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BACKGROUND 

 

Automation is being introduced into various domains of work and everyday life. Automated subsystems 

now provide the human operator valuable support in such domains as air, ground, space, and maritime 

transportation, military command and control, health care, and other areas. These types of computer 

support can be considered to define different levels of automation (LOA) between the extremes of full 

manual and full automation control (Sheridan, 2002). Between these two extremes a variety of 

intermediate LOA can be identified, and each one could be conceptualized as a compromise between 

human and machine responsibilities. 

A given system could be designed for a particular LOA on the basis of criteria such as system safety and 

efficiency, as well as human performance criteria such as the maintenance of situation awareness and 

balanced workload (Endsley & Kaber, 1999; Parasuraman, Sheridan, & Wickens, 2000). LOA may also 

be modified in real time during system operations, as in the so-called adaptive automation (Moray, 

Inagaki, & Itoh, 2000; Parasuraman, Molloy, & Singh, 1996; Scerbo, 1996; Scerbo et al., 2001). Indeed, 

Adaptive Automation (AA) can be defined as technology that can change dynamically its mode of 

operation, adjusting in real-time to the needs of the human operator. How such changes are accomplished 

may vary. For example, measures of human performance can be used to trigger automation, and operator 

models may be of use specifying in which conditions autonomous or semi-autonomous technology should 

take over. However, the use of physiological measures reflecting changes in the operator mental workload 

is considered one of the most promising methods (see Scerbo and colleagues 2001 for a review), since 

they provide real-time information on the state of the operator.  

The idea of using psychophysiological measures in human factors (see Kramer & Weber 2000, for a 

recent review) is currently broadly accepted. Nonetheless, actual implementation of psychophysiology is 

limited to off-line contexts (i.e. assessment and training), and several factors, such as the high cost and 

the expertise needed to get them work, strongly discourage their use in real-world situations. However, 

new insights and motivations may come from research extending the use of psychophysiology for 

operator aiding and support. As introduced above, this emerging field is devoted to develop adaptive 

systems, which will be able to flexibly adapt to the operator needs. Real-world applications for adaptive 

technology are still uncommon, though existing. Systems able to detect changes in the operator alertness 

represent an example of such technology. 

Alertness detection systems may be considered as the simplest existing form of adaptive technology. 

They provide binary decisions: either the operator is awake and performing or he/she is asleep. Some of 

these systems are already “up and running”, but they do not represent the final answer in the domain of 

AA. In fact, detection and prediction of behavioral implications of variations in mental workload and 

attention are harder than assessing performance implications of lapses in alertness (Kramer & Weber, 

2000). 

The most important consideration here is that AA involves the assessment of graded changes in mental 

workload, which is more difficult and requires the use of different measures sensitive to different levels 

and types of processing demand. 
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Future technological changes will permit to overcome most of the technical limitations in this field. 

Current technology actually allows the use of psychophysiological indicators in simulated real-world 

tasks by means of “smart” flight helmets incorporating electrodes and preamplifiers for EEG and EOG 

recording (Gevins et al., 1995), 2D and 3D brain mapping (Heinonen, Lahtinen, & Häkkinen, 1999) for 

visualization of dynamic states induced by events, or even the use of neural network models as an EEG 

pattern recognition method to detect transient cognitive impairment (Gevins & Smith, 1999), whereas 

brain-computer interfaces (BCI) (see Wolpaw et al., 2002 for a recent review) provide evidence for 

communication between brain and technology using decoding algorithms. Nevertheless, many of these 

tools and procedures have some shortcomings. They do provide real time or near-real time information 

about the state of the operator, but they are not perfectly reliable, and a system whose accuracy is affected 

by unknown factors is simply unacceptable when safety is at risk. This is not only a matter of the amount 

of information we can get from the operator, and we are not going to work out this problem simply 

adding more indicators. For example, using an artificial neural network and a noteworthy collection of 

physiological data (EEG, ECG, EOG, and respiration inputs) recorded during task performance, Wilson 

and colleagues (Wilson, Lambert, & Russell, 2000) found mean correct OFS classifications across 

subjects ranging from 82% to 86%. This is a fairly successful result, but it is not enough for ensuring 

safety. Also, that was a laboratory study based on a simulated task (the NASA Multiple Attribute Task 

Battery), but moving from the off-line to the on-line context, additional issues have to be considered, such 

as rapid data collection, processing, artifact rejection, and interpretation (Kramer & Weber, 2000). 

 

 

SHIFTING BETWEEN DIFFERENT LEVELS OF AUTOMATION 

 

In adaptive systems, task allocation between the operator and the computer systems is flexible and 

context-dependent. Adaptive automation may reduce the human performance costs (unbalanced mental 

workload, reduced situation awareness, complacency, skill degradation, etc.) that are sometimes 

associated with high-level decision automation. Several investigators have looked at the effects of 

different Levels of Automation (LOA) on performance. According to Parasuraman et al. (2000) high 

LOA can be usefully implemented for information acquisition and analysis functions. Nevertheless, 

decision making functions are acknowledged to be best supported by moderate LOA. Studies by Crocoll 

& Coury (1990), Sarter & Schroeder (2001), and Rovira, McGarry, & Parasuraman (2002) support this 

view by showing that unreliable decision automation leads to greater costs than unreliable information 

automation. 

Kaber, Onal, & Endsley (2000), Endsley & Kiris (1995), Endsley & Kaber (1999), and Kaber, Onal, & 

Endsley (1998) also provide support for a “moderate” LOA philosophy. The underlying rationale views 

moderate LOA as an optimal balance with respect to the performance trade-off resulting from the benefits 

of reduced workload associated with higher LOA on the one hand and with better maintenance of 

situation awareness associated with lower LOA on the other hand. These studies induced rare automation 

failure events that require operators to return to full manual control. Typically, the higher the LOA prior 
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to this event the poorer the return-to-manual performance or -in other words- the higher the out-of-the-

loop performance cost. Lorenz, Di Nocera, Röttger, & Parasuraman (2002), however, have shown that a 

higher LOA in a complex fault-management task does not necessarily lead to poorer return-to-manual 

performance under automation failure in comparison to a moderate LOA, as long as the interface supports 

operator information sampling to maintain situation awareness. In fact, the moderate LOA was found to 

be linked to a higher disengagement of sampling fault-relevant information. Apparently this LOA 

directed the operator attention to lower-order manual implementation of fault recovery actions at the 

expense of monitoring the impact of these activities on higher-order system constraints. A mitigation of 

this effect could be achieved in a follow-up study that used an integrated display in support of fault state 

monitoring (Lorenz, Di Nocera & Parasuraman, 2004). According to these studies the LOA per se is not 

necessarily the crucial factor affecting the out-of-the-loop performance costs. In general, it appears that 

there are differential effects of LOA by stage of processing and interface type. Yet, the experimental 

procedure used in these studies involved LOA shifts in different blocks, making it difficult to generalize 

the effects found to the adaptive automation domain. Indeed, adaptive automation assumes changes in 

LOA within shorter time frames, e.g. even from trial to trial, and there is very little research on such 

dynamic shifts in LOA. Furthermore, it is unclear whether the direction of the shift (up or down the LOA 

continuum) affects performance. Di Nocera, Lorenz & Parasuraman (2005) carried out a study to verify 

whether distance and direction in LOA shifts can affect human performance when interacting with 

complex tasks. Results showed that specific costs were associated with the process of disengaging from 

one cognitive-behavioral set the operator was currently using to the engagement of another -more 

appropriate- set. Such effect was not only associated with variations in the difficulty of the task, but was 

also affected by the mental workload the operator was experiencing on the moment. Recent research 

results (Trafton et al., 2003) suggest that preparation may have an important role in resuming a task 

previously carried out, and one may wonder if “preparation lag” may have a role also in adjusting to the 

next level of automation.  

