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Abstract

A new coarse-coding technique is presented for labeling image pixels and re-
gions to match exemplars or multivariate material signatures. This multino-
mial classification method can be used for object cuing and tracking, as well as
for material identification and image segmentation. Pixels are classified—and
classification reliability can be estimated—with only single-band histograms
and one pass through each image band. An example of four-class labeling
illustrates the power of this two-level classification algorithm.
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1 Introduction

- Image analysis usua,lly 1equnes 1ec0gml:10n of objects—scene 1egxons \Vlth charactel-
istic colors, textures, shapes, or motions. I have developed a coafse-codm 7, method for
finding and labeling objects of a,ppm\mntely known appemance “The ob_]ects need not
“be homogenous; complete, unocelided, or of any fixed size of orlenta,txon "Any spectral
or textural signature characteristics that differ from the background can be e\plcntec}

My KNIFE digital-i xma,ge analysis system supports p:\el clasmﬁcatlon followed by re-
gion” extraction; as well as'segmentation followed by region labehng Pixel clasmﬁcm-
tion with extraction and noise cleaning is the faster of the two, but KNIFE’s integr ated
split/merge segmentation [Laws 88a] followed by 1egxon ba.sed cla,ssxﬁca,tion tends to give
better results. The latter approach could exploit region shape and context as well ‘as
multivariate pixel signatures [Wesley 86}, although only shape-based postprocessmg has
been implemented to date [Fua 86, 87ab). This paper descnbes the pixel clasmﬁcat;on
technique, which is the same whether it is applied before or after’ reglon extraction,

- I shall first list tasks for which classification is useful, then discuss the 1equned pro-.
cessing steps: Briefly stated, derived data bands gather all relevant information intd p:\el'
feature vectors:: Multmonual signatures (or lustograms) are then gathered for emch class
prototype. Reference signatures are compiled into labelmg functions that ma.p gxay lev--
els into source-class assignments. Confusion matrices for the reference signatures help
combine single-band class estimates into multiband labels. Connectad components in the -
second-stage label map are then extracted as regions (or objects) for higher-level process- -
ing. e

2 ' Labeling Tasks

'~ There are tasks in which approximate foreground and background signatures are avail-
‘able; and in which target identification ‘can be achieved by simple pixel classification or’
discriminant analysis. Cuing and ‘counting tasks 1equ1re that all scerie obj jects of a cer tain
‘class be identified after one or tore prototypical examples have been provided [Touch-'-
berry 77; Conners 82, 84; Trivedi-S4ab; Harlow 85; Laws 85; Lehrer 87]. Similar recognition
problems are posed by Tomogr apluc reconstruction of solid ob jects from slices. Tracking
is also an important application: mithough often limited to'cuing and extraction of a smgle
object in-a temporal sequence of i images, t;ra.ckmg of all dxscnmmable ob jQCtS in a'scene
may be necessary for robot vxs:on or autonomous veh1cle nav:gatlon [Ankl 81 le\;li 82
Laws 88b}. - : S :

- Identification of material types- (5011 asphalt concrete, water, etc) is sxmxlar e\cept
that a'stored database of signatures is used [Ha,rahck 69, 74;" Wacker 69; ‘Kettig 76; Na-
gao 76; Wiersma 76; Narendra 77; Peich 77, 80; Parikh 78; Sadjadi 79; Matsumoto 81
Swain81]." Sinice’ simple " classification 'is “seldom adequate ‘researchers have deveIoped-
multistage or relaxation analyses that e\plcut spatial and semanti¢ rela,tlonslups among
regions [Duda 70, 80; Miluer 70; Bajcsy 73, 76; Yakimovsky 74; ‘Barrow 76, 77; Bullock 76;
Faugeras 79, 81, 82; Haralick 79; Price 79, 81, 82; Ohta 80; Pa,rma 80; Browse 82; Gold-
berg 82; 83; Hwang 83, 85; Kitchen 84;1 \fIa.tsuya.ma 85; Belknap 86; Wesley 86; Bhanu 8(]

“Material labeling remains difficult,’ especxally for ‘uncalibrated imagery ancI rapidly
cha,ngmg scenes. Cluster analysm 'm(l spa,t;al reasomng can sometxmes e\tract objects '




but classification techniques are still necessary for their identification. The same is true for
regions found by other segmentation methods [Laws 88a]. I have developed. classification
‘tools in the I&NII‘E packa,ge to perform this adentlﬁcatm y step by using a,ny chta bands
"and obj Ject sighatures that are available.
) Many advances have been ma.de smce ‘the ea,rly days of p:\el classnﬁcatlon a,ncl c10p
' acreage est:ma,tmn in ERTS/Lmdsat xmagery We can now. take adva,ntage of better
Sensors (far superior. to human vns:on), faster computexs, _and improved techmques of
restoratlon ﬁltermg, mterpolatlon enhancement, correlatlon matchmg, multivariate clas-
Slﬁcatlon range estimation, and shape from shadmg : '
" N evertheless progress in automated material and ob Ject 1dent1ﬁca.t10n lns been margmal
 for aerial reconnaisance and almost nonexistent for low—angle or ground-based imagery (as
" is needed by an autoromous velucle) Edge detection and shape analysis are useful i in con-
strained industrial- mspectxon tasks, but have had very limited success in natural imagery. -
‘Segmentation techmques even those spec:aliy desxgned for texture segmentation, are only
beginning to approach human perform'mce Integrated approaches that utilize edge-based
and area-based techmques in a pyramid of gradually improving image resolutions are still
highly e\per:mental and art:ﬁcml mtelhgence methods remain mapphcable until semantic
 features can be extracted more reliably. :

