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Abstract. This paper presents some concepts, principles, and techniques for automated testing 
of real-time reactive software systems based on attributed event grammar (AEG) modeling of 
the environment in which a system will operate. AEG provides a uniform approach for auto-
matic test generation, execution, and analysis. Quantitative and qualitative assessment of the 
system comprised of the software under test and its interaction with the environment, can be 
performed based on statistics gathered during automatic test execution within an environment 
model.  

1. Challenges to C4ISR system software testing  
Modern C4ISR systems designed to support network-centric warfare are typically 
large, heterogeneous, distributed systems-of-systems (SoS). The individual systems 
making up a C4ISR system-of-systems (i.e., the component systems) may have each 
been developed for different contexts of use and subjected to different sets of con-
straints than those of the system-of-systems. When assembled together as a SoS, these 
component systems are expected to work together to provide emergent services, that 
is, services that cannot be achieved by any of the systems working in isolation of one 
another.      

 
The need to support real-time retargeting and remote-fire has transformed modern 
C4ISR systems into real-time, reactive systems. Some of the component systems must 
continuously interact with their environment under tight time budgets. Both the inputs 
and outputs of these component systems must satisfy timing constraints imposed by 
the SoS requirements, which may not be present in the original functional and de-
pendability requirements1 of the component systems. 

 
Testing of a SoS necessitates an understanding of the SoS’s operating environment 
and the interactions between its component systems. Modern C4ISR systems require 
a new level of testing to discover emergent behaviors resulting from the composition 
of legacy and new elements or components, and to study the quality of the systems-
of-systems under different environmental conditions.  One needs to test the SoS for 
both desired behaviors and those behaviors that are undesired or unanticipated, all of 
which can only be assessed at the SoS level; that is, it is not possible to test each of 
the component systems in isolation of one another and then draw any conclusions 
about the emergent behaviors of the SoS.  

                                                           
1 We use the term “dependability” in this paper to refer to the spectrum of nonfunctional re-

quirements, such as those concerned with safety, reliability, security, performance, or quality 
of service. 
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In its purest form, black-box testing does not require any knowledge on the part of the 
tester of the design or implementation details of the software under test; test cases are 
derived from the system requirements specifications. The software is executed on test 
data and the output is compared with the expected output (via a test oracle). A dis-
crepancy indicates the presence of a fault in the system under test (SUT). Testing is a 
resource-intensive activity. The key questions to be answered when planning to con-
duct black-box testing, while keeping resource constraints in mind, are the following: 
 
• How will test cases be created? 
• How will test cases be exercised (i.e., run)? 
• How will the results of exercising the test cases be analyzed? 

Creating and exercising test cases, in addition to analyzing the results of exercising 
the test cases, can to a great extent be automated:  much of these tasks are mechanical 
in nature, the steps of which can be represented as sets of rules.  We contend that 
testing automation is necessary in order to assess large complex C4ISR SoS that may 
also be evolving at a relatively rapid rate, but testing automation is of little value if 
the formal model of the SoS’s operating environment2 is incorrect.  

Modeling is generally understood as crucial in the development of high-quality com-
plex software systems. Models provide developers with a means to gain insight into 
problems and solutions, select and use tools as appropriate, and manage complexity. 
For example, a common approach to verifying safety requirements involves develop-
ing two separate models: one for the SUT and the other for the environment (or 
equipment) under its control. The two models are then exercised in tandem to see if 
the simulation ends up in unknown hazardous states under normal operating condi-
tions and under various failure conditions [1]. However, models are often under-
utilized because it is not always clear whether modeling constructs can capture useful 
abstraction of a system and “current model development mechanisms do not facilitate 
timely creation and evolution of models” [7]. 

We suggest the following approach for creating and running test cases in automated 
black-box testing of real-time reactive systems (Figure 1). The model of the environ-
ment in the form of attributed event grammar (AEG) specifies the behavior of the 
environment in terms of events relevant from the point of view of the SUT; this 
grammar is used for random event trace generation. An event trace is a set of events 
with a certain structure. The generated event traces are not completely random since 
they fulfill constraints embedded in the environment model. Event attributes provide 
inputs to the SUT, and the event trace structure facilitates the necessary timing con-
straints. The test driver (e.g., a C program) can be derived from the given event trace.  

