
2006 CCRTS
The State of the Art and the State of the Practice

Title of Paper: New Directions in C2 Software Quality Assurance Automa-

tion Based on Executable Environment Models

Submission #: C-125

Topics: C2 Concepts and Organizations, C2 Analysis, C2 Modeling

and Simulation

Authors: Mikhail Auguston, James Bret Michael, Man-Tak Shing,

Point of Contact: Mikhail Auguston

Name of Organization: Naval Postgraduate School

Complete Address: Department of Computer Science, Naval Postgraduate

School, 833 Dyer Road, Monterey, California, 93943-5118,
USA

Telephone/Fax: 831-656-2607 / 831-656-2814

Email: maugusto@nps.edu

 1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
New Directions in C2 Software Quality Assurance Automation Based on
Executable Environment Models

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Computer Science,833 Dyer
Road,Monterey,CA,93943-5118

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

New Directions in C2 Software Quality Assurance
Automation Based on Executable Environment Models

Mikhail Auguston, James Bret Michael, Man-Tak Shing

Naval Postgraduate School, Department of Computer Science, Monterey, CA USA
{maugusto,bmichael,shing}@nps.edu

Abstract. This paper presents some concepts, principles, and techniques for automated testing
of real-time reactive software systems based on attributed event grammar (AEG) modeling of
the environment in which a system will operate. AEG provides a uniform approach for auto-
matic test generation, execution, and analysis. Quantitative and qualitative assessment of the
system comprised of the software under test and its interaction with the environment, can be
performed based on statistics gathered during automatic test execution within an environment
model.

1. Challenges to C4ISR system software testing
Modern C4ISR systems designed to support network-centric warfare are typically
large, heterogeneous, distributed systems-of-systems (SoS). The individual systems
making up a C4ISR system-of-systems (i.e., the component systems) may have each
been developed for different contexts of use and subjected to different sets of con-
straints than those of the system-of-systems. When assembled together as a SoS, these
component systems are expected to work together to provide emergent services, that
is, services that cannot be achieved by any of the systems working in isolation of one
another.

The need to support real-time retargeting and remote-fire has transformed modern
C4ISR systems into real-time, reactive systems. Some of the component systems must
continuously interact with their environment under tight time budgets. Both the inputs
and outputs of these component systems must satisfy timing constraints imposed by
the SoS requirements, which may not be present in the original functional and de-
pendability requirements1 of the component systems.

Testing of a SoS necessitates an understanding of the SoS’s operating environment
and the interactions between its component systems. Modern C4ISR systems require
a new level of testing to discover emergent behaviors resulting from the composition
of legacy and new elements or components, and to study the quality of the systems-
of-systems under different environmental conditions. One needs to test the SoS for
both desired behaviors and those behaviors that are undesired or unanticipated, all of
which can only be assessed at the SoS level; that is, it is not possible to test each of
the component systems in isolation of one another and then draw any conclusions
about the emergent behaviors of the SoS.

1 We use the term “dependability” in this paper to refer to the spectrum of nonfunctional re-

quirements, such as those concerned with safety, reliability, security, performance, or quality
of service.

 2

In its purest form, black-box testing does not require any knowledge on the part of the
tester of the design or implementation details of the software under test; test cases are
derived from the system requirements specifications. The software is executed on test
data and the output is compared with the expected output (via a test oracle). A dis-
crepancy indicates the presence of a fault in the system under test (SUT). Testing is a
resource-intensive activity. The key questions to be answered when planning to con-
duct black-box testing, while keeping resource constraints in mind, are the following:

• How will test cases be created?
• How will test cases be exercised (i.e., run)?
• How will the results of exercising the test cases be analyzed?

Creating and exercising test cases, in addition to analyzing the results of exercising
the test cases, can to a great extent be automated: much of these tasks are mechanical
in nature, the steps of which can be represented as sets of rules. We contend that
testing automation is necessary in order to assess large complex C4ISR SoS that may
also be evolving at a relatively rapid rate, but testing automation is of little value if
the formal model of the SoS’s operating environment2 is incorrect.

Modeling is generally understood as crucial in the development of high-quality com-
plex software systems. Models provide developers with a means to gain insight into
problems and solutions, select and use tools as appropriate, and manage complexity.
For example, a common approach to verifying safety requirements involves develop-
ing two separate models: one for the SUT and the other for the environment (or
equipment) under its control. The two models are then exercised in tandem to see if
the simulation ends up in unknown hazardous states under normal operating condi-
tions and under various failure conditions [1]. However, models are often under-
utilized because it is not always clear whether modeling constructs can capture useful
abstraction of a system and “current model development mechanisms do not facilitate
timely creation and evolution of models” [7].