Ini this paper I show the benefits of returnmg to pl\el clasmﬁcatlon as an uutaal method
of i image partxtlomng md matemal 1dent1ﬁcat10n o '

3 Iﬁfdrinéfibn Gathermg -

I assume that the initial information relating to a pixel’s material type can be gathered
into a vector of scalars stored (implicitly or explicitly) as the pixel’s multivariate value.
Inten51ty, color, infrared brightness, and radar reflectance are often available in this form,
while many other pomt propertzes may be dxrectly measura,ble in the mdustrlai or medical
domams Derived data, such as hue, saturatmn local te*{ture, surface. slope, albedo, and
even opti¢ flow, can also be assocxated with mdmdual pixels. Similar treatment of: region
sha.pe and semantlc conte*-:t may be poss1ble, as described below. : y

[ further assume tha,t any available ¢ normahzmg bands—such as range anci surfa.ce
slope—have been used to correct the other multivariate values, thus -making position-
mdependent material class;ﬁcatlon a reasonable approach. (The nmmahzmg bands may
also be usefui during segmentatxon however, they do genera.lly exhibit smooth variations
that are difficult to exploit.) In some cases it may be desirable to perform a preliminary
segmentation, compensate for regional shading and hypothesized object properties, and
then reanalyze certain image regions by using the methods descnbed in-this paper. . -

. The Jmportant pomt is that all information relatmg to. a_pixel’s scene label must be
avaxlable as part of the descnptwe vector Useful propertles of each neighborhood; such
as local te*{ture, should be ‘computed amd ass;gned to the central pl\el CIasmﬁcatmn can
'then be doné without consxdermg Jomt probabllity distributions over neighboring pixels.
Tam thus advocatmg the traditional feature extra.ctmn/cla,smﬁcatmn paradigm,; _e\cept'
that I employ new techmques of class:ﬁcatmn anci spatial analysis. | also want to allow.for -
different descuptwe vectors in d:ﬁerent 1mage reglons after the i 1mmge has been. pmrtmlly '
segmented as well as dxfferent vectors for different ana.iys:s tasks - :

An unlimited number of texture measures are available (10(:'11 gxay-level ‘;t&tlStl(‘S




{Piech 70; Haralick 73; Nagao 76]; edge properties {Rosenfeld 71; Pietikiinen 82; Kjell 84];
' spot density [Zucker 75; Mitchell 77, 78, 79]; co-occurrence of te\tme eIements [Dav1s 79,
81; Dyer 80; Hong 80; Terzopouios 80; Voorhees 87ab]; te\tme energy [Laws 80; fractal
"(Ilmensmn [Pentland 84] and others) each computed over a range of nelghboxhood sizes
"1nd shapes. My current pracmce is to precompute only local vanance then . to compute
more complex texture measures [Laws SSb} over lugh[y textured areas if they must. be {ur-
ther classified or segmented. Partitioning based on texture measures alone is very seldom
required in natural i imagery because regions that differ in texture will typlcally also differ
in brightness, color, or variance. Computing texture measures afte1 scrrmentatzon _when
feasible, greatly reduces problems caused by regional eclge effects. o
- Actually, any quantity closely related to local variance will wmk for cIass;ﬁmtmn 'md
segmentation. I'use the loga,r:thm of local variance because it assigns a réasonable amount
of weight to subtle variations, is relatively unaffected by illumination changes, and fits
well withm an eight-bit pixel descriptor. I compute the variance in small’ wmdows u‘smﬂ _
binomial (or approximate Gaussian) relative. welghtmg patterns such as SR

14 6 41
12 17 .. | 4162416 4
2 4 2 6 24 36 24
oy R

14 6 4 1

.. to emphasize the central pixels. (Rectangular windows with elliptical or diagonal weight-
ing patterns could also be used [Laws 88b].) Note that the weights fall off rapidly, giving
the effect of even. smaller measurement windows and helping to avoid-regional border
effects. . Small variance operators are essential: for identifying such: details’ as’ firie tree
branches, although large operators (or small operators applied to reduced 1mages) may be
more convenient for extracting whole trees. R

Early researchers overlooked the power of such local data for classification of natmai
textures.. Gray-level co-occurence statistics [Haralick 71,73, 74] were found: to be more
powerful than Fourier measures [Weszka 75; 76; Dyer 76}, especially for nearest-neighbor
statistics, but the comparative studies did not make it clear that the most powerful Fourier _
features were also high-frequency measures. These were computed across large image
windows and their coefficents were averaged over large regions in the Fourier domain;!

