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Summary 

 This document describes the work performed on the development of the Training, 
Overuse Injury, and Performance (TOP) Model. The primary objective is to develop a 
software product that incorporates training regimen plans in the prediction of training 
performance and injury outcomes.  
 Currently, there is a need for guidance on minimizing injuries and maximizing 
performance during basic combat training. Most research has involved field studies where a 
significant number of subjects (hundreds to thousands) are monitored and a statistical 
procedure such as factor analysis is performed to determine relevant measures for injury 
and performance. Unfortunately, the results are only applicable to similar populations and 
training regimens, offering no guidance or predictability for different scenarios. To 
demonstrate the inability of a statistical approach to accurately predict training outcomes, 
a Test Index Cluster (TIC) analysis was performed on several training datasets and the 
decline in accuracy noted.  
 For the preliminary version of the TOP Model, a run performance and a lower-body 
acute/mishap injury algorithm was implemented. The performance model is based on a 
review of the literature and takes into account training regimen in predicting performance, 
as measured by the running portion of the military Physical Fitness Test. We find that the 
performance model has the same level of accuracy as a statistically-based analysis when 
the model uses parameter values consistent with those found in the literature. However, 
unlike a statistical analysis, the model is able to maintain the accuracy across different 
regimens. Despite previous literature suggesting otherwise, we were unable to find any 
significant factors that correlated with lower-body acute injury suggesting this type of 
injury is primarily random in the dataset analyzed. Thus, a probability-based model was 
employed.  
 To demonstrate usability, a conceptual TOP Model design is included in this 
document. Features include the ability to import and modify subject and regimen data, 
specify analyses to run, and produce relevant reports using a user friendly interface. In 
addition, a preliminary Web-based version of the software has been written with the ability 
to import data and access the run performance and lower-body acute/mishap injury models.  
 There are several limitations that will need to be addressed in the future. First, the 
existing performance and acute/mishap injury models will need to be refined and validated 
against additional datasets. Second, an overuse injury and stress fracture model needs to be 
developed. And third, the TOP Model software program will need to be updated and 
documentation written based on user feedback.  
 In summary, the TOP Model incorporates performance and injury models based on 
research found in the literature to predict training outcomes. We demonstrate the main 
advantage of the software, which is its ability to account for different training situations. 
Additional models and refinements are planned as future work in this area. 
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1. Introduction 

 The purpose of basic combat training (BCT) is to prepare recruits for the rigors of 

military life, including acquiring a high fitness level. However, recruits may be injured or 

fail to reach the desired fitness level (as measured by performance tests such as the 

military Physical Fitness Test or PFT). Thus, there is a need for guidance on minimizing 

injuries and maximizing performance during BCT.  

 Most work has involved field studies where a significant number of subjects 

(hundreds to thousands) are monitored and a statistical procedure such as factor analysis is 

performed to determine relevant measures for injury and performance. For example, 

Allison et al. (2005) analyzed the data from a Ft. Jackson BCT study and identified the key 

predictors to the negative outcomes of BCT (injury, APFT test failure, and attrition) using a 

Test Index Cluster (TIC) approach. While the predictors vary for different groups and 

variables, the results clearly show that gender and initial fitness as measured by initial 

APFT scores are strongly correlated to the negative outcomes of the training.  

 These types of analyses are hindered by the inability to identify the relative 

importance of individual training activities, the difficulty in combining data from different 

sources, and the limited amount of available data. Most importantly, the results are only 

applicable to the similar populations and training regimens, offering no guidance or 

predictability for different scenarios.  

 What is needed is prediction tool that can account for different populations and 

training regimens, packaged in a software program that can be easily accessed. Thus, the 

primary objective is to deliver a product to the military community, including USARIEM, 

CHHPM, base commanders and fitness advisors, which incorporates training plans into the 

prediction scheme and improves prediction in differing regimens.  

1.1 Objective 

 This document describes the work performed in the following areas: 

1. Reviewed the TIC approach, quantifying accuracy and demonstrating limitations 

of this method.  

2. Developed a performance model that takes into account training regimen in 

predicting performance, as measured by the running portion of the PFT.  

3. Developed an acute injury model that take into account training regimen in 

predicting mishap-type (sprains, blisters, etc.) injuries.  

4. Produced an initial application software that, by integrating results obtained by 

Allison et al. (2005) and related research efforts with regimen-based performance 
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and injury models, provides a tool where users can easily predict the negative 

outcomes of BCT for different regimens.  

5. Identified the gaps in current model output and recommend future research 

efforts.  
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2. Test Index Cluster Analysis 

 As mentioned in the Introduction, previous work often utilizes a statistical approach 

to determine risk factors for various outcomes of interest. In this section, the Test Index 

Cluster (TIC) Analysis method is described and its accuracy demonstrated as it relates to 

BCT performance measures. We show how this method, while accurate for similar training 

regimens and populations, is not able to accurately predict outcomes for new training 

protocols or varying groups of people. Other statistically-based methods will have similar 

limitations.  

2.1 Method 

 The purpose of the TIC analysis is to identify relevant predictor variables and the 

most appropriate cutoff values with which to classify individuals into “high” and “low” risk 

groups. The procedure is as follows: 

n Unpaired t-test to eliminate irrelevant variables 

n Receiver-Operator Curve Analysis (ROC) to optimize variable cutoff values 

n Logistic Regression to identify statistically significant variables 

n Test Index Cluster Analysis to quantify the accuracy of identified variables in the 

prediction 

 Additional information on TIC analysis can be found in Allison et al. (2005) or 

statistical text books.  

 The dataset used to develop the TIC analysis by Allison et al. (2005) was from a group 

of recruits undergoing BCT at Fort Jackson circa 2003 using the Army “Standardized” 

Physical Training Regimen (See the Appendix: Dataset F). Variables included basic 

anthropometry (age, height, weight, race, and gender), initial PFT test results, educational 

level, and military service time. From this group of recruits, the variables forming the TIC 

were determined.  

 To investigate the limitations of TIC accuracy, the TIC results were applied to three 

additional datasets: Army BCT at Ft. Jackson with “Traditional” Physical Training, Army 

BCT at multiple training sites using “Traditional” Physical Training, and Marine Corps 

BCT at MCRD-San Diego. Additional details on these datasets can be found in the 

appendix, where they are labeled Datasets F, G, and E.  

 A separate, independent TIC analysis was also performed on each of these datasets to 

determine if there are any common variables that identify high risk individuals regardless 

of training regimen.  
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2.2 Statistical Analysis of Existing Performance Data 

2.2.1 TIC Predictive Capability Validation 

 In Allison et al. (2005), the TIC analysis classified individuals as likely or not likely to 

pass the final PFT (combined run, push-ups, and sit-ups score). Male and female recruits 

were analyzed separately. The data indicated that 11.8% of male recruits and 18.4% of 

female recruits did not pass the final PFT.  

 The results of the TIC analysis are shown in Table 1. In summary, items identified for 

males include initial push-ups and sit-ups, while females are best predicted for passing the 

final PFT using initial sit-ups, runtime, and age. In both groups, the TIC analysis is not 

sensitive (< 0.15) but has high specificity (> 0.95). More importantly, positive post-test 

probability was substantially greater for both genders when classified as high risk by the 

TIC analysis (58.4% and 83.7% of males and females, respectively, of the high risk group 

did not pass the final PFT).  

Table 1. Test Index Cluster (TIC) analysis results for male and female recruits undergoing  
basic combat training at Ft. Jackson with “Standardized” Training. 

39947One or less

57Any 2 or more

PassFail

Final PFT
Male

39947One or less

57Any 2 or more

PassFail

Final PFT
Male

 

25451Two or less

15All 3 items

PassFail

Final PFT
Female

25451Two or less

15All 3 items

PassFail

Final PFT
Female

 
For males, two items were identified: < 13 initial push-ups and < 21 initial 
sit-ups. A recruit with these two items had a significantly greater chance of 
failing the final PFT (Sensitivity = 0.13; Specificity = 0.99; Positive pretest 
probability = 11.8%; Positive post-test probability = 58.4%; Negative post-test 
probability = 10.5%). For females, three items were identified: < 10 initial sit-
ups, unable to run a mile in less than 10.71 min, and being less than 20.5 
years in age. A recruit with these three times had a significantly greater 
chance of failing the final PFT (Sensitivity = 0.09; Specificity = 1.00; Positive 
pretest probability = 18.4%; Positive post-test probability = 83.7%; Negative 
post-test probability = 17.1%).  
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 Applying the same TIC variables to the additional datasets resulted in a reduction in 

accuracy (Table 2). In general, the TIC was most accurate when applied to other Ft. 

Jackson-based recruits and least accurate when applied to the Marine Corps training, 

which has the most different training regimen.  

Table 2. Validation of TIC accuracy.  

 Prevalence Positive Test 
Probability 

TIC Basis 
  Army BCT at Ft. Jackson with Standardized Training 

Male 12% 58% 
Female 18% 84% 

TIC Prediction 
  Army BCT at Ft. Jackson with Traditional Training (F) 

Male 13% 50% 
Female 21% 25% 

  Army BCT at various training centers with Traditional Training 
(G) 

Male 16% 32% 
Female 21% Unable to calc. 

  Marine Corp BCT at MCRD-SD (E) 
Male 12% Unable to calc. 

 
Positive Test Probability is the percent of those in the “high risk” group 
that failed the final PFT. The Army BCT at Ft. Jackson with Standardized 
Training was the basis used to identify relevant variables. However, when 
these variables were used to predict the probability of failing the final PFT 
in other datasets (different training regimens and training centers), 
accuracy was substantially reduced. In some cases, the TIC analysis was 
unable to identify any recruits of high risk (noted with “unable to 
calculate”). Additional details about the datasets can be found in the 
appendix (bold letters indicate dataset). 

2.2.2 Common Variables Identified by TIC Analysis of Different Datasets 

 Each of the five datasets used in the validation analysis above (Table 3) was analyzed 

with a similar set of measures to determine if any variables were common to all datasets. 

Not all datasets contained education level or military service time so these were not 

included in the TIC analysis. In addition, several modifications were necessary for the 

MCRD-SD dataset. Pull-ups and crunches were substituted for push-ups and sit-ups, 

respectively, as the Marine Corps PFT test is slightly different than the Army counterpart. 

Also, the original final PFT failure rate was only 0.3% (2 out of 572), making a TIC analysis 

impossible. To account for this, the failing score was artificially raised until the failure rate 

matched the Army dataset (11.8%).  
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 The results of applying a separate TIC analysis to each dataset can be found in Table 

3. There is a substantial increase in the positive post-test probability for all datasets. The 

analysis consistently finds initial sit-ups and crunches as a predictor, suggesting that core 

strength is an important predictor physical fitness ability as it relates to the PFT.  

Table 3. Independent TIC analysis results for five different sets of recruits.  

 Prevalence Positive Test 
Probability 

Army BCT at Ft. Jackson with Traditional Training (F) 
Male 13% 60% 

TIC identified: Initial sit-ups < 22 
Female 18% 58% 

TIC identified: Initial sit-ups < 22 
Army BCT at various training centers with Traditional Training 
(G) 

Male 16% 50% 
TIC identified: Initial sit-ups < 12 

Female 21% 53% 
TIC identified: Initial sit-ups < 13 

Marine Corp BCT at MCRD-SD (E) 
Male 12% 60% 

TIC identified: Initial pull-ups < 2 
Initial crunches < 34 
Initial runtime > 12.01 

min for 1.5 miles 
Height > 71.5 inches 

 
The common variable identified is sit-ups/crunches, suggesting that core 
strength is important for passing the final PFT. Additional details on these 
datasets can be found in the appendix. Additional details about the datasets 
can be found in the appendix (bold letters indicate dataset). 

2.3 Discussion 

 The purpose of the TIC analysis is to classify individuals into two different groups, 

whose likelihood of a desired outcome is different (high or low risk). In the preceding 

analysis, failing the final PFT was used but injury likelihood would also be an appropriate 

outcome to predict using TIC.  

 There are several advantages and disadvantages to using the TIC approach. A feature 

is that it is an established, objective approach, commonly used in the evaluation of medical 

diagnostic tests. In addition, because it is statistically-based, this method can quantify the 

accuracy of the prediction easily. The major short coming of the TIC (or any other statistical 

approach) is that the prediction is not applicable to new situations, such as different 

training regimens, as was demonstrated above.  
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 For BCT, where there are different training regimens at different physical locations, a 

model-based approach has the potential to be more robust, as it is based on the physical 

and biological mechanisms of performance and injury. A more robust method would be of 

value to the military in optimizing training and maximizing recruit potential.  
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3. Model Development 

 Having established that a statistically-based method such as TIC is not robust 

because it does not account for training differences such as regimen, we develop more 

appropriate models that can account for these differences. The initial effort was spent on 

developing a predictive model for run performance. In addition, an acute/mishap model was 

also developed. This section describes the work done on both of these models.  

3.1 Run Performance Prediction Model 

 Run performance was chosen as the initial performance exercise to predict because of 

the large body of gait research found in the literature. The purpose of this section is to 

describe model development and validate the model by comparing its accuracy to the TIC 

method.   

3.1.1 Literature Review 

 A performance model literature review was performed (Table 4). Additional literature 

was found on other performance models but was not chosen for the model work described in 

this document and is, thus, excluded in the literature review for brevity. 

Table 4. Performance model literature review summary.  

Source Data Summary 

(Morton et al. 1990) “Banister” model. Uses exponential decay fitness and fatigue 
components with reasonable results.  

(Busso 2003) 
Banister model with a time varying fatigue component to account for 
increased fatigue from multiple training sessions. Appears more 
realistic than previous versions.  

R. H. Morton, J. R. Fitz-Clarke, and E. W. Banister. Modeling human performance in 
running. J.Appl.Physiol. 69 (3):1171-7, 1990. 

 In this model, referred to as the “Banister Model,” training is quantified using 

duration and heart rate and includes a weighting factor to emphasize high intensity 

training. The model has two components: fitness and fatigue. Both are exponential decay 

type equations that increase or reduce the ability to perform at a given time based on the 

current training dosage. See Figure 1.  

 In this model, training is quantified by a pseudointegral (training impulse based on 

minutes of exercise) where heart rate is normalized.  

 ex rest

max rest

HR -HR
w( )

HR -HR
t D Y

 
=  

 
 (3.1) 



9 

where D is the duration of exercise, HRex is the average hear rate during exercise, HRrest is 

the resting heart rate, and HRmax is the maximal HR. The weighting factor Y is to 

emphasize high intensity training and is defined as  

 xbY e=  (3.2) 

where x equals the heart rate ratio term of Eq. (3.1) and b is a coefficient that depends on 

gender (1.92 for men and 1.67 for women).  

 
Figure 1. Simple 2-component systems model of training and performance.  

Diagram shows how training input sows w(t) affects both fitness and 
fatigue. The summer (Σ) combines these responses, fitness positively and 
fatigue negatively, into a single performance output p(t).  

