
A Logical Language for Specifying Cryptographic Protocol

Requirements

Paul Syverson and Catherine Meadows

Center for High Assurance Computer Systems

Naval Research Laboratory

Washington, DC 20375

Abstract

In this paper we present a formal language for specify-
ing and reasoning about cryptographic protocol require-
ments. We give examples of simple sets of requirements
in that language. We look at two versions of a proto-
col that might meet those requirements and show how
to specify them in the language of the NRL Protocol
Analyzer. [Mea91] [Mea92] We also show how to map
one of our sets of formal requirements to the language
of the NRL Protocol Analyzer and use the Analyzer to
show that one version of the protocol meets those re-
quirements. In other words, we use the Analyzer as a
model checker to assess the validity of the formulae that
make up the requirements.

Introduction

The past few years have seen a proliferation of formal
techniques for the speci�cation and analysis of crypto-
graphic protocols. That these techniques can be use-
ful has been shown by the fact that several (includ-
ing BAN logic [BAN89], the NRL Protocol Analyzer
[Mea91] [Mea92], and the Stubblebine-Gligor model
[SG92]) have been used to �nd aws in open literature
protocols that were previously believed to have been se-
cure. Thus the use of formalmethods for the analysis of
cryptographic protocols has begun to attract attention
as a promising way of guaranteeing their correctness.

Less attention, however, has been paid to the question
of what exactly constitutes the correctness of a cryp-
tographic protocol. Yet, we see that what constitutes
correctness can vary widely with the application. In a
key distribution protocol guarantee of secrecy and guar-
antee against replay attacks and impersonation are of
the most importance. For a protocol used to guarantee
the security of banking deposits, secrecy may or may
not be important, although guarantee against replay
attacks and impersonation de�nitely will be. Guaran-
tee of timeliness may also be important, as well as the
guarantee that messages are processed in the order that
they are sent. (For example, a malicious intruder could
cause somebody to overdraw his account by causing a
deposit message and a withdrawal message to processed
out of order.) For a protocol used to distribute rights
by proxy, not only is it necessary to guarantee against
impersonation, but also to guarantee the entire pedigree

of a message.

Protocols may also di�er in the amount of trust that
is placed in each individual. For example, Burrows,
Abadi, and Needham, in their logic of authentication,
make the assumption that the parties trying to authenti-
cate each other are honest and will follow the rules of the
protocol.1 For other protocols, this may not necessar-
ily be the case. In the Burns-Mitchell resource sharing
protocol [BM90], it is assumed that the party attempt-
ing to obtain the resource may be trying to cheat the
resource supplier into giving him a resource that he has
not paid for at the same time he is trying to guarantee
the the resource supplier is not cheating him. In a vot-
ing protocol, we make the assumption that individuals
may try to �nd out other individuals' votes, that they
may try to cast their votes more than once, and that
they may be willing to divulge their votes to a small
group of individuals if this will help them subvert the
goals of the protocol.

Even when we restrict ourselves to the analysis of key
distribution protocols, it is not always clear what con-
stitutes the appropriate requirements. For example, in
[BAN90], Burrows, Abadi, and Needham describe the
various orders of belief that a protocol can achieve, but
make no recommendations. For example, a protocol
may achieve �rst order belief, in which A believes that
K is a good key for communication with B, and vice
versa, but neither has any belief about the beliefs of the
other, or it may achieve second order belief, in which
not only does each believe in the key, but each believes
the other believes in the key, or it may achieve some
yet higher order of belief. In [Syv91] Syverson discusses
the various orders of belief and where each would be
appropriate.

Confusion and vagueness about requirements and as-
sumptions has also contributed to much of the con-
troversy about the various techniques. For example,
in [Nes90], Nessett points out an alleged aw in the
Burrows-Abadi-Needham logic by using it to prove that
a protocol in which keys are distributed in an obviously
unsafe way is secure. The response of Burrows, Abadi,
and Needham [BAN90] was that in their logic they make
the assumption that principals do not divulge their keys;

1Honesty assumptions are relaxed in the version of BAN pre-

sented in [AT91].

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1993 2. REPORT TYPE

3. DATES COVERED
 00-00-1993 to 00-00-1993

4. TITLE AND SUBTITLE
A Logical Language for Specifying Cryptographic Protocol Requirements

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

since in this protocol the principals do divulge their
keys, it does not satisfy the original assumption. But
one can also argue that the use of an unsafe key distri-
bution method is not the same as knowingly divulging
your key.

The degree to which requirements and assumptions can
vary, and the controversy that can be caused by a lack
of precise understanding of what the requirements are,
suggests that we need to pay more attention to under-
standing and stating them in a precise way. Once we
have a clear and precise statement of what the goals and
assumptions of a protocol are, we can attempt to prove
it satis�es these goals with a high degree of con�dence
that we know what we are about.

In this paper we attempt to make it easier to state
and reason about requirements in a precise manner by
providing a requirements speci�cation language for the
NRL Protocol Analyzer. The NRL Protocol Analyzer
has the advantage that it is tied to no particular set of
assumptions about the kind of protocol it is used to ver-
ify. The speci�er of a protocol can use it to prove that
an insecure state is not reachable, or that an insecure
sequence of events cannot occur; it is up to the speci�er
to decide what these states and sequences are. How-
ever, until now the user of the Analyzer had to specify
the undesired states and sequences in terms of the pro-
tocol speci�cation itself. Thus the requirements had to
be rewritten for each protocol speci�cation, even when
the aims of the protocols were identical. With the re-
quirements speci�cation language, it is possible to spec-
ify a set of requirements for a class of protocols, and
then map them to a particular instantiation. It is also
possible to reason about the requirements in isolation
without concerning ourselves with particular protocol
instantiations.

The remainder of this paper is organized as follows. In
section 1 we present the requirements language and give
the interpretation of the language in the model of com-
putation used by the Analyzer. We also give motivat-
ing examples of requirements of a simple authentication
protocol. In section 2 we describe the NRL Protocol
Analyzer and give the speci�cation of the authentica-
tion protocol in the language used by the Analyzer. We
then map the requirements speci�ed in section 1 to the
speci�cation via responses to Analyzer queries. In sec-
tion 3 we present our conclusions.

1 The Language

In this section we set out our formal requirements lan-
guage. In general, our syntax is based on that of tempo-
ral logic (cf. [Gol92] or [vB91]) and in particular was mo-
tivated by the language of [Lam90] and [Aba90]; how-
ever, the intended meaning of the syntax is somewhat
di�erent than in those works. We begin with a simple
example of the type of things we would like to express
in our language. Then we give the general lingusitic
constructs and �nally the interpretation thereof in the
model of computation.

1.1 An Example

In order to make clearer the abstract constructs we de-
scribe in this paper we set out some speci�c protocols as
examples. We will return to these protocols throughout
the paper to illustrate the formalisms and techniques
described herein. The protocols we present are variants
on an ISO draft version of a two pass one-sided message
authentication protocol. [ISO91] That is, using two
messages this protocol is intended to authenticate to one
principal, B, that a message is current and from prin-
cipal A. To make it slightly more interesting we have
modi�ed the original ISO protocol so that the con�den-
tiality of the message is protected as well. We present
two versions of the protocol, one using shared keys and
one using public keys. The original ISO protocol uses
only public keys and does not protect the con�dentiality
of the message.

