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1 Introduction

This project initiated 06/29/2001 with the goals of designing and testing architectures and ap-

plications for a scalable, fault-tolerant, quantum information processing system. Our project was

a collaborative computer science and physical sciences effort involving four groups working in

tight coordination, with MIT providing experimental quantum technology parameters and fun-

damental expertise in quantum information theory, U.C. Davis devising fault-tolerant architecture

designs and implementing numerical simulations, U.C. Berkeley creating quantum cryptosystems

and providing distributed applications pull, and U. Washington focusing on new languages for

quantum computation, and an architectural simulator.

Our principle aim was to: design a complete system architecture for a realistic programmable,

arbitrary-scale quantum computer, focusing on maximum reduction of overhead and reaching to-

wards two targets: a solid-state spin-based quantum computer, and application of quantum infor-

mation to the real-world problems in secure distributed information storage.

We report the following major accomplishments over the span of this project timeline, from

06/29/01 to 03/31/06:

• Detailed architecture design for large-scale, fault-tolerant quantum computers:

1. Identification of quantum wires and quantum communication requirements as a key

bottleneck in quantum processor design (ISCA’03 paper)

2. Design of quantum FPGA and micro-architecture processor layout for optimized per-

formance and reduced overhead (ISCA’05 and ISCA’06 papers)

• Software tool-chain for quantum computer architecture design and analysis

1. Development of systematic scalability criteria for reliable large-scale quantum comput-

ers (IEEE Computer’02)

2. Implementation of predictive quantum CAD tools for quantum architecture design and

evaluation (IEEE Computer ’06)

• Enabling experimental results for quantum computation
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1. Realization of quantum optimization algorithm (Phys. Rev. Lett ’03)

2. Implementation of first standard quantum algorithm with a trapped ion (Nature’04)

Major publications detailing these results, specifically including those cited here, appear in the

appendix of this report (cf VIII Article 28 C.2 of the project agreement).

2 Project motivation, approach, and timeline

The main goal of this project was a quest to understand what key interchangeable elements form

a scalable, fault-tolerant quantum information system architecture (Fig. 1). Our focus was squarely

on large-scale quantum computation, meaning a quantum computer capable of solving problems

such as factorization of 1024 bit numbers, which can reasonably be expected to require O(106)

qubits even when using perfect hardware. With imperfect hardware, quantum error correction is

required, which requires an overhead of perhaps 103 to 106 times more qubits, depending on the

base error rate.

Project Approach

What key interchangeable elements form a 
scalable, fault-tolerant quantum information 
system architecture?

• Goal: Large-scale quantum computation
• Approach:

• Detailed focus issues:
• 1. What system design is necessary?  
• 2. What crucial experiments / technology is missing?
• 3. What new applications are enabled?

Figure 1: Summary of main project problem and approach.

Our approach to addressing this problem was to focus on three main issues: (1) the system

design elements necessary for large-scale, reliable quantum computation, (2) the missing exper-
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iments or technology necessary to realize complete quantum computing systems, and (3) new

applications which might be enabled by large-scale quantum computation.

Crucially, we realized early in the project that we would have to focus on designing reliable

quantum computers from unreliable parts, because of the inevitability of a high rate of errors

in quantum systems due to the intrinsic nature of decoherence. Quantum states do not readily

remain in superposition, and usually require active correction to maintain useful stability.
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Figure 2: Timeline of major project results, in comparison with original goals.

The project started with five main goals (Fig. 2): design of a quantum architecture, simu-

lation of architectures constructed from faulty components, evaluation of a benchmark applica-

tion (Shor’s algorithm), application to a large-scale distributed classical computing system (Ocean

Store), and design and evaluation of a possible experimental realization of a full large-scale, reli-

able quantum computing system.

3 Project accomplishments and self-evaluation

The actual goals which we successfully accomplished during this project matched four of the five

original goals quite well, and there were unanticipated surprises as well (Fig. 3).

The four originally anticipated goals which we accomplished were:
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Accomplishments
• Detailed architecture design for large-scale QC

• Software tool-chain for Quantum Computers

• Enabling experimental results for QC

•• Quantum Wire / thresholds for QC Quantum Wire / thresholds for QC -- ISCAISCA’’0303

•• Quantum FPGA & MicroQuantum FPGA & Micro--architecture architecture -- ISCAISCA’’05 & 05 & ‘‘0606

•• Scalability criteria for reliable QC Scalability criteria for reliable QC –– IEEE ComputerIEEE Computer’’0202

•• Quantum CAD tools for design Quantum CAD tools for design –– IEEE ComputerIEEE Computer’’0505

•• Realization of Q. optimization algorithm Realization of Q. optimization algorithm –– PRLPRL’’0303

•• First Q. algorithm with trapped ion First Q. algorithm with trapped ion –– NatureNature‘‘0404

Figure 3: Summary of major project accomplishments.

• The design of a variety of complete quantum architectures for large-scale, reliable quantum

computers, including identification of quantum wires, memories, control systems, and spa-

tial layout as key design elements (IEEE Computer’02, SPAA’03, and ISCA’03 & ’05 papers)

• Simulation of architectures of reliable quantum computers, and the implementation of a

predictive design-tool to analyze system reliability given technology parameters and con-

straints (IEEE Computer ’02 and ’06 papers)

• Evaluation of the requirements and possible performance of Shor’s factoring algorithm on a

complete benchmark quantum architecture design (ISCA’05 and ’06 papers)

• Design of potential experimental realizations and implementation of actual experiments

to identify crucial parameters for fault-tolerant quantum architectures (Nature’04, JQE’03,

PRL’04, and ISCA’06 papers)

The single goal which we did not make much progress on was our hope to identify new appli-

cations for large-scale quantum information processors in secure, distributed classical computing

applications such as Ocean Store. Actually, early in the project, we proved that one of our original

ideas, to enable secure remote computation using quantum protocols, was not possible. How-

4



ever, near the start of the project, in 2001, we successfully completed a study on quantum digital

signatures, which can be used for authentication and transferable authentication in multiparty

systems.

Two of the most interesting lessons we learned in this project were perhaps that (1) fault-

tolerance is a crucial concept which is widely invoked but not well understood, particularly with

respect to resource requirements, and (2) surprisingly, solid state (silicon based) quantum comput-

ing was initially very promising, but ultimately unrealistic due to quantum communication and

wiring needs.

And perhaps the most interesting unanticipated success we had was with another technology:

trapped ion quantum computation. Originally, we did not have great hopes for that technology,

but upon detailed study and modeling, it turned out to be extremely promising, much more so

than other currently available quantum computing technologies. We identified this promise in

2003, just as experimental successes at NIST and the University of Innsbruck were coming about,

demonstrating basic quantum protocols such as quantum teleportation, quantum error correction,

and simple quantum algorithms, such as the Deutsch-Jozsa algorithm which we played a role in

making possible.

4 Summary of Main Scientific Results

Three main accomplishments of this project deserve special identification: our results in architec-

ture design, scalability criteria, and software design tools for fault-tolerant quantum architectures.

4.1 Quantum architecture concepts

Modern computer architecture is about the optimization of one central goal: parallelism. Modern

CPUs employ concepts such as functional unit specialization, speculative execution, H-tree clock

distribution, and subsystem power control, to maximize performance and minimize energy cost.

Quantum architecture focuses on a different central goal: reliability, because quantum noise is

an unavoidable fact in any realistic quantum computer implementation, and must be managed
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carefully from a systems approach.

Architecture Concepts
• Modern Q. computer arch. = seek reliability

QALU

Classical Controller

Knill, Nielsen & Chuang, Steane, Chong, Cross,  Kubiatowicz, Oskin

Q.Data Memory
23-qubit Golay code

|0i, |0..0i+|1..1i
Power & Clock Q.Ancilla Factory

7-qubit Steane code

Code 
Convert 

Unit

Figure 4: Illustrative major result: concepts for quantum processor design.

One major result of this project was our introduction of new concepts for quantum architec-

ture (Fig. 4), including entropy exchange units, code conversion teleportation, quantum wires,

entanglement based clocks, and entanglement “power sources.” From this work, we developed

a considerable understanding of the overall cost of fault tolerance in quantum computation, and

how this can be reduced through design improvements in balancing memory, computation, and

communication (see, in particular, our ISCA’02, ISCA’05, and ISCA’06 papers). Our results lead to

building-block based designs that are conceptually clean, buildable, and debuggable.

4.2 Scalability criteria

The overall system cost of fault-tolerance in quantum architectures is very high, but many ele-

ments of this cost have largely been neglected in the community until our work. For example, the

number of wires required grows exponentially with the number of levels of concatenation used

in fault tolerance constructions, and moreover, these wires must generally connect gates spatially

separated by the entire size of the code block! Naturally, providing such communication capabil-

ity cannot come for free, but this cost was disregarded in all early feasibility claims for quantum
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computing proposals. In particular, results early in our project (ISCA’03 and related papers) iden-

tified the cost of such quantum communication needs as the primary pitfall in constructing real-

istic quantum computing systems based on solid state devices with fixed qubits, such as Kane’s

original impurity-based qubit scheme. Another widely neglected issue is the cost of the classi-

cal control system needed to schedule, perform, and stabilize fault-tolerant quantum gates. This

control system must be much more reliable, faster, and more parallel than the quantum system

it controls, so for example, if qubits are running with a nanosecond timescale clock, the classical

control system should run with a subnanosecond timescale clock. For many quantum computing

technologies, this would require a control system that is far too power-hungry to be realistic, due

to cryogenic cooling requirements for the qubit implementation.

Criteria for Scalable QC
•• Which QC implementation will be successful?Which QC implementation will be successful?
•• Most ignore Most ignore systemssystems needs!needs!
•• The The system architecture drives device requirementssystem architecture drives device requirements::

2. Maximum parallelism
1. Good quantum wires

4. Fast (local) classical control
5. Complex state preparation

3. Local (fast) measurement6
7

6
7

6
7

IEEE Computer: Jan 2002, p 79

Figure 5: Illustrative major result: criteria for scalable fault-tolerant quantum computation.

More broadly, through our project work over four years, we have identified a set of five criteria

(Fig. 5), initially sketched in our IEEE Computer’02 article, which must be satisfied for a fault-

tolerant quantum architecture to obtain realistic performance. These criteria stipulate that a good

quantum computing system much satisfy not just the normal DiVincenzo criteria, but also must

have:

1. Good quantum wires: the ability to move quantum information between nearly any two

7



points in a quantum processor at a reliability high compared with gate error probabilities.

2. Maximum parallelism: the ability to perform multiple quantum gates in a single timestep.

3. Local (fast) measurement: the ability to measure nearly any qubit in the system, without

requiring more than a constant amount of movement, and in a time comparable to a single

gate.

4. Fast (local) classical control: facilities for gates to be applied to qubits at the proper time and

place, measurement results to be used in feedback to correct errors, code syndromes to be

extracted and voted upon, and qubits to be scheduled and moved for inter-gate communi-

cation.

5. Complex state preparation: the ability to prepare not just |0〉 states, but also complex states

such as logically encoded |0L〉 and |±L〉 states, Bell, and cat states, |00 · · · 0〉 + |11 · · · 1〉.

The lack of any of these elements will likely result in a significant worsening of the fault tolerance

threshold for the system, compared to the ideal threshold determined by code properties. We have

studied and quantified such costs in many of our publications; see, for example, the S.M. thesis of

Andrew Cross (available at the MIT DSpace archive permanent URL

http://hdl.handle.net/1721.1/30175).

4.3 Software tool-chain for quantum CAD

Modern computers are designed first, then built afterwards. This is made possible by the use of

predictive software tools, which allow computer aided design of models which accurately reflect

the performance of actual chip implementations. One major result of this project was the develop-

ment of several suites of new tools for predictive analysis and simulation of quantum architectures

(Fig. 6).

Unlike classical CAD tools, which focus on just performance optimization and aiding in the

design of complex systems, these quantum CAD tools focus on achieving and evaluating relia-

bility. We began with an initial tool developed to study solid-state implementations, then turned
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The ARQ Q. Design Tool
•• Quantum gates are Quantum gates are intrinsically unstableintrinsically unstable
•• QC systems require faultQC systems require fault--tolerant microtolerant micro--architecturearchitecture
•• Design needs Design needs novel, sophisticated Quantum CAD toolsnovel, sophisticated Quantum CAD tools

Optimize!
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QRAM / QCL / QQRAM / QCL / Q

QCCQCC

ARQOptimizers

QASM QCPOL

Layout Tools

QIR

•• Approach:Approach:
•• OpenOpen--sourcesource
•• Layered hierarchyLayered hierarchy

•• Results:Results:
•• Physical requirementsPhysical requirements
•• Technology evaluationTechnology evaluation

Design Verify Evaluate

Optimize!

AutomateAutomate

QRAM / QCL / QQRAM / QCL / Q

QCCQCC

ARQOptimizers

QASM QCPOL

Layout Tools

QIR

•• Approach:Approach:
•• OpenOpen--sourcesource
•• Layered hierarchyLayered hierarchy

•• Results:Results:
•• Physical requirementsPhysical requirements
•• Technology evaluationTechnology evaluation

Design Verify Evaluate

“Towards a software architecture for quantum computing design tools," K. 
Svore, A. Cross, A. Aho, I. Chuang, I. Markov, PWQL, p145-162, 2004

Figure 6: Illustrative major result: modular architectural design tools for large-scale fault-tolerant
quantum computation.

this into a full-blown analysis tool for evaluating trapped ion quantum computer architectures.

By simulating just quantum error correction circuits, a class which require only “Clifford group”

gates that are easily classically simulated, we were able to simulate quantum circuits with O(1000)

qubits efficiently.

We deployed this on a Beowulf cluster to compute fault tolerance thresholds for trapped ion

quantum computers, analyzing the impact of specific technology parameters such as ion move-

ment, memory, waiting, one- and two-qubit gates, measurement, and preparation. Using this tool,

we computed a first set of new thresholds for fault-tolerant quantum computation in the presence

of realistic resource assumptions (Fig. 7).

This software tool has since evolved in several directions, including a separate branch devel-

oped at U. Washington, and one at Columbia University in collaboration with Al Aho’s group

there. His group introduced the idea of using feedback in the simulation to allow optimization of

thresholds. The tool has been used in teaching of students in compiler optimization techniques,

and is now also a basis for development of a hardware “physical operations” language for basic

quantum computer operations.

Based on these results, we believe similar tools can (and should!) be developed to accurately
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Thresholds for Reliable QC
•• Fault tolerance is possible only if errors < thresholdFault tolerance is possible only if errors < threshold
•• The threshold is a The threshold is a complex function of system designcomplex function of system design
•• What is the What is the true thresholdtrue threshold for reliable QC?for reliable QC?
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•• Detailed simulations support plausibility of future Detailed simulations support plausibility of future 
largelarge--scale ionscale ion--trap based quantum computerstrap based quantum computers

Figure 7: Illustrative major result: thresholds for fault-tolerant quantum computation

predict fault tolerance thresholds for quantum computers implemented with other technologies,

such as solid state systems, and combinations of technologies. Just as for classical computers,

these tools will allow the performance of realistic quantum computing systems to be evaluated

and predicted, in advance of actual fabrication, and perhaps even in advance of technology devel-

opments, as a strategic tool in directing investments in technology sectors.
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Q U A N T U M  C O M P U T I N G

A Practical
Architecture for
Reliable Quantum
Computers

Q uantum computers offer the prospect of
computation that scales exponentially
with data size. Unfortunately, a single bit
error can corrupt an exponential amount
of data. Quantum mechanics can seem

more suited to science fiction than system engi-
neering, yet small quantum devices of 5 to 7 bits
have nevertheless been built in the laboratory,1,2

100-bit devices are on the drawing table now, and
emerging quantum technologies promise even
greater scalability.3,4

More importantly, improvements in quantum
error-correction codes have established a threshold
theorem,5 according to which scalable quantum
computers can be built from faulty components as
long as the error probability for each quantum oper-
ation is less than some constant (estimated to be as
high as 10−4). The overhead for quantum error cor-
rection remains daunting: Current well-known
codes require tens of thousands of elementary oper-
ations to provide a single fault-tolerant logical oper-
ation. But proof of the threshold theorem
fundamentally alters the prospects for quantum
computers. No principle of physics prevents their
realization—it is an engineering problem. 

Empirical studies of practical quantum architec-
tures are just beginning to appear in the literature.6

Elementary architectural concepts are still lacking:
How do we provide quantum storage, data paths,

classical control circuits, parallelism, and system
integration? And, crucially, how can we design
architectures to reduce error-correction overhead?

QUANTUM COMPUTATION
Quantum information systems can be a mathe-

matically intense subject. We can understand a great
deal, however, by using a simple model of abstract
building blocks: quantum bits, gates, and algo-
rithms, and the available implementation technolo-
gies—in all their imperfections.7 The basic building
block is a quantum bit, or qubit, represented by
nanoscale physical properties such as nuclear spin.
In contrast to classical computation, in which a bit
represents either 0 or 1, a qubit represents both
states simultaneously. More precisely, a qubit’s state
is described by probability amplitudes, which can
destructively interfere with each other and only turn
into probabilities upon external observation.