 

 In the simplified model of Figure 1, two factors, fitness g(t) and fatigue h(t), are 

recurrently affected each time training w(t) is undertaken, so that  

 1g( ) g( ) w( )it t i e tτ−= − +  (3.3) 

and 

 2h( ) h( ) w( )it t i e tτ−= − +  (3.4) 

where g(t) and h(t) are arbitrary fitness and fatigue response levels, respectively, at the end 

of day t, i is the intervening period between the current days’ training and that previously 

undertaken, and τ1 and τ2 are decay time constants of these respective effects.  

 Model performance at time t, p(t), is given by the simple linear difference 

 1 2p( ) g( ) h( )t k t k t= −  (3.5) 

where k1 and k2 are positive dimensionless weighting factors for fitness and fatigue, 

respectively.  

 In this study, the model had good predictive power for two subjects tested for maximal 

performance. The dosage was variable, not block and the training lasted 28 days. This was 

followed by a 50 day cessation of training (other than the performance tests). The model 

parameters were derived using a least-squares regression and were able to predict 

performance reasonably well (r2 = 0.71, p = 0.001 and r2 = 0.96, p = 0.0001 for the two 

subjects). Application of the model with the derived parameters to new subjects was not 

done. See Table 5 and Figure 2.  
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Table 5. Summary of model constants and statistics for least-squares regression of criterion performance on predicted performance. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Experimental results for 2 subjects, 
EWB (left) and RHM (right).  

Top: distribution of daily training impulse through-
out training (28 days) and tapering phases of experi-
ment. Middle: fitness and fatigue curves calculated 
from training impulse. These represent fitness and 
fatigue appropriate to a least-squares iterative 
matching of predicted to actual performance for 
each subject. Bottom: best matching of predicted and 
criterion performance scores from modeling process 
(solid and dashed lines, respectively). A good degree 
of fit may be observed. 
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T. Busso. Variable dose-response relationship between exercise training and 
performance. Med.Sci.Sports Exerc. 35 (7):1188-1195, 2003. 

 This article proposes a modification to the Banister model and tests it (and three 

previous variations) to a cycling ergometer training regiment. The model generally used in 

the literature was initially proposed by Banister et al.1 This model is defined by a transfer 

function composed of two first-order filters characterized by the two gain terms k1 and k2, 

and the two time constants τ1 and τ2 (Model 2-Comp). To test the statistical significance of 

the second component, the two-component model was compared with a systems model 

comprising only one first-order filter (Model 1-Comp) with an impulse response 1/
1k te τ− . 

Another third-order model (Model 3-Comp), proposed by Calvert et al.2 , has two negative 

components and one positive component to single out the fatigue effect on the time course of 

training adaptation. The impulse response of this systems model is 
1 1 2/ / /

1 2k ( ) kt t te e eτ τ τ′− − −− − . For each model, the performance p(t) is obtained by the convolu-

tion product of the training doses w(t) with the impulse response added to basic level of 

performance noted p*. W(t) is considered to be a discrete function, i.e., a series of impulse 

each day, wi on day i. The convolution product becomes a summation in which model 

performance np̂ on day n is estimated by mathematical recursion from the series of wi. np̂  is 

thus estimated for models used in this study as follows:  

 Model 1-Comp: 1

n-1
-(n-i)/tn i

1
i=1

p̂ p* k w e= + ∑  (3.6) 

 Model 2-Comp: 1 2

n-1 n-1
-(n-i)/t -(n-i)/tn i i

1 2
i=1 i=1

p̂ p* k w e k w e= + −∑ ∑  (3.7) 

 Model 3-Comp: 1 1 2

n-1 n-1
-(n-i)/t -(n-i)/t -(n-i)/tn i i

1 2
i=1 i=1

p̂ p* k w e e k w e′ = + − − ∑ ∑  (3.8) 

 The model proposed in this study assumes that the gain term for the negative 

component is a state variable varying over time in accordance with system input. 

Performance output for the model proposed in this study is computed as follows: 

 1 2

n-1 n-1
-(n-i)/t -(n-i)/tn i i i

1 2
i=1 i=1

p̂ p* k w e k w e= + −∑ ∑  (3.9) 

in which, the value of k2 at day i is estimated by mathematical recursion using a first-order 

filter with a gain term k3 and a time constant τ3  

                                                
1 BANISTER, E. W., T. W. CALVERT, M. V. SAVAGE, and T. BACH. A systems model of training for athletic performance. Aust. J. Sports 
Med. 7:57–61, 1975. 
2 CALVERT, T. W., E. W. BANISTER, M. V. SAVAGE, and T. BACH. A systems model of the effects of training on physical performance. 
IEEE Trans. Syst. Man. Cybern. 6:94–102, 1976. 
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 3

i
-(i-j)/ti j

2
j=1

k w e= ∑  (3.10) 

 The daily training quantity was computed in arbitrary units from work done during 

training sessions and trials. The work done during warm-up and recovery was not 

considered in the computation. The tests to measure Plim5' (average power during a 5 

minute all-out cycling ergometer exercise) and 2maxVO&  were both arbitrarily ascribed to 100 

training units (t.u.). Each 5-min bout of exercise for training sessions was weighted by 

intensity referred to Plim5' (i.e., mean power output/Plim5' × 100). A training session composed 

of four bouts of exercise at 85% of Plim5' would be thus ascribed to 4 × 85 = 340 t.u. The 

regiment for this experiment consisted of 2 weeks of performance measures only (no 

training) 8 weeks of 3 sessions/week of training, a week of performance testing only, 

followed by 4 weeks of 5 sessions/week and another two weeks of performance testing only.  

 The results show that the most accurate version contains a fatigue component varying 

in time to account for increases in the fatigue effect from repeated training sessions 

(Proposed Model, Table 6). However, the accuracy of this model under different training 

regiments is unknown.  

Table 6. Indicators of goodness-of-fit of performance for various  
systems models of training effects.  

 

3.1.2 Methods 

Model 
 There are several characteristics of a performance model that must be incorporated in 

order for it to be functional under a wide range of conditions. The model output must be 

bounded with a limit on the maximum and minimum values so that impossibly fast or slow 

(e.g., negative velocity) situations are not predicted. In addition, the output should be 

asymptotic, approaching high fitness slowly since it is well established that smaller 

performance gains are made as fitness improves. Finally, the model needs to be simple 
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since there are a limited number of measurements made (PFT runtimes) during a training 

regimen from which the model may be fit and parameters estimated.  

 The literature review above suggests that a “Banister-type” two-component model 

(performance enhancement and fatigue) would be ideal. However, since this would require 

four parameter estimates and fatigue is a short-term effect which is of limited interest, a 

single-component model without fatigue was developed. The performance model chosen is:  

 ( )0 max 1gP P P P W= + − ⊗  (3.11) 

where P is normalized performance, P0 is initial or pre-training performance, Pmax is an 

individual’s maximum P, g1 is the performance enhancement component, W are daily 

training dosages, and ⊗ is the convolution function. Additional details on each of the model 

variables are discussed below.  

Performance, P, Definition 
 There are several requirements that dictate the form of performance P, the model 

prediction or output. Primarily, P must be based on a measurable event. This is to allow a 

numeric calculation and prediction value. In addition, it is well established that specific 

exercises influence performance differently depending on the event (e.g., swimming will not 

appreciably increase run performance) and a model based on an exact event can account for 

the effect of different exercises in the final performance prediction. In the model presented, 

the event is the final PFT run. P also needs to be bounded to prevent prediction of 

impossible performances. This is accomplished by defining P as normalized run velocity: 

 event

max

VP V=  (3.12) 

where Vevent is the final PFT run velocity and Vmax is the estimated World Record velocity 

for the final PFT run distance using the “Purdy Points System” (Gardner and Purdy 1970; 

Purdy 1974a; Purdy 1974b; Purdy 1975; Purdy 1977). Thus, if P is predicted from Eq.. 

(3.11) and Vmax is known, it is possible to predict Vevent. Knowing the velocity and distance of 

the event, it is trivial to determine runtime, the usual measure of PFT run performance. 

Note that, by definition, P = 1, only for the World Record holder.  

Initial Performance, P0 
 P0 (Eq.. (3.11)) is the initial performance level of the recruit and is defined as:  

 IST
0

max

VP V=  (3.13) 

where VIST is the initial PFT run velocity, which is calculated from runtime and distance. 

Since the initial PFT run is often a shorter distance than the final PFT, the following is 
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used to estimate the initial run time t2, if the recruit had run at the longer final PFT 

distance for the initial PFT:  

 
1.06

2
2 1

1

dt t d
 =  
 

 (3.14) 

where d1 and t1 are the measured initial distance and time, respectively, and d2 is the final 

PFT distance (Riegel 1981).  

Maximum Performance Potential 
 Like P0, Pmax is a normalized run velocity:  

 indiv max
max

max

VP V=  (3.15) 

where indivVmax is an individual’s maximum possible performance level achievable (i.e., not 

everyone has the capacity to train up to a performance level of 1) and is assumed to be an 

inherent, constant value attainable only with perfect training. To estimate indivVmax, the 

following assumptions are made. First, since runtimes for the 1.5-3 mile range of the PFT 

are greater than 6 minutes, this run is primarily a test of aerobic capacity. Second, VO2max 

(the maximum rate of oxygen consumption) is the gold-standard measure for aerobic 

capacity and is primarily dependent on hereditary factors (80-93% according to McArdle et 

al. 1991). To estimate VO2max, a nonexercise estimate was used for both male and females 

(George et al. 1997):  

 ( ) ( ) ( )2maxMale: VO 67.350 1.921 PA-R 0.381 age 0.754 BMI= + − −  (3.16) 

 ( ) ( ) ( )2maxFemale: VO 56.363 1.921 PA-R 0.381 age 0.754 BMI= + − −  (3.17) 

where PA-R is the NASA/Johnson Space Center Physical Activity Rating [0-7], age is in 

years, and BMI is body mass index. Since Eq.. (3.15) is based on a recruit’s maximum 

theoretical velocity, PA-R was assumed to be 7. In addition, VO2max was increased by15% for 

training effects (McArdle et al. 1991). indivVmax can then be estimated by determining the 

final PFT velocity that would give an individual’s VO2max (Daniels 1979). Using this 

formulation, Pmax is estimated to be 0.6-0.8 for most subjects.  

Training Dosage, W, Definition 
 To formulate an algorithm estimating the effects of training, the following 

assumptions were made. First, the training dosage, W (Eq.. (3.11)), is exercise dependent 

and that different exercises affect performance differently. Second, the dosage rate is 

nonlinear and limited, to reflect the inability to sustain high power anaerobic/sprint 

exercises. Note that this does not limit the overall amount of W since dose rate is multiplied 

by time to give dose.  
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 As reviewed earlier, previous models found in the literature use work on a cycle 

ergometer (Busso 2003) or normalized heart rate (Morton et al. 1990) as a quantifiable 

dosage measure. Morton et al. (1990) also accounted for anaerobic effects with a lactate 

threshold factor (Eqs. (3.1)-(3.2)). Not having access to either work or heart rate, rate of 

oxygen consumption or VO2 was chosen instead since it is well established that heart rate 

and VO2 are linearly related (e.g., McArdle et al. 1991).  

 W was based on the work of Morton et al. (1990), replacing heart rate with oxygen 

consumptions measures in Eqs. (3.1)-(3.2):  

 rate
rate duration bWW W e= × ×  (3.18) 

where Wrate is bound by normalizing VO2 using VO2max and resting metabolic rate (RMR),  

 ( )
( )

2
rate

2max

VO
VO

RMRW RMR
−= −  (3.19) 

duration is time in minutes, and b is the lactate threshold factor used by Morton et al. 

(1990), 1.92 and 1.67 for men and women, respectively. Since VO2 is dependent on the 

exercise and intensity, it was assumed that only walking/marching and running had a 

significant training affect on final runtime performance. VO2 estimates for walking and 

running were calculated from the regressions developed by Epstein et al. (1987) and 

Pandolf et al. (1977), which estimates VO2 for walking and running under different 

velocities, terrain, grade, and load carriage conditions. RMR was estimated using the 

popular Harris-benedict equations (Harris and Benedict 1919).  

 To calculate dosage, W, for a given subject on a given day, a subject’s Wrate and 

duration was calculated for each exercise (walking or running).  All W for a given day was 

summed for a recruit’s final daily total.  

Model Parameters for g1 

 The final model parameters needed to compute P (Eq.. (3.11)) are the coefficients in 

the performance enhancement component, g1, which is defined in a similar manner to Eq.. 

(3.3) of Morton et al. (1990):  

 1
1 1

t

g k e τ−
=  (3.20) 

where t is time (days), k1 is a linear coefficient (unitless) and τ1 is a time constant (days).  

 Under ideal conditions, military datasets containing training regimens and initial and 

final PFT runtimes could be used to determine k1 and τ1. However, since recruits are not 

required to run maximally, but only to pass the maximum allotted runtime, the final PFT 

run does not appear to represent an objective measure of training enhancement. Therefore, 

a literature review was conducted and k1 was estimated using running studies where the 
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training protocol and changes in performance were measured (Table 7). τ1 was assumed to 

be 40 days, a value estimated by Busso (2003) using a similar model. From the literature 

review, the average ±s.d. value for k1 was found to be (1.84±1.86) × 10-4. A value of 2.0 × 10-4 

was found to predict the final PFT run failure rate similar to the observed failure rate for 

both Army and Marine Corps datasets, which is within the range of values seen in the 

literature.  

 

Table 7. Estimates of k1 from running studies found in the literature.  

Source k1 

(Flynn et al. 1998) 1.1314 × 10-4 
(Smith et al. 1999) 4.5431 × 10-4 
(Loy et al. 1993) No ht, wt given 
(Mutton et al. 1993) 1.5991 × 10-4 
(Foster et al. 1995)-Run 7.0655 × 10-5 
(Foster et al. 1995)-Control 8.4935 × 10-6 
(Burtscher et al. 1996) Only 12 days 
(Smith et al. 2003)-T70 4.065 × 10-5 
(Smith et al. 2003)-T60 2.4045 × 10-4 
(Houmard et al. 1994) Only 7 days 

Mean 1.84 × 10-4 
SD 1.86 × 10-4 

 
For the Eq.. (3.20), k1 was assumed to be 2.0 × 10-4 based on this review. 

Analysis Procedure 
 Having described the algorithm used to estimate run performance (see  

Figure 3), we can now proceed with predicting final PFT runtimes and whether a recruit’s 

performance is adequate to pass. Of interest is not only the model’s ability to predict a 

runtime, but the accuracy of the prediction compared to other methods. Thus, the model is 

compared to the Test Index Cluster (TIC) method described previously.  