We suggest the following approach for creating and running test cases in automated
black-box testing of real-time reactive systems (Figure 1). The model of the environ-
ment in the form of attributed event grammar (AEG) specifies the behavior of the
environment in terms of events relevant from the point of view of the SUT; this
grammar is used for random event trace generation. An event trace is a set of events
with a certain structure. The generated event traces are not completely random since
they fulfill constraints embedded in the environment model. Event attributes provide
inputs to the SUT, and the event trace structure facilitates the necessary timing con-
straints. The test driver (e.g., a C program) can be derived from the given event trace.

2 In this paper we refer to the environment as everything outside the engineering design space,

that is, everything outside the sphere of control of the SUT.

 3

System
Under Test

(SUT)

Outputs = Expected Outputs? Inputs

sensors actua-
tors

Environment

Figure 1. Black Box Testing Environment

A lot of research has been done regarding test oracles and behavior monitoring of the
SUT. It is common practice for engineers to describe system behaviors from an exter-
nal point of view using Unified Modeling Language (UML) use cases3 [12]. Natural
language specifications of use case scenarios focus on the events and responses be-
tween the actors and the system. Event grammars and state machines are two com-
mon means for formalizing the environment models based on these system
events/responses. Moreover, event grammars, which are text-based, have a smaller
semantic distance from the use case scenarios than the state machines and hence are
better suited to model environments described via use case scenarios. Behavior mod-
els based on event grammars can be designed for the SUT too, and used for runtime
verification and monitoring. This technique may be used to automate the test result
verification. Details can be found in previously published papers on event grammars
for program testing, monitoring, and debugging automation [2], [3], and [4] and will
not be discussed in this paper.

In this paper we demonstrate how expected SUT outputs could be incorporated into
the environment model. This allows generated test cases to interact with the system
and adjust the evolving event trace based on the results of that interaction. The envi-
ronment model can contain descriptions of hazardous states in which SUT could
arrive. Thus it becomes possible to conduct experiments with the SUT in the simu-
lated environment and gather statistical data about the behavior of SUT in order to
estimate operational effectiveness, safety and other dependability properties of the
SUT. Furthermore, by changing the values of parameters of the environment model,
for example adjusting frequencies of some events in the model, and running experi-
ments with the adjusted model, we can identify dependencies between environment
parameters and the behavior of the system. Our approach is to integrate the SUT into
the environment model, and to use this model for both testing of the SUT in the simu-
lated environment and assessing risks posed by the SUT.

The approach to testing automation described in this paper may be applied to a wide
range of reactive systems, including C4ISR and other domains, where environment
models can be defined to specify typical scenarios and functional profiles. The first
prototype of the AEG test driver generator has been implemented at NPS and used for
several case studies. Parameters of the AEG model, such as probabilities of alterna-
tive events and iterations can be adjusted in order to generate both load testing and
stress scenarios. While the AEG formalism can be used for specifying environment

3 According to [5], a UML use case is “a description of a set of sequences of actions, including

variants, that a system performs that yields an observable result of value to an actor.” An
actor is “a coherent set of roles that users of use cases play when interacting with the use
cases.”

 4

models for any SUT, it is most effective for specifying test scenarios and generating
large numbers of pseudo-random test drivers for reactive and real-time system auto-
mated testing.

2. The environment model

The notion of event is central to our approach. An event is any detectable action in
the environment that could be relevant to the operation of the SUT. A keyboard but-
ton pressed by the user, a group of alarm sensors triggered by an intruder, a particular
stage of a chemical reaction monitored by the system, and the detection of an enemy
missile are examples of events. In our approach an event usually is a time interval,
and has a beginning, an end, and duration. An event has attributes, such as type and
timing attributes.

There are two basic relations defined for events: precedence (PRECEDES) and in-
clusion (IN). Two events may be ordered, or one event may appear inside another
event. The behavior of the environment can be represented as a set of events with
these two basic relations defined for them (event trace). Usually event traces have a
certain structure (or constraints) in a given environment. The basic relations define a
partial order of events. Two events are not necessarily ordered, that is, they can hap-
pen concurrently.