 

 

REAL-TIME ASSESSMENT OF MENTAL WORKLOAD 

 

Human Factors & Ergonomics (HF/E) research has abundantly demonstrated that extreme levels of 

mental workload increase the likelihood of human error, because they deteriorate human ability to 

adequately react to incoming information. Mental workload can be defined as the difference between the 

task demands on one hand and the operator’s cognitive resources on the other (Gopher & Donchin, 1986; 

O’Donnell & Eggemeier, 1986). The nature of this construct is grounded in human physiology and can be 

related to a complex set of brain states mediating human performance in perceptual, cognitive and motor 

tasks (Parasuraman & Caggiano, 2002). Nearly all scholars currently agree that mental workload is a 

multi-dimensional construct (see Kramer, 1991) that would reflect the individual level of engagement and 

effort (Wickens & Hollands, 2000).  
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Notwithstanding the wide number of theoretical accounts on mental workload, the main objective of most 

studies is still its assessment. Indeed, mental workload cannot be measured directly, but it is rather 

estimated by measuring variables that are assumed to correlate with the operator’s mental load: 

− changes in performance due to the allocation of resources to multiple tasks; 

− operator’s self-reports (e.g., NASA-TLX, SWAT); 

− changes in human physiology (e.g., heart rate variability, electrical brain activity) that are 

assumed to vary with mental load. 

As stated above, psychophysiological indices of mental workload have been reported to be the most 

promising measures of mental workload, because they provide 1) information about covert processes, and 

2) continuous information about the operator functional state (Hancock, Chignell, & Lowenthal, 1985; 

Morrison & Gluckman, 1994; Scerbo,1996; Byrne & Parasuraman, 1996) that may be eventually used to 

trigger adaptive systems. 

Recently, the availability of less intrusive eye-tracking systems allowed researcher to effectively use 

indices of ocular activity as a measure of the operator mental workload (see Van Orden et al., 2001 for a 

recent account). For example, frequency and duration of eye-blinks have been found to be inversely 

correlated to mental load (Brookings, Wilson, & Swain, 1996; Hankins & Wilson, 1998). Additionally, 

some studies (Bunecke, 1987; Ephrath et al., 1980) have shown that workload affects the duration of 

fixations, whereas others (Bellenkes, Wickens, & Kramer, 1997; Miller, 1973) recorded shorter and more 

frequent fixations in expert operators (all these studies were run on aircraft pilots). 

It is worth noting that different tasks can generate different patterns, depending on the type of index 

employed. Some indexes can be sensitive to visual demands, but they can be as well insensitive to 

cognitive demands. Wilson, Fullenkamp, & Davis (1994) have shown how the durations of eye-blinks 

decreased in a visual tracking task (which generates a minimum mental workload) respect to a more 

cognitively engaging task (a flight simulation). 

Studies on driving behavior (see Recarte & Nunes, 2000; 2003) have shown that pupil diameter is 

affected by mental workload and, more important as for the aim of the present report, that increases in 

mental workload are associated with an increase in the concentration of eye-movements. The analysis of 

visual patterns is a technique often used in Human Factors research. For example, Diez et al. (2001) have 

used this technique for gathering information about the scanning strategies of pilots interacting with a 

Boeing 747 simulator. They divided the display in Areas Of Interest (AOI), each one including a tool 

inspected by pilots during a simulated flight. Although the scanpath is usually used to get qualitative 

information, it can also be used in association with advanced computing techniques. Visual scanning 

randomness, or entropy, has been proposed as a measure of mental workload (Tole et al., 1983; Harris, 

Glover & Spady, 1986). In thermodynamics the concept of entropy is related to the quantity of disorder in 

a system (in this case, the disorder in visual exploration). The rationale underlying this approach is that 

the exploration pattern becomes more stereotyped (that is, less random) as the workload increases. On the 

contrary, a decrease in mental workload should increase the randomness of the pattern. Hilburn et al. 

(1997), corroborated this hypothesis in a series of experiments run on air traffic controllers. 
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However, this research line seems to have been abandoned and no further studies are reported in the 

literature. One of the aims of the present research activiy is to investigate the relation between scanpath 

and workload on the basis of slightly different considerations. First, albeit it is quite straightforward that 

high workload may produce fixations grouping (because the operator needs to focus on some specific 

feature of the interface/task) there is no evidence (except for the studies reported above) that random 

patterns should be associated with low workload. Low workload may be associated with regular patterns 

as well, indicating a regular check of the interface space. According to this hypothesis, indexes providing 

information about the dispersion of point patterns should indicate regularity in the case of low workload 

and grouping in the case of high workload. The following section will briefly summarize information 

about one of these methods: the Complete Spatial Randomness (CSR) testing procedure. 

 

 

THE NEAREST NEIGHBOR INDEX 

 

The measurement and description of pattern distribution was first addressed in reference to plant and 

animal populations. In forestry, for example, the positions of trees in a forest form a point pattern in the 

plane. Information about the distribution of such points has been found relevant for investigating 

phenomena like plant infections or growing patterns. In the beginning, the basic assumption was that 

individuals of most populations (being them plants, animals, or fossils) were distributed at random, but it 

sooner became clear that the randomness assumption was not appropriate. The issue became then to 

establish the degree of variation from random expectation, as well as the significance of differences in the 

distribution of pattern of two or more populations. To this aim, Clark and Evans (1954) introduced the 

Nearest Neighbor Index (NNI), which is the ratio between 1) the average of the observed minimum 

distances between points and 2) the mean random distance that one would expect if the distribution were 

random. Fifty years later, this index is still one of the most used distance statistics in agriculture, 

paleontology, and analysis of crime (all of them deal with spatially arranged data). 

As a first step, the nearest neighbor distance or d(NN) should be computed as follows: 
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where min(dij) is the distance between each point and the point nearest to it, and N is the number of points 

in the distribution. 

This index is nothing more than the average of the minimum distances. The second step is to compute the 

mean random distance or d(ran), that is the d(NN) one would expect if the distribution were random. 
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where A is the area of the region (the measurement unit of the index is related to the one used here), and 

N is the number of points. 