 

 

 

                                                           
2 In this paper we refer to the environment as everything outside the engineering design space, 

that is, everything outside the sphere of control of the SUT. 
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Figure 1. Black Box Testing Environment  

A lot of research has been done regarding test oracles and behavior monitoring of the 
SUT. It is common practice for engineers to describe system behaviors from an exter-
nal point of view using Unified Modeling Language (UML) use cases3 [12]. Natural 
language specifications of use case scenarios focus on the events and responses be-
tween the actors and the system. Event grammars and state machines are two com-
mon means for formalizing the environment models based on these system 
events/responses. Moreover, event grammars, which are text-based, have a smaller 
semantic distance from the use case scenarios than the state machines and hence are 
better suited to model environments described via use case scenarios. Behavior mod-
els based on event grammars can be designed for the SUT too, and used for runtime 
verification and monitoring. This technique may be used to automate the test result 
verification. Details can be found in previously published papers on event grammars 
for program testing, monitoring, and debugging automation [2], [3], and [4]  and will 
not be discussed in this paper. 

In this paper we demonstrate how expected SUT outputs could be incorporated into 
the environment model. This allows generated test cases to interact with the system 
and adjust the evolving event trace based on the results of that interaction. The envi-
ronment model can contain descriptions of hazardous states in which SUT could 
arrive. Thus it becomes possible to conduct experiments with the SUT in the simu-
lated environment and gather statistical data about the behavior of SUT in order to 
estimate operational effectiveness, safety and other dependability properties of the 
SUT. Furthermore, by changing the values of parameters of the environment model, 
for example adjusting frequencies of some events in the model, and running experi-
ments with the adjusted model, we can identify dependencies between environment 
parameters and the behavior of the system. Our approach is to integrate the SUT into 
the environment model, and to use this model for both testing of the SUT in the simu-
lated environment and assessing risks posed by the SUT. 

The approach to testing automation described in this paper may be applied to a wide 
range of reactive systems, including C4ISR and other domains, where environment 
models can be defined to specify typical scenarios and functional profiles. The first 
prototype of the AEG test driver generator has been implemented at NPS and used for 
several case studies. Parameters of the AEG model, such as probabilities of alterna-
tive events and iterations can be adjusted in order to generate both load testing and 
stress scenarios. While the AEG formalism can be used for specifying environment 

                                                           
3 According to [5], a UML use case is “a description of a set of sequences of actions, including 

variants, that a system performs that yields an observable result of value to an actor.”  An 
actor is “a coherent set of roles that users of use cases play when interacting with the use 
cases.”  
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models for any SUT, it is most effective for specifying test scenarios and generating 
large numbers of pseudo-random test drivers for reactive and real-time system auto-
mated testing. 

 

2. The environment model 

The notion of event is central to our approach. An event is any detectable action in 
the environment that could be relevant to the operation of the SUT. A keyboard but-
ton pressed by the user, a group of alarm sensors triggered by an intruder, a particular 
stage of a chemical reaction monitored by the system, and the detection of an enemy 
missile are examples of events. In our approach an event usually is a time interval, 
and has a beginning, an end, and duration. An event has attributes, such as type and 
timing attributes. 
 
There are two basic relations defined for events: precedence (PRECEDES) and in-
clusion (IN). Two events may be ordered, or one event may appear inside another 
event. The behavior of the environment can be represented as a set of events with 
these two basic relations defined for them (event trace). Usually event traces have a 
certain structure (or constraints) in a given environment. The basic relations define a 
partial order of events. Two events are not necessarily ordered, that is, they can hap-
pen concurrently. 
 
The structure of possible event traces can be specified by an event grammar. Here 
identifiers stand for event types, sequence denotes precedence of events, (…|…) de-
notes alternative, * means repetition zero or more times of ordered events, {a, b} 
denotes a set of two events a and b without an ordering relation between them, and 
{…}* denotes a set of zero or more events without an ordering relation between 
them. The rule A::= B C means that an event of the type A contains (IN relation) 
ordered events of types B and C correspondingly (PRECEDES relation). 
 
Example 1 (adapted from [16]). 

