise 1 5 10 15 20 25 30

LA 092 1090|091 | 0.70 | 0.69 | 0.66 | 0.56

CR 356 | 345|345 | 324 | 2.88 | 2.83 | 2.68

Gold standard: LA = 0.95, CR =3.60
Boundary condition error

Err 0.1 02 | 03 | 05 ]075]| 1.0 1.5 | 2.0
AE | 096 | 332|221 | 102 | 0.93 | 32.2 | 12.6 | 7.66
LA |0.87 092|088 |0.59|0.94 | 086 | 0.86 | 0.96
CR |3.63|3.68|344 |291|346 | 3.71 |3.78 | 3.30
CR = elasticity contrast ratio, LA = localization accuracy
AE = initial alignment error (%), Err = error magnitude.

from the mean values of the two material classes, and the
positive predictive value of identifying stiff material within
the independently segmented boundary of the inclusion
gives a measure of localization accuracy (LA). The quality
of reconstruction is simply then the product QRS = CR*LA,
which allows the user to consider the other two measures in
conjunction.

3. RESULTS

Figures 2 and 3 show examples of reconstructions achieved
under various image noise and boundary condition errors,
and individual localization errors and contrast ratio values
are listed in Table 1. Note that the data for the image noise
experiment was averaged from the three trials, and that the
data presented for the boundary condition experiment is
from one [representative] trial. Figure 4 is a plot of the
reconstruction quality decreasing with increasing image
noise, and Figure 5 shows the reconstruction quality trend
plotted against the change in initial alignment error (detailed
in the following section) relative to that of the gold standard.
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Figure 3. Representative reconstructions with boundary condition
error. Left to right: 0.1, 0.2, 0.3 units (top row); 0.75, 1.0, 2.0 units
(middle row, trial #1); 0.75, 1.0, 2.0 units (bottom row, trial #2).
Error magnitudes greater than or equal to 0.5 mesh units are not
accurate predictors of reconstruction quality.

4. DISCUSSION

From visual inspection of Figure 2, it is apparent that the
achieved reconstruction becomes more inaccurate with
increased image noise. However, the ability to identify and
localize the stiff inclusion is not significantly impaired until
a noise field of greater than 10% is applied. The threshold
was found by determining which level of noise provided the
best minimum sum squared error fit of two lines to the
distribution of reconstruction quality in Figure 4. This
would indicate that the similarity metric and objective
function are robust to intensity deviations of about 6 gray
levels. While Gaussian noise is one of several possible types
and may not always be an ideal model, it is still relevant to
acquisition inaccuracy and corruption processes that may be
encountered across several medical imaging modalities. The
use of an intensity-based similarity metric appears to give
the method an advantage in being generally insensitive to
reasonably expected amounts of image noise.

Figure 3 demonstrates that because of the random
nature of the boundary condition errors, the magnitude is
itself not an accurate indicator of reconstruction quality.
This necessitated the introduction of a more suitable
parameter that accounts for the net effect of the altered
boundary conditions in order to perform fair evaluations. In
essence, randomizing the vectors at every node causes the
optimization to use an unpredictable starting pose and
increases its chance of converging to an improper minimum.
Therefore, the ‘initial alignment error’ (AE) is defined as the
relative percent change between the objective function
evaluation using the gold standard boundary conditions and
those of the test case. An as example, it could be assumed
that vectors of magnitude 0.5 would be a much more
tolerable error than 2.0, but it is the significantly larger AE
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Figure 4. Reconstruction quality vs. percent additive image noise.
The drop-oft after 10% additive noise indicates the threshold of
tolerance for the method.

of the former that actually predicts the poor outcome.
However, it should also be noted (results not shown here)
that even if the same set of error vectors are scaled over
varying magnitudes, there is no clear trend in alignment
error or reconstruction quality. This appears to imply that
certain boundary nodes, most likely those in the direction of
largest strain, have a greater effect on reconstruction and
merit particular care in selection. Other factors influencing
unfavorable reconstructions are most likely nonlinear effects
not predicted by the current model as well as an inherent
lack of discrimination by intensity-based similarity metrics
in analyzing the regularity of the imposed grid pattern.
Nevertheless, for the error magnitudes tested that best
approximate realistic inaccuracies (i.e. <0.5 units), the
alignment errors were small and quality of the end
reconstruction was seen to be quite good. This qualitatively
validates the current method of determining point
correspondence as a reasonable procedure with an
accommodating margin (factor of four) in light of typical
user interaction.

5. CONCLUSIONS

In this work, we have presented a method for recovering
elasticity parameters from image data of thin membrane
structures by maximizing the image similarity between two
different states of mechanical loading within the context of
an inverse problem. The biomechanical model, multi-
resolution optimization, and image acquisition are each
modular components of this elastographic reconstruction
framework, making it extensible to added sophistication.
Tests were conducted to examine the tolerance of the
method to degraded or improper inputs. The results indicate
that the gold standard data set was mostly optimal for
obtaining a successful reconstruction. Widening disparities
in either image data or boundary condition selection from
that in the gold standard caused observable trends of
declining reconstruction quality. Based on these
observations, it appears that the method handles most
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Figure 5. Reconstruction quality vs. percent change in initial
alignment relative to gold standard. The majority of errors tested
produced satisfactory reconstructions.

expected variations encountered in image acquisition as well
as the majority of typical user inaccuracies. Because there
are complicated effects associated with mapping of the
Dirichlet boundary conditions in constraining the
displacement solution of the model, further study on inter-
rater variability in selection as well as comparisons with
more automated point correspondence methods is ongoing.
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PRELIMINARY TESTING OF SENSITIVTY TO INPUT DATA QUALITY IN

AN ELASTOGRAPHIC RECONSTRUCTION METHOD
Jao J. Ou, Stephanie L. Barnes, and Michael I. Miga
Vanderbilt University, Department of Biomedical Engineering, Nashville, TN 37235

BACKGROUND

Changes to the local cytoarchitecture induced in a variety of pathologies can manifest
as alterations in tissue elasticity that are relevant in clinical examination and evaluation.
Many elastography methods are typically dependent ol Ihe specific modality around
which they were (e.g. magnetic imaging). We
have dalit ’ (MIE) as a ion method
that recovers the material properties of soft tissue via model-based analysis of image
data acquired at different states of mechanical loading. The algorithm utilizes image
similarity in the performance of a i lution, non-linear i Previous
work with a phantom membrane used for simulated dermoscopic applications prompted
this preliminary |nvesl|ganon of the relative effects of additive image noise and
boundary condition errors on the of the method. The results
as quantified by elasticity contrast and localization accuracy indicate that the
reconstruction process is robust in the presence of realistic levels of image corruption
and tolerates the majority of boundary condition mapping errors.