Quantum computers manipulate these ampli-
tudes directly to perform a computation. Because
n qubits represent 2n states, a two-qubit vector
simultaneously represents the states 00, 01, 10, and
11—each with some probability when measured.
Each additional qubit doubles the number of ampli-
tudes represented—thus, the potential to scale
exponentially with data size.

A fundamental problem, however, is that we gen-
erally cannot look at the results of a quantum com-

Quantum computation has advanced to the point where system-level 
solutions can help close the gap between emerging quantum technologies
and real-world computing requirements.
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putation until it ends, at which point we get only a
random value from the vector. More precisely, mea-
suring a qubit vector collapses it into a probabilistic
classical bit vector, yielding a single state randomly
selected from the exponential set of possible states.
Perhaps for this reason, quantum computers are best
at “promise” problems—applications that use some
hidden structure in a problem to find an answer that
can be easily verified. Such is the case for the appli-
cation domains of the two most famous quantum
algorithms, Shor’s for prime factorization of an n-

bit integer in O(n3) time8 and Grover’s for search-
ing an unordered n-element list in √−

n queries.9 The
“Quantum Algorithms” sidebar provides additional
information about applications for these algorithms.
Obviously, designers of quantum algorithms must
be very clever about how to get useful answers from
their computations.

Another problem is that qubits lose their quan-
tum properties exponentially quickly in the pres-
ence of a constant amount of noise per qubit. This
sensitivity is referred to as decoherence, and it is
widely believed to be the reason why the world
around us is so predominantly classical. Never-
theless, quantum computation can tolerate a finite
amount of decoherence, so the engineering prob-
lem is to contain it to a sufficiently small amount.
The relevant measure is the amount of decoherence
per operation, p, which has been estimated for a
wide range of physical systems. Specifically, it can
range from 10−3 for electron charge states in GaAs
semiconductors, to 10−9 for photons, 10−13 for
trapped ions, and 10−14 for nuclear spins.7

How realistic is quantum computation as a tech-
nology? We cannot achieve these physical limits with
current technologies, but researchers have proposed
concepts for realizing scalable quantum computers,
and initial experiments are promising. Nuclear spins
manipulated by nuclear magnetic resonance (NMR)
techniques have demonstrated Shor’s algorithm with
seven qubits.10 In these systems, single-qubit opera-
tions take place at about 1 MHz, and two-qubit
gates at about 1 kHz, with an error probability p ≈
10−3. It is believed that p ≈ 10−6 will ultimately be
possible for this kind of device. 

Lower error rates are expected to apply for
NMR systems that use other techniques, such as
artificial molecules synthesized from solid-state
quantum dots11 or carefully placed phosphorus
impurities in silicon.3 Faster clock speeds of around
1 GHz should also be possible. For scalability and
to take advantage of a tremendous historical invest-
ment in silicon fabrication, our architecture
assumes a solid-state technology such as quantum
dots or phosphorus atoms. We want to use these
technologies to provide the building blocks for reli-
able quantum computation, much as von Neumann
did for classical computation.12

We’re a long way from system-scale maturity in
today’s quantum logic gates, but it was also a long
way from the initial silicon transistors to modern
VLSI. We propose stepping in that direction.

PROGRAMMING MODEL
Given that a technology solution is possible, how

Recent interest in quantum computers has focused on Peter Shor’s algo-
rithm for prime factorization of large numbers.1 Shor showed that a quan-
tum computer could, in theory, factor an n-bit integer in O(n3) time. 

Shor’s discovery drew a lot of attention. The security of many modern
cryptosystems relies on the seeming intractability of factoring the prod-
uct of two large primes, given that the best-known factoring algorithms
for a classical computer run in exponential time. To put this in perspec-
tive, researchers using the number field sieve have successfully factored a
512-bit product of two primes, but it took 8,400 MIPS years.2 A 1,024-
bit product would take approximately 1.6 billion times longer. That seems
intractable. 

With Shor’s algorithm, you could factor a 512-bit product in about 3.5
hours, assuming the quantum architecture and error-correction schemes
described in this article, and a 1-GHz clock rate. Under the same assump-
tions, the algorithm could factor a 1,024-bit number in less than 31 hours. 

Another key algorithm is Lov Grover’s for searching an unordered list
of n elements in √−

n queries.3 Quantum algorithms have also been devised
for cryptographic key distribution4 and clock synchronization. 

It is expected, however, that a major application area for quantum com-
puters will be the simulation of quantum mechanical systems that are too
complex to be simulated on classical computers.5 This prospect opens
possibilities impossible to imagine in the classical world of our intuition
and current computers.
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would we implement a quantum algorithm? 
Although some early work was done on quantum

Turing machines,13 the quantum computation com-
munity has focused almost entirely on a circuit
model14 in which algorithms and architecture are
tightly integrated—similar to a classical application-
specific integrated circuit, or ASIC. In contrast, our
goal is to design a general-purpose piece of hardware
that we can program to perform arbitrary quantum
computations.

We can express quantum algorithms through a
model that performs quantum operations on quan-
tum data under the control of a classical computer.
Accordingly, quantum programs would combine
quantum unitary transforms (quantum gates),
quantum measurements, classical computation,
and classical control-flow decisions into a single
instruction stream. A compiler (such as QCL15)
then reads a mixed quantum/classical language and
breaks down complex quantum operations into a
small set of universal operators. The compiler
encodes these operators into a classical bit instruc-
tion stream that also includes conventional proces-
sor instructions. 

We anticipate that this compiler will have two
main parts: a static precompiler and a dynamic
compiler. Both parts are cross-compilers, running
on a conventional microprocessor and producing
code for our quantum architecture.

The precompiler would generate code that pro-
duces a computation with a targeted end-to-end
error probability on an ideal quantum computer.
This end-to-end error means that the generated
code must check the answer and restart if it is
wrong. Similar to conventional VLSI synthesis
tools, the compiler employs a technology model,
but only to the extent that it specifies a universal
set of primitive operations. The compiler does not
need any knowledge of error models.

The dynamic compiler accepts the precompiled
binary code and produces an instruction stream to
implement a fault-tolerant computation, using the
minimal quantum error correction necessary to
meet the end-to-end error rate. This compiler is also
given the technology model and, importantly, a
bound on program execution time. Errors occur so
infrequently in classical architectures that program
run length is rarely an issue. In quantum architec-
tures, however, errors are frequent, and correction
incurs a polylogarithmic cost in run length. Our
work on this architecture indicates that exploiting
program run length is key to performance.

The bound on program run length can originate
in either a user hint or dynamic profiling. The hint

expresses the algorithm’s running time given
some input data size. To date, such informa-
tion is available for all known quantum algo-
rithms. If the hint is not available, the
compiler uses an adjustable policy to opti-
mize programs adaptively. An aggressive pol-
icy would start with minimal error correction
and increase reliability until the program pro-
duces the right answer; a conservative policy
would start with extremely reliable correc-
tion and decrease reliability for future runs.

QUANTUM ERROR CORRECTION
The nonlocalized properties of quantum states

means that localized errors on a few qubits can
have a global impact on the exponentially large
state space of many qubits. This makes quantum
error correction perhaps the single most important
concept in devising a quantum architecture. Unlike
classical systems, which can perform brute-force,
signal-level restoration error correction in every
transistor, quantum state error correction requires
a subtle, complex strategy. 

Quantum difficulties
The difficulty of error-correcting quantum states

has two sources. 
First, errors in quantum computations are dis-

tinctly different from errors in classical computing.
Despite the digital abstraction of qubits as two-level
quantum systems, qubit state probability ampli-
tudes are parameterized by continuous degrees of
freedom that the abstraction does not automati-
cally protect. Thus, errors can be continuous in
nature, and minor shifts in the superposition of a
qubit cannot be discriminated from the desired
computation. In contrast, classical bits suffer only
digital errors. Likewise, where classical bits suffer
only bit-flip errors, qubits suffer both bit-flip and
phase-flip errors, since their amplitude signs can be
either negative or positive. 

The second source of difficulty is that we must
correct quantum states without measuring them
because measurement collapses the very superpo-
sitions we want to preserve.

Error-correction code
Quantum error-correction codes successfully

address these problems by using two classical codes
simultaneously to protect against both bit and phase
errors, while allowing measurements to determine
only information about the error that occurred and
nothing about the encoded data. An [n, k] code uses
n qubits to encode k qubits of data. The encoding

In quantum 
architectures, 

errors are 
frequent, and

correction incurs 
a polylogarithmic
cost in run length.
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circuit takes the k data qubits as input, together with
n − k ancilla qubits. Ancilla bits are extra “scratch”
qubits that quantum operations often use; a spe-
cialized, entropy exchange unit produces the ancilla
bits and  “cools” them to an initial state |0〉. The
decoder takes in an encoded n-qubit state and out-
puts k (possibly erroneous) qubits together with 
n − k qubits that, with high probability, specify
which error occurred. A recovery circuit then per-
forms one of 2n − k operations to correct the error on
the data. 

This model assumes that qubit errors are inde-
pendent and identically distributed. Classical error
correction makes the same assumption, and we can
adapt classical strategies for handling deviations to
the quantum model.

Quantum error correction has a powerful and
subtle effect. Without it, the “correctness”—tech-
nically, the fidelity—of a physical qubit decays expo-
nentially and continuously with time. With it, the
exponential error model becomes linear: A logical
qubit encoded in a quantum error-correcting code
and undergoing periodic error measurement suffers
only linear discrete amounts of error, to first order.

Not all available codes are suitable for fault-tol-
erant computation, but the largest class—the sta-
bilizer codes—support computation without
decoding the data and thus propagating more
errors in the process. We chose the [7,1] Steane sta-
bilizer code for our architecture. It uses seven phys-
ical qubits to encode one logical qubit and is nearly
optimal (the smallest perfect quantum code is
[5,1]16). The code can perform an important set of
single-qubit operations as well as the two-qubit
controlled-NOT operator (used in the architecture’s
quantum ALU) on the encoded qubit simply by
applying the operations to each individual physi-
cal qubit. 

Error-correction costs
The cost of error correction is the overhead

needed to compute encoded states and to perform
periodic error-correction steps. Each such step is a

fault-tolerant operation. The Steane code requires
approximately 153 physical gates to construct a
fault-tolerant single-qubit operation.

Despite this substantial cost, the 7-qubit error-
correcting code dramatically improves the quan-
tum computing situation. The probability of a
logical qubit error occurring during a single oper-
ation changes from p to cp2, where c is a constant
determined by the number of places two or more
failures can occur and propagate to the next logi-
cal qubit, and we want cp2 < p.

For a single logical gate application, c is about
17,446. For a physical qubit transform failure rate
of p = 10−6, this means the 7-qubit Steane code has
a probable logical qubit transform failure rate of
1.6 × 10−7 when a maximally parallelized opera-
tion uses an optimized error measurement proce-
dure.16 Producing systems with a lower c and more
reasonable overheads requires a failure rate that is
closer to 10−9.

Recursive error correction
The most important application of quantum

codes to computation is a recursive construction,5

which exponentially decreases error probabilities
with only polynomial effort. This is crucial because
even an error probability of cp2 is too high for most
quantum applications. 

The following example helps to understand the
construction: The Steane code transforms the phys-
ical qubit error rate p to a logical qubit error rate
cp2 but requires some number of physical qubit
gates per logical qubit gate operation. Suppose,
however, that a logical gate on a 7-qubit code again
implemented each of those physical gates. Each
gate would have a logical gate accuracy of cp2, and
the overall logical gate error rate would become
c(cp2)2. For a technology with p = 10−6, the error
rate for each upper level gate would be roughly 
4.3 × 10−10. The key observation is that as long as
cp2 < p, error probabilities decrease exponentially
with only a polynomial increase in overhead. 

Table 1 summarizes the costs of recursive error

Table 1. Recursive error-correction overhead for a single-qubit operation using [7,1] Steane correction code.

Recursion level (k) Storage overhead 7k Operation overhead 153k Minimum time overhead 5k

0 1 1 1
1 7 153 5
2 49 23,409 25
3 343 3,581,577 125
4 2,401 547,981,281 625
5 16,807 83,841,135,993 3,125
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correction up to five levels for storage, operation,
and minimum time overheads. Clearly, the high cost
of recursive error correction means that a quantum
computer architecture should choose the minimum
recursion level for a given algorithm and data size. 

Figure 1 depicts recursion level k with a varied
problem size and underlying qubit error probabil-
ity for both Shor’s and Grover’s algorithms.
Increases in problem size or error probability
require stronger error correction through addi-
tional levels of recursion. 

QUANTUM COMPUTER ARCHITECTURE
Building upon the theory of fault-tolerant quan-

tum computation, we define the building blocks for
a general architecture that can dynamically mini-
mize error-correction overhead. In contrast to the
circuit model used in much of the quantum com-
puting literature, our architecture can efficiently
support different algorithms and data sizes. The
key mechanisms enabling this generalization are
reliable data paths and efficient quantum memory.

In many respects, quantum computation is sim-
ilar to classical computation. For example, quan-
tum algorithms have a well-defined control flow
that manipulates individual data items throughout
the execution. The physical restrictions on quan-
tum technologies also resemble the classical
domain. Even though two qubits can interact at a
distance, the strongest—and least error-prone—
interaction is between near neighbors. Further-
more, controlled interaction requires classical
support circuitry, which must be routed appropri-
ately throughout the device. 

Although our quantum computer architecture is
similar to a classical architecture, certain aspects of

the computation are unique to the quantum
domain. As Figure 2 shows, the overall architec-
ture has three major components: the quantum
arithmetic logic unit (ALU), quantum memory, and
a dynamic scheduler. In addition, the architecture
uses a novel quantum wiring technique that
exploits quantum teleportation.17

Quantum ALU
At the core of our architecture is the quantum

ALU, which performs quantum operations for both
computation and error correction. To efficiently
perform any specified quantum gates on the quan-
tum data, the ALU applies a sequence of basic
quantum transforms under classical control.7 The
transforms include 

• the Hadamard (a radix-2, 1-qubit Fourier
transform), 

• identity (I, a quantum NOP), 
• bit flip (X, a quantum NOT), 
• phase flip (Z, which changes the signs of ampli-

tudes), 
• bit and phase flip (Y), 
• rotation by π/4 (S), 
• rotation by π/8 (T), and 
• controlled NOT (CNOT).

These gates form one of the smallest possible uni-
versal sets for quantum computation. The under-
lying physical quantum technology can implement
these gates efficiently on encoded data. All except
CNOT operate on only a single qubit; the CNOT
gate operates on two qubits.

To perform the high-level task of error correc-
tion, the ALU applies a sequence of elementary

Figure 1. Recursion
level k with a varied
problem size and
underlying qubit
error probability for
Shor’s quantum fac-
torization algorithm
(left) and Grover’s
quantum search
algorithm (right). 
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operations. Because this task is requisite to fault-
tolerant quantum computing, the ALU performs it
on encoded data after most logical operations. This
procedure consumes ancilla states, which help in
the computation of parity checks. Specialized hard-
ware provides elementary standard states that the
ALU uses to manufacture requisite ancilla.

Quantum memory
The architecture’s generality relies on an efficient

quantum memory. The key is building quantum
memory banks that are more reliable than quan-
tum computation devices. We can also use special-
ized “refresh” units that are much less complex
than our general ALU.

The storage of qubits not undergoing computa-
tion is very similar to the storage of conventional
dynamic RAM. Just as individual capacitors used
for DRAM leak into the surrounding substrate over
time, qubits couple to the surrounding environment
and decohere over time. This requires periodically
refreshing individual logical qubits. As Figure 2
shows, each qubit memory bank has a dedicated
refresh unit that periodically performs error detec-
tion and recovery on the logical qubits. From a
technological standpoint, decoherence-free sub-

systems,18 which naturally provide lower decoher-
ence rates for static qubits, could implement such
quantum memories.

The architecture uses multiple quantum memory
banks. This is not for improving logical qubit access
times. In fact, the underlying error rate of the qubit’s
physical storage mechanism, the algorithm’s com-
plexity and input data size, the quantum ALU’s
operation time and parallelism, and the error-cor-
rection code that stores the logical qubits limit the
bank size. For example, if we run Shor’s algorithm
on a 1,024-bit number using a memory technology
with an error rate of p = 10−9, we estimate that it
would use 28,000 physical qubits to represent about
1,000 physical bits using two levels of recursion in
a 5-qubit error-correction code. On the other hand,
if the error rate increases to p = 10−6, error correc-
tion would require four levels of recursion to refresh
a bank size of just 1,000 physical qubits that would
store only two logical qubits.