. although this reduced their power consxderably, they still outper formed the’ low-ﬂ equency N
.fea,tures . . . o . S . IR R

Locﬂ measures. generate blmodal lnstograms when computed over Iarge “scale macro-
textures: one peak for texture-element interiors and another for their borders. Although
this created problems for Gaussian-based discriminant functions, it can be an advantage

. for a multinomial classifier. The KNIFE algorithm makes use of h:stogra,m shape rather_

than just mean and standard deviation. : - SR . S

The human eye is very sensitive to collmear edge ahgnments even over large dlStZLnCeS-“*
sometlung no local texture measure can capture. It would: be useful if we could a,dd mea-

“1Anoft-cited study of Fourier phase measures [Ei\llmdh :9] was likewise ﬂa.wecl It should be tepetted by
using Gabor filters to measure local phase relationships among individual Fourier frequencies. [Laws 88b).
" 'Such measure would be approprmte for recognizing blurred or noisy textures with, unreliable nearest-
neighbor statistics. :




" sures of ‘such gestalt properties to each pixel it an image. ‘Characteristics of local shape
" environments ¢ould also be exploited for cuing, counting, and tracking tasks requiring
“ that objects of a partxcuhr shape be found. We mlght note any nearby. dxscontmumes
“and surface maxima, then use classification to seek pixels with similar local contexts. Par-
~allel hardware, such*as the Connection Machine, might be ideal for broadcastmg local
feature positions and compiling the shape- enwronment descnptors [chker {8 Dav;s 79,
~'81; Dyer 80; Hong 80; Hillis 86}." o .
" Other contextual knowledge may be’ prowded by distant regions, prevxous scenes dy-
namic analysis goals, hypothesized interpretations, etc. Capturmg such knowIedge in a
finite vector of pixel descriptors would be difficult, but there is a shortcut that'is adequate
~ for our purpose. We may be able to capture the combined effect of all such Lnowledﬂe on
_ a specific claﬂsmﬁmtion problem. It is as if we were askmg an expert, or expert system,
_ “Given all you know about. this pixel and its environment, what are the relative likeli-
hoods that it came from each material type?” Answers to this implicit question (from any
number of evaluation functions) can then be combined with other descriptors to estimate
material-class likelihood. This is similar to the approach used in the PROSPECTOR ex-
pert system [Hart 77; Duda 79; Reboh 81] for predicting mineral deposits at each position
on a map. : :

This insight is the basis of my classifier. Each descriptor value gives evidence for its
pixel’s material class or object identity. Appropriate evaluation routines may examine
the patterns of evidence and post their own opinions, in the manner of blackboard expert
. systems. A top-level evaluator then examines all of the evidence and makes the:final
judgment. Coarse-coding® means that class membership is determined from the pattern of
..evidence rather than by majority vote or by selection of a single most-reliable estimator.
It would be possible, for instance, for the top-level evaluator to reject -all lower-level
judgments, as when it assigns pixels with “grass” and “soil” characteristics to a “pasture”

The class1ﬁcatlon method described below is qulte tolerant of garb‘age” :data bands,
but there are computational advantages to using only the bands that carry information for
a given task. A useful method of band selection is to attempt traditional or classificatory
segmentation of each single data band, keeping only those that produce reasonable par-
_titions. {Useless bands are either unsegmentable or result in randomly interspersed-pixel
- labels. For some tasks we can compute the.accuracy over known training regions—or
. the degree of correlation with a reliable classification method—as a screening measure.)

During interactive analysis, a user typically examines the data bands or their segmenta-
. tion/classification results interactively to decide which contain: useful mformat:on Stan-
~dard procedures develop quickly for any specific task. G i

.The bands remaining after such screening provide a vector of: numbers (or othercodes)
'charactemzmg each pixel and its environment. Some of the descriptors measure inherent
object properties, while others may be derived from sophisticated processing of the sur-
rounding image data. The data vectors in a region will: all ‘have the same structure, so
-that the elements form two-dimensional image bands. (Some of the data may be missing,
as when specuiar reﬂection prevents mea,surement Speci'd pla;ceh‘older codes should mark

2The ‘term: comes from: the field of neura.l nel.works, or’ paraiiel distributed’ processmg [Hmton 86].
Related multistage models; such as Samuel’s signature tables [Samuel 67; Thosar 73}, }mve been a.roun(i )
for a long time.