PURPOSE

The inputs to the reconstruction process are in two major forms: image data and
boundary condition estimation. Inadequate fidelity in either quantity is capable of
affecting the success of the reconstruction through some form of model-data mismatch.
We proposed to test the sensitivity of the algorithm to various levels of an applied noise
process by altering either the intensity distribution of the target image or the
displacement vectors defining the Dirichlet boundary conditions.

METHODS

RESULTS

Figure 1. Flow chart of MIE. After acquisition, source and target images () are discretized into regions and zones, respectively. The reconstruction process
involves updating elastic modulus values (B,E) to drive a finite element model-based image deformation (C) unti the best match is found (D)

Figure 3. MIE image noise reconstruction experiment.

Gaussian random fields of variable strength with respect to the
variance of non-background pixel values were applied in an
additive fashion to the target image. Shown in the left column
from top to bottom are the original target and then with 10%,
20%, and 30% noise. In the right column are the corresponding
elasticity reconstructions after application of athresholding
scheme to classify bulk (black) and inclusion materials
(white/gray). The known segmentation of the inclusion was used
to retrospectively calculate the positive predictive value of
identifying the correct material type within the proper boundaries
as well as the mean elasticity contrast of the overall distribution.
For this work, our overall evaluation of reconstru
expressed as the product of these two quanti
additive noise is to decrease reconstruction quality as evidenced
in the progressively poorer localization of the inclusion.

. Ll EL

Randomized vectors of a particular magnitude were applied to the boundary condition specifications of the same finite element mesh used for all reconstructions. This
simulates targeting error by the user in the currently semi-automated method of point correspondence selection, and the effect is illustrated in the top row: from left to
right, the gold standard boundary and then with mis-estimation of 0.75, 1.0, and 2.0 mesh units (equivalent to pixel coordinates) in the Dirichlet conditions (slightly
exaggerated scale for visual effect). The corresponding reconstructions in the middle and bottom rows demonstrate that two different trials using the same magnitude of
randomized vectors can effect very different levels of reconstruction quality.

Figure 4. MIE boundary condition noise reconstruction experiment

Figure 5. Reconstruction quality vs. image noise.

Three trials of image noise were performed (shown averaged and with

standard error bars); the drop-off in reconstruction quality indicates

. the presence of a threshold at approximately 10% additive Gaussian
noise.

Figure 6. Reconstruction quality vs. boundary condition
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noise.

5 Two trials of eight levels of noise ranging from 0.1 to 2.0 mesh units
were performed. Each reconstruction was treated as a separate data
point based on its initial alignment error, defined here as the relative
change between the objective function evaluation using the gold
standard boundary conditions and those of the [randomized] test
case.
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Figure 2. MIE reconstruction experiment

(LeM pane) A tomateril phantom mimicking

kin was  constructe:
Teasuring 15 om o Ak singie 8 om
circular stiff inclusion embedded in the center. The
phantom was manufactured _ with _like-colored
polyurethanes which have an bulk

Figures 3 and 5 show that the achieved reconstruction becomes more inaccurate with increased image noise. However, the ability to
identify and localize the stiff inclusion is not significantly impaired until a noise field of greater than 10% is applied. The threshold was
found by determining which level of noise provided the best minimum sum squared error fit of two lines to the distribution of
reconstruction quality. This would indicate that the similarity metric and objective function are robust to intensity deviations of about 6
gray levels in an 8-bit image. Whl\e Gaussnan noise may not always be an ideal model, as a preliminary point of investigation, it is still
relevant to that can be across several medical imaging modalities.

Figure 4 demonstrates that the magnitude of the random vectors is itself not an accurate indicator of reconstruction quality because
the multiple degrees of freedom afforded by the boundary nodes cause the optimization to use an unpredictable starting pose,
increasing the chances of converging to an improper local minimum. This necessitated the introduction of the initial alignment error
(AE) to provide a consistent means of comparison between trials (Figure 6) As a further example, it could be assumed that vectors
of magnitude 0.5 would be a much more tolerable error than 2.0, but it is the significantly larger AE of the former that actually
predicts the poor outcome. It should also be noted (results not shown here) that even if the same set of error vectors are scaled over
varying magnitudes, there is no clear trend in alignment error or reconstruction quality. This appears to imply that certain boundary
nodes, most likely those in the direction of Iargest strain, have a greater effect on reconstruction and merit particular care in
selection. !orthe error that in boundary condition demarcation (i.e. <0.5 units), the
quality of those was . This validates the current method of determining point correspondence
as a reasonable procedure with an accommodating margin (factor of four) in light of typical user interaction. Further research is
ongoing into validation and control of boundary conditions, as well as more automated methods of point correspondence.

elasticity contrast of approximately 5.7:1. The
membrane was stretched in a uniaxial fashion
whie & CCD camera mounled above acquied
image pairs of the membrane in pre- and post-
e e (560 x 1260 pixe resoluion, &5i
grayscale).

