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1   Research activities 
 
The main results of the research activities supported by   EOARD were described  in great 
detail and made public  in the three papers  published in the Proceedings of the 2005 
International Conference on  Integration of Knowledge Intensive Multi-Agent Systems 
(KIMAS 2005), Eds. C. Thompson and H. Hexmoor, ISBN 0-7803-9013-X:  
1. “Evolution of communication in a community of simple-minded agents”, presented in 
session  WM4: Evolution of Communication and Cognition,  pp. 285-290 of the  
Proceedings of KIMAS’05. 
2. “Minimal Models for Text Production and Zipf’s Law”, presented in session WM4: 
Evolution of Communication and Cognition,  pp. 297-300 of the Proceedings of 
KIMAS’05.  
3. “Meaning Creation and Modeling Field Theory”, presented in session WA3: Semiotics, 
Language and Meanings,  pp. 405-410 of the  Proceedings of KIMAS’05.  
These papers addressed  the main topics of investigation listed  in the original proposal  and 
for the sake of completeness they are attached to this  report  (see paper_1.pdf, paper_2.pdf, 
and paper_3.pdf). 
The results presented in the sequel are natural extensions of the research described in the 
Interim Report  and will soon be submitted to publication. 
 
1.1   The “true” number of objects in the world: Akaike Information Criterion 
 
To instantiate any model of communication between virtual or real organisms, a basic 
cognitive requirement must be fulfilled, namely, that the organisms be capable of 
classifying different types of situations and, accordingly, be capable of recognizing that a 
situation of a particular type turns up. The effectiveness of the Modeling Field Theory, 
MFT for short,  framework as an autonomous mechanism for the spontaneous formation of 
meaning or, equivalently, for category creation has already been demonstrated in the 
previous report. Here we use the same simple one-dimensional environment, originally  
proposed by Luc Steel1, in which an organism inhabits an abstract world made up of 

objects or situations, each of which described by a single feature value modeled by a real 
variable  drawn from some probability distribution. These features are, 
of course, abstract and have no particular meaning in the model, though it may be helpful to 
think of them as perceptual features such as color or smell. The question is whether such 
organism is capable to  produce  a repertoire of features to succeed in discriminating among 

N
( ) NiOi ,,1,1,0 L=∈

                                                           
1 L. Steels, “Perceptually grounded meaning creation,” Proceedings of the Second International Conference 
on Multi-Agent Systems, ICMAS-96, 338-344, 1996. 
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the known objects and to adapt that repertoire when new objects are incorporated into the 
environment. 
In the MFT scheme we  assume that there are M concept-models described by real-valued 
variables that should represent the objects MkSk ,,1, L= NiOi ,,1, L= . We define 
arbitrarily the following partial similarity measure between object i and concept k 
 
             ( ) ( )[ ]222/1 2exp2)|( kkik SOkil σπσ −−= − ,                                                          (1) 
where, at this stage, the fuzziness kσ  is a parameter given a priori. The goal is to find an 
assignment between models and objects such that the global similarity 
 

                ∑∑=
ki

kil
M

L )|(log1
                                                                                        (2) 

is maximized. For our purposes, namely, to compare the values of L obtained using   
distinct number of fields, it is very important that we re-normalize the global similarity by 
the number of fields, as done in Eq. (2), in order to make it an intensive quantity with 
respect to M. This maximization can be  achieved using the  MFT mechanism of concept 
formation which is  based on the following  dynamics for the modeling fields2  
 
               [ k

i
k SkilikfdtdS ∂∂= ∑ )|(log)|( ]                                                                   (3) 

where the fuzzy association variables are  defined by  )|( ikf
              ∑=

'

)'|()|()|(
k

kilkilikf                                                                                    (4) 

and give a measure of the correspondence between object i and concept k relative to all 
other concepts k’. In fact, it can be shown that this dynamics always converges to a (usually 
local) maximum of the similarity L. However, by properly adjusting the fuzziness kσ  the 
global maximum can be singled out. In particular, here  we choose to decrease the fuzziness 
on the flight, i.e., during the time evolution of the modeling fields according to the 
following prescription 
 
            ( ) 2

0
2
1

2 exp)( kkk tt σασσ +−=                                                                                        (5) 
with 4105 −×=α ,  kk ∀=11σ  and  kk ∀= 03.00σ . We have shown that this setting allows  
perfect categorization, in a sense that the values of the modeling fields match those of the 
objects, provided that the  number of modeling fields M is equal or greater than the number 
of  objects  N. 
 
This framework, however, does not account for a need to decide how many different 
models (i.e., modeling fields) the organism really needs. A biological organism evolves 
various complex mechanisms, related to instinctual and emotional evaluations, to make 
such a decision, i.e., to distinguish between  the  objects and the meaningless background 
that compose  its world. An adaptation of  a quote by Ferdinand de Saussure may be  

                                                           
2 L. I. Perlovsky, Neural Networks and Intellect: Using Model-Based Concepts, Oxford: Oxford University 
Press, 2001. 
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appropriate to describe the situation – without labels the world is  a vague, uncharted 
nebula3. But too many labels is equivalent to have no labels at all. In fact, mathematical  
approaches to determine the true number of objects are nontrivial because any data can be 
better fitted with more models (i.e., concepts). Therefore it is necessary to balance 
maximization of similarity, Eq.  (2), against the number of parameters in the model.  A 
theoretically consistent way to achieve this balance is to use   Akaike Information Criterion, 
AIC for short, which is an asymptotic correction to the similarity function related to the 
bias due to the number of parameters4, namely, 

              parMLAIC
2
1

−=                                                                                                 (6) 

where  is the number of adjustable parameters of the models and L is given by Eq. (2). 
In our case, since there are two parameters per model ( and 

parM

kS kσ ) we have . MM par 2=
To better appreciate the effectiveness of the AIC to single out the true number of objects in 
the environment we consider a very simple situation in which there are N = 4 objects: 

, ,  and 2.01 =O 4.02 =O 6.03 =O 8.04 =O . The modeling field dynamic equations  (3) – 
(5) are then solved numerically with Euler’s method using the step-size  for several 
choices of M  and the resulting value of the AIC, as given by Eq. (6),  is plotted against 
time t. The results shown in figure 1 illustrate how tricky the determination of  the true 
value of N can be. Indeed, for short times, the choice of fewer models than the true number  
yields the maximum value of AIC,  but as the dynamics progresses the insufficiency  of  
models  becomes  readily noticeable and, as expected, in the asymptotic regime 

410 −=h

∞→t  the 
maximum of AIC corresponds to the situation M = N . Interestingly,  the observed decrease 
of AIC in the unrealizable case NM <  yields a clear indication  that something is going 
wrong, serving thus as  a  warning to increase the number of models. On the other hand, by 
following the evolution in over-realizable case   , say M = 6, we find no signs  that 
we are using superfluous models.  

NM >

 
Taking advantage of the distinctive behavior pattern of the dependence of  AIC  on  t in the 
unrealizable case, we envisage a simple strategy to adjust the value of M on the flight: 
starting with a single model , we create a new model whenever AIC decreases. The value 
of the new modeling field created at 

1S

ctt = , say , is then  given by a perturbation of  
one of the  previous fields, e.g., 

)(2 ctS
ε01.0)()(2 = +1 cc tS , wtS here ε  is a random number drawn 

uniformly in the interval (-1,1). In addition, the fuzziness of the new model obeys the re-
scaled equation (5), ( )[ ] 2

20
2
21

2
2 )( exp ασσ σ− +−=t ouble with this procedure is 

that by adding a new model that, in principle, has a small similarity with all objects, we 
simultaneously decrease L and increase parM  in Eq. (6 ich results in a further decrease 
of AIC. To circumvent  this difficulty we must allow  some time, i.e., a time interval 

ctt .   The 

), wh

                                                          

tr

 
3 The original quote is “Without language, thought is  a vague, uncharted nebula. There are no pre-existing 
ideas, and nothing is distinct before the appearance of language”, in de Saussure, F. 1966. Course in General 
Linguistics. Translated by Wade Baskin. New York: McGraw-Hill Book Company. 
 
4 H. Akaike, Statistical predictor identification. Ann. Stat. Math. 22, 203-217, 1970. 
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3000=Δt , fo field to adapt to the objects and  only then  to check for a decrease 
of  AIC. The result of  applying this strategy  to the same categorization  
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Figure 1 Illustration of the use of Akaike Information Criterion  (AIC)  measure in 
conjunction with the MFT scheme with M = 2, 3, 4, 5 and 6 modeling fields to determine 
the number of objects in the environment. Here the true number is N = 4, which 
corresponds to the maximum of the AIC for large t. 

 
 
problem addressed in figure 1 is depicted in figure 2:  it is clearly a success! Details of the 
time evolution of the modeling fields are presented in figure 3 (we arbitrarily assign the 
value 0 to the dormant modeling fields).  
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Figure 2 Results of the adaptive scheme to find the true number of objects for the same 
problem of figure 1. Starting with a single model (M=1) the evolution of AIC measure is 
followed until a decrease is detected (this check is done at time intervals of ) 
then a new model is created. The arrows indicate the moments when  a new model is 
created.  