The structure of possible event traces can be specified by an event grammar. Here
identifiers stand for event types, sequence denotes precedence of events, (…|…) de-
notes alternative, * means repetition zero or more times of ordered events, {a, b}
denotes a set of two events a and b without an ordering relation between them, and
{…}* denotes a set of zero or more events without an ordering relation between
them. The rule A::= B C means that an event of the type A contains (IN relation)
ordered events of types B and C correspondingly (PRECEDES relation).

Example 1 (adapted from [16]).

OfficeAlarmSystem::= { DoorMonitoring, WindowMonitoring }

The OfficeAlarmSystem run is a set of two concurrent monitoring threads.

DoorMonitoring::= DoorSensor *
The DoorMonitoring is a composite event, which contains a sequence of ordered

events of the type DoorSensor.

WindowMonitoring::= WindowSensor *

DoorSensor::= (DoorClosed | DoorAlarm)
The DoorSensor event may contain one of two possible alternatives.

WindowSensor::= (WindowClosed | WindowAlarm)

 5

This event grammar defines a set of possible event traces–a model of a certain envi-
ronment. The purpose is to use it as a production grammar for random event trace
generation by traversing grammar rules and making random selections of alternatives
and numbers of repetitions.

3. Event attributes

An event may have attributes associated with it. Each event type may have a different
attribute set. Event grammar rules can be decorated with attribute evaluation rules.
This is similar to the notion of traditional attribute grammar [15]. The /action/ is per-
formed immediately after the preceding event is completed. Events usually have tim-
ing attributes like begin_time, end_time, and duration. Some of those attributes can
be defined in the grammar by appropriate actions, while others may be calculated by
appropriate default rules. For example, for a sequence of two events, the begin time
of the second event should be generated larger than the end time of the preceding
event.

The interface with the SUT can be specified by an action that sends input values to
the SUT. This may be a subroutine in a common programming language like C that
hides the necessary wrapping code. In the following example of a car-race monitoring
system, we assume that SUT’s sensors should receive a time of each car’s start, Lap,
finish events, and in the case when the car drops out from the race, the time of
drop_out event from an appropriate test wrapper subroutines
send_start(),send_intermediate(), send_finished(), and send_drop_out (), correspond-
ingly.

Example 2.

CarRace::= { /Car.id := unique_id()/ Car }* (<=10)

 /CarRace.final_count:= Number(Car, such that Car.completed)/

The attribute id of the event Car is assigned a value before the event appears on the
trace, that is, it is propagated from the parent event CarRace. The (<=10) guard sets
the upper limit for the number of events in the {…}* iterator. The Number aggregate
operation provides the number of Car events satisfying the condition within the scope
of {…}* iterator.

Car ::= start / send_start(Car.id, start.begin_time); Car.completed := True/

 Lap* (=5)
 When(Car.completed) (finish /send_finished(Car.id, finish.end_time)/)

The When guard terminates generation of the following event, finish, if the guard
condition, Car.completed, becomes False. The (=5) guard sets the number of events
in the iterator.

 6

Lap ::= (single_loop / send_intermediate(Car.id, single_loop.begin_time)/ |

 drop_out / ENCLOSING Car.completed := False;
 send_drop_out (Car.id, drop_out.end_time);
 BREAK /
)

The ENCLOSING construct provides access to the attributes of parent events. The
BREAK action terminates the enclosing iteration. Attributes can be both inherited and
synthesized [15]. We assume that all attribute evaluations are accomplished in a
single pass. The AEG in Example 2 can be used in order to generate event traces with
more constraints. In addition, some events in the generated trace will have attribute
values obtained from the actions embedded in the grammar and send actions indicat-
ing that certain inputs should be fed into the SUT immediately after the preceding
event.

4. Test generation

The purpose of the attribute event grammar discussed above is to provide a vehicle
for generating event traces. Iterations can be constrained by use of guards. For alter-
natives we can provide the probability of selecting an alternative.

Example 3.

Lap ::= (p(0.8) single_loop

/ send_intermediate(Car.id, single_loop.begin_time)/ |
 p(0.2) drop_out

/ ENCLOSING Car.completed := False;
 send_drop_out (Car.id, drop_out.end_time);
 BREAK /
)

Probabilities assigned to the alternatives determine the frequency of corresponding
event generation.