(Right panel) Top row: Source and target images
with overiay of finite element mesh boundaries
(red) that demarcate the area reconstructed.
Below: Reconstruction progression over increasing
number of regions (N = 16, 64, 256, 400) to refine
the spatial distribution of elasticity values. This
reconstruction serves as the gold standard for the
remainder of thi
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The use of palpation information for skin disease characterization is not as commonly used as in
other soft tissues, although mechanical differences within lesions have been noted. For example,
regions of hyperkeratosis have the potential to transform into cancerous lesions and likely feature
different material properties from those of surrounding normal tissue due to varying cytoarchitec-
ture. As a result, the spatial distribution of lesion mechanical properties may serve to assist a
diagnosis or enhance visualization of the complete extent of a cancerous region, i.e., accurate
information regarding the margins of disease for surgical therapy. In this work, a multiresolution
extension to a novel elastographic imaging method called Modality Independent Elastography
(MIE) is used to characterize the mechanical properties of a skin-like phantom embedded with a
mock stiff lesion. Simulation studies were also performed to investigate the potential for charac-
terizing realistic melanoma lesions. Elasticity image reconstructions from the phantom experiments
localized the stiff inclusion and had good correlation between the Young’s modulus contrast ratio
and experimental measurements from material testing. In addition, multiresolution MIE was shown
to be a more robust framework than its single-resolution version. Results from the melanoma
simulation demonstrate the potential for using multiresolution MIE with dermoscopic
images. ©2005 American Association of Physicists in Mediciri2Ol: 10.1118/1.1895795

I. INTRODUCTION frequency ultrasound to confocal laser microscﬁfmddi-
tional strategies involving electrical impedance mismétch,

Skin cancers are a growing health concern in the UniteRagman spectroscopyand cytological smeatshave also

States, with total annual cases being reported in the milliongeen forthcoming.

by the American Cancer Society. There are three major types pq opposed to other methods mentioned above which

of skin cancergbasal cell carcinoméBCC), squamous cell  c4italize on electrical, optical, and biochemical phenomena,

carcinomaSCO, and melanomgwith melanoma estimated \ye haye chosen to pursue an alternative approach to skin

to be the sixth most prevalent cancer and an estimateflo it assessment which is based on its mechanical behavior.
55,100 new case@vithin the United Statesto be diagnosed

. 1 .
n 2.004' In gener_al, Sk'.n cancers develop frpm Precanceroly,am with a disease state has had a longstanding history in

. . alpation is performed to a lesser degree, utilizing changes in
other cancers, the dysfunctional cells may aggressively conf; ; : : ;
he mechanical properties to characterize the skin does have

pete with normal tissue for nutrients and space. The progres - odent within clinical dermatology. One thoughtful re-

sion from a benign to malignant state depends upon the dep-. ) .
9 allg pel P view by Edwards and Marks discusses the complex mechani-
gree of cellular differentiation and the spatial extent of the . . : L o
al behavior of skin when subjected ito vitro andin vivo

rowth, which approximately translates into the patholo ical?" . : e . .
getermination ofgrade andystage P g testing® Their review highlights extensive methodologies be-

When skin cancers are identified at an early stage and at8Y qsvled to .qu'alnnfy skin - mechanical propiernes.g.,
still small in size, surgical excision is usually straightforward 4Max1a and biaxial extensometry, torsion stimulators, inden-

and effective. If the disease has progressed to invade deegigmetery, ballistometric tests, shear wave application de-

levels of the skin, treatment becomes more difficult and may/C€S, dynamic suction methods, ultrasonics, and electrody-

involve more invasive surgery, radiation, and/or chemonamometry and also indicates the difficulties in comparing
therapy. It is clear that the early detection of cancer is criticaPcross these methods. As a result, Edwards and Marks em-
in order to formulate a proper treatment plan and achieve thBhasize the necessity for quantitative, reproducible methods
most favorable clinical outcome. However, detection and dif0 assess skin health given the wide subjectivity in clinical
agnosis still rely primarily on visual inspection followed by a analysis’ For example, the work by Draaijees al. suggests
biopsy of suspect areas for histological analysis. Therefore, that reliable subjective assessment of the pliability of scars
significant proportion of diagnostic technological advancegequires more than one observer while measurements using a
have been concerned with obtaining a better view of thenoninvasive suction device can be accomplished with a
lesion via improved opticgi.e., dermoscopyor more ad- single observef.This type of work qualitatively confirms the
vanced and novel imaging systems ranging from high-Edwards and Marks conclusion that the need for technology

1308 Med. Phys. 32 (5), May 2005 0094-2405/2005/32(5)/1308/13/$22.50 © 2005 Am. Assoc. Phys. Med. 1308
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and automation in skin assessment will be essential for rebecause it is an image processing technique, MIE is not re-
ducing inter-rater variability. liant on a particular imaging modality such as in ultrasound

While the characterization of skin cancer for diagnosticand magnetic resonance elastography, as long as the acquired
purposes and possibly surgical intervention is an interestingnages provide a sufficient pattern to allow for registration.
prospect, other investigations have begun to suggest relatioBuilding on recently completed work with a dual-mesh
ships between skin elasticity parameters and other diseaseimplementatior?,0 in this paper we present a simplified mul-
In a recent study using a noninvasive suction device, Pierartiresolution elasticity imaging framework for Young’s modu-
et al. demonstrated a correlation between bone mass densitys reconstruction. In addition, phantom and simulation ex-
(BMD) and skin elasticity parameters. Specifically, in a 100-periments demonstrate its utility as a dermoscopic image
woman study in which a portion of the subjects were partici-analysis tool for evaluating skin lesions based on material
pating in hormone replacement therapy, a positive correlatioelasticity.
existed between BMD of the hip and femoral neck and skin As a final point, the work presented here represents a
elasticity parameters. The authors clearly state that their goglotentially new application of the MIE approach for the
was not to develop a surrogate BMD assessment test, but tlibaracterization of skin lesions using optical images. This
results are nevertheless intriguiﬁ&Using a similar device, may have significant implications at many length scales
Yoon et al. demonstrated a relationship between skin elastic{subcellular, cellular, matrix level, and gross tissueor ex-
ity parameters and patients afflicted with diabetes melfftus. ample, properly designed, optically based MIE could be used
Other work has been forthcomitg'®that demonstrates the to characterize the structural development of tissues at the
potential for using noninvasive measurements of skin meeellular scale. This could be important for therapies such as
chanical parameters as diagnostic information. Mohs micrographic surgery. Mohs is a surgical technique