~ this fact.) If sufficiently refined measures were available, the classification task would now

" be trivial, The 1est of tlus paper dxscusses the more typlca,l case in wh;ch soplustlcated

C classnﬁmtzon d.lld glonpmg technlques must stlll be employed e

_ 4_ P_rototype Representation :

_ Once data bands have been computed, we can extract tremmg e\empIars fm com-
'pllatlon into Iabehng funct:ons .The user m;ght for mstance, outline a few regions in-

teractively (or point to regions of a segmented image) and supply labels for them. All

_'represenmtwe appearances of a material type or semantxe obJect should be included in

the training set so that nearest- nelghbor clasmﬁcmtxon can be used (Such, approaches,_

also referred to as ‘memory-based reasoning [StanﬁH 86; Waltz 87], permit. classification
decisions to be ° e\pIamed” to the user by d;splaymg the appropriate prototypes Incor-
rect asszgnments can lie remedied by mciudmg unrecogmzed regions as new. prototypes

" The coarse-coded classification proposed in this paper | is not quite a nearest- nelghbm_
'techmque but the phllosophy is similar.) T :
© A material type can be characterized. by its szgnature or probabxhty dlstrlbutxon over
the possible multivariate pixel values. Any one ma,terial type may have several signatures
(depending, for instance, on illumination or scene (I;st;'mce), for simplicity,. I shall treat
these as sep'uate classes that happen to sha,re a single semantic label. lefelent material -
types (e.g., diffeient types of vegetatlon) may be ma,ppecl to dlfferent labels for some

"purposes and to a smgIe label for others Pmels will be classn‘ied under the. distinct
sxgnature classes, then grouped into regions a.ccordmg to the associated semantm labels.

~ Signatures have commonly been represented by Gaussian dlstrxbutions in order to re-

_ duce the probab:hty estimates to a ~manageable number of parameters. 3 Such pa.mmetnc
dlStI’lbuthﬂS yield elegzmt discriminant’ functions, but seldom model image data’ realisti-
cally. Consider the trivial t'xsk of dlscnmmatmg a two- vaiued salt-and- -pepper dlstnbutlon
from a Gaussian thh the same mean, standard deviation, a.nd [zero] sl\ewness The two

signatures differ only in their fourth and lngher~order moments and cannot be separated
by quadratic discriminant analysis, yet almost perfect pl\el classification can be aclneved _
with other techniques (including human vision). :

The traditional approach can be’ salvaged if sxgnatures can. be clecomposed mto sumis
of ‘multivariate Gaussian distributions. Pixels can then be assigned. to the. subpopula- -
‘tions and hence to an overall class [ScIove 80]. Other parametnc mizture densities can be
handled s;mllmiy Unfortunately, this decompos;tlon is qulte difficult for n’mturallv occur-
Ting matenal sngnatures——even in the one-dimensional case. S!gnatures of sxmple ma,terla,l_
types may be quite irregular (espec:ally a,fter multlband transformatlon [Kender 76, 77)),
‘whereas hxstogmms of mixed terrain and vegeta,tlon may 50 closely a,pplommate a br oad
Gaussian as to defy meanmgful decompos; tion. We may also have to deal with nommal :
ordinal, or nonnumeric band codes for which parametric methods are inappropriate...

Traditional multivariate classification compares each pixel vector with’ each’ mateual
“signature and assigns the pixel to the most similar (or least dxsta,nt) class Sumlzmty
metncs h'we been based on the probablhty of an observed pixel value, given the m'ttermi'

*Even a three-dimensional signature of 256 grny levels per dlmensmn wou[d be a.wkwa.rcl to represent :
as a multivariate histogram. We may therefore have to deal with scores of signatures having a dozen or
more data dimensions.




“class, ‘or, via Bayes theorem, on the’ probablilt} of a mateual class gwen the obsexved
vahie. The latter is preferable, but requires estimates ofa priori class proba.biht]es (Any
classification technique assumes some model of thesé a priori probabilities; it is the e\phcxt
treatment of them that makes Bayesian classification preferable when it can be used. Hu-
man judgment, however, often deviates from the Bayesian model even when the necessary
information is available. )
I propose tlie following approach. Suppose we mccept observed hxstograms as tlie best
available estimates of material and object signatures. Histogram prototypes are equ:valent
“to niodeling each “texture class as'a multinomial process with an [almost] mdependent
probability of producing’each ‘possible multivariate value.’ We can usé ratios of matchmg
pixel probabilities for two source classes to estimate ‘whether a pa;’ucuim descrlptor vector
is more likely from one signature class than from another [Laws 85]. - )
- Smoothing the histograms of continuous (i.e., interval or ratio) numeric measures intro-
duces a desirable correlation between nearby bin values.! A variety of smoothing “kernals
has been used for estimating probability distributions ﬁom h:stograms T use Gaussum
smoothing (and folding back of off-scale energy) with g good ‘results, but almost any mod-
erate smoothing process would be acceptable. The optunal mmunt of smoothmg depends
on the expected variability of observed gray levels. S
Multidimensional histograms are awkward to use, especially when different subsets'
of the data bands are to be used for different tasks. Sparse storage techmques do exist
'[O’Rourke 84], but histogram’ smoothing degr ades their effectweness I have chosen to
“store only the single-band (ot marginal) histograms, which are easy to compute, manip-
ulate, display, and interpret. If the univariate histog,rams are maclequate, multivana,te
transformations can be employed to compute additional pixel descriptors tha.t summarize
the multiband information with respect to a particular goal. When, for instance, color
images are segmented, an mtensxty hue-saturation’ replesenta,tmn is suﬂimently decoupled
that original red-green-blue measures may usually be discarded [Laws 88a]. This is similar
to using redindant multivariaté transformations to search for axes aiong Wthh muitlband
distributions are separable [Ohlander 78]. -
Note that I am not proposing univariate lustoo‘nm 1ep1esentat10ns asan approuma,mon
to multidimensional parametric sxgnatures 2" Parametric representations simply do not
capture the full complexity of multimodal real-world data. Multivariate lustograms do
capture this complexity—but only too well, which is why sinoothing is requlred Carefully :
‘chosen univariate histograms not only captire most of the signature 1nformatxon ‘but also "
simplify the problem of combining data bands'to comptite snmianty or distance functions
I propose that the weighting or feature extraction problem be confronted at this point
becaise the resultmg data bands and uhivariate histograms are in’ a form suitable for
human understanding: This permits an “expert system” apprmch to system development
as well as prowdmg very fast techmques for lmage segmentat:on 'md ob;ect 1dent1ﬁcmt;on