Merging together Examples 2 and 3, we obtain a model of a CarRace and are in posi-
tion to generate any number of scenarios. Each event trace will satisfy the constraints
imposed by the event grammar. Some events are accompanied by the send action and
have the timing attributes calculated during the trace generation. Such a trace could
be transformed into a test driver (no pun intended) which will feed the SUT with the
values according to the timing constraints. From the test generation point of view, the
event trace is just a “scaffold” for determining the sequence and timing for the send
actions which provide actual inputs for the SUT.

 7

4.1. SUT outputs incorporated into the environment model

The behavior of the environment can be affected by the outputs from the SUT. The
following (oversimplified) example of a missile defense system demonstrates how to
incorporate an interaction with the SUT into AEG. We assume the SUT tracks the
launched missile movement by receiving data from a radar sensor
(send_radar_signal() action in the model simulates radar sensor inputs to the SUT),
and at a certain moment makes a decision to fire an anti-missile (i.e., interceptor) by
generating an output to a corresponding actuator (SUT_launch_interception()).

The catch construct represents an external event generated at runtime by SUT. The
external event listener is active during the execution of a test driver obtained from the
generated event trace. This particular external event is broadcast to all corresponding
event listeners. The following event grammar specifies a particular set of scenarios
for testing purposes.

Example 4.

Attack::= { Missile_launch } *

The Attack event contains several parallel Missile_launch events.

Missile_launch::= Boost_stage

/ Middle_stage.completed := True/ Middle_stage
When(Middle_stage.completed) Boom

The Boom event (which happens if the interception attempts have failed) represents
an environment event, which the SUT in this case should try to avoid.

Middle_stage::= (move |

catch SUT_ launch_interception(hit_coordinates)
 When(hit_coordinates == Middle_stage .coordinates)
 [p(0.1) interception
 / Middle_stage.completed := False;
 send_hit_input(Middle_stage .coordinates);
 Break /]

) *

The sequence of move events within Middle_stage event may be interrupted by re-
ceiving an external event from the SUT. This will suspend the move event sequence
and will either continue with event interception (with probability 0.1), which simu-
lates the missile-interception event triggered by the SUT, followed by the Break
command, which terminates the event iteration, or will resume the move sequence.
This model allows several interception attempts through the same missile launch
event. For simplicity it is assumed that there is no delay between receiving the exter-

 8

nal event SUT_launch_interception(hit_coordinates) and the possible interception
event.

move ::= /adjust(ENCLOSING Middle_stage .coordinates) ;

 send_radar_signal(ENCLOSING Middle_stage.coordinates);
 move.duration:= 1 sec /

This rule provides attribute calculations and sends an input to the SUT. In general,
external events (i.e., events generated by the SUT) may be broadcasted to several
event listeners in the AEG, or may be declared as exclusive and will be consumed by
just one of the listeners. It may happen that there is not a listener available when an
external event arrives. This usually indicates presence of an error in the environment
model and can be detected and reported at the test execution time. To alleviate this
problem, AEG may contain a mechanism similar to an exception handler for process-
ing external events which have missed regular event listeners.

5. Assessment of Operational Effectiveness and Safety

As mentioned in Section 1, many of the component systems of modern C4ISR sys-
tems have to continuously interact with their environment and control other weapon
systems under tight timing constraints, making operational effectiveness and safety
top requirements of modern C4ISR systems. Our approach to modeling operational
effectiveness and system safety relies on modeling operational and safety hazards.4
We use environment models to exercise the SUT so that we can assess the effects of
each type of known operational or safety hazard will have on the operational effec-
tiveness or safety of the SUT.

An environment model may contain events and attributes that could not be derived
from the SUT model itself. In the previous example, the Boom event (in this example
a mishap attributable to an operational hazard) occurs in certain scenarios depending
on the SUT outputs received by the test driver and random choices determined by the
given probabilities. From the point of view of the SUT, the Boom event is a highly
undesirable.

The data gathered from running a statistically significant number of (automatically
generated) tests provides some approximation for the risk of getting to this hazardous
state and thus a measure of the operational effectiveness (e.g., hit-to-kill rate for bal-
listic missile interception) of the SUT. This becomes a constructive process of per-
forming experiments with SUT behavior within the given environment model.

4 Safety hazards are those conditions that can result in mishaps (i.e., losses) by actions of our

systems. An example of a safety hazard is death or injury to shipboard or friendly personnel
due to premature detonation of a missile warhead. In contrast, operational hazards are mis-
haps inflicted by outside systems, particularly hostile forces. For example, failure of the
missile or other weapon to engage and destroy an incoming threat is an operational hazard.

