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Objectives 
To develop advanced multidisciplinary numerical simulation capabilities for aerospace vehicles 
with emphasis on highly accurate, massively parallel computational methods for Direct and Large-
Eddy simulation of turbulence, flow control, aero-acoustics and nonlinear fluid/structure 
interactions. These technical objectives directly support AFRL Air Vehicles Directorate’s 
Capability Focused Tech Investment in persistent ISR, Strike and Multi-Role Mobility thrusts. 

Progress 
During this reporting period, significant progress has been achieved in several research areas 
pertinent to the present task. These include: (i) flow control of external and internal flows 
employing plasma actuators, (ii) development and validation of a hybrid high-order RANS/ILES 
technique, (iii) investigation of the flow structure over non-slender delta wings and a generic 
UCAV configuration, and (iv) non-linear fluid-structure interactions on a highly flexible wing. 
Only some research highlights for plasma-based flow control are included in this summary. 
 
Control of Transitional and Turbulent Flows Using Plasma-Based Actuators 
Control of separated flows using simulated plasma (DBD) actuators was investigated. Since the 
flows are typically characterized by transition and turbulence, a high-fidelity three-dimensional 
viscous methodology is required. This high-end simulation technique is computationally intensive, 
and therefore, a first-principles fully-coupled approach of the plasma effects, even if available, 
becomes prohibitive. For this reason, at this stage, the plasma-induced body forces are represented 
using either a phenomenological model [1] or a loosely-coupled first-principles approach [2]. 
These methods represent respectively the averaged and instantaneous force introduced by the 
actuator in a specified plasma region above the device. Strategies for the effective control of 
separation were explored. Emphasis was placed on the greater importance of unsteady forcing 
rather than pure streamwise momentum injection as the primary control mechanism. With the 
exception of very low freestream velocities or very strong wall jet effects, transition/turbulence 
enhancements are found to be the dominant mechanism. The present emphasis also dictates the use 
of a high-fidelity three-dimensional computational approach capable of describing the impact of 
unsteady forcing on the spatio-temporal transition/turbulence structure. A comprehensive set of 
applications was considered, including suppression of wing stall, control of boundary layer 
transition on a plate, control of vortex breakdown over a delta wing, control of laminar separation 
over a ramp, and turbulent separation over a wall-mounted hump.  
 
Control of Wing Stall 
Control of the stalled flow past a NACA 0015 airfoil section was investigated [1]. The Mach 
number, chord Reynolds number and angle of attack were chosen as M = 0.1, Rec =45,000 and α = 
15o, respectively. This particular case was previously considered in Ref. [2]. However, in the 
present work, both pulsed co-flow and counter-flow actuators are used, and much smaller plasma 
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forces are prescribed in order to demonstrate control effectiveness by promoting transition and 
turbulence. The actuator origin was located at x/c = 0.024, just downstream of the mean boundary-
layer separation point for the baseline flow. The geometric parameters of the simulated plasma 
region, as well as the corresponding actuator strength (Dc), orientation and duty-cycle primary 
frequency are provided in Ref. [1]. 
 
The global structure of the baseline and controlled flow fields is shown in Fig. 1 in terms of 
streamwise velocity and spanwise vorticity contours. At this high incidence, the baseline flow is 
observed to be fully stalled. The time-averaged velocity contours (Fig. 1b) display a separation 
zone which extends significantly in the direction normal to the wing section.  Control of the stalled 
airfoil flow was investigated employing both steady and pulsed, as well as co-flow and counter-
flow DBD actuators. 
 