3000=Δt
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Figure 3 Time evolution of the modeling fields using the adaptive scheme to create new 
fields on the flight based on the behavior pattern of the AIC. These data correspond to the 
same experiment depicted in the previous figure.   

 
1.2 Categorization of complex objects 
 
Up to now we have considered the objects as  points on a single axis. In this section we 
assume that an object is a set of points drawn from a Gaussian distribution with  mean m 
and variance . The issue here is to verify what  conditions need to be satisfied in order 
that the MFT system recognizes the whole object and not the individual points that 
compose it. Of course, we expect that the final categorization ability of the system will 
depend strongly on the balance between the baseline resolution of the modeling fields ,  
the variance  and the distance between the means of the distributions associated to each 
object.  In figures 4, 5 and 6 we illustrate the performance of the MFT scheme to categorize 
complex objects that do not overlap. In this sense this problem is not much different from 
that of the “simple”  objects (i.e., single points) discussed before, and so one might think 
that this may be the  reason for the good performance of our approach in this case as well. 
The case in which two objects overlap are considered in figures 7 and 8, where we assume 
for simplicity that  all objects standard deviations v are the same and equal to the baseline 
standard deviation of the models . A more challenging case with four overlapping 
objects is presented in figures 9 and 10. Details and discussion are presented in the figure 
captions. 

2v

2
0kσ

2v

0kσ
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Figure 4 Akaike Information criterion measure in the case that 20 points were generated 
following a Gaussian distribution of mean m = 0.5 and standard deviation v = 0.01. The 
baseline standard deviation of the modeling fields  is 03.00 =kσ . Maximization of AIC 
yields the correct answer, namely, there is only one  (complex) object in the environment.   
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Figure 5 Akaike Information criterion measure in the case 40 points were generated 
following two Gaussian distributions (20 points for each object) of mean  and 

, and standard deviations  
3.01 =m

6.02 =m 01.021 == vv . As before, the baseline standard 
deviation of the modeling fields  is 03.00 =kσ . Maximization of AIC yields the correct 
answer, namely, there are two  objects in the environment. Note the pronounced decrease of 
the AIC measure   for M = 1 at large t, similarly to our findings in the case the objects were 
single points. 
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Figure 6 Modeling fields for the case M = 2 of the previous figure. The points representing 
the two objects are shown in blue. In particular v = 0.01 for all objects and 03.00 =kσ for 
all models. 
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Figure 7 Akaike Information criterion measure in the case 100 points were generated 
following two Gaussian distributions (50 points for each object) of mean  and 

, and standard deviations  
3.01 =m

6.02 =m 2.021 == vv  The baseline standard deviation of the 
modeling fields  is 2.00 =kσ  too.  Now, maximization of AIC does not yield the correct 
answer,  but considering the difficulty of the problem (see next figure) the prediction of M 
= 3 followed closely by the correct solution M = 2 is not bad at all. The  AIC measure   for 
M = 1 is not shown because it is too  small  and does not fit in the scale of the figure.  
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Figure 8 Modeling fields for the case M = 2 of the previous figure. The points representing 
the two objects are shown in blue. Although the environment consists of   two Gaussian 
objects centered at 0.3 and 0.6, this solution  does not correspond to the maximum of the 
AIC measure. However, a similar plot of the modeling fields for the maximum M = 3 
indicates that the system still uses only two fields (i.e., 321 SSS ≠= ) but with slightly 
different values. 
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Figure 9  A tough problem: the environment is composed of four objects each of which 
represented  by 100 points drawn from Gaussian distributions of means 0.2, 0.4, 0.6, and 
0.8,  and standard deviation v = 0.2. The 400 points are plotted in the figure, one symbol for 
each object. The symbols are shown displaced vertically, four symbols per row, for ease of 
visualization. The original data is recovered by projecting all symbols  in a single row.  
Would the reader be able to tell how many objects  there are in the figure, if they were 
plotted with the same symbol ? This is the task we set to our  MFT system. 
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Figure 10 Akaike Information criterion measure for the problem stated in figure 9. The 
baseline standard deviation of the modeling fields  is 08.00 =kσ . Surprisingly, 
maximization of  the AIC measure for large t yields the correct answer M = 4.  However, 
the time dependence of   this measure is very different from that observed in the simpler 
problems analyzed in figures 1, 4, 5 and 7. In particular, there is a transient stage when the 
AIC measure increases until it reaches a maximum and then decreases towards a fixed 
value. This odd behavior pattern, due to a “problem”  in our theoretical formulation which 
is discussed in section 1.3, jeopardizes completely the automated scheme for generating 
new models we used to draw figures 2 and 3. 

 

 
 
 
 
 
 

 15



 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250

S

t/50

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11  Modeling fields for the case M = 4 of the problem stated in figure 9. The points 
representing the four objects are shown in blue. The data correspond to the AIC measure of 
the previous figure. It is amazing that the system can actually single out four objects in the 
cloud of points depicted in figure 9. 
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1.3  Discussion 
 
Looking at the time dependence of the AIC measure for fixed M, depicted in  figures 1, 4 , 
5, 7  and 10, immediately brings a question up: Shouldn’t L  (or, equivalently, AIC if M is 
kept fixed) be a increasing function of time? Yes, provided  the fuzziness Mkk ,,1, K=σ is 
kept fixed during the evolution of the fields , which is not the procedure we are adopting 
here since Eq. (5) provides an explicit prescription  for updating the fuzziness. Hence there 
is actually no reason to expect that L or  the AIC measure will increase during the time 
evolution of the fields. This may be a problem  if  we try to find the true number of objects 
by maximizing the AIC measure with respect to M since the optimum value of M may 
depend on the instant of time we look at the fields (see figure 10). Of course, the ambiguity 
is resolved  if one accords that the maximization is  carried out in the asymptotic limit 
(large t) only, but this amounts to discard a solution that has a higher value of the AIC 
measure (e.g., the set of fields at t/50 = 25in figure 11). Is this satisfactory? To answer this 
question, let us ask another one: is there a way to update the fuzziness so as to guarantee 
that L increases with increasing t? Yes,  considering 

kS

kσ  as an adjustable  parameter,  
similar to the modeling fields, we obtain the equation   
 
       [ k

i
k kilikfdtd σσ ∂∂= ∑ )|(log)|( ]                                                                    (7) 

which solved  simultaneously with Eq. (3)  leads to the maximum of L. We have solved this 
set of 2M  coupled equations and the result was almost always the uniform solution, i.e., 

 and MSSS === K21 Mσσσ === K21 . In fact, looking again  at figure 11 we can see 
that considering a single field with a large standard deviation can account for most of the 
points in the environment – this is the optimal, but unsatisfactory,  solution for a difficult 
problem such as that posed in figure 9. In our setting the homogenous solution breaks down  
(7) would allow the fuzziness to remain at a large value] so the single field can no longer 
account for all points in the environment , resulting in the  decrease of the AIC measure. 
 
In summary, although the combination of the MFT scheme and the AIC measure does 
indeed solve some difficult categorization problem (by solving we mean to find the true 
number of objects and create a suitable representation for them, see figure 11) we have not 
yet  succeeded to produce a neat theoretical framework to describe the combination of those 
two tools.  In particular, the relation between the dynamics given by Eqs. (3) - (5) and the 
global similarity L is obscure. Perhaps a more consistent approach, to be pursued in the 
future, is to consider two time-scales for the fields and the fuzziness kS kσ : if the latter 
evolves much slower than the former then it would be correct to say that L is a Lyapunov 
function of the dynamics. The decrease of kσ  could then be viewed as a procedure  similar 
to the cooling schedule of the Simulated Annealing algorithm. It remains to be seen 
whether this theoretically more satisfactory framework actually works in practice.  
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1.4  Compositional communication codes  in the synthetic ethology framework 

 
 

Human language is one of the few  biological phenomena that still resist a purely 
evolutionary explanation as offered by Darwin’s concept of evolution through natural 
selection. In fact,  non-human animals communication codes (proto-languages) are 
typically non-syntactic, i.e., signals refer to whole situations, in contrast to human language 
which is characterized by signals formed by discrete components that have their own 
meaning. That composition allows us to take advantage of combinatorics and so as linguists 
put that to “make infinite use of finite means”.  
 
The emergence of compositional syntax has been extensively studied within a framework  
for modeling the cultural evolution of language  - the so-called Iterated Learning Model5. 
There language is seem as a mapping between meaning and signals.  Signals are defined as 
strings of symbols  drawn from some alphabet Σ. Meanings are vectors of F components, 
each of which taking on  V discrete values. For example, consider the following 
“language”, i.e. mapping meaning  signal, in which the signal strings are of fixed length 
l = 3, and F = 3, V=2: 

→

 
{1,2,2}   adf; {1,1,1}  ace; {2,2,2}  bdf; {2,1,1} →  bce; {1,2,1}  ade;      
{1,1,2}  acf. 