 9

We can do a qualitative analysis as well and ask questions like “what has contributed
to this outcome?” We can change some probabilities in the environment model, or
change some parameters in the SUT and repeat the whole set of tests. If the frequency
of reaching a hazardous state changes, we can answer the question asked. These kinds
of experiments with model parameters can be done automatically in a systematic way.

Example 5.

Attack::= { Missile_launch } * (<=N)

Missile_launch::= boost Middle_stage Boom

Middle_stage::= (move |

 catch SUT_output(hit_coordinates)
[p(p1) interception

/ send_hit_input(Middle_stage .coordinates);
Break /]

)*

Experimenting with increasing or decreasing the number of missile launches N and
probability of interception p1, we can determine what impact those parameters have
on the probability of hazardous outcome, and find thresholds for SUT behavior in
terms of N and p1 values.

Environment models for realistic domains will have a significant number of pa-
rameters. Exhaustive testing of all combinations of parameter values is not pratical.
Instead, we apply the methodology in a manner similar to that employed in combina-
torial testing [5], [6]. Rather than examine all possible combinations of parameter
values within certain intervals, our strategy is to use the test generation to try to cover
all possible pairs of parameter values; by doing so we can significantly reduce the
amount of required testing. Experience with combinatorial testing for data-driven
applications demonstrates that such reduced test suites still provide a reasonable cov-
erage in terms of error detection.

6. Test Code Generator

The environment model defined by AEG can be used to generate random event
traces, where events will have attribute values attached, including time attributes. The
events can be sorted according to the timing attributes and converted into a test
driver, which feeds the SUT with inputs and captures SUT outputs. The functionality
of this generated test driver is limited to feeding the SUT inputs and receiving outputs
and may be implemented as an efficient C or even assembly language program that
meets strict real-time requirements. Only send and catch actions obtained from the
event trace are needed to construct the test driver; the rest of events in the event trace
are used as “scaffolds” to obtain the ordering, timing and other attributes of these

 10

actions. The first prototype of the automatic test driver generator from AEG environ-
ment models has been implemented at NPS. The generator takes as input the AEG
model and outputs random event traces. Necessary actions are then extracted from the
trace and assembled into a test driver in the C programming language.

Environment
model

Generator
Test driver

SUT

Run time
monitor

(test oracle)

Figure 2. The architecture of automated test generator

The main advantages of the outlined approach are as follows:

• Environment model specified by AEG provides for automated generation of a
large number of random (but satisfying the model constraints) test drivers.

• It addresses the regression testing problem: generated test drivers can be saved
and reused.

• The testing tool can be adjusted to the changing requirements by adjusting the
event grammar.

• The generated test driver contains only a sequence of calls to the SUT, external
event listeners for receiving the outputs from SUT, and time delays where needed to
fulfill timing constraints. Hence it is quite efficient and could be used for real-time
test cases.

• Different environment models for different purposes can be designed, for exam-
ple, for testing extreme scenarios by increasing probabilities of certain events.

• Experiments with the environment model running with the SUT provide a con-
structive method for quantitative and qualitative software risk assessment.

• Environment models can be designed in early stages, before the system design is
complete and can be used as an environment simulation tool for tuning the require-
ments and prototyping efforts. The generated event traces can be considered as use
cases that may be used for requirements specification on early stages of system de-
sign.

 11

7. Related and future work

The use of context-free grammars for test generation has been discussed in the re-
search literature for a long time, in particular to check compiler implementation (e.g.,
see [14]). [13] provides an outlook in the use of enhanced context-free grammars for
test data generation.

Significant work has been done on automated test generation from the formal system
specifications, such as in the form of finite state machines [19], [17], StateCharts [9],
timed automata [11], hybrid automata [18], or UML design specifications [10]. This
could be regarded as a white-box approach on different levels of abstraction for SUT
specification, often targeting some kind of branch coverage criteria for the formal
specification under consideration. Our approach supplements these efforts and differs
in the emphasis on modeling the environment of the reactive SUT, treating the SUT
as a black box, as opposed to modeling the SUT itself. We recommend the use of
attribute event grammars as a framework for random test case generation. It may be
worth mentioning that the AEG branch coverage criteria may be of interest as a met-
ric of the suggested method.

Some directions for future work include the following topics:

• In order to feed the generated inputs from the test driver to the SUT and catch
SUT outputs of interest for the model, a special set of wrappers or bridges should be
provided.

• The test driver generator can be designed to enforce grammar branch coverage to
ensure that all grammar alternatives have been traversed.