Quantum wires
Moving information around in a quantum com-

puter is a challenge. Quantum operations must be
reversible, and we cannot perfectly clone qubits—
that is, we cannot copy their value. We cannot sim-

Quantum ALU

Dynamic quantum compiler/scheduler (classical microprocessor)

 Classical communication  Quantum interaction

Quantum memory

Quantum memory Quantum memory

Quantum memory

Code teleporter

Qu
bi

t r
ef

re
sh

 u
ni

t
Qu

bi
t r

ef
re

sh
 u

ni
t

Qu
bi

t r
ef

re
sh

 u
ni

t
Qu

bi
t r

ef
re

sh
 u

ni
t

Co
de

 te
le

po
rte

r

Co
de

 te
le

po
rte

r
Co

de
 te

le
po

rte
r

Co
de

 te
le

po
rte

r

Figure 2. Fault-
tolerant quantum
computer architec-
ture. The quantum
arithmetic logic unit
(ALU) performs all
quantum operations,
quantum memory
banks support effi-
cient code conver-
sion, teleportation
transmits quantum
states without send-
ing quantum data,
and the dynamic
scheduler controls
all processes. 
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ply place a qubit on a wire and expect it to transmit
the qubit’s state accordingly. Instead, our architec-
ture will use a purely quantum concept to imple-
ment quantum wires: teleportation.17 This pro-
cedure, which has been experimentally demon-
strated,19 transmits a quantum state between two
points without actually sending any quantum data.
Instead, with the aid of a certain standard preshared
state, teleportation sends two classical bits of data
for each qubit.

Teleportation is superior to other means of deliv-
ering quantum states. Recall that a solid-state tech-
nology implements qubits with atoms implanted in
silicon.3,11 The physical qubits cannot move, but we
can apply a swap operation to progressive pairs of
atoms to move the qubit values along a line of
atoms. While we could use a series of quantum swap
gates to implement quantum wires, each swap gate
is composed of three CNOT gates, which introduces
errors in the physical qubits—errors that generate
additional overhead in the correction procedures. 

Teleportation instead uses quantum swap gates
that are not error-corrected to distribute qubits in
a cat state to the source and destination of the wire.
A cat state (named after Schrödinger’s cat) is a qubit
vector with probabilities equally distributed
between all bits set to 1 and all bits set to 0. The
qubits in a cat state are entangled, and measuring
one of the qubits uniquely determines the state of
all qubits in the qubit vector. Teleportation uses a
two-qubit cat state.

This cat state can be checked for errors easily and
independently of the physical qubit being trans-
mitted. If errors have overwhelmed the cat state, it
can be discarded with little harm to the transmis-
sion process. Once a correct cat state exists at both
ends, the cat state’s qubits teleport the physical
qubit across the required distance.

Code teleportation
Teleportation can also provide a general mecha-

nism for simultaneously performing quantum oper-
ations while transporting quantum data.
Precomputing the desired operation on the cat
states forms a kind of “quantum software” that
automatically performs its operation on the tele-
ported data.20 We can use this mechanism to per-
form an optimization by converting between
different error-correction codes during teleporta-
tion. Specifically, we chose the Steane error-correc-
tion code for its computational ease, not its
compactness. The quantum memories, however,
perform only error measurement and recovery, not
computation. Hence, they can use a more compact

code that sacrifices some ease of computation.
Converting between codes is usually an error-

prone process, but teleportation performs code con-
version without a single physical qubit error
compromising a complete logical qubit state.20

Thus, our architecture can store the logical qubits
efficiently in a dense error-correcting code if it uses
teleportation during transmission to the quantum
ALU for conversion to a less compact, but more
easily computable, error-correction code.

From a conceptual standpoint, this process is
only a slight modification of standard quantum
teleportation. As Figure 3 shows, specialized hard-
ware generates a cat state, sends one qubit through
the encoding mechanism for the source error-
correction code, and sends the other qubit through
the encoder for the destination error-correction
code. The sender and receiver then perform the log-
ical qubit equivalents of the teleportation opera-
tion on each end of the entangled pair. 

To implement a more robust form of this process,
the underlying architecture could use stabilizer
measurements to generate the appropriately
encoded cat states prior to teleportation.

Dynamic scheduler
The architecture uses a complete high-perfor-

mance classical processor for control. This proces-
sor runs a dynamic scheduling algorithm that takes
in logical quantum operations, interleaved with clas-
sical control-flow constructs, and dynamically trans-
lates them into physical individual qubit operations.
The algorithm uses knowledge about the overall
input data size and physical qubit error rates to con-
struct a dynamic schedule to control the quantum
ALU, code teleportation, and qubit RAM refresh
units. This is a lot of work for a single classical
processor. We expect significantly faster processor
clock speeds to be available, but it may be necessary
to run multiple classical processors in parallel.

The classical processor is critical to making a
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Classical communication
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Figure 3. Code tele-
portation. In a slight
modification of
standard quantum
teleportation, an
encoder at the des-
tination recreates
quantum data
encoded in another
form at the sender. 
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quantum architecture efficient. We could execute
all quantum algorithms with the maximum avail-
able error correction, but doing so would be incred-
ibly inefficient. Moreover, using dynamic
compilation and knowledge of an algorithm’s exe-
cution time make several performance optimiza-
tions available to the computation, including
application-specific clustering prior to error mea-
surement. 

APPLICATION-SPECIFIC ERROR OPTIMIZATION
While theoretically possible, quantum error cor-

rection introduces overheads yet unheard of in the
classical domain. A single level of error correction
incurs an overhead of at least 153 quantum gates
per logical operation in our architecture; a k level
recursive scheme has a factor of 153k overhead.

The scheduling unit ultimately implements mech-
anisms to control this overhead dynamically at exe-
cution time. This unit compiles the quantum
software instructions (that operate on logical
qubits) into the specific quantum operations
required for execution on the physical qubits of the
error-correction codes used throughout the archi-
tecture. Furthermore, the unit dynamically sched-
ules the quantum operations to intermix classical
control-flow constructs with the quantum opera-
tions, while fully utilizing the available quantum
ALU functional units.

Figure 4 abstractly depicts the effects of recur-
sive error correction on execution time. As appli-
cation data size increases, so must the recursive
structure, but the recursion increases occur at inte-
gral steps. Using the classical processor for just-in-
time quantum software compilation, we customize
the error correction to the algorithm and data size.
This customization aggregates the cost of error-cor-
rection processes over several operations, thereby
making the integral cost more continuous.

O ur architecture achieves system-level efficien-
cies through code teleportation, quantum
memory refresh units, dynamic compilation

of quantum programs, and scalable error correc-
tion. Our work indicates that reliability of the
underlying technology is crucial; practical archi-
tectures will require quantum technologies with
error rates between 10−6 and 10−9.

In addition to the underlying technology, the sig-
nificant overhead of quantum error correction
remains the most pressing quantum computing
architectural issue. The clustering solution we pro-
pose can regain some of the performance lost from
recursive error correction, but the gains are limited
to the cost of only a single recursion layer. Further
reductions will require other new techniques.
Quantum theorists are working on new correction
codes with attractive properties. Some can correct
for more than a single error or condense more than
one logical qubit together to increase density.

The key to exploiting these algorithmic devel-
opments in a quantum architecture is to identify
the basic building blocks from which a design
methodology can grow. We hope to lay the foun-
dation for a science of quantum CAD for the reli-
able quantum computers of the future. �
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assists with such computations by mapping a high-level
language source program representing a quantum algo-
rithm onto a quantum device. By weighing different
optimization and error-correction procedures at appro-
priate phases of the design flow, researchers, algorithm
designers, and tool builders can trade off performance
and accuracy.  

QUANTUM COMPUTATION
The quantum circuit,1 a commonly used computa-

tion model similar to a modern digital circuit, provides
a representation of a quantum algorithm. Digital cir-
cuits capture both mathematical algorithms, such as
for sorting and searching, and methods for real-world
control and measurement, as in cellular phones and
automobiles. Quantum circuits likewise describe meth-
ods for control of quantum systems, such as atomic
clocks and optical communication links, that cannot
be fully controlled with conventional binary digital cir-
cuits alone.

A quantum circuit consists of quantum bits (qubits),
quantum gates, quantum wires, and qubit measure-
ments. A qubit is analogous to a classical bit but can be
in a wave-like superposition of the symbolic bit values
0 and 1, written a|0〉 + b|1〉, where a and b are complex
numbers. Mathematically, a qubit can be written as a
vector of complex numbers. When measured, a qubit

Compilers and computer-aided design tools are essential for fine-grained control of

nanoscale quantum-mechanical systems. A proposed four-phase design flow assists with

computations by transforming a quantum algorithm from a high-level language program

into precisely scheduled physical actions.

Krysta M. Svore, Alfred V. Aho
Columbia University

Andrew W. Cross, Isaac Chuang
Massachusetts Institute of Technology

Igor L. Markov
University of Michigan

Q uantum computers have the potential to solve
certain computational problems—for example,
factoring composite numbers or comparing an
unknown image against a large database—
more efficiently than modern computers. They 
are also useful in controlling quantum-mechan-

ical systems in emergent nanotechnology applications,
such as secure optical communication, in which mod-
ern computers cannot natively operate on quantum data. 

Despite convincing laboratory demonstrations of
quantum information processing, as the “Ongoing
Research in Quantum Computing” sidebar describes, it
remains difficult to scale because it relies on inherently
noisy components. Adequate use of quantum error cor-
rection and fault tolerance theoretically should enable
much better scaling, but the sheer complexity of the tech-
niques involved limits what is doable today. Large quan-
tum computations must also achieve a high degree of
parallelism to complete before quantum states decohere.

As candidate quantum technologies mature, the fea-
sibility of quantum computation will increasingly
depend on software tools, especially compilers, that
translate quantum algorithms into low-level, technol-
ogy-specific instructions and circuits with added fault
tolerance and sufficient parallelism. 

We propose a layered software architecture consist-
ing of a four-phase computer-aided design flow that

A Layered Software
Architecture for Quantum
Computing Design Tools
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Researchers in industry and government labs are exploring
various aspects of quantum design and automation with a wide
range of applications. In addition to the examples described
below, universities in the US, Canada, Europe, Japan, and China
are carrying out much broader efforts.

BBN Technologies
Based in Cambridge, Massachusetts, BBN Technologies

(www.bbn.com) developed the world’s first quantum key dis-
tribution (QKD) network with funding from the US Defense
Advanced Research Projects Agency.The fiber-optical DARPA
Quantum Network offers 24x7 quantum cryptography to
secure standard Internet traffic such as Web browsing, e-com-
merce, and streaming video.

D-Wave Systems
Located in Vancouver, British Columbia, Canada, D-Wave

Systems (www.dwavesys.com) builds superconductor-based
software-programmable custom integrated circuits for quan-
tum optimization algorithms and quantum-physical simulations.
These ICs form the heart of a quantum computing system
designed to deliver massively more powerful and faster perfor-
mance for cryptanalysis, logistics,bioinformatics,and other appli-
cations.

Hewlett-Packard
The Quantum Science Research Group at HP Labs in Palo

Alto,California, is exploring nanoscale quantum optics for infor-
mation-processing applications (www.hpl.hp.com/research/qsr).
In addition, the Quantum Information Processing Group at the
company’s research facility in Bristol, UK, is studying quantum
computation,cryptography, and teleportation and communica-
tion (www.hpl.hp.com/research/qip).

Hypres
Located in Elmsford, New York, Hypres Inc. (www.

hypres.com) is the leading developer of superconducting digital
circuits for wireless and optical communication.Based on rapid
single-flux quantum logic, these circuits have achieved gate
speeds up to 770 GHz in the laboratory.

IBM Research
Scientists at IBM’s Almaden Research Center in California and

the T.J.Watson Research Center’s Yorktown office in New York
developed a nuclear magnetic resonance (NMR) quantum com-
puter that factored 15 into 3 × 5 (http://archives.cnn.com/
2000/TECH/computing/08/15/quantum.reut). Researchers at the
Watson facility and the Zurich Research Lab are also developing
Josephson junction quantum devices (www.research.ibm.com/
ss_computing) as well as studying quantum information theory
(www.research.ibm.com/quantuminfo).

Id Quantique 
Based in Geneva, Switzerland, id Quantique (www.

idquantique.com) is a leading provider of quantum cryptogra-
phy solutions, including wire-speed link encryptors,QKD appli-
ances, a turnkey service for securing communication transfers,
and quantum random number generators.The company’s opti-
cal instrumentation product portfolio includes single-photon
counters and short-pulse laser sources.

Los Alamos National Lab
The Los Alamos National Lab (http://qso.lanl.gov/qc) in New

Mexico is studying quantum-optical long-distance secure com-
munications and QKD for satellite communications. It has also
conducted groundbreaking work on quantum error correction,
decoherence, quantum teleportation, and the adaptation of
NMR technology to quantum information processing.

MagiQ Technologies
MagiQ Technologies (www.magiqtech.com), headquartered

in New York City, launched the world’s first commercial quan-
tum cryptography device in 2003. MagiQ Quantum Private
Network systems incorporate QKD over metro-area fiber-
optic links to protect against both cryptographic deciphering
and industrial espionage.

NEC Labs
Scientists at NEC’s Fundamental and Environmental Research

Laboratories in Japan, in collaboration with the Riken Institute
of Physical and Chemical Research, have demonstrated a basic
quantum circuit in a solid-state quantum device (www.labs.nec.
co.jp/Eng/innovative/E3/top.html). Recently, NEC researchers
have also been involved in realizing the fastest fortnight-long,
continuous quantum cryptography final-key generation.

NIST
The Quantum Information Program at the US National Institute

of Standards and Technology (http://qubit.nist.gov) is building a pro-
totype 10-qubit quantum processor as a proof-in-principle of quan-
tum information processing. Potential applications include
ultraprecise measurement (atomic clocks,optical metrology, and
so on), control of dynamic processes, and nanotechnology.
Researchers at the program’s facilities in Boulder,Colorado,and
Gaithersburg, Maryland, are also optimizing the speed of free-
space quantum cryptography systems.

NTT Basic Research Labs
NTT’s Superconducting Quantum Physics Research Group

in Japan focuses on the development of quantum cryptography
protocols (www.brl.ntt.co.jp/group/shitsuryo-g/qc). In particu-
lar, they have exhibited quantum cryptography using a single
photon realized in a photonic network of optical fibers.

Ongoing Research in Quantum Computing
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assumes either the value 0 or the value 1, with proba-
bility |a|2 and |b|2, respectively.

An n-qubit quantum state is written as a vector rep-
resenting a superposition of 2n different bit strings. The
state remains in a superposition for the computation’s
duration, and the final sequence of measurements col-
lapses the state onto the bit string that gives the result of
the computation. This result will not be affected if all
bit strings in a given state are multiplied by a constant,
called a global phase, before measurement. However,
the ratios of coefficients of different bit strings are sig-
nificant and determine relative phases.

A quantum gate is a reversible transformation of a
quantum state that preserves total probability—for
example, for a single qubit |a|2 + |b|2 = 1. Quantum gates
are represented by unitary matrices that act on quan-
tum state vectors by left multiplication. Gates are con-
nected by quantum wires that transport qubits forward
in time or space. Quantum wires cannot fan out—that
is, qubits with unknown state cannot be duplicated.
Matrix multiplication models composition of gates in
series; the Kronecker, or tensor, product models com-
position of gates in parallel. 

Inaccurate gates and uncontrolled environmental cou-
plings introduce data errors. Uncontrolled coupling results
in decoherence, which causes qubits to collapse to states
that behave probabilistically, like (possibly biased) classi-
cal coins. Such states have no phase information and can-
not perform quantum computation. These effects compli-
cate quantum information processing, but researchers can
address them using tools that perform optimizations and
automatically add error correction.

FOUR-PHASE DESIGN FLOW 
We envision a hierarchy of design tools with simple

interfaces between layers that include programming lan-
guages, compilers, optimizers, simulators, and layout
tools. Such an architecture appears necessary because
no single entity can afford the huge investments required
to develop all necessary tools. To this end, open source
software encourages wider community participation. 

A sufficiently transparent
architecture facilitates tool inter-
operability, focused point-tool
development, and incremental
improvements. Quantum algo-
rithm designers and those devel-
oping quantum circuit optimi-
zations can explore new algo-
rithms and error-correction pro-
cedures in more realistic settings
involving actual noise and phys-
ical resource constraints. Re-
searchers can also simulate im-
portant quantum algorithms on
proposed new technologies be-

fore doing expensive lab experiments.
Our four-phase design flow, shown in Figure 1, maps

a high-level program representing a quantum algorithm
into a low-level set of machine instructions to be imple-
mented on a physical device. The high-level quantum
programming language encapsulates the mathematical
abstractions of quantum mechanics and linear algebra.1

The design flow’s first three phases are part of the quan-
tum computer compiler (QCC). The last phase imple-
ments the algorithm on a quantum device or simulator. 

In addition to providing support for the abstractions
used to specify quantum algorithms, the programming
languages and compilers at the top level of our tool suite
accommodate optimization improvements as our under-
standing of new quantum technologies matures. The
simulation and layout tools at the bottom level incor-
porate details of the emerging quantum technologies
that would ultimately implement the algorithms
described in the high-level language. The tools balance
tradeoffs involving performance, qubit minimization,
and fault-tolerant implementations.