 
OfficeAlarmSystem::= { DoorMonitoring, WindowMonitoring } 

The OfficeAlarmSystem run is a set of two concurrent monitoring threads. 
 

DoorMonitoring::= DoorSensor * 
The DoorMonitoring is a composite event, which contains a sequence of ordered 

events of the type DoorSensor. 
 

WindowMonitoring::= WindowSensor * 
 

DoorSensor::= ( DoorClosed | DoorAlarm) 
The DoorSensor event may contain one of two possible alternatives. 
 

WindowSensor::= (WindowClosed | WindowAlarm) 
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This event grammar defines a set of possible event traces–a model of a certain envi-
ronment. The purpose is to use it as a production grammar for random event trace 
generation by traversing grammar rules and making random selections of alternatives 
and numbers of repetitions. 

 
 

3. Event attributes 

An event may have attributes associated with it. Each event type may have a different 
attribute set. Event grammar rules can be decorated with attribute evaluation rules. 
This is similar to the notion of traditional attribute grammar [15]. The /action/ is per-
formed immediately after the preceding event is completed. Events usually have tim-
ing attributes like begin_time, end_time, and duration. Some of those attributes can 
be defined in the grammar by appropriate actions, while others may be calculated by 
appropriate default rules. For example, for a sequence of two events, the begin time 
of the second event should be generated larger than the end time of the preceding 
event. 
 
The interface with the SUT can be specified by an action that sends input values to 
the SUT. This may be a subroutine in a common programming language like C that 
hides the necessary wrapping code. In the following example of a car-race monitoring 
system, we assume that SUT’s sensors should receive a time of each car’s start, Lap, 
finish events, and in the case when the car drops out from the race, the time of 
drop_out event from an appropriate test wrapper subroutines 
send_start(),send_intermediate(), send_finished(), and send_drop_out (), correspond-
ingly. 
 
Example 2. 

 
CarRace::=  {  /Car.id := unique_id()/ Car }* (<=10) 

 /CarRace.final_count:= Number( Car, such that Car.completed)/ 
 

The attribute id of the event Car is assigned a value before the event appears on the 
trace, that is, it is propagated from the parent event CarRace. The (<=10) guard sets 
the upper limit for the number of events in the {…}* iterator. The Number aggregate 
operation provides the number of Car events satisfying the condition within the scope 
of {…}* iterator. 

  
Car ::=  start / send_start(Car.id, start.begin_time);  Car.completed := True/ 

 Lap* (=5) 
 When(Car.completed)   ( finish   /send_finished(Car.id, finish.end_time)/ ) 
 

The When guard terminates generation of the following event, finish, if the guard 
condition, Car.completed, becomes False. The (=5) guard sets the number of events 
in the iterator.  
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Lap ::=  (    single_loop / send_intermediate(Car.id, single_loop.begin_time)/  | 

       drop_out     / ENCLOSING Car.completed := False; 
    send_drop_out (Car.id, drop_out.end_time); 
    BREAK / 
 ) 
 

The ENCLOSING construct provides access to the attributes of parent events. The 
BREAK action terminates the enclosing iteration. Attributes can be both inherited and 
synthesized [15].  We assume that all attribute evaluations are accomplished in a 
single pass. The AEG in Example 2 can be used in order to generate event traces with 
more constraints. In addition, some events in the generated trace will have attribute 
values obtained from the actions embedded in the grammar and send actions indicat-
ing that certain inputs should be fed into the SUT immediately after the preceding 
event. 
 

4. Test generation 

The purpose of the attribute event grammar discussed above is to provide a vehicle 
for generating event traces. Iterations can be constrained by use of guards. For alter-
natives we can provide the probability of selecting an alternative.  

 
Example 3. 

 
Lap ::=      (  p(0.8)  single_loop  

/ send_intermediate(Car.id, single_loop.begin_time)/    | 
         p(0.2)  drop_out  

/ ENCLOSING Car.completed := False; 
    send_drop_out (Car.id, drop_out.end_time); 
    BREAK / 
 ) 

Probabilities assigned to the alternatives determine the frequency of corresponding 
event generation. 
 