 The datasets chosen are the male and female recruits that underwent Army BCT at 

various training centers. Unfortunately, details of the Non-Standardized BCT regimen are 

unknown at this time. However, the Standardized BCT regimen produced similar training 

effects (Knapik et al. 2004) and, thus, was assumed to be equivalent for the purposes of 

calculating training dose. Additional details on the datasets can be found in the appendix 

(Dataset G).  
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• Subject Information
•Age, height, weight, 
gender
•Initial PFT Runtime

• Regimen Information (Daily)
• Movement: Walk or Run
• Distance
• Velocity
• Additional Load (optional)

Inputs
• Subject Information

•Age, height, weight, 
gender
•Initial PFT Runtime

• Regimen Information (Daily)
• Movement: Walk or Run
• Distance
• Velocity
• Additional Load (optional)

Inputs

• Performance Definition
• Normalized run vel [0-1]
• Normalized to Purdy 

world record velocities
• Shorter initial run 

distance adjusted to final 
run distance using Riegel
formula

Initial Performance Level
• Performance Definition

• Normalized run vel [0-1]
• Normalized to Purdy 

world record velocities
• Shorter initial run 

distance adjusted to final 
run distance using Riegel
formula

Initial Performance Level • Dosage Definition
• Morton (1990), w/ lactate 

threshold factor
• Walk & run only
• Work rate is normalized O2

consumption, which uses resting 
metabolic rate (RMR) & maxVO2

• RMR: Harris-Benedict equations
• maxVO2

: J. Daniels equation
• Walk work rate: Pandolf equation
• Run work rate: Epstein equation

Dose Model
• Dosage Definition

• Morton (1990), w/ lactate 
threshold factor

• Walk & run only
• Work rate is normalized O2

consumption, which uses resting 
metabolic rate (RMR) & maxVO2

• RMR: Harris-Benedict equations
• maxVO2

: J. Daniels equation
• Walk work rate: Pandolf equation
• Run work rate: Epstein equation

Dose Model

• k1: linear coefficient
• Literature review of 

running studies
• Tao1: time constant

• Busso (2003)

Model Parameters
• k1: linear coefficient

• Literature review of 
running studies

• Tao1: time constant
• Busso (2003)

Model Parameters P = P0 + (Pmax – P) g1⊗W

Input: initial performance level, 
dose, model parameter

Output: daily change in 
performance level

Performance Model
P = P0 + (Pmax – P) g1⊗W

Input: initial performance level, 
dose, model parameter

Output: daily change in 
performance level

Performance Model
• Inverse of Performance 

Definition
• Determine final runtime

• PFT Calculator
• Determine if runtime is 

passing

Estimate Result
• Inverse of Performance 

Definition
• Determine final runtime

• PFT Calculator
• Determine if runtime is 

passing

Estimate Result

 
 

Figure 3. A summary diagram of the run performance algorithm.  
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 For both the model and the TIC comparison, subject height, weight, and gender as 

well as initial PFT push-ups, sit-ups, and runtimes were used. A separate TIC analysis was 

performed for each gender whereas the model used different algorithms to account for 

gender. Both the TIC and model predicted final PFT run pass or fail, which could be 

compared to each recruit’s actual performance to determine accuracy.  

3.1.3 Results 

Male Recruits 
 The initial prevalence (overall failure rate) was 4% for the males on the final PFT run. 

The TIC analysis identified only initial PFT runtime as a significant predictor, with a time 

of 20:17 or slower. Both the TIC and model predictions are comparable, with similar 

diagnostic accuracy (88% for TIC and 84% for the model) and positive post-test probabilities 

(Table 8).  

Table 8. A comparison of the accuracy of a Test Index Cluster (TIC) analysis  
to that of the run performance model for male recruits undergoing  

basic combat training at various Army training sites.  

42811IST Run < 20:17

479IST Run > 20:17

PassFail

Final PFT Run
TIC

42811IST Run < 20:17

479IST Run > 20:17

PassFail

Final PFT Run
TIC

 

40910Predict Pass

6710Predict Fail

PassFail

Final PFT Run
Model

40910Predict Pass

6710Predict Fail

PassFail

Final PFT Run
Model

 
For the TIC, one item was identified: a runtime > 20:17 on the initial PFT 
run. A recruit with this item had a significantly greater chance of failing 
the final PFT (Sensitivity = 0.45; Specificity = 0.90; Positive pretest 
probability = 4%; Positive post-test probability = 16%; Negative post-test 
probability = 3%). For the performance model, accuracy was similar 
(Sensitivity = 0.50; Specificity = 0.86; Positive pretest probability = 4%; 
Positive post-test probability = 13%; Negative post-test probability = 2%). 

Female Recruits 
 The initial prevalence (overall failure rate) was 8% for the females on the final PFT 

run. The TIC analysis identified only initial PFT runtime as a significant predictor, with a 
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time of 22:55 or slower. Both the TIC and model predictions are comparable, with similar 

diagnostic accuracy (80% for TIC and 87% for the model) and positive post-test probabilities 

(Table 9).  

Table 9. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of the 
run performance model for female recruits undergoing basic combat training at various 

Army training sites.  

20214IST Run < 22:55

397IST Run > 22:55

PassFail

Final PFT Run
TIC

20214IST Run < 22:55

397IST Run > 22:55

PassFail

Final PFT Run
TIC

 

23717Predict Pass

184Predict Fail

PassFail

Final PFT Run
Model

23717Predict Pass

184Predict Fail

PassFail

Final PFT Run
Model

 
For the TIC, one item was identified: a runtime > 22:55 on the initial PFT 
run. A recruit with this item had a significantly greater chance of failing 
the final PFT (Sensitivity = 0.33; Specificity = 0.84; Positive pretest probabil-
ity = 8%; Positive post-test probability = 15%; Negative post-test probability 
= 6%). For the performance model, accuracy was similar (Sensitivity = 0.19; 
Specificity = 0.93; Positive pretest probability = 8%; Positive post-test 
probability = 18%; Negative post-test probability = 7%). 

3.1.4 Discussion 

 For both the male and female datasets, the run performance model prediction 

accuracy was comparable to a TIC analysis when subject height, weight, and gender as well 

as initial PFT push-ups, sit-ups, and runtimes were used. Thus, the model gives reasonable 

results using parameters and values found in the literature and suggests that the model 

has the potential to predict PFT runtimes accurately. Unlike a TIC analysis, however, the 

model does not require a separate independent analysis for each different condition. This 

robustness is demonstrated by using the same model for both male and female recruits and 

still having reasonable results compared to two independent TIC analyses.  

 In the previous TIC analyses (Table 1 and Table 2), accuracy was substantially better. 

This was due to the addition of several more variables in the analysis such as age and the 

prediction of not just runtime but total final PFT failure. We anticipate that additional 

measures such as pre-fitness and smoking history questionnaire data as well as health risk 
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behavior and psychological information will improve both the TIC and model accuracy for 

final PFT runtime prediction. A major benefit of the model is that it has been designed to be 

able to account for regimen differences. Unfortunately, the incomplete training regimen 

information used in the current model limits the accuracy to the same level as a TIC 

analysis.  

3.2 Acute/Mishap Injury Prediction Model 

 Acute or mishap injuries are a specific set of injuries common to large training 

regimen protocols such as a military’s BCT program. This type of injury was chosen because 

the random nature of the injury suggests a simple statistical model may be developed 

easily. The purpose of this section is to describe the initial model development.  

3.2.1 Literature Review 

 While most literature focuses on overuse injury, there is some support that there are 

multiple factors contributing to the likelihood of sustaining an acute injury during military 

life. These include the amount of physical training such house of vigorous activity (Almeida 

et al. 1999) and running distance (Jones et al. 1994; Jones and Knapik 1999), as well as 

recreational sports (Lauder et al. 2000). In addition, military occupational specialty was 

also found to be a factor, with more physically active occupations having a higher risk 

(Foulkes 1995). Nonactivity related factors include being previously injured (Evans et al. 

2005) and psychological factors (Gregg et al. 2002).  

3.2.2 Methods 

Preliminary Analysis 
 The initial dataset chosen to explore the nature of this injury was the dataset where 

recruits undergoing Army BCT at various training centers were monitored and the week of 

injury occurrence noted. An acute injury was limited to the lower body (pelvis, leg, or foot) 

and defined as a strain/sprain, sudden fracture, dislocation, tear, contusion, or laceration. 

Out of 1,019 recruits, 213 injuries were reported (prevalence of 21%) (See Appendix A, 

Dataset G).  

 As noted previously, a t-test is the first step of a TIC analysis and this was used to 

compare injured to noninjured for a wide variety of measures (Table 10). Unlike the studies 

reported in the literature, no significant differences were found for these measures 

suggesting that an acute/mishap injury is predominantly random in this group. Thus, 

neither a TIC analysis nor a physiologically-based injury model will be able to predict this 

type of injury from this dataset and a statistical approach was used.  
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Table 10. Variables used in a t-test to compare those that sustained an  
acute injury to those that did not.  

Subject Characteristics 
 Gender, Height, Weight, Body Mass Index, Race, Smoking 

History 
Fitness 
 Pre-fitness Level, Initial PFT Runtime, Push-ups, Sit-ups & 

Score 
Previous Injury 
 Previous Civilian Injury, Previous BCT Injury 
Training Regimen 
 Weekly Training Dose (see pg. 15) 

No significant differences were found for a dataset containing recruits 
undergoing Army BCT at a variety of training centers (See Appendix: 
Dataset G). 

Model 
 Having established that acute injuries are random for the dataset chosen, we 

assumed that the chance of injury each day is independent of other days and that injury 

follows a binomial distribution (either injured or not). Using the above dataset (213 injuries 

from 1019 recruits during 61 days of Army BCT), there is a 20.9% chance of injury per 

recruit or a p of 0.34%, the chance of injury per recruit per day). Since the probability of a 

recruit sustaining at least one injury during BCT is the complement of the probability of 

the recruit getting no injuries during BCT:  

 ( )BCT 1 1 nP p= − −  (3.21) 

where n is the number of days in BCT.  

 Binomial distribution properties allow the calculation of both the mean number of 

injuries expected:  

 BCT subj BCTN n P= ×  (3.22) 

and the standard deviation: 

 ( )BCT subj BCT BCT1SD n P P= × × −  (3.23) 

where nBCT is the number of recruits. PBCT and SDBCT can then be expressed as a percent of 

the population by dividing by the number of recruits.  

3.2.3 Results 

 Due to time constraints, this model was not validated against additional datasets. 

Thus, future tasks include validating and refining the model against additional datasets 

and training regimens such as those described in the appendix.  
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3.2.4 Discussion 

 Despite not validating the model, it is clear that there are several limitations to the 

statistical approach described primarily because none of the risk factors identified in the 

literature were found to be statistically significant for this dataset. Most notably, the 

calculated training dosage was not significantly higher on high injury days, which means 

that the current training regimen measure is not capturing the causes of acute injury. We 

hypothesize that the types of acute injuries are wide ranging (sprain, contusions, etc.) and 

will need to be treated separately before the risk factors found in the literature are 

revealed. 
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4. Software Application Development 

 The preliminary run performance and acute/mishap injury algorithms described 

previously were used as the basis for a web-based software to predict performance and 

injury. The initial version of the Training, Overuse Injury, and Performance (TOP) Model 

was implemented to demonstrate the feasibility of an “all-in-one” prediction tool to help in 

the design of training regimens and to identify individuals who may be at risk for injury or 

low performance because of the regimen. A flow diagram was designed prior to software 

development to insure that the TOP Model was modular, allowing updates to be easily 

incorporated. In addition, a key design element is that the large volume of data (training 

regimen and subject information) requires precise control over the flow of data (Figure 4). 

Model 1

Model 2…

Model
Control

Model 1

Model 2…

Model
Control

Performance

Model 1

Model 2…

Model
Control

Model 1

Model 2…

Model
Control

Stress Fracture

Model 1

Model 2…

Model
Control

Model 1

Model 2…

Model
Control

Overuse Injury

Model 1

Model 2…

Model
Control

Model 1
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Model
Control

Acute/Mishap Injury

Model Analysis
Control
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• Structure Info
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• Analyses Run
• etc.

TOPRegimen dB

TOP_MAIN 
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• Subj Info
• Regimen Info
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• Add/Modify
• Subj Info
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Regular Output

MODELINGDATA MANIPULATIONSOFTWARE PROGRAM
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Other
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Figure 4. TOP Model flow diagram. 

 There are several design requirements for the TOP Model software. Because a key 

advantage of a model-based approach compared to a statistical analysis is the ability to 

account for different training regimens, an efficient graphical user interface (GUI) is 

needed to allow users to modify regimen definitions as they see fit. Also, model outputs 

should be easy to interpret, with an error range to allow user’s to quickly ascertain model 

predictions. And finally, the software should be easy to use, with a simple step-by-step 

procedure to allow novice users to produce results quickly.  
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4.1 Software Conceptual Design Images 

 The following pages are conceptual design of the TOP Model software. Key features 

are highlighted with yellow callouts. Being unable to create a software program of this 

complexity in the time allotted, a simplified version was implemented. Screenshots of the 

functional preliminary software are shown on pages 34 through 37.  
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TOP 0.1

TOP
Training, Overuse Injury, and Performance Modeling

+ TOP Assessment

To define subject characteristics, click here or on the “Define Subjects” on the left navigation bar and follow the instructions in the 
main work area. 
To define a training regimen, click here or on the “Define Regimens” on the left navigation bar and follow the instructions in the 
main work area. 
To start an TOP assessment project, click here or on the “TOP Assessment” on the left navigation bar and follow the instructions 
in the main work area. 
Click here or on the “Document” on the top title bar to find related literature. 

All data, documentation and 
models accessible from a 
centralized location

+ Define New or Edit Subjects

+ Define New or Edit Regimens

+ Model Information

The Training, Overuse Injury, and Performance Model (TOP) is a software framework for assessing the effects of training on 
performance and injury. This software will:

• Identify those who are at “high risk” of injury for a given training regimen
• Compare training regimens for differences in both performance and injury potential
• Recommend training regimens for those who at “medium risk” of injury to reduce their risk

It applies state-of-the-art biomechanical, computational, and statistical models to predict performance improvements and the 
likelihood of injury. 

This site hosts the TOP web application software where users can define or select subject population parameters, define or select 
training regimens, and perform a prediction analysis. 

TOP is developed and maintained under the sponsorship of USARIEM. 

How to use TOP 0.1

Welcome

TOP 0.1

TOP
Training, Overuse Injury, and Performance Modeling

Start a TOP Project

TOP Assessment interfaces will guide the user through the steps necessary to run a TOP prediction analysis and generate a 
report. 

The following are needed before running a TOP Assessment:

• A TOP Project, which specifies the measures to be predicted.  
• A population of subjects with defined or measured characteristics such as height, weight, and initial fitness. Characteristics 

depend on the Project specifications. 
• A training regimen, which specifies the exercises done and intensity level of the exercises

Tips

• Step 1 (Select/Define TOP Project) has to be completed first
• Use the “Next” button or the links to complete the necessary steps
• Checkmarks (ü) indicated completed steps
• Click on “Report” to view previously archived TOP Assessment results

- TOP Assessment

+ Define New or Edit Subjects

+ Define New or Edit Regimens

+ Model Information

1. Select/Define TOP Project
2. Select Subjects
3. Select Regimen
4. Run TOP Analysis
5. Report

Multiple methods to 
perform analysis allow 
users of differing 
familiarity to analyze 
the data
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- TOP Assessment Instruction
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+ Define New or Edit Regimens

+ Model Information

1. Select/Define TOP Project ü
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3. Select Regimen
4. Setup Analysis Report
5. Run TPI Analysis
6. Report

Instruction
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F
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M
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N
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DescriptionSubject Populations

“Regimens” web page 
would be similar to 
Subjects page

Subject and Regimen 
data can be imported 
from Excel spreadsheets

TOP 0.1
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Training, Overuse Injury, and Performance Modeling

- TOP Assessment About the TOP Assessment Report

The following is the assessment predictions for the MCRD-SD 2005 project. 