Example 1.1 Shared Key Version

B sends to A: B;Nb

A sends to B: B;Na; Nb; fNa; Nb;MessagegKab

Here Nb is a nonce, a random number, generated by
B, Na is a nonce generated by A, and Kab is a key
shared between A and B. The last �eld of the second
message indicates that Na, Nb and A's message have
been encrypted together using Kab. 2

Example 1.2 Public Key Version

B sends to A: B;Nb

A sends to B: B;Na; Nb; ffNa; Nb;Messageg
K
�1

a

gKb

Here Na and Nb are nonces as before, K
�1
a

is A's private
key, and Kb is B's public key. Thus, the last �eld of the
second message indicates that Na, Nb, and A's message
have been signed together using A's private key and
then encrypted using B's public key. 2

1.2 Requirements

One of the disadvantages of currently available logical
languages for cryptographic protocol analysis is that for
the most part each protocol has its own speci�cation.
Our approach goes some way towards a remedy by al-
lowing a single set of requirements to specify a whole
class of protocols. This has the advantage that a proto-
col analyst can largely identify the goals of any protocol
in this class with that one speci�cation, which seems to
be a fairly intuitive way to view things. For instance
one might want evaluate a protocol for two party ses-
sion key distribution using ordinary public or shared key
cryptography. While many of these protocols have spe-
cial features and requirements, there are a number of
requirements they all share|for example, that the dis-
tributed key be known only to the two principals and
the server if there is one. We can express in our lan-
guage general requirements for protocols for distributing
session keys to two parties via a server. This speci�ca-
tion should also satisfy protocols with no server, i.e.,

where one of the participants is the server. It should
also work for interdomain communications. Although
there are undoubtedly further requirements to be spec-
i�ed for servers from di�erent domains to authenticate
each other, that process should not a�ect the require-
ments for the two end parties in relation to whoever
produces the key. While this is probably the type of
protocol of broadest use and interest, for purposes of il-
lustrating our requirements language and analysis tech-
nique it is clearer to stick to a simpler example than
this.

What are the general security requirements for the type
of authentication protocol given by our examples above?
That is, if B were to accept the message from A, what
need hold to preclude security violations? First of all,
we need to make the distinction between an honest and
a dishonest A. If A is dishonest, then we assume that A
may violate any or all of the rules of the protocol, and
is in collusion with the hostile intruder who we assume
is trying to subvert the goals of the protocol. This does
not mean that we may not put any requirements upon
interchanges involving a dishonest A, but if we do, the
requirements may be di�erent than the requirements we
put upon an honest A.

Now we consider a set of requirements. First, the pen-
etrator (denoted in our requirements language by P),
must not learn the content of the message. Second, A
must have actually sent the message, and she must have
done so after B's `query'. We must assume that A is
honest, since if A is dishonest we assume that the pene-
trator can learn the message as soon as A creates it and
that A can send a message at any time.

In our formal language we express the requirements by
indicating the temporal order in which these actions
must occur. We use `!' to represent the standard condi-
tional, `^' to represent conjunction, and `3- ' to represent
a temporal operator meaning at some point in the past.
We assume that principals can keep track of rounds of
protocols from their perspective via local round num-
bers, where a round number local to a principal iden-
ti�es all actions pertaining to a single session as far as
that principal is concerned. Thus accept(B;A;Mes; N)
means that B accepts the messageMes as fromA during
B's local round N , learn(P;Mes)) means the penetra-
tor P learns the word Mes, send(A;B; (Query ;Mes))
means that A sends B Mes in response to query
Query, and request(B;A;Query; N)) means that B
sends query Query to A. Precise descriptions of the
meaning of the syntactic expressions will be given later
in the paper. For now we are simply trying to present
realistic but also fairly intuitive examples of formulae in
the language. We can then represent our requirements
as follows:

Requirements 1.3

� :(3- accept(B;A;Mes) ^3- learn(P;Mes))

� accept(B;A;Mes; N)!
3- (send(A;B; (Query;Mes)) ^
3- request(B;A;Query; N))

2

In order to be secure a protocol must satisfy the con-
junction of the requirements. They must both hold;
although, it helps keep things clear if we list them sepa-
rately. It will also facilitate application of the NRL Pro-
tocol Analyzer. Note that the request must come from
B even though the protocols we are looking at provide
no authentication of the �rst message. This may seem
odd since A thus has no way of being sure who sent
the request. Nonetheless, the request must come from
B even if A does not know this: B will know whether
or not the message is in response to his request when
he decrypts it and checks the nonce. If the message is
in response to anyone else's request, the nonce will not
correspond to the one B used, and B should not accept
the message as appropriate.

This also indicates that we have here just one of many
possible sets of requirements. Perhaps it is not neces-
sary that A sent the message in response to B's query,
only after B's query. For example, B may be requesting
the value of some sensor, and it may only be important
that the sensor value be from after B's request rather
than a response speci�cally to it. We can capture this
with the following simpli�cation of the �rst set of re-
quirements.

Requirements 1.4

� :(3- accept(B;A;Mes) ^3- learn(P;Mes))

� accept(B;A;Mes; N)!
3- (send(A;B;Mes) ^3- request(B;A;N))

2

Alternatively, it might only be important that the mes-
sage fromA be recent. We may require that the message
be recent by B's judgement (so that B will not accept
a message that arrives too late after he requested it),
or recent by A's judgement (so that B will not accept a
message that arrives too late after A sent it), or both.
We here represent the case in which both are required.

Requirements 1.5

� :(3- accept(B;A;Mes) ^3- learn(P;Mes))

� accept(B;A;Mes; N)!
3- (send(A;B;Mes) ^3- request(B;A;N))

� accept(B;A;Mes; N)!
3- (send(A;B;Mes) ^ :(3- time out(B;N)) ^
:(3- time out(A;Mes))

2

Another possibility is that we need to guard against
replay in the sense that if B accepts a message as

from an honest A, then it must never have been ac-
cepted previously by another honest principal. Or, we
can make the stronger requirement that if B accepts
a message as from A, then it never was accepted pre-
viously, whether or not A was honest or dishonest.
In this case, since we are dealing with both honest
and dishonest principals it is helpful to make a nota-
tional distinction between them. We designate an hon-
est user A by user(A; honest), a dishonest user A as
user(A; dishonest), and a user who may be honest or
dishonest as user(A; Y), where Y is a variable that may
take on the value \honest" or \dishonest". The case
in which we require that if an honest B accepts a mes-
sage as coming from an honest A, then it was never
accepted previously by any other honest user, would be
represented as follows:

Requirements 1.6

� :3- accept(user(B; honest); user(A; honest);Mes)
_ :3- learn(P;Mes))

� accept(user(B; honest); user(A; honest);Mes; N)
! 3- (send(user(A; honest); user(B; honest);Mes)
^3- request(user(B; honest); user(A; honest); N))

� accept(user(B; honest); user(A; honest);Mes)!
:3- accept(user (C; honest); user(D;Y);Mes)

2

Note that our requirement says that the message must
not have been previously accepted by any honest user
as coming from anybody, whether honest or dishonest.
Note also that it does not matter whether the proto-
col uses public or shared key cryptography. Nor do we
speci�cally require that nonces be used. For some of the
above sets of requirements it may or may not be more
natural to have protocols using timestamps or sequence
numbers. These points should provide some indication
of the generality with which requirements can be stated
even when being formal. We will return to look at the
last of these sets of sample requirements below, after we
have precisely set out the language and its interpreta-
tion.