To this end, the field of elastography has establishedvhich combines surgery and pathological investigation to
methods to spatially characterize the mechanical propertiemore effectively remove skin tumors. More specifically, after
of tissues under various states of deformation with the goalemoving visibly cancerous regions, the surgeon removes an
of developing functional parameters to characterizeadditional thin layer of the site margin and creates a “map”
diseasé/8In skin cancer, increases in cell density, atypia inof the border. Upon pathological examination of the removed
the morphology and orientation of cells, and compositionalayer, the “map” can be used to target the remaining cancer-
alterations(e.qg., hyperkeratosicontribute to changes in the ous cells. Currently, the Mohs technique is a time-consuming
local cytoarchitecture. These changes in mechanical structupgocedure, but the success of the procedure is compelling
can propagate from microscopic to macroscopic levels andnd has been shown to be cost effective with certain
may manifest as a distortion of the normal anatomy. Giverconsiderationg® If MIE skin imaging could accurately assist
the influence of mechanical structure on the behavior of deer replace the pathologic characterization of the margin in
forming tissue, elastographic imaging methods may be welless time, this would be of great value for this surgical
suited for detecting and monitoring the growth of these cantherapy.
cerous anomalies. In fact, advances in applying ultrasound
elastography and sonography techniques to skin are being
reported®®?*Most recently, Gennissoet al. demonstrated

. Il. METHODS
the use of a new sonoelastographic probe that measured a
distinct difference between dermis and hypodermis sheaf. Model of phantom/skin elasticity
wave velocities which was subsequently used to estimate . - .
Young's modulus? Although interesting, this work is not One critical component within all model-based inverse

completely applicable to the clinical goals of understandingproglelT framewo:l;fs] IS tht? selectf|o_nt of ? lcomputstlotnal
the spatial extents of a melanoma lesion. model to represent the continuum of interest. In our phantom

Following previous work in Ref. 23, we are using a neWand §imulation stgdies, we havg elected to employ a linear
elastographic method we have termed “modali'[y-GI"’lsJ[IC modgl to simulate the skin. Thesg as;gmpt{erg;,
independent elastograph¢MIE) that combines nonrigid im- symmet,ry, Isotropy, gt}c. allow the simplification of
age registration with an elasticity inverse problem. More spe—C auchys law from 36 stifiness constants to 2 and employ the
cifically, image similarity metrics routinely used with image equation
registration methods are recast within a nonlinear optimiza-
tion algorithm whereby mechanical propertiesg., Young's
modulug within a biomechanical model of the deforming
tissue become the driving parameters for improved imag
registration. In this way, the MIE method circumvents two
potential limitations of current elastographic techniques.
First, it is not inherently dependent on preprocessing steps o= [‘Tx Txy] )
such as homologous feature selection and tracking which
drive active contour modei®?* or other traditional
displacement-based iterative methd&’ (however, it does The constitutive relationships for the material can be written
require the determination of boundary conditipnSecond, as

V.-o=0, (1)

é(vherea is the two-dimensional2-D) Cartesian stress tensor
and is defined as

Txy Oy

Medical Physics, Vol. 32, No. 5, May 2005



1310 Miga, Rothney, and Ou: Modality independent elastography (MIE) in dermoscopy 1310
- - 26

au Property
v 0 ox ' Region
0 /

o E v 1 Jv 3
gy | = — ,
I @1-v)? 00 1-v ay
2 Jjou,
ay  ox

whereE is the Young’s modulusy is Poisson’s ratio, and,

v are displacements in theandy directions, respectively.
For this work, Poisson’s ratio was assumed to be constant at
0.485 for our skin phantoms and tissue simulations. This
value was found by searching the reconstruction parameté:
space for an optimal value that achieved maximum similarit
when comparing the homogeneous model-deformed image

to its acquired counterpart. The constitutive relationships ex-

pressed in(3) represent a two-dimensional approximation totially reconstructed to provide better initial guesses to subse-
a three-dimensional system which assumes a symmetric, isgHent resolutions. The use of hierarchical multiresolution
tropic, thin specimen in equilibrium and stresses that arétructures within both rigid and nonrigid registration algo-
constrained to lie within the plane, i.e. the classic plane stresdthms has a Ion%sgzémding precedent and lends credence to its
approximatiort! Using the Galerkin method of weighted re- @pplication heré>** In this work, six progressively finer
siduals to integrate this set of partial differential equations, desolutions were used within each reconstructit 36, 64,
finite element framework is generated and can be solved té44, 256, 40Qegions.

represent a displacement field for a given distribution of Once the mesh and-means resolutions have been speci-
Young's modulus value® The boundary conditions for our fied, the reconstruction algorithm begins by assigning an ini-
studies below were either manually derived from a structuredial modulus value to eactegion(a homogeneous initializa-
grid representation as in the phantom system or prescribefépn is assumedat the first resolution, weighted residual

by the user in the case of the simulation studies. equations are integrated, boundary conditions are applied,
and the matrix equation system is generated:

v

ek 1. K-means material property clustering for a circular domain with 16

roperty regions designated.