Report Summary

+ Define New or Edit Subjects

+ Define New or Edit Regimens

+ Model Information

1. Select/Define TPI Project ü
2. Select Subjects ü
3. Select Regimen ü
4. Setup Analysis Report ü
5. Run TOP Analysis ü
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Report Archive

37%Performance Improvement

23 milesRun Distance: Total
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• Date of analysis: Tue Nov 15 18:28:24 PST 2005 
• Project name: MCRD-SD 2005

• Click here for Performance Result details
• Click here for Overuse Injury Result details
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Not shown: Customize 
report output

Not shown: Separate web 
page to run assessment and 
show calculation progress

Not shown: Summary page 
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details for advance users

• Click here for subject potential (red/yellow/green) with training regimen
• Click here for a comparison of subject potential (red/yellow/green) with other training regimens
• Click here for subject potential (red/yellow/green) with preliminary and primary training regimens

Not shown: Links to 
simple high/moderate/low 
output formats
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Define New or Edit Subjects

+ Define New or Edit Regimens

+ Model Information

Instruction

Create a new set of subjects or edit an existing set. Selected populations can also be deleted. For a single individual’s analyses, 
specify a population of one. 

MCRD-PI 1995

F

M,F

M

Gender

1000

934

572

N

Virtual subjects with BMI > 30High BMI Females

Ft Jackson males and females from 2003Army-Ft Jackson 2003

MCRD-SD males from 2005, performance measures onlyMCRD-SD 2005

DescriptionSubject Populations

+ TOP Assessment

Subjects

Quickly import subject data in 
Excel or other formats. Create 
virtual populations by specifying 
mean and s.d. values

TOP 0.1

TOP
Training, Overuse Injury, and Performance Modeling

Define New or Edit Subjects

+ Define New or Edit Regimens

+ Model Information

Instruction

Edit individual subject parameters. Create more subjects with “Add Subj” or define a population distribution using “Statistical 
Distribution.” 

004

70

Wt

M

Sex Anthro
Bone
Info

Fitness & 
Performance

003

Health & 
Lifestyle

153

Ht

002

001

ID

+ TOP Assessment

-

MCRD-SD 2005 Subject List
Subject List

Pop-up windows 
give further 
category details

Option to specify 
means & s.d.’s to 
create virtual 
populations

TOTAL NUMBER OF SUBJECTS: 572
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TOP
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Define New or Edit Subjects

+ Define New or Edit Regimens

+ Model Information

Instruction

Add or edit various subject data using the tabs and fields. For missing data, leave fields blank. 

+ TOP Assessment

-

MCRD-SD 2005 Subject 001
Subject List

Edit Individual Data

Bone Information Fitness & Performance Health & Lifestyle

Height (m)

Weight (kg)

Age (yrs)

Sex

Leg Length

Shoe Size

Edit additional subject 
information via tabs, e.g., 
Fitness, Behavioral, and Injury 
Questionnaire responses

TOTAL NUMBER OF SUBJECTS: 572

Anthropometry

Import individual 
subject information

TOP 0.1

TOP
Training, Overuse Injury, and Performance Modeling

Define New or Edit Subjects

+ Define New or Edit Regimens

+ Model Information

Instruction

Create a new set of subjects or edit an existing set. Selected populations can also be modified or deleted. For a single individual’s 
analyses, specify a population of one. 

+ TOP Assessment

-

MCRD-SD 2005 Subject Statistical Distribution
Subject List

Edit Statistical Distributions

Bone Information Fitness & Performance Health & Lifestyle

Mean SD

Height (m)

Weight (kg)

Age (yrs)

Sex

Leg Length

Shoe Size

TOTAL NUMBER OF SUBJECTS:

Anthropometry

Enter desired mean, standard 
deviation and number of 
subjects for program to 
automatically generate a virtual 
population. 
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+ Define New or Edit Regimens

+ Model Information

Instruction

Create a new regimen or edit an existing one. Selected regimens can also be deleted. 

BCT: MCRD-PI 1995

Army

MC

Branch

63

84

Days

Daily Exercises for Ft JacksonBCT: Ft Jackson 2003

Daily running mileage for MCRD-SDBCT: MCRD-SD 2005

DescriptionName

+ TOP Assessment

Regimens

Quickly import regimen data in 
Excel or other formats. 

+ Define New or Edit Subjects

Report as hourly, daily or weekly 
schedules

TOP 0.1

TOP
Training, Overuse Injury, and Performance Modeling

PFT’sStretches

+ Define New or Edit Regimens

+ Model Information

Instruction

Create a new regimen or edit an existing one. Selected regimens can also be deleted. 

+ TOP Assessment

BCT: MCRD-SD 2005

+ Define New or Edit Subjects

Week 2:0
1

2
3

4
5

6
7

8

Live Fire Week

18:00

16:00

14:00

12:00

10:00

8:00

March

PFT 
Test

W Th

Run

F S SuT

Run

M

Run Distance

Pace

Footwear

Duration

Effort

March Wt LiftingRun

Run

Sprint

Ability Run

Cross-Country

Parameters depend 
on exercise selected

Select specific 
exercise…

…and drag to 
appropriate time

View or modify 
imported training 
regimens

Drills
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+ TOP Assessment

TPI 0.1

The following models were used to for the TOP assessment. + Define New or Edit Subjects

+ Define New or Edit Regimens

Model Information-
• Overview
• Performance
• Overuse Injury
• Mishap/Acute Injury

Introduction

Performance Model

The Training, Overuse Injury, and 
Performance Model (TOP) uses a 
mechanistic approach where external 
factors such as training regimen as well 
as internal variables such as fitness 
level are presumed to affect both 
performance and injury in a specific 
manner. 

Overview
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The performance component of the TOP model is based on the dose-response model described in Busso (2003). For the 
TOP model, dose is defined as the distance run or marched and the response is an increase in performance level. 
Subsequent models will also contain a fatigue factor. 
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4.2 Preliminary Software Screenshots 

 The following are screenshots from the preliminary TOP Model software version. Note 

that not all functions have been built-in at this time but the run performance and 

acute/mishap models described earlier have been incorporated.  
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5. Key Accomplishments 

 We have: 

n Developed a run performance model based on concepts reported in the literature 

n Developed a probability-based lower-body acute/mishap injury model  

n Created a conceptual design of the Training, Overuse Injury, and Performance 

(TOP) Model and implemented a simplified version 

n Acquired and organized multiple datasets which are used for model development 

and validation  
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6. Reportable Outcomes 

 We have shown: 

n Run performance changes due to military training can be modeled effectively 

using algorithms and parameters based on those found in the literature.  

n A run performance model has the potential to predict outcomes for different 

training situations while being more robust since it can maintain the same level of 

accuracy as a statistically-based approach.  

n If acute/mishap injuries are random, they can be modeled using a probability-

based approach.  

n It is feasible to create a user friendly software program to run different 

performance and injury models, allowing users to quickly modify training 

protocols and determine the effect.  
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7. Conclusions 

 This document describes the work in developing a prediction software package (TOP 

Model) that can account for different populations and training regimens, which may be of 

use to the military community, where maximizing performance while minimizing injury for 

a large population is important. In the initial version of the software, run performance and 

acute/mishap injuries were modeled. Unlike most statistically-based algorithms, the models 

included a training “dosage” to account for different regimens. The preliminary results 

suggest that this approach is as accurate as a statistical method but with the added 

advantage of being more robust. The TOP Model has the ability to make accurate 

predictions under a wider range of training situations.  

 Despite these initial achievements, there are several limitations to the software that 

will need to be addressed in the future. The current version of the TOP Model software 

lacks some key features including the ability to easily modify subject and regimen 

parameters. As the software becomes more evolved into a final product, a user’s manual 

and demonstration datasets will also be needed. Current limitations to the regimen-based 

algorithms include the lack of validation against additional datasets due to low quality 

regimen data and the incorporation of only a few known risk factors. Overuse injury and 

stress fracture algorithms have not yet been developed as well. The following future tasks 

should address some of these limitations: 

n Validate run performance model with additional datasets 

n Validate acute/mishap injury model with additional datasets 

n Develop an overuse injury model 

n Acquire additional datasets for further model development and validation 

n Update TOP Model software and documentation based on user feedback. 
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Appendix A. Available Datasets 

 The project currently has seven different datasets containing subject information 

ranging from fitness test scores to injury and anthropometry measures. Some datasets also 

contain questionnaire responses on initial fitness level, hormone regulation and previous 

injuries. Unfortunately, limited information on the training regimen these recruits 

participated in is known. Table 11 summarizes the information contained in each dataset.  

Table 11. Summary table of the datasets available for model development.  

 A B C D E F G 

 Location MCRD-PI 
1995 

MCRD-PI 
1999 

MCRD-SD 
1993 

MCRD-SD 
2003 

MCRD-SD 
2005 

Ft Jackson 
1998 

Various 
Army Cntrs 

Source NHRC NHRC NHRC MCRD-SD MCRD-SD ARIEM BAMC 
Nsubjects 2963 821 1286 3782 572 350 1019 

Fitness Testing        
IST Data  ü  ü ü ü ü 

Mid-PFT Data        
Other Fitness 

Tests
     ü  

FPFT Data    ü ü ü ü 
Injury Status        

Stress Fracture ü ü ü    ü 
Overuse Injury ü ü ü    ü 

Mishap/Acute 
Injury

ü ü ü    ü 

Questionnaire        
Initial Fitness 

Level
ü ü ü    ü 

Hormone 
Regulation

ü ü ü    ü 

Previous Injuries ü ü ü    ü 
Anthropometry        

Gender F F M M M M M, F 
Ht, Wt, Age ü ü ü  ü ü ü 

Detailed Anthro ü  ü   ü  
Training 
Regimen        

Ndays 83 83 82 85 85 63 63/70 
Regimen BCT BCT BCT BCT BCT BCT BCT/AIT 

Regimen Details Good --- OK Low --- --- --- 
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Abstract 

 The human body is a complex, highly nonlinear system. Biomechanical modeling has 

become an important tool in understanding the neuromuscular and skeletal components of 

this system. The object of this work has been to develop a flexible suite of modeling 

components that can be assembled rapidly to address a majority of biomechanical 

questions. Currently, the NMS-biodynamics application has the basic components needed to 

build biomechanical models. Models can be built to solve kinematic, inverse dynamic, and 

static forward dynamic problems. Future efforts will incorporate optimization algorithms 

for muscle force sharing problems and methods for implementing various neuromuscular 

control systems. This report will outline the topics relevant to biomechanical modeling and 

illustrate the power and flexibility of the NMS-biodynamics application. 
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1. Introduction 

1.1 Modeling the Human Neuromuscular System 

 The modeling, simulation, and analysis of the human neuromuscular system has 

become an increasingly important area of research. This has been driven by two factors: the 

basic desire to understand the fundamental mechanisms of the neuromuscular system, and 

by the increasing desire to improve health and reduce injuries to humans by optimizing 

products and physical training used by them. For the military, the desire to improve health 

and reduce injuries is a continual challenge. The military researchers face challenges to 

develop better equipment to enhance soldiers’ performance, improve training regiments to 

increase soldiers’ strength and reduce injury, and design better methods to assess the medi-

cal status of soldiers during training and combat.  

 To address these types of challenges, one approach is to perform only experiments or 

field observations and then analyze the measurements as the primary research result. This 

experimental approach, however, suffers several limitations. The human body is a complex, 

highly nonlinear system; therefore significant variations in the measurements of one sub-

ject and between subjects can be expected. Consequently large numbers of subject are 

required to obtain statistically significant results. Even with statistically significant 

results, the underlying mechanisms remain unknown due to the empirical nature of statis-

tics. Consequently, the results can only answer the question posed by the experiment. 

Human experimental work requires large amounts of resources. It is difficult to control 

large numbers of subjects over long periods of time, and lastly it is ethically impossible to 

perform certain experiments on human subjects.  

 More recently, biomechanical modeling has become an important part of understand-

ing the human neuromuscular and skeletal systems. With modeling, the human body is 

represented with sets of mathematical relationships and related parameters. Through com-

puter simulations the model can be put through various scenarios to examine the effects on 

the health and performance of the body. In addition, by varying the model parameters 

during a simulation a better understanding can be gained of the underlying mechanisms of 

the neuromuscular system and the influence of those mechanisms on the health and per-

formance of the body. Accordingly, the advantages of modeling are that many more tests 

can be performed rapidly, with fewer resources, and with no need for concerns about subject 

safety. Biomechanical models however, must be developed and validated with experimental 

data to ensure their results are credible.  

 The construction of an accurate model begins with experimentation, but through 

development and utilization of the model further lines of research are discovered. Modeling 
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helps the researcher understand which mechanisms are most influential. Therefore, a com-

bination of experimentation, analysis, modeling and simulation are needed to confront the 

complexity of the neuromuscular and skeletal systems of the human body. 

1.2 Objective 

 Once a biomechanical model is developed it can be a very powerful tool for analysis. 

However developing a model can be time consuming process due to the validation process. 

Consequently, various modeling applications have been developed to ease model develop-

ment. These modeling applications however are targeted at a specific type of biomechanical 

problem, do not allow for rapid development, or do not allow for easy integration with other 

analysis software. Therefore our objective is to develop a neuromuscular and skeletal 

modeling application that provides a flexible suite of modeling tools that can be assembled 

rapidly to address a majority of biomechanical questions. 

1.3 Features 

 The product will be designed and implemented to ease the development and analysis 

of biomechanical problems. The key features of the product include: 

 1. Powerful: The software engine will be the Simulink and SimMechanics platform by 

Mathworks. 

 2. Reliable: The components and algorithms will be rigorously developed and tested. 

 3. Efficient: Models will be assembled from standardized components through a 

graphical interface. Therefore, users are spared from basic programming and can 

concentrate on the advanced aspects of the model. In addition, components 

describing subsystems specific to certain biomechanical problems will also be pro-

vided.  

 4. Consistent: Developing models in a systematic way will make the comparison of 

results easier. Benchmark data and problems will also be included to aid calibra-

tion of model results. 

 5. Flexible: Users will be provided with the components and algorithms to solve a 

majority of biomechanical problems. The components will be modular so that model 

assembly and component improvements are easily accomplished. 

 6. Open: The toolbox will allow for the addition of new algorithms and components. 

The open structure ensures that the toolbox will remain relevant as this research 

area matures. 

 7. Manageable: Simulation results will be stored in a systematic and easily retriev-

able way. 
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2. Biomechanical Modeling Engine 

 Matlab and the Simulink platform (MathWorks, www.mathworks.com) form the basis 

of the mathematical engine underlying the neuromuscular and skeletal modeling 

application. Matlab is a high level language that provides users with a robust set of 

functions and algorithms to perform computationally intensive calculations. Simulink is a 

platform developed by MathWorks for model-based design. It consists of a graphical 

interface where models are built by connecting blocks representing mathematical 

operations, signal processing functions, and control system components. With this platform, 

models can be developed rapidly and solved with the algorithms included in the platform. 

SimMechanics is a toolbox for Simulink that contains specific blocks such as masses, 

springs, dampers, and joints (constrained motions) for solving rigid body dynamics 

problems.  