• The generated test driver can interact with the test oracle or the run-time monitor
to support the integrity of the testing process.

• The suggested tool supports automated software risk assessment, both quantita-
tive and qualitative, by automatically generating large numbers of randomly gener-
ated tests. It can gather the statistics of reaching hazardous states and can perform a
series of targeted experiments to determine dependencies of test results on the model
parameters, such as frequencies of specific types of events.

Acknowledgements

The research reported in this article was funded by a grant from the U.S. Missile
Defense Agency. The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright annotations thereon.

 12

References
[1] Atchison, B. M. and Lindsay, P. A. Safety validation of embedded control software using

Z animation, in Proc. Fifth Int. Symposium on High Assurance Systems Engineering,
IEEE (Albuquerque, N.M., Nov. 2000) pp. 228-237.

[2] Auguston, M. A language for debugging automation, in Chang, S. K., ed., in Proc. Sixth
Int. Conf. on Software Engineering & Knowledge Engineering, Skokie, Ill., Knowledge
Systems Inc. (Jurmala, Latvia, June 1994), pp. 108-115.

[3] Auguston, M. Lightweight semantics models for program testing and debugging automa-
tion, in Proc. Seventh Monterey Workshop: Modeling Software System Structures in a
Fastly Moving Scenario, (Santa Margherita Ligure, Italy, June 2000), pp. 23-31.

[4] Auguston, M., Jeffery, C., and Underwood, S. A framework for automatic debugging, in
Proc. of the Seventeenth Int. Conf. on Automated Software Engineering, IEEE (Edin-
burgh, Scotland, Sept. 2002), pp.217-222.

[5] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language User Guide.
[6] Burr, K. Combinatorial test techniques: Table-based automation, test Generation and code

coverage, in Proc. Int. Conf. on Software Testing, Analysis, and Review, Orange Park,
Fla.: Software Quality Engineering, Inc. (San Diego, Calif., Oct. 1998).

[7] Dalal, S.; Jain, A., Karunanithi, N., Leaton, J., and Lott, C. Model-based testing of a
highly programmable system, in Proc. Int. Symposium on Software Reliability Engineer-
ing, IEEE (Paderborn, Ger., Nov. 1998), pp. 174-179.

[8] France R. B., Ghosh, S., and Turk, D. Supporting effective software modeling, L'Objet
Software, Databases, Networks J. 9, 4 (2003): 11-30.

[9] Harel, D. and Gery, E. Executable object modeling with statecharts, in Proc. Eighteenth
Int. Conf. on Software Engineering, IEEE (Berlin, Ger., Mar. 1996), pp. 246-257.

[10] Hartmann, J. Vieira, M., Foster, H., and Ruder, A. UML-based test generation and execu-
tion, white paper, Siemens Corporate Research, Princeton, N.J., June 4, 2004.

[11] Hessel, A., Larsen, K. G., Nielsen, B., Pettersson, P., and Skou, A. Time-optimal real-time
test case generation using UPPAAL, in Lecture Notes in Compute Science, no. 2931
(Proc. Third Int. Workshop on Formal Approaches to Testing of Software), Berlin:
Springer-Verlag, 2004, pp. 114-130.

[12] Jacobson, I., Booch, G., and Rumbaugh, J. The Unified Software Development Process,
Addison-Wesley, Reading, MA, 1999.

[13] Maurer, P., Generating Test Data with Enhanced Context-free Grammars, IEEE Software,
July 1990, pp.50-55

[14] McKeeman, W. M., Differential testing for software, Digital Tech. J. 10, 1 (1998): 100-107.
[15] Paakki, J. Attribute grammar paradigms - A high-level methodology in language imple-

mentation, ACM Computing Surveys, 27, 2 (June 1995): 196-255.
[16] Sommerville, I. Software Engineering, Seventh Ed., Harlow, England: Addison-Wesley,

2004
[17] Tahat, L. H., Vaysburg, B., Korel, B., and Bader, A. J., Requirement-based automated

black-box test generation, in Proc. 25th Annual Int. Conf. on Computer Software and Ap-
plications, IEEE (Chicago, Ill., Oct. 2001), pp.489-495.

 13

[18] Tan, L., Kim, J., and Lee, I. Testing and monitoring model-based generated program,
Electronic Notes in Theoretical Computer Science, no. 89, issue 2, Berlin: Springer-
Verlag, 2003.