B. Modality-independent elastography ~ (MIE) [AEg)J{u} = {b}, (4)

The MIE framework begins with the acquisition of a where[A(éE)] represents the model stiffness matrix based on

baseline predeformed “source” image and a post-deformeghe current distribution of propertie&s, {u} is the vector of
“target” image. The “source” image set is used to create gnknown tissue displacements, afiol is the vector of
well-resolved finite element mesh of the tissue domain. Inknown forces acting on the system and boundary conditions.
previous work, a second coarse mesh was also specified @Jjyon the calculation of tissue displacements, the source im-
the domain and was used specifically as the mechanicgge can be deformed. This model-deformed source image is
property reconstruction gritf. In this work, a new single- then compared to the target image using an image similarity
mesh region-based multiresolution MIE approach has beepethod**° which is calculated over a number of discrete
employed which simplifies previous dual-grid techniquesspatialzones(e.g., for all reconstructions, approximately 400
with the generation of a structured regionalization using &similarity zoneswere designated within the image for a com-
K-means clustering algorithm based on the element centroidsarison). Modulus values in theegionsare updated based on

of the well-resolved mesh. K-means clustering algorithm maximizing the similarity between the deformed source im-
iteratively partitions the element centroids into a given NuM-age and the target image over all the similadgbnesuntil a

ber (K) of regions (whereK is the user-defined number of tolerance is reached or the desired number of iterations has
desired clustejssuch that the sum of all point-tegioncen-  peen completed.

troid distances over ategionsis minimized. The advantage With respect to the optimization framework for MIE, it

of using theK-means clustering approach as opposed t0 &an be represented as a least squared error objective func-
regular grid is that the clustering approach can more approgon:

priately fit irregular domainge.g. the circular domain for the - . .
dermoscopic image SetFor this work, the implementation  #(E) = min{||S(Ey) - S(Eg)|?}, (5)
in the MATLAB (MathWorks, Natick, MA— - o . .
www.mathworks.com statistics toolbox was used. Figure 1 WhereS(E) is the similarity value achieved when comparing
illustrates an example of this approach on a circular domaifi’€ target image to itselfi.e., the maximum value for the
whereby the element centroids have been clustered into 1¥Milarity metrig and S(Eg) is the similarity between the
Separate homogeneousy isotromgions model-deformed source image and th_? target image using the
The method has been adapted to a multiresolution strategyurrent estimate of the elastic moduli, Equation(5) can
whereby coarser resolutiorise., fewerregiong can be ini-  be solved by employing a Newton—Raphson-based approach:

Medical Physics, Vol. 32, No. 5, May 2005
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MultiResolution Reconstruction {
Loop (R=1,2,.RMAX)
Select Rth Resolution
with K.Regions
Parameter Optimization
Construct Jacobian
RS Bl
-33)
* Fic. 2. Multiresolution MIE algorithm
flow chart where R=1,2,3..,Ryax”
Calculate Property Update is the resolution level wittRyax the
Hl+ alilAE = [ SE )- sE most well resolved; andK” is the
I ]wm{A } : ]b( ') (EE)} number of materiakegions within a
v particular resolution R”.
Solve Forward Problem
Next Resolution [A(E)kj} =b}
7'y L 2
Deform Source Image
AE)l}=o}
A 4
Calculate Similarity with Target
oF)
s ¢ <€ or max
iterations met?,
— Is R=RMAX?
End
T 2y 1T = = with an empirically determinedr parameter found in the
[[3]03] + {1 JHAE} = [THS(E) - S(Ep)}, (6) pincaty P

standard Levenberg—Marquardt approa%ﬁ’he determina-

where [J] is the M XN Jacobian matrix of the forml tion of this regularization parameter is described in Ref. 37.
:as(éE)/aE, M is the number of similarity measurement Figure 2 is a flow chart of the new multiresolution MIE
zonesandN is the number of material propertggionsand  approach.

is equivalent toK as designated in thi-means clustering In previous work, we have analyzed the performance of
algorithm. The details of Eq.6) have been reported our MIE algorithm with respect to four standard image simi-
previously?®>*° Because[JT][J] (an approximation to the larity metrics found within the literature: the sum of squared
Hessian matrixtends to be ill conditioned, it is regularized differences, normalized mutual information, the correlation

Medical Physics, Vol. 32, No. 5, May 2005
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Fic. 3. Experimental data from the skin-stretching setup shown in Fi¢g)daseline(b) 5 mm, (c) 10 mm,(d) 15 mm,(e) 20 mm.

coefficient (CC), and the gradient correlation coefficient 15 cmx 15 cm grid with 1 cmx 1 cm squares on the phan-
(GO).*® Within this work, the correlation coefficient and gra- tom surface. Figure (8 shows the skin phantom used for
dient correlation coefficient were used for the similarity mea-data collection in this series of experiments.
surements.

Briefly stated, the CC operates on the distribution and
mean intensity values of the overlapping regions of two im-D. Image acquisition protocol

ages wheré; would represent the intensity values within the To acquire the pre- and post-deformed images of the

“target” image and, would be the model-deformed “source” . . i

. . L stretched skin phantom, the membrane was first secured in

image. The correlation coefficient can be calculated by the : - :
customized clamps attached to a milling vise to form a trans-

expression lation stage and then brought level with a nominal applied
Si(1,(0) = 1) (1500) 1) load to define the baseline position. Images were taken by a
CC= ———, U ElLNI (7)  commercial web camerdLogitech QuickCam Pro 4000,
\/Ei(ll(l) =1D)%(15(1) = 1) 960x 1280 pixel resolutionthat was rigidly mounted above

wherel, I, are the mean intensity values within each respec{h€ membrane at a single location to ensure a fixed field of
tive image, and is theith pixel within the respective image. View and frame of reference for the duration of the experi-
The GC metric is calculated by applying the correlation co-Ment. A series of five total images was collectedght-bit
efficient to images that have been processed by any of th@rayscale via laptop control of the camera—the baseline
standard edge detection functiofesg., Canny, Sobel, elc. _predeformatmn position and fogr subsequent positions with
incremental stretches of approximately 5 mm each. Figure 4

C. Phantom construction

A phantom was constructed that was approximately 25 cm
long, 15 cm wide, and approximately 2 mm thick. The laptop
inclusion-surrounding bulk material of the phantom was
Smooth-On™ Evergreen 10 polyurethane with an additive to
allow permanent marker to adhere to the material surface
(Smooth-On, 2000 Saint John Street, Easton). RAcylin-
drical inclusion was placed centrally within the membrane
phantom that was approximately 5 cm in diameter and was
made of a stiffer polyurethane mater{8mooth-On™ Ever-
green 50. The inclusion material was chosen for its relative [ |
stiffness to that of Evergreen 10 and its color which is the
same(to study the case of non-pigmented lesjordter the
phantoms had set, a permanent marker was used to drawc. 4. An illustration of the skin-phantom setup for image acquisition.

