ADA

EVALUATIONS OF QMI AFTER-MARKET ADDITIVES

INTERIM REPORT TFLRF No. 382

by Edwin A. Frame

U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute[®] (SwRI[®]) San Antonio, TX

> for U.S. Army TARDEC Petroleum and Water Business Area Warren, MI

Contract No. DAAE-07-99-C-L053 (WD36) SwRI Project No. 03.03227.36

Approved for public release: distribution unlimited

February 2007

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center (DTIC), Attn: DTIC-OCC, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, Virginia 22060-6218.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

EVALUATIONS OF QMI AFTER-MARKET ADDITIVES

INTERIM REPORT TFLRF No. 382

by Edwin A. Frame

U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute[®] (SwRI[®]) San Antonio, TX

for U.S. Army TARDEC Petroleum and Water Business Area Warren, MI

Contract No. DAAE-07-99-C-L053 (WD36)

Approved for public release: distribution unlimited

February 2007

Approved by:

2

Edwin C. Owens, Director U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI[®])

REPORT D	Form Approved OMB No. 0704-0188					
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.						
1. AGENCY USE ONLY	2. REPORT DATE March 2006	3. REPORT TYPE AND Interim, September 2	DATES COVERED 005 – December 2006			
4. TITLE AND SUBTITLE Evaluations of QMI After-Market Additi	ives		5. FUNDING NUMBERS			
6. AUTHOR(S) Frame, E.A.			DAAE-07-99-C-L-053 WD 36			
7. PERFORMING ORGANIZATION NAME U.S. Army TARDEC Fuels and Lubrica Southwest Research Institute			8. PERFORMING ORGANIZATION REPORT NUMBER			
P.O. Drawer 28510 San Antonio, Texas 78228-0510			TFLRF No. 382			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING U.S. Army RDECOM AGENCY REPORT NUMBER U.S. Army TARDEC Petroleum and Water Business Area Warren, MI 48397-5000 Head Structure						
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution unlimited 12b. DISTRIBUTION CODE						
13. ABSTRACT (Maximum 200 words) Three types of QMI after-market additives were evaluated to determine their effects on the properties of military products. The additives were (1) a fuel additive, (2) an engine oil additive, and (3) a gear oil additive. The major adverse effects observed were that the QMI engine oil additive reduced the viscosity of Military engine oil, and reduced the Flash Point. Low temperature properties of the engine oil were slightly improved. The QMI gear oil additive produced the following adverse effects: decreased the Flash Point of the gear oil and increased low temperature viscosity and foaming characteristics. The QMI fuel additive was blended in JP-8 with the following adverse effects: reduced Cetane Number, and reduced water separation tendencies. Fuel lubricity was improved for ground vehicle applications, and a slight improvement (<2%) in fuel economy was measured with the additive in JP-8. PM and NOx exhaust emissions from a diesel engine were unchanged with the QMI fuel additive present. Finally, with the QMI fuel additive present, diesel engine piston deposits were increased in the Caterpillar (Cat) 1K/1N test.						
14. SUBJECT TERMS			15. NUMBER OF PAGES			
	JP-8	Gear oil	110			
	After-market additive Cat 1K/1N	Engine Oil Fuel economy	16. PRICE CODE			
Exhaust emissions						
REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	ON 20. LIMITATION OF ABSTRACT			

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

EXECUTIVE SUMMARY

Three types of QMI after-market additives were evaluated to determine their effects on the properties of military products. According to the "Department of Defense Policy Guidelines for Use of After-Market Fuel and Lubricant Additives" [1]:

- 1. The additive must provide a measurable level of improvement over that of the finished fuel or lubricant product being evaluated.
- 2. The additive must not create any adverse side effects when added to a finished fuel or lubricant product.

The QMI additives were (1) a fuel additive, (2) an engine oil additive, and (3) a gear oil additive. Each of the QMI additives produced unacceptable side effects. The QMI fuel additive reduced cetane number and the water separation capability of the fuel. There was an increase in diesel engine piston deposits in the Caterpillar 1K/1N test. The fuel additive did provide a slight (<2%) improvement in fuel economy and improved fuel lubricity properties for ground vehicle applications. The QMI oil additive produced the following adverse effects: reduced Flash Point and reduced the viscosity of Military engine oil. Low temperature properties of the engine oil were slightly improved. The QMI gear oil additive produced the following adverse effects: decreased the Flash Point of the gear oil and increased low temperature viscosity and foaming characteristics.

FOREWORD/ACKNOWLEDGMENTS

The U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF) located at Southwest Research Institute (SwRI), San Antonio, Texas, performed this work during the period September 2005 through March 2006 under Contract No. DAAE-07-99-C-L053. The U.S. Army Tank-Automotive RD&E Center, Petroleum and Water Business Area, Warren, Michigan administered the project. Mr. Luis Villahermosa (AMSTA-RBFF) served as the TARDEC contracting officer's technical representative.

The author would like to acknowledge the contribution of the TFLRF technical support staff along with the administrative and report-processing support provided by Linda De Salme and Rebecca Emmot.

The project was conducted for U.S. Naval Surface Warfare Center—Carderock Division (NSWCCD) as per a request from the U.S. Marine Corps Systems Command (MARCORSYSCOM).

TABLE OF CONTENTS

<u>Section</u>	<u>on</u>		<u>Page</u>
FORI LIST LIST	EWOR OF TA OF FI	/E SUMMARY RD/ACKNOWLEDGMENTS ABLES IGURES IS AND ABBREVIATIONS	vi viii viii
1.0	BAG	CKGROUND AND OBJECTIVE	1
2.0	EVA 2.1 2.2	ALUATION OF QMI FUEL ADDITIVE Fuel Properties 2.1.1 Filterability by IP 387 2.1.2 Water Separation ASTM D 1401 Diesel Engine Deposit Testing Using QMI Fuel Additive	2 6 6
	2.3	Exhaust Emissions and Fuel Economy Using QMI Fuel Additive	
3.0	EVA 3.1	ALUATION OF QMI ENGINE TREATMENT WITH PTFE Engine Oil Properties	
4.0	EV# 4.1	ALUATION OF QMI GEAR OIL TREATMENT WITH PTFE Gear Oil Properties	
5.0	CON 5.1 5.2 5.3	NCLUSIONS Fuel Additive Effects Engine Oil Properties and Additive Effects Gear Oil Properties and Additive Effects	13
6.0	REF	FERENCES	14
APPE	ENDIX	K1 — CAT 1K/1N Test Using JP-8 Fuel and Army Reference Oil	
APPE	ENDIX	K2 — CAT 1K/1N Test Using JP-8 Fuel and QMI Fuel Additive and Army Reference Oil	
APPE	ENDIX	X 3 — Diesel Fuel Effects on Fuel Economy and Exhaust Emissions Report	

LIST OF TABLES

<u>Table</u>

<u>Figure</u>

1.	Fuel Blend Property Results	3
2.	Additional Fuel Property Results of Base Fuel and Blend	
3.	Diesel Engine Deposit Results	7
4.	Fuel Economy Results	
5.	Exhaust Emissions Results	
6.	Engine Oil Inspections	10
7.	Gear Oil Inspections	

LIST OF FIGURES

1.	Test Vehicle on a Chassis Dynamometer	.7
2.	Tailpipe Exhaust Sampling System	.8

Page

Page

ACRONYMS AND ABBREVIATIONS

%	Percent
Δ	Delta
°C	Degrees centigrade
-	
°F	Degrees Fahrenheit
	at Anti-arithmet
AO	Antioxidant
ASTM	American Society for Testing and Materials
bhp	Brake horsepower
BSOC	Brake specific oil consumption
C.L.	Confidence limits
CAT	Caterpillar
CI/LI	Corrosion Inhibitor and Lubricity Improver
CO	Carbon monoxide
COV	Coefficient of variance
cp CD C	Centipoise
CRC	Coordinating Research Council
cSt	Centistokes
DOD	Department of Defense
EOTOC	End of test oil consumption
FBL	Final boiling point
FSII	Fuel System Icing Inhibitor
FTM	Federal Test Method
FTP	Federal Test Procedure
g/kw-h	Grams per kilowatt-hour
g/mi	Grams per mile
GFM	Government furnished equipment
HFRR	High-frequency reciprocating rig
Hr	Hour
HwFET	Highway Fuel Economy Test
IBP	Initial boiling point
JFTOT	Jet Fuel Thermal Oxidation Tester
L	Liter
MARCORSYSCOM	U.S. Marine Corps Systems Command
Max	Maximum
MDA	Metal deactivater additive
mg	Milligram
mg/l	Milligrams per liter
mgKOH/g	Milligrams potassium hydroxide per gram of sample
MJ/Kg	Megajoules per kilogram
ml	Milliliter
mm	Millimeter
mmHG	Millimeters of mercury
mpg	Miles per gallon
MSEP	Micro-Separometer

ACRONYMS AND ABBREVIATIONS (CONTINUED)

NOx	Oxides of nitrogen
NR	Not required
NSWCCD	U.S. Naval Surface Warfare Center – Carderock Division
NYS	No yield stress
OZ	Ounce
pS/m	pico Siemens per meter
Pa	Pascuals
PM	Particulate matter
ppm	Parts per million
PTFE	Teflon
RPM	Revolutions per minute
SLBOCLE	Scuffing load ball on cylinder lubricity evaluator
STDEV	Standard deviation
SwRI	Southwest Research Institute
TFLRF	U.S. Army TARDEC Fuels and Lubricants Research Facility
TGF	Top groove fill
THC	Total hydrocarbons
TLHC	Top land heavy carbon
WDR/WDN	Weighted deposit rating for Caterpillar engine tests
JP-8 + 100	JP-8 kerosene turbine fuel which contains thermal stability
	improver additive

1.0 BACKGROUND AND OBJECTIVE

The U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF) performed selected tests to evaluate QMI after-market additives for diesel fuel, engine oil, and gear lubricant. TFLRF performed the evaluation for the Naval Surface Warfare Center—Carderock Division (NSWCCD) as per a request from the U.S. Marine Corps Systems Command (MARCORSYSCOM). The analyses conducted were those specified in the "Department of Defense Policy Guidelines for Use of After-Market Fuel & Lubricant Additives" [1] dated July 1996. Because the U.S. Army uses JP-8 fuel as the primary fuel for ground vehicles, the QMI Fuel Additive was evaluated in JP-8, and changes to the JP-8 fuel versus specification requirements were determined. In addition, several diesel fuel properties considered to be important were also determined. The fuel analyses, as detailed in section 2.0, were substituted for the fuel tests listed in the DOD guide because the fuel additive was evaluated in the fuel used by Army ground equipment (JP-8). The Navy also wanted to determine fuel additive effect on water separation of the fuel, as this is a key Navy fuel property; thus, water separation by ASTM D 1401 test was included. Other tests, such as fuel lubricity by ASTM D 6078 and D 6079, were included because fuel lubricity is a key property for successful operation of ground vehicles.

The engine oil additive was evaluated in SAE 15W40 grade MIL-PRF-2104G engine oil because this grade is most widely used by the Army. ASTM D 6922 was used for stability and compatibility and storage stability because this method is the latest available. The gear oil properties were all conducted in accordance with the DOD guideline document [1].

According to the after-market additives guidelines [1]:

"For acceptance, a candidate must meet the following specific goals:

- 1. The aftermarket additive package **must provide a measurable level of improvement** over that of the finished fuel or lubricant product being evaluated. This improvement must result in, but is not limited to such factors as, reduced fuel consumption, improved engine performance, reduced engine emissions, reduced wear, decreased overall engine and powertrain maintenance, and reduced corrosion.
- 2. The aftermarket additive **must not create any adverse side effects** when added to a finished fuel or lubricant product. These side effects are produced by incompatibility of the added ingredients with the additives used in the finished products, their potential antisynergistic effects, non-miscibility and/or incompatibility, or any anticipated chemical reactions of these materials. Examples of adverse side effects are water emulsification, deposit formation in critical piston and engine areas, marginal fuel filtration, sludge formation, excessive wear, increased corrosion, increased emissions, or loss of additive response/effectiveness.

If the results of these "screening tests" support the claims, the sponsoring organization will conduct additional systems-oriented evaluations as needed on the candidate additive(s), and a purchase description/specification will then be developed allowing this additive to be used within the military's ground vehicle fleet. This process assures DOD monitoring and testing of potentially beneficial aftermarket and lubricant products."

The following claims were made by QMI regarding their additive products [2]:

"Use of QMI will accomplish the following for DOD fleet maintenance:

- Significantly reduce the cost and frequency of maintenance on most all equipment except turbine engines
- Reduce the wear on all new equipment, therefore extending the useful life
- Provide for a "field reset" on a good percentage of equipment in theatre
- Easier starting in extreme conditions
- Significantly reduced emissions"

QMI determined the appropriate additives and respective concentration levels for TFLRF to evaluate. Both analytical property tests and performance tests were conducted. A phased approach was followed. For the fuel additive, physical property tests, exhaust emissions tests, fuel economy tests, and a diesel engine deposition test were conducted. For the engine oil and gear oil additives, physical property tests were conducted first to determine if the additive was acceptable. The more expensive engine and gear tests would follow in a second phase if the property tests were acceptable. The analytical tests measured the properties of fuels, engine oils and gear lubricants both with and without the supplemental additive present. The performance testing compared results of a neat fuel to the fuel plus additive. The evaluations were conducted using JP-8 fuel because it is the recommended fuel for battlefield use.

NSWCCD provided the following additives as Government Furnished Material (GFM) for the work effort:

- 1. QMI Gear Treatment with PTFE
- 2. QMI Fuel Treatment
- 3. QMI Engine Treatment with PTFE

2.0 EVALUATION OF QMI FUEL ADDITIVE

2.1 Fuel Properties

JP-8 fuel (AL-26936¹) was blended with QMI fuel additive (AL-27114) at the recommended rate of one ounce to five gallons of fuel (0.156% volume). The resultant blend (AL-27130) was submitted for analytical property tests. The results are presented in Tables 1 and 2. A column showing change in property, defined as Blend Property minus Base Fuel Property is also included in the tables. This will help illustrate the overall effect of the QMI fuel additive on a given JP-8 property. It should be noted that this batch of JP-8 had an unusually low conductivity value. This should not affect other property tests.

¹ AL- numbers designated specific sample identifications

Property	Units	ASTM Test Method	MIL-DTL-83133 (JP-8) Specification Requirements	JP-8 Base Fuel AL-26936	Blend ² AL-27130	$\begin{array}{c} \textbf{Change} \\ \textbf{(\Delta)}^3 \end{array}$
Ball-On-Cylinder Lubricity Evaluator, avg. wear scar diameter	Mm	D 5001	NR (0.65, max per MIL-PRF-25017)	0.51	0.53	+0.02
Color, Saybolt		D 156	Report	+15	26	+11
Conductivity	pS/m	D 2624	4	10	1	-9
Copper Strip Corrosion, 2 hr @ 100°C	Visual rating	D 130	1, max	1A	1A	0
Density @ 15°C	kg/m ³	D 4052	775 - 840	793.0	793.0	0
Distillation	°C @ vol% evap. IBP 10	D 86	Report 205, max	160	144 158	-2
	20		Report	166	165	-1
	30				171	1
	40				180	
	50		Report	190	189	-1
	60			_	199	
	70				209	
	80			—	221	
	90		Report	235	235	0
	95		—	—	245	
	FBP		300, max	256	253	-3
• Residue	Vol %		1.5, max	1.2	1.0	-0.2
• Loss	Vol %		1.5, max	0.4	1.6	+1.2
Existent Gum	mg/100 ml	D 381	7.0, max	<0.1	<0.5	0
Flash Point	°C	D 3828	38, min	41	41	0
Freezing Point	°C	D 5972	-47, max	-48	-48	0
Cetane Index		D 976	Report	45	45	0
Hydrogen Content	mass %	D 5291	13.4, min	13.15	13.88	+0.73
Kinematic Viscosity @ -20°C	cm ² /s	D 445	8.0, max	3.48	3.51	+0.03

Table 1. JP-8 Fuel Blend Property Results

 ² Blend of AL-26936 (JP-8): AL-27116 (QMI Fuel Treatment) @ 1 oz. / 5 gal. of fuel.
 ³ It should be noted that increases or decreases in a given property might be adverse or beneficial depending on the specific property and its specification requirement.
 ⁴ The conductivity must be between 150 and 450 pS/m for F-34 (JP-8) at ambient temperature or 29.4°C (85°F), whichever is lower, unless otherwise directed by the procuring activity.

Property	Units	ASTM Test Method	MIL-DTL-83133 (JP-8) Specification Requirements	JP-8 Base Fuel AL-26936	Blend ⁵ AL-27130	Change $(\Delta)^6$
Microseparometer		D 3948	7	97	51	-46
Naphthalenes	vol%	D 1840	3.0, max	1.62	1.62	0
Net Heat of Combustion	MJ/kg	D 240	42.8, min	43.6	43.1	-0.5
Smoke Point	mm	D 1322	25, MIN	25	28	0
Sulfur, Mercaptan	mass %	D 3227	0.002, max	< 0.0003	< 0.0003	0
Sulfur, Total	ppm	D 5453	3000, max	87	94	+7
Thermal Oxidation Stability (JFTOT), 260°C	Change in pressure drop, mm Hg	D 3241	25, max	1	0	-1
	Heater tube deposit, visual rating		<38	<2	1	
Total Acid Number	mg KOH/g	D 3242	0.015, max	0.011	0.007	-0.004

Table 1. JP-8 Fuel Blend Property Results (continued)

JP-8 Additives	MSEP Rating, min.				
Antioxidant (AO)*, Metal Deactivator (MDA)*	90				
AO*, MDA*, and Fuel System Icing Inhibitor (FSII)	85				
AO*, MDA*, and Corrosion Inhibitor/Lubricity Improver (CI/LI)	80				
AO*, MDA*, FSII, and CI/LI)	70				
*Even though the presence or absence does not change these limits, samples submitted for specification					
conformance testing shall contain the same additives present in the refinery batch. Regardless of which					
minimum the refiner elects to meet, the refiner shall report the MSEP rating on a laboratory hand blend of					
the fuel with all additives required by the specification.					

⁸ Peacock or abnormal color deposits result in a failure.

 ⁵ Blend of AL-26936 (JP-8): AL-27116 (QMI Fuel Treatment) @ 1 oz. / 5 gal. of fuel.
 ⁶ It should be noted that increases or decreases in a given property might be adverse or beneficial depending on the specific property and its specification requirement.
 ⁷ The minimum Microseparometer rating using a Micro-Separometer (MSEP) shall be as follows:

Property	Units	ASTM Test Method	JP-8 Base Fuel AL-26936	Blend* AL-27130	Blend- Base Δ
Carbon Residue on 10% bottom	wt. %	D 524	0.02	0.02	0
Cloud Point	Deg. C	D 2500	-56	-55	+1
Ash Content	mass %	D 482	< 0.001	< 0.001	0
Particulate Contamination	mg/l	D 5452	0.2	0.5	+0.3
Thermal Stability @ 150°C	% Reflectance	D 6468	99	99	0
Scuffing load BOCLE	grams	D 6079	2150	3300	+1150
HFRR	μm	D 6078	720	550	-170
Kinematic Viscosity @ 40°C	cSt	D 445	1.14	1.17	+0.03
Cetane Number		D 613	50	47	-3
Nitrogen	ppm	D 3228	2.7	2.8	+0.1
Filterability		IP 387	1.0	1.0	0
*Blend of AL-26936 (JP-8): AL-271	16 (QMI Fuel Treat	tment) @ 1 oz. / 5	gal. of fuel.		

Table 2. Diesel Fuel Property Results of Base JP-8 Fuel and Blend

The property changes caused by the QMI fuel additive are discussed below:

- Cetane number was reduced 3 numbers (test repeatability is 0.9 CN).
- Microseparometer rating was reduced to 51, which is below the minimum required by JP-8 specification. This test is used to "rate the ability of aviation turbine fuels to release entrained or emulsified water when passed through a fiberglass coalescing material [3]," and provides an indication of surfactant presence. The reduction of rating from 97 to 51 indicates that the QMI fuel additive imparted surfactant properties in the fuel.
- Conductivity was reduced by 9 pS/m.
- Distillation loss was out of specification for the blend.
- Wear scar diameter Ball on Cylinder Lubricity Evaluator (BOCLE) increased 0.02 mm.
- Cloud point was increased by 1°C.
- Particulate contamination was increased 0.3 mg/l.

The changes mentioned above could drive a given fuel sample outside JP-8 or diesel fuel specification limits, especially if the fuel had borderline properties.

The QMI fuel additive did improve the lubricity of the JP-8 fuel as determined by the High Frequency Reciprocating Rig (HFRR), American Society for Testing and Materials (ASTM) test method D 6078 and the Scuffing Load Ball on Cylinder Lubricity Evaluator (SLBOCLE), ASTM test method D 6079. These lubricity tests relate to fuel lubricity requirements for ground

vehicles and equipment, while the BOCLE test D 5001 is related to protection of aviation equipment.

2.1.1 Filterability by IP387

A filterability test method was used for both the JP-8 base fuel and the QMI blend in JP-8, as shown in Table 2. Filter blocking tendency results were 1.0 (dimensionless number) for both samples. There is no set limit in industry, but a maximum value of 1.41 is sometimes used. The QMI fuel additive had no effect on filter blocking tendency.

2.1.2 Water Separation ASTM D 1401

The impact of the QMI fuel additive on water separability was determined. A low sulfur diesel fuel meeting ASTM D 975 specification (AL-27169) and the same fuel treated with the recommended concentration of QMI fuel additive were tested according to ASTM D 1401 (Water Separability of Petroleum Oils and Synthetic Fluids) as per the requirements of MIL-PRF-16884K. The 25°C results were:

	<u>Oil Layer</u>	<u>Water Layer</u>	Emulsion Layer	<u>Minutes</u>
AL-27169 (Diesel Fuel)	40 ml	40 ml	0 ml	1.0
AL-27173 (Diesel Fuel) + QMI	40 ml	40 ml	0 ml	4.0
Δ	0	0	0	+3

The USN requirement for settling time is 10 minutes maximum. The fuel with QMI had an increased settling time of 3 minutes. The increase in settling time could cause some fuels blended with QMI fuel additive to fail the test. It should be noted that the QMI fuel additive was not evaluated in high Sulfur fuel, and the results of the low Sulfur fuel should not be extrapolated to high Sulfur fuel.

2.2 Diesel Engine Deposit Testing Using QMI Fuel Additive

The effect of the QMI fuel additive on diesel engine deposits was determined using the CAT 1K/1N test procedure, except for the use of JP-8 fuel which made these "nonstandard" tests, as stated in the test reports of Appendices 1 and 2. This procedure was conducted in a single-cylinder Caterpillar diesel engine with an aluminum piston that is operated at 2100 rpm and 70 bhp for 252 hours. Upon test completion, the engine was disassembled and the piston was rated for deposits using a standard Coordinating Research Council (CRC) demerit procedure. The piston ring wear and cylinder bore polish was also determined.

The baseline Caterpillar 1K/1N, 252-hour test, was completed using JP-8 fuel and Army MIL-PRF-2104G, SAE 15W40 reference oil. Following that, the engine was rebuilt and the test was completed using the same Army reference oil and JP-8 fuel treated with QMI fuel additive at the recommended rate of 1 oz. / 5 gal. of fuel. The CAT 1K/1N test results are presented in Table 3.

Piston Deposit Rating, Demerits	JP-8	JP-8 + QMI	Δ
WDK/WDN	176.4	276.1	+99.7
Top Groove Fill, TGF%	14	44	+30
Top Land Hard Carbon, TLHC%	0	0	0
	Oil Consumption		
BSOC, g/kw-h	0.21	0.21	0
EOTOC, g/kw-h	0.16	0.20	+0.04

Table 3. Diesel Engine Deposit Results

The change in parameters (Δ) between the two tests is shown as JP-8 with QMI Results minus Baseline Results. This will assist in illustrating the effects of the QMI fuel additive. The results obtained for JP-8 and the reference oil would be considered a pass for API Service Classification CI-4. The results for JP-8 plus QMI fuel additive and the reference oil do not meet the requirements of API CI-4, because of increased piston top groove deposit. Overall, the QMI fuel additive appeared to cause an increase in piston deposits based on a single test run. The complete test reports are in Appendix 1 (JP-8 baseline) and Appendix 2 (JP-8 + QMI Fuel Additive).

2.3 Exhaust Emissions and Fuel Economy Using QMI Fuel Additive

Exhaust emissions and fuel economy effects of the QMI fuel additive were determined in a diesel engine pickup truck powered by a 6.6L Duramax engine. Figure 1 shows the test vehicle on a chassis dynamometer, while Figure 2 shows the tailpipe exhaust sampling system. The vehicle was operated over the FTP 75-test cycle and the Highway Fuel Economy Test Cycle (HwFET). The complete test results and details are shown in Appendix 3 (Final Letter Report, "Diesel Fuel Effects on Fuel Economy and Exhaust Emissions," SwRI Project 03.03227.36.202).

Figure 1. Test Vehicle on a Chassis Dynamometer

Figure 2. Tailpipe Exhaust Sampling System

The summarized results of the Fuel Economy testing are presented in Table 4.

Fuel Type	FTP, mpg	HwFET, mpg	Composite, mpg
JP-8 Base Fuel, Avg. of 5 tests	13.10	19.45	15.36
STDV	0.077	0.156	0.068
COV, %	0.59	0.80	0.44
JP-8 + Additive, Avg. of 6 tests	13.33	19.74	15.61
STDV	0.135	0.225	0.146
COV, %	1.01	1.14	0.93
% Change with Additive	1.72	1.47	1.63
Statistically Significant Change			
at 95% C.L.	Yes	Yes	Yes
at 99% C.L.	Yes	No	Yes

 Table 4. Fuel Economy Results

Overall, the fuel containing the QMI additive produced a slight (<2%) but statistically significant (95% C.L.) improvement in vehicle fuel economy.