1.3 Syntax

Our language contains a denumerable collection of con-
stant singular terms, typically represented by letters
from the beginning of the alphabet. We also have a
denumerable collection of variable terms, typically rep-
resented by letters from the end of the alphabet. We
also have, for each n � 1, n-ary function letters tak-
ing terms of either type as arguments and allowing us
to build up functional terms in the usual recursive fash-
ion. (We will always indicate whether a term is constant
or variable if there is any potential for confusion.) We
have a denumerable collection of n-ary action symbols
for each arity n � 1. These will be written as words in
typewriter scrypt (e.g., accept). The �rst argument of
an action symbol is reserved for a term representing the
agent of the action in question.

An atomic formula consists of an n-ary action symbol,
e.g., `act' followed by an n-tuple of terms. We have the
usual logical connectives: :, ^, _, !, and $, and also
one temporal operator: 3- . Complex formulae are built
up from atomic formulae in the usual recursive fashion.
Since we have already seen examples of formulae, we
proceed directly to their interpretation. (Note that this
is only a formal language, not a logic; hence there are
no axioms or inference rules.)

1.4 Interpretations

The key notion to understand is that of an action. For
us actions are transitions from one state to another. We
represent these semantically by ordered pairs of the form
(s; s0), where `s' represents the state prior to the action
and `s0' represents the state subsequent to the action.
The precise way this works is given in the de�nition of
an interpretation.

De�nition 1.7 A state space is a non-empty set S, and
each s 2 S is a state. We represent time digitally us-
ing the integers. A trace is a sequence � of elements
of S that is in�nite in both directions, for example,
: : : ; si�1; si; si+1; : : :. We can thus equate a trace with
a function from times to states. If s is the value of �(t),
we will generally adopt the notational convenience of
representing this by `st'. Let � and � be formulae. An
interpretation is a function I from atomic formulae of
the language to subsets of S � S, i.e., I(�) � S � S for
any atomic formula �.

A model is an ordered 4-tuple, hS; I; �; ti such that S is
a state space, I is an interpretation, � is a trace, and
t is a time. The satisfaction relation, j=, is a relation
between models and formulae. It is our way of speci-
fying which formuale are true: given a formula � and
a model hS; I; �; ti, `hS; I; �; ti j= �' means that � is
true at hS; I; �; ti. It is de�ned as the smallest relation
between models and formulae satisfying the following:

hS; I; �; ti j= � =df (st; st+1) 2 I(�)

hS; I; �; ti j= :� =df hS; I; �; ti =j= �

hS; I; �; ti j= � ^ � =df hS; I; �; ti j= � and

hS; I; �; ti j= �

hS; I; �; ti j= � _ � =df hS; I; �; ti j= � or

hS; I; �; ti j= �

hS; I; �; ti j= �! � =df hS; I; �; ti =j= � or

hS; I; �; ti j= �

hS; I; �; ti j= �$ � =df hS; I; �; ti j= �! � and

hS; I; �; ti j= � ! �

hS; I; �; ti j= 3- � =df hS; I; �; t0i j= � for some t0

such that t0 < t

Given a class of models �, we say that a formula � has a
�-model or is �-satis�able if there exists hS; I; �; ti 2 �
such that hS; I; �; ti j= �. We say that � is �-valid if

hS; I; �; ti j= � for all hS; I; �; ti 2 �. This is written
j=� �. When � is clear from context or when � is the
class of all models we drop explicit reference to it in
these expressions. 2

1.5 Models of Computation

We will not be looking at the class of all models for
purposes of protocol analysis. We now set out the class
we will be using. We begin by describing some of the
technical machinery we need. Our description of states
and actions is motivated primarily by the formalisms
operated on by the NRL Protocol Analyzer. (Recall
that our goal is to use the Analyzer as a model checker
to see if a given protocol meets a set of requirements.)

The model used by the Protocol Analyzer is an exten-
sion of the Dolev-Yao model [DY83]. We assume that
the participants in the protocol are communicating in a
network under the control of a hostile intruder who may
also have access to the network as a legitimate user or
users. The intruder has the ability to read all message
tra�c, destroy and alter messages, and create his own
messages. Since all messages pass through the intruder's
domain, any message that an honest participant sees
can be assumed to originate from the intruder. Thus a
protocol rule describes, not how one participant sends
a message in response to another, but how the intruder
manipulates the system to produce messages by causing
principals to receive certain other messages.

As in Dolev-Yao, the words generated in the protocol
obey a set of reduction rules (that is, rules for reducing
words to simpler words), so we can think of the proto-
col as a machine by which the intruder produces words
in the term-rewriting system. Also, as in Dolev-Yao,
we make very strong assumptions about the knowledge
gained when an intruder observes a message. We assume
that the intruder learns the complete signi�cance of each
message at the moment that it is observed. Thus, if the
intruder sees a string of bits that is the result of encrypt-
ing a message from A to B with a session key belonging
to A and B, he knows that is what it is, although he
will not know either the message or the key if he has
not observed them.

A speci�cation in the Protocol Analyzer describes how
one moves from one state to another via honest partici-
pants sending data, honest participants receiving data,
honest participants manipulating stored data, and the
intruder's manipulation of data sent by the honest par-
ticipants. Dishonest participants are identi�ed with the
intruder, and so are not modeled separately. The send-
ing and receipt of messages by the intruder is not mod-
eled separately, since it is automatically assumed that
any message sent is received by the intruder, and any
message received is sent by the intruder, even if it is
only passed on by the intruder unchanged. Thus every
receipt of a message by an honest principal implies the
sending of a message by the intruder, and every sending
of a message by an honest principal implies the receipt
of a message by the intruder.

Given this, we look at the notion of a state more closely.
One of the primary components of a state is a learned

fact. Each honest protocol participant possesses a set
of learned facts. Each learned fact is relevant to a given
round of the protocol. A learned fact is described using
an lfact function, which has four arguments. The �rst
identi�es the participant A for whom it is a learned
fact. This will give us the agent of an action. The
second identi�es the round of the protocol via a round
number that is local to the principal denoted by the
�rst argument. This will allow each principal to attach
each relevant action to a particular round of a particular
protocol. The third indicates the nature of the fact.
Generally this will indicate the action that the agent
is taking. The fourth gives the present value of A's
counter. In e�ect, this gives us a local clock value. The
value of the lfact is either a list of words that make up
the content of the fact, or if the fact does not have any
content, it is \[]", the empty list.

One way we represent actions semantically is via
changes in learned facts; however, we do not allow ar-
bitrary changes in the value of lfact. A nonempty list
can be the value of lfact for a given principal, round,
and action, at the principal's local time T only if the
value of lfact for that principal, round, and action, at
the time immediately prior to T was [].