The use of a steady (i.e. continuous) co-flow actuator was first considered. Examination of the 
transient response of the flow following the onset of actuation indicated that, initially, a significant 
downstream displacement of the separation point takes place due to the actuator-induced 
streamwise wall jet. However, despite this beneficial transient effect, the flow eventually returns to 
a completely stalled condition (Figs. 1a,b). Comparison of the Cp-distributions and velocity 
profiles near midchord (x/c = 0.42) shows no significant improvement with control (Fig. 2). 
Therefore, steady actuation (modeled with the phenomenological approach) is found to be 
ineffective for the actuator strength parameters considered. It should be noted that for a value of Dc 
an order-of-magnitude larger, the simulated steady actuator was previously found [2] to fully 
attach the flow due to the formation of a very strong wall jet. The present results suggest that a 
steady actuator force of limited magnitude is not an effective means of flow control, and attempts 
to attach the boundary layer through pure streamwise momentum injection are therefore of limited 
applicability. 
 
In order to exploit the receptivity of the flow to unsteady disturbances, a pulsed co-flow actuator 
with a primary duty-cycle non-dimensional frequency St = fc/U = 4.0 was considered. As shown in 
Fig. 1, the pulsed actuation reattaches the separated flow. The mean surface pressure (Fig. 2) 
exhibits a well-defined suction peak, and the velocity profile near mid-chord displays a fully-
attached character. Examination of the instantaneous vorticity contours (Fig. 1c) indicates that the 
pulsed force engenders a rapid transition to turbulence of the initially laminar shear layer. 
 
In order to contrast the relative importance of transition and turbulence enhancement mechanisms 
relative to simple wall-jet momentum injection arguments, the impact of a counter-flow actuator 
was also explored. As shown in Fig. 1, a pulsed counter-flow actuator was found to be equally 
effective in eliminating stall. This control is again achieved by the rapid transition downstream of a 
small separation bubble generated by the counter-flow actuator. The pulsed counter-flow actuator 
was found to be even more effective when doubling the strength parameter, which further 
emphasizes the importance of unsteady forcing rather than momentum injection as the primary 
control mechanism. 
 
The effect of pulsing frequency was also considered for the counter-flow actuator with a fixed 
strength parameter. A comparison of the instantaneous flow fields obtained with the lowest (St = 
1.0) and highest (St = 8.0) pulsing frequencies is shown in Fig. 3. Although with St = 1.0 the flow 

2



 
 
 

begins to transition downstream of the actuator, the process is not as effective as for the case of 
high-frequency pulsing. With St = 8.0, the shear layer quickly breakdowns due to spanwise 
instabilities, and much higher values of vorticity are observed near the wing surface. In each cycle 
of the pulsing, a dynamic-stall-like vortex is generated near the leading edge downstream of the 
actuator. For the higher frequency, this leading-edge vortex forms closer to the actuator and to the 
airfoil surface. The actuator-induced vortex is observed to be initially coherent but quickly 
breakdowns due to spanwise instabilities. It therefore appears that the increased control 
effectiveness of the pulsed actuator derives from the process of modulated vorticity injection. The 
time-averaged surface pressure and velocity profiles are displayed for all values of St in Fig. 4. 
The mean surface pressure exhibits the development of a stronger suction peak with increasing 
frequency, however this effect seems to saturate after St = 4.0. Comparison of the velocity profiles 
shows also a marked reduction of the boundary layer displacement with increasing St.  
 
Finally, results computed with a loosely-coupled first-principles approach for a co-flow actuator 
showed that the high-frequency forcing (radio frequency) associated with continuous actuator 
operation promoted transition to turbulence [1]. For this case, the phenomenological approach, 
which assumes a time-invariant force, could not reproduce the transition/turbulence enhancements 
associated with the inherent unsteady forcing. Comparison of the results obtained with the first-
principles high-frequency (monochromatic) forcing with the pulsed cases indicated that the duty 
cycle (with sufficiently high pulsing frequency) provided a significant improvement in control 
effectiveness. This is due to the fact that the flow is more receptive to the intermediate forcing 
frequencies rather that the extremely high radio frequency itself. Future computations with a duty 
cycle using the first-principles approach are required to validate this conclusion and to further 
assess the merits of the phenomenological model for the case of pulsed actuation. 
 