Results of the exhaust emissions are presented in Table 5. There were no statistically significant changes in NOx or PM produced by the JP-8 fuel with and without the QMI fuel additive over the weighted FTP and HwFET. There was a statistically significant increase in hydrocarbons (11%) and CO (5%) weighted FTP exhaust emissions with the JP-8 + QMI Fuel Additive.

-		Weighted FTP-75				Weighted HwFET					
Test No.		ТНС	CO	NO _X	PM	ТНС	CO	NO _X	PM		
		g/mi	g/mi	g/mi	mg/mi	g/mi	g/mi	g/mi	mg/mi		
	Test 1	0.447	1.936	6.004	109.8	0.247	0.795	4.612	62.3		
	Test 2	0.474	1.933	6.074	107.9	0.243	0.785	4.632	63.2		
Unadditized	Test 3	0.521	2.023	6.251	110.9	0.251	0.794	4.736	72.8		
Fuel	Test 4	0.473	1.985	6.123	120.6	0.243	0.788	4.539	71.1		
	Test 5	0.479	1.934	5.989	120.5	0.242	0.767	4.555	72.0		
	Average	0.479	1.962	6.088	113.9	0.245	0.786	4.615	68.28		
Test 1 Test 2	Test 1	0.537	2.146	6.191	108.2	0.265	0.801	4.530	49.6		
	Test 2	Void									
	Test 3	Void									
	Test 4	0.520	2.030	5.978	107.6	0.248	0.782	4.574	68.9		
Additized Fuel	Test 5	0.536	2.100	6.275	99.2	0.272	0.805	4.665	68.6		
i uti	Test 6	0.524	2.017	6.136	108.2	0.264	0.800	4.612	69.8		
	Test 7	0.539	2.111	5.713	138.6	0.266	0.806	4.619	68.8		
	Test 8	0.543	2.061	6.008	133.1	0.257	0.825	4.495	66.7		
	Average	0.533	2.078	6.050	115.8	0.262	0.803	4.583	65.40		
Percent change from Unadditized to Additized Fuel		11.4%	5.9%	-0.6%	1.6%	6.9%	2.2%	-0.7%	-4.2%		
Statistically significant at 95 percent CI*		YES	YES	NO	NO	YES	NO	NO	NO		
Statistically sig	YES	YES	NO	NO	YES	NO	NO	NO			

Table 5. Exhaust Emissions Results

[†]Based on student's t-test with 99 percent confidence interval

3.0 EVALUATION OF QMI ENGINE TREATMENT WITH PTFE

3.1 Engine Oil Properties

Blend (AL-27120) was made and submitted for property inspection tests. The blend contained Army MIL-PRF-2104G, SAE 15W40 reference engine oil (AL-26923) 80% vol., 20% vol. QMI engine oil additive (AL-27118) which is the recommended treatment rate. Results are presented in Table 6. A column showing change in property defined as blend property minus reference oil property is included in the table. This will help illustrate the magnitude and direction of the additive effects on properties.

					Test Results	
Property	Units	ASTM Test Method	MIL-PRF-2104G Specification Limits	Army MIL- PRF-2104G Ref Eng. Oil AL-26923	Blend: Army Ref. Oil w/QMI Add. @ 20% vol. AL-27120	Blend- Base* ∆
Kinematic Viscosity @ 100°C	cSt	D 445	12.5 min. <16.3 max.	14.4	13.3	-1.1
Kinematic Viscosity @ 40°C	cSt	D 445	Report	113.32	102.19	-11.13
Viscosity Index		D 2270	Report	129	128	-1
Foaming Characteristics		D 892	•			
Seq. I (5 minutes blow/10 minutes settle)	ml/ml	D 892	10/0 max.	0/0	0/0	0
Seq. II (5 minutes blow/10 minutes settle)	ml/ml	D 892	20/0 max.	60/0	30/0	-30/0
Seq. III (5 minutes blow/10 minutes settle)	ml/ml	D 892	10/0 max.	0/0	0/0	0
Flash Point	°C	D 92	215 min.	228	220	-8
Pour Point	°C	D 97	-23 max.	-36	-36	0
API Gravity	degrees	D 287	Report	28.1	28.7	+0.6
Sulfur	mass %	D 2622	Report	0.71	0.59	-0.12
Sulfated Ash	mass %	D 874	Report	0.93	0.93	0
Barium	mass %	D 5185	Report	< 0.0001	< 0.0001	0
Boron	mass %	D 5185	Report	0.0006	0.0011	+0.0005
Phosphorous	mass %	D 5185	Report	0.1048	0.1211	+0.0163
Potassium	mass %	D 5185	Report	< 0.0005	< 0.0005	0
Silicon	mass %	D 5185	Report	0.0002	0.0002	0
Zinc	mass %	D 5185	Report	0.1172	0.1084	-0.0088
Carbon Residue	mass %	D 524	Report	1.01	1.04	+0.03
Borderline Pumping Temp. Test Apparent Viscosity @, -25°C	сP	D 4684	60,000 max.	49,200	22,600	-26,600
Yield Stress	Ра		None	NYS	NYS	0
Apparent Viscosity @ - 20°C	сP	D 5293	3,500 min.	8,300	6,310	-1990
Evaporation Loss @ 245.2°C	mass %	D 5800B	15 max.	11.1	11.2	+0.1
Stable Pour Point	°C	FTM 203	-23 max.	-38	-38	0
Eng. Oil Homo. & Miscibility	None	D 6922	Pass	Pass	Pass	0

Table 6. Engine Oil Inspections

The blend with QMI engine oil additive had the following property changes:

- Viscosity at 100°C decreased by 1.1 cSt to 13.3 cSt. For some oil formulations, a decrease of 1.1 cSt at 100°C could force the oil to a lower SAE viscosity grade.
- Viscosity at 40°C decreased by 11.13 cSt. Specification requirement is report only.

- Flash point was reduced 8°C. This change in flash point could force some oils below the minimum specification requirement.
- Better low-temperature pumpability because of decrease in apparent viscosity.
- The Army reference oil failed the Sequence II Foam Content. The blend with QMI additive improved the Sequence II Foam Content, but the blend still failed.

The following properties have report only specification:

- Sulfur content reduced by 0.12% mass.
- Increase in Boron and Phosphorus of 5 ppm.
- Increase in Phosphorus of 163 ppm.
- Decrease in Zinc content of 88 ppm.

4.0 EVALUATION OF QMI GEAR OIL TREATMENT WITH PTFE

4.1 Gear Oil Properties

Phillips 66 SMP 80W90 gear oil (GLO142) AL-27121, 80% vol., was blended with 20% QMI gear oil additive (AL-27117). This is the recommended treatment rate for the QMI gear oil additive. The blend (AL-27123) was submitted for property inspection tests. Results are presented in Table 7. The blend with QMI gear oil additive had the following property changes:

- Viscosity at 100°C increased by 0.32 cSt. This change could force a given oil above the viscosity maximum in the specification.
- Low temperature Brookfield Viscosity @ -26°C increased by 4000 cp. This change could force a given oil above the specification maximum.
- Flash point was reduced 10°C. This change could force a given oil below the specification minimum.
- Additive caused the base gear to fail the Sequence II Foam Settling. This additive has the potential to cause all gear oils to fail the Sequence II Settling requirement of 0 ml maximum.

The following properties have report only specification:

- Pentane insolubles increased by 0.06 wt. %.
- Boron increased slightly (24 ppm).
- Phosphorus increased (0.01%).
- Increase in Zinc of 4 ppm.

Table 7.	Gear	Oil	Inspections
----------	------	-----	-------------

			MIL-PRF-2105E		Test Results	
Property	Units	Test Method	Specification Limits, SAE J 306 80W90 Grade	SMP Gear Lubricant AL-27121	SMP Gear Lubricant/Add QMI @ 20% vol. AL-27123	Blend- Base* A
Kinematic Viscosity @ 100°C	cSt	D 445	13.5 min. <24.0 max.	14.9	15.2	+0.3
Kinematic Viscosity @ 40°C	cSt	D 445	Report	149.5	153.2	+3.7
Viscosity Index		D 2270	Report	99	100	+1
Brookfield Viscosity @ -26°C	cP	D 2983	150,000 max.	133,000	137,000	+4000
Channeling Point @ -35°C	None	FTM 3456.2	Non-Channeling	Non- Channeling	Non-Channeling	0
Copper Corrosion (121°C, 3hrs)	—	D 130	ASTM No. 3 max	1b	1b	0
Foaming Characteristics		D 892				
Seq. I (5 minutes blow/10 minutes settle)	ml/ml	D 892	20/0 max.	0/0	0/0	0
Seq. II (5 minutes blow/10 minutes settle)	ml/ml	D 892	50/0 max.	0/0	20/18	+20/18
Seq. III (5 minutes blow/10 minutes settle)	ml/ml	D 892	20/0 max.	0/0	0/0	0
Flash Point	°C	D 92	165 min.	224	214	-10
Pour Point	°C	D 97	Report	-30	-30	0
API Gravity		D 287	Report	27.7	27.4	-0.3
Pentane Insolubles	mass %	D 893	Report	0.01	0.07	+0.06
Sulfur	mass %	D 2622	Report	1.7695	1.8331	+0.0636
Nitrogen	mass %	D 3228	Report	0.08	0.09	+0.01
Chlorine	mass %	D 808	Report	< 0.05	0.07	+0.02
Sulfated Ash	mass %	D 874		0.02	0.05	+0.03
Barium	mass %	D 5185	Report	< 0.0001	< 0.0001	0
Boron	mass %	D 5185	Report	0.0001	0.0025	+0.0024
Phosphorous	mass %	D 5185	Report	0.0631	0.0745	+0.0114
Potassium	mass %	D 5185	Report	< 0.0005	< 0.0005	0
Silicon	mass %	D 5185		0.0003	0.0002	-0.0001
Zinc	mass %	D 5185	Report	0.0001	0.0005	+0.0004
Storage Stability & Compatabiliy		FTM 3430/3440		Acceptable	Acceptable	0
*It should be noted that increase property and its specification re-		eases in a given	property might be ad	verse or benefic	ial depending on the	specific

5.0 CONCLUSIONS

With respect to physical and chemical properties, the magnitude of change caused by the additive is one of the key aspects. If the military products being used are at the edge of their respective specification limits, the change, even if minor, caused by an additive can drive the product properties outside of specification limits.

5.1 Fuel Additive Effects

For the QMI fuel additive, the following property results showed an adverse change:

- Cetane number reduced by 3 numbers.
- The additive appeared to impart surfactant properties as evidenced by a substantially reduced Microseparometer rating, and extended time to separate in the D 1401 Water Separation test.
- Increases in Cloud Point, particulate contamination and BOCLE wear scar.

The QMI fuel additive produced the following positive effects:

- Fuel lubricity for ground vehicle applications was improved as measured in the SLBOCLE and HFRR bench tests.
- A slight (<2%) statistically significant (95% CL) improvement in fuel economy was measured in a vehicle.

In addition, the following impacts were measured: The QMI fuel additive had no significant effect on PM or NOx exhaust emissions. There was a statistically significant increase in total hydrocarbon exhaust emissions, with the values remaining very low. There was a statistically significant (95% CL) increase in CO observed in the weighted FTP.

Based on Cat 1K/1N engine tests, increased piston deposits were observed with the QMI fuel additive in the JP-8 fuel. The increase in piston top groove deposits was sufficient to fail the requirements of API specification limits for CI-4.

5.2 Engine Oil Properties and Additive Effects

The following adverse property effects were observed for the QMI engine oil additive:

- Decreased Kinematic Viscosity at 100°C by 1.1 cSt.
- Reduced Flash Point by 8°C.

The potential positive effects of the additive were:

• Improved low temperature engine oil properties.

• Improvement in engine oil anti-foam properties.

5.3 Gear Oil Properties and Additive Effects

The adverse property effects of QMI gear oil additive were:

- An increase in low temperature viscosity.
- A decrease in Flash Point of 10°C.
- Increase oil foaming characteristics.

An increase in Kinematic Viscosity at 100°C of +0.3 cSt was noted.

All three QMI additives failed to meet the "no adverse side effects" criterion of the DOD aftermarket additive policy guidelines.

6.0 **REFERENCES**

- 1. U.S. Department of Defense, "Department of Defense Policy Guidelines for Use of After-Market Fuel and Lubricant Additives," July 1996.
- 2. Mangham, John (of QMI), Letter to Michael Thomas, Chenowth, 27 January 2005.
- 3. American Society for Testing and Materials, "Annual Book of A.S.T.M. Standards," ASTM International, West Conshohocken, PA.

APPENDIX 1

Cat 1K/1N Test Using JP-8 Fuel and Army Reference Oil

1K/1N

Version 20040527

Title / Validity Declaration Page

Method 1K

Conducted for

SOUTHWEST RESEARCH INSTITUTE ARMY LAB

	V = Valid
	I = Invalid
N	N = Results cannot be Interpreted as Respresentative of O Performance (Non-Reference Oil) and shall not be used for Multipl Test Acceptance Criteria

Test Number										
Test Stand: 62	Engine Run No.: 192									
EOT Time: 19:45	EOT Date: 20051203									
Oil Code / CMIR: * AL-26951-L										
Formulation / Stand Code: ^A										
Alternate Codes: ^B	FUEL= JP-8 AL-29/25 AL-27/25									

In my opinion this test <u>has not</u> been conducted in accordance with the 1K/1N Test Procedure (Research Report RR:D02-1273/RR:D02-1321) and the appropriate amendments through the information letter system. The remarks included in the report describe the anomalies associated with this test.

The results of this report relate only to the items tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute $^{m extsf{0}}$.

* CMIR or Non-Reference Oil Code

A ACC -Registered Tests Only

^B When Provided or Required by Client

Submitted by:

Southwest Research Institute (R)

Testing Laboratory anus Signature

James F. McCord

Typed Name

Research Engineer

Title

1K/1N Test Report Summary Form 1

Lab: SR	EOT Date: 20	051203 , E	ND Time:	19:45	Method: 1K	
Stand: 62	Run Nı	umber: 192				
Formulation / S	Stand Code:					
Oil Code / CMI	R: AL-26951-L					
Start Date:	20051122	Total Test Length:	252	 T	VIC Oil Type:	

ì

Laboratory Internal Oil Code: LO-206830

	Correction Effective Date	WDK / WDN	TGF %	TLHC %	Transformed TLHC %	BSOC g/k W-h	EOTOC g/kW-h
Unadjusting Lab Rating		176.4	14	0	0.000	0.21	0.16
Industry Correction (if any)							
Subtotal		176.4	14		0.000	0.21	0.16
Lab Severity Adjustment (if any) ^A	20050616	0.0	0		0.000	0.00	0.00
Total		176.4	14	0	0.000	0.21	0.16

	Effective Date	WDK / WDN	TGF %	TLHC %	Transformed TLHC %	BSOC g/k W-h	EOTOC g/kW-h
Test Target Mean ^B		3					
Test Target STD ^B	······						
A,C CI-4 Pass Limits (First-Test)		332.0	24.0	4.0		0.50	0.50

	Lab	WDK / WDN	TGF %	
Referee Ratings				

	Тор	Int. 1	Oil	Piston	Liner
Ring Loss of Side Clearance (mm)	0.286	0.095	0.095		
Ring End Gap Increase (mm)	0.051	0.026	0.026		
Is the Ring Stuck?	NO	NO	NO		
Scuffed Area %	0	0	0	0	0
Average Wear Step (mm)					0.019
% Bore Polish					7.0

Notes:

^ANon-reference tests only ^BReference tests only ^CSee Appendix X4

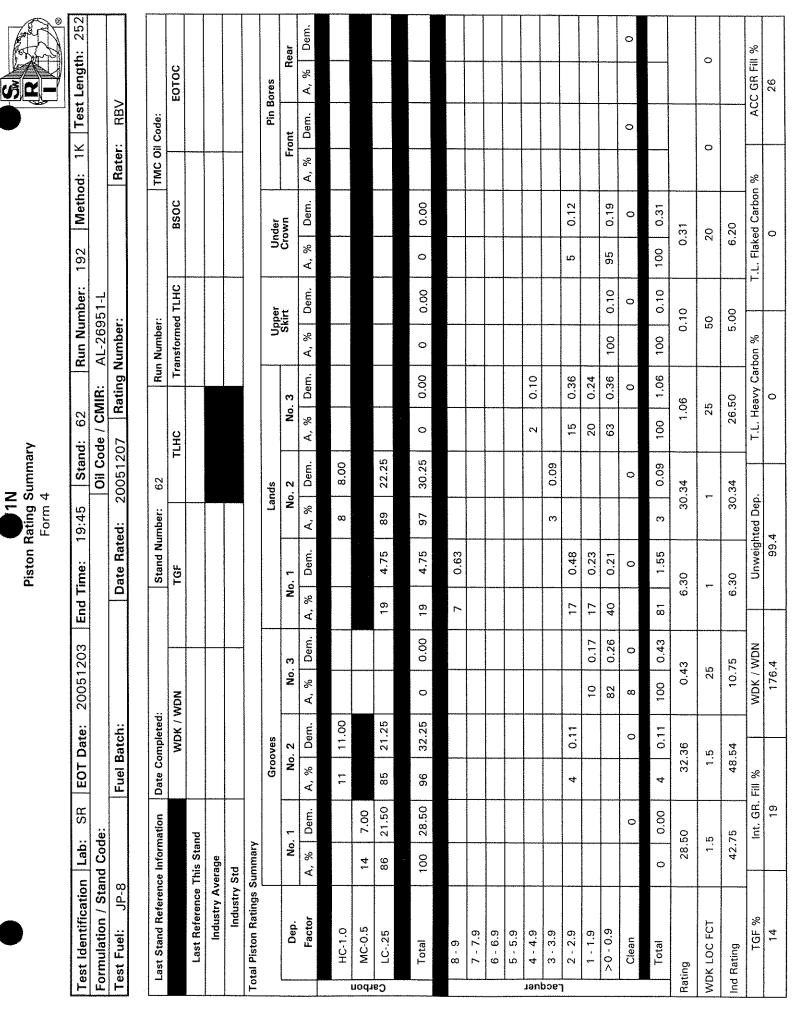
1K/1N **Operational Summary** Form 2

Lab: SR	EOT Date: 20051203	END Time: 19:45 Method: 1K
Stand: 62	Run Number: 192	Total Test Length: 252
Formulation / St	and Code:	
Oil Code / CMIF	: AL-26951-L	

Operating Condition		Minimu	n	Maximum	Average		Specification	
Engine Speed	r/min	2089.0)	2122.0	2100.0		2100 ± 10	
Engine Power	kW	43.7		50.3	49.0		Report	
Fuel Flow	g/min	173.0		187.5	184.9		185 ±1	
Humidity	g/kg	14.9		19.5	17.6		17.8 ± 1.7	
Temperature °C								
Coolant Out	°C	92.8		95.1	93.0		93 ± 2.5	
Coolant In	°C	84.4		169.3	87.7		Report	
Coolant delta T	°C	4.7		7.6	5.4		5 ± 1.0	
Oil To BRG	°C	106.1		108.6	107.0		107 ± 2.5	
Oil Cooler In	°C	107.3		111.4	110.7		Report	
Inlet Air	°C	126.5		127.6	127.0	_	127 ± 2.5	
Exhaust	°C	515.6		571.7	564.6		550 ± 30	
Fuel @ Injector Housing	٥C	53.5		61.4	57.3		57 ± 3	
Pressures								
Oil to Bearing	kPa	399.9		417.1	407.9		482 Max	
Oil to Jet	kPa	353.0		364.7	358.1		360 ± 13	
Inlet Air	kPa	239.1		241.1	240.1		<u>240 ± 1</u>	
Exhaust (ABS)	kPa	215.0		217.1	216.1		<u>216 ±1</u>	
Fuel @ Filter HSG	kPa	202.0		221.3	210.3	_	<u>210 ± 20</u>	
Crankcase Vacuum	kPa	0.61		0.97	0.70		0.7 ± 0.1	
Coolant Jug Pressure	kPa	22.1		92.4	41.7		Report	
Flows								
Blowby	L/min	8.2		13.0	10.6		Report	
Coolant Flow	L/min	59.0	- ,	71.2	64.8		65 ± 2	
Air/Fuel Ratio 24 Hr:		28.9		r/Fuel Ratio 252			29.0	
	Assen		emen	t and Parts Reco	rd			
Piston / Head Clearance mm:		3.632		ntake Valve Ope		3.0		
			F	Fuel Flow Timing	°BTC:		31.5	
	Part I	No. (1)	S	erial No. (2)	Date Code		Inspection Co	
Liner	113	3998	D0:	2M11Y04P47	N/A	F	BB71	G
Ring Set (1)	1Y()728			1201	/	4317	Η
Piston	110)727	21	001D1468D0	1171 (E)	D	1001	E

D Number below "E" located on top of piston E Number on top of "E" located on top of piston F Four alphanumeric characters (NNAN) on liner O.D. G Four digit number on liner O.D. H Three or four digit number on white label on ring set box I NN-NN from part number label on ring set box

(1) and (2) Number on Parts Box Yellow Label


1K/1N Operational Summary - Offset and Deviation Form 3

Lab:	SR	EOT Date	: 20051203	3	END Time:	19:45		Method:	1K	
Stand:	62		Run Number:	192	Total Test L	ength:	252			
Formula	tion / Sta	nd Code:								
Oil Code	/ CMIR:	AL-269	51-L							

Controlled Parameter	Allowable % Out	This Test % Out	Allowable % Off	This Test % Off
Speed	5	0.1	20	0.0
Fuel Flow	10	5.1	25	4.5
Humidity	10	0.3	25	7.1
Coolant Flow	5	0.0	25	0.0
Temperature				
Coolant Out	5	0.0	20	6.4
Oil to Bearing	5	0.0	20	3.6
Intake Air	5	0.0	20	6.4
Fuel at Injector Housing	5	• 0.1	20	5.0
Pressures				
Oil Jet	5	0.0	25	1.4
Intake Air	10	0.0	25	0.0
Exhaust	10	0.0	25	2.4
Fuel at Filter Housing	5	0.0	20	0.0
Crankcase Vacuum	10	0.1	20	0.0