The final step is the actual computation of the Nearest Neighbor Index as follows: 

 

    

! 

NNI =
d(NN )

d(ran)
 

 

Of course, this ratio is equal to 1 when the distribution is random. Values lower than 1 suggest grouping, 

whereas values higher than 1 suggest regularity (i.e. the point pattern is dispersed in a non-random way). 

Theoretically, the NNI lies between 0 (maximum clustering) and 2.1491 (strictly regular hexagonal 

pattern). 

Di Nocera, Terenzi, and Camilli (2006) applied this procedure to eye fixations (given that they are point 

patterns as well) and found this index to be sensitive to variation in mental workload, showing a tendency 

toward randomness in the high workload condition. This is the opposite of what the entropy-based 

method would predict. However, entropy studies have used ocular data within specific and static AOI, 

whereas that study used ocular data gathered from a dynamic scene (participants were requested to play 

the Asteroids PC game in two difficulty conditions) within a Convex Hull defined by the outermost 

fixations in the distribution. The high mental workload condition was obtained by preventing the use of 

the weapon to destroy the asteroids, whereas the low/moderate workload condition consisted of the 

regular game allowing the use of the weapon. Considering the dynamic nature of the Asteroids game (the 

ship moves around in the screen area), it is possible that the different distributions of fixations that have 

been found are strategy-driven rather than workload-driven. Indeed, even if the two versions of the game 

were geometrically equivalent (same exact number of asteroids either between conditions and throughout 

the game), avoiding the asteroids might favor a strategy aimed at spreading the fixations over a wide area, 

whereas the shooting condition might have been supported by a strategy based on focusing over the ship 

and target positions. In order to address the role of these differences, Di Nocera, Camilli, and Terenzi (in 

press) applied the same rationale to investigate ocular behavior during interaction with a somewhat 

“static” visual scene. To this aim a flight simulation task, comprising both high workload (Departure and 

Landing) and low-moderate workload (Climb, Cruise, and Descent) phases, was used. Of course, this was 

“static” in the sense that in a flight deck the locations of objects to monitor (namely, the instruments) did 

not change over time, even if the visual scene outside the cockpit changes. Albeit this study also showed 

the usefulness of the NNI as a workload measure, its validity was not specifically assessed. 

The research activity reported in the present document was aimed at assessing the validity of this 

proposed index, and its sensitivity to changes in the level of automation. The following sections will 

describe: 

1. the development of a software application for analyzing eye movements and computing the 

index; 

2. the pilot study aimed at defining the taskload conditions to be used in the experimentation; 



 

 

8 

8 

3. the first experiment aimed at assessing the concurrent validity of the measure; 

4. the second experiment aimed at a) using the proposed index as a measure of workload in a LOA 

shifting paradigm, and b) studying the role of the time spent dealing with one specific LOA in 

adjusting to the next level of automation. 
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RESEARCH ACTIVITY: PHASE 1 

 

DEVELOPMENT OF A SOFTWARE APPLICATION FOR ANALYZING THE SPATIAL 

DISTRIBUTION OF EYE MOVEMENTS 

 

Eye-trackers manufacturers always provide software applications for playing back and analyzing the eye-

movement data that are recorded by the system. Most of these applications provide several interesting 

features, sometimes much more than those required by the investigators using them. Indeed, the great deal 

of functionalities makes these applications resource-consuming and way too complicated for rapid and 

easy manipulation of coordinate data. With that in mind, we have developed A Simple Tool for 

Examining Fixations (ASTEF), whose primary function is to deal with point patterns. ASTEF was coded 

using C# and runs on Microsoft® Windows machines. 

 

Defining Areas of Interest in ASTEF. Inspection of the scanpath is one of the primary tasks accomplished 

by ASTEF. This is a common task for many researchers that need to examine the sequence of fixations 

one by one in order to identify Areas Of Interest (AOI).  

ASTEF implements area selection in three different ways: 

1. by dragging the diagonal of a rectangle (during this procedure the area size and the mouse 

pointer coordinates are always visible in the status bar); 

2. by moving the four sides of the rectangle separately, dragging the four corresponding cursors by 

mouse; 

3. by clicking on the “Manual Selection” icon and inserting the exact coordinates. 

ASTEF also provides the possibility to invert the selection. This may be useful in order to operate on the 

points outside an AOI (e.g. delete all the points outside the AOI). 

All the selected AOIs can be named and saved for further use from the “AOIs” menu.  

 

Fixation Identification Tool. ASTEF also provides a tool for identifying fixations from a raw file of gaze 

coordinates. In order to obtain fixations, the user is required to set two parameters: Min Fixation (in 

milliseconds), which is the minimum duration of the fixation, and Radius (in pixels), which is the 

minimum fixation radius. The latter is nothing more than the projection on the screen of the “threshold” 

visual angle. Default values are those frequently reported in the literature (Salvucci & Goldberg, 2000; 

Hornof & Halverson, 2002; Jacob & Karn, 2002; Jainta et al., 2002; Kramer & McCarley, 2003): ½° - 1° 

of visual angle and 100-200 ms of duration. For a 4:3 - 17” display having a 1024 x 768 resolution, the 

projection of 1° visual angle, at an approximate distance of 50 cm, is equivalent to a 25px radius. 

 

Noise Filter. Sporadic points falling outside the fixations may be found during the identification process 

(Alpern, 1962; Ditchburn, 1980; Hornof & Halverson 2002). Sometimes, after a first outsider point, 

several other points may fall into the identified fixation. Ignoring those points may cause a biased 
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estimate; for this reason, it has been implemented a noise filter that checks for the timing of those points 

occurring after the outsider point (see figure 1). 

 

Validity codes. Generally, the quality of a recorded gaze is affected by many factors like wearing glasses 

and contact lens, as well as by head movements. Most eye-tracking software suites provide “validity” or 

“confidence” codes for the recorded gazes, which are informative about the quality of a sample. 

ASTEF also implements two columns in its data files that refer to the sampling quality. In order to work 

properly, the codes need to be consistent with those used by the Tobii’s ClearView®. That software suite 

uses a 0-4 validity range, where “0” represents the best tracking quality. However, in processing the data 

file, ASTEF implements a rigid sample selection taking into consideration only those gazes having the 

maximum tracking validity (“0” coded). Such strictness is due to the fact that lower validity means lack 

of information about some features of the gaze (e.g. either the left or right eye coordinates are missing), 

and it is our opinion that it is much more appropriate to exclude those samples. 

 

Spatial statistics with ASTEF. Some applications already exist for computing the NNI and other spatial 

statistics indices. CrimeStat (Levine, 2004), for example, is one of such applications committed to the 

spatial analysis of criminal acts. Also an increasing number of R packages, such as “spatstat” (Baddeley 

& Turner, 2005), are available. These packages allow the researcher to have full control over the analysis 

s/he runs. Nevertheless, R is intended for the advanced user and, despite its utility, this may discourage 

many researchers who are not familiar with it. 