→ → → →
→

 
This language is compositional because a  sub-signal (i.e., a part of the signal string) 
represents a feature value of the meaning vector. In particular, whenever the first entry 
takes on the value 1 the corresponding signal begins with symbol a, if it takes on the value 
2, the signal begins with b. The mapping meaning-signal possesses a structure which can be 
inferred by the learner to create a unique signal for new meanings such as {2,1,2}6. This 
contrasts with a holistic language for which a random signal is assigned to each meaning. 
Of course, the proposed meaning-signal mapping can account for both extremes (holistic 
and compositional ) as well as for intermediate languages. 

 
The main problem with the Iterated Learning Model (ILM) is the mind reading assumption: 
when an agent observes a signal, the intended meaning of that signal is also given. That 
actually makes communication superfluous and so it is unwise, to say the least, to base the 
study of cultural evolution in a framework that relies in such odd  ability. The 
computational approach to the evolution of communication based on MacLennan’s 
synthetic ethology7 circumvents this difficulty. In fact, the central idea of MacLennan’s 

                                                           
5 See, e.g., H. Brighton, Compositional Syntax from Cultural Transmission, Artificial Life 8, 25-54, 2002. 
6 According to the rules of our model language the signal must be bcf. 
7 B. J. MacLennan, Synthetic ethology: an approach to the study of communication Artificial Life II, SFI 
Studies in the Sciences of Complexity, vol. X, 631-658, Addison-Wesley, 1991. 
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framework8 is that an agent be capable to guess or infer the meaning of a symbol written in 
a public board by some other agent. There is no place for mind-reading in this scenario.  

 
In what follows we will present preliminary results of our attempt to combine the very 
interesting meaning-signal mapping described above, which   has been extensively 
employed in the ILM framework,  with the synthetic ethology framework described in 
Fontanari & Perlovsky 8 .  
 
There are N agents that interact among themselves by perceiving and making changes in 
the environment they inhabit. The environment of each agent is composed of two parts – a 
public environment  shared with all other agents in which the signals are written, and a 
private environment – the agent mind – to   which no other agent has access.  The 
architecture  of the agents’ world  is illustrated in figure 12. 
 
 
 

 
 

 
   
   public       

agent 
  private 

 
 
 
 
 
 
 
 
 
 
 
Figure 12 The structure of the world inhabited by four agents. The public environment is 
used as a blackboard to read, erase  and write signals; the private environment is the agent’s 
mind where the meanings are hidden from the other agents.  

 
The public environment can be found  a finite number of states, each state represented by 
the integer { G,2,1 L∈ }γ . Actually each value of γ corresponds to a string of L symbols, 
say, Lωωω K21 so that G depends on the size of the alphabet Σ  and the length L, i.e., 

LG Σ= . Similarly,  the state of the agents minds  is described by the integer variable  
{ H,,2,1 L∈ }λ , where as before each value of λ  labels a vector ( )Fmmm ,,, 21 K  with 

. Hence . The basic idea is to permit  the agents  to exchange 
information in the content of their minds by reading from and writing on  (i.e.,  modifying 
the state)  the public environment  Of course, the agents must be endowed with the 

1,,1,0 −= Vmi K FVH =

                                                           
8 See also J.F Fontanari & L. Perlovsky,  Evolution of communication in a community of simple-minded 
agents, Proceedings of KIMAS’05, 285-290, 2005. 
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capability to  respond actively to the stimuli coming from both internal and external  
environments. That response is  of two types, an action and an emission.  When performing 
an emission, the agent draws a signal 'γ  from the set of signals used to describe the public  
environment and replaces the current state of that environment by  'γ . In doing so, the 
agent modifies the public  environment and so emitting is like signaling.  On the other 
hand, an action is a more introspective business: prompted by the signal, say γ ,  placed in 
the public environment  the agent draws a situation 'λ  from the private environment 
repertoire. In other words, the agent interprets  the signal γ as meaning situation 'λ . Of 
course, the correctness of  this inference will depend on whether the private environment of 
the agent that last modified the public environment (by writing  the symbol γ on it) was 'λ . 
In that case, we say that a successful communication event has occurred and both agents 
involved in that event are rewarded in the sense of having their fitness increased by one 
unity of fitness. .  In summary, the agents are modeled by finite state machines with  two  
transition  tables for each agent  
   
             ( ) ', λλγ aA                   and                  ( ) ', γλγ aE                                             (8) 
 
depending on whether the agent is acting or emitting, respectively. 
 
We already know from our previous work 8  that the genetic algorithm is sufficiently 
powerful to produce an optimal communication code given the constraints on the size of the 
signal and meaning spaces. Such a code will most probably be a holistic code, since the 
entries of the transition tables (8)  which ultimately determine  the behavior of the agents is 
not affected by the nontrivial structure of the meaning-signal mapping.  Hence  our 
previous formulation of  synthetic ethology scenario must be modified in order to allow for  
the emergence of compositionality.  The  way  to do that is to reward the fitness of the 
agents involved in “almost” successful communication events, i.e.,  by assuming the fitness 
is some decreasing function of  the distance between the real meaning λ and the inferred 
meaning 'λ . This way we naturally introduce the metric of the meaning space into the 
problem.  In addition, assuming  that  mutation takes place on signal only, by modifying not 
the entire string but only one of its component symbols allows selection  to act on the 
structure of the signal space too. The computational implementation of this scheme is on 
the way and we plan to submit  the result of that study to the Evolution of Language 
Conference . 
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Abstract  We re-examine the seminal work of
MacLennan on the evolution of communication in a
population of simple agents (finite-state machines). The
original model is modified by separating the signaling
and the responding systems in two independent modules,
which facilitates greatly the analysis of the behavior of
the agents. We have carried out very long runs to
guarantee that the evolution dynamics (genetic algorithm)
leads the population to an optimum or quasi-optimum
communication code, in the sense that the code maximizes
the number of successful communication events per agent.
We find that, whenever it is possible, the dynamics leads
to an ideal code, i.e., a one-to-one mapping between signs
and situations.

1. INTRODUCTION

The uniqueness of human language is probably one of the
few, if not the sole, scientific ideas that still resist the
corrosive effects of the, borrowing Dennett’s metaphor
[1],  “universal acid” that stems from  Darwin’s concept
of evolution through natural selection. The notion of a
“language organ” exclusive of the human species which
was originally designed to carry out combinatorial
calculations [2] and the exaggerated emphasis on the role
of cultural evolution, in opposition to genetic evolution,
on the development of language [3,4] are often invoked to
support the claim that we are the only species capable of
genuine symbolic thinking and communication [5]. This
anthropocentric view is usually criticized by ethologists
[6,7] who seek to demonstrate that the gap between
human and non-human languages is not that big and it is
actually magnified by our ignorance about the basic
elements used in the communication of non-human
animals [7]. Nonetheless, up to now the ethologists have
failed to provide clear evidence of, say, syntax in non-
human languages. In fact, those languages are typically
non-syntactic, i.e., signals refer to whole situations, in
contrast to human language which is characterized by
signals formed by discrete components that have their
own meaning. Together with the language organ, that 

composition allows us to take advantage of combinatorics
and so as linguists put that to “make infinite use of finite
means”.

In the 1990s, the ethological approach to the evolution of
communication received a rather unexpected ally, namely,
computer simulations of large communities of simple
finite-state machines endowed with the capacity to emit as
well as to respond to signals. This in silico approach,
termed synthetic ethology by its founder Bruce
MacLennan [8], aimed at realizing experiments on the
evolution of communication in completely controlled and
transparent set-ups, a goal much beyond the empirical
capabilities of contemporary ethology. 
 
Before proceeding, it is necessary to provide a working
definition of communication. There are almost as many
such definitions as authors that have written on the topic
of communication (see page 7 of ref. [7] for a sample) but
here we follow MacLennan and use Burghardt’s
definition [9]:

Actually we will assume, as done also by MacLennan,
that correct communication about events provides a
fitness advantage to both signaler and receiver. In this
contribution we modify slightly the original synthetic
ethology framework introducing independent modules
(genes) for the emission of signals and for the actions
elicited by those signals. More importantly, we show that
earlier criticism and suspicions that a community of
agents would not be capable to develop and ideal code,
i.e., a one-to-one mapping between signs and situations
are unfounded [10].

Use of words signs and symbols in literature is
inconsistent. As Deacon noted, symbol is one of the most
misused words [5]. In mathematical literature, they are
used interchangeably. In semiotic literature usage is
inconsistent [11]. In general culture, symbols are

Communication is the phenomenon of one
organism producing a signal that, when
responded to by another organism, confers
some advantage (or the statistical probability
of it) to the signaler or his group.



understood as having profound meanings. In analytical
Jungian psychology, symbols, are psychological processes
connecting conscious and unconscious [12]. In Pribram
[13], symbols as adaptive, context-sensitive signals in the
brain, whereas signs he identified with less adaptive and
relatively context-insensitive neural signals. According to
general culture and [5, 12, 13, 14], we use the word sign
for notations with predefined meanings, and we reserve
the word symbol for psychological processes in which
meanings emerge.