1K/1N Rating Worksheet

Total Test Length: 252

Method: 1K

		No.	1		1	No. 2			<u>Groove</u> No.			Under		T		Uppers	kirt
ŀ	A%	FCT	Dem	A%	FCT	Den		A%	FCT	Dem	A%	FCT	Der		A%	FCT	Dem
		1.0	Dent	11	1.0	11.0			1.0	Dem	7.0	1.0			~~	1.0	Deili
	14	.50	7.00		1.0	1 11.0			.50			1.0	1.			1.0	
카	86	.25	21.50	85	.25	21.2	26		.25			.25				.25	
	100	Sub T	28.50	96	Sub 1			0	Sub T	0.00	0	Sub T	0.0	_	0	Sub T	0.00
	100	Oubi	20.00	00	000	02.2	-		000 1	0.00		000 1	0.0	0	_ <u>v</u> _1	0001	0.00
-		10-10.0		4	10-7.	2 0.1	1	10	10-8.3	0.17	5	10-7.5	0.1	2	100	10-9.9	0,10
		10-10.0			10-10				10-9.5	0.10	95	10-9.8	0.1	Ţ		10-10.0	0,10
		10-10.0			10-10	.0		34	10-9.7	0.10		10-10.0		ř-†		10-10.0	
		10-10.0			10-10	.0		28	10-9.8	0.06		10-10.0	<u>.</u>			10-10.0	
ĺ		10-10.0	· ·		10-10	.0		8	10-10.0	0.00	1	10-10.0	1			10-10.0	
ļ		10-10.0			10-10	.0		-	10-10.0			10-10.(1			10-10.0	
		10-10.0			10-10	.0			10-10.0			10-10.0	1			10-10.0	
2		10-10.0			10-10	.0			10-10.0			10-10.0	3			10-10.0	
ļ		10-10.0	······		10-10	.0			10-10.0			10-10.0	3			10-10.0	
		10-10.0			10-10	.0	1		10-10.0			10-10.	3			10-10.0	
		10-10.0			10-10	.0			10-10.0			10-10.0	3			10-10.0	
Ì		10-10.0			10-10	.0			10-10.0			10-10.0	2			10-10.0	
	0	Sub T	0.00	4	Sub 1	0.1	1	100	Sub T	0.43	100	Sub T	0.3	1	100	Sub T	0.10
		Total	28.50		Tota	32.3	36		Total	0.43		Total	0.3	1		Total	0.10
					La	inds								Pin	Bores	;	· · · · · · · · · · · · · · · · · · ·
		No.	1		N	o. 2			No. :	3	-	Fro	nt			Rea	r
	A%	FCT	Dem	A%	FCT	Den	n	A%	FCT	Dem	A%	FCT	De	n	A%	FCT	Dem
		1.0		8	10							T					
				0	1.0	8.0	0		1.0			1.0				1.0	
noa				0	1.0	8,0	0		1.0			1.0				1.0	
Carbon	19	.25	4.75	89	.25	8.0 22.2			1.0 .25			1.0 .25				1.0 .25	
Carbon	<u>19</u> 19	.25 Sub T	4.75 4.75	1		22.2	25	0		0.00							
Carbon	~			89	.25	22.2	25	0	.25	0.00		.25				.25	
Carbon	~			89	.25 Sub 1 10- 7.0	22.2 T 30.2 D 0.0	25		.25	0.00		.25				.25	
Carbon	19 7	Sub T	4.75	89 97	.25 Sub	22.2 T 30.2 D 0.0	25	2	.25 Sub T			.25 Sub T	+			.25 Sub	
Carbon	19 7	Sub T 10- 1.0	4.75 0.63	89 97	.25 Sub 1 10- 7.0	22.: 7 30.: 0 0.0	25	2	.25 Sub T 10-5.2	0.10		.25 Sub T 10-10.(>			.25 Sub 10-10.0	
Carbon	19 7 17	Sub T 10- 1.0 10- 7.2	4.75 0.63 0.48	89 97	.25 Sub 1 10- 7.0	22.: T 30.: D 0.0 .0	25	2 3	.25 Sub T 10-5.2 10-7.3	0.10 0.08		.25 Sub T 10- 10.0				.25 Sub 10-10.0 10-10.0	
Carbon	19 7 17 7 10	Sub T 10-1.0 10-7.2 10-8.2 10-9.0	4.75 0.63 0.48 0.13	89 97	.25 Sub 10-7.0 10-10 10-10	222.3 T 30.2 D 0.0 0.0 0.0	25	2 3 12	.25 Sub T 10-5.2 10-7.3 10-7.7	0.10 0.08 0.28		.25 Sub T 10- 10.0 10- 10.0)))			.25 Sub 10-10.0 10-10.0 10-10.0	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0	4.75 0.63 0.48 0.13 0.10	89 97	.25 Sub 7 10- 7.0 10- 10 10- 10	22.: 7 30.: 0 0.0 0.0 0.0 0.0	25	2 3 12 20	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8	0.10 0.08 0.28 0.24		.25 Sub T 10-10.0 10-10.0 10-10.0))))			.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3	4.75 0.63 0.48 0.13 0.10 0.18	89 97	.25 Sub ⁻ 10- 7.0 10- 10 10- 10 10- 10	222.3 T 30.2 D 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25	2 3 12 20 24	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2	0.10 0.08 0.28 0.24 0.19		.25 Sub T 10-10.0 10-10.0 10-10.0 10-10.0	> > > > >			.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.8	4.75 0.63 0.48 0.13 0.10 0.18	89 97	.25 Sub 7 10-7.0 10-10 10-10 10-10 10-10 10-10 10-10	222.3 7 30.3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25	2 3 12 20 24 18	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2 10-9.4 10-9.7 10-10.0	0.10 0.08 0.28 0.24 0.19 0.11		.25 Sub T 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0	> > > > > >			.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.8 10- 10.0 10- 10.0 10- 10.0	4.75 0.63 0.48 0.13 0.10 0.18 0.03	89 97	.25 Sub 7 10- 7.0 10- 10 10- 10 10- 10 10- 10 10- 10 10- 10 10- 10	222.3 T 30.2 D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25	2 3 12 20 24 18	.25 Sub T 10- 5.2 10- 7.3 10- 7.7 10- 8.8 10- 9.2 10- 9.4 10- 9.7 10- 10.0 10- 10.0	0.10 0.08 0.28 0.24 0.19 0.11		.25 Sub T 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0				.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.8 10- 10.0 10- 10.0 10- 10.0 10- 10.0	4.75 0.63 0.48 0.13 0.10 0.18 0.03	89 97	.25 Sub 7 10-7.0 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10	222.3 T 30.2 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0	25	2 3 12 20 24 18	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2 10-9.4 10-9.7 10-10.0 10-10.0	0.10 0.08 0.28 0.24 0.19 0.11		.25 Sub T 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0				.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.8 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0	4.75 0.63 0.48 0.13 0.10 0.18 0.03	89 97	.25 Sub 7 10-7.0 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10	222.3 T 30.2 D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25	2 3 12 20 24 18	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2 10-9.4 10-9.7 10-10.0 10-10.0 10-10.0	0.10 0.08 0.28 0.24 0.19 0.11		.25 Sub T 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	> > > > > > > > > > > > > >			.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.8 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0	4.75 0.63 0.48 0.13 0.10 0.18 0.03	89 97	.25 Sub 7 10-7.0 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10	222.3 T 30.2 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0	25	2 3 12 20 24 18	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2 10-9.4 10-9.7 10-10.0 10-10.0 10-10.0 10-10.0	0.10 0.08 0.28 0.24 0.19 0.11		.25 Sub T 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	> > > > > > > > > > > > > >			.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.3 10- 9.8 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0 Sub T	4.75 0.63 0.48 0.13 0.10 0.18 0.03	89 97	.25 Sub 7 10-7.0 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 Sub 7	222.3 T 30.2 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0	25 25 9	2 3 12 20 24 18	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2 10-9.4 10-9.4 10-9.7 10-10.0 10-10.0 10-10.0 10-10.0 Sub T	0.10 0.08 0.28 0.24 0.19 0.11 0.06		.25 Sub T 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 5ub T	> > > > > > > > > > > > > >			.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 Sub T	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.8 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0	4.75 0.63 0.48 0.13 0.10 0.18 0.03	89 97 3	.25 Sub 7 10-7.0 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10	222.3 T 30.2 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0	25 25 9 	2 3 12 20 24 18 21	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2 10-9.4 10-9.7 10-10.0 10-10.0 10-10.0 10-10.0	0.10 0.08 0.28 0.24 0.19 0.11 0.06		.25 Sub T 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	> > > > > > > > > > > > > >			.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.3 10- 9.8 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0 Sub T	4.75 0.63 0.48 0.13 0.10 0.18 0.03 1.55	89 97 3 	.25 Sub 7 10-7.0 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10	222.3 T 30.2 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0	25 25 9 	2 3 12 20 24 18 21 100	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2 10-9.4 10-9.7 10-10.0 10-10.0 10-10.0 10-10.0 Sub T Total	0.10 0.08 0.28 0.24 0.19 0.11 0.06 1.06 1.06 Lands		.25 Sub T 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 Total	> > > > > > > > > > > > > > > > >		der	.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 Sub T Total	Pin Bores
	19 7 17 7 10 26 14	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.3 10- 9.8 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0 Sub T	4.75 0.63 0.48 0.13 0.10 0.18 0.03 1.55	89 97 3 	.25 Sub 7 10-7.0 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 Sub 7	222.3 T 30.2 D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25 25 9 	2 3 12 20 24 18 21 100	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2 10-9.4 10-9.4 10-9.7 10-10.0 10-10.0 10-10.0 10-10.0 Sub T	0.10 0.08 0.28 0.24 0.19 0.11 0.06		.25 Sub T 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0	> > > > > > > > > > > > > >		der	.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 Sub T Total	Pin Bores Rear
	19 7 17 7 10 26 14 	Sub T 10- 1.0 10- 7.2 10- 8.2 10- 9.0 10- 9.3 10- 9.3 10- 9.8 10- 10.0 10- 10.0 10- 10.0 10- 10.0 10- 10.0 Sub T Total	4.75 0.63 0.48 0.13 0.10 0.18 0.03 1.55	89 97 3 	.25 Sub 7 10-7.0 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10	222.3 T 30.2 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0	25 25 9 	2 3 12 20 24 18 21 100 3	.25 Sub T 10-5.2 10-7.3 10-7.7 10-8.8 10-9.2 10-9.4 10-9.7 10-10.0 10-10.0 10-10.0 10-10.0 Sub T Total	0.10 0.08 0.28 0.24 0.19 0.11 0.06 1.06 1.06 Lands	1.	.25 Sub T 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 Total	> > > > > > > > > > > > > > > > >	Cro 0.3	wn	.25 Sub 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 10-10.0 Sub T Total	T

19

WDK / WDN:

176.4

Top Land Heavy Carbon:

0

TGF:

14

Intermidate Groove Fill:

1 K/1 N Supplemental Piston Deposits (Groove Sides and Rings) ${\rm Form}~5$

lah: SR		EO	EOT Date:	20(20051203			END Time:	19	19:45	Method:	:pc	1K		
d:	62	•••••		Run Number:	ber:	192		Total Test Length:	1	252	2				
Formulation / Stand Code:	Stand	Code:													
Oil Code / CMIR:	IIR:		AL-26951-L	1-1											
				Carbon		1				Varnish					
Depos	Deposit Type		НС	MC	ГC	6 - 8	7 - 7,9	6 - 6,9	5 - 5.9	4 - 4.9	3 - 3,9	2 - 2.9	1 - 1.9	>0 - 0.9	Clean
		+-			35	45		20							
(В									30	50	20		
Top		+		*******	15	70						15			
Pag	7	В							10	20	10	60			
Bottom		+								10	20	55	15		
	3	В								15	15	70			
		.			5	20	20	10			15	20	10		
	-	8										10		90	
		BK			100										
Ton Rottom		┢━━			2			-				85	10		
and Back of	2	В									70	10	5	15	
Rings		BK			70							30			
		}										70	20	10	
	ო	8										20	50	30	
		BK										75	25		
Additional Deposit & Condition Ratings	posit &	Conditi	ion Ratinç	sť											
Piston Crown			Normal.												
Liner			Normal.												
Ríngs			Normal.										Without		

 I Analysis and Results Summary	Form 6
Oil Analysis a	

ah. R	EOT Date:		20051203	Ē	END Time:	19:45	Method:	1K	
5					Total Tast Lanath.	752			
Stand: 62	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HUN NUMDET:	24 Loss month West with a		ומן ופאר דמוואתיי	~~~			
Formulation / Stand Code:	tand Code:								
Oil Code / CMIR:		AL-26951-L					ол —		
Test Method:	¥		Test Fuel:	JP-8		Fuel Batch:	atch:		
					1				
Oil Analysis / Engine Hours	ngine Hours	NEW / 0	0//	24	4	204	4	252	62
Viscosity @ 100°C	0°C	15.07	07	13.	13.65	14.00	00	14.36	36
TBN D4739		6.81	31	5.14	14	3.55	55	3.11	
	×								
Wear Metals:	Fe / AI	4	<1	6	-	29	~	33	,
	Si / Cu	2	<	2	<1	Ð	2	Ð	2
	Cr / Pb	<1	<1	 1 	<1	1	-	2	2
Fuel Dilution %				0.3	3	0.3	e	0.3	3
Diswhy (1 /min)				9.4	4	11.2	.2	11.2	.2
24 Hour 2	Average BSOC	24 Hour Average BSOC (g/w-W-h) for Hours End	ours End	0-252 Hr. Avg	Avg. BSOC (g/k-W-h):	1): 0.21	EOT Oil Cons	EOT Oil Consumption(g/kW-h):): 0.16
24	48	72	108	132	156	180	204	228	252
0.30	0.23	0.24	0.25	0.22	0.25	0.15	0.17	0.16	0.13
Inspection and		Ring Gap	Side Clearance	Ring	Scuffed	% Bore	% Bore Polish	Averag	Average Wear
Measurement Summary	summary	Increase (mm)		Stuck (1)	Area % (2)	(With Grid)	Grid)	Step	Step (mm)
Top Ring		0.051	0.286	NO	0				
Intermediate Ring	nq	0.026	0.095	NO	0				
Oil Ring		0.026	0.095	NO	0				
Piston					0				C
Cvlinder Liner					0	7.0			0.019
		TGF %	Int. Gr. F.%	WDK	Un Wt Dep	T.L. Heav	T.L. Heavy Carbon	T.L. Flaked	Flaked Carbon %
Piston Deposit Summary	sit Summary	14	19	176.4	99.4	0		0	
				Unweighted P	Unweighted Piston Deposits				
	Grooves			Lands		Upper	Under	Pin	Pin Bores
	2	3		2	3	Skirt	Crown	Front	Rear
28.50	32.36	0.43	6.30	30.34	1.06	0.10	0.31		

1K/1N Unscheduled Downtime & Maintenance Summary Form 7

Lab: SR	EOT Date:	20051203	END Time:	19:45	Method:	1K
Stand: 62	Ru	in Number: 192	Total Test L	.ength: 252		
Formulation / Sta	nd Code:					······································
Oil Code / CMIR:	AL-26951	-L				

Test	Date	Downtime	Reasons	
152:59	20051128	4:25	Drained coolant and replaced with new.	
158:07	20051129	6:24	Replaced fuel heater tubing.	
217:21	20051202	1:04	Replaced coolant out temp thermocouple.	
232:03	20051202	1:34	Replaced coolant in temp thermocouple.	
236:35	20051203	4:09	Cooling tower repairs.	
Total I	Downtime	017:36		

Other Comments				
Number of Comment Lines:	1			
CAT 1K test run with JP-8 fuel.			·····	
		·····		
	//////////////////////////////////////		·····	
			······································	

1K/1N Ring Measurements Form 8

Lab: SR	EOT Date:	20051203		END Time:	19:45		Method:	1K	
Stand: 62	Ru	n Number:	192	Total Test I	.ength:	252			
Formulation / Sta	nd Code:								
Oil Code / CMIR:	AL-26951	-L							

Ring Gaps (mm)	Тор	Intermediate	OIL
Specifications	0.724 <u>+</u> 0.076 mm	0.673 <u>+</u> 0.076 mm	0.572 <u>+</u> 0.190 mm
Pre-Test	0.711	0.660	0.584
Post-Test	0.762	0.686	0.610
Increase	0.051	0.026	0.026

Ring Side	e Clearance *	А	В	С	D	Average	Minimum	Specification
	Pre-Test	1.651	1.651	1.651	1.651	1.651	1.651	
Тор	Post-Test	1.397	1.270	1.270	1.524	1.365	1.270	0.193 <u>+</u> 0.032 mm
	LSC	0.254	0.381	0.381	0.127	0.286	0.127	
	Pre-Test	0.762	0.762	0.762	0.762	0.762	0.762	
Intermediate	Post-Test	0.762	0.635	0.635	0.635	0.667	0.635	0.090 <u>+</u> 0.020 mm
	LSC	0.000	0.127	0.127	0.127	0.095	0.000	
	Pre-Test	0.635	0.635	0.635	0.635	0.635	0.635	
Oil	Post-Test	0.635	0.508	0.508	0.508	0.540	0.508	0.073 <u>+</u> 0.016 mm
	LSC	0.000	0.127	0.127	0.127	0.095	0.000	

* Notes:

1. Write "Stuck" In Place of Dimension When Applicable.

2. Write " $<\!0.038$ mm" For Clearance When Applicable.

3. Write ">" Before Calculated Decrease or Average Decrease Values That Incorporate a "<0.038 mm" in Calculation.

4 LSC: Loss of Clearance.

5. Minimum: Intermediate and Oil Ring Minimum Side Clearance is Measured 360° Around Piston.

1K/1N Liner Measurements Form 9

Lab: SR	EOT Date:	20051203	END 1	Time:	19:45	Method:	1K	
Stand: 62	Ru	n Number: 19	2 Total	Test Le	ength: 2	52		
Formulation / Sta	nd Code:		····· ··· · · · · · · · · · · · · · ·					
Oil Code / CMIR:	AL-26951	-L						

Liner Surface Finish (micrometer)						
Distance From Top	Transverse Longitudinal		Average			
130 mm	0.40	0.39	0.40			
50 mm	0.36	0.46	0.41			
25 mm	0.31	0.38	0.34			
		Total Average:	0.38			

% Liner Bore Polish - Grid (Add T/AT Values From Grid)		
Thrust	3.0	
Anti-Thrust	4.0	
Total	7.0	

	Liner E	Bore Measurement	(mm)			
	Before Tes	t - Diameter (Dial I	Bore Gage)			
Bore Height		Longitudinal	Tra	Transverse		
230 mm		137.168	68 137.173			
130 mm		137.170	1:	37.180		
50 mm		137.168	1:	137.183		
25 mm		137.173	1:	137.203		
15 mm		137.173 137.20				
	After	Test - (Surface Pr	ofile)			
	Longitu	udinal	Trans	verse		
	Front	Rear	T	АТ		
Wear Step @ 15mm	0.018	0.020	0.020	0.018		

					:			
			Characteristics	of the Data Acquisition System Form 10	ion System			
Lab: SR	EOT Date:	200512	51203	END Time	19:45	Method:	hod: 1K	
Stand: 62		Run Number:	er: 192	Total Test	Test Length:	252		
Formulation / Stand Code:	ode:							4.4.0.00000000000000000000000000000000
Oil Code / CMIR:	AL-26951-L	-						
Parameter	Sen	Sensing	Calibration	Record	Observation	Record	Log	System
(1)	D	Device (2)	Frequency (3)	Device (4)	Frequency (5)	Frequency (6)	Frequency (7)	Kesponse (8)
Operation Conditions								
Engine Speed (r/min)	Magneti	Magnetic Pickup	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	2.1
Engine Power (kW)	Load	Load Cell	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	1.9
Fuel Flow (kJ/min)	Micro-	Micro-Motion	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	70.3
Humidity (g/kg)	Dew	Dew Cell	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	6.0 min
Temperatures (°C)								
Coolant Out	Thermo	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	2.8
Coolant In	Thermo	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	2.7
Oil to Bearing	Thermo	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	2.9
Oil Cooler In	Thermo	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	3.0
Inlet Air	Thermo	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	2.8
Exhaust	Thermo	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	2.9
Pressure (kPa)								
Oil to Bearing	Strair	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	2.9
Oil to Jet	Strain	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	2.0
Inlet Air	Strain	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	1.0
Exhaust	Strain	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	3.0
Fuel @ Filter HSG	Strain	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	2.8
Crankcase Vacuum	Strain	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	3.0
Flows (L/min)		-						
Blowby	Gas I	Gas Meter	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	10.0
Coolant Flow	Barco	Barco Venturi	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	Every Minute	3.0
Legend: (1) Operating Parameter (2) The Type of Device Used to Measure Temperature, Pressure, or (2) Frequency at Which the Measurement System is Calibrated (4) The Type of Device Where Data is Recorded (4) The G - Handloo Sheer	l to Measure Tempe Measurement Syste re Data is Recorded	srature, Pressu m is Calibrated	re, or Flow	 (5) Data Area (6) Data are F (7) Data are L 55. 55. 	Data Area Observed but Only Recorded if off Spec. Data are Recorded but are not Retained at EOT Data are Logged as Permanent Record, Note Specify if: SS - Snapshot Taken at Specified Frequency AGX - Averance of X Data Points at Specified Frequency	Recorded if off Spec Retained at EOT Record, Note Spec ppecified Frequency	o. tify if: d Frequency	
DL - Automatic Dat SC - Strip Chart Red	a Logger corder			(8) Time for t	he Output to Reach 6	3.2% of Final Valu	le for Step Change a	it Input

(3) Frequency at Which the Measurement System is Calibrated
(4) The Type of Device Where Data is Recorded
LG - Hanglog Sheet
DL - Automatic Data Logger
SC - Strip Chart Recorder
C/M - Computer, Using Manual Data Entry
C/D - Computer, Using Direct I/O Entry

F
FORM

LAB: SR	EO	EOT DATE:	20051203		END TIME:	19:45		MET	METHOD: 1	ž	
ö		RL	RUN NUMBER:	192							
ATI	TAND CODE:										
OIL	CODE/CMIR:		AL-26951-L								
Inlet Air C	224 111 1220 1111										
Oil To Bearings • C	110 107 107 107 1										1 1
Coolant In .C	89.0 87.00 856.00 856.00 856.00 856.00										
Coolant Out C											1 1
Exhoust •C											1 1
Fuel Flow kg/h	1885 1885 1871										
Engine Speed r/min	21000										
Power kw	844 869 860 80 80 80 80 80 80 80 80 80 80 80 80 80										
	0	0 4	48	72	108	132	156	180	204	228	252
					I	HOURS					

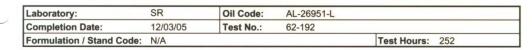
192										
RUN NUMBER: 192		AL-26951-L								
	AND CODE:	OIL CODE/CMIR:	488 441 441 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			217	19.5 11.0 11.0 11.0 1 1 1 1 1 1 1 1 1 1 1 1	67	0.00 0.03 0.04 0.00	13.0 11.8 10.5 8.0 8.0 8.0
LAB: SR STAND: 62	FORMULATION/STAND CODE:	OIF C	Oil to Bearing kPa	Oil To Jet kPa	Inlet Air kPa	Exhaust kPo	Humidity grams/kg	Coolant Flow L/min	Crankcase Vacuum kPa	Blowby L/min

	METHOD: 1K						<u>я)</u>	
HC/IN HC/IN FORM 13 OIL CONSUMPTION PLOT	SR EOT DATE: 20051203	STAND: 62 RUN NUMBER: 192	FORMULATION/STAND CODE: OIL CODE/CMIR: AL-26951-L	0 – 24 Hour 0.30	228 – 252 Hour <u>0.16</u>	Avg 0 – 252 Hour <u>0.21</u>	Increase 0 - 24 to 228 - 252 Hour <u>-0.17 (-56.67</u>	

1K/1N Severity Adjustment History Form 15

Lab: SR	EOT Date: 20051203	END Time: 19:45	Method: 1K
Stand: 62	Run Number: 192	Total Test Length: 252	
Formulation / Sta	nd Code:		
Oil Code / CMIR:	AL-26951-L		

Usage	Dates	WDK/	WDN	TGI	= %	Transforme	d TLHC %
Start	Time	Zi	S.A.	Zi	S.A.	Zi	S.A.
20050616	11:25	-0.042	0.0	-0.248	0	0.352	0.000
20050530	20:37	-0.423	0.0	-0.191	0	0.578	0.000
20040308	03:03	-0.708	25.2	-0.198	0	0.295	0.000
20021008	13:34	-0.644	0.0	-0.361	0	0.018	0.000
20020826	12:15	-0.634	0.0	-0.316	0	0.002	0.000
20020727	14:40	-0.479	0.0	-0.104	0	-0.300	0.000
20011027	01:58	-0.271	0.0	-0.091	0	-0.238	0.000
20011014	13:38	-0.723	25.8	0.102	0	-0.253	0.000
20010818	22:43	-0.890	31.7	-0.024	0	-0.179	0.000
20001202	21:47	-0.753	26.8	0.090	0	-0.529	0.000
20000719	08:35	-0.391	0.0	0.099	0	-0.433	0.000
19990713	13:48	-0.776	0.0	0.225	0	-0.413	0.000
19990302	01:29	-0.386	0.0	0.442	0	-0.603	0.000
19980414	03:18	-0.370	0.0	0.662	-10	-0.536	0.000
19980309	21:54	-0.151	0.0	0.486	0	-0.453	0.000
19980217	00:16	-0.506	0.0	0.392	0	-0.429	0.000
19971110	19:16	-0.556	0.0	0.243	0	-0.399	0.000
19971104	04:44	-0.509	0.0	0.439	0	-0.361	0.000
19971018	06:02	-0.673	24.0	0.132	0	-0.235	0.000
19970824	19:55	-0.706	25.1	0.094	0	-0.077	0.000
19970813	04:15	-0.650	0.0	-0.177	0	0.042	0.000
19970728	08:35	-0.606	0.0	-0.186	0	-0.251	0.000
19970305	04:21	-0.343	0.0	-0.209	0	-0.176	0.000
19970302	19:11	-0.178	0.0	-0.349	0	-0.082	0.000
19970226	09:21	-0.118	0.0	-0.356	0	-0.160	0.000
19970209	18:21	-0.188	0.0	-0.215	10	0.017	0.000


Lab: SR	EOT Date: 20051203	END Time: 19:45	Method: 1K
Stand: 62	Run Number: 192	Total Test Length: 252)
Formulation / Star	nd Code:		
Oil Code / CMIR:	AL-26951-L		

Appendix

Caterpillar 1K Photographs

- 1. Piston (Thrust and Anti-Thrust)
- 2. Pin Bores (Front and Rear)
- 3. Undercrown
- 4. Liner (Thrust and Anti-Thrust)

Piston Thrust

Piston Anti-Thrust

Laboratory:	SR	Oil Code:	AL-26951-L	
Completion Date:	12/03/05	Test No.:	62-192	
Formulation / Stand Co	de: N/A			Test Hours: 252

Pinbores

Rear

Laboratory:	SR	Oil Code:	AL-26951-L		
Completion Date:	12/03/05	Test No.:	62-192		
Formulation / Stand Code:	N/A			Test Hours:	252

Piston Undercrown

Laboratory:	SR	Oil Code:	AL-26951-L		
Completion Date:	12/03/05	Test No.:	62-192		
Formulation / Stand Code:	N/A			Test Hours: 252	
		Lin	er		
Thrus	t			Anti-Thrust	
		-			10
Constanting of the				New States	
		ar na 🖓 📖			
States and					
Comment of the symptotic of the					1

APPENDIX 2

Cat 1K/1N Test Using JP-8 Fuel and QMI Fuel Additive and Army Reference Oil

1K/1N

Version 20040527

Title / Validity Declaration Page

Method 1K

Conducted for

SOUTHWEST RESEARCH INSTITUTE ARMY LAB

	V = Valid
	I = Invalid
N	N = Results cannot be Interpreted as Respresentative of Oil Performance (Non-Reference Oil) and shall not be used for Multiple Test Acceptance Criteria

Те	st Number
Test Stand: 62	Engine Run No.: 193
EOT Time: 07:31	EOT Date: 20051221
Oil Code / CMIR: * AL-26951-L	
Formulation / Stand Code:	
Alternate Codes: ^B $FUEL = J$	P-8+Q AL-27/39

In my opinion this test <u>has not</u> been conducted in accordance with the 1K/1N Test Procedure (Research Report RR:D02-1273/RR:D02-1321) and the appropriate amendments through the information letter system. The remarks included in the report describe the anomalies associated with this test.

The results of this report relate only to the items tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute [®].