Usable spreadsheet-based software also exists. Prior to develop ASTEF, we have executed NNI 

computation using Paleontological Statistics (PAST: Hammer, Harper, & Ryan, 2001), which is a 

software application including many functions that are specific to Paleontology and Ecology, including 

NNI. Although this represented a viable solution, it also prevented the use of a tool that is specifically 

committed to the analysis of eye movement data. PAST does not provide visualization tools, and 

performing simple tasks -such as computing mean fixation duration- might be tricky. 

ASTEF allows the use of two different areas for computing the Nearest Neighbor Index: Convex Hull and 

Smallest Rectangle. The first is derived by the Delaunay’s algorithm (Delaunay, 1934), which creates a 

temporary hull from the first 3 points, and then adds other triangles for each outer point. The second is 

based on an algorithm that creates a bounding box for defining the rectangle having the smallest area 

comprising all the examined points. For the convex hull, ASTEF also implements the Donnelly’s edge 

effect adjustment method (Donnelly, 1978). 

All the analyses functions can be accessed from the “Analyze” menu appearing by right-clicking on the 

screen selection, as well as from the main menu. 

 

Integration with commercial eye-tracking systems. Even if ASTEF works with any ASCII file properly 

formatted, in the future it could import files created with any commercial eye-tracking system. 

Conversion algorithms will be implemented according to users’ needs, and the availability of proprietary 

file-structure information. The current version of ASTEF only imports Combined-Data-File (CMD) 
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created with Tobii’s ClearView®, since this is the system we have used for the studies hereby reported. 

The import function has been tested with ClearView® v. 2.5.1. The import function can be accessed from 

the “Tools” menu. 

 

 
 

Figure 1 - Noise filter for the fixation identification tool implemented in ASTEF (pseudocode). 
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PILOT STUDY 

 

The aim of this pilot study was to select three among ten levels of difficulty of a visuo-motor task (the 

Tetris game). These three levels should clearly generate “high”, “intermediate” and “low” workload 

levels to be implemented as taskload conditions (hereinafter reported as “hard”, “medium”, “easy”) in the 

successive experiments. This is a necessary step in order to assess the validity of the proposed index. 

 

 

METHOD 

 

Subjects. Twenty participants (10 females; mean age = 23 years, st. dev. = 2.41) volunteered in this study. 

All participants were right-handed, with normal hearing and normal or correct to normal vision.  

 

Apparatus. The Tetris game used in this study was coded using C# and the .Net standard libraries (GDI+). 

The game area consisted of 300 cells deployed on 15 rows. Each block was randomly extracted from a 

pool of 7 different block types and descended at a constant speed. In order to generate the ten levels of 

difficulty, the speed was varied from 600 ms per cell (level 1) to 60 ms per cell (level 10).  

 

Procedure. Participants received training prior experimentation and were included in the sample only 

when they became able to play for 10 minutes without filling completely the game area. Participants sat 

in dark and sound-attenuated room and were asked to play the game gaining as many points as possible. 

Order of presentation of the levels of difficulty was randomized across participants. After each block 

participants compiled the NASA-Task Load indeX (NASA-TLX: Hart & Staveland, 1988) for the 

subjective assessment of mental workload. 

 

 

DATA ANALYSIS AND RESULTS 

 

NASA-TLX weighted scores and number of completed lines (an index of performance in the Tetris 

game) were analyzed by ANOVA designs using the level of difficulty as independent variable. Results 

showed a main effect of the level of difficulty in both cases (F9,171=56.56 p<.0001 and F9,171=37.01 

p<.0001, respectively). According to Duncan post-hoc testing and the comparison between the two 

measures, conditions 6, 7 and 8 (showing significant differences between them) were selected.  
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Figure 2 - NASA TLX weighted scores and number of completed lines separately for level of difficulty. 

Spreads denote .95 confidence intervals. 

 

 

DISCUSSION 

 

The Tetris game is a common visuo-motor task that has been successfully used for generating mental load 

in the scientific literature (e.g. Trimmel & Huber, 1998). The game is also well-known, and little 

participants training is necessary to use it for experimental purposes. One of the primary concerns in this 

research activity was to define taskload conditions that could clearly generate different amount of mental 

load. To this aim, ten levels of difficulty were used in the pilot study reported above, and twenty 

participants were requested to play those levels (randomly presented). Results showed an increment of 

subjective workload and a performance decrement starting from levels 6 to 10. Levels from 1 to 6 were 

not significantly different both in terms of gaming performance and subjective workload. Additionally, 

levels 9 and 10 showed poor performance making them not suitable for the following experiments. 

Condtions 6, 7, and 8 were instead significantly different and were retained as the “easy”, “medium”, and 

“hard” taskload conditions. 
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EXPERIMENT 1 

 

 

METHOD 

 

Subjects. Ten participants (5 females; mean age = 23.6 years, st. dev. = 2.01) volunteered in this study. 

All participants were right-handed, with normal hearing and normal or correct to normal vision. 

 

Apparatus. Three levels of difficulty of the Tetris game (easy, medium, hard), selected according to the 

results of the pilot study, were used for generating different amounts of mental workload. An odd-ball 

task was used as secondary task. Three-hundred tones (65 db Spl, 100 ms), were presented through 

headphones. Seventy-five percent of the tones were 850 Hz (standards) and the remaining 25% were 1100 

Hz (targets). These tones were presented randomly intermixed at a variable rate (ISI ranging from 1000 to 

1500 ms). 

 

Procedure. After the electrode cap application, participants sat in a sound-attenuated room and were 

asked to remain relaxed during the recording session. Their task was to play the game gaining as many 

points as possible, to ignore the standard tones and to count target tones. Order of presentation of the 

levels of difficulty was randomized across participants. After completing each level of difficulty, 

participants were requested to rate the amount of mental workload experienced using the NASA-TLX.  

 

EEG Recordings. The EBNeuro Mizar 33 System (for physiological data acquisition and analysis) was 

used for recording the EEG sampled at 128 Hz for 1 s starting 100 ms prior to each stimulus onset and 

averaged off-line for target and standard tones separately. Trials judged on a visual inspection as 

contaminated by artifacts were excluded from the averaging. P300 amplitudes were measured 

individually for each participant’s data as the difference between N2 and P3 (peak-to-peak amplitude). 

 

Ocular activity recordings. The Tobii ET17 eye-tracking system was used for recording ocular activity. 