In the next section, a variant of the model proposed by
MacLennan is introduced and the genetic algorithm
governing the evolution of the population of agents is
described. Section 3 then presents the results of this model
for different values of the sizes of the repertoires of signs
and situations. Finally, section outlines the direction of
future research.

2. THE MODEL

The model we use in this contribution is a variant of the
model proposed in the seminal work of MacLennan [8].
There are N agents that interact among themselves by
perceiving and making changes in the environment they
inhabit. The environment of each agent is composed of
two parts – a public or global environment which is
shared with all other agents and a private or local
environment, which no other agents have access to. The
architecture of the agents’ world is illustrated in figure 1.
The public environment can be found in a finite number
of states, each state represented by the integer

{ }G,2,1 L∈γ . Similarly, the state of local environment is
described by the integer variable { }L,,2,1 L∈λ . The
basic idea is to permit the agents to exchange information
about their local environments by reading and writing
(i.e., modifying the state) on the public environment. In
that sense, we refer to the state of the private environment
as situation λ  and the state of the public environment as
sign γ . The goal is then to let the population evolve a
mapping between situations and signs. 

To accomplish that goal the agents must be endowed with
two capabilities (cognitive and motor prerequisites). First,
they must be sensitive to the states of those environments,
which are actually modeled as input signals to the agents’
sensorial channels. Second, the agents must be able to
respond actively to the stimuli from the environments.
That response is of two types, an action and an emission. 
When performing an emission, the agent draws a sign 'γ
from the set of signs used to describe the public
environment and replaces the current state of that
environment by 'γ . In doing so, the agent modifies the
public environment and so emitting is like signalling. On
the other hand, an action is a more introspective business:
prompted by the sign placed in the public environment
another agent draws a situation 'λ from the private

environment repertoire. In other words, the agent
interprets the signal 'γ  as meaning situation 'λ . Of
course, the correctness of this inference will depend on
whether the private environment of the agent that last
modified the public environment (by writing the sign 'γ
on it) was 'λ . In that case, we say that a successful
communication event has occurred and both agents
involved in that event are rewarded in the sense of having
their fitness increased by one unity of fitness.
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Figure 1- The structure of the world inhabited by
four agents. There are four private environments
e assume that, once prompted to respond, each agent
rforms an action and subsequently an emission. This
ffers from MacLennan’s model, in which an agent can
her act or emit. In summary, the agents are modeled by
ite state machines with two transition tables for each
ent 

    ( ) ', λλγ aA     and ( ) ', γλγ aE                     (1)

pending on whether the agent is acting or emitting,
spectively. In the original implementation the agents act
terministically, i.e., given the inputs γ  and λ the
ents respond according to (1). Of course, since in
inciple each agent has a different transition table, the
me input can elicit distinct response in different agents. 
 make things interesting, the private environment of the
ents (in other words, its state λ) must change randomly
certain times so that all agents can have access to the
tire repertoire of situations. This procedure is  necessary
ce it allows an agent to make use of its entire transition
le during its lifetime. In addition, if the private

vironment were kept fixed then  it would be impossible
r any single agent to develop a one-to-one mapping
tween signals and situations as it would have
perienced only one situation during its lifetime. Hence



we  note that the agent “identity” is its emission and
action transition tables, not the state of its private
environment.  More specifically, let us assume that at
each unit of time, which we term an “hour”, in average all
agents are prompted to respond to the current stimuli
provided by theirs environments. In other words, in the
interval of one hour we choose randomly N agents, one by
one, and prompt them to respond to their stimuli. After H
hours, an interval of time we call a “day”, the private
environments of all agents are modified by choosing
randomly situations from the repertoire { }L,,2,1 L . After
D days, which comprise the interval of time termed a
“week”, we compute the number of successful
communication events each agent has participated in and
used this quantity as a measure of the fitness of the agent.
Then we choose a single agent with probability
proportional to its relative fitness (i.e., the agent’s fitness
divided by the sum of the fitness of all agents). A copy
(clone) of this selected agent is made and some small
changes (mutations) are performed on the clone with
probability u . More pointedly, we choose randomly a
pair sign-situation ( )λγ ,  and modify, also randomly, the
corresponding outputs 'λ and 'γ  of the transition tables
for this single pair [see equation (1) ]. Finally, in order to
keep the population size constant we eliminate the agent
with the lowest fitness value. This procedure differs form
the standard genetic algorithm implementation [15] in that
it allows for the overlapping of generations, a crucial
prerequisite for cultural evolution which may be relevant
in the case when learning is allowed. 

Before proceeding with the presentation of the simulation
results of this minimal model for the evolution of
communication, we note that only a few control
parameters can significantly affect those results. In fact,
the whole issue boils down to finding the structure of the
transition tables that maximizes the number of successful
communication events in a population composed of N
agents, whose behavior is determined by those tables. In
this perspective, the genetic algorithm is simply a means
to find that optimum and hence the choice of parameters
u, H, D, as well as of the duration of the run in unit of
weeks, which we call W, the mode of reproduction
(presence or absence of crossover and overlapping or non-
overlapping of generations ) can affect our ability to reach
the maximum, but not the properties of the maximum
itself. Those properties depend only on the parameters
G and L, the sizes of the repertoires of signs and
situations, respectively. Hence, in what follows we will
solely present results for the set of parameters that
produced the best communication accuracy. (Of course,
the ideal communication corresponds to A(γ,λ) = λ,
E(γ,λ) = γ, for all agents; which is only possible if G=L).

3. RESULTS

Figure 2 Best and average fraction of successful
communication events as function of the number of
weeks. The parameters are 100=N , 10=H ,

5=D , 1.0=u and 8== LG . The lines at the bottom are
the best and average results for chance guessing.

The relevant quantity to study is clearly the average
number of successful communication events per agent,
since this is the measure one seeks to maximize. Also
important is the number of successful communication
events of the fittest agent in the population. In figure 2 we
plot these quantities as function of the time measured in
units of weeks. The total simulation time was 6104× ,
about three orders of magnitude greater than the typical
runs performed in the original experiments [8]. In fact,
MacLennan’s analysis focused mainly on the rate of
increase of the mean fitness of the population, calculated
through a linear fitting of the smoothed data. This
approach, however, makes little sense nowadays when
computer resources allow us to carry out much longer
runs. For the purpose of comparison, we also present in
figure 2 the results for the case that communication is
suppressed, i.e., the only possibility of successful
communication event is purely by chance (“guessing”).
This is achieved by writing a random sign at the public
environment instead of the sign encoded in the transition
table ( )λγ ,E . We note that any successful communication
event, regardless of  whether achieved by pure chance or
through adaptation, is rewarded. Interestingly, at the end
of the run  (with communication enabled) about 90% of
the communication event are successful – this is well
above the chance level values of 12,5% for the average
and 20% for the best performances. Moreover,
MacLennan found  that the fitness seemed to mysteriously
increase, although extremely slowly, with time even in the
case communication is suppressed: the two horizontal
lines in figure 2 depicting the best and average
performances of the guessing strategy demonstrate that
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this spurious effect does not appear in the present set up
where emission and action are considered separately. 

To better understand the communication code evolved by
the population of agents we should look at its denotation
matrix, the elements of which γλD  yield the fraction of
times a pair sign-situation ( )λγ ,  is used successfully in a
certain number of communication events.  The denotation
matrix is computed for successful events only since, at
this stage, we assume that the agents have developed a
communication code and  successful communication is
the result of using that code. In particular, considering the
last 1844308 successful communication events of the run
described in figure 2 we find that the only non-vanishing
elements of the denotation matrix are

103.018 =D , 100.021 =D , 120.036 =D , 136.043 =D ,
134.057 =D , 135.064 =D , 134.072 =D and 137.085 =D .

This result indicates that the agents managed to evolve a
one-to-one correspondence between signs and situations –
an ideal communication code. Of course, any permutation
of this code yields an equally optimal solution. More
importantly, perhaps, this result dispels the suspicion that
in seeking for an optimal communication code the agents
would tend to decrease their repertoire of  signs [10]:
inspection of the entries of the denotation matrix indicates
that all signs are used with approximately equal
frequencies. The reason that the repertoire of signs is not
decreased is that our model rewards the differentiated
understanding and communication about the environment:
agents will attempt to use as many communication signs
{γ} as there are situations {λ}. The highly structured
denotation matrix contrasts with the practically uniform
values of the entries of the denotation matrix in the case
communication is suppressed (data not shown).