[19] Tan, Q. M. and Petrenko, A., Test generation for specifications modeled by input/output
automata, in Petrenko, A. and Yevtushenko, N., eds., Testing of Communicating Systems,
IFIP TC6 11th Int. Workshop on Testing Communicating Systems, Boston: Kluwer Aca-
demic Publishers (Tomsk, Russia, Aug. 1998), pp. 83-100.

 14

1

New Directions in C2
Software Quality Assurance

Automation

M. Auguston, J.B. Michael and M.T. Shing

Naval Postgraduate School

2

Acknowledgement and Disclaimer

The research was funded in part by a
grant from the U.S. Missile Defense
Agency.

The views and conclusions in this talk
are those of the authors and should
not be interpreted as necessarily
representing the official policies or
endorsements, either expressed or
implied, of the U.S. Government.

3

Outline
Challenges to C4ISR system software testing
Automated test generation based on
environment models
Software safety assessment
Conclusion

4

C4ISR Net-centric System-of-
Systems (SoS) Characteristics

Typically Large, heterogeneous, distributed
Contains time-critical, safety-critical, reactive
component systems

Evolving
Includes legacy systems as well as systems
under development
Integrate component systems work together to
provide greater capability than that of
component systems

5

Net-centric SoS Software
Testing Challenges

Emergent behaviors (both desirable and
undesirable) can only be observed from the
interactions between the SoS and its
operating environment and the interactions
between its component systems

Good environment models are essential
for testing SoS software

6

Black Box Testing
Environment

System
Under Test

(SUT)

Outputs = Expected Outputs?Inputs

The SUT may be a complex reactive
real-time C4ISR system

sensors actuators

7

Black Box Testing (cont’d)

The main problems:
How to create test cases
How to run a test case
How to verify the results of a test run

8

Testing methodology
(How to create test cases)

Three possible approaches:
Test cases should be carefully designed
using “white box” (e.g., branch coverage)
or “black box” (e.g., equivalence partition,
boundary conditions) methods. This is like
“sharp-shooting” for bugs…
Test cases may be generated at random.
This is like a “machine gun” approach…

9

Testing methodology (cont’d)

We suggest an “intelligent” random
generation based on the environment
models.

It is best suited for a very special class of
programs: reactive and real-time.

10

The Model of Environment
An event is any detectable action that is

executed in the “black box” environment
An event is a time interval
An event has attributes; e.g., type, timing
attributes, etc.
There are two basic relations for events:

precedence and inclusion
The behavior of environment can be
represented as a set of events (event trace)

11

The Model of Environment (cont’d)

Event traces are essentially use case
scenarios

Examples of event traces can be useful for
requirements engineering, prototyping, and
system documentation

Usually event traces have a certain
structure (or constraints) in a given
environment

Example: driving_a_car is an event that
may be represented as a sequence of zero
or more events of types
go_straight, turn_left, turn_right, or stop

12

The Model of Environment (cont’d)

The structure of possible event traces for a
given environment can be specified using
event grammar

Example:
driving_a_car ::=

go_straight
(go_straight | turn_left | turn_right) *
stop

go_straight ::=
(accelerate | decelerate | cruise)

13

Sequential and Parallel Events
The precedence relation defines the partial
order of events

Two events are not necessary ordered; i.e., they
can happen concurrently

Example:
Shooting_Competition ::= {* Shooting *}
Shooting ::= (* Single_shot *)
Single_shot ::= Fire (Hit | Miss)

This is a
sequence

Those events
may be parallel

14

Visual Representation of
Event Trace

Shooting_Competition

Shooting

Shooting

Single_shot

Single_shot

Fire Hit

Fire Miss

IN relation

PRECEDES relation

Fire Miss
(not all events and
relations are shown…)

15

Event attributes
Shooting_Competition ::= /num = 0;/
{* /Shooting .id = num++; Shooting .ammo =10;/

Shooting *} (Rand[2..100])
Shooting ::= /Shooting .points = 0; /
(* Single_shot /Shooting .ammo -=1;/ *)

While (Shooting .ammo > 0)
Single_shot ::= Fire (

P(0.3) Hit /Single_shot. points = Rand[1..10];
ENCLOSING Shooting .points

+= Single_shot .points; /
| P(0.7) Miss /Single_shot. points = 0;/)

16

Attribute Event Grammar
(AEG)

Intended to be used as a vehicle for
automated random event trace generation

The AEG is traversed top-down and left-to-
right and only once to produce a particular
event trace
Randomized decisions about what alternative
to take and how many times to perform the
iteration should be made during the trace
generation
Attribute values are evaluated during this
traversal