* CMIR or Non-Reference Oil Code

ACC -Registered Tests Only

^B When Provided or Required by Client

Submitted by:

Southwest Research Institute (R)

Testing Laboratory

es F.M Signature

James F. McCord

Typed Name

Research Engineer

Title

1K/1N Test Report Summary Form 1

Lab: SR	EOT Date: 200	51221 END Time	: 07:31	Method: 1K	
Stand: 62	Run Nur	nber: 193			
Formulation / Sta	ind Code:			······································	
Oil Code / CMIR:	AL-26951-L	JP-8 + & Fuel			****
Start Date: 20	0051210	Total Test Length: 252	ТМ	C Oil Type:	
Laboratory Intern	al Oil Code: L(D-206830			

	Correction Effective Date	WDK / WDN	TGF %	TLHC %	Transformed TLHC %	BSOC g/k W-h	EOTOC g/kW-h
Unadjusting Lab Rating		276.1	44	0	0.000	0.21	0.20
Industry Correction (if any)							
Subtotal		276.1	44		0.000	0.21	0.20
Lab Severity Adjustment (if any) ^A	20050616	0.0	0		0.000	0.00	
Total		276.1	44	0	0.000	0.21	0.20

	Effective Date	WDK / WDN	TGF %	тінс %	Transformed TLHC %	BSOC g/k W-h	EOTOC g/kW-h
Test Target Mean ^B							
Test Target STD ^B						-	
A,C CI-4 Pass Limits (First-Test)		332.0	24.0	4.0		0.50	

	Referee Lab	WDK / WDN	TGF %	
Referee Ratings				

	Тор	Int. 1	Oil	Piston	Liner
Ring Loss of Side Clearance (mm)	0.007	0.006	0.000	·	
Ring End Gap Increase (mm)	0.039	0.025	0.026		
Is the Ring Stuck?	NO	NO	NO		
Scuffed Area %	0	0	0	0	0
Average Wear Step (mm)					0.197
% Bore Polish					5.0

Notes:

A Non-reference tests only ^B Reference tests only ^C See Appendix X4

1K/1N **Operational Summary**

Lab: SR	EOT Date: 2	0051221	END Time:	07:31	Method:	1K
Stand: 62	Run N	lumber: 193	Total Test L	ength: 252		
Formulation / S	tand Code:				······	
Oil Code / CMI	R : AL-26951-L					

Operating Condition		Minimu	m	Maximum	Average		Specification	
Engine Speed	r/min	2094.	0	2168.0	2100.0		2100 ± 10	
Engine Power	kW	47.3		56.3	50.7		Report	
Fuel Flow	g/min	174.4		186.0	184.9		185 ±1	
Humidity	g/kg	14.9		19.2	17.5		17.8 ± 1.7	
Temperature °C								
Coolant Out	°C	92.7		93.3	93.0		93 ± 2.5	
Coolant In	٥C	86.6		87.8	87.2		Report	
Coolant delta T	°C	5.3		6.2	5.8		5 ±1.0	
Oil To BRG	°C	106.8	3	108.9	107.0		107 ± 2.5	
Oil Cooler In	°C	109.4	ļ	112.1	111.0		Report	
Inlet Air	°C	126.3	}	128.9	127.0		127 ± 2.5	
Exhaust	°C	565.6	<u>}</u>	598.3	577.6		550 ± 30	
Fuel @ Injector Housing	°C	53.3		62.7	57.4		57 ± 3	
Pressures								
Oil to Bearing	kPa	368.2	2	414.4	404.7		482 Max	
Oil to Jet	kPa	328.2	2	364.7	358.4		360 ± 13	
Inlet Air	<u>kPa</u>	239.4	F	241.1	240.1		<u>240 ± 1</u>	
Exhaust (ABS)	<u>kPa</u>	215.4	L	217.1	216.1		<u>216 ±1</u>	
Fuel @ Filter HSG	kPa	130.3	}	234.4	209.1		210 ± 20	
Crankcase Vacuum	<u>kPa</u>	0.59		0.88	0.70	_	0.7 ± 0.1	
Coolant Jug Pressure	<u>kPa</u>	32.4		87.6	37.0		Report	
Flows								
Blowby	L/min	7.8		14.4	11.8		Report	
Coolant Flow	L/min	59.0		71.2	64.8		65 ± 2	
Air/Fuel Ratio 24 Hr:		29.0	Ai	r/Fuel Ratio 252	Hr:		28.8	
	Assen	nbly Measu	emen	t and Parts Reco	ord			<u></u>
Piston / Head Clearance mm:		3.531	1	ntake Valve Ope	n °ATC:		3.0	
		,	F	Fuel Flow Timing	°BTC:		31.5	
	Part I	No. (1)	S	erial No. (2)	Date Code		Inspection Co	de
Liner	1Y3	3998	21	1001D1468D	N/A	F	N/A	G
Ring Set (1)	110	0728			0107	1	4349	H
Piston	1Y0	0727		N/A	1001 (E)	D	1171 (E)	E

D Number below "E" located on top of piston E Number on top of "E" located on top of piston F Four alphanumeric characters (NNAN) on liner O.D. G Four digit number on liner O.D. H Three or four digit number on white label on ring set box I NN-NN from part number label on ring set box

Page 3 of 16

(1) and (2) Number on Parts Box Yellow Label

1K/1N Operational Summary - Offset and Deviation Form 3

Lab:	SR	EOT Date:	20051221	· · · · · · · · · · · · · · · · · · ·	END Time:	07:31		Method:	1K	
Stand:	62	Ru	In Number:	193	Total Test L	.ength:	252			
Formula	tion / Sta	nd Code:								
Oil Cod	e / CMIR:	AL-2695	i-L							

Controlled Parameter	Allowable % Out	This Test % Out	Allowable % Off	This Test % Off
Speed	5	0.2	20	0.0
Fuel Flow	10	3.4	25	4.5
Humidity	10	0.3	25	10.0
Coolant Flow	5	0.0	25	0.0
Temperature				
Coolant Out	5	0.0	20	6.4
Oil to Bearing	5	0.0	20	3.6
Intake Air	5	0.0	20	6.4
Fuel at Injector Housing	5	0.9	20	6.7
Pressures				
Oil Jet	5	0.0	25	0.4
Intake Air	10	0.0	25	0.0
Exhaust	10	0.0	25	2.4
Fuel at Filter Housing	5	1.0	20	2.9
Crankcase Vacuum	10	0.0	20	0.0

1 Z	Piston Rating Summary	Form 4
	Piston	

Test Identification Lab:	Lab:	SR	SR EOT Date: 2	20051221	End Time:	07:31	07:31 Stand: 62	62	Run Number: 193 Method:	193	Method:	÷	1K Test Length: 252	252
Formulation / Stand Code:	d Code						Oil Code /	/ CMIR:	Oil Code / CMIR: AL-26951-L					
Test Fuel: JP-8 + Add	+ Add		Fuel Batch:	TANK 137	Date R	ated: 2	Date Rated: 20051221		Rating Number:		Ra	Rater: GC		

ř	Test Fuel: JP-8	-8 + Add	łd	Fuel Batch:	atch:	TANK 137	137	Õ	Date Rated:		20051221		Rating Number:	umber:				Rater:	с С С		, succession of the second
_	Last Stand Reference Information	ance Infor	mation	Date Co	Date Completed:				Stand Number:		62		Run	Run Number:	•		-	TMC Oil Code:	Code:		
					WDK / WDN	VDN			TGF		1	TLHC	Trai	Transformed TLHC	а тънс		BSOC		Ŧ	EOTOC	
	Last Reference This Stand	e This Sta	pu																		
	Industry Average	Average																			
	Industry Std	y Std																			
٩	Total Piston Ratings Summary	summar s	۲																		
				Grooves	ives					Lands	ds			Upper	Der	Under	ler		Pin Bores	ores	
	Dep.	No.	0.1	No.	. 2	No.	8	No.	1	No. 2	2	No.	e	Š	Ĕ	0 C	u N	Frc	Front	Rear	ar
	Factor	A, %	Dem.	A, %	Dem.	A, %	Dem.	A, %	Dem.	A, %	Dem.	A, %	Dem.	A, %	Dem.	A, %	Dem.	A, %	Dem.	A, %	Dem.
	HC-1.0	25	25.00	5	5.00					7	7.00										
nodi	MC-0.5	22	11.00																		
вЭ	LC25	53	13.25	72	18.00			36	9.00	93	23.25								<u></u>		
	Total	100	49.25	77	23.00	0	0.00	36	9.00	100	30.25	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
	8 - 9																				
	7 - 7.9																				
	6 - 6.9																				
	5 - 5,9			5	0.28							2	0.10								
lnet	4 - 4.9			5	0.22			5	0.22			5	0.20								
	3 - 3.9							15	0.45												
	2 - 2.9			13	0.32	25	0.56	10	0.25			60	1.38	15	0.30	25	0.58			5	0.10
	1 - 1.9					20	0.24	34	0.34			23	0.28	30	0.39	15	0.22	5	0.08		
	>0 - 0.9					55	0.23					10	0.03								
	Clean		0		0		0		0		0		0	55	0	60	0	95	0	95	0
	Total	0	00.0	23	0.82	100	1.03	64	1.26	0	0.00	100	1.99	100	0.69	100	0.80	100	0.08	100	0.10
Rai	Rating	49	49.25	23.82	82	1.03	ę	10.26	26	30.25	25	1.99	 ი	0.(0.69	0.80	0ž	0.08	8(0.10	0
							-			1		Contraction of the second seco									

ACC GR Fill % 59

0.00

0.00

50 34.50

49.75

1 30.25

1 10.26

1.5 35.73

1.5 73.88

Ind Rating

WDK LOC FCT

25

25

20 16.00 T.L. Flaked Carbon %

T.L. Heavy Carbon %

Unweighted Dep.

25.75 WDK / WDN

276.1

Int. GR. Fill % 31

TGF %

44

118.3

0

1K/1N **Rating Worksheet**

1K Total Test Length: 252 Method:

Rater: GC

EOT Date: 20051221

								Groove
T		No.	1		No.	2		No
ł	A%	FCT	Dem	A%	FCT	Dem	A%	FCT
۶ľ	25	1.0	25.00	5	1.0	5.00		1.0
arbor	22	.50	11.00					.50
ات	53	.25	13.25	72	.25	18.00		.25
	100	Sub T	49.25	77	Sub T	23.00	0	Sub T
		10-10.0		5	10-4.5	0.28	15	10-7.6
		10-10.0		5	10-5.5	0.22	10	10-8.0
		10-10.0		3	10-7.2	0.08	20	10-8.8
		10-10.0		10	10-7.6	0.24	15	10-9.2
		10-10.0			10-10.0		10	10-9.5
sh		10-10.0			10-10.0		30	10-9.8
Varnish		10-10.0			10-10.0			10-10.0
2		10-10.0			10-10.0			10-10.0
		10-10.0			10-10.0			10-10.0
		10-10.0			10-10.0		ļ	10-10.0
		10-10.0		L	10-10.0			10-10.0
		10-10.0		l	10-10.0			10-10.0
	0	Sub T	0.00	23	Sub T	0.82	100	Sub T
ļ		Total	49.25		Total	23.82		Total
	r			· · · · · · ·	Land	ls	1	
		No.	1		No.			No.
	<u>A%</u>	FCT	Dem	A%	FCT	Dem	A%	FCT
le		1.0		7	1.0	7.00		1.0
arbor	-			I				
p	36	.25	9.00	93	.25	23.25	<u> </u>	.25
	36	Sub T	9.00	100	Sub T	30.25	0	Sub T
L	-	10-5.5	0.00		10-10.0		2	10-5.0
	5	10- 7.0	0.22		10-10.0		2	10- 6.0
	15	10-7.5	0.45		10-10.0		15	10-7.3
	10	10-7.0	0.25	<u> </u>	10-10.0		20	10-7.6
	34	10- 10.0	0.34		10-10.0		25	10-8.0
		10-10.0		1	10-10.0		13	10-8.6
L.		10-10.0			10-10.0		10	10-9.0
Varnish		10-10.0		1	10-10.0		10	10-9.7
P		10-10.0		1	10-10.0			10-10.0
	<u> </u>	10-10.0		1	10-10.0			10-10.0
		10-10.0			10-10.0		1	10-10.0
1				+			+	
	1	10-10.0			110-10.0		1	110-101
	64	10- 10.0 Sub T	1.26	0	10- 10.0 Sub T	0.00	100	10-10.0 Sub T

		02-193	_			AL-203	=		Groove	s							
		No.	1	ļ	N	o. 2			No.	3	_	Unde	rcrown			Uppers	kirt
	A%	FCT	Dem	A%	FCT	Den	n	A%	FCT	Dem	A%	FCT	Der	n	A%	FCT	Dem
5	25	1.0	25.00	5	1.0	5.0	0		1.0			1.0				1.0	
Carbon	22	.50	11.00			_			.50			1		,			
1	53	.25	13.25	72	.25	18.0	0		.25			.25				.25	
	100	Sub T	49.25	77	Sub T	23.0	00	0	Sub T	0.00	0	Sub T	0.0	0	0	Sub T	0.00
						1								1			• •
		10-10.0		5	10-4.5	0.2	8	15	10-7.6	0.36	5	10-7.	3 0.1	4	15	10-8.0	0.30
		10-10.0		5	10-5.5	0.2	2	10	10-8.0	0.20	20	10-7.	8 0.4	4	15	10-8.4	0.24
		10-10.0		3	10-7.2	0.0	8	20	10-8.8	0.24	15	10-8.	5 0.2	2	15	10-9.0	0.15
		10-10.0		10	10-7.6	0.2	4	15	10-9.2	0.12	60	10-10	o.d		55	10-10.0	
		10-10.0			10-10.	0		10	10-9.5	0.05		10-10	o.d			10-10.0	····
rs		10-10.0			10-10.	o		30	10-9.8	0.06		10-10).d			10-10.0	
Varnish		10-10.0			10-10.	0			10-10.0			10-10).d			10-10.0	
2		10-10.0			10-10.	o			10-10.0			10-10).d			10-10.0	
		10-10.0			10-10.	0			10-10.0			10-10).d			10-10.0	·····
		10-10.0			10-10.	0			10-10.0			10-10).d			10-10.0	
		10-10.0			10-10.	0			10-10.0			10-10).d			10-10.0	
		10-10.0		ļ	10-10.	0			10- 10,0			10-10	o.d			10-10.0	
	0	Sub T	0.00	23	Sub T	0.8	2	100	Sub T	1.03	100	Sub 1	г о.8	30	100	Sub T	0.69
		Total	49.25		Total	23.0	82		Total	1.03		Tota	0,8	30		Total	0.69
					Lar	nds								Pin	Bores	6	
		No.	1	<u> </u>	No	. 2			No.	3		1	ront			Rea	r
	A%	FCT	Dem	A%	FCT	Dei	m	A%	FCT	Dem	A%	FCT	De	m	A%	FCT	Dem
		1.0		7	1.0	7.0	00		1.0			1.0				1.0	
Carbon					1			l			1	1				1 1	
с а	36	.25	9.00	93	.25	23.	25	ļ	.25			.25				.25	
	36	Sub T	9.00	100	Sub T	30.	25	0	Sub T	0.00	0	Sub	r 0.0	00	0	Sub	0.00
Ц				1		1		1				1	_			1	
	5	10-5.5	0.22		10-10.			2	10-5.0	0.10	5	10-8.)8	5	10-8.0	0.10
	15	10-7.0	0.45		10-10.			5	10-6.0	0.20	95				95	10-10.0	
	10	10-7.5	0.25	 	10-10.			†	10-7.3	0.40		10-10				10-10.0	
	34	10-9.0	0.34	<u> </u>	10-10.			20	10-7.6	0.48		10-10				10-10.0	
		10-10.0			10-10.			25	10-8.0	0.50		10-10				10-10.0	
_		10-10.0			10-10.			13	10-8.6	0.18		10-10			ļ	10-10.0	••••••••••••••••••••••••••••••••••••••
Varnish		10-10.0			10-10.			10	10-9.0	0.10		10-10				10-10.0	www
Val		10-10.0			10-10.	·		10	10-9.7	0.03		10-10				10-10.0	
		10-10.0		ļ	10-10.			<u> </u>	10-10.0			10-10				10-10.0	
		10-10.0		<u> </u>	10-10.				10-10.0			10-10				10-10.0	
		10- 10.0		1	10-10.			 	10-10.0			10-10				10-10.0	
	ļ	10-10.0			10-10.			<u> </u>	10-10.0			10-10			ļ	10-10.0	
	64	Sub T	1.26	0	Sub T			100	Sub T	1.99	100				100	Sub T	0.10
		Total	10.26		Total	30.	25		Total	1.99		Tota	0.0	08		Total	0.10
						Grooves	т			Lands	i T		Upper Skirt	Un	der wn		Pin Bores
					1	2		3	1	2		3				Front	Rear
-	ating			- · · · · · · · ·	.25	23.82	1	03	10.26	30.25		.99	0.69		80	0.08	0.10
V	VDK L	OC FCT			.5	1.5	2	25	1	1		25	50		0	0	0
V	VT Ra	ting		73	.88	35.73	25	.75	10.26	30.25	4	9.75	34.50		.00	0.00	0.00
Т	GF:	44	1	Inter	midate (Groove Fil	1:	31	WDK / W	'DN:	276.1	Ŀ	Fop Land I	Heavy	Carb	on:	0

1 K/1 N Supplemental Piston Deposits (Groove Sides and Rings) ${\rm Form}~5$

Lab: SR		Ū.	EOT Date:	20	20051221			END Time:	07	07:31	Method:	:pq	1K		
d:	62	T.		Run Number:	iber:	193		Total Test Length:	Length:	252	~				
lation /	Stand	Code.													

Oil Code / CMIR:	iii Iiii		AL-26951-L	1-L											
				Carbon						Varnish					
Deposit Type	t Type		НС	MC	ГC	6 - 8	7 - 7.9	6 - 6.9	5 - 5.9	4 - 4,9	3 - 3.9	2 - 2.9	1 - 1.9	>0 - 0.9	Clean
		L			70	30									
(-	8					20	10			50	10		10	
Top	(┣		30	55								15		
and	2	۵				20				65				15	
Bottom		h								,20	30	30	20		
	3	æ									20	10	10	60	
		⊢			10	ۍ ۲			15	40	15		10	Ð	
	-	۵								2	15			80	
		BK	20	2	70							5			
		}	ę	ε	თ						20	30	20	15	
and Back of	2	8									20	60	10	10	
Rings		ВҚ			30	30						40			
		+									40	30		30	
	ო	в									10	40		50	
		BK									10	90			
Additional Deposit & Condition Ratings	osit &	Conditi	on Rating	St											
Piston Crown			NORMAL												
Liner			NORMAL												
Rings		_	NORMAL				****								

	- 		20061221	L	END Time:	07-31	Method:	XL X	
LaD: OH	2		177100			- 0: 0			
Stand: 62	2	Run Number:	193 193		Total Test Length:	252			A Annuar 1
Formulation / Stand Code:	tand Code:								
Oil Code / CMIR:		AL-26951-L							
Test Method:	1K		Test Fuel:	JP-8	+ Add	Fuel B	Fuel Batch:	TANK 137	
Oil Analysis / Engine Hours	ndino Houre	NEW	NFW / O	24	4	2(204	2!	252
Viscosity @ 100°C	0°C	15	15.06	13.	13.70	14.	14.09	14	14.29
TRN D4739		6.1	6.82	5.82	32	2.6	2.88	2.	2.66
Wear Metals:	Fe / AI	4	<1	ω	2	23	2	27	2
	Si / Cu	4	 1 	9	<1	9	2	9	2
	Cr / Pb	<1	<1	<1	-	<1	ų	-1	<1
Fuel Dilution %				0.3	3	0	0.3	Ō	0.3
Blowhy (L/min)				10.8	8.	12	12.2	12	12.9
24 Hour /	Average BSOC	24 Hour Average BSOC (g/w-W-h) for Hours End	lours End	0-252 Hr. Avg.	Avg. BSOC (g/k-W-h):): 0.21	EOT Oil Consi	EOT Oil Consumption(g/kW-h):	i): 0.20
24	48	72	108	132	156	180	204	228	252
0.27	0.23	0.18	0.28	0.21	0.21	0.21	0.22	0.23	0.17
Inspection and		Ring Gap	Side Clearance	Ring	Scuffed	% Bore	% Bore Polish	Averag	Average Wear
Measurement Summary	Summary	Increase (mm)	Loss (mm)	Stuck (1)	Area % (2)	(With	(With Grid)	Step	Step (mm)
Top Ring		0.039	0.007	NO	0				
Intermediate Ring	ng	0.025	0.006	NO	0				
Oil Ring		0.026	0.000	NO	0				
Piston					0				
Cylinder Liner					0	5.0	(0.1	0.197
		TGF %	Int. Gr. F.%	WDK	Un Wt Dep	T.L. Heav	Heavy Carbon	T.L. Flaked	Flaked Carbon %
Piston Deposit Summary	sit Summary	44	31	276.1	118.3	0		0	
				Unweighted Piston Deposits	iston Deposits				
	Grooves			Lands		Upper	Under	Pin	Pin Bores
	2	3	-	2	ю	Skirt	Crown	Front	Rear
49.25	23.82	1.03	10.26	30.25	1.99	0.69	0.80	0.08	0.10
	->->								

1K/1N Unscheduled Downtime & Maintenance Summary Form 7

Lab: SR	EOT Date: 20051221	END Time: 07:31 Method: 1K
Stand: 62	Run Number: 193	Total Test Length: 252
Formulation / S	tand Code:	
Oil Code / CMI	R: AL-26951-L	

Test	Date	Downtime	Reasons	
126:32	20051215	1:51	Replaced exhaust temp thermocouple.	
139:11	20051216	4:00	Replaced coolant temp thermocouple wire.	
141:25	20051216	3:30	Power failure.	
251:01	20051221	1:42	Replaced fuel filter.	
Total I	Downtime	011:03		

Other Comments		······································	
Number of Comment Lines:	0		
	••••••••••••••••••••••••••••••••••••••		
· · · · · · · · · · · · · · · · · · ·			
			, 1997 - J. M. M. Market M. Barnen and San

1K/1N Ring Measurements Form 8

Lab: SR	EOT Date: 20051221	END Time: 07:31 Method: 1K
Stand: 62	Run Number: 193	Total Test Length: 252
Formulation / S	tand Code:	
Oil Code / CMI	R: AL-26951-L	

Ring Gaps (mm)	Тор	Intermediate	OIL
Specifications	0.724 <u>+</u> 0.076 mm	0.673 <u>+</u> 0.076 mm	0.572 <u>+</u> 0.190 mm
Pre-Test	0.698	0.673	0.571
Post-Test	0.737	0.698	0.597
Increase	0.039	0.025	0.026

Ring Side	Clearance *	A	В	С	D	Average	Minimum	Specification
	Pre-Test	0.165	0.165	0.165	0.165	0.165	0.165	
Тор	Post-Test	0.152	0.152	0.165	0.165	0.158	0.152	0.193 <u>+</u> 0.032 mm
	LSC	0.013	0.013	0.000	0.000	0.007	0.000	
	Pre-Test	0.076	0.076	0.076	0.076	0.076	0.076	
Intermediate	Post-Test	0.076	0.076	0.064	0.064	0.070	0.064	0.090 <u>+</u> 0.020 mm
	LSC	0.000	0.000	0.012	0.012	0.006	0.000	
	Pre-Test	0.064	0.064	0.064	0.064	0.064	0.064	
Oil	Post-Test	0.064	0.064	0.064	0.064	0.064	0.064	0.073 <u>+</u> 0.016 mm
	LSC	0.000	0.000	0.000	0.000	0.000	0.000	

* Notes:

1. Write "Stuck" In Place of Dimension When Applicable.

2. Write "<0.038 mm" For Clearance When Applicable.

3. Write ">" Before Calculated Decrease or Average Decrease Values That Incorporate a "<0.038 mm" in Calculation.

4 LSC: Loss of Clearance.

5. Minimum: Intermediate and Oil Ring Minimum Side Clearance is Measured 360° Around Piston.

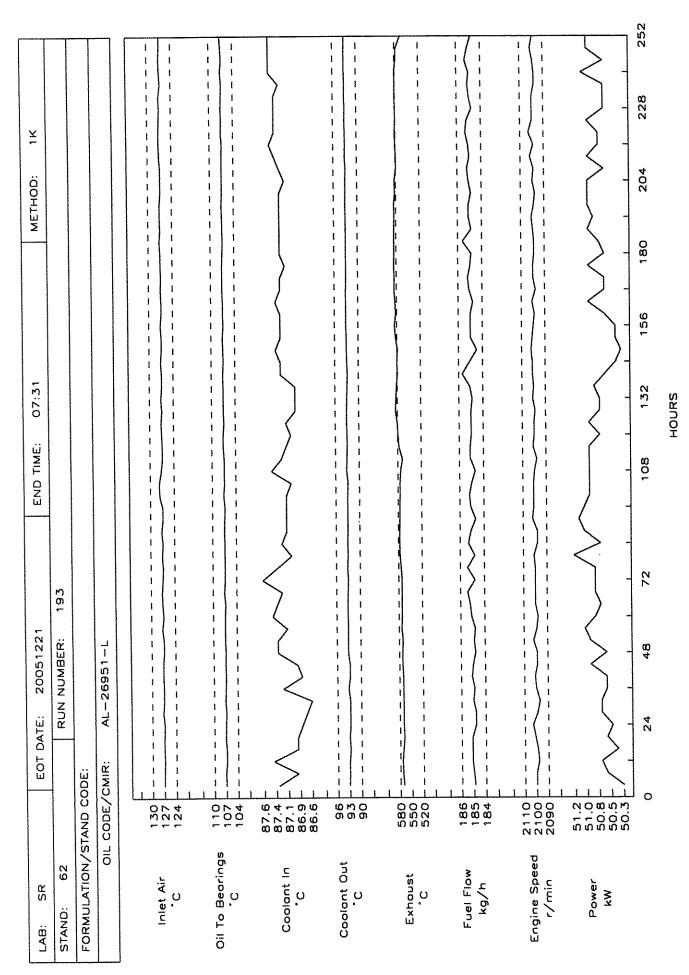
1K/1N Liner Measurements Form 9

Lab: SR	EOT Date: 20051221	END Time: 07:31 Method: 1K
Stand: 62	Run Number: 193	Total Test Length: 252
Formulation / S	tand Code:	
Oil Code / CMI	R : AL-26951-L	