These findings encourage us to proceed to a closer
examination of the transition tables of the agents that
survived at the end of the run. In fact, we find that those
agents share in average 85% of the entries of the transition
tables, i.e., the surviving agents are practically identical.
Actually, what prevents the population of becoming
completely homogeneous is the diversity introduced by
the mutations during the copying process. Examination of
the transition tables of the best communicator revealed the
secret of its success: for the pairs sign-situation ( )λγ ,  for
which the entries of the denotation matrix are non-zero we
find ( ) λλγ a,A  and ( ) γλγ a,E , i.e., the agent can
communicate perfectly with itself or with any of its non-
corrupted clones. From the evolutionary biology
viewpoint this kind of result is not surprising, since
coexistence of distinct replicator species is very difficult
to achieve and necessitates a special selection pressure to
favor it, namely, group selection [16]. Perhaps, related to
this finding is Chomsky’s notion of a Universal Grammar

that provides the foundation to all human languages (see,
e.g., [17]).

Figure 3 - Average fraction of successful communication
events as function of the number of weeks. The
parameters are the same as those of figure 2 except for G
that takes on the values ( 8=≤ L ) shown in the figure.

Once demonstrated the suitability of our framework to
study the evolution of communication codes among
agents modeled by finite-state machines, we consider now
the more general case, in which the sizes of the repertoires
of signs and situations differ, i.e., LG ≠ . Let us consider
first the case in which there are more situations than signs
to express them ( GL ≥ ). Figure 3 illustrates how the
average fraction of successes in communication events
evolves with time (in weeks) using the same parameters
of the genetic algorithm as before, but with G varying
from 2 to 8 while L is kept fixed at 8=L . We recall that
the average performance of the random guessing strategy
is 125.01 =L regardless of the value of G.

Inspection of the denotation matrices and the transition
tables of the best communicators indicate that the genetic
algorithm has found the optimal solution in each case
(average fraction of successes approximately equal to

LG ). Moreover, although a one-to-one assignment
between signs and situations is now impossible, we have
verified that each situation is assigned to only one sign (of
course, this sign may be used to express other situations
as well). We note that only the emission strategy must be
finely tuned in this setting. Consider, for instance, the
extreme case 2=G  and 8=L . By reading the sign
displayed in the public environment, an agent has four
distinct options of action – all of them successful.
However, once it has performed an action there is only
one option for emission to match that action. We can
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actually see the effect of these constraints in the structure
of the transition tables of the agents at the end of the run:
they share 81% of the entries of emission table ( )λγ ,E ,
but only 43% of the entries of the action table ( )λγ ,A . In
other words, selection is strong for the emission part of
the agent’s genome, but weak for the action part.

 A much easier problem from the optimization perspective
is the case that there are more signs than situations to be
described, GL ≤ . Figure 4 shows the time evolution of
the fraction of successful communication events averaged
over all agents in the population. 

Figure 4-  Average fraction of successful communication
events as function of the number of weeks. The
parameters are the same as those of figure 2 except for L
that takes on the values ( 8=≤ G ) shown in the figure.

The strategy found by the genetic algorithm was to
discard the surplus of signs and then to produce a one-to-
one correspondence between the remaining signs and the
situations, using the same optimal scheme discovered in
the case GL = . Since the entries of the transition tables
involving the discarded signs are not used, we should
expect a great diversity among the agents, as far as those
entries are regarded. In fact, this is what we generally
found when comparing the entries of the transition tables
of all agents at the end of the run. For instance, in the run
depicted in figure 4 for 2=G we find that the agents
share only 31% of the action and 25% of the emission
entries. There are, however, other types of equally
optimum solutions that were found in different runs and
leads to a completely different composition of the
population. For example, a run with 8=G and 2=L
resulted in a denotation matrix that assigns signs

4,2=γ and 6 to situation 1=λ . Inspection of the genome
of the best communicator revealed the strategy
( ) 1)1,6()1,4(1,2 === AAA  for action and ( ) 61,2 =E ,

( ) 21,4 =E , ( ) 41,6 =E  for emission. There is clearly more
freedom in choosing the emission strategy (any
permutation of the signs 2, 4, 6 will be equally good) than
the action strategy. In fact, in that run we found that the
agents shared 62% and 18% of the entries of the action
and emission, respectively, transition tables.

4. CONCLUSION

Given the spaces of meanings and signals, and a notion of
success in a communication event we should foster no
doubts that the emulation of evolution by natural selection
brought about by the genetic algorithm will produce an
optimum communication code among the agents. The
next challenge is to adapt the present framework to study
the emergence of compositional or syntactic
communication codes. Up to now studies of the evolution
of syntactic communication have either assumed the
existence of such codes and then focused on the
conditions for natural selection to favor syntactic over
non-syntactic codes [18] or employed sophisticated
algorithms to produce the rules of the grammar [19].
Interestingly, a simple modification of our variant of
MacLennan’s model may suffice to produce syntactic
communication codes: allowing a variable number of
signs to be displayed simultaneously in the public
environment and considering a repertoire of situations that
is much larger than the repertoire of signs, though much
smaller than the number of their combinations, may lead
to the emergence of compositional codes. Work in this
direction is on the way.
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Abstract  Mathematical models used to explain the
power-law distribution of word frequencies observed in
natural languages - Zipf’s law – generally assume that
symbols and words occur independently, i.e., they do not
interact. Here we show that when interaction is taken into
account by allowing the words to compete amongst
themselves for space in the memory of the users, the
resulting word frequency distribution is best described by
an exponential, rather than by a power-law. The
implications of the failure to derive Zipf’s law under more
realistic assumptions are discussed.

1. INTRODUCTION

The notion that words compete and languages evolve
similarly to individuals and populations was already
familiar in Darwin's time. In fact, the following quote
from Darwin makes the point clear [1]:

We refer the reader to Ref. [2] for a detailed account of
Darwin’s contribution to the debate on language change
as a selection process. More recently, the well-
documented development of Romance languages from
Latin (i.e., the gradual divergence of the languages of 

France, Italy, Spain, Portugal and Romania from Latin, as
well as from each other) has offered a convincing proof
that groups of related languages develop and diverge from
a common ancestral tongue, similarly to gene lineages [3].
In view of these observations, one should not be surprised
to encounter evolutionary arguments and population-
genetics-inspired mathematical models playing a leading
role in the explanation of features of language. In this
contribution, we use this evolutionary approach in seeking
to comprehend a quite remarkable aspect of natural (i.e.,
produced by humans) texts, namely, Zipf's law [4].

In the early 1930s George Zipf noticed that if a large
sample of words in a text are arranged in rank order, from
most frequent to least frequent, then the dependence of the
frequency f of a word on its rank r  is very well described
by the power-law distribution rf 1∝ , regardless of the
language or speaker [4]. The significance of Zipf's law in
language, however, is still an unsettled issue. On the one
side, some authors, arguing that texts produced by the
random emission of symbols also generate word
frequency distributions that follow Zipf's law (more
precisely, the generalized Zipf's law), claim that this law
is linguistically very shallow [5,6]. On the other side,
some authors point out that the fact that random systems
display Zipf-law-like distributions does not exclude the
possibility of Zipf’s law being a genuine reflex of
mechanisms underlying the behavior of complex systems
[7]. In other words, it is argued that the random emission
of symbols is simply not a valid null model for the
creation of texts in natural languages [8,9]. A valid model
should be based on realistic assumptions on the factors
that originate natural texts. Following the suggestion of
the renowned philologist of the 19th century Friedrich
Max Müller mentioned in Darwin’s quotation, our guide
in this endeavor will be the theory of evolution by natural
selection.
 
In the next section, we describe a branching evolutionary
model that results in word frequency distributions that
obey Zipf’s law and then propose a change in that model
in order to take interactions between words into account.
The rank statistics of this variant is then investigated in
section 3. Finally, section 4 summarizes our main results
and indicates directions for future research.

We see variability in every tongue, and new
words are continually cropping up; but as
there is a limit to the powers of the memory,
single words, like whole languages, gradually
become extinct. As Max Müller has well
remarked: - “A struggle for life is constantly
going on amongst the words and grammatical
forms in each language. The better, the
shorter, the easier forms are constantly
gaining the upper hand, and they owe their
success to their own inherent virtue.” To these
more important causes of the survival of
certain words, mere novelty may, I think, be
added; for there is in the mind of man a strong
love for slight changes in all things.



2. THE MODEL

We begin by reviewing a simple evolutionary model that
produces a non-stationary distribution of word frequencies
that obeys Zipf’s law [10, 11]. That model is usually
formulated in the language of ecological dynamics (i.e.,
the basic elements are individuals that are categorized in
different species), but here we will face the challenge of
presenting the model solely in linguistic terms. In
particular, we will term word store the linguistic
analogous of an ecosystem. 