17

Sending Input to
System-Under-Test (SUT)

Single_shot ::= Fire (
Hit /Single_shot. points = Rand[1..10];

ENCLOSING Shooting .points
+= Single_shot .points;

SUT.shooting_score(
ENCLOSING Shooting .id, Hit .time);/

| Miss /Single_shot. points = 0;/)

AEG generated
Environment

Model

Shooting
Competition Scoring

System (SUT)

SUT.shooting_score(…)

18

Catching outputs from SUT

Attack ::= {* Missile_launch *} (<=N)
Missile_launch ::=

boost_stage / middle_stage.completed = true;/
middle_stage When(middle_stage.completed)
boom

AEG generated
Environment

Model

Missile Defense
System (SUT)

SUT.input(…)

intercept_launched(…)

19

Catching outputs from SUT
(cont’d)

middle_stage ::=
(* CATCH intercept_launched (hit_coordinates)

-- this external event intercepts SUT output
When (hit_coordinates == middle_stage .coordinates)

[P(p1) hard_hit
/ middle_stage.completed= false;
SUT.input(middle_stage .coordinates);
-- this simulates SUT sensor input /

Break; -- breaks the iteration]
OTHERWISE move *)

20

Catching outputs from SUT
(cont’d)

move ::=
/adjust (ENCLOSING middle_stage .coordinates) ;
SUT.input(

ENCLOSING middle_stage .coordinates);
-- this simulates SUT sensor input

DELAY(50 msec); /

21

Software Safety Assessment

The environment model can contain
description of hazardous states in which
system could arrive, and which can not be
easily retrieved from SUT requirements
specifications

For example, the boom event will occur in
certain scenarios depending on the SUT outputs
received by the test driver and random choices
determined by the given probabilities

22

Software Safety Assessment
(cont’d)

If we run large enough number of
(automatically generated) tests, the statistics
gathered gives some approximation for the
risk of getting to the hazardous state.
By varying the probabilities in the
environment model, or changing some
parameters in the SUT and repeating the
whole set of tests in a systematic way, it is
possible to answer questions, such as “what
has contributed to this outcome?”

23

Software Safety Assessment
(cont’d)

This becomes a very constructive process
of performing experiments with SUT
behavior within the given environment
model
The process is supported by automated
test case generation and runtime
monitoring of test output

24

How it works

Environment
model

represented as
an event
grammar

Generator

Test driver
(in C or assembly

language)

SUT

Run time
monitor

How to create
test cases

How to run test
case

How to monitor
the results

25

Conclusion
The main advantage of the proposed
approach

Whole testing process can be automated
The AEG formalism provides powerful
high-level abstractions for environment
modeling
AEG is well structured, hierarchical, and
scalable

26

Conclusion (cont’d)

It is possible to run many more test cases
with better chances to succeed in exposing
an error
It addresses the regression testing
problem – generated test drivers can be
saved and reused.
The environment model itself is an asset
and could be reused

	1. Challenges to C4ISR system software testing
	2. The environment model
	3. Event attributes
	4. Test generation
	4.1. SUT outputs incorporated into the environment model
	Middle_stage::= (move |
	catch SUT_ launch_interception(hit_coordinates)� When(hit_

	5. Assessment of Operational Effectiveness and Safety
	6. Test Code Generator
	7. Related and future work
	Acknowledgements
	References
	A125.pdf
	New Directions in C2 Software Quality Assurance Automation
	Acknowledgement and Disclaimer
	Outline
	C4ISR Net-centric System-of-Systems (SoS) Characteristics
	Net-centric SoS Software�Testing Challenges
	Black Box Testing
	Black Box Testing (cont’d)
	Testing methodology �(How to create test cases)
	Testing methodology (cont’d)
	The Model of Environment
	The Model of Environment (cont’d)
	The Model of Environment (cont’d)
	Sequential and Parallel Events
	Visual Representation of �Event Trace
	Event attributes
	Attribute Event Grammar�(AEG)
	Sending Input to �System-Under-Test (SUT)
	Catching outputs from SUT
	Catching outputs from SUT�(cont’d)
	Catching outputs from SUT�(cont’d)
	Software Safety Assessment
	Software Safety Assessment�(cont’d)
	Software Safety Assessment�(cont’d)
	How it works
	Conclusion
	Conclusion (cont’d)