Thus, for example, suppose that A has attempted to
initiate a conversation with B during local round N at
time T. This can be expressed by the action (s; s0) where
the di�erence between s and s0 is that in s,

lfact(user(A,honest),N,init conv,T) = []

and in s0,

lfact(user(A,honest),N,init conv,T+1) = [user(B)]

At any time prior to T, the value of the lfact would also
be [].

It is also useful to allow certain actions to be `forgotten'.
This is accomplished by having a transition in which the
value of lfact goes from a nonempty list to [].

Another component of a state is the intruder's knowl-
edge, represented as a monotonically nondecreasing
function of time. It is necessary to represent this in
a manner distinct from the learned facts because the
Analyzer represents the intruder in a di�erent way than
it represents ordinary principals. There are two kinds of
actions associated with intruder knowledge that we al-
low. In the �rst of these, the intruder learns some word,
that is, a string of symbols. For instance, suppose that
A sends a message W to B at time t1, and the intruder
intercepts (and thus learns) W at time t2. According to
what we have set out above, this can be represented by
(s; s0), where in s,

lfact(user(A),N,send to B,T) = []

and in s0,

lfact(user(A),N,send to B,T+1) = [W]

Then, the intruder learning of this action is given by
(s0; s00), where the only change from s0 to s00 is that in
s00 we have

intruderknows(t1) = intruderknows(t2) [f[W]g

where intruderknows(t) is the set of words known by
the intruder at the global time t, and t1 and t2 are
the global times corresponding to A's local times T and
T + 1, respectively.

The second way the intruder may increase his knowledge
is by performing some available internal operations on
things he already knows. In other words, assuming ! is
some n-ary operation of which the intruder is capable,
if fW1; : : : ;Wng � intruderknows(t), then

intruderknows(t2) = intruderknows(t1) [
f!(W1; : : : ;Wn)g,

where t1 and t2 are again global times.

De�nition 1.8 The four types of actions just given will
be called `basic actions'. A basic model is one in which,
for any given trace �, one basic action may occur per
unit time, and these specify the only allowable di�er-
ences between a state and its successor. 2

While basic models provide us with a simple model of
computation in which to interpret the expressions of our
language, they are too simple to be practical in most
cases, especially as a basis for analysis using the NRL
Protocol Analyzer. What we would like is a model in
which state transitions can be complex enough to be
useful but simple enough to provide assurance that our
model is a reasonable one. To this end we introduce
compressed models.

De�nition 1.9 A compressed model is a model M for
which there exists a basic model M0 satisfying the fol-
lowing:

� The state space and interpretation for M and M0

is the same.

� The trace � in M is a subtrace of �0, the trace in
M0

2

In particular, this means that for every transition
(st; st+1) in �, there exists a subsequence of �0,
(�0(i); : : : ; �0(i + n)), such that st = �0(i) and st+1 =
�0(i + n). Now that we have the essentials of our se-
mantics worked out, we can look at the satisfaction of
the requirements that we mentioned above. We focus
on requirements 1.4 for example.

Recall the two formulae constituting the requirements:

� :(3- accept(B;A;Mes) ^3- learn(P;Mes))

� accept(B;A;Mes; N)!
3- (send(A;B;Mes) ^3- request(B;A;N))

We can give a very simple description of the compu-
tational truth conditions of these requirements. For
example, hS; I; �; ti j= accept(B;A;Mes; N) i� in st
lfact(user(B), N, accept from A, T) = [] and in st+1
lfact(user(B), N, accept from A, T+1) = [Mes]. This
is of course not very revealing. While what constitutes
a send or receive action should be immediately clear,
an accept action is somewhat complex. Thus, while
we can present a model with such a simple interpreta-
tion, we need to give a more detailed interpretation of
an accept action if we are to get any use out of it.

It would be hopeless to give general truth conditions
for an accept action. Fortunately, at this point we can
turn to the protocol in question to see what would con-
stitute a reasonable interpretation of accepting a mes-
sage. Accepting a message is what occurs when all the
relevant checks have been veri�ed by the accepting prin-
cipal. Thus, for the protocol of example 1.2 we would
have as part of the �rst state of the accept action that
the nonce of the second message be veri�ed as the same
nonce that was sent in the �rst message. There are other
things to verify as well, and di�erent protocols gener-
ally have di�erent sets of checks to verify as conditions
on an acceptance of a message. Of course the atomic
actions and their interpretations can be quite di�erent
when we move to an entirely distinct class of protocols,
e.g., key distribution protocols. The exact details of this
will be set out below when we describe how to specify
the protocol for the Analyzer.

Once we have set an interpretation for all of the expres-
sions used in the statement of requirements and have
speci�ed the protocol itself, we are in a position to de-
termine whether or not the protocol meets the require-
ments. Given a �xed state space S and interpretation
I, we consider the class � of all models hS; I; �; ti for
which � is a trace of the protocol speci�cation. To see
if the protocol meets the requirements we simply see if
the formulae that constitute the requirements are valid
in �. Of course, while the check is very simple in theory,
it is rather di�cult in practice. This is where the NRL
Protocol Analyzer comes in: it helps us to make the
determination. That is, to see if the protocol meets the
requirements we present the Analyzer with the require-
ments and the interpretation of atomic actions therein.
We then ask it to determine if the models in � are a sub-
class of those that make the requirements true. We will
show how to do this below for the sample protocol and
sample requirements presented above. The analysis is
primarily conducted in the language of the Analyzer,
which for us amounts to a semantic description lan-
guage. Thus, we present a description of the Analyzer
and its language before further examining our sample
protocol with respect to our sample requirements.

2 The NRL Protocol Analyzer

2.1 The Speci�cation Language Used by
the NRL Protocol Analyzer

A speci�cation in the NRL Protocol Analyzer consists
of four sections. The �rst section consists of transi-
tion rules governing the actions of honest principals. It
may also contain rules describing possible system fail-
ures that are not necessarily the result of actions of the
intruder, for example, the compromise of a session key.
The second section describes the operations that are
available to the honest principals and possibly to the
intruder, e.g., encryption and decryption. The third
section describes the atoms that are used as the basic
building blocks of the words in the protocol. The fourth
section describes the rewrite rules obeyed by the oper-
ations.

A transition rule has three parts. The �rst part gives
the conditions that must hold before the rule can �re.
These conditions describe the words the intruder must
know (that is, the message that must be received by
the principal), the values of the lfacts available to the
principal, and any constraints on the lfacts and words.
At the moment, the syntax of the constraints on words
is somewhat restricted; they can only say that words
must or must not be of a given length or that they
must or must not be equal to other words. The second
part describes the conditions that hold after the rule
�res in terms of words learned by the intruder (that is,
the message sent by the principal) and any new values
taken on by lfacts. Each time a rule �res, the principal's
local time is incremented; this is also recorded in the
preconditions and postconditions of the rule. The third
part of the rule consists of an event statement. It is used
to record the �ring of a rule and is useful for indicating
what the rule does. It is derived from the �rst two parts
of the rule. The event statement describes a function
with four arguments. The �rst gives the name of the
relevant principal. The second gives the number of the
protocol round. The third identi�es the event. The
fourth gives the value of the principal's counter after
the rule �re. The value of the event is a list of words
relevant to the event.