At any given time t  the word store is completely
characterized by the set of integers

)(,,2,1),( tKktnk L= , where )(tnk  is the number of
times word k appears in the word store and )(tK  is the
size of the vocabulary (i.e., the number of different words
in the word store). We assume time is discrete and
increases in steps of unitary size. At each step exactly one
word is created: it can be a new word and so increase the
vocabulary size by one or a copy of a word already
present in the word-store. The probability that a new word
crops up at step 1+t is defined as

     [ ] cnn KK === ++ 0|1Pr 11                             (1)

where [ ]1,0∈c  can be viewed as the mutation probability.
The probability that a known word k is created is 

                   [ ] ( )
N
n

cnn k
kk −=+ 1|1Pr                             (2)

where ∑
=

=
K

k
knN

1
is the total number of words in the word

store and, for simplicity, we have omitted the dependence
on t . The conditions at 0=t are fixed as 1)0(1 =n and

1)0( =K . Equation (2) indicates that the more frequent a
word is, the more frequent it will become, which is
essentially the basic assumption of the so-called
discourse-triggered word choice model [8, 9]. In addition,
this is also the usual assumption used in population
genetics to model neutral evolution [12]. 

Before considering changes in this standard model, let us
illustrate some of its predictions. For instance, in figure 1
we show the dependence of the frequency Nnk on the
re-scaled rank Kr where ctK =  is the average

vocabulary size for runs of duration 4104×=mt  and
different values of c . The results are averages over
1000 independent runs. Increasing the duration of the runs
does not affect the results exhibited in the figure. The
straight line in a double logarithmic scale is the signature
of Zipf’s law so the model is quite successful in predicting
this feature of language.

Figure 1 Frequency against rank re-scaled by the average
vocabulary size for (top to bottom) 01.0=c , 1.0 and 5.0 .
The lines are the linear fittings which have slopes

11.1− , 96.0−  and 58.0− respectively.

There are at least two points of departure between the
evolutionary model just presented and Darwin’s view of
language evolution. First, the words do not become
extinct, which is also in disagreement with estimates from
glottochronology (i.e., the chronology of languages) that
suggest the rule of thumb that languages replace about 20
percent of their basic vocabulary every one thousand
years [3]. Second, there is actually no competition or
“struggle for life” among words. In fact, the very reason
for branching Markov processes being amenable to
analytical approaches is because there is no interaction
between branches, i.e., they evolve independently of each
other. In order to address these two points while keeping
most basic features of the evolutionary model unaltered
we add a stochastic death process after the birth of a word
has taken place, regardless whether according to process
(1) or (2). Explicitly, after the birth of a word we pick
randomly a word from the word-store of size N and
eliminate it with probability 

                      ( )[ ]NMPdeath −−= βexp                           (3)

if MN ≤ and 1=deathP , otherwise. Here M  is the
carrying capacity of our “memory” and the smoothness
β is a free adjustable parameter. This modification will
not change the dynamics in the initial steps ( MN << ),
but in the asymptotic regime it will lead to a saturation of
the size of the word store, exactly as implemented in the
classic Moran model of population genetics [12]. The
mechanism to keep this size fixed introduces thus an
effective competition between words. To clarify this
important point, let us consider the case 0=c . If we
start the run of the branching process with two distinct
words, i.e., 1)0()0( 21 == nn and so 2)0( =K , we will
always find these two words in the word store. In the
competition model, however, passed some time only one
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of the words will be found in the word store. In absence of
mutations, competition leads ultimately to the dominance
of a single type of word. 

It is interesting to note that in the model of language
evolution investigated here, which is inspired in Darwin’s
and Müller remarks quoted in the beginning of the paper,
words compete for space in the memory of the language
users. Nowhere is it said that words confer fitness to those
users who then compete among themselves. Hence our
model is one of memetic, rather than genetic, evolution
(see, e.g., [13]).

3. RESULTS

In what follows we set the smoothness parameter to
1=β  and leave the word store to evolve until

4108×=mt . At this point the quantities of interest are
measures and stored for statistical purpose. The data
presented in the next figures are averages over 5000 runs.
First we note that the vocabulary size K cannot increase
linearly with time as in the original model, since it is
obviously bounded by the carrying capacity M . In figure
2 we show the dependence of the ratio MK /  on c for

2000=M  at the stationary regime. This result is not
affected by different choices of the memory capacity M ,
indicating thus that MK ∝ .

Figure 2 Ratio of vocabulary size to carrying capacity of
the word-store as a function of the mutation probability in
the stationary regime.

We turn now to the analysis of the rank statistics. In figure
3 we present an analogue of figure 1 for the model with
competition. For the sake of comparison, the rank is re-
scaled by Mc=θ . In fact, since in the original model a
word is created at each time step, so that the run time
t equals the word store size M , it is clear that θ is

equivalent to K . More important, this re-scaling
becomes identical to that used in ref. [9], when one takes
into account the factor 2 in the definitions of θ  for the
Moran model used here and the Wright-Fisher model used
in ref. [9] (we refer the reader to the book by Ewens [12]
for the explanation of this subtle point). The results are
presented in figure 3 using a semi-logarithmic scale so
that fitting by a straight line indicates an exponential
rather than a power-law frequency distribution. In fact, for
small c  the exponential yields the best fitting, in
agreement with the analytical predictions of ref. [9] but in
disagreement with the preliminary numerical results of
ref. [8]. We note that there is an intrinsic difficulty to
produce a representative frequency distribution for, say

5.0=c since according to figure 2 about half of the words
in the word-store are different and so the degeneracy

kn of each word is simply too small to validate the rank
statistics.

Figure 3 Frequency against rescaled rank in a semi-
logarithmic scale for (top to bottom) 01.0=c , 1.0 and

5.0 . The line is the exponential fitting for the lower
mutation probability and yields the slope 15.1− .

These technical difficulties are absent in the analytical
approach of ref. [9] because M  and K are made
arbitrarily large.

4. CONCLUSION

In looking for a motivation to introduce the branching
evolutionary model in the linguistic context, Günther et al
offered the reader a remarkable insight: Zipf’s law is
usually derived under the assumption of non-interacting
particles (interpreted as symbols, words, etc.),
analogously to the “ideal gas” of thermodynamics [7]. For
instance, in the influential paper by Li on random texts,
symbols from an alphabet that includes the blank space
are generated independently which is equivalent to
assume they do not interact [6]. However, as far as the
presence of interactions is concerned, the branching
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process  evolutionary model [7,10,11] does not differ
from the more explicit ideal gas models. As already
pointed out, each lineage evolves independently of each
other and so that model fails to take interactions into
account. In view of the above remarks, the rank analysis
of the branching evolutionary model leads to Zipf’s law
(as illustrated in figure 1) because of independent
evolution and no interaction.  

In this contribution we have shown that if competition
among words, that results from the limited capacity of
memory of the language users, is incorporated into the
original evolutionary model then the words frequency
distribution becomes an exponential rather than a power-
law (see figure 3): Zipf’s law is not recovered. This is a
most interesting finding because it implies that either
there is no such a thing as a “struggle for life” amongst
words and so they evolve independently or then the
concept of evolution through natural selection is not
suitable to describe the evolution of language. Perhaps
culture (see, e.g. [14]) is the missing ingredient needed to
derive Zipf’s law under the more realistic assumption of
interaction among words. 
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Abstract ⎯ We study the development of the 
discriminatory capacity (i.e., the ability to develop a 
concept or categorize each object in the environment) of a 
single organism using two distinct approaches, namely, 
discriminatory trees and Modeling Field Theory (MFT). 
In particular, we consider a simple world composed of 
objects that are characterized by real-valued features, 
similar to that used in seminal works on meaning 
creation. Within that framework, we demonstrate in a 
series of didactic experiments the potential of the MFT 
approach as a truly autonomous (as opposed to 
discrimination trees) mechanism for meaning generation 
 

1. INTRODUCTION 
 
A major criticism against traditional agent-based models 
of language evolution is that the agents are always 
provided with a priori structured meaning spaces that 
ultimately are responsible for all observed “emergent” 
properties (e.g., syntactic structure) of the evolved 
language [1]. (The word emergent is written between 
quotation marks to remind us of Minsky’s assertion that 
the use of the word “emergence” should make one 
suspicious that not enough effort has been made in finding 
explanatory mechanisms [2].) In other words, there is no 
creativity of concepts in those models. The fact that 
conceptual knowledge is fixed at the outset precludes 
analysis of more plausible scenarios in which meaning 
and linguistic representations are generated concurrently, 
enhancing each other. This alternative framework for 
computer modeling language or communication evolution 
was put forward by Steels [3] and explored further by 
Smith [4].  
 
To instantiate any model of communication between 
virtual or real organisms, a basic cognitive requirement 
must be fulfilled, namely, that the organisms be capable 
of classifying different types of situations and, 
accordingly, be capable of recognizing that a situation of a 
particular type turns up. In this vein and for the purpose of 
this paper, meaning is viewed as a categorization of 
reality which is relevant from the perspective of the

organism. Hence meaning creation is synonymous to 
category creation, i.e., the ability to distinguish, through 
the creation of internal representations or concepts, the 
objects, as well as the other organisms, that make up the 
organism’s Umwelt (ethologist’s jargon for the 
environment in which an organism is embodied and 
embedded). This is achieved through a generalization of 
Wittgenstein’s notion of language games [5] to the non-
linguistic domain, resulting in the so-called discrimination 
games [3]. In these games an organism inhabits a simple 
world made up of objects or situations, each of which 
is described by a single feature value modeled by a real 
variable 

N

( ) NiOi ,,1,1,0 L=∈  drawn randomly from a 
uniform distribution. These features are, of course, 
abstract and have no particular meaning in the model, 
though it may be helpful to think of them as perceptual 
features such as color or smell. The question is whether 
such organism is able to form autonomously a repertoire 
of features to succeed in discrimination and to adapt that 
repertoire when new objects are considered. In this 
contribution we address this problem using both the 
original discrimination tree approach [3] and a novel 
adaptive approach to concept formation dubbed modeling 
field theory [6]. 
 