 The advantages of using Matlab are the power of its included functions and 

algorithms, and that the high level language allows for easy programming. The graphical 

interface of Simulink provides a rapid means for building models without typing code, and 

SimMechanics provides the functions necessary to solve static and dynamic rigid body 

problems. Also, the basic rigid body, force and joint components of SimMechanics allow for 

custom blocks representing biomechanical components such as bones, muscles, and 

ligaments to be built. 
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3. Biomechanical Analysis 

 Biomechanical problems are diverse in nature. For example, one might want to 

understand the trajectory of the ankle, knee, and hip angles during walking or optimize 

muscle activation during a movement to minimize fatigue. These diverse problems however 

can be segregated into four types: kinematic, inverse dynamic, forward dynamic, and 

energetic. The following sections will describe each type of problem and the ability of the 

software to address each one. 

3.1 Kinematics 

 For a forward kinematic problem, the goal is to determine the endpoint position and 

velocity of the system given the positions and velocities of each joint, and the dimensions of 

the rigid bodies. The inverse kinematic problem determines the joint positions and 

velocities given the endpoint position and velocity of the system. For a forward kinematic 

problem, there is a single answer. However for the inverse problem there can be multiple 

answers depending on the complexity of the system. Consequently, additional constraints 

must be included to obtain a unique solution. Examples of constraints include limits on the 

range of motion (ROM) of the joints or minimizing the total moment of the configuration. 

 If the endpoint of the system is not grounded then the system is an open chain. The 

degrees of freedom of the open chain equal the number of joints in the system. However if 

the endpoint is grounded then all of the joints are not independent. The angle at one joint 

will affect one or more of the other joints. The advantage of this constraint is it can make 

the inverse answer unique with no additional constraints. The disadvantage however is the 

mathematical model of the system is stiff. Therefore numerical simulations must take very 

small steps or numerical drift will cause the solution to be incorrect. 

 For biomechanical analysis, often the goal is to examine the trajectories of the joint 

angles during a specific task. Accelerometers attached to the body or optical tracking 

systems or both are employed to accomplish this goal. By placing accelerometers on 

different segments, the movement of the segments relative to each other can be examined. 

For optical tracking systems, passive or active markers are placed on the segments of the 

subject. Cameras from the tracking system then record the position of the markers with 

respect to time.  

 NMS-biodynamics can solve either type of kinematic problem. Knowing the joint 

positions and velocities, and the rigid body dimensions, the toolbox can configure the model 

appropriately and return the endpoint characteristics of the system. For inverse problems, 

NMS-biodynamics will use optimization techniques to determine the joint positions and 

velocities for a given endpoint condition. 
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3.2 Inverse Dynamics 

 For an inverse dynamics problem, the goal is to calculate the joint forces and 

moments needed for a specific system configuration. To solve this problem, the necessary 

data are the kinematics of the system and the external forces applied to the system. With 

the data and the equations of motion of the system, a solution can then be calculated. 

 The necessary kinematic data can be measured from accelerometers mounted on body 

segments or from a motion capture system. With accelerometers, the acceleration data is 

integrated to get the required velocities and displacements. With a motion capture system, 

the displacement data are differentiated to obtain velocities and accelerations.  

 The externally applied forces in a biomechanical analysis of human systems are 

usually ground reaction forces. Force plates can measure these reaction forces. For other 

applied forces such as the impact during a vehicle crash, a human surrogate with force 

transducers is initially used to measure the applied force.  

 For the equations of motion of the system the inertial properties of the body segments 

must be known. These properties can be obtained through direct measurement on the 

subject. There are also regression equations to calculate these values based on a number of 

anthropometric measurements such as body weight, stature and specific geometric 

dimensions of individual segments. 

 To solve an inverse dynamics problem with NMS-biodynamics the user first builds 

their block model specifying the inertial properties of the body segments and how the 

segments are connected. Then the user specifies the joint kinematics at every degree of 

freedom as a function of time and any externally applied forces as functions of time. When 

the system is fully described, NMS-biodynamics can begin the simulation. The user does 

not need to develop the equations of motion and constraint equations, because NMS-

biodynamics does it for them. The simulation output is the forces and moments at each of 

the joints as a function of time.  

3.2.1 Muscle Force Sharing 

 For a biomechanical analysis, the next step after solving the inverse problem is to 

determine the muscle forces necessary to generate those joint forces and moments, and 

joint reaction forces from passive structures (e.g. ligaments and tendons). However, since 

each joint in the human body is spanned by a number of muscles, the estimation of muscle 

forces is an indeterminate problem (Collins, 1995). Techniques to solve this force sharing 

problem are based on either grouping muscles with similar function thus eliminating 

redundancy or applying optimization criteria to solve the muscle force distribution 

(Crowninshield, 1978; Hardt, 1978; Patriarco et al., 1981; Vaughan et al., 1982; Cholewicki 

and McGill, 1994). The first approach leads to oversimplification and unsatisfactory results. 
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The second approach is usually called inverse optimization or static optimization. Inverse 

optimization is numerically efficient and has been successfully applied, but it also suffers 

from certain drawbacks. No consensus on the optimization cost function has been reached. 

Secondly, the inverse optimization cannot guarantee the continuity of the solution. Muscle 

dynamics are not reflected in the inverse optimization procedure, although some recent 

work (Happee, 1994; Happee and van der Helm, 1995) has been done to include muscle 

dynamics as constraints in the optimization. Finally the lack of reliable validation 

procedures also limits the application of inverse optimization. Currently, electromyogram 

(EMG) signals, which describe the input into the muscular system, are usually recorded to 

see if they match with the muscle force pattern calculated from the optimization. 

 With the joint forces and moments known, NMS-biodynamics will allow the user to 

select a muscle force sharing criteria. The software will then calculate the forces needed in 

each muscle to generate the appropriate joint force and moment. 

3.3 Forward Dynamics 

 A forward dynamics problem is the opposite of the inverse problem. For this problem, 

the goal is to determine the motion of the system as a function of time. To calculate the 

solution, the necessary data are the joint forces and moments at each degree of freedom, 

and all externally applied forces.  

 The joint forces and moments are generated by the actuators that cross that joint. For 

biomechanical analysis, muscles, tendons, and ligaments are the actuators of the system. 

Tendons and ligaments are passive elements that produce force based on their length or 

velocity. Muscle is an active element. The neuronal input to muscle determines its level of 

activation and therefore the force generated by the muscle.  

 To solve a forward dynamics problem with NMS-biodynamics, the user first builds 

their block model specifying the inertial properties of the body segments and how the 

segments are connected. If muscles are included, the user then specifies the activation 

levels of each muscle as functions of time. If no muscles are included, the joint torques as 

functions of time are specified. Any externally applied forces as functions of time are also 

specified. When the system is fully described, NMS-biodynamics can begin the simulation. 

The user does not need to develop the equations of motion and constraint equations, 

because NMS-biodynamics does it for them. The simulation output is the motion of each 

joint as a function of time. 
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3.3.1 System Control  

 Solving the forward dynamic problem provides the motion of the system for given 

forces and moments. To control the movement however, without predefining it requires a 

control system. The two types of control systems are open loop and closed loop. 

 The easiest type of control system is an open loop system. With open loop control, a 

desired motion is obtained by setting the activation levels to predefined levels to generate 

the necessary muscle forces and consequently the necessary joint forces and moments. The 

disadvantage of open loop control is that if the motion is not as expected there is no means 

for the control system to know. Consequently, the system may have a very different motion 

and may become unstable. 

 A variation of open loop control is feedforward control. With this type of control, the 

potential disturbances to the system are well known. A sensor measures the disturbances 

as they appear and the control system adjusts the input appropriately to obtain the desired 

output. However the output is not measured so the control system still has no means to 

determine if the actual output is equal to the desired output.  

 With closed loop control, the input signal is not just a function of time but also a 

function of one or more output variables. For example, the muscle activation would be a 

function of time and a function of the joint positions and velocities. In practice this means 

that some of the outputs are fed back to adjust the input appropriately to ensure the 

desired motion is obtain. Consequently if the system is disturbed the actual output will be 

different for the desired output so the input will be changed to correct for this mismatch. 

This ability to correct for disturbances to the system is the advantage of closed loop control.  

 The Simulink engine of NMS-biodynamics was designed for solving control system 

theory problems. Therefore NMS-biodynamics has the ability to simulate conventional open 

loop and closed loop systems. Additionally, more advanced control systems including feed-

forward and neural networks can be developed within NMS-biodynamics. 

3.4 Energetics 

 The energetic aspect of human biomechanical systems deals with the mechanical 

power as well as the metabolic cost associated with human movements. The metabolic cost 

can be separated into different terms according to their sources. The activation heat 

accounts for the energy used to activate muscles. The maintenance heat is used to maintain 

the muscle forces. The shorting heat is related to the extra heat produced as a consequence 

of the shortening of muscle. The mechanical work is the product of muscle force doing work. 

And the dissipation of energy in passive structures also contributes to the total metabolic 

costs. Although research work has led to some empirical relations, the actual metabolic cost 
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is usually determined from the measured oxygen consumption, which is related to the 

metabolic cost. 

 Different methods are available to estimate the mechanical power during human 

movement. Some methods calculate the power based on external work necessary to move 

the center of mass of a human body. However, the actual dynamics of each segment is lost 

in these methods. Some other methods provide the mechanical power due to the movement 

of each segment. These models cannot account for the synergy of muscles over a single joint. 

Although it is recognized that the actual mechanical work and thus the metabolic cost has 

to come from the muscles, currently researchers have not been very successful in calculat-

ing muscle power due to the difficulties in determining muscle forces. 

 NMS-biodynamics has the ability to calculate the mechanical energy used by a 

biomechanical system. Using empirical equations from the literature (Bhargava et al., 

2004; Umberger et al., 2001) muscle energy can also be calculated. However a method to 

easily calculate the total metabolic energy is not currently available. 
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4. Model Components 

 Humans as a living biomechanical system are a complex neural-muscular-skeletal 

system combing motion generation components, adaptive control, reflexes, self-analysis and 

learning (Barnes, Oggero et al. 1997). All human movements are complex motions 

characterized by the coordination of neural control, muscle activation, and skeletal motion 

generation. The central neural system sets the goal to be achieved. The neuromuscular 

system correspondingly controls the pattern of the muscle activation. The muscle forces 

drive the skeletal system to generate or adjust the motion. In modeling, the different 

components of the human biomechanical system are represented by different mathematical 

systems. 

4.1 Mechanical 

 The mechanical components of a human biomechanical system are the segments or 

rigid bodies that represent the skeletal system, and the joints that connect those bodies. 

The governing equation of motions can be obtained from the Newton-Euler formations, 

Lagrange formulations, or Kane’s method. The resulting sets of equations include kine-

matic data (velocities and accelerations), kinetic data (forces and moments) and inertial 

properties of body segments (mass and moment of inertia).  

 Deformable bodies have also been used in some models. For example, long bones can 

be represented as deformable beams. Finite element models and other models based on con-

tinuum mechanics are also used to model the mechanical subsystem. Simulation of specific 

structures, such as the foot, benefits from the use of deformable body representation. How-

ever due to the modeling complexity of continuum mechanics, rigid body formulations are 

mostly used in biomechanical analysis. 

 NMS-biodynamics is a rigid body toolbox for biomechanical analysis. It includes rigid 

bodies that can be customized by changing the inertia matrix and mass of the body. The 

toolbox also has the ability to connect the bodies with many types of joints including: 

revolute, transverse, and universal. 

4.2 Actuator 

 The human biomechanical system has two types of actuators. Ligaments are passive 

tissues that constrain the movements of body segments. Muscles are active tissues that 

generate the forces needed to move body segments. 

 As mechanical elements, ligaments store and dissipate energy. Therefore they are 

modeled as combinations of springs and dampers. Simple models use linear equations for 
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these elements, but cubic or exponential functions can also be implemented (Amankwah et 

al., 2004; Gottlieb and Agarwal, 1978; Yoon and Mansour, 1982).  

 Muscles generate active force through the contraction of muscle fibers and passive 

force through the stretching of tendon. Simple musculotendon models involve only the 

active elements and no passive elements. More complex models involve both the passive 

and the active elements. To determine the muscle force and joint torque generated, it is also 

necessary to include the muscle origin and insertion points to determine the line of action of 

the muscle. Thus muscle force calculations become highly integrated with the geometry of 

the physical system. Additional challenges to musculotendon force calculations include 

muscles that span more than one joint and redundancies presented by multiple muscles 

spanning a joint. 

 The NMS-biodynamics toolbox includes elements to model the passive and active 

characteristics of ligaments and muscles. The toolbox includes springs and dampers that 

can model linear and nonlinear systems. For muscles, musculotendon models have been 

developed to include passive properties and the active properties of force-length and force-

velocity. The flexibility of the toolbox allows for many different musculotendon models to be 

developed and utilized.  

4.3 Control 

 Control of the human body is conducted through the central nervous system (CNS), 

which is comprised of the brain and the spinal column. The CNS provides signals via the 

peripheral nervous system to muscles to actuate them in coordinated manners to produce 

desired functions. Exactly how the CNS determines those signals, and how the CNS 

optimizes for overdetermined situations is still an area of research. As mentioned above, 

some accepted methods for solving the muscle force sharing problem include minimizing 

the sum of the squared muscle stresses (Crowninshield and Brand, 1981) and minimizing 

the sum of the squared muscle forces (Collins and De Luca, 1993). 

 For biomechanical modeling, the simplest strategy is to have no control system; 

therefore the control system is open loop. Consequently the muscle forces need to be 

precalculated for the desired movement and any substantial disturbance to the system will 

cause an error in the output. With a closed loop control system, the model receives feedback 

from its output, and therefore is more able to respond to disturbances and adapt to 

changing conditions. Biomechanical research has implemented closed loop control systems 

though traditional approaches such as PID (proportional, integral, derivative) control and 

through new approaches such as adaptive control and neural networks (Ferrante et al., 

2004; Ferrarin et al., 2001; Winter et al., 1998; Soetanto et al., 2001). 
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 NMS-biodynamics toolbox was built in the Matlab Simulink environment. This is a 

significant advantage for implementing control systems, because Simulink was designed for 

developing control system models. Therefore complex control systems can easily be built 

and integrated with biomechanical models created with the toolbox. 
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5. Example Applications 

5.1 Head Neck Model: Inverse Problem 

 This section provides an example of developing and simulating a model with the 

NMS-biodynamics toolbox. The next subsections will discuss assembling the model, setting 

its parameters, and running an inverse simulation to determine the joint forces and 

moments needed to maintain a given posture. Then the simulated results will be presented 

and discussed. The goal of this example is to illustrate the power of this software and the 

speed with which a biomechanical model can be developed. 

5.1.1 Building Model 

 The head neck model (Figure 5-1) contains rigid bodies representing the head, and the 

spinal vertebrae of C1, C2, and C3. The joints between each of these segments are planar 

joints, which allow translation along the X and Y axis, and rotation about the Z axis. Pas-

sive elements at each of the joints provide joint elasticity and viscosity. No muscles are 

included in this example model, and gravity acts in the –Y direction. 