Control of Laminar Separation Over a Ramp 
Control of boundary-layer separation over a generic ramp configuration was also considered. This 
simple geometry is taken as a model problem of separation near the trailing edge of a natural 
laminar flow wing section. The flow conditions were Mach number M = 0.1 and Reynolds number 
Rec = 6.0 x 104 (based on ramp length). The incoming boundary layer was assumed to be laminar 
upstream of the ramp, with a nominal thickness δ/c= 0.0625. 
 
The baseline instantaneous and time-averaged flow field structure is shown in Figs.5 and 6, 
respectively. The incoming laminar boundary layer is observed to separate immediately upon 
encountering the ramp, and a large time-averaged re-circulation region is formed. Downstream of 
separation, a laminar free shear layer is formed which subsequently rolls up into coherent spanwise 
vortices and abruptly breakdowns just upstream of re-attachment. In order to control this massive 
separation region, we first considered a pulsed co-flow DBD actuator (St = 3.2) located just 
upstream of the ramp (x/c = -0.13). With the actuator on, the breakdown process of the shear layer 
is observed to move closer to the separation point due to the unsteady forcing. As a result of this 
turbulence enhancement, a significant reduction is achieved in the size of the mean separation 
region. 
 
As was shown in our previous work [1, 3], a low-power counter-flow DBD actuator can be used as 
an effective on-demand boundary-layer tripping device. Therefore, we considered the use of this 
strategy for the control of laminar separation over the ramp. For this purpose, instead of employing 
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a co-flow pulsed actuator near the separated laminar shear layer, we use a steady counter-flow 
actuator to promote boundary-layer transition to turbulence upstream of the ramp. As observed in 
Fig. 5, the laminar boundary layer begins to transition downstream of the counter-flow actuator. 
This allows the flow to turns downward upon encountering the ramp without significant boundary-
layer separation (Fig. 6). The flow is now practically re-attached, with the exception of a much 
smaller time-averaged separation bubble at the end of the ramp.  
 
These exploratory results clearly demonstrate that for separated laminar flows, encountered in off-
design operation of laminar flow wings and low-pressure turbines, improved control may be 
achieved through modification of the boundary layer sufficiently upstream of the adverse pressure 
gradient region. In this manner, suppression of massive separation can be obtained with a 
significant reduction in the actuator power requirements. This strategy may also provide scalability 
to higher freestream velocities encountered in practical applications. This approach is currently 
being used for separation control of a low-pressure turbine at low Reynolds number.  
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Figure 1.  Effect of DBD actuator on stalled flow above a NACA 0015 wing section : (a) instantaneous and (b) mean 
streamwise velocity on vertical plane, and (c) spanwise vorticity on plane parallel to airfoil surface. 

 
 

 
 

Figure 2. Effect of co-flow actuator on NACA 0015 airfoil flow:  (a) mean surface pressure, and (b) time-averaged 
velocity profile near mid-chord. 

 
 
 
 
Figure 3. Effect of pulsing frequency of counter-flow DBD actuator on stalled flow above a NACA 0015 wing section: 
(a)  iso-surface of vorticity magnitude; instantaneous vorticity magnitude on (b) a  plane parallel to airfoil surface and 
(c) on vertical plane. 
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Figure 4. Effect of pulsing frequency of counter-flow DBD actuator on NACA 0015 airfoil flow: (a) mean surface 
pressure and (b) mean streamwise velocity profile near mid-chord. 

 
 
 
 

Figure 5. Effect of DBD actuator on instantaneous flow structure over a separation ramp: (a) streamwise velocity, 
and vorticity magnitude on (b) vertical plane and on (c) computational surface above the wall. 

 

 
 

Figure 6. Effect of DBD actuator on time-averaged flow structure over a separation ramp: (a) static pressure, 
(b) streamwise velocity, (c) Reynolds stress, and (d) streamlines in separation region. 
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