Camera

Skin phantom

Medical Physics, Vol. 32, No. 5, May 2005
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Fic. 5. (@) Melanoma lesion, reproduced with the permission of Dr. Lehmann, M.D., © Dermatlas, www.dermatlas.org, melanoma_1(l)48inidlated

horizontal andc) vertical displacements showaxis references are in meters while the gray scale is in migrtirshould be noted that the contained region
within the border represents the spatial regions of stiffness in this simulation and was not contained within image data provided to the MIE algorithm

is a schematic of the experimental setup, while Fig)-38(e)  the pre- and post-deformed structured grid and estimating the

shows an example dataset. domain’s deformation. The Young's modulus reconstructions
were then compared to the elasticity values as generated
E. Material testing protocol from the material testing protocol. It should be noted that

) ) i ) only Young’s modulus contrast was compared in these evalu-
Material testing was performed in order to determine theytions. This is due to the manner in which boundary condi-

accuracy of the reconstructed Young's modulus valuesions are prescribed in the model system. Currently, the ap-
When _the phantoms were poured, specimens of both the bUEfroach is driven by displacement boundary conditiires,

aqd stiff polyurethane were allowed to cure in separate conpjrichlet type which consequently make the elastic model
tainers from the membranes. These samples were then cyhy sensitive to Young’s modulus contrast. Without knowl-

into 1 ecmx1cmx1cm cubes. Compression testing wWasgqge of an applied stress at the boundary or a prescribed
performed on an EnduraTEC ELF 3200 material ted&T-  material property within the domain, absolute properties can-

duraTEC Systems Group, Minnetonka, MNhe polyure- ot pe determined. In addition, it must also be noted that the
thane was assumed to be elastic, homogenous, and isotropjgconstructions were constrained to a region of the phantom

The Enduratec material testing protocol involved rampinginat was smaller than the overall phantom. This was a result
the actuator linearly from the zero position to 24% strain atom gbserving that at higher stretch states, out-of-plane dis-

2% strain increments. The max strain value was chosen t@ytions of the membrane became more prominent in the pe-
extend slightly beyond the range of observed strain in th?iphery.

experiment shown in Fig. 3 which was approximately 22%

strain.for the bulk material. Although the stiffer inclusiop G. Simulation experiments

material only experienced approximately 1%-2% strain, _ o

stress values were reported for the full strain range up to [N an effort to test the algorithm within the context of a
24%. Between each change in axial position a three secorf§ore realistic image acquisition scenario for skin cancer, a
dwell time was imposed to allow viscoelastic responses tgimulation study was performed on an image of the 1 cm
subside. Stress—strain plots were produced for both the bufié€lanoma lesion shown in Fig(&. In addition, a grid struc-
material and the inclusion material. Three samples of eacf!ré was not specifically applied to the lesion image so as to

material were tested and an average curve was calculated test whether the natural skin-texture itself contained suffi-
cient image information for reconstruction. The lesion was

provided by the Dermatology Image Atlas projéaivw.der-
matlas.org, Image Name: melanoma_1_ 040510, Contributed
To quantitatively test the MIE method within the context by Eric Ehrsam, M.D. and represesta 1 cmpigmented
of dermoscopic applications using optical images, a series ahelanoma plaque, located on the left arm of a 35-year-old
studies using the elastic membrane of Fig. 3 were employedoman® For the simulation boundary conditions, an
within the setup of Fig. 4. The single inclusion phantom wasannulus-shaped mechanical stretching device was assumed
considered to be representative of a single lesion on the skiwhich would systematically stretch two semicircular regions
surface (nonpigmented in this cageThe multiresolution apart by 2 mm. The melanoma was assumed to have a 2:1
MIE technique was used at each successive deformation falasticity contrast level with normal tissue, i.e., the mela-
a total of four elasticity image reconstructions per similaritynoma was twice as stiff as the surrounding skin. The com-
metric (in this case CC and GC onlyThe computational putational domain for the inverse problem contained 1294
domain for these calculations involved 1051 nodes and 1978odes and 2459 elements. In addition, the mesh used to gen-
elements. Boundary conditions were generated by analyzingrate the forward-problem data was approximately 10%

F. Phantom experiment
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Fic. 6. (a) Stress versus strain behavior for bulk materib), stress versus strain behavior for inclusion material, @ndnclusion-to-bulk contrast ratio at
various levels of bulk material straifor all ratio determinations, the inclusion’s 2% strain value for Young’s modulus was used which was the approximate
maximum strain reached in the inclusion based on experiment obseryations

more resolved than the mesh used for reconstruction. Thidiscrete finite difference approximations were made at the
introduced a small degree of variability to the boundary convarious strain levels to estimate a Young’s modulus value.
ditions and image deformation to simulate potential acquisi-Table | represents a distribution of values calculated within
tion noise. Figure &) and Fig. %c) illustrates the localized the strain ranges tested. Once each modulus was calculated
application of the stretching and the simulated solution forffor each acquired strain level, a distribution of Young's
both horizontal and vertical displacements, respectivelymodulus contrast ratios was calculated and is expressed by
Upon completion, these image data was used as input to tHeg. (2):

multiresolution MIE algorithm. Results are reported using

the CC and GC image similarity methods.

TaBLE |. Young'’s elastic modulus values at several experimental strain lev-
els.