An example of a rule is the following. Suppose we are
at the point in the ISO protocol in which an honest
principal, user(honest,B), has decided to request a mes-
sage from another principal, user(A,Y), and sends him
a nonce. This can be modeled by the following rule:

If:
count(user(B,honest)) = [M],
lfact(user(B,honest),N,recwho,M) =

[user(A,Y)],
not(user(A,Y) = user(B,honest)),
then:
count(user(B,honest)) = [s(M)],
intruderlearns([user(B,honest),

rand(user(B,honest),M)]),
lfact(user(B,honest),N,recsendsnonce,s(M)) =
[rand(user(B,honest),M)],
EVENT:
event(user(B,honest),N,requestedmessage,s(M))

= [user(A,Y),rand(user(B,honest),M)].

In this rule the recwho lfact is used to hold the name
of the user user(B,honest) is trying to talk too, and
the recsendsnonce lfact holds the random nonce that
user(B,honest) sends to user(A,Y). The event statement
going with this rule is denoted by \requestedmessage"
and holds the words used in this rule: namely, the name
of user(A,Y) and the nonce.

The second section of the speci�cation de�nes the oper-
ations that can be made by honest principals and by the
intruder. If an operation can be made by the intruder,
the Analyzer translates it into a transition rule similar
to the above, except that the relevant principal is the
intruder instead of an honest principal, and no lfacts are
involved. An example of a speci�cation of an operation
is the following, describing public key encryption:

fsd1:pke(X,Y):length(X) = 1:
length(pke(X,Y)) = length(Y):pen.

The term \fsd" stands for \function symbol descrip-
tion." The next term gives the operation and the ar-
guments. The third gives conditions on the arguments.
In this case, we make the condition that the key be a
certain length, which in this case we make a default unit
length one. The next term gives the length of the re-
sulting word, which in this case is the length of Y. The
last �eld is set to \pen" if we are assuming that the
penetrator can perform the operation, and \nopen" if
we are assuming that he can't. Thus the decision to
put \pen" or \nopen" into the last �eld may vary with
our assumptions about the environment in which the
protocol is operating.

Some operations are built into the system. These are:
concatenation, taking the head of a list, taking the tail
of a list, and id check, which is used by an honest prin-
cipal to determine whether or not two words are equal.

The third section describes the words that make up the
basic building blocks. We call these words \atoms". Ex-
amples would be user names, keys, and random num-
bers. Again, we indicate whether or not the word is
known to the intruder in the last �eld of an atom spec-
i�cation, it is \known" if the intruder knows it initally,
and \notknown" if the intruder doesn't know it initially.

The last section describes the rewrite rules by which
words reduce to simpler words. An example of a rewrite
rule would be one which describes the fact encryption
with corresponding public and private keys cancel each
other out:

rr1: pke(privkey(X),pke(pubkey(X),Y)) => Y.
rr2: pke(pubkey(X),pke(privkey(X),Y)) => Y.

One queries the Analyzer by asking it to �nd a state that
consists of a set of words known by the intruder, a set of
lfacts, and a sequence of events that must have occurred.
One can put conditions on the words, lfacts and events
by putting conditions on the words that appear in them.

One can also put conditions on the results by specifying
that certain sequences of events must not have occurred.

The Analyzer then matches up output of each rule with
the speci�ed state, if possible, by performing substi-
tutions on the output that make it reducible, via the
reduction rules, to the state speci�ed. It may match
either the entire state or some subset. The input of the
rule together with any part of the state then becomes a
new state to be queried.

The way in which the Analyzer interprets rules allows
considerable freedom in how the matching is done. Vari-
ables are local to rules, and, each time a rule is applied,
a new set of variables is generated. This allows the An-
alyzer, for example, to develop scenarios involving mul-
tiple instantations of protocol rounds, as well scenarios
in which the same principal plays more than one role.

2.2 An Example Speci�cation

In this section we give the speci�cation of the modi-
�ed ISO protocol in example 1.2. The protocol con-
sists of two messages. In the �rst message, a principal
who wishes to receive a message sends a nonce to the
principal he wishes to receive a message from. In the
next message the sender sends a message, the receiver's
nonce, and his own nonce, signed and encrypted. The
speci�cation is given below.

In the �rst two transitions, an honest user,
user(B,honest), sends a request for a message to
user(A,Y) , who may or may not be honest. In the
�rst, user(B,honest) chooses user(A,Y); in the second,
he sends the request.

/*user(B,honest) chooses sender of message*/

rule(1)
If:
count(user(B,honest)) = [M],
then:
count(user(B,honest)) = [s(M)],
lfact(user(B,honest),M,recwho,s(M)) =

[user(A,Y)],
EVENT:
event(user(B,honest),M,chosewho,s(M)) =

[user(A,Y)].

/*user(B,honest) sends random number*/

rule(2)
If:
count(user(B,honest)) = [M],
lfact(user(B,honest),N,recwho,M) =

[user(A,Y)],
not(user(A,Y) = user(B,honest)),
then:
count(user(B,honest)) = [s(M)],
intruderlearns([rand(user(B,honest),M)]),
lfact(user(B,honest),N,recsendsnonce,s(M)) =

[rand(user(B,honest),M)],
EVENT:
event(user(B,honest),N,requestedmessage,s(M))

= [user(A,Y),rand(user(B,honest),M)].

In the third transition, user(A, honest) recieves a re-
quest for a message from user(B,X), who may or may
not be honest. He sends an encrypted, signed, message
to user(B,X), including the token that was sent. He
checks that the length of the word is 1 (since this unit
length is the length speci�ed for these random num-
bers in the later part of the speci�cation) and he also
checks that user(B,X) is not the same as user(A,honest)
(since if that were the case the use of this protocol and
the cancellation properties of public-key cryptography
would result in an unsigned, unencrypted message be-
ing sent. He sends an encrypted, signed, message to
user(B,X), including the token that was sent.

/*User A sends out signed message with random
number attached*/

rule(3)
If:
count(user(A,honest)) = [M],
intruderknows([user(B,X),W1]),
length(W1) = 1,
not(user(B,X) = user(A,honest)),
then:
count(user(A,honest)) = [s(M)],
intruderlearns([rand(user(A,honest),M),

W1,user(B,X),
pke(pubkey(user(B,X)),
pke(privkey(user(A,honest)),
(rand(user(A,honest),M),

W1,user(B,X),
mess(user(A,honest),M))))]),

EVENT:
event(user(A,honest),N,sentsignedmess,s(M)) =

[rand(user(A,honest),M),W1,user(B,X),
mess(user(A,honest),M)].

In the next two transitions, user(B,honest) receives the
message and checks it. If it passes the tests, he accepts
it as coming from user(A,Y).