The representations of the quantum algorithm
between the phases are the key to an interoperable tools
hierarchy. In the first phase, the compiler front end maps
a high-level specification of a quantum algorithm into a
quantum intermediate representation (QIR)—a quan-
tum circuit with gates drawn from some universal set.
Compared to traditional logic circuits, quantum circuits
are more structured and typically have intrinsic sequen-
tial semantics, wherein gates modify globally maintained
state qubits in parallel.

In the second phase, a technology-independent opti-
mizer maps the QIR into an equivalent lower-level cir-
cuit representation of single-qubit and controlled-NOT
(CNOT) gates. The compiler optimizes this Quantum
Assembly Language (QASM) according to a cost func-
tion such as circuit size, circuit depth, or accuracy. Since
limiting quantum computing to a fixed set of registers
and fixed word size would significantly restrict its
power, QASM does not have such limitations, unlike
traditional assembly languages. Therefore, parallelism

Front end
Quantum
program

Design flow

Technology-
independent

optimizer

Technology-
dependent
optimizer

Technology
simulator

or quantum
device

QIR QASM QPOL

Quantum
algorithm

Abstraction

Quantum
circuit

Quantum
circuit

Machine
instructions

Figure 1. Proposed design flow.The first three phases are part of the quantum computer
compiler, while the last phase implements the quantum algorithm on a quantum device or
simulator.
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has a greater impact and must be extracted by the 
compiler.

The third phase consists of optimizations suited to the
quantum computing technology and outputs Quantum
Physical Operations Language (QPOL), a physical-lan-
guage representation with technology-specific parameters.
QPOL includes two subphases: The first maps the repre-
sentation of single-qubit and CNOT gates into a QASM
representation using a fault-tolerant discrete universal set
of gates; the second maps these gates into a QPOL repre-
sentation containing the physical instructions for the fault-
tolerant operations scheduled in parallel, including the
required movements of physical par-
ticles. Knowledge of the physical lay-
out and architectural limitations
enters no later than at this step.

The final phase utilizes technology-
dependent tools such as layout mod-
ules, circuit and physical simulators,
or interfaces to actual quantum
devices. If at this point certain tech-
nology constraints or objectives have
not been met, algorithm and device designers can repeat
some earlier phases. In addition, it is possible to add fault
tolerance and error correction at multiple phases of the
design process.

The “Sample Design Flow: EPR Pair Creation” side-
bar provides a concrete example of how our proposed
design flow automates the process of transforming
mathematical models into software for controlling a live
quantum-mechanical system.

PROGRAMMING ENVIRONMENT 
AND LANGUAGE

Designing a quantum programming environment is
difficult given the currently limited repertoire of quan-
tum algorithms. However, this situation is likely to
improve as the demand for nanoscale control increases.
The programming model is also uncertain because
researchers can design a quantum computer as either an
application-specific integrated circuit or a general-pur-
pose processor. However, it is safe to assume that clas-
sical computers will monitor quantum devices through
a bidirectional communication link.2

A quantum programming environment should pos-
sess several key characteristics.2 First, it needs a high-
level quantum programming language that offers the
necessary abstractions to perform useful quantum oper-
ations. It should support complex numbers, quantum
unitary transforms (quantum gates), and measurements
as well as classical pre- and postprocessing. Support for
reusable subroutines and gate libraries is also required.
However, the exact modularization of a quantum pro-
gramming environment remains an open question.

In addition, the environment as well as the program-
ming language should be based on familiar concepts and

constructs. This would make learning how to write,
debug, and run a quantum program easier than using a
totally new environment.

The quantum programming environment also should
allow easy separation of classical and quantum compu-
tations. Because a quantum computer has noise and lim-
ited coherence time, this separation can limit computa-
tion time on the quantum device. The compiler for a
quantum programming language should be able to trans-
late a source program into an efficient and robust quan-
tum circuit or physical implementation; it should be easy
to translate into different gate sets or optimize with

respect to a desired cost function.
Further, the high-level program-

ming language should be hardware-
independent and compile onto dif-
ferent quantum technologies. How-
ever, the language and environment
should allow the inclusion of tech-
nology-specific modules.

A language that supports high-
level abstractions would facilitate

development of new quantum algorithms and applica-
tions. Researchers have proposed many quantum pro-
gramming languages based on the quantum circuit
model,2,3 but a language that provides further insights
on quantum information processing is needed. We also
seek a language that simplifies creation of robust, opti-
mized target programs.

QUANTUM COMPUTER COMPILER
A generic compiler for a classical language on a clas-

sical machine consists of a sequence of phases that
transform the source program from one representation
into another.4 This partitioning of the compilation
process has led to the development of efficient algo-
rithms and tools for each phase. Because the front-end
processes for QCCs are similar to those of classical
compilers, researchers can use the algorithms and tools
to build lexical, syntactic, and semantic analyzers for
QCCs. However, the intermediate representations, the
optimization phase, and the code-generation phase of
QCCs differ greatly from classical compilers and
require novel approaches, such as a way to insert error-
correction operations into the target language program.

Quantum intermediate representation
Other popular quantum computation models, such as

adiabatic quantum computing, can be converted to
quantum circuits. Therefore, in our design flow’s first
phase, the QCC’s front end maps a high-level specifica-
tion of a quantum algorithm into a QIR based on the
quantum circuit model.1

Provisions must be made in the QIR for classical and
quantum control flows as well as data flows. In partic-
ular, quantum-to-classical conversions are accomplished
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The quantum programming
environment should allow 
easy separation of classical 

and quantum computations.
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two-level circuit of a Boolean function, linear in the size
of the function’s truth table, and then use various tech-
niques to optimize it. In contrast, finding a good quan-
tum circuit to implement a 2n × 2n unitary matrix is
difficult. Only very recently have constructive algorithms
become available that yield an asymptotically optimal
circuit with O(4n) gates. Because CNOT gates are typi-
cally most expensive, their counts have been pushed
down to only a factor of two away from lower bounds.5

Remaining gates operate on single qubits at a time, but
unlike CNOT gates their functionality can be tuned
using continuous parameters.

When developing reusable software for automating
quantum circuit design, reducing technological depen-
dence is desirable. Today, the NAND gate is easier to
implement than the AND gate in CMOS-based inte-
grated circuits. Commercial circuit synthesis tools
address this by decoupling libraryless logic synthesis from
technology mapping. The former step uses an abstract
gate library, such as AND-OR-NOT, and emphasizes the
scalability of synthesis algorithms that capture the given

via quantum measurements, while quantum condition-
als and entangled switch statements are implemented
using quantum multiplexer gates.5 High-level optimiza-
tions may involve simultaneous changes to quantum and
classical control flows and to data flows. We also con-
sider fault-tolerant constructions at various phases in
the design flow and incorporate circuit synthesis and
optimization techniques in both the technology-inde-
pendent and technology-dependent phases. 

Circuit synthesis and optimization
During the second and third phases, the QCC syn-

thesizes and optimizes a QASM representation of a
quantum circuit using procedures similar to those cur-
rently used for digital circuits. Algorithms for classical
logic circuit synthesis map a Boolean function into a cir-
cuit using gates from a given gate library. Similarly,
quantum circuit synthesis creates a circuit that performs
a given unitary transform up to an irrelevant global
phase or a prescribed quantum measurement.

A digital logic designer can immediately construct a

Accurately capturing quantum-mechanical systems using tra-
ditional 0s and 1s is inherently difficult. Quantum information
must therefore be processed directly—without converting it
to bits—during state transformation and teleportation, com-
munication, measurements, and other common tasks.

Figure A illustrates how our proposed four-phase design flow
automates the transformation of mathematical models into soft-
ware for controlling a live physical system.

An algorithm designer, researcher, or engineer initially
expresses a mathematical specification of a quantum algorithm
in a high-level quantum programming language, automatically
creating a quantum circuit that encapsulates the mathematical
abstractions of quantum mechanics and linear algebra.

In the design flow’s first phase, the quantum computer com-
piler abstracts the quantum circuit as a quantum intermediate
representation (QIR). Next, the QCC translates the circuit
into Quantum Assembly Language (QASM) that captures a uni-
versal set of quantum gates. In the third phase, the QCC trans-
lates QASM instructions into Quantum Physical Operations
Language using software tools. QPOL has knowledge of par-
ticulars of the quantum device, including layout and a technol-
ogy-specific gate library.Finally, technology-dependent software
tools translate QPOL into machine instructions.

In this example, we demonstrate how to produce Einstein-
Podolsky-Rosen (EPR) pairs1 for implementation on a trapped-
ion computer.Trapped-ion systems have shown considerable
potential as a future quantum computing technology.2 These
computers use charged, electromagnetically trapped atoms as
qubit carriers and the internal state of single ionized atoms as
qubits. Ions can be shuttled in and out of ion traps to increase

the quantum computer’s effective size.
An important physical resource for quantum computing and

communication,EPR pairs are entangled quantum states that can-
not be decomposed into (tensor products of) single-qubit states.
They represent quantum nonlocality and have applications in quan-
tum state teleportation,ultraprecise measurement,and lithogra-
phy as well as in a number of quantum computing algorithms.

For EPR pair creation, we abstract the mathematical repre-
sentation in a quantum circuit composed of a Hadamard (H) and
CNOT gate.The figure shows sample QASM and QPOL repre-
sentations.Determining the phase in which to insert fault toler-
ance and error correction is an open research question;here we
show how to replace a CNOT gate with a circuit for a fault-tol-
erant encoded CNOT operation limited to local interactions.

QPOL instructions for creating an EPR pair can be translated
into a sequence of laser pulses—in this case, for performing a
CNOT gate on an ion-trap device.The machine instructions are
as follows:

1. Alternately raise and lower the potentials of electrodes A,
1, 2, and 3 to move ions from trap A to trap B.

2. Apply a laser to the “green” ion to cool the ion chain that
may have heated during movement.

3. Apply π-pulse on the first red sideband of the x ion.
4. Apply pulse on carrier of the y ion.
5. Apply π-pulse on the first red sideband of the x ion.
6. Split the “green” ion and the x ion away from the y ion and

move them back to trap A.

The six-step process could take around 10-100 µs.

Sample Design Flow: EPR Pair Creation
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computation’s global structure. The latter step converts
all gates of a logic circuit to gates from a technology-spe-
cific gate library, often supplied by a chip manufacturer,
and is based on local optimizations.

We expect the distinction between technology-inde-
pendent circuit synthesis and technology mapping to
carry over to quantum circuits.6 This is precisely why
the QCC maps the quantum algorithm into a QASM
representation consisting of single-qubit and CNOT
gates in the second phase of our design flow. 

In addition, temporary decompositions into elemen-
tary gates could help optimize pulse sequences and
reduce systematic inaccuracies in physical implementa-
tions. For example, a CNOT gate can be mapped onto
a specific technology by appropriately timing pulses that
couple two qubits, with pre- and postprocessing by less
sophisticated pulses that affect single qubits.6

Technology-mapped circuits could potentially be opti-
mized further via automatic instantiation of error cor-
rection, efficient handling of universal gate libraries
without tunable gates, and identification of reusable

quantum logic blocks and their efficient implementation.

Quantum Assembly Language
During the technology-independent phase of our

design flow, the QCC maps a representation of the quan-
tum algorithm into an equivalent set of Quantum
Assembly Language instructions. QASM is a classical
reduced-instruction-set computing assembly language
extended by a set of quantum instructions based on the
quantum circuit model. It uses qubits and registers of
classical bits (cbits) as static units of information that
must be declared at the program’s beginning. Quantum
instructions in QASM consist solely of single-qubit uni-
tary gates, CNOT gates, and measurements. Any quan-
tum circuit can be constructed using these instructions.

Quantum Physical Operations Language
QPOL precisely describes the execution of a given

quantum algorithm expressed as a QASM program on
a particular technology, like trapped-ion systems. QPOL
includes physical operations as well as technology-
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Figure A. Using quantum information processing to control live physical systems. Proposed four-phase design flow, detailed for
EPR pair creation on a trapped-ion computer with machine instructions translated into a sequence of laser pulses that perform a
CNOT gate. A feedback loop allows for repetition of earlier phases.
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specific modules. In particular, it organizes physical
operations into five instruction types: 

• Initialization instructions specify how to prepare the
initial system state. This can include loading qubits
into the quantum computer, initializing auxiliary
physical states used in computations, and setting
qubits to |0〉. 

• Computation instructions include quantum gates and
measurements. 

• Movement instructions control the relative distance
between qubits to bring them together to undergo
simultaneous operations or move them apart. 

• Classical control instructions provide simple logic
operations and allow quantum gates to be applied
based on classical bit values stored in classical 
memory. 

• System-specific instructions control physical para-
meters of the system that do not explicitly fall into
the other categories. 

The final QPOL distributes these instructions to the avail-
able instruction processing units—highly parallel quan-
tum computers will have many—and by inserting
appropriate waiting times. 

In the case of trapped-ion computers, initialization
has three stages: loading of multiple ions into a loading
region, laser cooling to reduce ion temperatures, and
optical pumping to put all qubits into a known state. 

Computation is naturally described in terms of single-
qubit rotations and a controlled-phase gate between ions
in the same trap, both achieved using a laser pulse
sequence. Measurement uses another laser pulse that
causes ions in the |0〉 state to fluoresce. Electrostatic fields
can move ions between multiplexed traps, and they can
move multiple ions in and out of the same trap. 

An external classical processor controls the execution
of QPOL instructions, stores measurement results, and
performs conditional instructions based on stored cbits. 

System-specific instructions recool ions when they
heat due to movement operations. Certain laser pulses
also accomplish recooling, but the lasers are applied dif-
ferently for cooling than for gates, requiring different
programming and pulse-sequence optimization.

HIGH-PERFORMANCE SIMULATION 
OF QUANTUM CIRCUITS

Quantum-mechanical effects are useful for accelerat-
ing certain classical computations, as Lov Grover7 and
Peter Shor8 have shown; however, numerical simulation
of quantum computers on classical computers remains
important for engineering reasons. 

In classical electronic design automation, chip design-
ers always test independent modules and complete sys-
tems by simulating them on test vectors before costly
manufacturing. Numerical simulations can also help to
evaluate quantum heuristics that defy formal worst-case
analysis or only work well for a fraction of inputs.

For the numerical simulation phase of our design flow,
we again use the quantum circuit formalism. Because
mathematical models of quantum states, quantum gates,
and measurement involve linear algebra, a key aspect of
efficient simulation is exploiting the structure in the matri-
ces and vectors derived from quantum circuits. To this
end, researchers have proposed polynomial-time simula-
tion techniques for circuits arising in error correction9

and for “slightly entangled” quantum computation.

QuIDDPro: A generic graph-based simulator
George Viamontes and colleagues10 have proposed a

generic simulation technique based on data compres-
sion using the quantum information decision diagram
(QuIDD) data structure. Its worst-case performance is
no better than what can be achieved with basic linear
algebra, but it can dramatically compress structured vec-
tors and matrices, including all basis states, small gates,
and some tensor products. 

A QuIDD is a directed acyclic graph with one source
and multiple sinks, each labeled with a complex num-
ber. The graph models matrix and vector elements as
directed paths; any given vector or matrix can be encoded
as a QuIDD and vice versa. Graph algorithms working
on QuIDDs, supplied as a software library, implement
all linear-algebraic operations in terms of compressed
data representations.

Time and memory used by these algorithms to simu-
late a useful class of quantum circuits scale polynomially
with the number of qubits. All components of Grover’s
algorithm, except for some application-dependent ora-
cles, fall into this class. QuIDD-based simulation of the
algorithm requires time and memory resources that are
polynomial in the oracle function’s size. If a compact

Figure 2.Trapped-ion simulator. Graphical display shows an 
H-tree layout. Qubits are electronic states of ions, represented
by spheres, and gates are laser pulses, represented by lines.
The qubits can move within the black regions but not into the
substrate, drawn using light squares.
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QuIDD can represent a particular oracle function for
some search problem, then classical simulation of the
algorithm runs nearly as fast as an ideal quantum circuit.

QuIDDs can also simulate density matrices by imple-
menting several additional operations, such as trace-
overs, in terms of graph traversals.10 Straightforward
modeling of any 16-qubit density matrix would require
64 Tbytes of memory. In contrast, for a reversible 16-
qubit adder circuit using CNOT and Toffoli gates, the
QuIDDPro package (http://vlsicad.eecs.umich.edu/
quantum/qp) requires less than 5 Mbytes. 

Trapped-ion simulator
Numerical simulations of quantum systems are also

useful when studying the feasibility or performance of
specific physical implementations.9 We have carried out
such a simulation for trapped-ion systems with up to
1,000 qubits; this applies to quantum stabilizer circuits,
which are central to quantum error correction.

The keys to such realistic simulations are the layout of
qubits in physical space and the scheduling of opera-
tions. Our layout tool maps circuits onto an H-tree, a
recursively constructed fractal layout. This reduces
movement operations required per gate by keeping
qubits in inner codes near one another within concate-
nated quantum codes, which also have a self-similar
structure. Our scheduler tool uses implicitly specified
paths to optimize for minimal distances, expanding
QASM instructions to include movements.