4Smoothmg does. Eose mformation when gray. levels from one class are mterdlg:tated with gray levels
from another. Such interleaved picke! fence effects sometimes occur in, denved dam bands when two
distinct populations are mapped to'a single mtervaf
31 doi take such & stand ‘elsewhere [Laws 88al, v:ewmg segmentauon Limt. uses umvanate hlst.ogmmb as
a heunstlc shortcut. to full multldlmens:onai ciuster alnEySIS : :




5 Coarse Codmc

Even a c]ass:ﬁcmtmn pxoceclme that ‘employs just the’ marginal lustogmms pxesents
- some data-handling difficulties. Asstime that we have'as many as sixteen data bands-and
- 128 sixteen-band signatures (representing 128 source classes or possible appearances of
materials). It would be inefficient to store 128 class likelihoods for each’pixel, updating
- each sixteen times as'the data bands are processed. Performing multiband classification
pixel by pixel would seem more reasonable, but requires moving all' 128 sixteen- band
~ signatures through the computer for each pixel plocessecl Specnal p'u a,llel ha.rdwa:e woulcl
be needed to make such approaches practical: g e
- Fortunately there is an-efficient way to classify the pixels in‘d singlé pasi:»'tln'(_)'tfgll
-the data bands and- signature histograms. - Some accuracy mdy be sacrificed, but’ the
processing effort and intermediate storage are greatly reduced. The key is a coarse-coded
- representation that encodes approximate likelihoods for:all SJgnatme classes in'a single
integer or bit pattern. The final bit pattern for each pixel can' then be decoded to provide
fairly. reliable likelihood estimates for each signature class.” The more data bands' used,
the less effect misclassification on any band will have. Adding more data bands can only
improve the classification results as long as the stored sxgna,tules for those bands are tluly
representative. : : SR SIS
The essence of coarse codmg is to let ea,ch blt or gloup of blts ina pmttem encocie
independent information about the pixel’s material class: The overall’ sequence of bits
is: then: 2 more reliable indicator of material class than:are the individual bit groups
[Hinton 86]. This can be regarded as a two-step classification procedure: first each pixel
vector is summarized by a coarse-coded bit pattern, after which the bit pattern is expanded
-to a vector of signature likelihoods or other outputs. (It can also be regarded as the feature
extraction and classification: steps of traditional pattern recogmt;on perfmmed after the
preliminary feature extraction that generated the data bands.) ' C '
The quality of the final classification obviously depends on'the 'method of encodmg
and decoding these bit patterns. -Bit groups are similar to the hidden units of connec-
tionist pattern recognition [Rumelhart 86b]: That approach would use a gradient-descent
algorithm to evolve a set-of codes with satisfactory classificatory power on some training
set; with luck, the codes would also generalize to additional classification problems. I have
- developed a more structured approach that uses image statistics and: signature character-
istics to select the codes dynamically for each task. Each relevant data band is rediced
1o a few:bits in the code; the bit string is then decoded in the manner tlmt best pIGSCIVES
‘the discriminability of the reference: signatures.: : T A
-1 choosé a coding scheme in which each group of descriptor blts répresents a pixel’s
- most likely signature class, as estimated from' a single data band: The single-band codes
are concatenated to form afull coarse-coded pixel descriptor. {This is equivalent to'storing
each bit group in a separate data band. Many operating systems, though, limit the number
of images or data files that can be open at one time.) The required number of bits per -
pixel depends on. the number of data bands used and the degree ‘of ‘accuracy that each
-Tequires. Seven. bits per band, for mstance, are sufﬁment to (les:gnate one of 128 sxgnature '
classes uniquely. . N S : SRR . e
Alternatively, the available bxts per pnel can be pa,rtltxoned opt:maliy among the data
-bands.. Source classes can be clustered beforehand into group‘s wnth sxmllar s:gna,tures for