/*User B receives message and verifies it*/

rule(4)
If:
count(user(B,honest)) = [R],
intruderknows([T1,W1,user(B,honest),Mes]),
lfact(user(B,honest),M,recwho,R) =

[user(A,Y)],
lfact(user(B,honest),M,recsendsnonce,R) =

[W1],
then:
count(user(B,honest)) = [s(R)],
lfact(user(B,honest),M,recmessage,s(R)) =

[tail(tail(tail(
pke(pubkey(user(A,honest)),
pke(privkey(user(B,honest)),
Mes)))))],

lfact(user(B,honest),M,checkaddress,s(R)) =
[id_check(head(tail(tail(

pke(pubkey(user(A,honest)),
pke(privkey(user(B,honest)),

Mes))))),
user(B,honest))],

lfact(user(B,honest),M,checknonce,s(R)) =
[id_check(head(tail(
pke(pubkey(user(A,honest)),
pke(privkey(user(B,honest)),Mes)))),

W1)],
EVENT:
event(user(B,honest),M,recsignedmess,s(R)) =

[Mes].

In the above rule, \head" is used to denote the �rst
element of a list, and \tail" denotes what is left af-
ter the �rst element is removed. Thus, for example,
head(tail((a,b,c))) = b.

/*User B accepts message if check succeeds*/

rule(5)
If:
count(user(B,honest)) = [R],
lfact(user(B,honest),M,recwho,R) =

[user(A,Y)],
lfact(user(B,honest),M,recsendsnonce,R) =

[Nonce],
lfact(user(B,honest),M,checkaddress,R) =

[ok],
lfact(user(B,honest),M,checknonce,R) = [ok],
lfact(user(B,honest),M,recmessage,R) = [S1],
then:
count(user(B,honest)) = [s(R)],
lfact(user(B,honest),M,recwho,s(R)) = [],
lfact(user(B,honest),M,recmessage,s(R)) =

[],
lfact(user(B,honest),M,recsendsnonce,s(R)) =

[],
lfact(user(B,honest),M,accept,s(R)) =

[user(A,Y),S1],
EVENT:
event(user(B,honest),M,acceptmess,s(R)) =

[user(A,Y),S1].

The remainder of the speci�cation describes the way
words are generated and operations the intruder can
perform. They are listed below. The functions symbol
speci�cation describes the function symbol pke desig-
inating the public key encryption function. The atom
speci�cation describes the various basic words produced
by the system such as user names and private and public
keys. Finally, the reduction rule section describes the
various reduction rules that operate: in this case, we
make the assumption that encryption with correspond-
ing public and private keys cancels out.

fsd1:pke(X,Y):length(X) = 1:
length(pke(X,Y)) = length(Y):pen.

atom1:user(A,X):1:known.
atom2:mess(user(A,dishonest),N):1:known.
atom3:mess(user(A,honest),N):1:notknown.
atom4:privkey(user(A,honest)):1:notknown.
atom5:privkey(user(A,dishonest)):1:known.

atom6:pubkey(user(A,X):1:known.
atom7:rand(user(A,honest),N):1:notknown.
atom8:rand(user(A,dishonest),N):1:known.

rr1: pke(privkey(X),pke(pubkey(X),Y)) => Y.
rr2: pke(pubkey(X),pke(privkey(X),Y)) => Y.

2.3 Mapping the Requirements to the
Speci�cation

In this section we describe how the statements in re-
quirements 1.6 would be mapped to the protocol so that
they could be veri�ed using the Protocol Analyzer. We
also show in detail how one of the statements is veri�ed
using the Analyzer.

When we present a query to the Analyzer, we have sev-
eral options. We can ask it to �nd a set of lfact values,
a set of words the intruder knows, a sequence of events
that occurred, or some combination of the above. We
can also put conditions on the results it �nds. We can
require that words have certains properties, and require
that certain sequences of events do not occur.

We use the Analyzer to attempt to prove a state is un-
reachable. Thus we must translate each requirement
into a description of an unreachable state. This is done
in two parts. First, each requirement R is translated
into an equivalent requirement of the form not(R0).
Secondly, the actions described in the requirement are
translated into the corresponding event statement used
by the Analyzer, transforming R0 into a state descrip-
tion R00 that can be presented to the Analyzer. The
Analyzer is then used to prove R00 unreachable. If this
can be done, it has been proved that the requirement
holds.

We begin by mapping action statements that describe
actions of honest principals to event statements. Again,
we note that this mapping depends on the context of the
protocol. We begin by �nding the point at which we de-
cided that an honest user accepts a message and map-
ping the accept statement to the corresponding event
statement. Thus the action statement

accept(user(B; honest); user(A; honest);Mes)

maps to the event statement

event(user(B,honest),M,acceptmess,T1) =
[user(A,honest),Mes].

Likewise, we �nd the point at which user(A,honest)
sent the message to user(B,honest). Thus we have
the action send(user(A; honest); user(B; honest);Mes)
mapped to the event statement

event(user(A,honest),M,sentsignedmess,Q1) =
[R,W,user(B,honest),Mes]

and the action request(B;A;N) to the event statement

event(user(B,honest),N,requestedmessage,Q2) =
[user(A,honest),R1].

Mapping intruder actions to the protocol speci�cation is
trickier, since intruder actions, which consist of learning
words, do not map to speci�c transitions, but instead
to any transition which can produce a word of the ap-
propriate form. However, we recall that, in querying
the Analyzer, we can ask it to produce a state in which
the intruder knows a word or word. This corresponds
to asking it to �nd a state in which the intruder learned
that word in the past. If all we wish to prove is that
the intruder learned that word in the past, and we are
not concerned about ordering, then this is su�cient. In
most cases, we are mainly concerned with proving that
an intruder never learns a word; for example, we want
to prove that the intruder never learns a key, not that
he does not learn it before or after it is used. Thus, in
most cases, the way in which the Analyzer is queried
will be su�cient. In cases in which it is not, we sim-
ply discard the output in which the events occur in the
wrong order.

We now show how we would present the various require-
ments to the Analyzer. The Analyzer is used by specify-
ing an insecure state and showing that it is unreachable,
so we use the Analyzer by specifying the negation of the
requirement and showing that it is unreachable. We be-
gin with the requirement

:(3- accept(user(B; honest); user(A; honest);Mes)
^3- learn(P;Mes))

This requirement it presented to the Analyzer by asking
it to �nd all cases in which the accept event occurred
and the word was learned.

The second requirement is

accept(user(B; honest); user(A; honest);Mes; N)!
3- (send(user (A; honest); user(B; honest);Mes)^
3- request(user (B; honest); user(A; honest); N))

It says that, if the accept event occurred, then some
sequence of events must have occurred. Thus, in order
to prove that this requirement is satis�ed, we must prove
that the state in which the accept event occurred and
the previous events did not occur. Thus, we ask it to
look for the case in which

event(user(B,honest),N,acceptmess,M) =
[user(A,honest),Mes]

occurred, but the sequence of events

event(user(B,honest),N,requestedmessage,M1) =
[user(A,honest),R1]

event(user(A,honest),P,sentsignedmess,Q) =
[R,W,user(B,honest),Mes]

did not occur.

The third requirement is

accept(user(B; honest); user(A; honest);Mes)!
:3- accept(user (C; honest); user(D;Y);Mes)

It says that, if the accept event occurred, then an accept
event for the same message did not occur in the past. In
this case, we ask the Analyzer to look for the sequence
of events

event(user(C,honest),N1,recsignedmess,M1) =
[user(A1,Y),Mes]

event(user(B,honest),M,recsignedmess,M) =
[user(A,honest),Mes]

We now examine the second requirement in detail. The
proofs of the other two are similar, but more lengthy.