The simulator output includes the final quantum state
(for circuit verification), measurement and failure his-
tories, total execution time, and, in the case of a fault-
tolerant circuit, validity of the final output. As Figure 2
shows, output also is a graphical display of QPOL
instructions as they are simulated. 

DESIGN FLOW FOR FAULT-TOLERANT 
ARCHITECTURES

The inherently noisy nature of quantum computers
requires inserting error-correction routines and replac-
ing gates with their fault-tolerant implementations to
achieve scalability. A system architect can apply this
process manually, synthesizing and laying out each fault-
tolerant gate (architecture-driven design), or a compiler
can apply it algorithmically (software-driven design).

We are currently considering both processes for
trapped-ion computing systems, but the principles
extend to other physical systems. The central goal of
both designs is to guarantee that the final sequence of
physical operations will execute fault-tolerantly on the
target system—if failures occur infrequently enough,
then the resulting errors cannot cause the system to fail. 

Fault-tolerant classical components
In special applications of modern digital computers,

the canonical method for fault-tolerant computation is

triple modular redundancy.11 TMR involves feeding gate
inputs copied three times into three gates that fail with
probability O(p). The output lines of these faulty gates
fan out into three majority voting gates. The majority
gates essentially amplify the correct value of the com-
putation so that the fault-tolerant gate fails only if two
or more failures occur. Mathematically, the fault-toler-
ant gate fails with probability O(p2).

Figure 3 shows a TMR fault-tolerant NAND gate at
the second level of recursion, constructed from three
fault-tolerant NAND gates and three majority gates. All
gates are assumed to fail with probability p, such that the
highlighted TMR NAND gate fails with probability 
< 6p2, ignoring input errors. The entire circuit shown
fails with probability < 63p4. If p < 1/6, then this circuit
is more reliable than a basic gate.

Applying TMR recursively k times, as illustrated in
Figure 3 for k = 2, fault-tolerant components can be
made to fail with probability bounded above by pf(k) =
(cp)2k/c. The constant c is determined by the maximum
number of fault paths through the highlighted circuit
that lead the circuit to fail. In this case, c = 6 because at
least two gates or two majority voters must fail. If each
basic gate fails with probability p < 1/c, then pf(k) → 0
as k → ∞. This construction exhibits a fault-tolerance
threshold pth = 1/c.

Fault-tolerant quantum components
We construct fault-tolerant quantum components using

procedures similar to classical fault-tolerance techniques.
They can encode quantum information using quantum
computation codes12 that allow fault-tolerant computa-
tion via a discrete universal set of gates. Calderbank-Shor-
Steane codes are one family of quantum codes that allow
a transversal implementation of an encoded CNOT gate.
Transversal gates are always fault tolerant because they
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Figure 3.TMR fault-tolerant NAND gate at the second level of
recursion, constructed from three fault-tolerant NAND (N)
gates and three majority (M) gates.
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are implemented in a bitwise fashion—a gate between a
pair of encoded qubits is implemented by applying the gate
from bit 1 of the first encoded qubit to bit 1 of the second
encoded qubit, and so on. 

However, there are no known computation codes for
which a universal set of encoded operations can be imple-
mented transversally. In practice, performing quantum
gates requires fault-tolerant preparation of several kinds
of ancillas, or scratch qubits. After each gate, we insert on
each qubit a recovery operation that consumes a syndrome
extraction ancilla to acquire syndrome bits. Syndrome
extraction ancillas must be available in great supply and
may need to be checked for critical errors using verifica-
tion ancillas. All of these operations must remain fault tol-
erant when qubits can only interact locally.13

Figure 4 illustrates key aspects of this process. A recov-
ery operation, shown in Figure 4a, interacts fault-toler-
antly with the data via syndrome bit extraction networks
S1,S2, … Sm. This involves using a syndrome extraction
ancilla (a1,a2, …) to measure each syndrome bit, possi-
bly several times, and storing the results to a classical
register. A classical computer processes the register and
applies the appropriate error correction R to the data.
Recovery operations follow every fault-tolerant gate to
correct errors potentially introduced by that gate. 

As Figure 4b shows, extracting a single syndrome bit
fault-tolerantly first requires an ancilla state. The high-
lighted network prepares (P)and verifies (V) the ancilla;
a verification qubit indicates if the ancilla failed the ver-
ification network V. Upon successful preparation of an
ancilla, the C network interacts with the data fault-tol-
erantly to collect a syndrome bit. The quantum network
D then decodes and measures the bit. Some classical
postprocessing may take the place of D. 

Fault-tolerant architectures
A quantum computation code conceptually separates

the logical and physical machine. Both architecture-dri-
ven and software-driven designs exploit this fact to yield
two different processes within the framework of our
design flow. 

An architecture-driven design process inserts fault-tol-
erant gates from a predesigned library during technol-
ogy-dependent code generation. A design team creates
the library of universal, fault-tolerant, technology-

specific components using a combi-
nation of replacement rules, heuris-
tic methods, and device models, then
publishes the library together with
design rules for connecting the com-
posite components.

A software-driven design process
inserts fault-tolerant gates during
technology-independent code gener-
ation using replacement rules based
on quantum circuits. Sophisticated

schedulers and layout tools insert QPOL instructions to
preserve fault tolerance. Algorithmic optimizations
make fine-grained replacements, and compilers can use
feedback from simulators to focus the optimizers on the
circuit’s critical regions. Our software architecture
allows such insertion and testing of error-correction and
fault-tolerance techniques at multiple stages in the 
design flow.

O ur work has thus far focused on the languages,
transformations, and fault-tolerance procedures
needed along the design flow to produce robust

implementations. However, many important challenges
remain to be solved before researchers can build or even
realistically design a scalable quantum computer. 

To effectively use available quantum resources, we
must be able to schedule and synchronize parallel quan-
tum computations. We also need efficient technology-
independent optimization algorithms for realistic classes
of quantum circuits as well as strategies for adapting
generic circuits to specific architectural constraints and
implementation technologies.

Identifying and evaluating meaningful architectural
design blocks will necessitate further development of
simulation techniques for quantum circuits and high-
level programs. 

Achieving robust, scalable quantum computation will
require both fault-tolerant architectural strategies com-
patible with emerging quantum device technologies and
optimization algorithms that minimize the number of
fault paths, code size, or number of gates in fault-toler-
ant circuits. 

It will also be necessary to match tools to experimen-
tal implementations as well as develop methodologies
for design verification and test such as quantum state
tomography, circuit-equivalence checking, and test-vec-
tor generation. 

The grandest challenge of all is to design a high-level
programming language that encapsulates the principles
of quantum mechanics in a natural way so that physicists
and programmers can develop and evaluate more quan-
tum algorithms.

Design and verification tools for robust quantum
circuits are vital to the future of quantum informa-
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Figure 4. Fault-tolerant quantum computation. (a) Recovery operation. (b) Single
syndrome bit extraction.
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tion processing systems, and their development will
be a natural evolutionary step as such machines grad-
uate from the laboratory to engineering design. ■
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Abstract

As quantum computing moves closer to reality the need for
basic architectural studies becomes more pressing. Quan-
tum wires, which transport quantum data, will be a fun-
damental component in all anticipated silicon quantum ar-
chitectures. In this paper, we introduce a quantum wire ar-
chitecture based upon quantum teleportation. We compare
this teleportation channel with the traditional approach to
transporting quantum data, which we refer to as the swap-
ping channel. We characterize the latency and bandwidth
of these two alternatives in a device-independent way and
describe how the advanced architecture of the teleporta-
tion channel overcomes a basic limit to the maximum com-
munication distance of the swapping channel. In addition,
we discover a fundamental tension between the scale of
quantum effects and the scale of the classical logic needed
to control them. This “pitch-matching” problem imposes
constraints on minimum wire lengths and wire intersec-
tions, which in turn imply a sparsely connected architec-
ture of coarse-grained quantum computational elements.
This is in direct contrast to the “sea of gates” architectures
presently assumed by most quantum computing studies.

1 Introduction

Many important problems seem to require exponential re-
sources on a classical computer. Quantum computers can
solve some of these problems with polynomial resources,
leading a great number of researchers to explore quantum
information processing technologies [28, 31, 13, 15, 41, 9,
17, 42]. Early-stage quantum computers have involved a
small number of components (less than 10) and have uti-
lized molecules in solution and trapped ions [47, 25, 35].
To exploit our tremendous historical investment in silicon,
however, solid-state silicon quantum computers are desir-
able. Promising proposals along these lines have begun
to appear [22, 50]; these even include ideas that merge
atomic physics and silicon micromachining[24]. However,
as the number of components grows, quantum computing
systems will begin to require the same level of engineer-
ing as current computing systems. The same process we as
computer architects do for classical silicon-based systems,
of building abstractions and optimizing structure, needs to
be applied to quantum technologies.

Even at this early stage, a general architectural study of
quantum computation is important. By investigating the
potential costs and fundamental challenges of quantum de-
vices, we can help illuminate previously unforeseen obsta-
cles of constructing a scalable quantum processor. We may
also anticipate and specify important subsystems and tech-
niques common to all implementations. Identifying these
practical challenges early will help focus the ongoing de-
velopment of fabrication and device technology. Develop-
ing abstractions for quantum technology and basic archi-
tectural concepts for it has proven to be quite fascinating.

This paper is about a seemingly mundane subject: a
wire. To be clear, we define a wire in the quantum world
as a mechanism for moving quantum data from one spa-
tial location to another. Any optimistic view of the future
of quantum computing includes enough interacting devices
to introduce a spatial extent to the layout of those devices.
This spatial dimension, in turn, introduces a need for wires.
As we will show, a quantum wire is a very different crea-
ture from a classical one. One of the most important dis-
tinctions between quantum and classical wires arises from
the fact that quantum information (composed of quantum
bits or qubits)cannot be copied[31]. Instead, it must be
transportedfrom source to destination – destroying the in-
formation at the source and re-creating it at the destination.
This fact changes our normal intuitions about the use of
buffers to drive wires, repeaters to amplify signals, and fan-
out to distribute information. In particular, all wires must
be point-to-pointand can onlyprotect information rather
that amplifying it.

Quantum information can be encoded in a number of
ways, such as the spin component of basic particles like
protons or electrons, or in the polarization of photons.
Thus, there are several ways in which we might transfer
information. First, we might physically transport particles
from one point to another. In a large solid-state system, the
logical candidate for information carriers would be elec-
trons, since they are highly mobile. Unfortunately, elec-
trons are also highly interactive with the environment and
hence subject to corruption of their quantum state, a pro-
cess known asdecoherence. Second, we might consider
passing information along a line of quantum devices. This
swapping channelis, in fact, a viable option for short dis-
tances (as discussed in Section 4), but tends to accumu-
late errors over long distances. In some ways, this solution
resembles a quantum-cellular automata (QCA) [32] wire,
except without duplication of data capabilities.
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Over longer distances, we need something fundamen-
tally different. We propose to use a technique calledtele-
portation [7] and to call the resulting long-distance quan-
tum wire a teleportation channelto distinguish from a
swapping channel. Teleportation uses an unusual quantum
property calledentanglement, which allows quantum bits
to interact instantaneously at a distance1. To understand
the mathematical details and practical implications of tele-
portation, we will need to cover some background and prior
art before returning to the subject in Section 2.3.

In the remainder of this paper, we will quantify the ad-
vantages and disadvantages of swapping channels versus
teleportation channels. Realistic concerns such as quan-
tum error-correction [43] for protecting information data
errors and entropy exchange [37] for generating zeros and
entangled pairs, greatly complicate things. Also important
is an often-neglected facet of quantum computing systems
— the fact that they depend upon classical signals for con-
trol of quantum operations. We will explore the fundamen-
tal tension between the scale at which quantum effects oc-
cur and the scale at which classical signals can be reliably
routed. The architectural implications of this tension man-
ifest themselves as a pitch-matching problem.

Overall, the contributions of this research are:

• We define the basic building blocks required to con-
struct long and short quantum wires.

• We discover that the interface between classical con-
trol and quantum devices requires minimum wire
lengths between fanout sites. We generalize these lim-
itations in terms of the ratio of quantum and classical
devices in a given technology and discuss the archi-
tectural implications of these limitations.

• We find that the latency and bandwidth of swapping
channels are extremely sensitive to the length of the
channel, but that teleportation channels do not exhibit
the same sensitivity.

The remainder of this paper continues with a brief in-
troduction to quantum computing in Sections 2 and 3. Sec-
tion 4 introduces the swapping channels that can be con-
structed from solid-state technologies and presents an anal-
ysis of the scalability problems with these channels. Sec-
tion 5 presents teleportation channels, our architectural so-
lution to scalable quantum data transport. Section 6 dis-
cusses our future work in system bandwidth issues and in
Section 7 we conclude.

2 Quantum Computing

We begin with a brief overview of the basic terminology
and constructs of quantum computation. Our purpose is to

1Although this property sounds suspiciously like “faster-than-light”
communication, we shall see that the interaction is ambiguous without the
additional transmission of two bits of classical information, which must
travel at a subluminal velocity.

introduce the language necessary for subsequent sections;
in-depth treatments of these subjects are available in the
literature [31].

2.1 Quantum states: qubits

The state of a classical digital systemX can be specified
by a binary stringx composed of a number of bitsx i, each
of which uniquely characterizes one elementary piece of
the system. Forn bits, there are2n unique possible states.
The state of an analogous quantum systemψ is described
by a complex-valued vector|ψ〉 =

∑
x cx|x〉, a weighted

combination (a “superposition”) of the basis vectors|x〉,
where theprobability amplitudescx are complex numbers
whose modulus squared sums to one, i.e.

∑
x |cx|2 = 1.

A single quantum bit is commonly referred to as aqubit
and is described by the equation|ψ〉 = c0|0〉 + c1|1〉.
Such a qubit might be represented, for example, by the
nuclear spin of an atom. Legal qubit states include pure
states, such as|0〉 and |1〉, and states in superposition,
such as 1√

2
|0〉 + 1√

2
|1〉. Also valid are 1√

2
(|0〉 − |1〉) and

1√
2
(|0〉 + i|1〉), which are other equal superpositions, but

with differentrelative phasesbetween the basis states.
Larger quantum systems can be composed from multi-

ple qubits. For example,|00〉 is a valid two-qubit state, and
so is 1

2 |00〉+ 1
2 |01〉− 1√

2
|11〉. An n-qubit state is described

by 2n basis vectors, each with its own complex probability
amplitude, so ann-qubit system can exist in an arbitrary
superposition of the possible2n classical states of the sys-
tem. To compose multiple independent quantum systems
together, the tensor product operator⊗ is used, e.g.,a⊗ b.

Unlike the classical case, however, where the total can
be completely characterized by its parts, the state of larger
quantum systems cannot be described simply by giving the
individual states of its component qubits. This property,
known asentanglement, is best illustrated with an exam-
ple: there exist no single qubit states|ψA〉 and|ψB〉 such
that the two-qubit state|Ψ〉 = 1√

2
|00〉+ 1√

2
|11〉 can be ex-

pressed as the composite state|ψA〉 ⊗ |ψB〉. Entanglement
does not exist classically, and the unique properties of en-
tangled states are widely believed to be at the heart of what
gives quantum computers their computational powers.

Another non-intuitive property of quantum states is their
behavior when measured. Upon observation, a quantum
state collapses into one of a number of possible classi-
cal states, the set of possibilities being determined by the
measurement apparatus. Specifically, it is conventional (in
the quantum computation and quantum information com-
munity) to adopt thecomputational basisstates|0 . . . 00〉,
|0 . . . 01〉, |0 . . . 10〉, . . ., |1 . . . 11〉, and choose measure-
ments to collapse states into this basis. The probability that
a particular basis statex results is|cx|2, the modulus square
of the probability amplitude for the basis vectorx. For ex-
ample, when 1√

2
(|0〉+i|1〉) is measured, the outcome is|0〉

or |1〉with equal probability. Similarly, when the state|Ψ〉,
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Figure 1. Basic Quantum Gates and their matrix representations.

above, is measured, the result is either|00〉 or |11〉, with
equal probability; the outcomes|01〉 or |10〉 never occur.

Due to the probabilistic nature of measurement, design-
ers of quantum algorithms must be very clever about how to
get useful answers out of their computations. One method
is to iteratively skew probability amplitudes in a qubit vec-
tor until the desired value is near|1〉 and the other values
are close to|0〉. This technique is used in Grover’s algo-
rithm for searching an unordered list ofn elements [18].
The algorithm goes through

√
n iterations, at which point

a qubit vector representing the keys can be measured. The
desired element is found with high probability.

Another option in a quantum algorithm is to arrange the
computation such that it does not matter which of many
random results is measured from a qubit vector. This
method is used in Shor’s algorithm for factoring the prod-
uct of two large primes [40], which is built upon the quan-
tum Fourier transform, an exponentially fast version of the
classical discrete Fourier transform. Essentially, the factor-
ization is encoded within the period of a set of highly prob-
able values, from which the desired result can be obtained
no matter what value is measured. Since the tractability
of factoring the product of two large primes is the ba-
sis of nearly all public-key cryptographic security systems,
Shor’s algorithm has received much attention.