Liner Surface Finish (micrometer)				
Distance From Top	Transverse	Longitudinal	Average	
130 mm	0.44	0.37	0.40	
50 mm	0.39	0.50	0.44	
25 mm	0.47	0.44	0.45	
	nan an an an an Anna an	Total Average:	0.43	

	e Polish - Grid alues From Grid)
Thrust	3.0
Anti-Thrust	2.0
Total	5.0

	Liner B	ore Measurement (mm)	
	Before Test	- Diameter (Dial B	ore Gage)	
Bore Height		Longitudinal	Tra	nsverse
230 mm		137.180	13	37.155
130 mm		137.168	13	37.175
50 mm		137.163	13	37.193
25 mm		137.160	13	37.201
15 mm		137.190	13	37.163
	After	Test - (Surface Pro	ofile)	
	Longitu	ıdinal	Trans	verse
	Front	Rear	т	AT
Wear Step @ 15mm	0.203	0.203	0.178	0.203



				Form 10				
Lab: SR	EOT Date:	2005122	1221	END Time:	07:31	N	Method: 1K	
Stand: 62		Run Number:	r: 193	Total Test Length:	Length:	252		
Formulation / Stand Code	ode:							
Oil Code / CMIR:	AL-26951-L	51-L						
Parameter	S.	Sensing	Calibration	Record	Observation	Record	Fog	System
(1)	<u>م</u>	Device	Frequency (3)	Device (4)	Frequency (5)	Frequency (6)	Frequency (7)	Response (8)
Operation Conditions								
Engine Speed (r/min)		Magnetic Pickup	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	2.1
Engine Power (kW)	Lo Lo	Load Cell	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	1.9
Fuel Flow (kJ/min)	Micr	Micro-Motìon	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	70.3
Humidity (g/kg)	Ď	Dew Cell	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	6.0 min
Temperatures (°C)								
Coolant Out	Then	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	2.8
Coolant In	Then	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	2.7
Oil to Bearing	Then	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	2.9
Oil Cooler In	Ther	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	3.0
Inlet Air	Ther	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	2.8
Exhaust	Ther	Thermocouple	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	2.9
Pressure (kPa)								
Oil to Bearing	Stre	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	2.9
Oil to Jet	Str	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	2.0
Inlet Air	Str	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	1.0
Exhaust	Str	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	3.0
Fuel @ Filter HSG	Str	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	2.8
Crankcase Vacuum	Str	Strain-gage	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	3.0
Flows (L/min)								
Blowby	Ga	Gas Meter	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	10.0
Coolant Flow	Barc	Barco Venturi	Every 5 Tests	HP 1000 Computer	Every Second	Every Minute	e Every Minute	3.0
Legend: (1) Operating Parameter (2) The Type of Device Used to Measure Temperature, Pressure, or (2) Frequency at Which the Measurement System is Calibrated (3) Frequency at Which the Measurement System is Calibrated (4) The Type of Device Where Data is Recorded (4) The Type of Device Where Data is Recorded DL - Automatic Data Logger	d to Measure Tem Measurement Sys ere Data is Record t ta Logger	pperature, Pressu stem is Calibrate ed	re, or Flow	 (5) Data Area (6) Data are R (7) Data are L (7) Data are L AG AG/N (8) Time for th 	Data Area Observed but Only Recorded if off Spec. Data are Recorded but are not Retained at EOT Data are Logged as Permanent Record, Note Speci SS - Snapshot Taken at Specified Frequency AG/X - Average of X Data Points at Specified Time for the Output to Reach 63.2% of Final Value	Recorded if off S Retained at EO Record, Note S Specified Freque a Points at Spec 33.2% of Final '	Data Area Observed but Only Recorded if off Spec. Data are Recorded but are not Revained at EOT Data are Logged as Permanent Record, Note Specify if: SS - Snapshot Taken at Specified Frequency AG/X - Average of X Data Points at Specified Frequency Time for the Output to Reach 63.2% of Final Value for Step Change at Input	at Input
SC - Strip Chart Hu	scorder							

(4) The Type of Device Where Data is Recorded LG - Hanglog Sheet DL - Automatic Data Logger SC - Strip Chart Recorder C/M - Computer, Using Manual Data Entry C/D - Computer, Using Direct I/O Entry

	F
۳.	
	5
>	5
2	Ц.
	0
	Ű.

tk/tn Form 12

1 AR	EOT	EOT DATE: 20051221	END TIME: 07:31	METHOD:	1 K
lä		RUN NUMBER: 193			
LAT	ND CODE:				
OIF C	OIL CODE/CMIR:	AL-26951-L			
Oil to Bearíng kPa	44 864 100 100 100 100 100 100 100 100 100 10				
Oil To Jet kPa	375				
Inlet Air kPa	240				
Exhoust kPo	213 216 215 11 1				
Humiaity grams/kg	19.5 17.8 16.1				
Coolant Flow L/min	67 65 63				
Crankcase Vacuum kPa	00.08				
Blowby L/min		24 48 72	108 132 156 180	204	228 252
	þ)	HOURS		

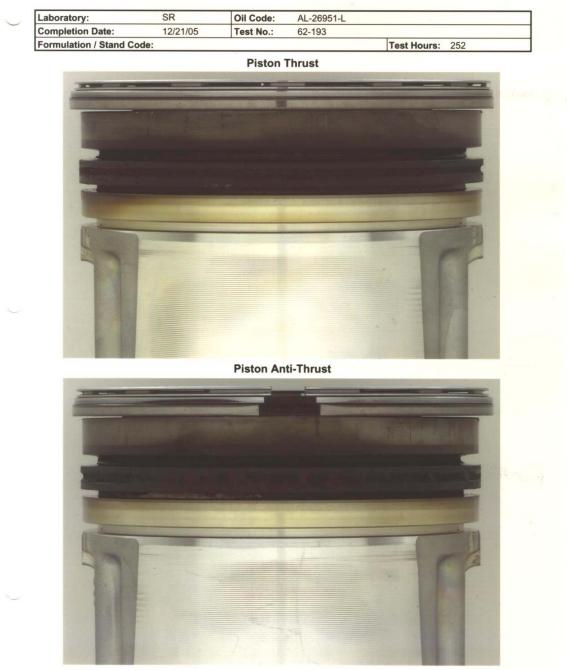
SR SR JLATION/STANE JLATION/STANE J.150 1.40 1.10 0.10 0.80 0.80 0.80 0.80 0.80 0.8	1K/1N FORM 13 OIL CONSUMPTION, PLOT	62 EOT DATE: 20051221 62 RUN NUMBER: 1: 0M /STAND CODF:	:: AL-26951-L 0 - 24 Hour 0.21 228 - 252 Hour 0.20 Avg 0 - 252 Hour 0.21	Increase 0 – 24 to 228 – 252 Hour –0.10 (=37.04.%)
--	---	---	---	--

1K/1N Severity Adjustment History Form 15

Lab: SR	EOT Date: 20051221	END Time: 07:31	Method: 1K
Stand: 62	Run Number: 193	Total Test Length: 252	2
Formulation / Sta	nd Code:	······	
Oil Code / CMIR:	AL-26951-L		

Usage I	Dates	WDK/	NDN	TGF	%	Transforme	d TLHC %
Start	Time	Zi	S.A.	Zi	S.A.	Zi	S.A.
20050616	11:25	-0.042	0.0	-0.248	0	0.352	0.000
20050530	20:37	-0.423	0.0	-0.191	0	0.578	0.000
20040308	03:03	-0.708	25.2	-0.198	0	0.295	0.000
20021008	13:34	-0.644	0.0	-0.361	0	0.018	0.000
20020826	12:15	-0.634	0.0	-0.316	0	0.002	0.000
20020727	14:40	-0.479	0.0	-0.104	0	-0.300	0.000
20011027	01:58	-0.271	0.0	-0.091	0	-0.238	0.000
20011014	13:38	-0.723	25.8	0.102	0	-0.253	0.000
20010818	22:43	-0.890	31.7	-0.024	0	-0.179	0.000
20001202	21:47	-0.753	26.8	0.090	0	-0.529	0.000
20000719	08:35	-0.391	0.0	0.099	0	-0.433	0.000
19990713	13:48	-0.776	0.0	0.225	0	-0.413	0.000
19990302	01:29	-0.386	0.0	0.442	0	-0.603	0.000
19980414	03:18	-0.370	0.0	0.662	-10	-0.536	0.000
19980309	21:54	-0.151	0.0	0.486	0	-0.453	0.000
19980217	00:16	-0.506	0.0	0.392	0	-0.429	0.000
19971110	19:16	-0.556	0.0	0.243	0	-0.399	0.000
19971104	04:44	-0.509	0.0	0.439	0	-0.361	0.000
19971018	06:02	-0.673	24.0	0.132	0	-0.235	0.000
19970824	19:55	-0.706	25.1	0.094	0	-0.077	0.000
19970813	04:15	-0.650	0.0	-0.177	0	0.042	0.000
19970728	08:35	-0.606	0.0	-0.186	0	-0.251	0.000
19970305	04:21	-0.343	0.0	-0.209	0	-0.176	0.000
19970302	19:11	-0.178	0.0	-0.349	0	-0.082	0.000
19970226	09:21	-0.118	0.0	-0.356	0	-0.160	0.000
19970209	18:21	-0.188	0.0	-0.215	10	0.017	0.000

1K/1N


Lab: SR	EOT Date: 20051221	END Time: 07:31 Method: 1K
Stand: 62	Run Number: 193	Total Test Length: 252
Formulation / Star	nd Code:	
Oil Code / CMIR:	AL-26951-L	

Appendix

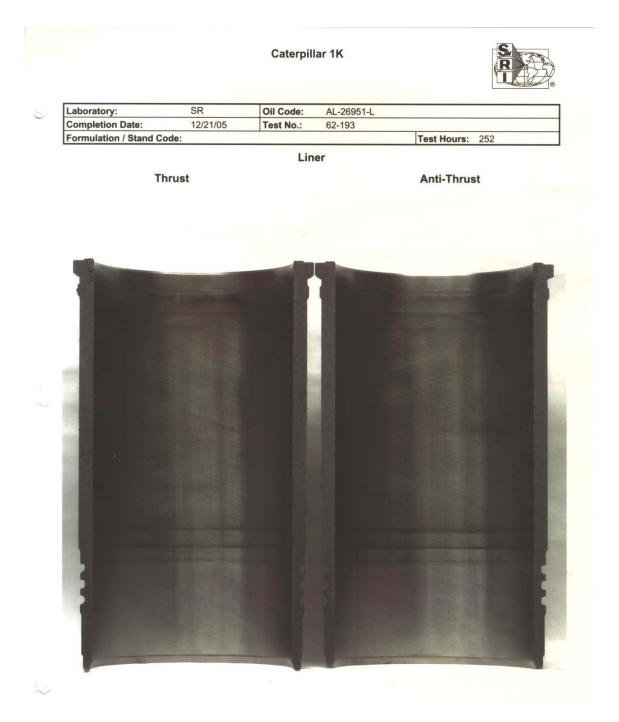
Caterpillar 1K Photographs

- 1. Piston (Thrust and Anti-Thrust)
- 2. Pin Bores (Front and Rear)
- 3. Undercrown
- 4. Liner (Thrust and Anti-Thrust)

Laboratory:	SR	Oil Code:	AL-26951-L	
Completion Date:	12/21/05	Test No.:	62-193	
Formulation / Stand Co	de:			Test Hours: 252

Pinbores

Rear



Laboratory:	SR	Oil Code:	AL-26951-L		
Completion Date:	12/21/05	Test No.:	62-193		
Formulation / Stand Co	ode:			Test Hours:	252

Piston Undercrown

APPENDIX 3

Diesel Fuel Effects on Fuel Economy and Exhaust Emissions Report

SOUTHWEST RESEARCH INSTITUTE®

6220 CULEBRA ROAD • POST OFFICE DRAWER 28510 • SAN ANTONIO, TEXAS, USA 78228-0510 • (210) 684-5111 • WWW.SWRI.ORG HTTP://ENGINEANDVEHICLE .SWRI.ORG

ENGINE, EMISSIONS, AND VEHICLE RESEARCH DIVISION FAX: (210) 522-3950

ISO 9001 CERTIFIED ISO 14001 Certified

March 15, 2006

Edwin Frame U.S. Army TARDEC 6220 Culebra Rd. San Antonio TX 78238 eframe@swri.org

Subject: Final Letter Report, "Diesel Fuel Effects on Fuel Economy and Exhaust Emissions", SwRI Project 03.03227.36.202

Dear Mr. Frame:

This report contains the results of the evaluation of two fuels for fuel economy and exhaust emission effects. The two fuels were evaluated by operating a Chevrolet Silverado diesel pickup truck over the chassis dynamometer portion of the Federal Test Procedure (FTP-75) and the Highway Fuel Economy Test (HwFET). This project was performed for the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) by the Department of Engine and Emissions Research (DEER), Engine, Emissions & Research Division, Southwest Research Institute[®] (SwRI[®]). Testing was carried out during January 2006. Mr. Edwin Frame was the program monitor for this program. The SwRI project leader was Mr. Eugene Jimenez. Testing was conducted under the supervision of Mr. Bill Olson.

1.0 TECHNICAL APPROACH

The objective of this project was to determine the fuel economy and exhaust emission effects of two diesel fuels. The fuels were evaluated in a 2006 Chevrolet Silverado diesel pickup truck operating on a chassis dynamometer over the FTP-75 and an HwFET driving cycles in a manner consistent with the Code of Federal Regulations (CFR), Title 40, Part 86 and 600. Details of the test program are given below.

1.1 Test Fuels

The TARDEC provided DEER with an additized and an unadditzed diesel fuel for testing. The specifications of each fuel are provided in Appendix A. When changing fuels in the vehicle between test sequences, a double flush procedure was followed in order to minimize the carryover of one fuel to the next. The flush procedure is shown in Appendix B.

Mr. Edwin Frame U. S. Army TARDEC March 15, 2006 Page 2 of 6

1.2 Test Vehicle

The vehicle used for this project was a 2006 C2500 Chevrolet Silverado equipped with a Duramax diesel engine. The vehicle was acquired by SwRI from a local rental agency and had approximately 10,000 miles on the odometer at the start of testing. Specifications of the test vehicle are provided in Appendix C.

1.3 Test Sequence

An initial fuel flush procedure, as mentioned in Section 1.1, was performed with the unadditized fuel. Prior to the evaluation of each fuel, the test vehicle was preconditioned with a single cold-start FTP-75 + HwFET test sequence. The unadditized fuel was tested first over five replicate FTP-75 + HwFETs. Another fuel flush procedure was then performed to install the additized fuel, which was tested over six FTP-75 + HwFETs. Two tests were void due to equipment failure and human error, respectively. One test resulted in a questionable particulate measurement, so an addition test was performed. A total of six valid tests were completed on the unadditized fuel. The test program was conducted as shown in Table 1.

Step	Description			
1.	Receive test fuels from U.S. Army Lab			
2.	Procure a Chevrolet Silverado diesel pick-up from a local rental fleet			
3.	Conduct chassis dyno setup for the vehicle			
4.	Flush and filled vehicle with unadditized fuel			
5.	Soak vehicle overnight			
6.	Precondition vehicle with cold-start FTP-75 + HwFET cycle			
7.	Soak vehicle overnight			
8.	Conduct a cold-start FTP-75 and HwFET test			
9.	Repeat Steps 7 and 8 four more times			
10.	Repeat Steps 4 through 8 with the additized fuel			
11.	Repeat Steps 7 and 8 due to questionable PM measurment			

TABLE 1. TEST SEQUENCE

1.4 Exhaust Emissions

Gaseous total hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NO_X), carbon dioxide (CO₂) and particulate matter (PM) exhaust emission rates were determined in a manner consistent with EPA protocals for light-duty emissions testing as given in the Code of Federal Regulations Title 40, Parts 86. A constant volume sampler was used to collect proportional dilute exhaust in Tedlar bags for analysis of CO and CO₂. THC and NO_X were measured continuously from the dilution tunnel. Concurrently, a proportional sample of the dilute exhaust was drawn through Pallflex TX40 Teflon-coated glass fiber filters for gravimetric determination of the mass emissions of PM. Exhaust constituents were determined as specified below:

Mr. Edwin Frame U. S. Army TARDEC March 15, 2006 Page 3 of 6

CONSTITUENT

Total Hydrocarbon Carbon Monoxide Carbon Dioxide Oxides of Nitrogen Particulate Matter

ANALYSIS METHOD

Heated Flame Ionization Non-Dispersive Infrared Non-Dispersive Infrared Chemiluminescence Gravimetric Method

Fuel economy was determined using the EPA-specified carbon balance method in a manner consistent with CFR, Title 40, Parts 86 and 600. Fuel economy was calculated for both the FTP-75 and HwFET. A composite fuel economy value was then calculated based on a weighted average of the FTP-75 and HwFET fuel economy values as follows:

Composite Fuel Economy =
$$\frac{1}{(\frac{0.55}{FE_{FTP-75}}) + (\frac{0.45}{FE_{HwFET}})}$$

1.5 Chassis Dynamometer Setup

The Chevrolet Silverado was tested on a Horiba 48-inch single-roll chassis dynamometer. This dynamometer electrically simulates inertia weights up to 15,000 lb over the FTP-75 and HwFET, and provides programmable road load simulation of up to 200 hp continuous at 65 mph. Chassis dynamometer coefficients and equivalent test weight was taken from EPA's Certification Test Results Reports. The dynamometer settings for the Silverado are given in Table 2.

a coefficient	79.03 lbs	
b coefficient	0.1046 lb/mph	
c coefficient	0.04876 lb/mph^2	
Equivalent Test Weight	7500 lbs	

TABLE 2. Dynamometer Load Settings

2.0 TEST RESULTS

The average FTP-75, HwFET, and composite fuel economy results are shown in Table 3. Detailed results along with standard deviation and coefficient of variation are given in Appendix D. The additized fuel resulted in fuel economy improvements over both FTP-75 and HwFET test cycles. Using the Student's T-test with a 99 percent confidence interval, statistically significant improvements of 1.7 and 1.6 percent were observed for the FTP-75 and the calculated composite fuel economies, respectively.

Tes	t	FTP-75 (mi/gal)	HwFET (mi/gal)	Composite (mi/gal)				
	Test 1	13.16	19.52	15.42				
	Test 2	13.13	19.63	15.43				
Unadditized Fuel	Test 3	13.09	19.42	15.34				
Chaduluzed Fuel	Test 4	13.15	19.21	15.33				
	Test 5	12.97	19.49	15.27				
	Average	13.10	19.45	15.36				
	Test 1	13.17	19.90	15.53				
	Test 2		Void					
	Test 3		Void					
	Test 4	13.30	19.70	15.58				
Additized Fuel	Test 5	13.25	19.41	15.46				
	Test 6	13.27	19.62	15.53				
	Test 7	13.41	19.75	15.67				
	Test 8	13.55	20.06	15.87				
	Average	13.33	19.74	15.61				
% Change from Unado	litized to Additized	1.72%	1.47%	1.63%				
Statistically significan	t at 95 percent CI ^a	YES	YES	YES				
Statistically significan	t at 99 percent CI ^b	YES	NO	YES				
a - Based on Student's t-test with a 95 percent confidence interval b - Based on Student's t-test with a 99 percent confidence interval								

TABLE 3. FUEL ECONOMY RESULTS

Results of THC, CO, NO_X and PM exhaust emission measurements are shown in Table 4 for both the FTP-75 and HwFET cycles. Calculated average, standard deviation, and coefficient of variation of the exhaust emissions results are given in Appendix E. Statistically significant improvements of 11 percent for THC and 6 percent for CO were observed with the additized fuel over the FTP-75 cycle. Over the HwFET cycle, the additized fuel provided a statistically significant improvement in THC of approximately 7 percent. Test printouts for the unadditized and additized fuels are shown in Appendices F and G, respectively.

Without confirming these results on additional vehicles, it is not known whether the observed changes in fuel economy and exhaust emissions were a direct result of the additized fuel, or due to some other change in operation of the test vehicle.

Mr. Edwin Frame U. S. Army TARDEC March 15, 2006 Page 5 of 6

				d FTP-7	5	Weighted HwFET				
Test	No.	THC g/mi	CO g/mi	NO _X g/mi	PM mg/mi	THC g/mi	CO g/mi	NO _X g/mi	PM mg/mi	
	Test 1	0.447	1.936	6.004	109.8	0.247	0.795	4.612	62.3	
	Test 2	0.474	1.933	6.074	107.9	0.243	0.785	4.632	63.2	
Unadditized	Test 3	0.521	2.023	6.251	110.9	0.251	0.794	4.736	72.8	
Fuel	Test 4	0.473	1.985	6.123	120.6	0.243	0.788	4.539	71.1	
	Test 5	0.479	1.934	5.989	120.5	0.242	0.767	4.555	72.0	
	Average	0.479	1.962	6.088	113.9	0.245	0.786	4.615	68.28	
	Test 1	0.537	2.146	6.191	108.2	0.265	0.801	4.530	49.6	
	Test 2				V	oid	1	1		
	Test 3				Ve	oid				
Additized	Test 4	0.520	2.030	5.978	107.6	0.248	0.782	4.574	68.9	
Fuel	Test 5	0.536	2.100	6.275	99.2	0.272	0.805	4.665	68.6	
Fuer	Test 6	0.524	2.017	6.136	108.2	0.264	0.800	4.612	69.8	
	Test 7	0.539	2.111	5.713	138.6	0.266	0.806	4.619	68.8	
	Test 8	0.543	2.061	6.008	133.1	0.257	0.825	4.495	66.7	
	Average	0.533	2.078	6.050	115.8	0.262	0.803	4.583	65.40	
Percent cha Unadditized t Fue	o Additized	11.4%	5.9%	-0.6%	1.6%	6.9%	2.2%	-0.7%	-4.2%	
Statistically significant at 95 percent CI ^a		YES	YES	NO	NO	YES	NO	NO	NO	
Statistically significant at 99 percent CI ^b		YES	YES	NO	NO	YES	NO	NO	NO	
a – Based on S b - Based on St										

TABLE 4. EXHAUST EMISSIONS RESULTS

Mr. Edwin Frame U. S. Army TARDEC March 15, 2006 Page 6 of 6

3.0 CLOSURE

With the submission of this report, SwRI has completed all efforts under Project No. 03227.36.202. If you have any questions please contact Gene Jimenez at (210) 522-5419 or by e-mail at <u>ejimenez@swri.org</u>. SwRI appreciates the opportunity to perform this study, and looks forward to meeting the future emissions research needs of the U.S. Army TARDEC.

Prepared by:

Lugene Tim

Eugene Jimenez Research Assistant Department of Engine and Emissions Research

Approved by:

Jeff J. White

Director of Development Department of Engine and Emissions

/lfv

Reviewed by:

Kevin A. Whitney Manager, Light-Duty Vehicle Emissions Department of Engine and Emissions Research

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute[®]. Results are discussion given in this report relate only to the test items described in this report.