This systems allows the researcher to collect ocular data without using invasive and/or uncomfortable 

head-mounted instruments. Indeed, Tobii uses near infrared diodes to generate reflection patterns on the 

corneas of the eyes of the user. These reflection patterns, together with other visual information, are 

collected by a camera. Image processing algorithms identify relevant features, including the eyes and the 

corneal reflection patterns. Three-dimensional position in space of each eye-ball, and finally the gaze 

point on the screen are calculated. Sampling rate was approximately 33 Hz. 
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DATA ANALYSIS AND RESULTS 

 

The NASA-TLX weighted scores were used as dependent variables in a repeated measures ANOVA 

design (easy vs. medium vs. hard). Results showed a significant difference between the levels of 

difficulty (F2,18 = 4.83, p<.05). Duncan post-hoc testing showed that the hard condition was significantly 

different from the other two (p<.05). 

 

 
 

Figure 3 - NASA TLX values (weighted scores) separately for taskload condition. Spreads denote .95 

confidence intervals. 

 

Secondary task performance. Counting errors (deviation from the number of target trials as reported by 

subjects) were used as dependent variables in a repeated measure ANOVA using Taskload (Easy vs. 

Medium vs. Hard) as repeated factor. Results showed no significant effect of taskload (p>.05). 

 

Nearest Neighbor Index. As suggested elsewhere (see Di Nocera et al., in press), the NNI was computed 

using ASTEF on blocks of 1 minute for each participant. This strategy is necessary because the index 

evolves over time. NNI fluctuations during time are shown in figure 4. Average NNI values for each 

subject were used as dependent variables in a repeated measures ANOVA design (easy vs. medium vs. 

hard). Results showed a main effect of Taskload (F2,18 = 4.22, p<.05). Duncan post-hoc testing showed 

that the hard condition was significantly different from the other two (p<.05). 
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Figure 4 - Variation in time (minutes) of the NNI separately for taskload condition. 

 

 

 
 

Figure 5 - Average NNI separately for taskload condition. Spreads denote .95 confidence intervals. 

 

Event-Related Brain Potentials. The difference between N2-P3 amplitudes to standard and target stimuli 

were used as dependent variables in an ANOVA design Taskload (Easy vs. Medium vs. Hard) x Site (Fz 

vs. Cz vs. Pz). Results showed a main effect of Taskload (F2,18=4.40, p<.05). Post-hoc Duncan testing 

showed that only the difference between the “hard” taskload condition and the other two was significant 

(p<.05).  

 



 

 

17 

17 

 
 

Figure 6 - P300 amplitudes by taskload. Only the difference between the “hard” taskload condition and 

the other two was significant. Spreads denote .95 confidence intervals. 

 

DISCUSSION 

 

This study represented a first attempt to assess the validity of the dispersion of eye fixations as a measure 

of mental workload. Two studies (Di Nocera et al., 2006; Di Nocera et al., in press) have reported the 

usefulness of the NNI, but its validity was not specifically assessed. The strategy adopted here was that of 

using multiple measures in order to estimate the concurrent validity of the index. 

Consistent results were found across the three measures. The most difficult condition was found to 

generate significantly different values in the NASA-TLX ratings, in the P300 amplitude, and in the NNI 

values. However, all measures failed to show differences between the easiest and the intermediate 

taskload conditions. This might be due to two reasons. The first is the great variability affecting the data 

(mostly in the intermediate condition), which is probably due to the small sample size. Indeed, the three 

conditions were selected on the basis of the pilot study in which twenty participants have rated their 

subjective workload, whereas in this case only ten people participated in the experiment. The second 

reasons might be a lack of perceivable difference between the easy and medium conditions. In fact, in the 

pilot study ten levels of difficulty were administered, and participants might have been able to experience 

the entire spectrum of the imposed workload, generating fine-grained assessments. Contrarily, in the 

experiment reported above participants only experienced three levels of difficulty, making it difficult to 

generate accurate estimates. This effect is known as “context effect” and has been studies experimentally 

by Colle & Reid (1998) who demonstrated that subjective estimates of mental workload are biased when 

participants cannot experience the full range of task difficulty. This explanation is quite convincing for 

the subjective measure. However, also the ocular strategy and the brain activity showed the same pattern. 

Can context effect account for those measures too? This is difficult to demonstrate post-hoc. 

Nevertheless, one could consider the possibility that perceived workload affects the amount of resources 

actively allocated by the participants during the execution of the task. After all, the operator’s perceptions 
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are always reported to be an important factor in the definition of mental workload as a multidimensional 

construct. 
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Figure 7 - Grand averages separately for electrode site (Fz, Cz, Pz), taskload condition (Easy. Medium, 

Hard), and type of stimuli (Standards = dashed; Targets = solid). 
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RESEARCH ACTIVITY: PHASE 2 

 

Adaptive automation deals with the ability to flexibly adapt to changing situations, realize new intentions, 

and schedule intended actions, which are central features of human action control. Thus, any change in 

the level of automation (LOA) can be considered as a change in the task set. Indeed, a LOA is nothing 

more than a “level of constraint” either for the human or the machine: LOA constrains the space of 

(possible) action. 

The utility of considering LOA as task sets is that these are usually considered as representations utilized 

to select an action despite the ambiguity of the external context (Mayr & Keele, 2000; Monsell, 1996; see 

also Rubinstein, Meyer, & Evans, 2001 and Schuch & Koch, 2003 for some accounts related to response 

selection making use of rules), and this is quite similar to the Norman and Shallice’s (1986) perspective 

on schemata. Their theory is based on the same distinction between automatic and controlled processing 

which also characterizes other models and theories (see Schiffrin & Schneider, 1977; Schneider & 

Schiffrin, 1977). This perspective postulates the existence of a mechanism that uses internal 

representations (or schemata) to coordinate habitual behaviors. Once selected, a schema stays active until 

it reaches its goal, or it is inhibited by other schemata that are either competing for implementation or 

located higher in the hierarchy. Besides this type of process, our cognitive system would need also a 

mechanism to face novelty. Such a “supervisor system” may intervene to shut down the activity of a 

currently-better schema or to provide a higher level of activation. Hence, different LOA could trigger 

different schemata, which, in turn, may represent “calls” to specific cognitive processes involved in the 

remaining tasks that are actively carried out by the individuals. One of the outcomes of this mechanism 

may be the disengagement of the other functions and processes, which are not easily reacquired when 

shifting to another LOA. Shifting tasks causes costs that are assumed to reflect configuration processes 

(Rogers & Monsell, 1995). In the automation domain, shifts are known to affect in several ways human 

performance. For example, it is well known that the ability to detect automation failures deteriorates 

under automatic as opposed to manual operating conditions (Parasuraman, Molloy, & Singh, 1993; 

Parasuraman, Mouloua, & Molloy, 1996), and consequences of such inability may be devastating when 

error compensation is difficult or even impossible. Therefore, the investigation of the processes 

underlying LOA shifts, and their consequences on operator’s performance seems to be critical for good 

automation design. This specific aspect has been recently approached by Di Nocera, Lorenz and 

Parasuraman (2005). However, more studies are needed for gathering a full understanding of these 

phenomena. 