For the interested reader, quantum algorithms for a vari-
ety of problems other than search and factoring have been
developed: adiabatic solution of optimization problems
(the quantum analogue of simulated annealing) [11], pre-
cise clock synchronization (using EPR pairs to synchronize
GPS satellites) [21, 12], quantum key distribution (prov-
ably secure distribution of classical cryptographic keys)
[6], and very recently, Gauss sums [46], testing of matrix
multiplication (inO(n1.75) steps versus theO(n2) required
classically) [20], and Pell’s equation [19].

2.2 Quantum gates and circuits

Just as bits can be flipped using aNOT gate, and interact
with each other via multi-bit logic gates such as theXOR,
qubits can be operated on by gates such as those shown in
Figure 1. In the quantum realm, the role of the classical
truth table is played by a unitary operatorU . The output

|a

|c

H
source

target
|a

|b

ZX

EPR
Pair
(CAT)

CNOT

Figure 2. Quantum Teleportation of state |a〉 over dis-
tance. First, entangledqubits |b〉 and |c〉 are exchanged.
Then, |a〉 is combined with |b〉 after which measure-
ments produce two classicalbits of information (double
lines). After transport, these bits are used to manipu-
late |c〉 to regenerate state |a〉 at destination.

state vector is the operator applied to the input vector; that
is, |ψout〉 = U |ψin〉. TheX gate is analogous to the clas-
sical NOT gate: it flips|0〉 and |1〉. TheZ gate is some-
thing new to the quantum realm: it flips the phase of the
|1〉 state, thus exchanging1√

2
(|0〉+ |1〉) and 1√

2
(|0〉− |1〉).

The Hadamard gateH is another unusual single-qubit gate:
it turns |0〉 into 1√

2
(|0〉 + |1〉) and|1〉 into 1√

2
(|0〉 − |1〉);

it can be thought of as performing a radix-2 Fourier trans-
form. Another important single-qubit gate,T , leaves|0〉
unchanged but multiplies|1〉 by

√
i. And analogous to

the classicalXOR gate is the quantum controlled-NOT (or
CNOT) gate.

Together, these gates form auniversal set: just as any
Boolean circuit can be composed fromAND andNOT gates,
any polynomially describable multi-qubit quantum trans-
form U can be efficiently approximated by composing
these quantum gates into a circuit. In addition to these
universal gates, one more important operator is theSWAP

gate.SWAPcan be implemented as threeCNOTs. However,
SWAP is often available as a basic gate for a given tech-
nology, which is a valuable thing, given its importance to
quantum communication.

In quantum circuits, time goes from left to right, where
single lines represent qubits, and double lines represent
classical bits. A meter is used to represent measurement.
By convention, black dots represent control terminals for
quantum-controlled gates. The⊕ symbol is shorthand for
the target qubit of theCNOT gate (Figure 2).
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2.3 Quantum teleportation

Quantum teleportation is the re-creation of a quantum state
at a distance. Contrary to its science fiction counterpart,
quantum teleportation is not instantaneous transmission of
information. Rather, it uses an entangledEPR pair, |Ψ〉 =
1√
2
(|00〉+ |11〉) [4].
Figure 2 gives an overview of the teleportation process.

We start by generating an EPR pair. We separate the pair,
keeping one qubit,|b〉, at the source and transporting the
other, |c〉, to the destination. When we want to send a
qubit, |a〉, we first interact|a〉 with |b〉 using aCNOT gate.
We then measure|a〉 and |b〉 in the computational basis,
and send the two one-bit classical results to the destination,
and use those results to re-create the correct phase and am-
plitude in |c〉 such that it takes on the original state of|a〉.
The re-creation of phase and amplitude is done withX and
Z gates, whose application is contingent on the outcome of
the measurements of|a〉 and|b〉. Intuitively, since|c〉 has a
special relationship with|b〉, interacting|a〉 with |b〉 makes
|c〉 resemble|a〉, modulo a phase and/or amplitude error.
The two measurements allow us to correct these errors and
re-create|a〉 at the destination. Note that the original state
of |a〉 is destroyed when we take our two measurements.
This is consistent with the “no-cloning” theorem, which
states that a quantum state cannot be copied.

Why bother with teleportation when we end up trans-
porting |c〉 anyway? Why not just transport|a〉 directly?
First, we can pre-communicate EPR pairs with extensive
pipelining without stalling computations. Second, it is eas-
ier to transport EPR pairs than real data. Since|b〉 and|c〉
have known properties, we can employ a specialized pro-
cedure known aspurification to turn a collection of pairs
partially damaged from transport into a smaller collection
of asymptotically perfect pairs. Third, transmitting the two
classical bits resulting from the measurements is more re-
liable than transmitting quantum data.

3 Solid-State Technologies

With some basics of quantum operations in mind, we turn
our attention to the technologies available to implement
these operations. Experimentalists have examined several
technologies for quantum computation, including Joseph-
son junctions [30, 50], trapped ions [29], photons [45],
bulk spin NMR [48], and phosphorus impurities in sili-
con [22]. Of these proposals, only those building on a
solid-state platform are expected to provide the scalabil-
ity required to achieve a useful computational substrate.
The Kane [22, 42] schemes of phosphorus in silicon builds
upon modern semiconductor fabrication and transistor de-
sign, drawing upon understood physical properties. To fo-
cus the presentation in this paper we begin our calculations
with the Kane proposal, and then generalize to consider
limits imposed by any solid-state technology. This quan-
tum analysis proceeds in precisely the same manner that
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Figure 3. The basic quantum bit technology pro-
posed by Kane [42]. Qubits are embodied by the
nuclear spin of a phosphorus atom coupled with
an electron embedded in silicon under high mag-
netic field at low temperature.

it would in the classical domain—by characterizing device
technologies with a few underlying parameters.

Kane proposes that the nuclear spin of a phosphorus
atom coupled with an electron embedded in silicon under
a high magnetic field and low temperature can be used as a
quantum bit, much as nuclear spins in molecules have been
shown to be good quantum bits for quantum computation
with nuclear magnetic resonance [15]. This quantum bit
is classically controlled by a local electric field. The pro-
cess is illustrated in Figure 3. Shown are two phosphorus
atoms spaced 15-100 nm apart. This inter-qubit spacing is
currently a topic of debate within the physics community,
with conservative estimates of 15nm, and more aggressive
estimations of 100nm. What is being traded off is noise im-
munity versus difficulty of manufacturing. For our study,
we will use a figure (60nm) that lies between these two. We
parameterize our work, however, to generalize for changes
in the underlying technology.

Twenty nanometers above the phosphorus atoms lie
three classical wires that are spaced 20 nm apart. By ap-
plying precisely timed pulses to these electrodes Kane de-
scribes how arbitrary one- and two-qubit quantum gates
can be realized. Four different sets of pulse signals must
be routed to each electrode to implement a universal set of
quantum operations. The details of the pulses and quantum
mechanics of this technique are beyond the scope of this
paper and are described in [42].

The Kane proposal, like all quantum computing pro-
posals, uses classical signals to control the timing and se-
quence of operations. All known quantum algorithms, in-
cluding basic error correction for quantum data, require the
determinism and reliability of classical control. Without ef-
ficient classical control, fundamental results demonstrating
the feasibility of quantum computation do not apply (such
as the Threshold Theorem used in Section 4.2.3).

Quantum computing systems display a characteristic
tension between computation and communication. Funda-
mentally, technologies that transport data well do so be-
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Figure 4. Short wires are constructed from suc-
cessive qubits (phosphorus atoms). Information
in the quantum data path is swapped from atom to
atom by classical control. This localized control
produces swapping behavior through a repeated
series of three back-to-back CNOT operations.

Figure 5. Quantization of electron states overcome
by increasing the physical dimension of the con-
trol lines beyond 100 nm. The states propagate
quantum-mechanically downward through access
vias to control the magnetic field around the phos-
phorus atoms.

cause they are resistant to interaction with the environ-
ment or other quantum bits; on the other hand technologies
that compute well do so precisely because theydo inter-
act. Thus, computation and communication are somewhat
at odds.

In particular, atomic-based solid-state technologies are
good at providing scalable computation but complicate
communication, because their information carriers have
nonzero mass. The Kane proposal, for example, repre-
sents a quantum bit with the nuclear spin of a phosphorus
atom implanted in silicon. The phosphorus atom does not
move, thus transporting this state to another part of the chip
is laborious and requires carefully controlled swapping
of the states of neighboring atoms. In contrast, photon-
based proposals that use polarization to represent quantum
states can easily transport data over long distances through
fiber. It is very difficult, however, to get photons to in-
teract and achieve any useful computation. Further, trans-
ferring quantum states between atomic and photon-based
technologies is extremely difficult.

Optimizing these tensions, between communication and
computation, between classical control and quantum ef-
fects, imply a structure to quantum systems. Rather than
cover the gamut of quantum architecture we instead will fo-
cus on a very crucial architectural concept: a wire. Specif-
ically, we begin by examining a short wire.

4 Short Wires

We begin by examining a “short” quantum wire. Sec-
tion 4.2 shows that the basic short wire does not scale well,
hence a more scalable approach appears Section 5.

In solid-state technologies, a line of qubits is one plau-
sible approach to transporting quantum data. Figure 4 pro-

vides a schematic of aswapping channelin which informa-
tion is progressively swapped between pairs of qubits in the
quantum datapath—somewhat like a bubble sort2. Swap-
ping channels require active control from classical logic,
illustrated by theclassical controlplane of Figure 4.

4.1 Technical Challenges

As simple as it might appear, a quantum swapping channel
presents significant technical challenges. The first hurdle
is the placement of the phosphorus atoms themselves. The
leading work in this area has involved precise ion implan-
tation through masks, and manipulation of single atoms on
the surface of silicon [23]. For applications where substan-
tial monetary investment is not an issue, slowly placing a
few hundred thousand phosphorus atoms with a probe de-
vice [16] may be possible. For bulk manufacturing the ad-
vancement of DNA or other chemical self-assembly tech-
niques [1] may need to be developed. Note, while new
technologies may be developed to enable precise place-
ment, the key for our work is only the spacing (60 nm)
of the phosphorus atoms themselves, and the number of
control lines (3) per qubit. The relative scale of quantum
interaction and the classical control of these interactions is
what will lead our analysis to the fundamental constraints
on quantum computing architectures.

A second challenge is the scale of classical control.
Each control line into the quantum datapath is roughly 10
nm in width. While such wires are difficult to fabricate, we
expect that either electron beam lithography [3], or phase-
shifted masks [36] will make such scales possible.

2For technologies that do not have an intrinsic swap operation, one can
be implemented by three controlled-not gates performed in succession.
This is a widely known result in the quantum computing field and we
refer the interested reader to [31].
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Figure 6. A linear row of quantum bits: In this figure (not drawn to scale) we depict access control for a
line of quantum bits. On the left, we depict a “top down” view. On the right is a vertical cross-section
which more clearly depicts the narrow-tipped control lines that quickly expand to classical dimensions.

A remaining challenge is the temperature of the device.
In order for the quantum bits to remain stable for a reason-
able period of time the device must be cooled to less than
one degree Kelvin. The cooling itself is straightforward,
but the effect of the cooling on the classical logic is a prob-
lem. Two issues arise: first conventional transistors stop
working as the electrons become trapped near their dopant
atoms, which fail to ionize. Second, the 10 nm classical
control lines begin to exhibit quantum-mechanical behav-
ior such as conductance quantization and interference from
ballistic transport [14].

Fortunately, many researchers are already working on
low-temperature transistors. For instance, single-electron
transistors (SET’s) [27] are the focus of intense research
due to their high density and low power properties. SET’s,
however, have been problematic for conventional comput-
ing because they are sensitive to noise and operate best at
low temperatures. For quantum computing, this predilec-
tion for low temperatures is exactly what is needed! Tucker
and Shen describe this complementary relationship and
propose several fabrication methods in [44].

On the other hand, the quantum-mechanical behavior of
the control lines presents a subtle challenge that has been
mostly ignored to-date. At low temperatures, and in narrow
wires, the quantum nature of electrons begins to dominate
over normal classical behavior. For example, in 100 nm
wide polysilicon wires at 100 millikelvin, electrons propa-
gate ballistically like waves, through only one conductance
channel, which has an impedance given by the quantum of
resistance,h/e2 ≈ 25 kΩ. Impedance mismatches to these
and similar metallic wires make it impossible to properly
drive the AC current necessary to perform qubit operations.

Avoiding such limitations mandates a geometric design
constraint: narrow wires must be short and locally driven
by nearby wide wires. Using 100 nm as a rule of thumb3

for a minimum metallic wire width sufficient to avoid un-
desired quantum behavior at these low temperatures, we

3This value is based on typical electron mean free path distances, given
known scattering rates and the electron Fermiwavelength in metals.

Figure 7. Intersection of quantum bits. In this sim-
plified view, we depict a four-way intersection of
quantum bits. An diamond shaped junction is also
needed to densely pack junction cells.

obtain a control gate structure such as that depicted in Fig-
ure 5. Here, wide wires terminate in 10 nm vias that act as
local gates above individual phosphorus atoms.

Producing a line of quantum bits that overcomes all of
the above challenges is possible. We illustrate a design in
Figure 6. Note how access lines quickly taper into upper
layers of metal and into control areas of a classical scale.
These control areas can then be routed to access transistors
that can gate on and off the frequencies (in the 10’s to 100’s
of MHz) required to apply specific quantum gates.

Of course, any solution for data transport must also sup-
port routing. Routing is not possible without fanout pro-
vided by wire intersections. We can extend our linear row
of quantum bits to a four-way intersection capable of sup-
porting sparsely intersecting topologies of quantum bits.
We illustrate the quantum intersection in Figure 7. This
configuration is similar to Figure 6 except that the intersec-
tion creates a more challenging tapering.
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4.2 Analysis

We now analyze this short wire to derive two important
architectural constraints: the classical-quantum interface
boundary and the latency/bandwidth characteristics. We
strive to achieve a loose lower bound on these constraints
for a given quantum device technology. While future quan-
tum technologies may have different precise numbers, it
is almost certain they will continue to be classically con-
trolled, and thus also obey similar constraints based upon
this classical-quantum interface.

4.2.1 Pitch Matching

Our first constraint is derived from the need to have classi-
cal control of our quantum operations. As previously dis-
cussed, we need a minimum wire width to avoid quantum
effects in our classical control lines. Referring back to Fig-
ure 7, we can see that each quadrant of our four-way inter-
section will need to be some minimum size to accommo-
date access to our control signals.

Recall from Figure 3 that each qubit has three associated
control signals (one A and two S gates). Each of these con-
trol lines must expand from a thin 10 nm tip into a 100 nm
access point in an upper metal layer to avoid charge quan-
tization effects at low temperatures (Figure 5). Given this
structure, it is possible to analytically derive the minimum
width of a line qubits and its control lines, as well as the
size of a four-way intersection. For this minimum size cal-
culation, we assume all classical control lines are routed in
parallel, albeit spread across the various metal layers. This
parallel nature makes this calculation trivial under nor-
mal circumstances (sufficiently “large” lithographic feature
sizeλc), with the minimum line segment being equal in
length to twice the classical pitching,150nm in our case,
and the junction size equal to four times the classical pitch-
ing, 400nm, in size. However, we illustrate the detailed
computation to make the description of the generalization
clearer. We begin with a line of qubits.

LetN be the number of qubits along the line segment.
Since there are three gates (an A and two S lines) we need
to fit in 3N classical access points of 100 nm in dimension
each, in the line width. We accomplish this by offsetting
the access points in the x and y dimensions (Figure 6) by
20nm. The total size of these offsets will be100nm divided
by the qubit spacing60nm times the number of control
lines3 per qubit, times the offset distance of20nm. This
number100nm/60nm× 3 × 20nm = 100nm is divided
by 2 because the access lines lines are spread out on each
side of the wire. Hence, the minimum line segment will
be100 + 50nm. Shorter line segments within larger, more
specialized cells are possible.

Turning our attention to an intersection (Figure 7), let
N be the number of qubits along each “spoke” of the junc-
tion. We need to fit3N classical access points in a space
of (60 nm × N)2, where each access point is at least
100 nm on a side. As with the case of a linear row of

bits, a20 nm x and y shift in access point positioning be-
tween layers is used for via access. Starting with a sin-
gle access pad of100nm, we must fit100nm/60nm× 3
additional pads shifted in x and y within the single quad-
rant of our intersection. This leads to a quadrant size of
100 + 100nm/60nm× 3 × 20nm = 200nm. Therefore,
the minimum size four way intersection is 8 (rounding up)
qubits in each direction.

In this construction we have assumed a densely packed
edge to each spoke, however, this is easily “unpacked” with
a specialized line segment, or by joining to another junction
that is constructed inversely from that shown in Figure 7.
Obviously, the specific sizes will vary according to tech-
nological parameters and assumptions about control logic,
but this calculation illustrates the approximate effect of
what appears to be a fundamental tension between quantum
operations and the classical signals that control them. A
minimum intersection size implies minimum wire lengths,
which imply a minimum size for computation units.