APPENDIX A

TEST FUEL ANALYLSIS

TABLE A-1. TEST FUEL ANALYSIS

Unadditized Fuel: AL-27125

Carbon fraction Hydrogen fraction Oxygen fraction Density Net Heating Value 85.45 13.56 0.99 0.8196 kg/L 18,431 Btu/lb Additized Fuel: AL-27132 85.14 13.60 1.26 0.8196 kg/L 18,417 Btu/lb **APPENDIX B**

FUEL FLUSH PROCEDURE

Candidate Fuel Change

Client: Ed Frame Project Number: 03227.36.202 Vehicle Number: 3254 Vehicle: 2005 GMC C2500 Project Leader: E. Jimenez Date: 1/16/06 Fuel: Candidate AL-27132-F

Technician will check and initial step by step

- □ ____ Drain fuel using the modified fuel system
- □ ____ Add 2 gallons of diesel fuel AL-27132-F
- \Box _____ Idle engine for 5 minutes
- \Box _____ Drain fuel using the modified fuel system
- □ ____ Add 2 gallons of diesel fuel AL-27132-F
- □ ____ Idle engine for 5 minutes
- □ ____ Drain fuel tank using the modified fuel system
- \Box _____ Fill fuel tank with diesel fuel AL-27132-F

Completed by: _____

Date completed: _____

APPENDIX C

TEST VEHICLE INFORMATION

RECEIPT OF VEHICLE

		TEST VEH		ATION			
Project Number	. 03.227. 3	6.202	Vehicie #:	2254			
SwRI Rep: G.	Jimenez.		Date: /-:				
No. of Cylinder Tire Size <u>LT</u> Aria	6Ma 232365518 66MXH06.6 15 245/75R16 19c8fone	ke <u>Chevy</u> 23 254 590 Ev Displacement <u>4</u> Comments <u>4</u>	ap. Family	5./verad 715 ZC 2 TESTINO	Odo Odo Odo Trans. Ty	Color <u>7a</u> State <u>7</u> meter <u>1</u> /pe <u>4u 4</u>	и Х ДОЧ 8 6 Ч
Fuel System:	Gasoline Diesei Methanol Ethanol	CNG LPG Dual Fuel	Fuel System 1	Гуре: [[[[[CARB TBH MPI		."
ACCESSORIES Receiver H Bed Mat Tailgate Ca	4itch		· · · · · · · · · · · · · · · · · · ·				
Test Info. Inertia Wt:	Actua	i H.P.:	Fuel Code	:	Fue	Туре: 🗋	sies«/

RECEIPT OF VEHICLE

VEHICLE OWNER						Page 2 of 3
Name:					Telepr	none ()
Address:						
City:		_State:		•	Zip Code:	
Owner allows SwRI to	perform exhau	ust emissio	n testing on v	ehicie note	ad above.	
AS RECEIVED						
Exterior Damage: _	Nothing .	iquific	al not	tich		
Interior Damage:	Vore					
	Componer					Fluid Level
Engine Operation: Brakes: Emergency Brake: Horn: Lights: Wipers: Exhaust:	ह्य हा हा हा हा हा है। हिंद हा हा ही	☐ Fair ☐ ☐ ☐ ☐ ☐	Poor		Oil: Trans.: Radiator: Brake: Battery: Steenng: Clutch:	
Tires: Comments:	Q					
Note: Document all sign SIGNATURES SWRI Rep:		ns with pic	tures.			
WRI Rep:	hil			Date:	1-3-06	
ehicle Owner or Rep:						

QUALITY/FORMS100-009.R-0

APPENDIX D

FUEL ECONOMY RESULTS

Т	est	FTP	HwFET	Composite
10		(mi/gal)	(mi/gal)	(mi/gal)
	Test 1	13.16	19.52	15.42
	Test 2	13.13	19.63	15.43
	Test 3	13.09	19.42	15.34
	Test 4	13.15	19.21	15.33
Unadditized Fuel	Test 5	12.97	19.49	15.27
	Average	13.10	19.45	15.36
	Standard Deviation	0.077	0.156	0.068
	Coefficient of Variation	0.59%	0.80%	0.44%
	Test 1	13.17	19.9	15.53
	Test 2		Void	
	Test 3		Void	
	Test 4	13.30	19.7	15.58
	Test 5	13.25	19.41	15.46
Additized Fuel	Test 6	13.27	19.62	15.53
	Test 7	13.41	19.75	15.67
	Test 8	13.55	20.06	15.87
	Average	13.33	19.74	15.61
	Standard Deviation	0.135	0.225	0.146
	Coefficient of Variation	1.01%	1.14%	0.93%
% Change from Una	dditized to Additized	1.72%	1.47%	1.63%
Statistically Signific	ant at 95 percent CI ^a	YES	YES	YES
Statistically Signific	ant at 99 percent CI ^b	YES	NO	YES
	t-test with a 95 percent content to the set with a 99 percent content			

TABLE D-1. FUEL ECONOMY SUMMARY RESULTS

APPENDIX E

EXHAUST EMISSION RESULTS

		,	Weighte	d FTP-7	5	Weighted HwFET				
Test	No.	THC	СО	NO _X	PM	THC	СО	NO _X	PM	
		g/mi	g/mi	g/mi	mg/mi	g/mi	g/mi	g/mi	mg/mi	
	Test 1	0.447	1.936	6.004	109.8	0.247	0.795	4.612	62.3	
	Test 2	0.474	1.933	6.074	107.9	0.243	0.785	4.632	63.2	
Unadditized	Test 3	0.521	2.023	6.251	110.9	0.251	0.794	4.736	72.8	
Fuel	Test 4	0.473	1.985	6.123	120.6	0.243	0.788	4.539	71.1	
	Test 5	0.479	1.934	5.989	120.5	0.242	0.767	4.555	72.0	
	Average	0.479	1.962	6.088	113.9	0.245	0.786	4.615	68.28	
	Test 1	0.537	2.146	6.191	108.2	0.265	0.801	4.530	49.6	
	Test 2				Vo	oid				
	Test 3				Vo	oid				
Additized	Test 4	0.520	2.030	5.978	107.6	0.248	0.782	4.574	68.9	
Fuel	Test 5	0.536	2.100	6.275	99.2	0.272	0.805	4.665	68.6	
ruci	Test 6	0.524	2.017	6.136	108.2	0.264	0.800	4.612	69.8	
	Test 7	0.539	2.111	5.713	138.6	0.266	0.806	4.619	68.8	
	Test 8	0.543	2.061	6.008	133.1	0.257	0.825	4.495	66.7	
	Average	0.533	2.078	6.050	115.8	0.262	0.803	4.583	65.40	
Percent cha Unadditized t Fue	o Additized	11.4%	5.9%	-0.6%	1.6%	6.9%	2.2%	-0.7%	-4.2%	
Statistically statistical statistica	nt CI ^a	YES	YES	NO	NO	YES	NO	NO	NO	
Statistically significant at 99 percent CI ^b		YES	YES	NO	NO	YES	NO	NO	NO	
a – Based on S b - Based on St										

TABLE E-1. EXHAUST EMISSIONS SUMMARY RESULTS

APPENDIX F

UNADDITIZED FUEL TEST PRINTOUTS

	SOUTHWEST DGRAM LDT 2.9-R 3-E	BAG EPA	FTP	VEHICLE	EMISSIO	N RES	ULTS	PROJ	ECT N	10. 03-03227-	
VEHICLE NUMBER	3254		TEST	3254 BAS	E T1			D	IESEL	. 27125-F	
VEHICLE MODEL	6 CHEVY C2500		DATE	1/10/20	06 RUN			FUEL DENSITY 6.839 LB/GAL			89 LB/GAL
ENGINE	6.6 L (403 CID)·V8		TEST 3254 BASE T1 DATE 1/10/2006 RUN DYNO 7 BAG CART 2 ACTUAL ROAD LOAD 27.49 HP (20.51 KW TEST WEIGHT 7500 LBS (3401 KG)					Н	.136	5 C.854 O	.010 X .000
TRANSMISSION	A4		ACTUA	L ROAD L	OAD 27.4	9 HP	(20.51 K	(W) F	TP		
ODOMETER	10081 MILES (16220 KM)		TEST	WEIGHT	7500 LBS	(34	01 KG)	Blanky C	1. 1 ⁹ - 1	96	
	17 IN HG (748.5 MM HG) ITY 51.1 PCT.										.914
BAG NUMBER			1			2			3		
BAG DESCRIPTI	ION	COLD	TRANS	SIENT	STA	BILIZ	ED	HOT	TRANS	SIENT	
		(0-	505 S	EC.)	(505-	1372	SEC.)	(0	- 505	SEC.)	
RUN TIME SECO	NDS ECTION FACTOR, SAMP/BACK	5	03.4		8	6/.1	-	5	05.7	~	
DRY/WET CORRE	ECTION FACTOR, SAMP/BACK FANCE MILES (KM)	.98	17.98	5/	.98	47.98	600	.98	27.98	37	
MEASURED DIST	ANCE MILES (KM)	3.5/	(5.	/5)	3.80	(b. 2 / 200	22)	3.5/	(5.	/4)	
BLOWER FLOW R	ATE SUFM (SUMM)	1068.	8 (30	0.27)	1052.	3 (29	020	1052.	0 (29	0.81)	
GAS METER FLU	ANCE MILES (RM) RATE SCFM (SCMM) DW RATE SCFM (SCMM) CF (SCM)	.00	()	UZ) M DN	15001	(12	1 1	20. 0070	()5	(J)	
IUTAL FLUW SU	SF (SUM)	69/5.	(25	14.2)	19221.	(4)	1.1)	0079.	(20	1.0)	
	TER/RANGE/PPM (CONT)										
	ETER/RANGE/PPM										
CO SAMPLE ME	ETER/RANGE/PPM	30.8/	12/	29.68	17.2/	12/	16.52	17.5/	12/	16.81	
CO BCKGRD ME	TER/RANGE/PPM	.3/	12/	.29	.1/	12/	.10	.1/	12/	.10	
	ETER/RANGE/PCT										
	ETER/RANGE/PCT										
	TER/RANGE/PPM (CONT)(D)										
NOX BCKGRD ME	TER/RANGE/PPM	.5/	1/	.13	.3/	1/	. 08	.1/	1/	.03	
DILUTION FACT	ror		20.	89		32.	66		23.	74	
HC CONCENTR	ATION PPM		8.	28		8.	05		9.	19	
CO CONCENTR	ATION PPM		28.	55		16.	03		16.	26	
CO2 CONCENTR	ATION PCT		.59	73		.36	69		.52	07	
NOX CONCENTR	ATION PPM		45.	17		33.	36		43.	47	
HC MASS G	FOR RATION PPM RATION PCT RATION PPM GRAMS		1.23	0		2.02	7		1.34	.9	
CO MASS G	GRAMS		8.44	8		8.04	4		4.76	1	
CO2 MASS G	GRAMS	2	779.3	2	2	895.3	2	2	397.1	.6	
NOX MASS G	RAMS		20.05	57		25.12	3		19.09	б	
PM MASS M	11LLIGRAMS		355.	1		463.	7		350.	1	
FUEL MASS K			. 89	13		.93	1		.77		
FUEL ECONOMY	MPG (L/100KM)	12.4	0 (1	.8.97)	12.8	7 (1	8.27)	14.3	8 (1	6.36)	

HC	G/MI		.447	
C0	G/MI		1.936	
NOX	G/MI		6.004	
PM	MG/MI		109.8	
FUEL	ECONOMY	MPG	(L/100KM)	13.16 (17.87)

VEHICLE NUMBER 3254 TEST 3254 BASE T1 DIESEL 27125-F VEHICLE MODEL 6 CHEVY C2500 DATE 1/10/2006 RUN FUEL DENSITY 6.839 LB/GAL ENGINE 6.6 L (403 CID)-V8 DYNO 7 BAG CART 2 H .136 C .854 0 .010 X TRANSMISSION A4 ACTUAL ROAD LOAD 27.49 HP (20.51 KW) HFET	
ODOMETER 10103 MILES (16255 KM) TEST WEIGHT 7500 LBS (3401 KG) BLOWER 6.7.7.7.46	
BAROMETER 29.46 IN HG (748.2 MM HG) RELATIVE HUMIDITY 51.8 PCT.DRY BULB TEMPERATURE 70.0°F (21.1°C)NOX HUMIDITY C.F924BAG NUMBER1BAG DESCRIPTION1RUN TIME SECONDS764.7DRY/WET CORRECTION FACTOR, SAMP/BACK.980/.987MEASURED DISTANCE MILES (KM)10.23 (16.47)BLOWER FLOW RATE SCFM (SCMM)1044.4 (29.58)GAS METER FLOW RATE SCFM (SCMM).86 (.02)TOTAL FLOW SCF (SCM)13321. (377.3)HC SAMPLE METER/RANGE/PPM20.1/ 12/ 19.32CO BCKGRD METER/RANGE/PPM.2/ 12/ .19CO2 SAMPLE METER/RANGE/PPM.2/ 12/ .19CO2 SAMPLE METER/RANGE/PPM.2/ 11/ .7734CO2 BCKGRD METER/RANGE/PPM (CONT) (D)70.9/ 9/ 70.88	
NOX BCKGRD METER/RANGE/PPM .4/ 1/ .10 DILUTION FACTOR 17.24 HC CONCENTRATION PPM 11.46 CO CONCENTRATION PPM 18.53 CO2 CONCENTRATION PCT .7341 NOX CONCENTRATION PPM 70.78 HC MASS GRAMS 2.525 CO MASS GRAMS 2.525 CO MASS GRAMS 5070.79 NOX MASS GRAMS 637.9 FUEL MASS KG 1.627 FUEL MASS KG 1.627 FUEL MASS KG 1.627 FUEL ECONOMY MPG (L/100KM) 19.52 (12.05)	

HC	G/MI		.247		
CO	G/MI		. 795		
NOX	G/MI		4.612		
РМ	MG/MI		62.3		
FUEL	ECONOMY	MPG	(L/100KM)	19.52	(12.05)

	SOUTHWEST PROGRAM LDT 2.9-R 3-	BAG EPA	FTP	VEHICLE	E EMISSIO	N RES	ULTS	PROJ	ECT N	10. 03-03227	
VEHICLE NUMBE VEHICLE MODEL ENGINE TRANSMISSION	ER 3254 . 6 CHEVY C2500 6.6 L (403 CID)-V8 A4		TEST DATE DYNO	3254 BAS 1/11/20 7	SE T2)06 RUN BAG CART 04D 27 4	2 9 нр	(20 51 K	D F H	IESEL UEL D .136 TP	27125-F DENSITY 6.8 5 C .854 C	: 139 LB/GAL).010 X.0
ODOMETER	A4 10113 MILES (16271 KM)		TEST	WEIGHT	7500 LBS	(34	01 KG)	2	GLEN EN	0 C.F = .9	la
BAROMETER 29 RELATIVE HUM	9.24 IN HG (742.6 MM HG) IDITY 55.2 PCT. PTION ECONDS RRECTION FACTOR, SAMP/BACK ISTANCE MILES (KM) W RATE SCFM (SCMM)	DRY BL	JLB TE	MPERATUR	RE 69.0°	F (2	20.6°C)	N	OX HU	MIDITY C.F.	.933
BAG NUMBER			1			2			3		
BAG DESCRIF	PTION	COLD	TRANS	SIENT	STA	BILIZ	ED	HOT	TRANS	IENT	
		(0.	505 S	SEC.)	(505-	1372	SEC.)	(0	- 505	SEC.)	
RUN TIME SE	ECONDS	5	504.6		8	67.0		5	05.4		
DRY/WET COF	RECTION FACTOR SAMP/BACK	.98	307.98	36	.98	27.98	6	. 98	17.98	6	
MEASURED DI	ISTANCE MILES (KM)	3.60) (5.	79)	3.87	(6.	22)	3.59	(5.	78)	
BLOWER FLOW	RATE SCEM (SCMM)	1039	2 (29	. 43)	1032	0 (29	.23)	1042	7 (29	.53)	
GAS METER F	FLOW RATE SCFM (SCMM)	80) (03)	92	(03)	91	(03)	
TOTAL FLOW	SCF (SCM)	8747.	(24	7.7)	14926.	(42	2.7)	8790.	(24	8.9)	
	METER/RANGE/PPM (CONT)										
	METED /DANCE /DDM	2 5/	2/	2 60	2 //	27	3 10	3.67	27	3 70	
	METER/RANGE/PPM METER/RANGE/PPM METER/RANGE/PPM METER/RANGE/PCT	2.37	101	3.00	3.47 17 67	10/	16 01	176/	10/	16.01	
CU SAMPLE	METER/RANGE/PPM	32.4/	10/	31.23	17.07	127	10.91	17.07	10/	10.91	
	METER/RANGE/PPM	. 2.1	11/	.19	.2/	12/	.19	.2/	12./	.19	
CUZ SAMPLE	METER/RANGE/PUT	/0.4/	11/	.0040	35.4/	11/	.4100	00.0/	11/	.0000	
	METER/RANGE/PCT METER/RANGE/PPM (CONT)(D)	1.3/	11/	.0411	7.3/	11/	.0411	1.3/	11/	.0411	
NUX SAMPLE	METER/RANGE/PPM (CUNT)(D)	46.27	97	40.23	33.8/	9/	33.82	44.07	9/	43.98	
NOX BCKGRD	METER/RANGE/PPM	.4/	17	.10	.4/	1/	. 10	.4/	17	.10	
DILUTION FA	ACTOR		20.	33		31.	93		23.	43	
HC CONCEN	TRATION PPM		9.	04		8.	76		9.	77	
CO CONCEN	NTRATION PPM		30.	10		16.	29		16.	24	
CO2 CONCEN	TRATION PCT		.61	.55		.37	67		.52	92	
NOX CONCEN	METER/RANGE/PPM (CONT)(D) METER/RANGE/PPM ACTOR MTRATION PPM MTRATION PPM MTRATION PCT MTRATION PPM		46.	14		33.	72		43.	89	
HC MASS	5 GRAMS 5 GRAMS 5 GRAMS 5 GRAMS 5 MILLIGRAMS 5 KG 1Y MPG (L/100KM)		1.30	8		2.16	3		1.42	1	
CO MASS	GRAMS		8.68	80		8.01	6		4.70	7	
CO2 MASS	5 GRAMS	2	791.2	8	2	915.4	0	2	412.1	.7	
NOX MASS	5 GRAMS		20.40	2		25.44	.4		19.50	2	
PM MASS	5 MILLIGRAMS		346.	2		453	6		355.	6	
FUEL MASS	S KG		.80	7		93	8		.77	4	
FUEL FCONON	4Y MPG (L/100KM)	12.4	5 (1	.8.90)	12.8	0 (1	8.38)	14.3	8 (1	6.35)	
,		-	~ (4		2						

.000

HC	G/MI		.474		
CO	G/MI		1.933		
NOX	G/MI		6.074		
РМ	MG/MI		107.9		
FUEL	ECONOMY	MPG	(L/100KM)	13.13	(17.91)

COMPUTER PRO		RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH AG EPA FTP VEHICLE EMISSION RESULTS PROJECT NO. 03-03227-20
VEHICLE NUMBER	3254	TEST 3254 BASE T2 DIESEL 27125-F
VEHICLE MODEL	3254 6 CHEVY C2500	DATE 1/11/2006 RUN FUEL DENSITY 6.839 LB/GAL DYNO 7 BAG CART 2 H .136 C .854 0 .010 X .000
ENGINE	6.6 L (403 CID)-V8	DYNO 7 BAG CART 2 H .136 C .854 O .010 X .000
TRANSMISSION		ACTUAL ROAD LOAD 27.49 HP (20.51 KW) HFET
ODOMETER	10135 MILES (16307 KM)	TEST WEIGHT 7500 LBS (3401 KG) BLOWER 2.5 = .96
BAROMETER 29.2 RELATIVE HUMIDI		DRY BULB TEMPERATURE 71.0°F (21.7°C) NOX HUMIDITY C.F939
BAG NUMBER		1
BAG DESCRIPTI	ON	
RUN TIME SECC		768.0
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.979/.986
	ANCE MILES (KM) RATE SCFM (SCMM)	
BLOWER FLOW R	ATE SCFM (SCMM) W RATE SCFM (SCMM) CF (SCM)	1029.5 (29.16)
GAS METER FLU	W KALE SCHM (SCMM)	.80 (,02) 12190 (,273 5)
TUTAL FLOW SC	r (JU1)	13167. (373.3)
HC SAMPLE ME	TER/RANGE/PPM (CONT)	
	TER/RANGE/PPM	3.7/ 2/ 3.80
CO SAMPLE ME	TER/RANGE/PPM	20.1/ 12/ 19.32
CO BCKGRD ME	TER/RANGE/PPM	.2/ 12/ .19
CO2 SAMPLE ME	TER/RANGE/PCT	83.9/ 11/ .7781
	TER/RANGE/PCT	
	TER/RANGE/PPM (CONT)(D)	
NOX BCKGRD ME	TER/RANGE/PPM	.4/ 1/ .10
DILUTION FACT	ror	17.14
HC CONCENTR	RATION PPM	11.43
CO CONCENTR	RATION PPM	18.52
CO2 CONCENTR	ATION PCT	.7393
NOX CONCENTR	RATION PPM	70.93
HC MASS O	GRAMS	2.493
CO MASS G		8.055
CO2 MASS G	GRAMS	5055.97
NOX MASS G		47.548
	11LLIGRAMS	648.9
FUEL MASS K		1.622
FUEL ECONOMY	MPG (L/100KM)	19.63 (11.98)
1-BAG COMPOSITE	RESULTS	

HC	G/MI		.243				
CO	G/MI		.785				
NOX	G/MI		4.632				
PM	MG/MI		63.2				
FUEL	ECONOMY	MPG	(L/100KM)	19.63	(11	.98)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

COMPUTER PROGRAM LDT 2.9-R 3-BAG EPA FTP VEHICLE EMISSION RESULTS PROJECT NO. 03-03227-20

VEHICLE NUMBER 3254 VEHICLE MODEL 6 CHEVY C2500 ENGINE 6.6 L (403 CID)-V8 TRANSMISSION A4 ODOMETER 10145 MILES (16323 KM)	TEST 3254 BASE DATE 1/12/2006 DYNO 7 BA ACTUAL ROAD LOA TEST WEIGHT 75	T3 5 RUN AG CART 2 AD 27.49 HP (20.51 KW) 500 LBS (3401 KG)	DIESEL 27125.F FUEL DENSITY 6.839 LB/GAL H .136 C .854 0 .010 X .000 FTP BLOWECR C F 96
BAROMETER 29.05 IN HG (737.7 MM HG)	DRY BULB TEMPERATURE	71.0°F (21.7°C)	NOX HUMIDITY C.F. 1.003
RELATIVE HUMIDITY 64.5 PCT.		•	<u> </u>
RELATIVE HUMIDITY 64.5 PCT. BAG NUMBER BAG DESCRIPTION			
BAG DESCRIPTION	CULD TRANSIENT	STABILIZED	HUI IRANSIENI
RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM)	(U-505 SEL.)	(505-13/2 SEC.)	(U- 505 SEC.)
RUN TIME SECONDS	504.8	868.2	504.9
DRY/WET CORRECTION FACTOR, SAMP/BACK	.9///.983	.9797.983	.9777.983
MEASURED DISTANCE MILES (KM)	3.60 (5.79)	3.88 (6.24)	3.58 (5.76)
BLOWER FLOW RATE SOFM (SUMM)	1046.4 (29.64)	1039.7 (29.45)	1036.7 (29.36)
GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	(20,) 88.	.93 (.03)	.89 (.03)
IUIAL FLUW SCF (SCM)	8811. (249.5)	15058. (426.5)	8/31. (24/.3)
HC SAMPLE METER/RANGE/PPM (CONT) HC BCKGRD METER/RANGE/PPM	13.3/ 9/ 13.33	13.2/ 9/ 13.15	14.0/ 9/ 14.00
HC BCKGRD METER/RANGE/PPM	3.5/ 2/ 3.60	3.5/ 2/ 3.60	3.6/ 2/ 3.70
CO SAMPLE METER/RANGE/PPM	34.1/ 12/ 32.88	18.1/ 12/ 17.39	18.7/ 12/ 17.97
CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT	.2/ 12/ .19	.1/ 12/ .10	.2/ 12/ .19
CO2 SAMPLE METER/RANGE/PCT	75.3/ 11/ .6532	55.7/ 11/ .4197	68.9/ 11/ .5699
CO2 BCKGRD METER/RANGE/PCT	7.8/ 11/ .0441	7.7/ 11/ .0435	7.8/ 11/ .0441
CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (CONT)(D)	44.1/ 9/ 44.13	32.4/ 9/ 32.42	42.0/ 9/ 42.01
NOX SAMELE METER/RANGE/PPM	.2/ 2/ .21	.2/ 2/ .21	.2/ 2/ .21
HC CONCENTRATION PPM	9 91	9.67	10 45
CO CONCENTRATION PPM	31.60	16.80	17.22
CO2 CONCENTRATION PCT	.6113	.3776	.5277
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM	43.93	32.22	41.82
HC MASS CRAMS	1 445	2 409	1 510
	9 181	8 339	4 956
CO2 MASS GRAMS	2792.88	2947.95	2388_88
NOX MASS GRAMS	21.022	26.349	19.827
PM MASS MILLIGRAMS	401 9	437 4	382.8
FUEL MASS KG	.898	.948	.767
HC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS PM MASS MILLIGRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	12.43 (18.92)	12.69 (18.54)	14.48 (16.25)

HC	G/MI		.521	
C0	G/MI		2.023	
NOX	G/MI		6.251	
РМ	MG/MI		110.9	
FUEL	ECONOMY	MPG	(L/100KM)	13.09 (17.97)

	RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS BAG EPA FTP VEHICLE EMISSION RESULTS	
VEHICLE NUMBER 3254 VEHICLE MODEL 6 CHEVY C2500 ENGINE 6.6 L (403 CID)-V8 TRANSMISSION A4 ODOMETER 10168 MILES (16360 KM)		
BAROMETER 29.04 IN HG (737.6 MM HG) RELATIVE HUMIDITY 54.5 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (CONT) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (CONT)(D)	DRY BULB TEMPERATURE 74.0°F (23.3°C) 1 771.8 .977/.984 10.24 (16.47) 1024.8 (29.02) .79 (.02) 13193. (373.6) 15.4/ 9/ 15.43 3.8/ 2/ 3.91 20.2/ 12/ 19.42 .1/ 12/ .10 84.5/ 11/ .7874 7.9/ 11/ .0447 69.6/ 9/ 69.58 .3/ 2/ .31	· • • •
HC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS PM MASS MILLIGRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM) 1-BAG COMPOSITE RESULTS	2.565 8.130 5098.82 48.490 745.6 1.636 19.42 (12.11)	

HC	G/MI		.251		
CO	G/MI		. 794		
NOX	G/MI		4.736		
PM	MG/MI		72.8		
FUEL	ECONOMY	MPG	(L/100KM)	19.42	(12.11)