 Other elements needed for a complete model include a ground block, blocks to 

prescribe the motion of each degree of freedom, and a block to save the output data. The 

model via the C3 segment is connected to the ground block with an in-plane joint, which 

allows translation along the X and Y axes. For each joint, a motion block (e.g. IC_4_C1HD) 

prescribes the kinematics for each degree of freedom of the joint. During the simulation, the 

kinematic data is loaded from a file. The data from the simulation is saved to a file with the 

aid of the Save2File block. Additionally, sensor blocks are attached to the head neck model 

to view the results during the simulation.  

 The model parameters are defined in the passdata.dat and segdata.dat files. The 

segdata.dat defines the mass, moment of inertia, and the location and rotation of the body 

relative to the proximally connected body. The passdata.dat defines the equation relating 

the elastic and viscous properties to the position and velocity for each degree of freedom. 

The equation can be linear or nonlinear. To initialize the model parameters and prepare the 

model for simulation, the last step is to execute a function which loads the parameter 

values from the .dat files and applies them to the model. 



 13 

 (a) Head Neck model overview (b) Exploded view of HN Model 
  (orange area of Fig. 5-1a) 
 

Figure 5-1. Four segment model for the inverse dynamics problem. 
 

5.1.2 Simulation Results 

 For this inverse dynamics example, the model was simulated while positioned in a 

static posture. During the simulation, the forces and torques needed at each degree of 

freedom were calculated so that the model maintained its posture (Table 5-1). The 

calculated results (Figure 5-2) were then saved to an output file. 

Table 5-1. Kinematic input to model 

Joint Rotation about Y-axis 
Angle (°) 

X 
Position (m) 

Z 
Position (m) 

C1 – HD 5 0 0 
C2 – C1 5 0 0 
C3 – C2 5 0 0 
The velocities and accelerations were all set to zero. 
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 (a) C1-Head joint (b) C2-C1 joint 

(c) C3-C2 joint 

Figure 5-2. Calculated joint forces and moments required to  
maintain the static posture of the model. 

 

 Using NMS-biodynamics, a user is able to rapidly build and simulate models without 

the need to derive the equations of motion. Through this inverse simulation example, a four 

segment model was built and simulated. The simulation was able to calculate the necessary 

forces and moments for the model to hold a static posture. 

5.2 Head Neck Model: Forward Problem 

 This section provides an example of simulating a head neck model to solve a forward 

dynamics problem. In this example, the joint forces and moments are known and the trajec-

tories of the joint angles and positions are calculated. Because the method of building the 

model is very similar to the method used in the inverse problem example, the subsection 

about building the model will be brief. The simulated results will then be presented and 
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discussed. The goal of this example is to illustrate the power of the NMS-biodynamics tool-

box and the speed with which a solution to forward dynamics problems can be achieved. 

5.2.1 Building Model 

 As with the model described for the inverse problem, the head neck model (Figure 5-3) 

contains rigid bodies representing the head, and the spinal vertebrae of C1, C2, and C3. 

The joints between each of these segments are planar joints. Passive elements at each of 

the joints provide joint elasticity and viscosity and no muscles are included.  

 Similar to the inverse problem model a ground block and a block to save the output 

data is included. The difference with this model is that the blocks which prescribe the joint 

motions are removed. Those blocks are replaced with blocks (e.g. IC_4_C1HD) which 

prescribe the joint forces and moments. 

 

 (a) Head Neck Model overview (b) Exploded view of HN Model 
  (orange area of Fig. 5-3a) 
 

Figure 5-3.  Four segment model for the forward dynamics problem. 
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 To initialize the model parameters and prepare the model for simulation, a function is 

executed to load the parameter values from the appropriate .dat files and apply them to the 

model. The applied joint forces and moments data are used by the simulation at each time 

step to determine the joint angle and position trajectories. 

5.2.2 Simulation Results 

 For the forward dynamics example, the model was simulated with constant joint 

forces and moments (Table 5-2). During the simulation, the resulting joint trajectories were 

calculated (Figure 5-4) are then saved to an output file. 

Table 5-2. Force and moment inputs to the model 

Joint Y 
Moment (Nm) 

X 
Force (N) 

Z 
Force (N) 

C1 – HD -1.71 -7.99 45.31 

C2 – C1 -1.67 -4.20 47.98 

C3 – C2 -1.72 0.00 50.62 

 

Figure 5-4. Calculated joint trajectories. 
The joint positions and angles at the C1-Head, C2-C1, and C3-C2 joints remain-
ed constant over time. For brevity, only the results for the C1-Head joint are 
shown. 
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 The initial position of the model was the same as the inverse problem example. 

Therefore if the same forces and moments calculated for the inverse problem were applied 

in the forward problem the model should remain stationary. The results illustrate the 

model did not move. Consequently, using the NMS-biodynamics toolbox a user can solve a 

forward dynamics problem to determine the trajectory of a model with time. 
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6. Summary 

 The objective of this current version of the NMS-biodynamics toolbox was to develop a 

set of basic tools that would allow one to rapidly build biomechanical models. To do this we 

have developed a basic set of elements to accomplish this task. The elements include a rigid 

body, a planar joint, viscoelastic joint properties, and a muscle model (Appendix A). 

Through the examples it was shown that the toolbox can solve static inverse and forward 

dynamics problems. The current toolbox can also solve dynamic inverse problems. Future 

tasks will include incorporating algorithms to solve the muscle force sharing problem and 

methods for solving quasi static forward dynamics problems. 
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Appendix A. Biomechanical Modeling Elements 

A.1 Segments 

 The rigid body block (Figure A-1) can be used to represent a body such as a bone. The 

block contains a mass and inertia parameter. Each segment also has two muscle ports 

(MPort1 and MPort2) for attaching muscles. More muscles can be attached thorough the 

use of a mechanical branching bar. The segment can be connected to a joint block through 

the CS1 and CS2 ports. CS1 is a coordinate system with its location defined relative to the 

adjoining segment. CG is the center of gravity of the segment with its location defined 

relative to CS1. CS2 is another coordinate system with is location defined with respect to 

CS1. CSsen, which can be used for attaching a body sensor, is another coordinate system 

with is location defined with respect to CS1. To ensure muscles wrap over the segments 

properly, obstacle points can be input to the block and then passed through to the attached 

muscle. 

Figure A-1. Rigid body. 

A.2 Joints 

 The planar joint block (Figure A-2) allows for rotation about one axis and translations 

along the other two axes. The user can specify which axis rotates and which axes translate. 

The joint has two Sensor/Actuator ports which allow measuring or applying moments/forces 

or rotations/displacements to the joint. Sensor data including position, velocity, and 

reaction force/moment are output through the Sensor Data port. 

Figure A-2. Planar joint. 
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A.3 Passive Elements 

A.3.1 Spring and Damper Parallel (1 DOF) 

 The Parallel Spring and Damper block (Figure A-3) models a single elastic element in 

parallel with a single viscous element. Therefore it only outputs a force/moment signal for 1 

degree of freedom (DOF). The equation for each element is defined by the user and can be 

nonlinear. This block attaches to the Sensor/Actuator port of a joint block which provides 

the joint position and velocity information needed for the calculation. 

Figure A-3. Parallel spring and damper (1 DOF). 

A.3.2 Spring and Damper Parallel (3 DOF) 

 This block (Figure A-4) contains 3 sets of parallel elastic and viscous elements. This 

allows one to add passive properties to the Planar Joint block without combining 3 single 

DOF blocks. It attaches to the Sensor/Actuator port. 

Figure A-4. Parallel spring and damper (3 DOF). 

A.3.3 Spring and Damper Series (1 DOF) 

 The spring and damper in series block (Figure A-5) has a single elastic element in 

series with a viscous element. Consequently it only provides force/moment data for 1 DOF. 

The equation for each element is linear and is defined by the user. It attaches to the Sen-

sor/Actuator port on a joint block. 

Figure A-5. Series spring and damper (1 DOF). 
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A.4 Active Elements 

 The muscle block (Figure A-6) calculates the force generated by the muscle for a given 

length and activation. It then applies that force to the two segments connected by the mus-

cle. The Base and Follower ports connect to the Muscle ports of two segments. The muscu-

lotendon force and length are outputted for debugging purposes. This muscle block also has 

the ability to wrap itself over one cylindrical obstacle. The location, orientation, and refer-

ence frame of the obstacle are input through the Ob data port. 

Figure A-6. Muscle. 
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Summary 

 Images from a study conducted by the University of Connecticut for USARIEM were 
forwarded for analysis. The 16-bit grayscale images are of the tibia of 17 subjects before, 
during, and after a 13 week training regimen involving both aerobic and resistance 
exercises. Images were taken, for each subject at 4%, 38%, and 66% of tibial length (called 
“slice planes”), as measured from the distal end. This gave a total of nine images per 
subject. The images were analyzed to see what changes in bone morphology might be 
evident as training progressed. 
 Using threshold values of pixel intensity, the images were segmented to identify inner 
(endosteal) and outer (periosteal) boundaries of the tibial cortex. These boundaries were 
then used to register the images such that “post training” and “midtraining” images were 
aligned with the “pretraining” images for each slice plane. Defining the polar origin of the 
tibia cross section in each slice plane as the center of the inner cortical boundary, statistics 
were calculated for 10 degree sectors around each slice. 
 The analysis first looked for changes in bone quality in each sector from pre through 
post training. Bone was classified, according to pixel intensity value, as being either 
trabecular, transitional, or cortical. In each sector, differences in mean pixel intensity, 
standard deviation, area (as measured by number of pixels), cortical thickness, and canal 
radius were tracked. Additionally, overall medial-lateral (M-L) and anterior-posterior (A-P) 
lengths, cross sectional moment of inertia (CSMI), and cortical bone strength index (BSI) 
were calculated. 
 The second phase of the analysis was to look for correlations between bone geometry 
(i.e., cortical thickness, cortical area, cross-sectional moment of inertia) and bone mineral 
density. In so doing, we hoped to gain insight into the relationship between geometry and 
material properties and, consequently, stress fracture propensity itself. 
 The results showed there were no significant density changes as a result of the 
training regimen in any of the three classifications of bone. Certain trends in bone quality 
as a function of geometry did emerge however. Cortical bone was lower in density on the 
anterior sectors where the average thickness was significantly greater. Another result 
noted was that scalar measures of overall bone strength (such as the “Bone Strength 
Index”) were consistent for each subject from pre to post training. This indicates that while 
the scalar measures apparently did not capture any morphological adaptation, pQCT may 
be a reliably repeatable measurement of overall bone strength, and hence, stress fracture 
susceptibility. 
 The results also suggest that while changes in density over a time period 
commensurate with basic training are subtle, and may not be reliably ascertained by pQCT, 
it can still be used to accurately assess bone geometry and regional mineralization to a 
degree that may be very useful, when combined with anthropomorphic data such as body 
weight, for determining stress fracture propensity. To the knowledge of the investigators, 
no research has attempted to use pQCT as the basis for patient-specific tibial stress 
analyses. Given a population with some incidence of stress fracture, estimating tibial 
stresses for each individual could lead to individual predictions of stress fracture 
susceptibility. 
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1. Introduction 

1.1 pQCT Background 

 Peripheral Quantitative Computed Tomography (pQCT) is a noninvasive diagnostic 

technique used to measure characteristics of bones on the skeletal periphery. pQCT results 

in higher accuracy and precision than standard densiometric measures such as DEXA, 

DPA, and SPA which only measure areal density (Fujita 2002). As such, it is widely used in 

studies involving volumetric bone mineral density measurements (see, e.g., (Riggs et al. 

2004), (Ferretti et al. 2003),(Findlay et al. 2002), or (Veitch et al. 2005)).  

 pQCT machines employ X-ray tubes with small focal areas emit photons at various 

angles to compile a cross sectional image of the object of interest. The X-ray energy is 

attenuated in the process of passing through mass, and this reduced energy is then detected 

through an array of semiconductor-crystal collectors (Ferretti 1997; Ferretti et al. 2002; 

Stratec 2006). Attenuation coefficients are correlated with the pixel intensity of the final 

image. 

 Regardless of the manufacturer, the attenuation coefficients would have been 

calibrated using a phantom of solid hydroxy apatite of known density. This calibration 

procedure makes the machine “see” the mineralized portion of the bone tissue. As the 

manual for the Stratek XCT 3000 (one commonly cited pQCT machine in the literature) 

says, “By calibration with phantoms of a specified hydroxyl apatite concentration the 

attenuation coefficients can be transformed to density values (mg/cm3)”.  

 Knowing the BMD distribution of bone is useful because it is correlated with the 

overall stiffness (specifically, the Young’s Modulus) of the bone. A significant correlation of 

about 0.7 was found between both cancellous and cortical bone and Young’s modulus in the 

femur (Wachter, 2002), (Wachter et al., 2001). 

1.2 Precision and Accuracy 

 In bone densitometry, “precision” refers to the reproducibility of a density 

measurement in a subject. “Accuracy” refers to the fidelity of the measured quantity to the 

actual value. The International Society for Clinical Densitometry recommends expressing 

precision error as the root mean square of the standard deviation of repeated 

measurements on a single subject. This can alternatively be expressed as the coefficient of 

variation (CV = STDEV/MEAN). Using the CV, one can determine the “Least Significant 

Change” for a pQCT measurement. The Least Significant Change (LSC) is the least amount 

of measured change (such as trabecular area or BMD) that can be considered as 

statistically significant. Sievanen and coworkers (Sievanen et al. 1998) conducted precision 
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studies with the Stratec XCT-3000, a pQCT machine commonly used for human tibial 

measurements. From this study, we estimate that in order to be 95% confident that density 

changes are significant, they would have to be greater than: 

  2% in trabecular bone in the distal tibia 

  2% in cortical bone in the tibial shaft. 

 Other studies have calculated the precision of secondary density measurements 

arising from pQCT machines. Bone Mineral Density (BMD) can be correlated with Bone 

Mineral Content (BMC), which is the total density of a section of bone, as follows: 

  BMC = (Cross sectional area)*(BMD)*(slice thickness).  

 In the radius, using a Norland-Stratec XCT 960, cortical BMC had a 7-10% error 

(Louis et al. 1996). Total BMC error (cortical, subcortical, and trabecular) was reported as 

17% (Louis et al. 1996) which may have been due to the larger trabecular content at the 

distal end, or perhaps, measurement error. 

 The Norland-Stratec XCT 3000 reports geometric area errors of about ± 1% ((Braun et 

al. 1998)), though the Sievanen study reported that the LSC for areal measurements was 

on the order of 5-10% for the same machine. 

1.3 Subject Tibia Images 

 Raw images were obtained from pQCT of tibia of 17 subjects. Images were taken at 

4% of tibia length (measured from the distal end), 38%, and 66%. Each level will be referred 

to as a “slice plane”. Images were taken, at each location for each subject, before, in the 

middle of, and after a 13 week planned exercise regimen. The subjects in this study were 

from a group undergoing a training regimen which include both aerobic and resistance 

training 
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2. Methods 

2.1 Image Processing 

2.1.1 Image Conversion 

 Raw image files were first converted to tiff format (630x630 pixels; 16 bits per pixel 

grayscale). This conversion produced no loss of bit-depth. The tibia cross-sections in each 

image were separated from the surrounding image by a two step process. First, all pixels 

were eliminated which were outside minimum and maximum pixel intensity bounds, 

determined by trial-and error. Then, the tibia cross section was found from the remaining 

pixels using the Matlab bwareaopen function in the Image Processing Toolbox. This 

function identifies objects (defined as connected pixels) with fewer than a given number of 

pixels.  