4.2.2 Technology Independent Limits

Thus far we have focused our discussion on a particular
quantum device technology. This has been useful to make
the calculations concrete. Nevertheless, it is useful to gen-
eralize these calculations to future quantum device tech-
nologies. Therefore we parameterize our discussion based
on a few device characteristics:

Assuming two-dimensional devices (i.e. not a cube of
quantum bits), letpc be the classical pitching required, and
pq the quantum one. Furthermore, letR be the ratiop c/pq

of the classical to quantum distance for the device technol-
ogy,m be the number of classical control lines required per
quantum bit, and finallyλc be the feature size of the litho-
graphic technology. We use two separate variablespc and
λc to characterize the “classical” technology because they
arise from different physical constraints. The parameterλ c

comes from the lithographic feature size, whilepc (which is
a function ofλc) is related to the charge quantization effect
of electrons in gold. With the Kane technology we assume
a spacingpq of 60nm between qubits, three control lines
per bit of100nm (pc) each, and aλc of 5nm. We can use
these to generalize our pitch matching equations. Here we
find that the minimum line segment is simply equivalent to
R(1 + 2λcm/pq) qubits in length.

Examining our junction structure (Figure 7), we note
that it is simply four line segments, similar to those cal-
culated above, except that the control lines must be on
the same side. Therefore the minimum crossing size of
quantum bits in a two-dimensional device is of size≈
2R(1 + 4λcm/pq) on a side.

4.2.3 Latency and Bandwidth

Calculating the latency and bandwidth of quantum wires
is similar but slightly different than it is for classical sys-
tems. The primary difficulty is decoherence—i.e. quan-
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tum noise. Unlike classical systems, if you want to per-
form a quantum computation, you cannot simply re-send
quantum data when an error is detected. The “no-cloning”
theorem [31], according to which quantum states cannot
be perfectly copied, prohibits transmission by duplication,
thereby making it impossible to re-transmit quantum data
if it is corrupted. Once the data is destroyed by the noisy
channel, you have to start the entire computation over. To
avoid this loss, quantum data is encoded in a sufficiently
strong error-correcting code that, with high probability, the
data will remain coherent for the entire length of the quan-
tum algorithm. Unfortunately, quantum systems will be so
error-prone that they will execute right at the limits of their
error tolerance [33].

Our goal is to provide a quantum communication layer
which sits below higher level error correction schemes. We
will discuss our future work, which is the interaction of this
layer with quantum error correction and algorithms in Sec-
tion 6. Consequently, we start our calculation by assuming
a channel with no error correction. Then we factor in the
effects of decoherence and derive a maximum wire length
for our line of qubits.

Recall that data traverses the line of qubits with swap
gates, each of which takes approximately1 µs to execute
in the Kane technology. Thus, a single row of quantum bits
has latency:

latency = 1 µs× distance/60 nm (1)

This latency can be quite large. A short1 µm has a la-
tency of 0.000017 seconds! On the plus side, the wire
can be fully pipelined and has a sustained bandwidth of
1/1 µs = 1M qbps (quantum bits per second). This may
seem small compared to a classical wire, but keep in mind
that quantum bits hold an exponential amount of informa-
tion and can enable algorithms with exponential power.

The number of error-free qubits is actually lower than
this physical bandwidth. Noise, or decoherence, degrades
quantum state and makes the true bandwidth of our wire
less than the physical quantum bits per second. Bits deco-
here over time, so longer wires will have a lower bandwidth
than shorter ones.

The stability of a quantum bit over time decays (exactly
like an un-error corrected classical bit) as a functione−k×t.
Usually, a normalized form of this equation is used,e−λ×t,
wheret in this new equation is the number of operations
andλ is related to the time per operation and the original
k. As quantum bits traverse through our wire they arrive
with a fidelity proportional to the latency, namely:

fidelity = e−k×latency (2)

The true bandwidth is then proportional to the fidelity:

bandwidthtrue = bandwidthphysical × fidelity (3)

Choosing a reasonable4 value ofλ ≈ 10−6, we find the

4This value forλ is calculated from a decoherence rate of10−6 per

true bandwidth of a wire to be:

1/1 µs× e−10−6×distance/60 nm (4)

which for a1 µm wire is close to ideal (999,983 qbps).
This does not seem to be a major effect, until you con-

sider an entire quantum algorithm. Data may traverse back
and forth across a quantum wire millions of times. It is cur-
rently estimated [2] that a degradation of fidelity more than
10−4 makes arbitrarily long quantum computation theo-
retically unsustainable, with the practical limit being far
higher [33]. This limit is derived from the Threshold The-
orem, which relates the decoherence of a quantum bit to
the complexity of correcting this decoherence [26, 34, 2].5

Given our assumptions aboutλ, the maximum theoretical
wire distance is about6µm, and again the practical wire
distance is about two orders of magnitude less than this.

4.2.4 Technology Independent Metrics

Our latency and bandwidth calculations require slightly
more device parameters. LetT be the time per basic swap
operation. Some technologies will have an intrinsicSWAP,
and others will require synthesizing the swap from 3CNOT

operations. Letλ be the decoherence rate, which for small
λ andT is equivalent to the decoherence a quantum bit
undergoes in a unit of operation timeT . This makes the
latency of a swapping channel wire equal to:

latency = T ×D (5)

Where distanceD is expressed in the number of qubits.
The bandwidth is proportional to the fidelity or:

bandwidthtrue =
1
T
e−λD (6)

This bandwidth calculation is correct so long as the fidelity
remains above the critical thresholdC ≈ 10−4 required for
fault tolerant computation. Finally, the maximum distance
of this swapping channel is the distance when the fidelity
drops below the critical threshold:

distancemax = loge(1− C)/ − λ (7)

Realize that no amount of error correction will be ro-
bust enough to support a longer wire, while still supporting
arbitrarily long quantum computation. For this we need a
more advanced architecture. One obvious option is to break
the wire into segments and insert “repeaters” in the middle.
These quantum repeaters are effectively performing state
restoration (error correction). However, we can do better,
which is the subject of the next section.

operation, where each operation requires1 µs. It is aggressive, but not
too unreasonable for phosphorus atoms in silicon. We refer the interested
reader to [31].

5By “practical” we mean without an undue amount of error correc-
tion. The threshold theorem ensures that theoretically we can compute
arbitrarily long quantum computations, but the practical overhead of error
correction makes the real limit 2-3 orders of magnitude higher [33].
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5 Long Wires

In this section, we introduce an architecture for long quan-
tum wires, shown in Figure 8. These wires make use of the
quantum primitive of teleportation. Teleportation involves
pre-communication of EPR pairs, followed by a combina-
tion of quantum measurement and classical communication
to destroy a quantum state at one end of a wire and re-create
it on the other end. The key is that the pre-communication
can be pipelined. Furthermore, teleportation allows quan-
tum wires to convert quantum data between components
that use different error correction codes, a conversion that
is impractical without teleportation. In the next few sec-
tions, we provide a brief introduction to the core architec-
tural components of this wire.

5.1 Basic Building Blocks

Although teleportation and the mechanisms described in
this section are known in the literature, what has been miss-
ing is the identification and analysis of which mechanisms
form fundamental building blocks of a realistic system.
In this section, we highlight three important architectural
building blocks: theentropy exchange unit, theEPR gen-
erator, and thepurification unit. Note that the descrip-
tion of theses blocks is quasi-classical in that it involves
input and output ports. Keep in mind, however, that all
operations (except measurement) are inherently reversible,
and the specification of input and output ports merely pro-
vides a convention for understanding the forward direction
of computation.

5.1.1 Entropy exchange unit

The physics of quantum computation requires that opera-
tions be reversible and conserve energy. The initial state of
the system, however, must be created somehow. We need

to be able to create zero states, denoted as “|0〉”. Further-
more, errors cause qubits to become randomized; stated
equivalently, entropy enters the system through decoher-
ence caused by coupling with the external environment.

Where do these zero states come from? The process can
be viewed as one of thermodynamic cooling. Distributed
throughout a quantum processor are “cool” quantum bits in
a nearly zero state. These can be created by pulling spin-
polarized electrons (created, for example, using a standard
technique known as optical pumping [23] [49] or directly
using spintronics methods, with ferromagnetic materials
and spin filters [23]) over the phosphorus atoms.

To arbitrarily increase this probability (and make an ex-
tremely cold zero state) we can use a variant of the purifi-
cation technique described in Section 5.1.3. Specifically,
we employ an efficient algorithm for data compression [38]
[39] that gathers entropy across a number of qubits into a
small subset of highly random qubits. As a result, the re-
maining quantum bits are reinitialized to the desired pure
zero state|0〉.

5.1.2 EPR Generator

Constructing an EPR pair of quantum bits is straightfor-
ward. We start with two|0〉 state bits from our entropy
exchange unit. A Hadamard gate is applied to the first of
these quantum bits. We then take this transformed quantum
bit that is in a half-way superposition of a zero and a one
state and use it as the control bit for a controlled-NOT gate.
The target bit that is to be inverted is the other fresh|0〉
quantum bit from the entropy exchange unit. A controlled-
NOT gate is a bit like a classical inverter except the target
bit is inverted if the control bit is in the|1〉 state. Using a
control bit of(|0〉+ |1〉)/√2 and a target bit of|0〉 we end
up with a two bit entangled state of(|00〉+ |11〉)/√2. The
quantum bits in this state are called an EPR pair.

The overall process of EPR generation is depicted in
Figure 9. Schematically the EPR generator has a single
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Figure 10. Quantum purification unit: EPR States
are sufficiently regular that they can be purified at
the ends of a teleportation channel.

quantum input and two quantum outputs. The input is di-
rectly piped from the entropy exchange unit and the output
is the entangled EPR pair.

5.1.3 Purification unit

The final building block we require is the purification unit.
This unit takes as inputn EPR pairs which have been par-
tially corrupted by errors, and outputsnE asymptotically
perfect EPR pairs.E is the entropy of entanglement, a
measure of the number of quantum errors which the pairs
suffered. The details of this entanglement purification pro-
cedure are beyond the scope of this paper but the interested
reader can see [10, 5, 8].

Figure 10 depicts a purification block. The quantum in-
puts to this block are the input EPR states and a supply of
|0〉 bits. The outputs are pure EPR states. Note that the
block is carefully designed to correct only up to a certain
number of errors; if more errors than this threshold occur,
then the unit fails with increasing probability.

5.2 Analysis

Figure 8 illustrates how we use these basic building blocks
and protocols for constructing a long wire. The EPR gen-
erator is placed in the middle of the wire and “pumps” en-
tangled quantum bits to each end (via a pipelined swap-
ping channel). These bits are then purified such that only
the error-free qubits remain. Purification and teleportation
consume zero-state qubits that are supplied by the entropy
exchange unit. Finally, the coded-teleportation unit trans-
mits quantum data from one end of the wire to the other
using the protocol described in Section 2.3. Our goal now
is to analyze this architecture and derive its bandwidth and
latency characteristics.

The bandwidth is proportional to the speed with which
reliable EPR pairs are communicated. Since we are com-
municating unreliable pairs we must purify them, so the
efficiency of the purification process must be taken into ac-
count. Purification has an efficiency roughly proportional
to the fidelity of the incoming, unpurified qubits [38]:

purificationefficiency ≈ fidelity2 (8)

Entropy exchange is a sufficiently parallel process that we
assume enough zero qubits can always be supplied. There-
fore, the overall bandwidth of this long quantum wire is:

1/1 µs× e−2×10−6×distance/60 nm (9)

which for a 1 µm wire is 999,967 qbps. Note this re-
sult is less than for the simple wiring scheme, but the de-
coherence introduced on the logical quantum bits is only
O(e−λ×10). It is this latter number that does not change
with wire length which makes an important difference. In
the previous short-wire scheme we could not make a wire
longer than6µm. Here we can make a wire of nearly arbi-
trary length. For example a wire that is 10 mm long has a
bandwidth of 716,531 qbps, while a simple wire has an ef-
fective bandwidth of zero at this length (for computational
purposes).

The situation is even better when we consider latency.
Unlike the simple wire, the wire architecture we propose
allows for the pre-communication of EPR pairs at the sus-
tainable bandwidth of the wire. These pre-communicated
EPR pairs can then be used for transmission with a constant
latency. This latency is roughly the time it takes to per-
form teleportation, or about≈ 20 µs. Note this latency is
much improved compared to the distance-dependent sim-
ple wiring scheme.

5.2.1 Technology Independent Metrics

Using the same constants defined above for the swapping
channel, we can generalize our analysis of teleportation
channels. The latency is simply:

latency ≈ 10T (10)

The bandwidth is:

bandwidthtrue =
1
T
e−2λD (11)

Unlike the short wire, this bandwidth isnotconstrained
by a maximum distance related to the threshold theorem
since teleportation is unaffected by distance. The commu-
nication of EPR pairs before teleportation, however, can be
affected by distance, but at a very slow rate. While purifi-
cation must discard more corrupted EPR pairs as distance
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increases, this effect is orders-of-magnitude smaller than
direct data transmission over short wires and is not a fac-
tor in an practical silicon of up to 10’s of millimeters on a
side.

6 System Bandwidth

Our goal has been to design a reliable, scalable quantum
communication layer that will support higher-level quan-
tum error correction and algorithms functioning on top of
this layer. A full description of error correction and quan-
tum algorithms is beyond the scope of this paper. A key
issue for future evaluation, however, is that the lower la-
tency of our teleportation channel actually translates to
even higher bandwidth when the upper layers of a quantum
computation are considered. It is for this reason that long
wires should not be constructed from chained swapping-
channels and quantum “repeaters”.

The intuition behind this phenomenon is as follows.
Quantum computations are less reliable than any compu-
tation technology that we are accustomed to. In fact, quan-
tum error correction consumes an enormous amount of
overhead both in terms of redundant qubits and time spent
correcting errors. This overhead is so large that the relia-
bility of a computation must be tailored specifically to the
run length of an algorithm. The key is that, the longer a
computation runs, the stronger the error correction needed
to allow the data to survive to the end of the computation.
The stronger the error correction, the more bandwidth con-
sumed transporting redundant qubits. Thus, lower latency
on each quantum wire translates directly into greater effec-
tive bandwidth of logical quantum bits. For more informa-
tion on quantum error correction and algorithms, we refer
the reader to [31].

7 Conclusion

Our study has focused on a critical aspect of any quantum
computing architecture, quantum wires to transport quan-
tum data. Building upon key pieces of quantum technol-
ogy, we have provided an end-to-end look at a quantum
wire architecture. We have shown that our teleportation
channel scales with distance and that swapping channels
do not. We have also discovered fundamental architectural
pressures not previously considered. These pressures arise
from the need to co-locate physical phenomena at both the
quantum and classical scale. Our analysis indicates that
these pressures will force architectures to be sparsely con-
nected, resulting in coarser-grain computational compo-
nents than generally assumed by previous quantum com-
puting studies. We believe that further architectural studies
of this nature will be valuable in identifying the research
challenges facing quantum technologies of the future.

Acknowledgements

Thanks to Dean Copsey, John Owens and Matt Farrens for
their helpful comments on preliminary material for this pa-
per. This work is supported in part by the DARPA Quantum
Information Science and Technology Program, by NSF
CAREER grants to Fred Chong, Mark Oskin, and John Ku-
biatowicz, an NSF NER grant, and by a UC Davis Chan-
cellor’s Fellowship to Fred Chong.

References
[1] L. Adleman. Toward a mathematical theory of self-

assembly. USC Tech Report, 2000.
[2] D. Aharonov and M. Ben-Or. Fault tolerant computation

with constant error. InProceedings of the Twenty-Ninth An-
nual ACM Symposium on the Theory of Computing, pages
176–188, 1997.

[3] E. Anderson, V.Boegli, M. Schattenburg, D. Kern, and
H. Smith. Metrology of electron beam lithography systems
using holographically produced reference samples.J. Vac.
Sci. Technol., B-9, 1991.

[4] J. S. Bell. On the Einstein-Podolsy-Rosen paradox.Physics,
1:195–200, 1964. Reprinted in J. S. Bell,Speakable and
Unspeakable in Quantum Mechanics, Cambridge University
Press, Cambridge, 1987.

[5] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schu-
macher. Concentrating partial entanglement by local opera-
tions. Phys. Rev. A, 53(4):2046–2052, 1996. arXive e-print
quant-ph/9511030.

[6] C. H. Bennett and G. Brassard. Quantum cryptography:
Public key distribution and coin tossing. InProceedings of
the IEEE International Conference on Computers, Systems,
and Signal Processing, pages 175–179, 1984.

[7] C. H. Bennett, G. Brassard, C. Cr´epeau, R. Jozsa, A. Peres,
and W. Wootters. Teleporting an unknown quantum state via
dual classical and EPR channels.Phys. Rev. Lett., 70:1895–
1899, 1993.

[8] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.
Smolin, and W. K. Wootters. Purification of noisy entangle-
ment and faithful teleportation via noisy channels.Phys. Rev.
Lett., 76:722, 1996. arXive e-print quant-ph/9511027.