	SOUTHW PROGRAM LDT 2.9-R	3-BAG EPA	FTP	VEHICLE	EMISSIC	N RES	ULTS	PROJ	JECT N	10. 03-03		
VEHICLE NUM VEHICLE MOD ENGINE	BER 3254 EL 6 CHEVY C2500 6.6 L (403 CID)-V8 N A4 10178 MILES (16376		TEST DATE DYNO	3254 BAS 1/13/20 7	E T4 06 RUN BAG CART	2		C F H	DIESEL FUEL D H .136	- 2712 DENSITY 5 C .854	25-F 6.839 LB/ 4 0 .010	GAL X .000
TRANSMISSIO	N A4		ACTUA	AL ROAD L	OAD 27.4	9 HP	(20.51 K	(W) F	TP			
ODOMETER	10178 MILES (16376	KM)	TEST	WEIGHT	7500 LBS	(34	01 KG)	Ę	Luli	? <₽	. ,96	
BAROMETER RELATIVE HU	29.37 IN HG (745.9 MM HG) MIDITY 56.4 PCT. R IPTION SECONDS ORRECTION FACTOR, SAMP/BAC DISTANCE MILES (KM)	DRY BL	JLB TE	EMPERATUR	E 71.0°	F (2	1.7°C)	١	iox hu	MIDITY (C.F956	
BAG NUMBE	R		1			2			3			
BAG DESCR	IPTION	COLD	TRANS	SIENT	STA	BILIZ	ED	НОТ	TRANS	SIENT		
		(0-	-505 S	SEC.)	(505-	1372	SEC.)	(()- 505	SEC.)		
RUN TIME	SECONDS	Į.	504.1		8	67.3	_	Ę	505.3			
DRY/WET C	ORRECTION FACTOR, SAMP/BAC	K .91	79/.98	35	. 98	1/.98	5	.98	307.98	35		
MEASURED	DISTANCE MILES (KM) OW RATE SCFM (SCMM)	3.6.	. (5.	81)	3.85	(6.	19)	3.59) (5.	77)		
BLOWER FL	UW RATE SCFM (SCMM)	1062	5 (30).09)	1054.	5 (29	1.87)	1045.	8 (29	1.62)		
GAS METER	W RATE SCEM (SCMM) FLOW RATE SCEM (SCMM) W SCF (SCM)	.90)(.	.03)	.92	(.	03)	-86	3 (.	.02)		
IOIAL FLU	W SUF (SUM)	8934.	. (25	3.0)	15257.	(43	2.1)	8815.	(24	19.6)		
HC SAMPL	E METER/RANGE/PPM (CONT)	13.0/	9/	13.03	12.6/	9/	12.58	13.5/	9/	13.45		
HC BCKGR	D METER/RANGE/PPM	4.0/	2/	4.11	4.1/	2/	4.21	3.9/	2/	4.01		
CO SAMPL	D METER/RANGE/PPM E METER/RANGE/PPM D METER/RANGE/PPM E METER/RANGE/PCT D METER/RANGE/PCT	32.8/	12/	31.62	17.4/	12/	16.72	18.2/	12/	17.49		
CO BCKGR	D METER/RANGE/PPM	.0/	12/	.00	.2/	12/	.19	.1/	12/	.10		
CO2 SAMPL	E METER/RANGE/PCT	74.9/	11/	.6478	54.5/	11/	.4073	68.0/	11/	.5587		
CUZ BUNGN	D HEILK/ MANGE/ FUI	/.4/	11/	.041/	1.01	11/	.0411	/.4/	11/	.041/		
NOX SAMPL	E METER/RANGE/PPM (CONT)(D) 45.2/	9/	45.21	32.5/	9/	32.53	42.7/	9/	42.75		
NOX BCKGR	D METER/RANGE/PPM	.6/	1/	.15	.9/	1/	.23	.4/	1/	.10		
DILUTION	E METER/RANGE/PPM (CONT)(D D METER/RANGE/PPM FACTOR ENTRATION PPM ENTRATION PPM ENTRATION PCT ENTRATION PPM SS GRAMS SS GRAMS SS GRAMS SS GRAMS SS GRAMS SS GRAMS SS MILLIGRAMS SS KG OMY MPG (L/100KM)		20.	54		32.	65		23.	.84		
HC CONC	ENTRATION PPM		9.	12		8.	50		9.	61		
CO CONC	ENTRATION PPM		30.	65		16.	10		16.	89		
CO2 CONC	ENTRATION PCT		.60	81		.36	74		.51	88		
NOX CONC	ENTRATION PPM		45.	06		32.	31		42.	.65		
нс ма	SZ CRAMS		1 3/	0		2 1/	5		1 / 1	12		
CO MA	SS GRAMS		9 02	7		8 00	7		1 00	10		
CO2 MA	SS GRAMS	2	9.02 816 9		2	906 5	.8	2	371 1	0		
NOX MA	SS GRAMS	¢.	20 83	19	÷ـــ	25 52	n N		19 46	.0 12		
РМ МА	SS MILLIGRAMS		413	1		492	3		400	2		
FUEL MA	SS KG		. 90	-		93	5		76	-		
FUEL ECON	OMY MPG (L/100KM)	12.3	37 (1	9.02)	12.7	7(1	8.43)	14.F	51 (1	6.11)		
							/					

HC	G/MI		.473		
CO	G/MI		1.985		
NOX	G/MI		6.123		
РМ	MG/MI		120.6		
FUEL	ECONOMY	MPG	(L/100KM)	13.15	(17.88)

	RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS BAG EPA FTP VEHICLE EMISSION RESULTS	
VEHICLE NUMBER 3254 VEHICLE MODEL 6 CHEVY C2500 ENGINE 6.6 L (403 CID)-V8 TRANSMISSION A4 ODOMETER 10243 MILES (16480 KM)	DYNO 7 BAG CART 2 ACTUAL ROAD LOAD 27.49 HP (20.51 KW)	DIESEL 27125-F FUEL DENSITY 6.839 LB/GAL H .136 C .854 0 .010 X .000 HFET
BAROMETER 29.49 IN HG (749.0 MM HG) RELATIVE HUMIDITY 51.8 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (CONT)	DRY BULB TEMPERATURE 70.0°F (21.1°C) 1 764.9 .979/.987 10.25 (16.49) 1046.5 (29.64) .86 (.02) 13352. (378.1) 15.5/ 9/ 15.52 4.4/ 2/ 4.52 20.3/ 12/ 19.52 .6/ 12/ .57 84.5/ 11/ .7874 7.9/ 11/ .0447	NOX HUMIDITY C.F924
HC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS PM MASS MILLIGRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM) 1-BAG COMPOSITE RESULTS	69.63 2.487 8.082 5160.30 46.527 728.3 1.655 19.21 (12.25)	

HC	G/MI		.243			
CO	G/MI		.788			
NOX	G/MI		4.539			
PM	MG/MI		71.1			
FUEL	ECONOMY	MPG	(L/100KM)	19.21	(12.	25)

	SOUTHWEST OGRAM LDT 2.9-R 3-1	BAG EPA	FTP	VEHICLE	EMISSIC	N RES	SULTS	PROJ	JECT M	NO. 03-03227	
VEHICLE NUMBER	3254	TEST 3254 BASE T5						DIESEI 27125-E			
VEHICLE MODEL	6 CHEVY C2500		DATE	1/14/200	6 RUN			F	UEL D	DENSITY 6.8	39 LB/GAL
ENGINE	6.6 L (403 CID)-V8		DYNO	7 B	AG CART	2		ŀ	1.136	5 C.854 O	.010 X .000
TRANSMISSION	A4		ACTUA	AL ROAD LO	AD 27.4	9 HP	(20.51 K	W) F	TP		
ODOMETER	3254 6 CHEVY C2500 6.6 L (403 CID)-V8 A4 10211 MILES (16429 KM)		TEST	WEIGHT 7	500 LBS	(34	101 KG)				
BAROMETER 29. RELATIVE HUMID	46 IN HG (748.2 MM HG) ITY 48.6 PCT. ION	DRY BL	ILB TE	EMPERATURE	71.0°	F (2	21.7°C)	١	IOX HL	JMIDITY C.F.	.918
BAG NUMBER			1			2			3		
BAG DESCRIPT	ION	COLD	TRANS	SIENT	STA	BILIZ	ΈD	НОТ	TRANS	SIENT	
		(0-	505 5	SEC.)	(505-	1372	SEC.)	(()- 505	5 SEC.)	
RUN TIME SEC	ONDS	5	505.0		8	67.1		È	505.3		
DRY/WFT CORR	ONDS ECTION FACTOR. SAMP/BACK	.98	1/.98	37	.98	37.98	37	.98	327.98	37	
MEASURED DIS	TANCE MILES (KM)	3.60) (5.	79)	3.86	(6.	22)	3,58	3 (5.	.76)	
BLOWER FLOW	RATE SCFM (SCMM)	1061.	2 (30).05)	1049.	4 (29	.72)	1049.	4 (29	9.72)	
GAS METER FL	OW RATE SCEM (SCMM)	.87	'(02)	. 93	(03)	.87	' (.02)	
TOTAL FLOW S	TANCE MILES (KM) RATE SCFM (SCMM) OW RATE SCFM (SCMM) CF (SCM)	8939.	(25	53.2)	15178.	(42	29.9)	8845.	(25	60.5)	
	ETER/RANGE/PPM (CONT)										
HC BCKGRD M	ETER/RANGE/PPM	3.9/	2/	4.01	3.9/	2/	4.01	4.0/	2/	4.11	
CO SAMPLE M	ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PCT	32.9/	12/	31.72	17.8/	12/	17.10	17.9/	12/	17.20	
CO BCKGRD M	ETER/RANGE/PPM	.8/	12/	.77	.9/	12/	.86	.97	12/	.86	
CO2 SAMPLE M	ETER/RANGE/PCT	74.8/	11/	.6464	55.7/	11/	.4197	69.0/	11/	.5711	
CO2 BCKGRD M	ETER/RANGE/PCT	7.8/	11/	.0441	8.0/	11/	.0452	7.6/	11/	.0429	
NOX SAMPLE M	ETER/RANGE/PPM (CONT)(D)	45.6/	9/	45.61	33.5/	9/	33.53	43.3/	9/	43.32	
NOX BCKGRD M	ETER/RANGE/PPM (CONT)(D)	.9/	1/	.23	.9/	1/	.23	.8/	1/	.20	
DILUTION FAC	TOR		20.	58		31.	69		23.	.33	
HC CONCENT	RATION PPM		9.	12		8.	/6		9.	.50	
CO CONCENT	RATION PPM		30.	10		15.	8/		15.	.93	
CO2 CONCENT	RATION PCT		.60)45		.3/	59		.5.	301	
NOX CONCENT	TOR RATION PPM RATION PCT RATION PPM		45.	40		33.	31		43.	.13	
HC MASS	GRAMS		1.34	9		2.19	19		1.39	90	
CO MASS	GRAMS		8.87	2		7.94	3		4.64	14	
CO2 MASS	GRAMS	2	801.8	18	2	958.0	3	2	430.8	31	
NOX MASS	GRAMS		20.17	'1		25.12	9		18.96	50	
PM MASS	MILLIGRAMS		401.	3		488.	4		414.	6	
FUEL MASS	KG		.90	1		.95	1		. 78	30	
FUEL ECONOMY	GRAMS GRAMS GRAMS GRAMS MILLIGRAMS KG MPG (L/100KM)	12.3	8 (1	9.00)	12.6	0 (1	8.67)	14.2	2 (1	.6.54)	

HC	G/MI		.479				
CO	G/MI		1.934				
NOX	G/MI		5.989				
РМ	MG/MI		120.5				
FUEL	ECONOMY	MPG	(L/100KM)	1	2.97	(18.14)	

	RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS BAG EPA FTP VEHICLE EMISSION RESULTS	
VEHICLE NUMBER 3254 VEHICLE MODEL 6 CHEVY C2500 ENGINE 6.6 L (403 CID)-V8 TRANSMISSION A4 ODOMETER 10233 MILES (16464 KM)	TEST 3254 BASE T5 DATE 1/14/2006 RUN DYNO 7 BAG CART 2 ACTUAL ROAD LOAD 27.49 HP (20.51 KW) TEST WEIGHT 7500 LBS (3401 KG)	DIESEL 27125-F FUEL DENSITY 6.839 LB/GAL H .136 C .854 O .010 X .000 HFET
RELATIVE HUMIDITY 52.4 PCT.BAG NUMBERBAG DESCRIPTIONRUN TIME SECONDSDRY/WET CORRECTION FACTOR, SAMP/BACKMEASURED DISTANCE MILES (KM)BLOWER FLOW RATE SCFM (SCMM)GAS METER FLOW RATE SCFM (SCMM)TOTAL FLOW SCF (SCM)HC SAMPLE METER/RANGE/PPM (CONT)HC BCKGRD METER/RANGE/PPMCO SAMPLE METER/RANGE/PPMCO BCKGRD METER/RANGE/PPMCO CONCENTRATION PPMCO CONCENTRATION PPMCO CONCENTRATION PPMCO CONCENTRATION PPMCO MASS GRAMSCO MASS GRAMSCO MASS GRAMSNOX MASS GRAMSNOX MASS GRAMSNOX MASS GRAMS	10.26 (16.50) 1044.2 (29.57) .88 (.02) 13331. (377.5) 15.2/ 9/ 15.23 4.1/ 2/ 4.21 20.2/ 12/ 19.42 1.0/ 12/ .96 83.9/ 11/ .7781 7.8/ 11/ .0441 69.5/ 9/ 69.48 1.3/ 1/ .33 17.14 11.26 17.91 .7366 69.18 2.484 7.871 5091.13 46.716	NOX HUMIDITY C.F935
PM MASS MILLIGRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM) 1-BAG COMPOSITE RESULTS	738.1 1.633 19.49 (12.07)	

HC	G/MI		.242		
CO	G/MI		.767		
NOX	G/MI		4.555		
РМ	MG/MI		72.0		
FUEL	ECONOMY	MPG	(L/100KM)	19.49	(12.07)

APPENDIX G

ADDITIZED FUEL TEST PRINTOUTS

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

	OGRAM LDT 2.9-R 3-I	BAG EPA	FTP	VEHICLE	EMISSIC	IN RES	SULTS	PRO	JECT N	10. 03-0322	
VEHICLE NUMBER VEHICLE MODEL ENGINE	3254 6 CHEVY C2500 6.6 L (403 CID)-V8 A4 10286 MILES (16550 KM)		TEST DATE	3254CAND 1/18/20	ITI 106 RUN BAG CART	T1 06 RUN BAG CART 2			DIESEL	F 839 LB/GAL 0 013 X 000	
TRANSMISSION			ΔΟΤΗΔ	I ROAD I	0AD 27 4	анр	(20 51 k	พา	TD 1100	0 .001	0.010 X .000
ODOMETER	10286 MILES (16550 KM)		TEST	WEIGHT	7500 LBS	C 34	(20.01 F				
0001101211			1007	MC 1 Colli	7000 ED3		roia reay				
DELATING HUNDO	33 IN HG (745.0 MM HG) ITY 56.4 PCT.										956
BAG NUMBER			1			2			3		
BAG DESCRIPT	ION	COLD	TRANS	IENT	STA	BILIZ	ED	HOT	TRANS	SIENT	
		(0-	505 S	EC.)	(505-	1372	SEC.)	(()- 505	SEC.)	
RUN TIME SECO	ONDS	5	04.9		8	67.4		Ę	504.7		
DRY/WET CORRE	ECTION FACTOR, SAMP/BACK	.97	97.98	15	. 98	17.98	15	. 98	307.98	35	
MEASURED DIST	ITY 56.4 PCT. ION DNDS ECTION FACTOR, SAMP/BACK TANCE MILES (KM) RATE SCFM (SCMM)	3.59	(5.	77)	3.84	(6.	17)	3.58	3 (5.	76)	
BLOWER FLOW F	RATE SCFM (SCMM)	1054.	5 (29	.86)	1043.	3 (29	1.55)	1054.	1 (29	.85)	
GAS METER FLO	DW RATE SCFM (SCMM)	.87	ί.	02)	. 92	(,	03)	.87	7 (.	02)	
TOTAL FLOW SC	DW RATE SCFM (SCMM) CF (SCM)	8881.	(25	1.5)	15096.	(42	27.5)	8874.	(25	51.3)	
HC SAMPLE ME	FTER/RANGE/PPM (CONT)	13 5/	۹/	13 49	13 3/	Q7	13 34	14 4/	۵/	14 36	
HC BCKGRD M	ETER/RANGE/PPM	3.6/	21	3 70	3.6/	2/	3 70	3.6/	2/	3 70	
CO SAMPLE ME	ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PCT	35.7/	12/	34 44	19.3/	12/	18 55	18.9/	12/	18 16	
CO BCKGRD ME	TER/RANGE/PPM	.3/	12/	.29	3/	12/	29	20.57	12/	20	
CO2 SAMPLE ME	TER/RANGE/PCT	74 1/	11/	6370	54 67	11/	4083	68 4/	11/	5637	
CO2 BCKGRD ME	ETER/RANGE/PCT	7.8/	11/	.0441	7.6/	11/	0429	7 7/	11/	0435	
NOX SAMPLE ME	TER/RANGE/PPM (CONT)(D)	45.2/	9/	45.21	33.0/	9/	32.97	43.4/	9/	43 42	
NOX BCKGRD ME	ETER/RANGE/PPM	.6/	1/	.15	.6/	1/	.15	.4/	1/	.10	
	7.0 m										
DILUTION FACT	IOR		20.	83		32.	49		23.	58	
HC CUNCENTH	KATION PPM		9.	97		9.	76		10.	81	
CO CONCENTR	RATION PPM		33.	12		17.	79		17.	36	
CO2 CONCENTR	CATION PCT		.59	50		.36	68		. 52	20	
NOX CONCENTR	FOR RATION PPM RATION PPM RATION PCT RATION PPM		45.	06		32.	83		43.	32	
HC MASS G	BRAMS		1.47	0		2.44	5		1.59	3	
CO MASS G	GRAMS		9.69	7		8.85	5		5.08	0	
CO2 MASS G	GRAMS	2	740.1	3	2	870.7	0	2	402.0	2	
NOX MASS G	GRAMS		20.72	7		25.66	4		19.91	0	
PM MASS M	IILLIGRAMS		371.	6		435.	2		363.	6	
FUEL MASS K	G		.88	5		.92	7		.77	4	
FUEL ECONOMY	GRAMS GRAMS GRAMS GRAMS (G MPG (L/100KM)	12.5	7 (1	8.71)	12.8	3 (1	8.34)	14.3	4 (1	6.41)	

HC	G/MI		.537		
CO	G/MI		2.146		
NOX	G/MI		6.191		
PM	MG/MI		108.2		
FUEL	ECONOMY	MPG	(L/100KM)	13.17	(17.87)

COMPUTER PROGRAM LDT 2.9-R	SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSI 1-BAG EPA FTP VEHICLE EMISSION RESULTS	
TRANSMISSION A4		DIESEL 27132-F FUEL DENSITY 6.839 LB/GAL H .136 C .851 O .013 X .000 W) HFET
BAROMETER 29.29 IN HG (744.1 M RELATIVE HUMIDITY 49.4 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SA MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCM) GAS METER FLOW RATE SCFM (SCM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (C HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM HC MASS GRAMS CO2 MASS GRAMS CO2 MASS GRAMS PM MASS MILLIGRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	$10.26 (16.51) \\ 1031.1 (29.20) \\ MM) .86 (.02) \\ 13169. (373.0) \\ CONT) 15.7/ 9/ 15.71 \\ 3.4/ 2/ 3.49 \\ 20.6/ 12/ 19.80 \\ .3/ 12/ .29 \\ 83.2/ 11/ .7673 \\ 7.5/ 11/ .0423 \\ CONT)(D) 70.1/ 9/ 70.14 \\ .5/ 1/ .13 \\ 17.34 \\ 12.42 \\ 18.93 \\ .7274 \\ 70.02 \\ 2.716 \\ 8.218 \\ 4967.18 \\ 46.475 \\ 509.0 \\ 1.600 \\ 1.600 \\ $	NOX HUMIDITY C.F931
1-BAG COMPOSITE RESULTS	19.90 (11.82)	

HC	G/MI		.265			
CO	G/MI		.801			
NOX	G/MI		4.530			
PM	MG/MI		49.6			
FUEL	ECONOMY	MPG	(L/100KM)	19.90	(11.82)	

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

	OGRAM LDT 2.9-R 3-E	BAG EPA	FTP	VEHICLE	EMISSI	ON RES	SULTS	PRO	JECT 1	10. 03-0322	
VEHICLE NUMBER	3254		TEST	3254CAND	T4			DIESEL 27132-E			F
VEHICLE MODEL	6 CHEVY C2500		DATE	1/21/20	06 RUN)6 RUN			UEL [839 LB/GAL	
ENGINE	6.6 L (403 CID)-V8	DYNO 7 B			BAG CART	2		ŀ	1.136	5 C .851	0.013 X.000
TRANSMISSION	A4		ACTUA	L ROAD L	OAD 27.4	19 HP	(20.51)	(W) P	тр		
ODOMETER	3254 6 CHEVY C2500 6.6 L (403 CID)-V8 A4 10383 MILES (16706 KM)		TEST	WEIGHT	7500 LBS	5 (34	401 KG)				
	36 IN HG (745.7 MM HG) ITY 45.7 PCT.										912
BAG NUMBER			1			2			3		
BAG DESCRIPTI	ITY 45.7 PCT. ION DNDS ECTION FACTOR, SAMP/BACK TANCE MILES (KM) RATE SCFM (SCMM)	COLD	TRANS	SIENT	STA	BILIZ	ZED	HOT	TRANS	SIENT	
		(0-	505 5	SEC.)	(505-	1372	SEC.)	(()- 505	5 SEC.)	
RUN TIME SECO	DNDS	5	605.0		8	366.6		Ę	505.0		
DRY/WET CORRE	ECTION FACTOR, SAMP/BACK	.98	327.98	18	.98	347.98	38	.98	327.98	38	
MEASURED DIST	TANCE MILES (KM)	3.58	3 (5.	76)	3.85	5 (6.	.19)	3.58	3 (5.	76)	
BLOWER FLOW F	RATE SCFM (SCMM)	1050.	7 (29	.76)	1040.	9 (29).48)	1045.	5 (29).61)	
GAS METER FLO	OW RATE SCFM (SCMM)	.89)(,	03)	.93	3 (.	03)	.90) (.	.03)	
TOTAL FLOW SC	DW RATE SCFM (SCMM) CF (SCM)	8851.	(25	6.7)	15047.	(42	26.1)	8807.	(24	19.4)	
HC SAMPLE ME	ETER/RANGE/PPM (CONT)	13.5/	9/	13.48	13.4/	9/	13.38	14.2/	9/	14.25	
HC BCKGRD ME	ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PCT ETER/RANGE/PCT	3.9/	2/	4.01	3.8/	2/	3.91	4.0/	2/	4.11	
CO SAMPLE ME	ETER/RANGE/PPM	32.6/	12/	31.43	18.2/	12/	17.49	18.3/	12/	17.58	
co bckgrd me	ETER/RANGE/PPM	.2/	12/	.19	.0/	12/	.00	.3/	12/	.29	
CO2 SAMPLE ME	ETER/RANGE/PCT	73.0/	11/	.6224	54.3/	11/	.4053	68.5/	11/	.5649	
LUZ DUNGKU ME	LIER/RANGE/PUI	1.3/	11/	.0411	1.3/	11/	.0411	1.2/	11/	.0405	
NOX SAMPLE ME	ETER/RANGE/PPM (CONT)(D)	45.8/	9/	45.84	33.4/	9/	33.40	44.6/	9/	44.60	
NOX BCKGRD ME	ETER/RANGE/PPM	.2/	1/	.05	.3/	1/	.08	.4/	1/	.10	
DILUTION FACT	FOR RATION PPM RATION PCT RATION PCM		21.	33		32.	74		23.	54	
HC CONCENTR	RATION PPM		9.	66		9.	59		10.	31	
CO CONCENTR	RATION PPM		30.	40		17.	09		16.	86	
CO2 CONCENTR	RATION PCT		.58	32		.36	54		. 52	61	
NOX CONCENTR	VATION PPM		45.	79		33.	33		44.	50	
HC MASS G	GATION PPM GRAMS GRAMS GRAMS MILLIGRAMS (G MPG (L/100KM)		1.41	9		2.39	7		1.50	8	
CO MASS G	GRAMS		8.87	2		8.47	9		4.89	6	
CO2 MASS G	BRAMS	2	676.3	6	2	850.7	0	2	402.3	0	
NOX MASS G	GRAMS		20.02	3		24.77	2		19.36	0	
PM MASS M	1ILLIGRAMS		353.	4		429.	2		382.	8	
FUEL MASS K	G		.86	4		. 92	1		.77	4	
FUEL ECONOMY	MPG (L/100KM)	12.8	6(1	8.29)	12.9	7 (1	8.14)	14.3	5 (1	6.39)	

HC	G/MI		.520				
CO	G/MI		2.030				
NOX	G/MI		5.978				
PM	MG/MI		107.6				
FUEL	ECONOMY	MPG	(L/100KM)]	3.30	(17.68)	

COMPUTER PROGRAM LDT 2.9-R 1-E	RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS BAG EPA FTP VEHICLE EMISSION RESULTS	PROJECT NO. 03-03227-20
VEHICLE NUMBER 3254 VEHICLE MODEL 6 CHEVY C2500 ENGINE 6.6 L (403 CID)-V8 TRANSMISSION A4 ODOMETER 10405 MILES (16741 KM)	TEST 3254CANDT4 DATE 1/21/2006 RUN DYNO 7 BAG CART 2 ACTUAL ROAD LOAD 27.49 HP (20.51 KW) TEST WEIGHT 7500 LBS (3401 KG)	DIESEL 27132-F FUEL DENSITY 6.839 LB/GAL H .136 C .851 0 .013 X .000 HFET
BAROMETER 29.37 IN HG (746.1 MM HG) RELATIVE HUMIDITY 48.7 PCT. BAG NUMBER BAG DESCRIPTION	DRY BULB TEMPERATURE 71.0°F (21.7°C) 1 764.9 .980/.987 10.24 (16.48) 1031.0 (29.20) .87 (.02) 13154. (372.5) 16.0/ 9/ 15.98 4.4/ 2/ 4.52 19.8/ 12/ 19.03 .0/ 12/ .00 83.6/ 11/ .7734 7.4/ 11/ .0417 71.6/ 9/ 71.63 .4/ 1/ .10 17.21 11.72 18.45 .7342 71.53 2.559 8.000 5007.34	NOX HUMIDITY C.F919
PM MASS GRAMS PM MASS MILLIGRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM) 1-BAG COMPOSITE RESULTS	46.811 705.0 1.612 19.70 (11.94)	