=1




a particular band; only enough bits to represent the equivalence sets are then needed.
Such partitioning can even increase overall classification accuracy. {Hinton $6}.. The set
partitioning should be different. for each data band, with more bits used for the more,
informative bands. Signature clusters should maximize similarity within a cluster and
~ discriminability among clusters while maximizing classification accuracy across all-bands.
It may also be advantageous to group semantically related material classes, such as all of
the vegetation signatures, for tasks in which such confusion is relatively unimportant..
' Additional bits for each band could be allocated to record the second (or. even third)
best class, as well as an estimate of classification. reliability. -As this. would: make.the
decoding more difficult, it is worthwhile only if one of the data bands contains significant
information that cannot be captured by the pattern across, all bands. On the other hand,
there little penalty is incurred for applying independent classification algorithms to one
data band {and to the previously computed bit pa.tterns) recordmfr their opm:ons as if
additional data bands had been employed.- : o NETA
: The remainder of this paper treats only the s;gnature cla,SSIﬁc'thon pxohlem an(l not
the allocation of coarse- codmg bits or the optlmzza,txon of cluster-assignments. .. ..

6 Labelmﬂr Functlons and leellhood 'I‘ables

G]ven a d'a,m band, we need to transform the p:*{el va,lues to blt codes that can be
_ appended to the. coarse-coded descriptor band.. This is just classification of observed gr ay
levels into an a posteriori most likely signature class.. I R T
- I start with a set of single-band histograms representmg 1mp01tant obJects and ax-
. pected background signatures. Signatures may come from a database (suitably corrected
for scene and sensor characteristics) or, from labeled image regions.: If the: backgound
statistics are unknown, they can be estimated from a full-image- hlstogmm (if the target
objects are small) or {rom ensemble statistics of typical backgrounds. SN
 The first step is to smooth any continuous-valued reference signatures. This sprea(ls
each, bin probability over several bins in a manner. that models. the uncertainties of gray-
level reproducibility. Considerable smoothing is needed for object recognition, much less
for object tracking under uniform illumination conditions. A certain minimum amount.
of smoothing is needed to account for random sampling effects in the ongmal sngnature
histograms {Laws 85].. : : : -
The next step is to estlma.te source ciass hkehhoods for each poss1ble g,my level The
class code (1.e., bit pattern) for the most likely signature class can then be stored in & single-
~band lookup table for rapid pixel labeling. I call these lookup. tables labeling functions
“to avoid confusion with other lookup tables described.in this paper.. The mechanics. of
actual class:fica,t;on ‘depend on the available ha.rdware but loohup tmble transformatlons
are. typlcally qmte efficient. .. - : : - TR i AT
The selected source class for a glven gray level could be Just the mgnatme hwmg the
.hlghest probablhty for, that bin, but we can use a priori source probabilities and Bayes’
rule (as well as utility functions or error penalties) to make a better selection. The:prior
class probabilities can be estimated from historical frequencies or from an malysm of the
_data band histograms (as described below). .. . e R R
Once we have the labeling functions, we can compute e‘cpected confusxon mmtuces (or,
stated (11fferent!y, a priori signature discriminability). Because this can be done before




applying the labeling functions to the input data bands, it can be used for task-dependent
band selection. The confusion matrices also provxde probabilities and likelihoods needed
to decode the coarse-coded pixel descrlptors ' : : ; :
' The trick is to pass each single-band reference sxgnatule tIuough the ba,ncE hbelmﬂr
' function. Sorie of the gray levels recorded for that class will be correctly labeled, while
~others will be attributed to the incorrect sxgna.tule classes. The relative frequencies of the
different labels, normahzed to unit sum, mdlcate the pxoba}nhty of each class assignment,
“given the source class; this forms one row of a single-band: confusion, matrix. The process
is repeated for each signature to fill out a confuslon matrix for each band. :

Given an assigned label, we can now use Bayes’ theorem to derive the smgle b'm(l
posterior probability of each source class. If the source classes are equally likely, the
relative likelihoods can be read from the columns of the appropriate confusion matrix. If
not, weighting-factors proportional to source probabilities adjust the column entries to-
yield the likelihoods: normahzmmon to unit sum converts these to posterior plobab;htxes

One estimate of the source probmblhtms can be obtained by passing the i image data
‘band histograms through the labeling functions, possibly combmmg the. resulting label |
frequencies across bands. (These label frequenc;es can also be used for band selection;
rates of target detection, for instance, would seklom he xmploved by using data bands in.
‘which the target label is never assigned.} Note that passing a reference sxgnature through
the labeling functions is genera.lly much faster than passing image dmta through and then
histogramming the result. -
*Combining all of the above ‘we can now get E'Lbel pxobmblhtzes for each ba,nd These
can be combmed to get an estimate of the multiband class probabilities for any given
pattern of coarse coded descriptor bits. The probability of any bit pattern for a given
source class is the product of the probabilities of the individual single-band labels. (I
assume, as dxscussed above, that the selected data bands are sufficiently. mdependent
that we can ignore paxrw1se ‘and higher-order band interactions. If this is not true, fuzzy
combining functions might be more 1ppropr1a,te [Zadeh 74; Salton 83; Laws 85].) We can
do this multlphcation for each of the soutrce classes, _perform the Ba,yes inversion to. get
the posterior class probabilities, and assign the most likely class label to the bit pattern.