 The histograms for one subject are shown in Figure 1 and the threshold values are 

summarized in Table 1. These thresholds were used to extract the tibia from the 

surrounding image, and are not the same as the thresholds used to distinguish different 

types of bone (i.e., trabecular or cortical). Note in Figure 1 that the tibia at the 4% slice is 

essentially uniformly trabecular (pixel intensity of about 500) while the 38% and 66% slices 

reflect peaks in the trabecular and cortical regimes. The lower density peaks in the 38% 

and 66% images reflects the pixels in the canal center which includes nonosseous tissues 

and fluids. 

 Having extracted the tibia, the bounding box for each image is adjusted from 630×630 

to the minimum box which will contain the image. These are shown in Figure 2. 

 Two subjects (14 and 60) were of the left tibia. These tibias were transposed so that 

meaningful comparisons could be made with the right tibia images. 

 

Table 1. Threshold values used to separate the tibia from the surrounding image. 

 Lower Pixel Intensity 
Threshold 

Upper Pixel Intensity 
Threshold 

Maximum number of 
connected pixels in 
object 

4% 380 2000 2000 
38% 500 2000 1250 
66% 500 2000 1000 
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Figure 1. Histogram for subject 48.  
The pixel intensity distribution (a function of mineralized bone) is typical for each 
slice at each phase of training. Note that relatively few pixels exist between the 
trabecular and cortical thresholds. 

 

2.1.2 Image Registration 

 In order to perform meaningful regional statistical comparisons between images, the 

images had to be aligned globally and with respect to each other. 

 For each subject, the “mid” and “post” images were aligned onto the “pre” image for a 

given slice plane (4%, 38%, or 66%). The registration procedure is summarized here: 
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Figure 2. Imported tibia images with a tight bounding box. 
 

1. The points on the outer boundary of the tibia are determined. 

2. The image is re-centered horizontally on the average of the mean value of the10 

leftmost points and the mean value of the 10 rightmost points. 

3. The image is similarly re-centered vertically. 

4. Determine the points on the endosteal surface (38% and 66% slices only) 

5. Edge of the endosteal surface is defined as a pixel with a minimum pixel intensity 

of 900. 

6. Re-center the “mid” and “post” images on the mean value of the “pre” image 

endosteal boundary. 

7. Rotate all nine images of a subject such that the “mid” and “post” are aligned  

Once the images were registered, meaningful statistical comparisons could be made 

between “pre”, “mid” and “post” images and across subjects. An example of the result of the 

image registration process is shown in Figure 3. 
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Figure 3. Inner and outer boundaries following alignment. Left: Mid (blue) 

aligned to Pre (red). Right: Post (blue) aligned to Pre (red). 

2.2 Measurements 

 All measurements obtained from the images are dependent on the threshold values 

chosen to define different types of bone. These values were chosen such that trabecular 

bone would not, for example, include tissue or fluid, and cortical bone would not include 

pixels in a transitional region. These thresholds can typically set in the pQCT machine 
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itself at the time the image is acquired, but since they weren’t, the analysis is based on 

trial-and-error. 

2.2.1 Cortical Thickness 

 The cortical wall thickness was calculated for 10 degree sectors. In each sector, the 

minimum radial distance was calculated between the points defining the outer boundary 

and the points defining the inner boundary. Additionally, the normalized canal radius, 

defined as the ratio of endosteal radius to periosteal radius, was calculated for each sector. 

An example of the location of a tibial image in polar coordinates is given in Figure 4. 

 
Figure 4. Examples of inner and outer cortical boundary definitions.  
The exact location of the inner boundary depends on the minimal pixel intensity 
defined as being cortical bone. Shown are two different intensity values. LEFT: using 
a pixel intensity of 900 and 750 (right) as lower cortical thresholds. Cortical thickness 
was measured for each 10 degree sector. 

2.2.2 Density Calculations 

 Average values for density were calculated for each sector as follows. Upper and lower 

pixel intensity values are chosen for the type of bone of interest. These values were set at: 

(a) Trabecular: 375 to 600 

(b) Transitional: 600 to 800 

(c) Cortical: 800 to 1500  

Then for each 10 degree sector, the mean value and standard deviation of pixel intensity is 

calculated from among pixels within the specified thresholds.  
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2.2.3 Moment of Inertia 

 The geometric character a bone diaphysis can be described by both the amount of 

cortical bone present (the cross sectional area) and its spatial arrangement (architecture) 

(Ferretti 1997). A single scalar which captures both the amount and arrangement of 

compact bone in the diaphysis is the Cross Sectional Moment of Inertia (CSMI).  

 CSMI were calculated about two axes, the Medial-Lateral axis (M-L) and the 

Anterior-Posterior axis (A-P) using the center of the endosteal (inner) boundary as the 

origin. Units of pixels were used. The moment of inertia of each pixel was, 

  
3( )( )

12pixel

b h
I =  1 

where b is the pixel base length and h is the pixel height, both of which are equal to 1. The 

parallel axis theorem was then used to sum the moments of inertia of each pixel, 
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 CSMI is needed to calculate the cortical Bone Strength Index , an index of the overall 

mechanical competence of the bone (Ferretti 1997). BSI was calculated for each CSMI as 

the product of the CSMI and the average cortical density: 

 BSI (M-L) = CSMI(M-L) * Ct.D. 

 BSI (A-P) = CSMI(A-P) * CT.D. 

 pBSI = BSI(M-L) + BSI(A-P). 

2.2.4 Other Geometric Properties 

 The tibia area was calculated by summing the pixels in a given threshold range. The 

overall M-L was calculated using the difference between the average values of the 10 right-

most and 10 left-most pixels. Similarly, the A-P length was calculated using the difference 

of the 10 upper-most and 10 lower-most values. 

2.2.5 Output 

 All geometric data and the sector-by-sector density values were written to an Excel 

spreadsheet which processed and plotted the results. (Polar plots were generated by a 

separate Matlab program.) 

2.3 Statistical Analyses 

2.3.1 Changes due to Training 

 The intent of this portion of the analysis was to answer the following question: “Did 

the 15 week training regimen result in measurable changes in density or shape?” 
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 To answer this question, statistical comparisons were made of the mean density in 

each sector of each image as well as the area occupied by trabecular, transitional, and 

cortical bone. 

2.3.2 Bone Quality vs. Geometry 

 The intent of the second phase of the analysis was to answer the question: “What 

generalizations can be made regarding how density varies within a bone?” And the related 

questions: “Is density homogeneous throughout a cross section?” and “Does thinner bone tend 

to be more dense than thicker bone?”. 
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3. Results 

3.1 Changes due to training 

3.1.1 Trabecular Density 

 The 4% slice images were composed primarily of pixels in the trabecular threshold 

bounds (375-600). For this reason, statistics involving cortical bone were not calculated for 

bones at the 4% level. Since trabecular bone requires, on average, 4 months to remodel 

versus 5 months for cortical bone, we hypothesized that any remodeling changes due to the 

training regimen would most likely be seen in trabecular bone, though not necessarily at 

the 4% slice. 

Trabecular: 4% Slice 
 Trabecular density averaged among the 17 subjects for each 10 degree sector is shown 

in Figure 5. Shown are values obtained from the pre, mid, and post training images. 

375 600
Pre Mid Post

Mean Mean SD N Mean Mean SD N Mean Mean SD N
Lat-Ant 456.50 73.77 803.98 458.95 76.79 805.23 459.33 78.69 810.50
Ant 454.90 83.05 618.09 457.30 86.08 631.21 456.93 84.75 630.43
Med-Ant 446.64 66.60 823.64 447.69 67.57 835.00 448.11 67.00 870.57
Med-Post 449.53 60.68 929.11 450.98 59.53 940.05 451.02 58.85 963.05
Post 468.76 90.07 724.09 468.71 88.19 744.59 469.57 89.59 749.25
Lat-Post 462.72 75.45 684.11 463.87 73.51 700.91 464.67 75.50 727.93
ALL 456.51 74.94 4583.02 457.92 75.28 4657.00 458.27 75.73 4751.73

4% Trabecular Thresholds (Low, high):

 
Figure 5. Top left: Average trabecular density (Pre, Mid, and Post training) by 
sector of the 4% slice. (Subjects 3 and 11 post-training images have some image 

noise, but are included.)  
Trabecular threshold limits: 375 to 600. Top right: individual mean trabecu-
lar values. Bottom: data table for 60° sectors, averaged among all subjects. 
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 The mean trabecular density measured for each subject was found to be very 

consistent at the three training intervals (pre, mid, and post). Peak densities were in the 

posterior and lateral sectors, but it should be noted that the Anterior-Posterior axis was 

estimated using the “cusp” of the 66% slice, and so these designations are approximate. 

Among all subjects, the sectors with the maximum density had a mean trabecular density 

6% higher than the sectors with the lowest mean density. The maximum density difference 

between one sector and another seen in an individual was about 10% (between Medial-

Posterior and Lateral-Posterior). The minimum density difference for an individual (that is, 

the most homogeneous bone at the 4% slice plane) was about 1.7%. 

 Trabecular apparent density measurements are most accurate at the 4% slice plane 

level due to the sheer number of pixels falling in trabecular threshold range (about 5000 

versus 100 at 38% and 200 at 66%). While trabecular BMD measurements are less reliable 

than for cortical bone due to the higher collagen content of the former and the fact that 

trabecular bone is properly a structure, not a material, the fact that the measurements 

were consistent on an individual basis over the three measurement intervals suggest that 

intratibial density are probably highly patient specific. 

 Despite the apparent increase in trabecular area (“N” in the data table for Figure 5) a 

student’s t test was used to compare mean pretraining to mean post training areas among 

all 17 subject. The result showed there was no significant change from pre to post training 

at the 4% level. 

Trabecular: 38% Slice 
 There are much fewer pixels in the trabecular range at the 38% level (note the 

average number N of pixels in the data table of  

Figure 6). 

 Trabecular bone comprised, on average, just 6.5% of the total bone area (“area” being 

defined simply as the number of “trabecular pixels” in the image).  

 Among the 17 subjects, there was no significant change in trabecular area from pre to 

post training at the 38% level. The average trabecular area change was 6% but had a 

standard deviation of ± 17%. With an outlier removed the average trabecular area change 

was 2% with a standard deviation of ± 8%. 

Trabecular: 66% Slice 
 The bone at 66% of tibial length is also predominantly cortical. The trabecular 

average densities are given in Figure 7. 
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375 600
Pre Mid Post

Mean Mean SD N Mean Mean SD N Mean Mean SD N
Lat-Ant 466.89 49.57 17.41 469.62 51.60 18.38 473.54 63.66 18.36
Ant 492.87 60.70 23.34 489.90 60.56 24.88 478.62 53.66 23.91
Med-Ant 479.04 60.75 15.23 477.02 61.66 17.86 474.59 50.69 17.32
Med-Post 473.93 58.92 22.50 485.83 57.52 25.80 480.04 64.38 25.68
Post 467.93 55.70 13.00 481.59 54.85 12.59 482.71 61.31 11.43
Lat-Post 471.32 57.20 10.66 487.18 76.09 10.59 471.86 1766.43 11.36
ALL 475.33 57.14 102.14 481.86 60.38 110.09 476.89 343.36 108.05

38% Trabecular Thresholds (Low, high):

 

 
Figure 6. Top left: Average trabecular density (Pre, Mid, and Post training)  

by sector of the 38% slice.  
Trabecular threshold limits: 375 to 600. Note that the variability of density in any one 
sector is due to the few number of pixels in the trabecular range (N). Top right: 
individual trabecular averages. Middle row: individual trabecular area as a percent 
of total area. Bottom: data table for 60° sectors, averaged among all subjects. 
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375 600
Pre Mid Post

Mean Mean SD N Mean Mean SD N Mean Mean SD N
Lat-Ant 465.03 55.51 39.46 464.51 59.38 37.96 464.45 58.50 39.79
Ant 479.07 64.37 93.04 478.92 63.37 90.55 477.50 62.19 91.70
Med-Ant 461.23 53.74 45.77 466.87 63.40 49.77 462.90 62.18 49.89
Med-Post 470.09 59.34 28.34 457.77 65.84 25.30 464.06 56.28 27.27
Post 460.66 58.70 26.88 462.15 59.69 25.82 469.50 61.09 24.96
Lat-Post 464.44 67.22 20.89 463.16 60.28 24.34 461.90 54.31 21.34
ALL 466.75 59.81 254.38 465.57 61.99 253.75 466.72 59.09 254.95

66% Trabecular Thresholds (Low, high):

 
Figure 7. Top left: Average trabecular density (Pre, Mid, and Post training)  

by sector of the 66% slice. 
Trabecular threshold limits: 375 to 600. Top right: individual average trabecular 
density values. Middle: trabecular area as a percentage of total area. Bottom: data 
table for 60° sectors, averaged among all subjects. 
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 Pixels in the trabecular threshold comprise, on average, 11% of the total. The 

maximum percentage of trabecular bone (pre, mid, or post training) is about 15% and the 

minimum trabecular percentage is about 8%.  

 Among the 17 subjects, there was no significant change in trabecular area from pre to 

post training at the 66% level. The average change in trabecular area from pre to post 

training was 6% ± 5%, but the range was -10% to 13%. Further, change in trabecular are at 

the 66% slice did not correlate with pretraining trabecular area or pretraining mechanical 

integrity (as measured by pBSI). 

3.1.2 Transitional Density 

 The main reason for analyzing “transitional pixels” is to ascertain whether new bone 

might form near the cortex (at the boundary of cortical and trabecular bone) which may 

appear in the pQCT as subcortical. Results of the transitional data analysis for the 38% 

slice are given in Figure 8. 

Transitional: 38% Slice 

 
600 800

Pre Mid Post
Mean Mean SD N Mean Mean SD N Mean Mean SD N

Lat-Ant 703.33 49.71 13.41 698.16 44.48 11.27 696.44 58.50 11.46
Ant 706.29 60.12 23.77 708.45 48.57 22.61 692.95 58.92 24.73
Med-Ant 701.22 45.38 11.27 701.45 57.93 11.09 698.30 46.33 12.13
Med-Post 699.93 61.06 16.82 704.24 61.71 14.18 701.99 50.88 14.95
Post 710.99 56.37 8.05 709.40 41.20 7.50 705.89 53.17 8.39
Lat-Post 709.09 51.47 8.41 702.46 45.46 5.89 713.59 42.84 5.96
ALL 705.14 54.02 81.73 704.03 49.89 72.54 701.53 51.78 77.63

38% Transitional Thresholds (Low, high):

 
Figure 8. Top left: Average transitional density (Pre, Mid, and Post training)  

by sector of the 38% slice.  
Top Right: Individual mean transitional densities. Bottom: Data table for 60° sectors, 
averaged among all subjects. Transitional threshold limits: 600 to 800.  
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 The larger variation in average transitional density values at the 38% level is due to 

the small number of pixels falling in the transitional threshold range (about 110 pixels per 

picture). 