In the following study we have approached this issue investigating automatin shifts and their relation with 

mental workload. 
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EXPERIMENT 2 

 

The aim of this second study was to investigate the cost deriving from shifting between levels of 

automation, employing the same task and measures used in the previous phase. Particularly, we have 

investigated the effects of the time spent dealing with one specific LOA in adjusting to the next level of 

automation. Additionally, a side objective of the present experiment was to verify the sensitivity of the 

NNI to variations in the level of automation. This study also involved a higher number of participants (N 

= 20), and its results may clarify the role played by sample size in the absence of significant differences 

between the “easy” and the “medium” difficulty conditions we have reported.  

 

 

METHOD 

 

Subjects. Twenty participants (8 females; mean age = 21.85 years, st. dev. = 1.04) volunteered in this 

study. All participants were right-handed, with normal hearing and normal or correct to normal vision. 

 

Apparatus. The previously described three levels of difficulty of the Tetris game were used for generating 

different amounts of mental workload. Two versions of the game were implemented: automated (see 

figure 8) and manual. The automated version provided the participants a projection of the falling block 

for making it easier it. The same odd-ball task used previously was used as secondary task. 

 

 
 

Figure 8 – Automation support was provided by showing a “ghost” block (in grey), a projection of the 

block that is falling down. 

 

Procedure. After the electrode cap application, participants sat in a dark and sound-attenuated room and 

were asked to play the game gaining as many points as possible, to ignore the standard tones and to count 

the target tones. During this task, switches from manual to automatic (and vice versa) happened. Two 

different “LOA permanence” conditions were also implemented: 1-minute (short-term permanence in 



 

 

21 

21 

LOA) and 3-minute (long-term permanence in LOA). The automation sequence gave rise to three 

different conditions: forward shift (from manual to automatic), backward shift (from automatic to 

manual), no shift (a sequence of two identical trials). The following table shows the details of the 

sequences employed in this study (t = 1 minute). 

 

 t-3 t-2 t-1 t (shift) 

Forward (long-term) Manual control Manual control Manual control Automation support 

Forward (short-term)  Manual control Automation support 

Backward (long-term) Automation support Automation support Automation support Manual control 

Backward (short-term)  Automation support Manual control 

Neutral (long-term) Manual control Manual control Manual control Manual control 

Neutral (short-term)  Manual control Manual control 

Neutral (long-term) Automation support Automation support Automation support Automation support 

Neutral (short-term)  Automation support Automation support 

 

Table 1 - LOA swichting and permanence in LOA. 

 

EEG and Ocular activity recordings. The same instruments and measures employed in the previous phase 

were used in this case. 

 

 

DATA ANALYSIS AND RESULTS 

 

NASA-TLX weighted scores were used as dependent variables in a repeated measures ANOVA design 

using Taskload (Easy vs. Medium vs. Hard) as repeated factor. Results showed a main effect of Taskload 

(F2,38 = 18.66, p<.0001). Duncan post-hoc testing showed that the hard condition was significantly 

different from the other two (p<.01). 

 

 
 

Figure 9 - NASA-TLX scores by Taskload. 

 



 

 

22 

22 

Secondary task performance. Counting errors (deviation from the number of target trials as reported by 

subjects) were used as dependent variables in a repeated measure ANOVA using Taskload (Easy vs. 

Medium vs. Hard) as repeated factor. Results showed no significant effect of taskload (p>.05). 

 

Event-Related Brain Potentials. The difference between N2-P3 amplitudes to standard and target stimuli 

were used as dependent variables in an ANOVA design Taskload (Easy vs. Medium vs. Hard) x Site (Fz 

vs. Cz vs. Pz). Results showed a main effect of Taskload (F2,38=3.39, p<.05) and a main effect of 

electrode site (F2,38=6.09, p<.01) due to a larger P300 amplitude in Cz and Pz.  

 

   

   

   
 

Figure 9 - Grand averages separately for Electrode Site (Fz, Cz, Pz), Taskload (Easy. Medium, Hard), 

and Stimuli (Standards = dashed; Targets = solid). 
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Figure 10 - P300 amplitudes by Taskload. 

 

Performance data. The proportion of completed lines (a row of blocks eliminated during the Tetris game) 

was used as an index of performance. Differences respect to baseline (the neutral condition) were used as 

dependent variables in an ANOVA design Taskload (Easy vs. Medium vs. Hard) x Permanence (Long-

term vs. Short-term) x Direction (Forward shift vs. Backward shift). Results showed a significant 

Taskload by Direction interaction (F2,38=3.31, p<.05) and a significant Permanence by Direction 

interaction (F1,19=5.46, p<.05). 

 

 
Figure 11 - Performance respect to neutral trials by Taskload. 

 

 
Figure 12 - Performance respect to neutral trials by Permanence in LOA. 
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Nearest Neighbor Index. The NNI was computed using ASTEF on blocks of 1 minute for each 

participant. Average NNI values for each subject were used as used as dependent variables in a repeated 

measures ANOVA design (Easy vs. Medium vs. Hard). Results showed a significant difference between 

the levels of difficulty (F2,38 = 11.51, p<.001). Duncan post-hoc testing showed that the hard condition 

was significantly different from the other two (p<.01). 

 

 
Figure 13 - Average NNI by Taskload. 

 

NNI values recorded in the last two trials (t-1 and t) of each condition were also used as dependent 

variables in an ANOVA design Taskload (Easy vs. Medium vs. Hard) x Permanence (Long vs. Short) x 

Direction (Forward vs. Backward vs. Neutral) x Trial (t-1 vs. t). Results showed a significant Taskload by 

Direction interaction (F4,76=4.21, p<.01). Duncan testing showed that backward shifts generated a 

significant higher mental workload only in the hard condition (figure 14). 

 

 
Figure 14 - Average NNI by Taskload and Direction. 
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A significant Permanence by Direction interaction was also found (F2,38=3.59, p<.05). As shown by figure 

15, this interaction is due to a reduced NNI value in the short-term permanence condition when the shift 

is backward. 

 

 
Figure 15 - Average NNI by Taskload and Permanence. 

 

Permanence was also found to interact significatively with the Taskload and Trial factors (F2,38=4.67, 

p<.05). As shown by figure 16, taskload and permanence affect the change in NNI values during the shift 

differently.  

 

 
 

Figure 16 - Average NNI by Taskload, Permanence and Trial. 

 

Furthermore, results showed a significant Direction by Trial interaction (F2,38=24.45, p<.0001). Neutral 

trials showed approximately the same NNI value at t-1 and t, backward trials NNI values at time t were 

higher than those at time t-1, whereas NNI values in the forward shift were lower at time t than at time t-

1. Post-hoc testing showed that only the forward shift was significant (p<.05), while the backward shift 

only showed a tendency towards statistical significance (p=.13).  
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Figure 17 - Average NNI by Direction and Trial. 

 

Direction and Trial were also found to interact with Taskload. However, this interaction only showed a 

tendency towards statistical significance (p=.07). 

 

 
 

Figure 18 - Average NNI by Taskload, Direction and Trial. 
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Figure 19 – NNI changes in time for the Easy condition. 