'The labels for all possible bit patterns can be precomputed and stored in a classification
lookup table if the number of bits is small. Similar lookup tables can store the second-best
label, the ratio of best to second-best posterior probabilities, the ent;opy (i.e., mforma.t;ou-
'theore’mc uncertamty), or any other function of the postenor probabilities. .

" Longer descrlptors ot those physmaily stored in more than one mtelmechte band
‘may’ be more efTic1entiy decoded by cached lookup (I use software lookup tables for
descrlptors of up to 12 bltS dynamic decodmg with cached lookup for longer pattexns)
Patterns found in the i :mage are decoded by using the same formula as before to, select
‘the niost’ likely source class. The pattern and its label are then attached to a list fora-
pair of corresponding Ilsts) Each computed px\el descuptor is soug,ht in-the cached list -
‘and is expanded to 1ts vector of class likelihoods oniy if the pa,ttern has not been seen
prev:ously There are typscally only a few hundred dlstmct patterns in an image.. Linear

SThese estimates are intermediate between a priori and a postertori estxma.l:es thiis arguably closer fo’
_the methods of human perception. The prior probability of having a zebra in my office is infinitesimal; bt
'ha.vmg seen a black-and-white striped animate object there, I should use an increased, “zebra probability”
in trying to identify it.




~ search that commences with the most recently seen patteln (or the most 1ecent1v c1e'1 te(E)
is satisfactory; although a liashed storage scheme would be faster. '

The classification procedure has been described. Each whole-image or 1egion'11 data
= band is passed through its corresponding labeling function to produce a source class esti-
~ mate for each pixel. These estimates, or code bits, are appended to a band of coarse-coded
pixel descriptors. The final coarse-coded descriptors are then’ passed throug,h the classifi-
cation lookup table or are dynamically decoded to obtain a consensus label for each pl\el
These labels constitute a label map. The next step is to e\tnct the connected components
and instantiate them as regions in a I\nowled‘fe ba.se

A Réﬁion E'xt'l"'action'

- The new region-extraction algorithm in the KNIFE package is gremtly lmplOVed ov er
one reported earlier {Laws 82]. An initial scan through the label map locmtes each con-
nected component; a second pass then renumbers the pixels to form a region map Region
- descriptors computed during this process can be used for xdentlfymg small nozee 1erom

that should be merged with neighbors {Laws 88a]. o

- T use a statistical noise-cleaning technique. Each small connected component is conmd

“éred for merger with the neighbor having the most similar multivariate reglonal hlstorfmm

The test for histogram similarity allows for the possibility that the small region’s hxstoglam
matches only a portion (e.g., one tail) of its larger neighbor’s lnstogra,m (Most statistical
goodness-of-fit tests assume random sampling and so require a full match.) A pseudo~1"
test for collinear surface fit then determines whether the merge is acceptable

‘A rather complex problem arises when hierarchical’ mgna,ture classes are zwznla,ble
Suppose, for instance, that several kinds of grass are known to the analysxs system All of
the sigriatures are likely to be similar, even though sufﬁmently distinct to fm m sepalate
‘signature sets.- In labeling a grassy field, the classifier is now hke]y to us;gn different

~grass labels to neighboring pixels. Where large climps of one type occur we wouI(E like
‘ the classifier to report them, but where labels ate intermixed we would like the classifer to
group thém all under a generlc “grass’ ]abel Slmxlarly, ;nterspersed grass and soﬂ should
be labeled “field.”

We cannot search for the composites, then subdivide them into more spec1ﬁc signature
classes: the ensemble signature for a mixture of unknown proportlons :s often unknowable
or too broad to be useful. A better solution is to extract homogeneous reglons from a fully
labeled image; then’ replmce intermixed labels with appropriate generic, ones and e\tnct
any new homogeneous regions. This may have to be repeated Wlth several dlﬂ'erent labcl
generalizations, but the area to be reprocessed shirinks each time an, 1dent1ﬂmble region is
found. T have worked out a’'way to do this durmg connected component e\tlactron, but
have not yet implemented it in the KNIFE pa,ck'mge _

The: initial image or image region is thus partltloned mto labeled reglons Selected
regions’ can be further partitioned; if necessary, either by p1\el 1a.belmg and groupmg, or
by segmenting and then labeling. It is often effective to alternate the two techniques,
since classification can break up complex imagery that stymies histogram-based segmen-
tation, while spatial segmenmtlon can 1dentxfy subreglons tha.t match separ ate modes of
a multimodal signature. -
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8 Example