 No significant change was noted from pre to post training in transitional bone at the 

38% level. 

Transitional: 66% Slice 
  

Figure 9 is a summary of statistics of transitional pixels in the 66% slice plane. 

 
600 800

Pre Mid Post
Mean Mean SD N Mean Mean SD N Mean Mean SD N

Lat-Ant 696.44 58.50 17.20 699.11 59.09 15.77 696.02 53.62 16.07
Ant 692.95 58.92 45.91 699.61 58.11 46.70 696.54 60.17 47.09
Med-Ant 698.30 46.33 18.71 694.88 54.73 18.09 692.91 53.00 20.91
Med-Post 701.99 50.88 12.09 695.02 56.52 13.00 694.61 44.37 13.86
Post 705.89 53.17 22.14 707.08 53.43 23.41 711.50 55.47 22.61
Lat-Post 713.59 42.84 13.09 711.52 45.61 12.68 711.62 54.64 12.09
ALL 701.53 51.78 129.14 701.20 54.58 129.64 700.53 53.54 132.63

66% Transitional Thresholds (Low, high):

 
 

Figure 9. Top left: Average transitional density (Pre, Mid, and Post training)  
by sector of the 66% slice.  

Top right: Individual mean transitional densities. Bottom: Data table for 60° sectors, 
averaged among all subjects. Transitional threshold limits: 600 to 800.  

 No significant change in transitional density or area was observed at the 66% level 

from pre to post training. 
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3.1.3 Cortical Density 

Cortical: 38% Slice 
 Average values of pixels in the cortical range for the 38% slice plane are given in 

Figure 10.  

 Among all subjects there was an average difference of about 4.7% between peak 

density in a Posterior sector and minimum density in the Anterior sector. The most 

homogenous cortical bone had peak density which about 2% greater than the minimum 

density. The largest density gradients seen were roughly 6.5%, typically in the Medial-

Posterior direction. The Anterior sectors had the most homogeneous cortical bone, as 

indicated by a lower mean Standard Deviation (see standard deviation plot and data table 

in Figure 10).  

 Among all subjects, there was no significant change in mean cortical density or mean 

cortical area from pre to post training. 

Cortical: 66% Slice 
 Average values of cortical bone for the 66% slice plane images are shown in Figure 11. 

 The average difference between peak sector cortical density and minimum sector 

cortical density was approximately 5%. The largest difference between Anterior and 

Posterior sectors was in Subject 52 with 8% at midtraining, the smallest was Subject 02 

which had a 2.5% difference at midtraining. As was the case with the images from the 38% 

slice plane, the bone is most homogeneous in the anterior sectors. 

 Among all 17 subjects, there was no significant change in cortical density or area from 

pre to post training. 
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800 1450

Pre Mid Post
Mean Mean SD N Mean Mean SD N Mean Mean SD N

Lat-Ant 1036.05 78.11 205.95 1034.52 83.19 205.36 1035.27 80.82 204.95
Ant 1014.60 71.92 386.82 1015.82 73.37 390.55 1014.43 72.36 385.79
Med-Ant 1047.87 80.78 172.66 1045.55 79.39 174.25 1046.75 81.35 174.64
Med-Post 1049.88 78.92 278.39 1051.05 81.24 278.77 1046.85 79.76 280.27
Post 1051.34 77.73 237.07 1048.04 77.81 237.25 1047.90 75.84 241.39
Lat-Post 1052.46 76.99 239.54 1053.56 80.88 245.05 1056.41 78.11 242.39
ALL 1042.03 77.41 1520.43 1041.42 79.32 1531.23 1041.27 78.04 1529.43

Thresholds (Low, high):38% Cortical

 

Figure 10. Top left: Average transitional density (Pre, Mid, and Post training)  
by sector of the 38% slice.  

Top right: average standard deviation (a measure of the homogeneity of the cortical 
bone). Middle: Individual mean transitional densities. Bottom: Data table for 60° 
sectors, averaged among all subjects. Cortical threshold limits: 800 to 1500.  
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800 1450
Pre Mid Post

Mean Mean SD N Mean Mean SD N Mean Mean SD N
Lat-Ant 1006.96 88.52 168.45 1004.73 89.09 170.93 1001.87 91.92 165.29
Ant 998.59 83.59 457.55 1004.36 82.91 456.32 994.69 82.12 461.25
Med-Ant 1034.95 91.81 200.70 1034.68 87.11 200.84 1033.03 88.32 205.98
Med-Post 1043.71 91.28 256.89 1044.23 88.27 256.39 1041.28 91.37 263.05
Post 1039.36 91.05 355.61 1034.60 92.25 356.75 1035.45 93.59 357.02
Lat-Post 1034.74 91.01 249.25 1039.58 92.58 248.79 1034.52 95.04 246.46
ALL 1026.38 89.54 1688.45 1027.03 88.70 1690.02 1023.47 90.39 1699.05

Thresholds (Low, high):66% Cortical

 

Figure 11. Top left: Average transitional density (Pre, Mid, and Post training)  
by sector of the 66% slice.  

Top right: Average standard deviation. Middle: Individual values for each subject. 
Bottom: Data table for 60 ° sectors, averaged among all subjects. Cortical threshold 
limits: 800 to 1500.  
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3.1.4 Average Radius 

 Physical activity has been correlated with increased cortical thickness and periosteal 

circumference (Lorentzon et al. 2005), (Nordstrom et al. 1998). To ascertain whether the 

training regimen induced any changes in cortical bone size, the average canal radius is 

presented here for the 38% and 66% slice along with tables of normalized radius and 

cortical thickness. It was found that there was no significant increase in cortical thickness 

from pre to post training at either the 38% or 66% level. 

Canal Radius: 38% Slice 

38% Radius
Pre Thickness Mid Thickness Post Thickness

Norm. Raw Norm. Raw Norm. Raw
Lat-Ant 0.6038 9.40 0.5997 9.41 0.5911 9.60
Ant 0.4782 15.65 0.4729 15.76 0.4703 15.80
Med-Ant 0.5867 8.85 0.5859 8.91 0.5789 9.02
Med-Post 0.5636 11.79 0.5589 11.95 0.5609 11.96
Post 0.5363 11.45 0.5363 11.38 0.5234 12.15
Lat-Post 0.5660 10.88 0.5585 11.11 0.5636 11.00
ALL 0.5558 11.34 0.5520 11.42 0.5480 11.59  

 
Figure 12. Top: Normalized canal radius at 38% of tibial length: pre, mid, and post 

training. Below: Data table of average values for all 17 subjects, 60° sectors.  
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Canal Radius: 66% Slice 

66% Radius
Pre Thickness Mid Thickness Post Thickness

Norm. Raw Norm. Raw Norm. Raw
Lat-Ant 0.7429 6.52 0.7388 6.60 0.7415 6.43
Ant 0.5951 14.69 0.6054 14.35 0.6013 14.59
Med-Ant 0.6868 8.05 0.6912 8.01 0.6904 8.12
Med-Post 0.6954 8.99 0.6954 9.01 0.6955 9.11
Post 0.6122 12.86 0.6126 12.86 0.6031 13.19
Lat-Post 0.6834 9.15 0.6836 9.15 0.6779 9.19
ALL 0.6693 10.04 0.6712 10.00 0.6683 10.10  

 
Figure 13. Top: Normalized canal radius at 66% of tibial length: pre, mid, and post 

training. Bottom: table of average values for all 17 subjects, 60° sectors.  

3.1.5 Geometry and Strength Indices 

 Scalar indicators of bone strength were calculated for each image to see if there was a 

strengthening trend from pre to post training, and also to evaluate the consistency of the 

measurement itself. Area, CSMI, and BSI are all quantities that can be calculated “on the 

fly” by the pQCT machine itself, and as such may be a useful way to make an initial 

assessment of bone health prior to the start of any long term physical regimen such as 

Basic Combat Training. 

Area 
Area measurements were subdivided for each image according to type of bone 

(trabecular, transitional, cortical) and are shown in Figure 14 to Figure 16. While no 

significant change in area was noted, areal measurements were found to be very consistent 

for each subject from Pre to Post training. 
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Figure 14. Average area (trabecular, transitional, and cortical) for the 4% level: 

pre, mid and post training. 
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Figure 15. Average area (trabecular, transitional, and cortical) for the 38% level: 

pre, mid and post training. 
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66% Area
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Figure 16. Average area (trabecular, transitional, and cortical) for the 66% level: 

pre, mid and post training. 

Moment of Inertia 
 Moments of inertia about various axes are shown for the 38% and 66% slice planes 

and averaged among all subjects in Figure 17 and Figure 18. 
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Figure 17. Average CSMI (M-L, A-P, Polar) for the 38% level: pre, mid and post 

training. Units are pixels4. 
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66% Moments of Inertia
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Figure 18. Average CSMI (M-L, A-P, Polar) for the 66% level: pre, mid and post 

training. Units are pixels4. 

Strength Indices 
 BSI was found to be a very repeatable and unique measurement for each subject. 

Figure 19 shows average values among all subjects. Values are consistent for BSI 

regardless of which axis they are measured about. Figure 20 through Figure 22 show 

various BSI values for each individual. The variation between “pre” values in subject 3 is 

due to image noise. Figure 21 and Figure 26 show BSI for the 66% level. 
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38% Bone Strength Indices
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Figure 19. Average BSI (M-L, A-P, Polar) for the 38% level: pre, mid and post 

training. Units are (pixel-intensity)( pixels4). 
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Figure 20. Individual BSI (M-L) for the 38% level: pre, mid and post training. 

Units are (pixel-intensity)(pixels4). 
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38% AP-BSI
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Figure 21. Individual BSI (A-P) for the 38% level: pre, mid and post training. Units 

are (pixel-intensity)(pixels4). 
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Figure 22. Individual BSI (polar) for the 38% level: pre, mid and post training. 

Units are (pixel-intensity)(pixels4). 
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66% Bone Strength Indices
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Figure 23. Average BSI (M-L, A-P, polar) for the 66% level: pre, mid and post 

training. Units are (pixel-intensity)(pixels4). 
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Figure 24. Individual BSI (M-L) for the 66% level: pre, mid and post training. 

Units are (pixel-intensity)(pixels4). 
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66% AP-BSI
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Figure 25. Individual BSI (A-P) for the 66% level: pre, mid and post training. Units 

are (pixel-intensity)(pixels4). 
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Figure 26. Individual BSI (polar) for the 66% level: pre, mid and post training. 

Units are (pixel-intensity)(pixels4). 
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3.2 Bone Quality vs. Geometry  

 When the cortical bone at the 38% level are averaged among each of the 10° sectors 

and at each training interval (pre, mid and post), average values of cortical thickness can 

then be plotted against average values of density. The 36 data points from the average of 

the 38% slice plane images (and at each training interval) are shown in Figure 27. Values 

for each of the 17 subjects (36 sectors x 3 training intervals x 17 subjects = 1836 data 

points) are plotted in Figure 28. The average of the images at the 38% level show a clear 

linear trend becoming evident after a thickness (as measured by number of pixels) becomes 

greater than about 12 (see Figure 27). There is a 2.5% decrease in density (from about 1025 

to 1000) that accompanies a 67% increase in thickness (from 12 to 20). This trend of having 

higher bone mineral density in the posterior portion is in keeping with observations of other 

researchers (see, e.g., (Lai et al. 2005),(Nonaka et al. 2006)). 
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Figure 27. Average cortical thickness (in a 10° sector) versus average cortical 

density in that sector for the 38% level: pre, mid, and post training. 
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38% Density vs. Thickness
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Figure 28. Individual cortical thickness (in a 10° sector) versus average cortical 

density in that sector for the 38% level: pre, mid, and post training. 
 

 Averaging the 66% slice plane images produced the cortical thickness-density points 

shown in Figure 29. Data for each of the 17 subjects are given in Figure 30. A similar linear 

relationship between thickness and density was seen at the 66% level as was seen at the 

38% level. Here, a 2% decrease in density (from roughly 1005 to 985) accompanied a 67% 

increase in cortical thickness (from about 12 to 20). 
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66% Density vs. Thickness
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Figure 29. Average cortical thickness (in a 10° sector) versus average cortical 

density in that sector for the 66% level: pre, mid, and post training. 
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Figure 30. Individual cortical thickness (in a 10° sector) versus average cortical 

density in that sector for the 66% level: pre, mid, and post training. 
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4. Discussion 

 Even if the exercise regimen through which the subjects were tracked was more 

stimulatory than their previous daily activities, 13 weeks is probably the earliest than one 

would expect to see changes in bone density (most likely in distal trabecular bone) due to an 

increase in training. The remodeling process in bone consists of resorption of “old” bone 

followed by addition of new osteoid followed by mineralization of the new osteoid. The 

resorption process takes about 24 days in cortical bone. Osteoid formation can then take 

from about 3 (trabecular bone) to 4 (cortical bone) months. Mineralization is substantially 

complete 10 days later. While the whole remodeling process is on the order of 4 to 5 months, 

the process is obviously gradual. At any given remodeling location, bone resorption overlaps 

with bone formation which overlaps with mineralization. In light of these time periods, 

were short term adaptations to manifest themselves, it would be in either a decrease in 

cortical bone density (due to increased BMU remodeling activity) or an increase in bone 

area (probably trabecular, which forms faster). While a few subjects had localized 

trabecular apparent density changes that approached the Least Significant Change for an 

XCT-3000, overall neither trend was apparent. 

 While no significant change in bone morphology was noticed as a result of the training 

regimen, some striking observations were made regarding the subject bone images 

themselves. First, there was a wide variety of bone shapes represented in the study. 

Medial-Lateral lengths ranged from 47 to 62 pixels and Anterior-Posterior length ranged 

from 63 to 85 pixels. These unique cross sections manifest themselves in the range of 

individual CSMI and BSI measurements. Variations in bone morphology (shape) may have 

a double effect of an individual’s peak tibial stress: in addition to the influence of shape on 

tibial stress, bone shape also influences the mechanical properties. Relationships between 

the morphology and the mechanical material properties of bone (brittleness and 

susceptibility to fatigue in particular) have been reported elsewhere in the literature 

(Tommasini et al. 2005). Further, tibial stresses and strains are related to individual 

ground reaction forces with the peak occurring on the anterior and posterior surfaces 

(Peterman et al. 2001). These ground reaction forces are themselves highly subject specific, 

being a function of body weight and gait. Anthropomorphic measurements, bone geometry, 

and bone material properties will all lead to a very individualized peak tibial stress. Given 

an estimate of an individual’s basic anthropomorphic information, and a tibial density 

distribution and accurate representation of their geometry from pQCT, an assessment of 

the overall mechanical integrity of the bone should be possible. 

 Though the precise mechanism of tibial stress fracture remains unknown, one 

generalization that can be made is that stress fractures occur after microcracks induced by 
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repeated bone loading coalesce before having a chance to be cleared by the remodeling 

process. By correlating tibial stress (estimated on a subject-specific basis) with stress 

fracture morbidity data from its larger population (i.e., a BCT class), we should be able to 

begin to make generalizations about individual stress fracture propensity in the future. The 

investigators know of no studies which have attempted patient specific stress analyses on a 

population with the goal of being able to estimate stress fracture incidence a priori. 
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