 



 

 

27 

27 

0,70

0,75

0,80

0,85

0,90

0,95

1,00

MAN
MAN

MAN
AUTO

AUTO
AUTO

AUTO
MAN

MAN
MAN

MAN
MAN

AUTO
AUTO

AUTO
AUTO

N
EA

R
ES

T 
N

EI
G

H
B

O
R

 IN
D

EX

 
Figure 20 – NNI changes in time for the Medium condition. 
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Figure 20 – NNI changes in time for the Hard condition. 

 

 

DISCUSSION  

 

Results of this second study confirmed and extended those of study 1 by showing sensistivity of the NNI 

to variations in taskload, as well as the absence of differences between the easiest and the intermediate 

taskload conditions. Moreover, ERPs showed significant differences between the easiest and the hardest 

taskload conditions, suggesting that the intermediate condition might be the problematic one. This is also 

supported by the great variability affecting the data in this very condition (also in study 1). 

However the main aim of this second study was to investigate the effects on performance and workload 

of the shifiting between levels of automation: from manual to automatic and from automatic to manual. It 

was expected to find switching costs in both directions, not only in the backward shift. This prediction 

was based on the general idea that in both cases there is the engagement / disengagement of cognitive 

processes (mental rotation, in this case). Results seem to support this view, but the effect of LOA-

switching seems to be also modulated by taskload. Indeed, a better performance was associated with a 

forward shift in the hard taskload condition, whereas the same forward shift was detrimental in the easiest 

taskload condition. 

Another aim of this study was to investigate the effects of the time spent in a LOA (permanence). It was 

expected that the longer an individual interacted with a task at a particular LOA the most difficult would 
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have been to switch to another LOA. Results showed that the advantage of the forward shift (which 

makes it generally easier the task) was eliminated by the long-term permanence in a LOA. Switching 

direction and permanence also affected workload. NNI showed sensitivity to variations in the type of 

shift, and differential patterns were found as a function of taskload and type of shift. Particularly, the 

three taskload conditions generated progressively higher NNI values only in the neutral sequences, 

whereas the switching conditions generated differential patterns. The NNI was also affected by 

permanence, and showed differential patterns as a function of taskload. NNI values were lowered by 

short-term permanence and increased by long-term permanence in the easiest condition, whereas they 

showed the opposite pattern in the intermediate taskload condition. The effect is not much clear in the 

hardest taskload condition. Nevertheless, we found a reduction of the NNI values associated with the 

long-term permanence. This results should be taken carefully, because the variability affecting the data 

does not allow to clearly isolate these effects.  

Moreover, it is worth noting that -albeit the experiment reported here was aimed at studying LOA shifts 

effects for future development of adaptive automation- a main difference exist between our experimental 

setup and actual adaptive systems. Indeed, in adaptive systems LOA shifts would happen according to 

some modification in human physiology and/or behavior, whereas in this study they have been 

programmed by the experimenters. That should be taken into consideration for interpreting the results. 

Nevertheless, the outcome of this study may be of interest for understanding what type of response we 

may expect from operators when LOA shifts are inconsistent or partially unrelated to the operator 

functional state. 
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GENERAL DISCUSSION AND CONCLUSIONS 

 

On the real time assessment of mental workload. One of the most important issues for effective 

implementation of AA is the choice of the index to use for triggering the system when the functional state 

of the operator significantly deviates from optimal levels. Several indexes have been discussed in the 

literature (see Di Nocera et al., 2003 for an up-to-date discussion on this topic). Most of them are 

psychophysiological, representing the physiological response to events mediated by the cognitive system, 

and it is commonly believed they represent the most valid and reliable method of obtaining real-time 

information about the state of the operator (Boucsein & Backs, 2000; Scerbo et al., 2001). Behavioral, 

subjective and physiological measures can, however, be used according to particular needs. Nevertheless, 

great care should be taken when selecting the index to use. Sensitivity of a parameter may be affected by 

different factors such as the number of samples used to compute it. One may find, for example, that the 

selected measure can work well in one task environment, or indeed the laboratory, but not in another. For 

example, in a comparative study on different techniques for evaluating psychomotor load, Wierwille and 

Connor (1983) showed that sensitivity of measures might vary widely, strongly affecting the workload 

assessment. 

Among the psychophysiological indices of mental workload, the ocular activity has recently received 

considerable attention, even if its use can be traced back to Fitts’ work (Fitts, Jones, & Milton,1950). This 

recent interest towards eye movements is primarily due to the advancements in the technology for 

recording them (namely, eye-trackers), which is becoming increasingly usable and affordable. Moreover, 

eye-tracking systems that do not need to be head-mounted (infrared based) open new possibilities for eye 

movements recording in ecological settings. 

Compared to other psychophysiological indices (e.g. Event-Related Brain Potentials, Heart Rate 

Variability) that have been proposed as candidate measures for triggering adaptive systems, eye 

movements show many benefits: they are insensitive to limbs movements (they can also be adjusted for 

head movements), no much training is necessary for setting up the equipment (at least the infrared-based 

system used in the present research activity), and the calibration procedure can be accomplished in a short 

time. Results of the studies presented here have confirmed that the NNI computed on eye fixations is 

sensitive to variations in mental workload, thus replicating previous findings and providing additional 

support to the robustness of this index. Moreover, specific workload-related fixations patterns were found 

using eye-movement data collected during the execution of a visuo-motor task along with subjective 

reports and brain activity. As expected, higher NNI values were associated to high workload conditions. 

The lack of significant results in some of the post-hoc comparisons should not be considered as indicating 

lack of sensitivity of the measure, because that was presumably due to the taskload condition that have 

been selected, and the variability affecting the data. Indeed, the easy and medium conditions showed very 

high variability. Also, both the subjective and ERPs data showed the same pattern, thus suggesting that 

those two conditions might have been too close in terms of resources request. Likely, falling speed of the 

blocks is not the best manipulation in order to obtain clearly different taskload conditions. Future studies 

may take into consideration other aspects such as type of blocks, color combinations, and the like. 
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Overall, the evidences provided here allow suggesting the implementation of this index as a real-time 

measure of mental workload, hence as a trigger for automated systems. One additional benefit of the 

proposed index is that it does not necessarily need extreme precision and high temporal resolution: in 

fact, the comparison is made between the actual distribution of points and the expected random 

distribution of the same number of points. The index itself is a rough estimate of grouping and having 

more points (i.e. more than 100-200), in our experience, does not enrich its meaningfulness. 