Merging together Examples 2 and 3, we obtain a model of a CarRace and are in posi-
tion to generate any number of scenarios. Each event trace will satisfy the constraints 
imposed by the event grammar. Some events are accompanied by the send action and 
have the timing attributes calculated during the trace generation. Such a trace could 
be transformed into a test driver (no pun intended) which will feed the SUT with the 
values according to the timing constraints. From the test generation point of view, the 
event trace is just a “scaffold” for determining the sequence and timing for the send 
actions which provide actual inputs for the SUT. 
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4.1. SUT outputs incorporated into the environment model 

The behavior of the environment can be affected by the outputs from the SUT. The 
following (oversimplified) example of a missile defense system demonstrates how to 
incorporate an interaction with the SUT into AEG. We assume the SUT tracks the 
launched missile movement by receiving data from a radar sensor 
(send_radar_signal() action in the model simulates radar sensor inputs to the SUT), 
and at a certain moment makes a decision to fire an anti-missile (i.e., interceptor) by 
generating an output to a corresponding actuator ( SUT_launch_interception() ). 
 
The catch construct represents an external event generated at runtime by SUT. The 
external event listener is active during the execution of a test driver obtained from the 
generated event trace. This particular external event is broadcast to all corresponding 
event listeners. The following event grammar specifies a particular set of scenarios 
for testing purposes. 

 
Example 4. 
 
Attack::= { Missile_launch } *  

The Attack event contains several parallel Missile_launch events. 
 
Missile_launch::= Boost_stage  

/ Middle_stage.completed := True/  Middle_stage    
When(Middle_stage.completed) Boom 

 
The Boom event (which happens if the interception attempts have failed) represents 
an environment event, which the SUT in this case should try to avoid. 

 
Middle_stage::= ( move | 

catch   SUT_ launch_interception(hit_coordinates) 
 When(hit_coordinates == Middle_stage .coordinates ) 
 [ p(0.1) interception 
   / Middle_stage.completed := False; 
             send_hit_input(Middle_stage .coordinates); 
                   Break /   ]  

 ) * 
 

The sequence of move events within Middle_stage event may be interrupted by re-
ceiving an external event from the SUT. This will suspend the move event sequence 
and will either continue with event interception (with probability 0.1), which simu-
lates the missile-interception event triggered by the SUT, followed by the Break 
command, which terminates the event iteration, or will resume the move sequence. 
This model allows several interception attempts through the same missile launch 
event. For simplicity it is assumed that there is no delay between receiving the exter-
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nal event SUT_launch_interception(hit_coordinates) and the possible interception 
event. 
  
move ::= /adjust( ENCLOSING Middle_stage .coordinates) ;  

         send_radar_signal(ENCLOSING Middle_stage.coordinates); 
           move.duration:= 1 sec / 

 
This rule provides attribute calculations and sends an input to the SUT. In general, 
external events (i.e., events generated by the SUT) may be broadcasted to several 
event listeners in the AEG, or may be declared as exclusive and will be consumed by 
just one of the listeners. It may happen that there is not a listener available when an 
external event arrives. This usually indicates presence of an error in the environment 
model and can be detected and reported at the test execution time. To alleviate this 
problem, AEG may contain a mechanism similar to an exception handler for process-
ing external events which have missed regular event listeners. 
 
 
5. Assessment of Operational Effectiveness and Safety 

As mentioned in Section 1, many of the component systems of modern C4ISR sys-
tems have to continuously interact with their environment and control other weapon 
systems under tight timing constraints, making operational effectiveness and safety 
top requirements of modern C4ISR systems. Our approach to modeling operational 
effectiveness and system safety relies on modeling operational and safety hazards.4  
We use environment models to exercise the SUT so that we can assess the effects of 
each type of known operational or safety hazard will have on the operational effec-
tiveness or safety of the SUT.  

An environment model may contain events and attributes that could not be derived 
from the SUT model itself. In the previous example, the Boom event (in this example 
a mishap attributable to an operational hazard) occurs in certain scenarios depending 
on the SUT outputs received by the test driver and random choices determined by the 
given probabilities. From the point of view of the SUT, the Boom event is a highly 
undesirable. 
 
The data gathered from running a statistically significant number of (automatically 
generated) tests provides some approximation for the risk of getting to this hazardous 
state and thus a measure of the operational effectiveness (e.g., hit-to-kill rate for bal-
listic missile interception) of the SUT. This becomes a constructive process of per-
forming experiments with SUT behavior within the given environment model. 
 