Ground truth is difficult to obtain for natural imagery. Rather than present tables of
classification accuracies, I am going to offer a visual presentation of classification on the
training set. Success at such a task is not sufficient to. prove the usefulness of my image
analysis a,ppromch but it is-essential. A trackmg or. Iabelmg system that cannot 1dent1fy
' Jts trammg regions is hardly worth buxidmg ol -

oI start: with the. color: 1ma,ge in Figure I(a.) through (c),
' (vmdness hite- smturatlon) 1epresenta,txon [Laws: SSb] : X
~ band I compute.the 3'x 3 log-vanance band. in Flgme 1((1) I would p1efe1 a te\tme
“measure that 1esponds less st1ong1y to ob ject edges but have not yet developed 1 s:utable_
) noxm'ﬂmatxon R L S
T N then trace. the four ma,Jor scene ob Jects-—roacl sky, txees, and ground.‘-. T Inven t
prmted this tnmmg image, _but it mcludes all image pnels e\cept for. mthel tlnck stups-
“along boundarles of the four regxons. Tracmg thh a mouse takes only a few seconds for
';:most I'Lrge 1eg10ns, although T'admit to taking a couple of minttes. to extr act: the ‘grass
and: IMOUNtains as a single gelrymandered “ground” region. (I\NII‘E could ha,nd}e multlpie
: e\emplars per sema,ntlc class; but its display and edltmg tools for composxte s:n‘natum‘; are
“rather primltwe ). Trammg 51gnatures can come from prevxous tm'lges or from a database,
although crude tracing of large regions is a good strategy for acquiring new materials.

Signatures, or histograms, for the four material classes:are shown in Figure 2. No one _
band is adequate for discriminating all four textures, but the patterns of confusion differ -
from one band to another. Tlns Is cr1t1ca1 if coarse coclmg is to be effectn e, _smce I_c_lo_ not
;_'Z'Ie‘cplo:t interband correlations, S R
' Fsgure 3 shows. the smgle_bandi px\els labels computed w;th my method _Tleos are
-:._mar]\e(l with' the clzul\est gray: levels, then ground romd zmd sky ‘The. vw:dnes” band
'-.:-_:rmslabels much of the sl\y, the mountam face,’ a,n(l the roa Tue m:sla,b 5 o'f the_
ground - area. Sa.tmat:on labeis almost everythmg tree or road, wluIe.the_ V3 jeasme
;5"procluces noisy. patc _es'of tree and sky labels::: None of these cia,smﬂ"" s cmn recoustxuct
'-_';'the trzunmg set; but at’ Ieast they ma,i\e dlfferent patterns of errors. o
. Figure 4(b) shows, how this traxt can be exploited. ‘A second: Ievel classxﬁe;. is: applled'
to the four Jabels at each: pixel: ’I‘}us operator, constmcted to optlnu?e hbelmg, of the
é.-'_-':_trammg sxgnatures “second: guesses” “the first-level dassxﬁms and: assigns_ a final- pn\el
B label -The result. is stlil somer'at nomy, but most p]\eIs have been clasmﬁed correctly
- Since KNIFE i is also'a segmenta,txon program; I can use.its oxmected component ex-
tmct:on' '_outme'to consolidate: Iabeled pnels mto 1eglons and bmld couespon(lmg d'tta
. structures: Figure 4(c) show 5 the ext
Cset to 1 (the coarsest setting for normal use). I‘lgure 4((1) goes one step fur t;her merging
any region smaller than 200 pixels into its most similar neighbor.” _

The final result is a clean segmentation in about a tenth of the tinie that KNIFE's
integrated split/merge partitioning algorithm would require. Classification-based segmen-
tation of a 256 X 256 region may take from one to ten minutes on a VAX 11/780, depending
on the number of bands and the' number of regions formed.  The illustrated spectral /spatial
labeling process has not only recovered its training set, but has done a good job of labeling

"KNIFE’s region-growing operator would have much the same effect if applied to each of the major
reglons

11
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{c) Saturation Histograms (d) Log-Variance Histograms

- Figure 2: Prototype Signatures .
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(c)- Saturation Classification (d) Log-Variance Classification

Figure 3: Single-Band Classification Maps
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(a) Vividness (V) Band

(c) Extracted Regions (d) Merged Regions

Figure 4: Classification Results
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the regional boundary pixels as well.

9 S ummary

Many problems m jmage anmlysm cm be solved by hbelmg pi\eIs and gloupmg them
‘egional

el propertxes Thre’ ' sucl 'problems are

Identlfymg ma.terxals w;th known bug,hbness color or te\ture dxstrlbution

o 3_ . Identlfymg muitxple scene ob jECtS once some of them have been found
e Tl ackmg ob _]ects fxom one xmage to amother

'.Pne} Iabelmﬂr plowdes tenta,twe reglons for hwher-levei zunlys:s zmd mteg1 ﬁes welI \»11
‘other segmentation methods: . T : S :
The coarse-coding method of clasmﬁca,t:on is f'mst 'md eﬁ'ectwe It requues only smOle—
banci histograms™ as reference signatures, one data band for workmg storage, and one
. pass through each image band to perform the classification.. Use of multinomial statis-
tics avoids the multivariate Gaussian assumption built into traditional classification ap-
proaches. Needed probabilities can be estimated from the reference signatures and data
bands, while missing data bands (in either the signatures or in areas of the image) can be
handled with minimal difficulty. The approach is fairly mtultlve a,nd slnres mmy of the
beneﬁts of blackboard style e\pelt system development : :
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