Before we began presenting the requirements to the An-
alyzer, we did a syntactic analysis in which we proved
that a number of trivial states were unreachable. For
example, we proved that certain words were unobtain-
able under certain conditions. We also proved that some
lfacts were reachable only if certain conditions held. The
results of this syntactic analysis were then fed into the
Analyzer, which automatically checked for these condi-
tions every time it produced a solution. If the condi-
tions were not satis�ed it either rejected the solution,
or, if some more speci�c case of the solution satis�ed
the conditions, substituted the more speci�c case for
the general one.

We began by asking for a complete description of all
states in which the accept event occurred but the cor-
responding send and request events did not occur. A
transcript follows. User input is preceded by \|:"

?- begin.

Give the number of the parent solution,
if any.

|:

What words is the intruder looking for?
|:
What state variable values is the intruder
looking for?
|:

List the sequence of events that you want
to have occurred.
|: event(user(B,honest),N,acceptmess,M) =

[user(A,honest),Mes]
|:
What conditions do you want to put
on all of these?
|:

List the sequences of events that you
don't want to have occurred.

Enter a list
|: event(user(B,honest),N,

requestedmessage,M1) =
[user(A,honest),R]

|: event(user(A,honest),P,sentsignedmess,Q) =
[R1,W1,user(B,honest),Mes]

|:

Enter a list
|:

One solution is produced:

Solution number 1

The events that occurred are
R1 = event(user(_10416,honest),[_10418],

acceptmess,s(_10421)) =
[user(_10425,honest),_10427].

The lists of events to avoid are

H1 = event(user(_10416,honest),[_10418],
requestedmessage,_10654) =

[user(_10425,honest),_10666].
H2 = event(user(_10425,honest),[_10679],

sentsignedmess,_10674) =
[_10681,_10683,user(_10416,honest),

_10427].

Input state variables are:

S1 = count(user(_10416,honest)) = _10421.
S2 = lfact(user(_10416,honest),[_10418],

recwho,_10421) =
[user(_10425,honest)].

S3 = lfact(user(_10416,honest),[_10418],
recsendsnonce,_10421) =

[rand(user(_10416,honest),_10476)].
S4 = lfact(user(_10416,honest),[_10418],

checkaddress,_10421) = [ok].
S5 = lfact(user(_10416,honest),[_10418],

checknonce,_10421) = [ok].
S6 = lfact(user(_10416,honest),[_10418],

recmessage,_10421) = [_10427].

Rule number 5 was used.

We try to �nd out if this state is reachable by asking the
Analyzer how to �nd the state in which the the lfacts
S2, S4, S5, and S6 hold. The Analyzer attempts to
match every subset of these lfacts. It turns up only one
solution, the following, matching S4, S5, and S6. S2 is
thus required to be part of the intput state.

Solution number 1.1
The events that will occur are:

F1 = event(user(_4251,honest),[_4253],
acceptmess,s(s(_4258))) =

[user(_4262,honest),_4264].
The events that occurred are

R1 = event(user(_4251,honest),[_4253],
recsignedmess,s(_4258)) =

[user(_4262,honest),
pke(pubkey(user(_4251,honest)),

pke(privkey(user(_4262,honest)),
(_4307,
rand(user(_4251,honest),_4314),
user(_4251,honest),_4264)))].

The lists of events to avoid are

H1 = event(user(_4251,honest),[_4253],
requestedmessage,_4751) =

[user(_4262,honest),_4763].
H2 = event(user(_4262,honest),[_4776],

sentsignedmess,_4771) =
[_4778,_4780,user(_4251,honest),

_4264].

Input words are:

W1 = _4326
W2 = rand(user(_4251,honest),_4314)
W3 = user(_4251,honest)
W4 = pke(pubkey(user(_4251,honest)),

pke(privkey(user(_4262,honest)),
(_4307,
rand(user(_4251,honest),_4314),
user(_4251,honest),_4264)))

Input state variables are:

S1 = count(user(_4251,honest)) = _4258.
S2 = lfact(user(_4251,honest),[_4253],

recwho,_4258) =
[user(_4262,honest)].

S3 = lfact(user(_4251,honest),[_4253],
recsendsnonce,_4258) =

[rand(user(_4251,honest),_4314)].
States found are:
D1 = lfact(user(_4251,honest),[_4253],

recmessage,s(_4258)) =
[_4264].

D2 = lfact(user(_4251,honest),[_4253],
checkaddress,s(_4258)) = [ok].

D3 = lfact(user(_4251,honest),[_4253],
checknonce,s(_4258)) = [ok].

We now ask the Analyzer how to �nd the state in which
the intruder knows W4 and lfacts S2 and S3 hold. In
this case we get two results, each matching W4 and
requiring S2 and S3 to be part of the input state. Note
that the second solution requires the intruder's use of
the public-key encryption function.

Solution number 1.1.1
The events that will occur are:

F1 = event(user(_10036,honest),[_10038],
recsignedmess,s(_10043)) =

[user(_10047,honest),
pke(pubkey(user(_10036,honest)),
pke(privkey(user(_10047,honest)),
(rand(user(_10047,honest),_10053),
rand(user(_10036,honest),_10109),
user(_10036,honest),

mess(user(_10047,honest),_10053))))].
F2 = event(user(_10036,honest),[_10038],

acceptmess,s(s(_10043))) =
[user(_10047,honest),
mess(user(_10047,honest),_10053)].

The events that occurred are
R1 = event(user(_10047,honest),[_10138],

sentsignedmess,s(_10053)) =
[rand(user(_10047,honest),_10053),
rand(user(_10036,honest),_10109),
user(_10036,honest),
mess(user(_10047,honest),_10053)].

The lists of events to avoid are

H1 = event(user(_10036,honest),[_10038],
requestedmessage,_10452) =

[user(_10047,honest),_10464].

Input words are:

W1 = user(_10036,honest)
W2 = rand(user(_10036,honest),_10109)

Input state variables are:

S1 = count(user(_10047,honest)) = _10053.
S2 = lfact(user(_10036,honest),[_10038],

recwho,_10043) =
[user(_10047,honest)].

S3 = lfact(user(_10036,honest),[_10038],
recsendsnonce,_10043) =

[rand(user(_10036,honest),_10109)].

Words found are:
E1 = pke(pubkey(user(_10036,honest)),

pke(privkey(user(_10047,honest)),
(rand(user(_10047,honest),_10053),
rand(user(_10036,honest),_10109),
user(_10036,honest),
mess(user(_10047,honest),_10053))))

Rule number 3 was used.

Solution number 1.1.2
The events that will occur are:

F1 = event(user(_9440,honest),[_9442],
recsignedmess,s(_9447)) =

[user(_9451,honest),
pke(pubkey(user(_9440,honest)),
pke(privkey(user(_9451,honest)),
(_9494,
rand(user(_9440,honest),_9501),
user(_9440,honest),_9453)))].