                                                           
4 Safety hazards are those conditions that can result in mishaps (i.e., losses) by actions of our 

systems.  An example of a safety hazard is death or injury to shipboard or friendly personnel 
due to premature detonation of a missile warhead.  In contrast, operational hazards are mis-
haps inflicted by outside systems, particularly hostile forces.  For example, failure of the 
missile or other weapon to engage and destroy an incoming threat is an operational hazard. 
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We can do a qualitative analysis as well and ask questions like “what has contributed 
to this outcome?” We can change some probabilities in the environment model, or 
change some parameters in the SUT and repeat the whole set of tests. If the frequency 
of reaching a hazardous state changes, we can answer the question asked. These kinds 
of experiments with model parameters can be done automatically in a systematic way. 
 
Example 5. 

 
Attack::= { Missile_launch } * (<=N) 

 
Missile_launch::= boost   Middle_stage   Boom 

 
Middle_stage::= ( move | 

 catch SUT_output(hit_coordinates)    
[ p(p1) interception  

/ send_hit_input(Middle_stage .coordinates); 
Break  /  ] 

)* 
 
Experimenting with increasing or decreasing the number of missile launches N and 
probability of interception p1, we can determine what impact those parameters have 
on the probability of hazardous outcome, and find thresholds for SUT behavior in 
terms of N and p1 values. 

Environment models for realistic domains will have a significant number of pa-
rameters. Exhaustive testing of all combinations of parameter values is not pratical. 
Instead, we apply the methodology in a manner similar to that employed in combina-
torial testing [5], [6]. Rather than examine all possible combinations of parameter 
values within certain intervals, our strategy is to use the test generation to try to cover 
all possible pairs of parameter values; by doing so we can significantly reduce the 
amount of required testing. Experience with combinatorial testing for data-driven 
applications demonstrates that such reduced test suites still provide a reasonable cov-
erage in terms of error detection. 
 

6. Test Code Generator  

The environment model defined by AEG can be used to generate random event 
traces, where events will have attribute values attached, including time attributes. The 
events can be sorted according to the timing attributes and converted into a test 
driver, which feeds the SUT with inputs and captures SUT outputs. The functionality 
of this generated test driver is limited to feeding the SUT inputs and receiving outputs 
and may be implemented as an efficient C or even assembly language program that 
meets strict real-time requirements. Only send and catch actions obtained from the 
event trace are needed to construct the test driver; the rest of events in the event trace 
are used as “scaffolds” to obtain the ordering, timing and other attributes of these 
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actions. The first prototype of the automatic test driver generator from AEG environ-
ment models has been implemented at NPS. The generator takes as input the AEG 
model and outputs random event traces. Necessary actions are then extracted from the 
trace and assembled into a test driver in the C programming language. 

 

Environment 
model 

Generator 
Test driver  

SUT 

Run time 
monitor 

(test oracle) 

Figure 2. The architecture of automated test generator 
 

The main advantages of the outlined approach are as follows: 
 

• Environment model specified by AEG provides for automated generation of a 
large number of random (but satisfying the model constraints) test drivers. 

• It addresses the regression testing problem:  generated test drivers can be saved 
and reused. 

• The testing tool can be adjusted to the changing requirements by adjusting the 
event grammar. 

• The generated test driver contains only a sequence of calls to the SUT, external 
event listeners for receiving the outputs from SUT, and time delays where needed to 
fulfill timing constraints. Hence it is quite efficient and could be used for real-time 
test cases. 

• Different environment models for different purposes can be designed, for exam-
ple, for testing extreme scenarios by increasing probabilities of certain events.  

• Experiments with the environment model running with the SUT provide a con-
structive method for quantitative and qualitative software risk assessment. 

• Environment models can be designed in early stages, before the system design is 
complete and can be used as an environment simulation tool for tuning the require-
ments and prototyping efforts. The generated event traces can be considered as use 
cases that may be used for requirements specification on early stages of system de-
sign. 
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7. Related and future work 

The use of context-free grammars for test generation has been discussed in the re-
search literature for a long time, in particular to check compiler implementation (e.g., 
see [14]). [13] provides an outlook in the use of enhanced context-free grammars for 
test data generation. 