Ill. RESULTS
A. Material testing

Material strain(%) Bulk material(kPa Inclusion materialkPa

During the material testing phase, additional cyclic testing

was performed in which viscoelastic behavior was noted. As 8 iéjg 1222‘3
a result, a waiting period was utilized at each strain level to 1 180'0 2125'0
allow viscoelastic responses to subside. The stress/strain be- 16 182'5 2375'0
haviors at these quasistatic time periods for the bulk material 23 206.3 24125

and inclusion are shown in Figs(a&d and @b). In addition,
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TasLE II. Contrast ratios for each experimental strain level. To assist in determining inclusion-to-bulk contrast ratios
: : : for different bulk strain levels in each experimental stretch as
Bulk material strain Contrast ratio . . . . . .
reflected in Fig. 3, an exponential curve fit was prescribed:
Stretch 1: 8% 5.7 —C
R(e = =A+Be™~?
Stretch 2: 12% 5.0 CR(e = epyi) e, 9
Stretch 3: 16% 4.6 wherebyA=4.0,B=5.0,C=13.8. The root mean square con-
Stretch 4: 23% 4.2 trast ratio error between model and acquired data over the

entire acquired strain range was 0.093. The quality of the
exponential model can be seen in Fi¢c)6Using the expres-
sion described in9), a series of Young’s modulus contrast
CR(eq) = Einde=0.02 ) ratiqs values could bg t.abulated as a function of the specific
bulk E ’ strain levels used within the experiments of Fig. 1. These
bulk levels were determined by manually measuring strain levels
whereby the inclusion’s 2% strain valéapproximate maxi-  within regions of the bulk material from the optical images.
mum strain reached in the inclusion based on experimentatable Il reports the approximate contrast ratio for Young’s
observations for Young's modulus was used and the bulk modulus at the various bulk material strain levels experience
material was allowed to vary over the entire strain rangeduring the stretching experiments using E9).
This contrast ratio formulation reflects the reality of the
membrane experiments shown in Fig. 3 whereby the SO%. Multiresolution MIE phantom reconstructions

surrounding material experienced the majority of deforma-
tion with the inclusion remaining relatively unchanged over Figures 7 and 8 are representations of the multiresolution

all applications of stretch. The distribution of the contrastelasticity image reconstruction performance for each of the
ratios as described by E@8) at differing strain levels is different stretch states shown in Fig. 3 using CC and GC as
shown in Fig. &c). the basis for image similarity, respectively. The boundary
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Fic. 7. An illustration of elasticity image reconstructions using CC where each column represents the respective stretch relative (eogFiga3-3b
represents the stretch from base to the first increm&he top image shows the location of a transect as designated Hydhe the gray scale associated

with Young’s Modulus(Pa. The middle row represents the reconstructed elasticity images at each stretch state with the contour showing the actual inclusion
location. The bottom row shows the elastic property contrast ratio as compared to that predicted with the materiéshestimgs dark box-like contour

along the transect.
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Fic. 8. lllustration of elasticity image reconstructions using GC where each column represents the respective stretch relativéetg Fi8a-33b represents

the stretch from the base to the first incremeiihe top row represents the reconstructed elasticity images at each stretch state. The bottom row shows the
elastic property contrast ratio as compared to that predicted with the material tes$towgn as a dark box-like contqualong the transect which was
designated in Fig. 7.

o,

-2
o

contour represents the inclusion location as shown within théocalized but the contrast resolution is poor compared with
image. The contrast ratios designated within the transect imts multiresolution counterpart in Fig. 8, first column. At sub-
ages of Figs. 7 and 8 were based on Table II. sequent stretch staté3a—3c, 3a—3d, and 3a-J3¢he elastic-
Figure 9 shows elasticity images at varying stage resoluity image has not converged to an acceptable representation
tions within the multiresolution MIE reconstructidnecon-  of the inclusion. Interestingly, the distance traveled by grid
struction shown is the GC-3a—3b stretch regime squares within the homogenous regions near the stretching
To test the effect of the multiresolution framework, the edge within the second stretch sté@a—3g is approximately
same optical images were provided to our algorithm using dhe size of one grid squaKe-1 cm).
400 propertyregionresolution with an initial guess of homo- It is evident that by using a single high resolution param-
geneity (i.e., coarser resolution solutions were not used atrization as opposed to a multiresolution approach, a local
initial guessep In results not reported here, the CC recon-minimum is found and the elasticity image degrades consid-
struction was able to localize and quantify the stiff regionerably. Consequently, the error magnitude for the image
similar to that of Fig. 7 at the high stretch states but wasshown in Fig. 8, the second column is a factor of 50%
much worse with respect to the initial stretch stéite., smaller than that of Fig. 108) thus demonstrating that Fig.
3a—3b image reconstructipn 10(b) indeed represents a local minimurhshould be noted
Figure 10 represents the GC result for the four stretchihat all parameters were identical—number of similarity
states using the single 4@8gion high resolution parametri- zonesfiltering, regularization, relaxation, efc.
zation. In Fig. 10a) (3a—3b stretch staktethe inclusion is

C. Multiresolution MIE melanoma reconstruction

simulations
16 Regions 36 Regions 64 Regions

In addition to the experimental results shown above, sev-

eral similar simulations were executed using a pigmented

@ @ @ melanoma image. Figure 11 shows the elasticity image re-
construction and transect results using the multiresolution

144 Regions 256 Regions 400 Regions MIE _framework f_or both CC and GC. Figure 12 |IIustrat_es
the inter-resolution results from the GC reconstruction

@ @ O shown in Fig. 11.
. IV. DISCUSSION
Fic. 9. Elasticity image reconstruction for the GC 3a—3b reconstruction case The 8|aStIC|ty image results from phanttﬁﬁqgs 7-9and

at various resolutions of the multiresolution algorithm. The gray scale is thé'mmaﬂon(':'gs 11 and 1Pstudies demonstrate the utility
same as in Fig. 7. of the multiresolution MIE approach. In addition, comparing
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Fic. 10. GC reconstructions using single 400 property
zone resolution fofa) 3a-3b,(b) 3a—3c,(c) 3a-3d, and

(d) 3a—3e, respectively. The gray scale is the same as in
Fig. 7.

the results in Figs. 8 and 10 clearly illustrates that instancephantoms, i.e., a wrinkling at edges as the strain on the skin
can exist in which a single-resolution approach will fail phantoms increased. The spatial location of these membrane
whereas the mutliresolution succeeds. A separate but relatetistortions was more prominent with the distance from the
concern which is still under investigation is the degree andnclusion. By making a more localized reconstruction region,
content of the image pattern needed to facilitate reconstrudhe influence of these distortions was minimized although
tion; however, the preliminary elasticity image results fromsome effects are undoubtedly present. Ultimately, these out-
the melanoma simulations reported herein suggest that a suff-plane motions would be interpreted as planar strains in the
ficient intensity content exists in standard dermoscopic im-optical image acquisition system shown in Fig. 4. Although
ages. this variability in shape integrity existed, successful localiza-