HC	G/MI		.250		
CO	G/MI		.781		
NOX	G/MI		4.571		
PM	MG/MI		68.8		
FUEL	ECONOMY	MPG	(L/100KM)	19.70	(11.94)

COMPUTER PRO	SOUTHWEST DGRAM LDT 2.9-R 3-E									10. 03-0322	7-20	
VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSMISSION ODOMETER	3254 6 CHEVY C2500 6.6 L (403 CID)-V8 A4 10416 MILES (16759 KM)		TEST DATE DYNO ACTUA TEST	3254CAND 1/22/20 7 NL ROAD L WEIGHT	T5 06 RUN BAG CAR1 OAD 27.4 7500 LBS	- 2 19 HP 5 (34	(20.51 k 401 KG)	[DIESEL FUEL E H .130 FTP	_ 27132-6 DENSITY 6.8 5 C .851 (: 339 LB/GAL) .013 X .00	0
DELATTIC GUATES	20 IN HG (741.8 MM HG) ITY 57.6 PCT.										985	
BAG NUMBER			1			2			3			
BAG DESCRIPTI	[ON	COLD	TRANS	SIENT	STA	BILIZ	ZED .	HOT	TRANS	SIENT		
		(0.	505 S	EC.)	(505-	1372	SEC.)	(()- 505	SEC.)		
RUN TIME SECC	ITY 57.6 PCT. ION DNDS ECTION FACTOR, SAMP/BACK FANCE MILES (KM)	5	604.7		8	66.3		ŗ	504.8			
DRY/WET CORRE	ECTION FACTOR, SAMP/BACK	.97	87.98	14	. 98	807.98	34	.97	787.98	34		
MEASURED DIST	TANCE MILES (KM)	3.58	6 (5.	76)	3.86	6.	21)	3.56	5 (5.	73)		
BLUWER FLUW F	(AIE SUEM (SUMM)	1042.	0.(29)	1.51)	1034	8 (29	1.31)	1037.	2 (20	1.37)		
GAS METER FLO	W RATE SCFM (SCMM)	.88	3 (,	02)	.92	:(.	.03)	.87	7(,	02)		
TOTAL FLOW SC	W RATE SCFM (SCMM) CF (SCM)	8773.	(24	8.4)	14954.	(42	23.5)	8734	. (24	7.3)		
	TER/RANGE/PPM (CONT) TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PCT TER/RANGE/PCT											
HC BCKGRD ME	TER/RANGE/PPM	3.8/	21	3 91	3.8/	21	3 01	3 7/	2/	3 80		
CO SAMPLE ME	TER/RANGE/PPM	35.2/	127	33 95	19.0/	12/	18 26	18 9/	12/	18 16		
CO BCKGRD ME	TER/RANGE/PPM	.2/	12/	.19	.2/	12/	10.20	20.27	12/	10.10		
CO2 SAMPLE ME	TER/RANGE/PCT	74.8/	11/	6464	54 6/	11/	4083	68 4/	11/	5637		
CO2 BCKGRD ME	TER/RANGE/PCT	7.4/	11/	.0417	7.4/	11/	0417	7.3/	11/	0411		
NOX SAMPLE ME	TER/RANGE/PPM (CONT)(D)	45.1/	9/	45.12	32.9/	9/	32.91	42.9/	9/	42.94		
DILUTION FACT	TER/RANGE/PPM TOR WATION PPM WATION PPM WATION PCT WATION PPM WATANS WAMS WAMS WAMS WAMS WAMS WAMS WAMS WAM		20	52		30	40		23	58		
HC CONCENTR	ATTON PPM		10	11		32. Q	7-2 85		10	80		
CO CONCENTR	ATTON PPM		32	72		17	50		10.	45		
CO2 CONCENTR	ATTON PCT		60	72 67		-17.	35		17. 52	40		
NOX CONCENTR	ATTON PPM		45	07		32	91 91		12	.40 00		
HOX BUILDENT				00		52.7	01		·+c. ,	50		
HC MASS G	RAMS		1.47	2		2.44	7		1.57	9		
CO MASS G	RAMS		9.46	2		8.67	4		5.02	4		
CO2 MASS G	RAMS	2	759.7	7	2	852.5	3	2	374.1	5		
NOX MASS G	RAMS		21.06	8		26.16	8		19.98	1		
PM MASS M	IILLIGRAMS		158.	4		445.	4		392.	4		
FUEL MASS K	G		.89	1		.92	1		.76	5		
FUEL ECONOMY	MPG (L/100KM)	12.4	5 (1	8.89)	13.0	0 (1	8.10)	14.4	3 (1	6.30)		

HC	G/MI		.536			
CO	G/MI		2.100			
NOX	G/MI		6.275			
PM	MG/MI		99.2			
FUEL	ECONOMY	MPG	(L/100KM)	13.25	(17.75)	

	RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS BAG EPA FTP VEHICLE EMISSION RESULTS	
VEHICLE NUMBER 3254 VEHICLE MODEL 6 CHEVY C2500 ENGINE 6.6 L (403 CID)-V8 TRANSMISSION A4 ODOMETER 10438 MILES (16794 KM)	TEST 3254CANDT5 DATE 1/22/2006 RUN DYNO 7 BAG CART 2 ACTUAL ROAD LOAD 27.49 HP (20.51 KW) TEST WEIGHT 7500 LBS (3401 KG)	DIESEL 27132-F FUEL DENSITY 6.839 LB/GAL H .136 C .851 0 .013 X .000 HFET
RELATIVE HUMIDITY 57.0 PCT.BAG NUMBERBAG DESCRIPTIONRUN TIME SECONDSDRY/WET CORRECTION FACTOR, SAMP/BACKMEASURED DISTANCE MILES (KM)BLOWER FLOW RATE SCFM (SCMM)GAS METER FLOW RATE SCFM (SCMM)TOTAL FLOW SCF (SCM)HC SAMPLE METER/RANGE/PPM (CONT)HC BCKGRD METER/RANGE/PPMCO SAMPLE METER/RANGE/PPMCO BCKGRD METER/RANGE/PPMCO CONCENTRATION PPMCO CONCENTRATION PPMCO CONCENTRATION PPMCO CONCENTRATION PPMCO CONCENTRATION PPMHC MASS GRAMSCO MASS GRAMSCO MASS GRAMSNOX MASS GRAMSNOX MASS GRAMSPM MASS MILLIGRAMSFUEL MASS KG	10.26 (16.50) 1034.7 (29.30) .87 (.02) 13214. (374.2) 16.1/ 9/ 16.11 3.5/ 2/ 3.60 20.6/ 12/ 19.80 .2/ 12/ .19 84.2/ 11/ .7827 7.5/ 11/ .0423 69.0/ 9/ 69.00 .5/ 1/ .13	NOX HUMIDITY C.F971
FUEL ECONOMY MPG (L/100KM) 1-BAG COMPOSITE RESULTS	19.41 (12.12)	

HC	G/MI		.272		
CO	G/MI		.805		
NOX	G/MI		4.665		
PM	MG/MI		68.6		
FUEL	ECONOMY	MPG	(L/100KM)	19.41	(12.12)

	SOUTHWEST GRAM LDT 2.9-R 3-B	AG EPA	FTP	VEHICLE	EMISSIC	N RES	SULTS	PROJ	JECT N	10. 03-03227		
VEHICLE NUMBER	3254		TEST 3254CANDT6 DATE 1/23/2006 RUN						DIESEL	. 27132-F		
VEHICLE MODEL	6 CHEVY C2500		DATE	1/23/20	06 RUN			F	FUEL C	ENSITY 6.8	39 LB/GAL	
ENGINE	6.6 L (403 CID)-V8		DYNO	7	BAG CART	2		F	1.136	5 C.851 O	.013 X .000	
TRANSMISSION	A4		ACTUA	L ROAD L	OAD 27.4	9 HP	(20.51 K	W) F	TP			
ODOMETER	6.6 L (403 CID)-V8 A4 10448 MILES (16810 KM)		TEST	WEIGHT	7500 LBS	i (34	Ю1 KG)					
BAROMETER 29.3 RELATIVE HUMIDI	3 IN HG (745.0 MM HG) TY 56.4 PCT. ON NDS CTION FACTOR, SAMP/BACK ANCE MILES (KM)	DRY BU	lb te	MPERATUR	E 71.0°	F (2	21.7°C)	١	NOX HU	MIDITY C.F.	.956	
BAG NUMBER			1			2			3			
BAG DESCRIPTI	ON	COLD	TRANS	SIENT	STA	BILIZ	LED	HOT	TRANS	SIENT		
		(0-	505 S	SEC.)	(505-	1372	SEC.)	(()- 505	5 SEC.)		
RUN TIME SECO	NDS	5	05.0		8	66.9		Ę	505.7			
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.97	97.98	15	. 98	1/.98	35	. 98	307.98	35		
MEASURED DIST	ANCE MILES (KM) ATE SCFM (SCMM)	3.60	(5.	79)	3.87	(6.	23)	3.57	7 (5.	.74)		
BLOWER FLOW R	ATE SCFM (SCMM)	1062.	0 (30	1.08)	1046.	0 (29	9.62)	1038.	4 (29).41)		
GAS METER FLO	W RATE SCFM (SCMM)	.89	(,	03)	. 93	(.	03)	.87	7 (.	.02)		
TOTAL FLOW SC	W RATE SCFM (SCMM) F (SCM)	8946.	(25	3.3)	15127.	(42	28.4)	8759.	. (24	18.1)		
HC SAMPLE ME	TER/RANGE/PPM (CONT)	13.9/	9/	13.91								
HC BCKGRD ME	TER/RANGE/PPM TER/RANGE/PPM TER/RANGE/PPM	4.0/	2/	4.11	4.0/	2/	4.11	3.8/	2/	3.91		
CO SAMPLE ME	TER/RANGE/PPM	33.5/	12/	32.30			17.49					
CO BCKGRD ME	TER/RANGE/PPM	.3/	12/	.29	.3/	12/	.29	.2/	12/	.19		
CO2 SAMPLE ME	TER/RANGE/PCT	74.5/	11/	.6424	54.5/	11/	.4073	68.1/	11/	.5600		
CO2 BCKGRD ME	TER/RANGE/PCT	7.5/	11/	.0423	7.7/	11/	.0435	7.6/	11/	.0429		
NOX SAMPLE ME	TER/RANGE/PPM (CONT)(D)	45.1/	9/	45.08	33.0/	9/	33.01	42.6/	9/	42.58		
NOX BCKGRD ME	TER/RANGE/PPM	.2/	1/	.05	.4/	1/	.10	.3/	1/	.08		
DILUTION FACT	TER/RANGE/PPM (CONT)(D) TER/RANGE/PPM OR ATION PPM ATION PPM ATION PCT ATION PPM RAMS RAMS RAMS RAMS ILLIGRAMS G MPG (L/100KM)		20.	67		32.	58		23.	74		
HC CONCENTR	ATION PPM		10.	00		9.	47		10.	69		
CO CONCENTR	ATION PPM		31.	04		16.	76		16.	71		
CO2 CONCENTR	ATION PCT		.60	21		.36	52		.51	.89		
NOX CONCENTR	ATION PPM		45.	03		32.	91		42.	51		
HC MASS G	RAMS		1.48	6		2.38	0		1.55	4		
CO MASS G	RAMS		9.15	5		8.35	8		4.82	4		
CO2 MASS G	RAMS	2	792.8	5	2	864.0	6	2	356.5	8		
NOX MASS G	RAMS		20.86	2		25.78	4		19.28	13		
PM MASS M	ILLIGRAMS		356.	0		433.	6		386.	2		
FUEL MASS K	G		.90	2		. 92	5		.76	i0		
FUEL ECONOMY	MPG (L/100KM)	12.3	8 (1	9.00)	12.9	9 (1	8.11)	14.5	8 (1	.6.13)		

HC	G/MI		.524		
CO	G/MI		2.017		
NOX	G/MI		6.136		
РМ	MG/MI		108.2		
FUEL	ECONOMY	MPG	(L/100KM)	13.27	(17.73)

	RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS BAG EPA FTP VEHICLE EMISSION RESULTS	
ENGINE 0.0 L (403 CID)-V8	ACTUAL ROAD LOAD 27.49 HP (20.51 KW)	H.136 C.851 C.013 X.000
RELATIVE HUMIDITY 53.1 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (CONT) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (CONT)(D)	10.26 (16.51) 1037.8 (29.39) .87 (.02) 13242. (375.0) 16.0/ 9/ 16.04 3.8/ 2/ 3.91 20.4/ 12/ 19.61 .2/ 12/ .19 83.6/ 11/ .7734 7.5/ 11/ .0423 69.6/ 9/ 69.64 .4/ 1/ .10	NOX HUMIDITY C.F949
1-BAG COMPOSITE RESULTS		

HC	G/MI		.265		
CO	G/MI		.800		
NOX	G/MI		4.612		
РМ	MG/MI		69.8		
FUEL	ECONOMY	MPG	(L/100KM)	19.62	(11.99)

	SOUTHWEST DGRAM LDT 2.9-R 3-E	IAG EPA	FTP	VEHICLE	EMISSIC	IN RES	SULTS	PRO	JECT N	10. 03-03227	
VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSMISSION ODOMETER	3254 6 CHEVY C2500 6.6 L (403 CID)-V8 A4 10481 MILES (16863 KM)		TEST DATE DYNO ACTUA TEST	3254CAND 1/24/20 7 AL ROAD L WEIGHT	T7 06 RUN BAG CART 0AD 27.4 7500 LBS	7 2 19 HP 5 (34	(20.51 k 101 KG)	1 	DIESEL FUEL (H .136 FTP	_ 27132-F DENSITY 6.83 5 C .851 0	39 LB/GAL .013 X .000
	87 IN HG (746.0 MM HG) TY 50.0 PCT. CON NDS CCTION FACTOR, SAMP/BACK TANCE MILES (KM)										.942
BAG DESCRIPTI	ΩN.		TDANS	TENT	ST/	ג. כדו דס	ren	UOT	TDANG	TCNT	
Drig DEJORTH 11	. On	(0.	505 5	EC)	- JIF ر ۶۵۶	DILIZ 1272	.ευ .ερ ι		IRAN: CAN		
RUN TIME SECO	MUZ	۰۰) ير	000 0 05 0	1.0.7	-000)	1372	Sec. J		01- 000 014 0	320.)	
DRY/WET CORRE	TTION FACTOR SAMP/RACK	00	10.3.0 107.09	a A	00	27 00	6	0)04.9)1/ 00	06	
	ANCE MILES (KM)	3 50	107.90	,0 77)	3.04	. / . /	91 \	3 51	317.90 7765	751	
BIOWER FLOW R	ATE SCFM (SCMM)	1046	7 (20) 64)	1033	1 (20	21)) 27)	1035	1 (2)		
GAS METER FLO	W RATE SCEM (SCMM)	2040. gc	, (<u> </u>	03)	1000.	+ (EJ) (03)	1000.	.+ (2.3 } /	02)	
TOTAL FLOW SC	W RATE SCFM (SCMM) F (SCM)	8817.	(24	19.7)	14943	(42	12 21	8720	(24	17 0)	
		00111	、 ·		1.0.10.	、		0,40		F/ . U/	
HC SAMPLE ME	TER/RANGE/PPM (CONT)	13.9/	9/	13.92	13.5/	9/	13.48	14.5/	97	14.46	
HC BCKGRD ME	TER/RANGE/PPM	3.6/	2/	3.70	3.6/	2/	3.70	3.6/	2/	3.70	
CO SAMPLE ME	TER/RANGE/PPM TER/RANGE/PPM	35.8/	12/	34.54	18.9/	12/	18.16	19.1/	12/	18.36	
CO BCKGRD ME	TER/RANGE/PPM TER/RANGE/PCT TER/RANGE/PCT	.2/	12/	.19	.2/	12/	.19	.2/	12/	.19	
CO2 SAMPLE ME	TER/RANGE/PCT	74.0/	11/	.6357	54.6/	11/	.4083	67.6/	11/	.5538	
CO2 BCKGRD ME	TER/RANGE/PCT	7.6/	11/	.0429	7.5/	11/	.0423	7.3/	11/	.0411	
NOX SAMPLE ME	TER/RANGE/PPM (CONT)(D)	44.9/	9/	44.93	33.4/	9/	33.40	33.4/	9/	33.40	
DILUTION FACT	OR		20.	88		32.	49		24.	00	
HC CONCENTR	ATTON PPM		10.	40		9.	89		10.	91	
CU CUNCENTR	ATTON PPM		33.	37		17.	54		17.	68	
LUZ LUNCENTR	ATION PUT		.59	48		.36	73		.51	.44	
NUX CUNCENTR	ALION PPM		44.	85		33.	33		33.	33	
HC MASS G	TER/RANGE/PPM OR ATION PPM ATION PCT ATION PCT ATION PPM RAMS RAMS RAMS ILLIGRAMS G MPG (L/100KM)		1 52	2		2 45	A		1 50	n	
CO MASS G	RAMS		9 70	1		8 64			5 02	3	
CO2 MASS G	RAMS	2	719.3	- 3	2	846 A	1	2	0.00 1225 Q	.∪ ?	
NOX MASS G	RAMS	£	20.16	2 8	2	25 30	т Я	۲.	14 82	9	
PM MASS M	ILLIGRAMS		590	0		462	0		554	Δ	
FUEL MASS K	G		.87	- 8		.01	° 9		ידים קר	, Л	
FUEL ECONOMY	MPG (L/100KM)	12.6	8 (1	- 8.56)	13.0	3 (1:	2 8.05)	14 7	.,J 18 (1	5 5 91)	
					2010	- (+		±1+1	~ (1	0.011	

HC	G/MI		.539	
C0	G/MI		2.111	
NOX	G/MI		5.713	
PM	MG/MI		138.6	
FUEL	ECONOMY	MPG	(L/100KM)	13.41 (17.55)

COMPUTER PROGRAM LDT 2.9-R 1-E	RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS BAG EPA FTP VEHICLE EMISSION RESULTS	PROJECT NO. 03-03227-20
VEHICLE NUMBER 3254 VEHICLE MODEL 6 CHEVY C2500 ENGINE 6.6 L (403 CID)-V8 TRANSMISSION A4 ODOMETER 10503 MILES (16899 KM)	TEST 3254CANDT7 DATE 1/24/2006 RUN DYNO 7 BAG CART 2 ACTUAL ROAD LOAD 27.49 HP (20.51 KW) TEST WEIGHT 7500 LBS (3401 KG)	DIESEL 27132-F FUEL DENSITY 6.839 LB/GAL H .136 C .851 0 .013 X .000 HFET
BAROMETER 29.35 IN HG (745.6 MM HG) RELATIVE HUMIDITY 53.7 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (CONT) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PCT CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCM (CONT)(D)	DRY BULB TEMPERATURE 73.0°F (22.8°C) 1 764.9 .977/.985 10.25 (16.50) 1024.2 (29.01) .87 (.02) 13068. (370.1) 15.8/ 9/ 15.85 3.4/ 2/ 3.49 20.8/ 12/ 20.00 .2/ 12/ .19 83.9/ 11/ .7781 7.5/ 11/ .0423 69.7/ 9/ 69.68 .4/ 1/ .10	
CO2 MASS GRAMS NOX MASS GRAMS PM MASS MILLIGRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM) 1-BAG COMPOSITE RESULTS	5002.06 47.356 705.6 1.611 19.75 (11.91)	

HC	G/MI		.266		
C0	G/MI		.806		
NOX	G/MI		4.619		
PM	MG/MI		68.8		
FUEL	ECONOMY	MPG	(L/100KM)	19.75	(11.91)

	SOUTHWEST DGRAM LDT 2.9-R 3-E	BAG EPA	FTP	VEHICLE	EMISSIC	N RES	ULTS	PROJ	JECT N		
VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSMISSION ODOMETER	3254 6 CHEVY C2500 6.6 L (403 CID)-V8 A4 10513 MILES (16915 KM)		TEST DATE DYNO ACTUA TEST	3254CAND 1/25/20 7 L ROAD L WEIGHT	T8 06 RUN BAG CART DAD 27.4 7500 LBS	· 2 9 HP 5 (34	(20.51 K 01 KG)	C F H W) F	DIESEL FUEL C I .136 TP	27132-F DENSITY 6.8 5 C.851 0	39 LB/GAL .013 X .000
RELATIVE HUMIDI	55 IN HG (750.6 MM HG) TTY 53.6 PCT. TON										.959
BAG DESCRIPTI	ION DNDS ECTION FACTOR, SAMP/BACK FANCE MILES (KM)	COLD	TRANS	SIENT	STA (505-	BILIZ	ED SEC 1	HOT	TRANS	SIENT	
RUN TIME SECO	ONDS	5	05.1		8	66.9	520.7	Ę	504.4		
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.97 3.50	97.98	15 77)	.98 3.85	1/.98 (6	15 201	.98 3 56	807.98 5 (5	35 73)	
BLOWER FLOW F	RATE SCFM (SCMM)	1058.	0 (29	.96)	1038.	1 (29	.40)	1034.	.2 (29).29)	
GAS METER FLO TOTAL FLOW SO	OW RATE SCFM (SCMM) CF (SCM)	.90 . 8914	(、 (25	03) 2.5)	.93 15012.	(. (42	03) 5.1)	.89 .8702)(. (24	03) 6,4)	
HC SAMPLE ME	TER/RANGE/PPM (CONT)	14.0/	9/	14.03	13.8/	97	13.83	14.6/	9/	14.59	
	TER/RANGE/PPM TER/RANGE/PPM	3.0/	12/	33 88	3.0/ 10.3/	12/	3.91 10 55	4.1/ 10.//	12/	4.21 19.65	
CO BEKERD ME		34.1/ Q/	12/	32.00 86	19.5/	12/	86 88	19.47	127	86	
CO2 SAMPLE ME	TER/RANGE/PPM TER/RANGE/PCT TER/RANGE/PCT	73 3/	11/	6263	54 6/	11/	4083	67.2/	11/	5490	
CO2 BCKGRD ME	TER/RANGE/PCT	8.4/	11/	.0476	8.5/	11/	. 0482	7.9/	11/	.0447	
NOX SAMPLE ME	TER/RANGE/PPM (CONT)(D)	43.6/	9/	43.56	32.2/	9/	32.17	42.9/	9/	42.92	
NOX BCKGRD ME	TER/RANGE/PPM	.6/	1/	.15	.7/	1/	. 18	.7/	1/	.18	
DILUTION FACT	TOR NATION PPM NATION PCT NATION PCM		21.	19		32.	49		24.	21	
HC CONCENTR	ATION PPM		10.	31		10.	05		10.	55	
CO CONCENTR	ATION PPM		31.	11		17.	26		17.	31	
CO2 CONCENTR	ATION PCT		.58	10		.36	16		.50	62	
NOX CONCENTR	ATION PPM		43.	41		32.	00		42.	76	
HC MASS G	RAMS RAMS RAMS RAMS ILLIGRAMS G MPG (L/100KM)		1.52	6		2.50	4		1.52	4	
CO MASS G	RAMS		9.14	2		8.54	3		4.96	7	
CO2 MASS G	IRAMS	2	685.3	7	2	814.6	8	2	283.6	7	
NOX MASS G	RAMS		20.10	1		24.95	1		19.32	5	
PM MASS M	IILLIGRAMS		394.	0		463.	3		623.	7	
FUEL MASS K	G		.86	/	<i></i>	.90	y 7.001		.73	6	
FUEL ECONOMY	MPG (L/100KM)	12.8	3 (1	8.33)	13.1	5 (1	7.89)	14.9	9(1	5.69)	

HC	G/MI		.543			
CO	G/MI		2.061			
NOX	G/MI		6.008			
PM	MG/MI		133.1			
FUEL	ECONOMY	MPG	(L/100KM)	13	.55	(17.36)

COMPUTER PROGRAM LDT 2.9-R 1-E	RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS BAG EPA FTP VEHICLE EMISSION RESULTS	PROJECT NO. 03-03227-20
VEHICLE NUMBER 3254 VEHICLE MODEL 6 CHEVY C2500 ENGINE 6.6 L (403 CID)-V8 TRANSMISSION A4 ODOMETER 10535 MILES (16950 KM)	TEST 3254CANDT8 DATE 1/25/2006 RUN DYNO 7 BAG CART 2 ACTUAL ROAD LOAD 27.49 HP (20.51 KW) TEST WEIGHT 7500 LBS (3401 KG)	DIESEL 27132-F FUEL DENSITY 6.839 LB/GAL H .136 C .851 O .013 X .000 HFET
BAROMETER 29.57 IN HG (751.1 MM HG) RELATIVE HUMIDITY 53.0 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (CONT) HC BCKGRD METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO BCKGRD METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (CONT)(D)	DRY BULB TEMPERATURE 72.0°F (22.2°C) 1 765.3 .978/.986 10.24 (16.48) 1029.7 (29.16) .89 (.03) 13146. (372.3) 16.0/ 9/ 16.02 4.1/ 2/ 4.21 21.9/ 12/ 21.06 1.0/ 12/ .96 83.0/ 11/ .7642 8.0/ 11/ .0452 68.5/ 9/ 68.49 .6/ 1/ .15	
FUEL ECONOMY MPG (L/100KM) 1-BAG COMPOSITE RESULTS	20.06 (11.73)	

G/MI		.257				
G/MI		.825				
G/MI		4.495				
MG/MI		66.7				
ECONOMY	MPG	(L/100KM)		20.06	(11.73)
	G/MI G/MI MG/MI	G/MI G/MI MG/MI	G/MI .825 G/MI 4.495 MG/MI 66.7			