 
Significant work has been done on automated test generation from the formal system 
specifications, such as in the form of finite state machines [19], [17], StateCharts [9], 
timed automata [11], hybrid automata [18], or UML design specifications [10]. This 
could be regarded as a white-box approach on different levels of abstraction for SUT 
specification, often targeting some kind of branch coverage criteria for the formal 
specification under consideration. Our approach supplements these efforts and differs 
in the emphasis on modeling the environment of the reactive SUT, treating the SUT 
as a black box, as opposed to modeling the SUT itself. We recommend the use of 
attribute event grammars as a framework for random test case generation. It may be 
worth mentioning that the AEG branch coverage criteria may be of interest as a met-
ric of the suggested method. 

 
Some directions for future work include the following topics: 
 
• In order to feed the generated inputs from the test driver to the SUT and catch 
SUT outputs of interest for the model, a special set of wrappers or bridges should be 
provided. 

• The test driver generator can be designed to enforce grammar branch coverage to 
ensure that all grammar alternatives have been traversed. 

• The generated test driver can interact with the test oracle or the run-time monitor 
to support the integrity of the testing process. 

• The suggested tool supports automated software risk assessment, both quantita-
tive and qualitative, by automatically generating large numbers of randomly gener-
ated tests. It can gather the statistics of reaching hazardous states and can perform a 
series of targeted experiments to determine dependencies of test results on the model 
parameters, such as frequencies of specific types of events. 
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C4ISR Net-centric System-of-
Systems (SoS) Characteristics

Typically Large, heterogeneous, distributed 
Contains time-critical, safety-critical, reactive 
component systems

Evolving
Includes legacy systems as well as systems 
under development
Integrate component systems work together to 
provide greater capability than that of 
component systems 
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Net-centric SoS Software
Testing Challenges

Emergent behaviors (both desirable and 
undesirable) can only be observed from the 
interactions between the SoS and its 
operating environment and the interactions 
between its component systems

Good environment models are essential 
for testing SoS software
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Black Box Testing
Environment

 

System 
Under Test

(SUT) 

Outputs =  Expected Outputs?Inputs

The SUT may be a complex reactive 
real-time C4ISR system

sensors actuators
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Black Box Testing (cont’d)

The main problems:
How to create test cases
How to run a test case
How to verify the results of a test run
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Testing methodology 
(How to create test cases)

Three possible approaches:
Test cases should be carefully designed
using “white box” (e.g.,  branch coverage) 
or “black box” (e.g., equivalence partition, 
boundary conditions) methods. This is like 
“sharp-shooting” for bugs…
Test cases may be generated at random. 
This is like a “machine gun” approach…
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Testing methodology (cont’d)

We suggest an “intelligent” random 
generation based on the environment 
models. 

It is best suited for a very special class of 
programs: reactive and real-time.
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The Model of Environment
An event is any detectable action that is 

executed in the “black box” environment
An event is a time interval
An event has attributes; e.g., type, timing 
attributes, etc.
There are two basic relations for events: 

precedence and inclusion
The behavior of environment can be 
represented as a set of events (event trace)
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The Model of Environment (cont’d)

Event traces are essentially use case 
scenarios

Examples of event traces can be useful for 
requirements engineering, prototyping, and
system documentation

Usually event traces have a certain 
structure (or constraints) in a given 
environment

Example: driving_a_car is an event that 
may be represented as a sequence of zero 
or more events of types
go_straight, turn_left, turn_right, or stop
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The Model of Environment (cont’d)

The structure of possible event traces for a 
given environment can be specified using 
event grammar

Example: 
driving_a_car ::=

go_straight
( go_straight | turn_left | turn_right ) * 
stop

go_straight ::=
( accelerate | decelerate | cruise )
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Sequential and Parallel Events
The precedence relation defines the partial 
order of events

Two events are not necessary ordered; i.e., they 
can happen concurrently

Example:
Shooting_Competition ::= {* Shooting *}
Shooting ::= (* Single_shot *)
Single_shot ::= Fire ( Hit | Miss )

This is a 
sequence

Those events 
may be parallel
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Visual Representation of 
Event Trace