Another important advance in this paper over previougion was achieved for all stretch states. It was encouraging
work is the comparison between reconstructed elastic proghat at small stretch states, where the model is most appro-
erties and their separately measured counterparts. The streqsiate, proper quantitative contrast ratios were achieved
strain curves shown in Figs(® and &b) and modulus val- (stretch states 3a—b, 3a—c in Figs. 7 andRurther encour-
ues in Table | demonstrate a nonlinear elastic behavior. AAgement was provided by successful localizations at high
good representative exponential fit to the Young’s modulusstretch states whereby nonlinear behavior is undoubtedly
contrast ratio data was achieved in Figc)éand provides a present and the small-strain assumptions are compromised
direct comparison to MIE-derived Young’s modulus proper-(although the quantitative contrast ratio was not as satisfy-
ties. One shortcoming is that because MIE is completelyng). Undoubtedly, a large-deformation model is necessary at
driven by displacement boundary conditions, only the conthese higher strains to match contrast ratios at this level;
trast in Young’s modulus values can be compared. Howevehowever, if proper empirical characterizations could be done
the goal within this work is to investigate elastic propertiesusing the linear model over many stretch states, effective
as a mechanism for contrast within medical images. contrast thresholds could be determined for the characteriza-

Overall, the elastic image reconstructions shown in Figstion of lesions. In addition, these results were also promising
7 and 8 demonstrated good localization with a varied perforin that successful Young’s modulus contrast and localization
mance in maintaining lesion shape integrity for both the CQwas achieved with a nonpigmented lesion. This indicates that
and GC similarity methods, respectively. It appears that abnly the deflections of the surrounding image pattern and not
high strain levels, MIE was less successful at capturing théhe lesion image intensity itself are responsible for the
anticipated contrast ratio. In fact, in both CC and GC, thechanges in the elastic modulus values. This enthusiasm must
ratio was overestimated, thus producing more contrast. Ibe tempered by the realization, however, that ievivo
should be noted that the reconstructions shown were pemodel may require more thought with respect to boundary
formed on a domain that represented only a portion of theconditions. Undoubtedly, the influence of subcutaneous tis-
image that surrounded the inclusioftis3—-4 cm from the sue connectivity would influence the results here if these
inclusion border. This was due to our inability to completely additional constraints were applied. Given the inherent link
control the physical boundaries of the phantom given thébetween the image formation and the validity of the compu-
large mismatch between the stiffness values of the two matational model, more work needs to be performed prior to
terials. This manifested itself as out-of-plane warping of theclinical deployment.
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Fic. 11. Elasticity image reconstruction of melanoma usfag CC and(b) GC with contrast ratio values along the transect for CC and(d) GC,
respectively. The location of transect is designated byTtleown in(a) and (b).

Although these results are encouraging, not all reconstrud-ig. 7, a Young's modulus peak is shown in the lower right
tions exhibited the same peak modulus or lesion localizatiorhand region of the boundary. A second candidate for recon-
One reason could be the accuracy to which boundary condstruction inaccuracies across stretch states could be the de-
tions were determined for each stretch state. It is possiblgree of model-data mismatch. It is interesting to note the
that the manual delineation of boundary conditions or thecorrelation between increased stretch and the marked de-
observed wrinkling at high stretch states resulted in somerease in accuracy of the contrast-ratio transect plots. At the
boundaries being mapped less precisely than others. In soraenaller stretches, 3a—b and 3a—c, both CC and GC recon-
of the reconstructions, significant boundary artifacts can b&tructions perform better in both localization and quantifica-
observed. For example, in the second and fourth column ofon while both show overpredictions within transects for

stretch states, 3a—d and 3a—e. A model-data mismatch would
the levels of strain are less in the first two stretch states. One
better than the CC-based method. This is also the case within
Fic. 12. An example of mutli-resolution solution development using GC for image while CC uses the raw vaUired image. The increased

seem a likely source for this change in performance, consid-

somewhat qualitative observation that can also be made is

144 Regions 256 Regions 400 Regions the melanoma simulations. Interestingly, in Ref. 30, a similar

melanoma simulation. performance by GC may indicate that areas of structured

16Reglons  3BRsgions 64 Regions ering that the elastic model used is a small-strain model and
that the GC-based method appears to reconstruct somewhat
experience was found in that the GC method outperformed
other methods with respect to our phantom reconstructions.
@ Q Q The principal difference between the CC and GC similarity
methods is the form of the image to be used when calculation
' the correlation coefficient. GC employs the edge map of the
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sharp gradient intensities influence the MIE approach morstruction and the degree of applied deformation. In addition
significantly than more gradual intensity changes. Howevero the phantom experiment, a simulation using a clinical im-
this statement must be tempered with the realization of Figage of a pigmented melanoma were reported and illustrated
10 whereby structural decorrelation has occurred althougkxcellent localization and quantification.
arguably at much larger length scales as compared to those in Despite potential limitations in elasticity image resolution
traditional USE. when compared to traditional MRE and USE, MIE’s adapt-

The results from the melanoma simulations provide aability to an optical image-registration platform at multiple
more realistic representation of the types of images that cascales is an intriguing possibility. Furthermore, this extension
be acquired within the clinic. These images provide theirto another modality demonstrates that MIE-based approaches
own challenge in that although the lesion is pigmented, théo elastography represent a new class of algorithms that may
surrounding structured pattern of the grid used in the phanyield potentially new frameworks for disease characteriza-
tom was not present. In this case, it was desirable to test MIEon.
without the presence of the structured grid. Overall, the elas-
ticity images and transects were satisfying, with the GC
qualitatively outperforming the CC method. One interestingACKNOWLEDGMENTS
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