As found by Di Nocera et al. (2006; in press), also in this case the direction of the NNI pattern was found 

to diverge from that expected on the basis of the entropy studies run by Harris, Glover and Spady (1986), 

Hilburn et al. (1997), and Tole et al. (1983). The functional significance of the index can be summarized 

as follows: under high mental workload conditions, more dispersed patterns may be due to a strategy 

aimed at optimizing promptness to incoming information. Indeed, as hypothesized by Smith, Valentino 

and Arruda (2003), endogenous mechanisms that cause organisms to automatically alternate their 

attention between focusing and casting a wide net may have evolved. This is also compatible with a 

finding reported by Pelz and Canosa (2001) that individuals might use “look-ahead” fixations serving 

future tasks. The cyclical pattern shown in figure 4 (and replicating that reported by Di Nocera et al., in 

press) seems to support this view. At this stage of development of the research it is impossible to address 

the basic mechanisms involved in the generation of this effect. However, the results provided in this 

report may indicate a fluctuation of attentional resources. From a logical standpoint, we could think of 

three possible strategies for resources allocation: 1) on-demand, 2) continuous, and 3) cyclical. The first 

would be a strategy based on minimizing the resources expenditure when they are not needed, and 

allocating them only when required. That, of course, strongly reduces the promptness of the individual to 

react. The second strategy would involve a continuous expenditure of attentional resources in order to put 

the individual always in condition to react properly. This is clearly impossible, considering that mental 

resources are limited in nature. The third, instead, considers the possibility of a cyclical allocation of the 

attentional resources (a parsimonious strategy), so that a certain degree of promptness is always 

(cyclically) available to the individual. Such a cyclical “rise and fall” would then allow the individual to 

take advantage of the level of mental resources made available, and to use that level as a starting point for 

voluntary resources management. 

In other words, when task demands are high, it becomes mandatory to monitor everything in the shortest 

time, without "wasting time" (and fixations) on the same parts of the interface. Fixations, after all, are 

“pauses over informative regions of interest” (Salvucci & Goldberg, 2000 p. 71). Similar considerations 

have been made about the course of ocular inspection of pictures: fixations are usually shorter when we 

start viewing a picture (high workload condition, so to say). This phenomenon has been also reported by 

Kahneman (1973), who found it puzzling, because that is exactly the phase when we need to gather more 

information, and fixations are supposed to last longer on an object. However, the type of information we 

need in the initial phases (or in the most difficult phases) may do the difference. Indeed, “structural” more 

than “semantic” information may be extracted, and that can be accomplished with few (and short) 

fixations. Also this account is compatible with recent findings. Irwin and Zelinsky (2002) reported a 

continuous increase in fixation duration during the inspection time (over a 15-fixation long period), and 
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Unema et al. (2005) found a shift (that is function of the inspection time) from shorter fixations and 

saccades with longer amplitudes to longer fixations and shorter saccades. The authors interpret this effect 

in terms of two different spatial representations underlying the early and late phases in picture viewing. 

The focus of that work is on the “what” and “where” systems and their relation to the “ventral” and 

“dorsal” visual pathways (Ungerleider & Mishkin, 1982). An extensive discussion of this topic is outside 

the aim of the present report. However, for sake of completeness, Unema et al. (2005) report that the 

transition from short-fixations/large-saccades to long-fixations/short-saccades may suggest that “two 

qualitatively different competitive processes negotiate whether to keep fixating or to go on to the next 

salient object” (p. 491).  

In conclusion, the application of the Nearest Neighbor Index to eye fixation data provides a domain-

independent measure that could be eventually used in operational environments for gathering real-time 

information on operator load. This is of critical interest in several domains from Air Traffic Control to 

baggage screening.  

 

On the costs of switching between levels of automation. Adaptive automation is thought to be a key 

towards optimizing the benefits of automation for system performance. These systems should adapt to 

operators’ overt and covert behavior, but changes in the system behavior could affect operators as well. 

For example, the direction of the automation shift (toward full manual or full automatic control) as well 

as the distance between two successive LOA (one, two, or more “jumps” in the hierarchy) could 

differently affect the performance of an individual (see Di Nocera, Lorenz, & Parasuraman, 2005). Also, 

as discussed by Parasuraman et al. (2000), automation can differ in type and complexity. Some forms of 

automation may simply organize information sources or integrate them. Such forms of “information 

automation” differ from automation of decision-making functions, in which decision options that best 

match the incoming information are provided to the user. Automation support at any or all of these stages 

of processing could be engaged and disengaged by the human operator. In doing so, operators (or 

adaptive systems) could trigger different shifts in the distance between LOA. 

This study investigated this issue using a simple visuo-motor task. The hypothesis was that switching 

from one LOA to another would affect individuals’ performance because of the costs associated with the 

engagement/disengagement process. Indeed, we found that a better performance was associated with a 

forward shift in the hard taskload condition, whereas the same forward shift was detrimental in the easiest 

taskload condition (confirming what was reported by Di Nocera et al., 2005). Also, the advantage of the 

forward shift (which makes it generally easier the task) was eliminated by the long-term permanence in a 

LOA, and differential patterns were found as a function of taskload and type of shift. It is worth stress 

again that the three taskload conditions generated progressively higher workload only in the neutral 

sequences, whereas the switching conditions generated differential patterns.  

The commonsense consideration that only shifts toward a lower level of automation should reflect poor 

performance is unsupported. Forward shifts may affect performance as well, particularly when workload 

is moderate.  
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Overall, these findings suggest that, when individuals perform a task, their cognitive systems set to a 

particular level (represented by the activation of a particular set of behaviors) and no costs are observed 

until the level (or rule) remains the same. Actually, under some circumstances, no shifts can even lead to 

a better performance. 

 

Final considerations and future work. The research activity reported here has reached two main goals. 

First, it has demonstrated the validity of a novel index of mental workload. This measure is totally non-

invasive and opens new frontiers for the real-time assessment of mental load in a variety of tasks. Second, 

it showed that LOA transitions should be taken into consideration when designing adaptive systems, 

because they produce costs both in terms of increased cognitive load and performance detriment. 

However, in order to predict these costs, a different approach to the construct of Level of Automation is 

necessary. Indeed, the traditional approach to the concept of “Level Of Automation” (LOA) is qualitative 

in nature: it simply describes the trading of system control between humans and computers. Since 

Sheridan’s seminal work, many taxonomies have been proposed, but they are domain- and task-

dependent. This makes it difficult to compare results from different studies. Recently, Terenzi, Camilli, & 

Di Nocera (2006) have introduced a different approach that will eventually allow to define LOAs 

quantitatively. This approach is founded upon the idea that LOAs may be characterized in terms of the 

amount of information traded by humans and machines. For example, at the information-acquisition level 

(see Parasuraman et al. 2000), LOAs can be defined in terms of number of features of an object to be 

identified. Thus, automation providing reliable information on 1 out of 4 possible features would have 

LOA=.25, whereas a system providing aid on 2 out of 4 features would have LOA=.50. A first study 

showed that it is possible to ascertain the mathematical relations that exist between LOAs and human 

performance. In other terms, it was possible to predict performance benefits and costs associated with a 

specific proportion. Considering what has been reported so far, this seems to be best method to study the 

shift between levels of automation, its costs, and the potential remedies. 
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