Shooting_Competition

Shooting

Shooting

Single_shot

Single_shot

Fire Hit

Fire Miss

IN relation

PRECEDES relation

Fire Miss
(not all events and 
relations are shown…)



15

Event attributes
Shooting_Competition ::= /num = 0;/
{* /Shooting .id = num++; Shooting .ammo =10;/

Shooting *} (Rand[2..100])
Shooting ::= /Shooting .points = 0; /
(* Single_shot /Shooting .ammo -=1;/ *) 

While (Shooting .ammo > 0)
Single_shot ::=  Fire (

P(0.3) Hit /Single_shot. points = Rand[1..10];
ENCLOSING Shooting .points 

+= Single_shot .points; /
| P(0.7) Miss /Single_shot. points = 0;/ ) 
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Attribute Event Grammar
(AEG)

Intended to be used as a vehicle for 
automated random event trace generation

The AEG is traversed top-down and left-to-
right and only once to produce a particular 
event trace
Randomized decisions about what alternative 
to take and how many times to perform the 
iteration should be made during the trace 
generation
Attribute values are evaluated during this 
traversal
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Sending Input to 
System-Under-Test (SUT)

Single_shot ::=  Fire (
Hit /Single_shot. points = Rand[1..10];

ENCLOSING Shooting .points 
+= Single_shot .points;

SUT.shooting_score( 
ENCLOSING Shooting .id, Hit .time);/

| Miss /Single_shot. points = 0;/ ) 

AEG generated
Environment

Model

Shooting
Competition Scoring 

System (SUT)

SUT.shooting_score(…)
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Catching outputs from SUT

Attack ::= {* Missile_launch *} (<=N)
Missile_launch ::= 

boost_stage / middle_stage.completed = true;/
middle_stage When(middle_stage.completed)
boom

AEG generated
Environment

Model

Missile Defense
System (SUT)

SUT.input(…)

intercept_launched(…)
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Catching outputs from SUT
(cont’d)

middle_stage ::= 
(* CATCH intercept_launched (hit_coordinates) 

-- this external event intercepts SUT output
When (hit_coordinates == middle_stage .coordinates )

[ P(p1) hard_hit
/ middle_stage.completed= false;
SUT.input(middle_stage .coordinates);
-- this simulates SUT sensor input /

Break; -- breaks the iteration ]  
OTHERWISE move *)
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Catching outputs from SUT
(cont’d)

move ::= 
/adjust (ENCLOSING middle_stage .coordinates) ; 
SUT.input( 

ENCLOSING middle_stage .coordinates);
-- this simulates SUT sensor input

DELAY(50 msec); /
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Software Safety Assessment

The environment model can contain 
description of hazardous states in which 
system could arrive, and which can not be 
easily retrieved from SUT requirements 
specifications 

For example, the boom event will occur in 
certain scenarios depending on the SUT outputs 
received by the test driver and random choices 
determined by the given probabilities
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Software Safety Assessment
(cont’d)

If we run large enough number of 
(automatically generated) tests, the statistics 
gathered gives some approximation for the 
risk of getting to the hazardous state. 
By varying the probabilities in the 
environment model, or changing some 
parameters in the SUT and repeating the 
whole set of tests in a systematic way, it is 
possible to answer questions, such as “what 
has contributed to this outcome?”
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Software Safety Assessment
(cont’d)

This becomes a very constructive process 
of performing experiments with SUT 
behavior within the given environment 
model
The process is supported by automated 
test case generation and runtime 
monitoring of test output
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How it works

Environment 
model 

represented as 
an event 
grammar 

Generator 

Test driver  
(in C or assembly 

language) 

SUT 

Run time 
monitor 

How to create 
test cases

How to run test 
case

How to monitor 
the results
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Conclusion
The main advantage of the proposed 
approach

Whole testing process can be automated
The AEG formalism provides powerful 
high-level abstractions for environment 
modeling
AEG is well structured, hierarchical, and 
scalable
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Conclusion (cont’d)

It is possible to run many more test cases 
with better chances to succeed in exposing 
an error
It addresses the regression testing
problem – generated test drivers can be 
saved and reused.
The environment model itself is an asset 
and could be reused
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