Following Steel’s original paper, we will consider 
meaning creation in a single agent, so that the 
communication issue is not addressed at this stage (see [4] 
for the natural extension of this research program to study 
communication in a community of agents). However, 
rather than considering that each object is characterized 
by a set of features and that each organism has a set of 
sensory channels designed to detect each feature (there is 
a one-to-one mapping between channels and features), 
here we assume that there is only one feature per object 
and that the organisms possess a single sensory channel 
sensitive to that feature value. Creation of meanings in 
high-dimensional spaces, as well as extending a notion of 
object to abstract concepts will be a subject of future 
publications.  
 
In the next section, we review the approach of 
discrimination trees to meaning creation. In particular, 
quantitative performance measures are presented for both 
the standard algorithm in which refinements of the tree 
are undertaken randomly and the intelligent tree growth 
strategy in which a refinement always make a helpful 
distinction. In section 3 we briefly review the modeling 
field theory approach and describe the results of its 



application to the categorization problem posed above. 
Finally, section 4 summarizes the main conclusions. 

 

2. DISCRIMINATION TREES 
 
The idea of the discrimination trees is to model the 
sensitive channel by a binary tree as illustrated in figure 1. 
The nodes of this tree are labeled unambiguously by a 
binary sequence (e.g., 010) and are endowed with the 
capacity to detect whether a feature value falls between 
two bounds, except for the root (node 0) that has no 
discriminatory power - it is sensitive to the entire range 0-
1. Meaning creation takes place by splitting the sensitivity 
range of a node in two, resulting thus in the production of 
two new nodes, each one sensitive to half of the range of 
values of the parent node. Hence, for example, node 00 is 
sensitive to features whose values are within the range 0 - 
0.5; node 01 to values within the range 0.5-1 and node 
0100 to values within the range 0.5-0.625. The sensitive 
channel represented by the tree shown in the figure is 
capable to distinguish between, say, objects 6.0=iO and 

, but fails to distinguish between objects 
and . The final discrimination capability 

of the tree is determined by its leaves (i.e., the external 
nodes 00, 011, 0101 and 0100 in the example). In fact, to 
perfectly categorize  objects a tree must possess at least 

 leaves. It is also useful to define the depth of a node as 
the minimum number of branches connecting it to the root 
and the depth of a tree as the maximum of the depth of its 
nodes. 

7.0=jO
1.0=kO 4.0=lO

N
N

 
 
 
 
 
 
 
 

 

Figure 1 – Discrimination tree with four leaves, three 
internal nodes and depth equal three. This tree is sensitive 
to features values in the ranges (0,0.5), (0.5,0.625), 
(0.625,0.75) and (0.75,1). 

 
In this publication we follow [3] in assuming that Umwelt 
is populated by objects, and the meaning creation consists 
in learning to differentiate them. We do not address the 
issue of learning abstract concepts, which are not 
represented by individual objects. In this context it is  the 
failure to distinguish between any two objects that leads 
to further splitting or refinement of the discrimination tree 
and hence to improvement of the semantic structure of the 

sensory channel. This is done through repeated 
discrimination games, in which one of the  objects that 
compose the organism’s world is chosen randomly and 
compared with the

N

1−N remaining objects. Whenever a 
failure occurs a particular leaf is split into two new leaves, 
creating thus a pair of (derived) novel concepts in the 
semantic structure of the channel. (We would like to 
emphasize that the assumption of the finite number of 
distinct objects is a significant simplification of the 
current publication as well as of [3], still a step toward 
complexity of creating novel concepts in the real world, as 
compared to the current state of the art, e.g. [1]). In what 
follows we will consider two strategies for the refinement 
of the tree, namely, the random refinement and the 
intelligent tree growth. 
 
As the name indicates, in the random refinement strategy, 
that was used by Steel in his analysis, one chooses 
randomly, i.e., with equal probability, any of the leaves of 
the tree and then split it. In the example of figure 1, this 
amounts to pick randomly one of the four leaves 00, 011, 
0101 or 0100. Suppose leaf 011 is chosen. Then the new 
leaves 0110 and 0111 are created and the parent 011 
becomes an internal node. The refined tree has now five 
leaves and four internal nodes. This example exposes a 
drawback of the random refinement strategy: although the 
main shortcoming of the depicted discrimination tree is 
clearly the failure to distinguish between objects 
characterized by feature values in the range (0,0.5), the 
splitting of the node 011 only makes the situation worse – 
the odds of picking leaf 00 has now decreased from 41  
to 51 . Hence an unbalanced tree tends to become even 
more unbalanced. [We note that ultimately node 00 will 
be chosen since the probability that it is not chosen in 

refinements is m ( )11 +m .] These remarks are necessary 
to emphasize that even for a relatively large, though finite, 
number of discrimination games, the random strategy may 
fail to create a unique meaning (i.e., leaf) for each object.  
 
Two interesting measures to evaluate the performance of 
the different strategies are the average number of leaves 
and the average depth of the discrimination trees. In figure 
2 we show these quantities for the random refinement 
case. More pointedly, we generate realizations of 
the N objects by drawing random numbers from the 
uniform distribution in (0,1). For each realization we 
repeat the discrimination games  times or until a 
perfect categorization of the N objects is achieved. Only 
these realizations are considered for the evaluation of the 
averages. Figure 2 summarizes our findings. The fittings 
indicate that the average number of leaves increases 
exponentially with the number of objects, 

3104×

410

( )Nleaves 71.0exp41.2≈ , while the average tree depth 
increases linearly, . We note, 
however, that these averages are of little significance 
since the dispersion around them are very large, especially 
regarding the number of leaves. For example, in the case 

Ndepth 14.115.0 +≈
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5=N , one of the instances we used resulted in a 
tree with 22385 leaves. It is the computer resources 
needed to keep track of such large trees that limited our 
analysis of the random refinement strategy to small 
collections of objects. 
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Figure 2 – Semi-logarithm plot of the average number of 
leaves and average depth of the discrimination trees 
produced by the random refinement strategy against the 
number of objects N. The lines are the fittings given in the 
text.  
 
We turn now to the analysis of the intelligent tree growth 
strategy proposed by Smith [4]. As before, refinement is 
triggered by a failure in discriminating a given object, say 
i, from the remaining N-1 objects that make up the 
organism’s world. However, in this case one refines the 
leaf associated to object i, rather than a randomly chosen 
leaf. For example, consider the tree depicted in figure 1 
and assume there are 3 objects with feature values 

. If object 3 is chosen to play 
the discrimination game then nothing happens since leaf 
0101 singles out this object from the other two. However, 
if object 2 is chosen, then a failure occurs because leaf 00 
cannot distinguish it from object 1. The procedure is then 
to refine leaf 00, producing leaves 000 and 001. The latter 
will provide a unique representation to object 2. This 
scheme generates optimal discrimination trees, in the 
sense that the trees possess the minimum number of 
leaves needed to categorize perfectly the N objects. In 
contrast to random refinement, the intelligent tree growth 
strategy produces the same tree for a fixed collection of 
objects. In figure 3 we show the average number of leaves 
and the average depth of the discrimination trees produced 
by this optimal refinement scheme. For fixed N, each data 
point represents the average over realizations of N 
objects drawn randomly from the uniform distribution. 
We find that the data for the average number of leaves is 
very well fitted by the straight line 

7.0,4.0,2.0 321 === OOO

410

NNleaves 244.1 ≈≈  while the average depth by the 
logarithm fitting, .  Ndepth ln3≈
 

 
Figure 3 – Average number of leaves and average depth 
of the discrimination trees produced by the intelligent tree 
growth strategy as function of the number of object N. 
The lines are the fittings given in the text. 
 
Perhaps the main criticism one can raise against the 
discrimination trees approach, and specially regarding the 
intelligent tree growth strategy, is that one can hardly say 
that the organism is genuinely autonomous. In fact, the 
decision of what leaf to refine as well as how to refine it is 
built in the simulation code. We need a system that is 
capable to effect that kind of refinement entirely by itself 
(i.e., autonomously). This is  the issue we address in the 
next section. 
 