F2 = event(user(_9440,honest),[_9442],
acceptmess,s(s(_9447))) =

[user(_9451,honest),_9453].
The events that occurred are
R1 = event(pen,[_9521],pke,s(_9521)) =

[pubkey(user(_9440,honest)),
pke(privkey(user(_9451,honest)),

(_9494,
rand(user(_9440,honest),_9501),
user(_9440,honest),_9453))].

The lists of events to avoid are

H1 = event(user(_9440,honest),[_9442],

requestedmessage,_9773) =
[user(_9451,honest),_9785].

H2 = event(user(_9451,honest),[_9798],
sentsignedmess,_9793) =

[_9800,_9802,user(_9440,honest),
_9453].

Input words are:

W1 = pubkey(user(_9440,honest))
W2 = pke(privkey(user(_9451,honest)),

(_9494,
rand(user(_9440,honest),_9501),
user(_9440,honest),_9453))

Input state variables are:

S1 = count(pen) = _9521.
S2 = lfact(user(_9440,honest),[_9442],

recwho,_9447) =
[user(_9451,honest)].

S3 = lfact(user(_9440,honest),[_9442],
recsendsnonce,_9447) =

[rand(user(_9440,honest),_9501)].

Words found are:
E1 = pke(pubkey(user(_9440,honest)),

pke(privkey(user(_9451,honest)),
(_9494,
rand(user(_9440,honest),_9501),
user(_9440,honest),_9453)))

Rule number 301 was used.

Notice that, in Solution 1.1.1, the second event in our
series of undesirable events has occurred. When we ask
the Analyzer how to �nd lfacts S2 and S3 in Solution
1.1.1, it �nds that the only way that this can occur
is if the request event occurs. This is the third and
last undesirable event in the series, and so it rejects the
solution and declares the state unreachable.

In Solution 1.1.2, the Analyzer used the fact that the
word W4 was of the form

pke(pubkey(user(_9440,honest)),
pke(privkey(user(_9451,honest)),

(_9494,
rand(user(_9440,honest),_9501),
user(_9440,honest),_9453)))

to prove that the word was obtainable if

W1 = pubkey(user(_9440,honest))

and

W2 = pke(privkey(user(_9451,honest)),
(_9494,
rand(user(_9440,honest),_9501),
user(_9440,honest),_9453))

can be found by the intruder. All public keys are as-
sumed to be generally known. Thus we attempt to de-
termine whether or not the intruder can �nd W2. The

Analyzer �nds several solutions, but in our previous syn-
tactic analysis we proved them unreachable. Thus the
Analyzer judges the word W2 to be unobtainable by the
intruder, and says that the state is unreachable.

We have now followed all paths to the end and proved
that each one begins in an unreachable state. Thus we
have proved the original state we speci�ed unreachable,
and hence that the requirement is satis�ed.

3 Conclusions

In this paper we have presented a formal language for
specifying and reasoning about cryptographic protocol
requirements. We have given examples of simple sets of
requirements in that language. We have looked at two
versions of a protocol that might meet those require-
ments and shown how to specify them in the language
of the NRL Protocol Analyzer. We have also shown
how to map one of our sets of formal requirements to
the language of the NRL Protocol Analyzer and used
the Analyzer to show that one version of the protocol
meets those requirements.

We regard the applications in this paper as very elemen-
tary and primarily for illustrative purposes. We have
begun work on more substantive and more commonly
applicable requirements. In particular we have speci�ed
requirements for various types of two party key distribu-
tion protocols, including general requirements covering
public or shared key protocols and requirements for pro-
tocols using Di�e-Hellman type key exchange. Interest-
ingly, the reason we cannot cover all of the above with
a general complete set of requirements is only because
the session key is not produced from a single source in
Di�e-Hellman schemes. We have also begun to specify
requirements for resource sharing of the kind found in
[BM90]. We expect to �nd still more applications for
our language and technique in the future.

4 Acknowledgement

We would like the thank Jim Gray, Yacov Yacobi, and
the anonymous referees for their careful and insightful
comments.

References

[Aba90] Mart��n Abadi. An Axiomatization of Lam-
port's Temporal Logic of Action. Research
Report 65, Digital Systems Research Center,
October 1990.

[AT91] Mart��n Abadi and Mark Tuttle. A Seman-
tics for a Logic of Authentication. In Proceed-
ings of the Tenth ACM Symposium on Princi-
ples of Distributed Computing, pages 201{216.
ACM Press, August 1991.

[BAN89] Michael Burrows, Mart��n Abadi, and Roger
Needham. A Logic of Authentication. Re-
search Report 39, Digital Systems Research
Center, February 1989. Parts and versions
of this material have been presented in many

places including ACM Transactions on Com-
puter Systems, 8(1): 18{36, Feb. 1990. All ref-
erences herein are to the SRC Research Re-
port 39 as revised Feb. 22, 1990.

[BAN90] Michael Burrows, Mart��n Abadi, and Roger
Needham. Rejoinder to Nessett. Operating
Systems Review, 24(2):39{40, April 1990.

[BM90] J. Burns and C.J. Mitchell. A Security Scheme
for Resource Shoring Over a Network. Com-
puters and Security, 9:67{76, February 1990.

[DY83] D. Dolev and A. Yao. On the Security of
Public Key Protocols. IEEE Transactions
on Information Theory, 29(2):198{208,March
1983.

[Gol92] Robert Goldblatt. Logics of Time and Com-

putation, 2nd edition, volume 7 of CSLI Lec-
ture Notes. CSLI Publications, Stanford,
1992.

[ISO91] ISO/IEC JTC1/SC27. Information Technol-
ogy { Security Techniques { Entity Authenti-
cation Mechanisms { Part 3: Entity Authenti-
cation Using a Public-Key Algorithm, Novem-
ber 1991. Committee Draft 9798{3, version
#4.

[Lam90] Leslie Lamport. A temporal logic of action.
Research Report 57, Digital Systems Research
Center, April 1990.

[Mea91] C. Meadows. A System for the Speci�cation
and Analysis of Key Management Protocols.
In Proceedings of the 1991 IEEE Computer
Society Symposium on Research in Security
and Privacy, pages 182{195. IEEE Computer
Society Press, Los Alamitos, California, 1991.

[Mea92] C. Meadows. Applying Formal Methods to
the Analysis of a Key Management Protocol.
Journal of Computer Security, 1:5{53, 1992.

[Nes90] D. M. Nessett. A Critique of the Burrows,
Abadi, and Needham Logic. Operating Sys-
tems Review, 24(2):35{38, April 1990.

[SG92] S.G. Stubblebine and V.D. Gligor. On Mes-
sage Integrity in Cryptographic Protocols. In
Proceedings of the 1992 IEEE Computer So-
ciety Symposium on Research in Security and
Privacy, pages 85{104. IEEE Computer Soci-
ety Press, Los Alamitos, California, 1992.

[Syv91] Paul F. Syverson. The Use of Logic in the
Analysis of Cryptographic Protocols. In Pro-
ceedings of the 1991 IEEE Computer Society
Symposium on Research in Security and Pri-
vacy, pages 156{170. IEEE Computer Society
Press, Los Alamitos, California, 1991.

[vB91] Johan van Bentham. The Logic of Time, vol-
ume 156 of Synthese Library. Kluwer Aca-
demic Publishers, Dordrecht, The Nether-
lands, second edition, 1991.