3. MODELING FIELD THEORY 
 
The basic idea behind Modeling Field Theory (MFT) is 
the association between lower-level signals (e.g., inputs) 
and higher-level concept-models (internal representations) 
avoiding the combinatorial complexity inherent to such a 
task. This is achieved by using measures of similarity 
between concept-models and input signals together with a 
new type of logic, so-called fuzzy dynamic logic. We 
refer the reader to Perlovsky’s book [6] for a complete 
presentation of MFT; here we particularize the general 
framework to the problem of categorizing N objects, each 
of which characterized by a real number )1,0(∈iO - the 
input signals - as described in the previous section. Let us 
assume that there are M concept-models described by 
real-valued variables that should 
represent the objects . We define arbitrarily 
the following partial similarity measure between object i 
and concept k 

MkS k ,,1, L=
NiOi ,,1, L=

 
        ( ) ( )[ ]222/1 2exp2)|( kkik SOkil σπσ −−= − ,          (1) 
 
where, at this stage, the fuzziness kσ  is a parameter given 
a priori. The goal is to find an assignment between 
models and objects such that the global similarity 
 



                                                             (2) ∏∑=
i k

kilL )|(

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350
t/50

 is maximized. We can easily be deceived by the apparent 
trivialness of this task, since the categorization 
mechanisms built in our minds immediately sprout a one-
to-one (if ) correspondence between objets and 
concepts. However, if asked to formalize that mechanism, 
the solutions proposed are usually very sophisticated, 
such as the discrimination trees discussed before. The key 
point in this task seems to be the symmetry-breaking of 
the permutation group associated to the labeling of objects 
by concepts. MFT provides an ingenious method to 
implement that partition in a fully autonomous 
framework. A fundamental role is played by the fuzzy 
association variables  defined by  

MN =

)|( ikf
                     ∑=

'
)'|()|()|(

k
kilkilikf                         (3) 

which give a measure of the correspondence between 
object i and concept k relative to all other concepts k’. A 
mechanism of concept formation and learning, an internal 
dynamics of the modeling fields is defined as  
 
               [ ]k

i
k SkilikfdtdS ∂∂= ∑ )|(log)|( .           (4) 

It can be shown that this dynamics always converges to a 
(usually local) maximum of the similarity L. However, by 
properly adjusting the fuzziness kσ according to the fuzzy 
association variables the global maximum can be 
singled out.  

)|( ikf

 
Before considering the full implementation of the MFT 
scheme, let us first study the dynamics (4) in the case 

kσ are fixed. It is important to understand the roles played 
by the local maxima of L, as (spurious) attractors of the 
modeling field dynamics. For the sake of concreteness, let 
us consider five objects ( ) with features 

. The 
number of model-concepts equals the number of objects, 
i.e.,  but to make the task more difficult, the initial 
values of the modeling fields  are chosen 
randomly in the range (0.5,1). Explicitly, in the 
experiments reported here we use the following values 

. The 
differential equations (4) are solved with Euler’s method 
using the step-size . In figure 4 we show the time 
evolution of the modeling fields when the fuzziness are 
set to 

5=N
5.0,4.0,3.0,2.0,1.0 54321 ===== OOOOO

5=M
( 0=tS k )

79.0,86.0,62.0,59.0,94.0 54321 ===== SSSSS

410−=h

15.0=kσ  (or any value greater than this) for all 
models . The dynamics converges to the 
homogeneous attractor 

5,,1L=k
3.0== ∑ NOS

i
ik so that no 

categorization takes place: all models fit equally well all 
data. 
 
 
 
 

 
Figure 4 – Time evolution of the five modeling fields for 
fixed fuzziness kk ∀= ,15.0σ . The dynamics converges 
to the local maximum . kS k ∀= ,3.0
 
In figure 5 we show the results of the same experiment 
except that the fuzziness is slightly reduced, 

kk ∀= ,13.0σ . This time a symmetry breaking in the 
space of models takes place, resulting in the emergence of 
two distinct categories described by the fields 56.3=kS  
for 5,4,1=k  and 17.2=kS for . As usual, the 
symmetry-breaking is triggered by inhomogeneities in the 
initials conditions.  
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Figure 5 – Time evolution of the five modeling fields for 
fixed fuzziness kk ∀= ,13.0σ . The dynamics converges 
to the local maximum described in the text. 
 
One might think that decreasing further the fuzziness 

kσ will lead to new symmetry-breakings and ultimately to 
the perfect categorization of all objects. Unfortunately, 
this is not so: when kσ is reduced further the partial 
similarities between concept 1 and all N objects, 

iil ∀),1|( , become vanishingly small (the argument of the 
exponential in equation (1) tends to −∞ ) and hence 

iif ∀≈ ,0)|1(  so that the modeling field  is never 
updated. As a result, the system behaves as possessing 
effectively 

1S

1−M  adaptive modeling fields. To avoid this 



type of difficulty one should always start with large 
fuzziness to guarantee that at the outset any one model has 
a nonzero similarity with all objects. Since this choice 
leads inevitably to the behavior illustrated in figure 4, the 
solution is to decrease the fuzziness on the flight, i.e., 
during the time evolution of the modeling fields according 
to the following prescription 
 
                                             (5) ( ) 2

0
2
1

2 exp)( kkk tt σασσ +−=
 
with ,  4105 −×=α kk ∀=11σ and kk ∀= 03.00σ . We note 
that equation (5) differs from the standard MFT 
formulation [6], but the central idea of updating the 
fuzziness during the evolution of the modeling fields is 
the same and constitutes the essence of fuzzy dynamic 
logic. Application of the standard scheme requires the 
addition of a mechanism for the elimination of equivalent 
models and generation of new ones, an issue that we will 
discuss elsewhere.  
 
In figure 6 we present the results of applying the dynamic 
fuzziness scheme to the problem of categorizing the five 
objects discussed above. It is interesting to note that the 
onset of categorization appears to be associated to the 
binary splitting of more general concepts, as in the case of 
the discrimination trees. The reader can easily identify 
which of the modeling fields converged to a given object 
by looking at the value of the field at  (the list is 
provided in the paragraph above figure 4). 

0=t

 
 

 
 
Figure 6 – Time evolution of the five modeling fields 
using the dynamic fuzziness scheme. The dynamics 
converges to the global maximum.  
 
 
To study how the dynamic fuzziness scheme can adapt the 
modeling fields when new objects are added to the 
organism’s we repeat the previous experiment using six 
concept-models (the initial value of this modeling field 
is ) but with the same five objects used in the 
previous experiments. 

82.06 =S

 

The results are illustrated in figure 7 and indicate that 
modeling fields and associate to the same object, 
namely, object 5 for which . This is actually a 
general behavior pattern – categorization is not spoiled by 
using more concept-models than the number of objects 
that make up the organism’s world. We then repeat the 
same experiment, but add a new object 

1S 4S
5.05 =O

06 =O at 
time 20050/ =t .  
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Figure 7 – Time evolution of the six modeling fields 
using the dynamic fuzziness scheme. The task is to 
categorize the same five objects of the previous 
experiments.  
 
The result depicted in figure 8 shows a complete 
rearrangement of all modeling fields leading ultimately to 
the perfect categorization of all objects. This success, 
however, is due to the introduction of the new object at a 
relatively early stage of the dynamics. If it were 
introduced at a later stage, say , then only 
modeling field  would respond by moving towards, 
and finally fixing at, the mean value 

30050/ =t
2S

( ) 5.0261 =+OO . 
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Figure 8 – Time evolution of the six modeling fields 
using the dynamic fuzziness scheme. The task is to 
categorize the same five objects of the previous 
experiments plus a sixth object that entered the world at  

20050/ =t . 
 



Finally, for the sake of completeness we illustrate in 
figure 9 the case in which there are more objects (5) than 
model-concepts (3). This is, perhaps, the situation where 
the task of categorization is better exemplified since 
model 1 clumps together objects 4 and 5, model 2 clumps 
together objects 1 and 2, while  model 3  associates to the 
remaining object 3.  

 
 
Figure 9 – Time evolution of three modeling fields using 
the dynamic fuzziness scheme. The task is to categorize 
the same five objects of the previous experiments. 
 
 

4. CONCLUSIONS 
 
We have demonstrated the potentiality of the MFT 
framework, or more precisely its simple variant, as a 
mechanism for the spontaneous formation of meanings. In 
contrast to the discrimination tree approach, MFT offers 
here a genuinely autonomous and efficient mechanism of 
categorization of objects or situations. An interesting 
feature of this mechanism, displayed in figures 5 to 9, and 
which makes it somewhat similar to a discrimination tree, 
is that the dynamics first merges all modeling fields into a 
single global model-concept and then proceeds to the 
refinements through sequential binary divisions. 
However, further improvements of the present 
implementation seem to be necessary. Important 
modifications will include (1) autonomous detection of 
the number of different objects, (2) efficient handling of 
new objects added to the organism’s world, (3) creating a 
concept of “object” by differentiating objects from 
meaningless background, (4) addressing high 
dimensionality characteristical of visual images and other 
raw sensory data, and (5) creating abstract concepts, 
corresponding to situations, rather than simple individual 
objects. It is possible that the last four modifications could 
only be addressed by combining meaning creation with 
communication. Work in these directions is on the way. 
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