[9] C. H. Bennett and D. P. DiVincenzo. Quantum information
and computation.Nature, 404:247–55, 2000.

[10] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters. Mixed state entanglement and quantum error cor-
rection. Phys. Rev. A, 54:3824, 1996. arXive e-print quant-
ph/9604024.

[11] A. M. Childs, E. Farhi, and J. Preskill. Robustness of adia-
batic quantum computation.Phys. Rev. A, (65), 2002.

[12] I. L. Chuang. Quantum algorithm for clock synchronization.
Phys. Rev. Lett., 85:2006, Aug 2000.

[13] D. P. DiVincenzo. Quantum computation. Science,
270(5234):255, 1995. arXive e-print quant-ph/9503016.

[14] D. K. Ferry and S. M. Goodnick.Transport in Nanostruc-
tures. Cambridge Studies in Semiconductor Physics & Mi-
croelectronic Engineering, 6. Cambridge University Press,
Cambridge, 1997.

[15] N. Gershenfeld and I. Chuang. Quantum computing with
molecules.Scientific American, June 1998.

[16] A. Globus, D. Bailey, J. Han, R. Jaffe, C. Levit, R. Merkle,
and D. Srivastava. Nasa applications of molecular nanotech-
nology. Journal of the British Interplanetary Society, 51,
1998.

47



[17] J. M. Goodkind. Proposed fabrication of a quantum com-
puter using electrons on helium. InSecond Annual SQuInT
Workshop, 2000. Poster Abstract.

[18] L. Grover. InProc. 28th Annual ACM Symposium on the
Theory of Computation, pages 212–219, New York, 1996.
ACM Press.

[19] S. Hallgren. Quantum Information Processing ’02 Work-
shop, 2002.

[20] P. Hoyer.Banff workshop on quantum algorithms, 2002.
[21] R. Jozsa, D. Abrams, J. Dowling, and C. Williams. Quan-

tum atomic clock synchronization based on shared prior en-
tanglement. Phys. Rev. Lett., pages 2010–2013, August
2000.

[22] B. Kane. A silicon-based nuclear spin quantum computer.
Nature, 393:133–137, 1998.

[23] B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J.
Milburn, H. B. Sun, and H. Wiseman. Single spin measure-
ment using single electron transistors to probe two electron
systems.arXive e-print cond-mat/9903371, 1999. Submit-
ted to Phys. Rev. B.

[24] D. Kielpinsky, C. Monroe, and D. Wineland. Architec-
ture for a large-scale ion trap quantum computer.Nature,
417:709, 2002.

[25] E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng. A cat-
state benchmark on a seven bit quantum computer.arXive
e-print quant-ph/9908051, 1999.

[26] E. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum
computation. Science, 279(5349):342–345, 1998. arXive
e-print quant-ph/9702058.

[27] K. K. Likhareve. Single-eletron devices and their applica-
tions. Proceedings of the IEEE, 87, 1999.

[28] S. Lloyd. Quantum-mechanical computers.Scientific Amer-
ican, 273(4):44, Oct. 1995.

[29] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and
D. J. Wineland. Demonstration of a fundamental quantum
logic gate.Phys. Rev. Lett., 75:4714, 1995.

[30] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai. Coherent control
of macroscopic quantum states in a single-cooper-pair box.
Nature, 398:786–788, 1999.

[31] M. Nielsen and I. Chuang.Quantum computation and quan-
tum information. Cambridge University Press, Cambridge,
England, 2000.

[32] M. T. Niemier and P. M. Kogge. Exploring and exploiting
wire-level pipelining in emerging technologies. InInterna-
tional Symposium on Computer Architecture, 2001.

[33] M. Oskin, F. Chong, and I. Chuang. Overhead reduction
in a architecture for quantum computers.IEEE Computer,
35(1):79–87, 2002.

[34] J. Preskill. Fault-tolerant quantum computation. In H.-K.
Lo, T. Spiller, and S. Popescu, editors,Quantum information
and computation. World Scientific, Singapore, 1998.

[35] C. Sackett, D. Kielpinsky, B. King, C. Langer, V. Meyer,
C. Myatt, M. Rowe, Q. Turchette, W. Itano, D. Wineland,
and C. Monroe. Experimental entanglement of four parti-
cles.Nature, 404:256–258, 2000.

[36] M. Sanie, M. Cote, P. Hurat, and V. Malhotra. Practical
application of full-feature alternating phase-shifting technol-
ogy for a phase-aware standard-cell design flow. 2001.

[37] L. Schulman and U. Vazirani. Molecular scale heat engines
and scalable quantum computation. In31st STOC, 1999.

[38] L. J. Schulman and U. Vazirani. Scalable NMR quantum
computation.arXive e-print quant-ph/9804060, 1998.

[39] L. J. Schulman and U. Vazirani. Molecular scale heat en-
gines and scalable quantum computation.Proc. 31st Ann.
ACM Symp. on Theory of Computing (STOC ’99), pages
322–329, 1999.

[40] P. Shor. Algorithms for quantum computation: Discrete log-
arithms and factoring. InProc. 35th Annual Symposium on
Foundations of Computer Science, page 124, Los Alamitos,
CA, 1994. IEEE Press.

[41] P. W. Shor. Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer.SIAM
J. Comp., 26(5):1484–1509, 1997.

[42] A. Skinner et al. Hydrogenic spin quantum computing in
silicon: a digital approach.quant-ph/0206159, 2002.

[43] A. Steane. Error correcting codes in quantum theory.Phys.
Rev. Lett., 77, 1996.

[44] J. R. Tucker and T.-C. Shen. Can single-electron integrated
circuits and quantum computers be fabricated in silicon?
International Journal of Circuit Theory and Applications,
28:553–562, 2000.

[45] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and
H. J. Kimble. Measurement of conditional phase shifts for
quantum logic.Phys. Rev. Lett., 75:4710, 1995.

[46] W. van Dam and G. Seroussi. Efficient quantum algorithms
for estimating gauss sums.quant-ph, page 0207131, 2002.

[47] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
R. Cleve, and I. L. Chuang. Experimental realization of
order-finding with a quantum computer.Phys. Rev. Lett.,
December 15, 2000.

[48] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
R. Cleve, and I. L. Chuang. Experimental realization of
order-finding with a quantum computer.Phys. Rev. Lett.,
to appear, 2000.

[49] A. S. Verhulst, O. Liivak, M. H. Sherwood, Hans-Martin-
Vieth, and I. L. Chuang. Non-thermal nuclear magnetic reso-
nance quantum computing using hyperpolarized xenon.Ap-
plied Physics Letters, 79-15, 2001.

[50] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier,
C. Urbina, D. Esteve, and M. H. Devoret. Maniplating the
quantum state of an electrical circuit.Science, 296:886,
2002.

48



A.4 ISCA’05 Paper

49



An Evaluation Framework and Instruction Set Architecture for
Ion-Trap based Quantum Micro-architectures.

Steven Balensiefer, Lucas Kregor-Stickles, and Mark Oskin
Department of Computer Science and Engineering

University of Washington
{alaska, lucasks, oskin}@cs.washington.edu

Abstract:
The theoretical study of quantum computation has yielded

efficient algorithms for some traditionally hard problems.
Correspondingly, experimental work on the underlying phys-
ical implementation technology has progressed steadily.
However, almost no work has yet been done which explores
the architecture design space of large scale quantum com-
puting systems. In this paper, we present a set of tools that
enable the quantitative evaluation of architectures for quan-
tum computers.
The infrastructure we created comprises a complete com-

pilation and simulation system for computers containing
thousands of quantum bits. We begin by compiling complete
algorithms into a quantum instruction set. This ISA enables
the simple manipulation of quantum state. Another tool we
developed automatically transforms quantum software into
an equivalent, fault-tolerant version required to operate on
real quantum devices. Next, our infrastructure transforms
the ISA into a set of low-level micro architecture specific con-
trol operations. In the future, these operations can be used to
directly control a quantum computer. For now, our simula-
tion framework quickly uses them to determine the reliability
of the application for the target micro architecture.
Finally, we propose a simple, regular architecture for ion-

trap based quantum computers. Using our software infras-
tructure, we evaluate the design trade offs of this micro ar-
chitecture.

1 Introduction

Experimental research into quantum computing technologies
has been progressing at a steadily. Demonstrations of bulk-
spin NMR computers [1], ion-trap based designs [2, 3, 4],
and optical cavity wells [5, 6] for quantum computation have
been performed. The next step in this area is to scale up
from experimental quantum computers consisting of a hand-
ful of quantum bits to large scale quantum computing sys-
tems. Clearly many technological hurdles still exist, and one
of the most basic is the architectural design of these systems.

Why worry about the architecture of a quantum computer
now? The most promising technologies are at least five years
from demonstrations of a dozen qubits or more, and large
scale systems are not even seriously on the drawing board.

Architects, however, can make significant contributions by:
(1) identifying the serious practical difficulties that will arise
from the physical structure of these devices and (2) finding
solutions to these and other challenges with the technology.

Identifying the challenges these systems face allows de-
vice physicists and quantum theorists to start exploring po-
tential solutions. By understanding the challenges facing
the practical implementation of these technologies, archi-
tects can find solutions through the proper organization of
the structure of these devices. Collectively, what this means
is computer architects have the potential to hasten the devel-
opment of a large scale quantum computer sooner rather than
later by identifying and solving scalability problems early.

Where to begin with quantum architecture research? Sim-
ilar to classical architecture, one begins with the applica-
tions. Surprisingly, even though it will be some time before
a quantum computer is built the application that computer
will execute is already well known: error correction. Quan-
tum technologies will operate with error rates far higher than
classical machines. Experimental error rates of 1E−3 per bit
operation have been measured in NMR systems [1]. Techno-
logical advances are expected to lower these rates dramati-
cally, but reaching 1E−10 - 1E−12 is considered highly
aggressive. There is only one way to manage these errors in
a quantum computer: utilizing software error correction on
a well-designed quantum computer architecture.

Our research efforts have been devoted to developing
these architectures. To conduct this research in a quantitative
fashion, we developed an infrastructure consisting of compi-
lation and modeling tools. This paper will spend significant
time describing these software artifacts (Sections 3- 7) be-
cause the methodology for applying architectural principles
to quantum computers is one of the primary contributions
of this work. All existing work on quantum architectures
has produced either hand-designed circuits without consid-
erations for scalability [7] or analytical models for perfor-
mance and reliability that are unable to scale to systems large
enough to solve real-world problems [8].

We rely on appropriate technological abstractions and
careful design of the ISA, scheduler, and simulator to con-
struct an infrastructure that scales (linearly) to thousands of
qubits and billions of time steps. Briefly, our tool chain is
the following:
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• A compiler from an existing high-level language which
enables the manipulation of quantum bits to an instruc-
tion set architecture we developed for quantum comput-
ers.

• An error correction compiler that automatically trans-
forms a quantum ISA assembly text into equivalent
fault tolerant versions.

• A device scheduler that maps an assembly source into
a set of device specific primitive operations for control-
ling a quantum micro-architecture.

• A simulator that models the reliability of the quantum
bits in a quantum computer; performance and reliabil-
ity metrics for an application running on a targeted mi-
croarchitecture can be obtained by using this simulator.

Our tools enable researchers to explore architectural trade-
offs directly. Instead of using high-level models or mathe-
matical equations to calculate execution time and reliability
our infrastructure provides the proper compilation, schedul-
ing, and simulation tools to compute these results precisely.

Using these tools, in Section 8 we evaluate a few quantum
micro-architectures as they perform error correction steps.
We find that the realistic constraints exposed by execution
on a microarchitecture significantly decrease the acceptable
error rates. Idealized theoretical models set the critical
threshold – above which sustainable quantum computation
is not possible [9] – at approximately 1E−4, but a threshold
which accounts for the constraints of the proposed micro-
architecture is closer to 1E−9. Our results indicate that
more than 4/5 of this difference can be accounted for by re-
source contention and the impact of ion movement and turn-
ing in a real system. Since architects excel at the exploitation
of locality and the minimization of resource contention, this
suggests that through intelligent design, architects have the
potential to have a major impact on the accuracy of quantum
computation thus allowing us to achieve a scalable quantum
computer sooner rather than later.

The remainder of this paper is structured in a logical pro-
gression. In Section 2 we describe the abstractions we use to
make quantum architectures accessible. Section 3 presents
an overview of our software infrastructures. The ISA we
developed is described in Section 4. Sections 6, 5 and 7
elaborate on the design of our device scheduler, error cor-
rection compiler, and simulator. In Section 8 we present the
result from our exploration of a simple tile-based quantum
microarchitecture. In Section 9 we describe where to go next
with this work and in Section 10 conclude.

2 Technology abstraction

The science of architecture is the optimization of the hard-
ware / software interface. The nuts and bolts of it is exam-

ining applications, working with the realistic constraints of
the technology, and developing software infrastructures and
hardware designs. Research into architectures for quantum
computers is no different. To design architectures, a rea-
sonable abstraction for the underlying technology and un-
derstanding of the software applications is required. In this
section, we describe a basic set of abstractions for ion trap
based quantum computing technology. We will discuss the
application characteristics further in Section 4.

We focus our attention on ion trap based designs because
they appear to be the most promising in terms of a near term
ability to deliver a system with 10’s to 100’s of qubits. The
cost of these systems will not be insignificant with estimates
in the hundreds of millions of dollars to develop a single
prototype. Proper engineering of their architectural design
ahead of time will be required to maximize their scientific
and national infrastructure value.

For architectural design, we focus on three circuit compo-
nents: ions, traps and wires, as depicted in Figure 1. Ions
are the entities that realize qubits. The excitation state of the
outer electron on a 9BE+ ion is the actual quantum prop-
erty used to realize a qubit [3, 4]. A trap is a device that uses
classical support circuitry and lasers to perform quantum op-
erations on ions. This gives it a multi-purpose, ALU-like
functionality. Quantum operations can only be performed
on ions that are located in traps. Inside of the trap, any ar-
bitrary single qubit operation and a limited number of two
qubit operations including CNOT and controlled rotation can
be performed. For the two qubit operations, both ions must
be located in the same trap. Wires are just two sided struc-
tures within the design in which ions can move. Wires can
contain corners but care must be taken when moving ions
in anything other than a straight line. Ions must move adi-
abatically (read: slowly) around corners or an unrepairable
amount of noise will be introduced.

While the precise timing of all operations is obviously
not known yet – it is technology specific and will change
as the systems evolve, the relative timing between them, ob-
served from [3, 4], is roughly: moving 1 unit within a wire
is 1/10th a time step; performing a single qubit operation, 1
time step; performing a two qubit operation, 10 time steps;
turning a corner including getting into and out of a trap, 100
time steps. Architects should think of the single-qubit op-
erations as the “clock cycle” of the machine. The classical
analogy is that these operations are simple and fast, like an
addition. Measurement and two-qubit operations are slow,
just like complex classical functions such as divide. Later in
Section 5 we will present statistics for the relative instruction
mix between single/two qubit operations and measurement.

The basis unit for these time steps is ≈ 1us. For single-
and two-qubit operations, this will not change, as it is a fun-
damental property of the ions [3, 4] used to realize qubits.
For movement and turning, it is a function of the technol-
ogy, and as this develops, they may become faster. Moving,
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Operations are performed inside of traps.  For two qubit 
operations, the qubits must  be in the same trap.

Moving qubits around corners
is significantly slower (greater than
100x) than going in a straight line.

Once moving in a wire ions can
move relatively quickly compared
to turning corners or performing 
operations.

A qubit is 
physically 
realized by 
an ion.

Two basic circuit components
are available: traps and wires

Figure 1: Technological abstraction of ion trap based quantum computers.
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Figure 2: Basic design rules for ion trap systems.

and in particularly turning, induces noise (from heat) on the
qubit and must be performed slowly so that the state does
not decohere. Current experimental work aims for turning
to be 50-300 times slower than single-qubit operations [3].
Since controlling noise is so important for quantum archi-
tectures we do not use a highly aggressive turning time for
our simulations. We do, however, explore the impact of this
parameter on performance in Section 8.

Our review of current ion-trap based designs [3, 7] sug-
gests a few simple design rules that must be observed by ar-
chitects. These rules are the quantum analog of VLSI design
rules:

• Ion traps may only abut one or two wires

• Ion traps may not share any sides

• Ion traps may not abut the end of a wire

These rules are depicted in Figure 2. They serve as an

additional level of abstraction by removing the need to con-
sider the exact sizing and space tolerances for layouts. Later,
in Section 8, we will explore a simple regular architecture
that observes these design constraints.

3 Software overview

To evaluate complex conventional systems, architects utilize
a variety of software tools. Starting with a (hopefully) repre-
sentative set of applications, they compile and execute them
on sophisticated simulation infrastructures that model differ-
ent points in the design space. To properly study large scale,
quantum computers we created a corresponding infrastruc-
ture. This infrastructure is comprised of four major compo-
nents: a source compiler, an error correction compiler, a de-
vice scheduler, and a simulator. In this section, we describe
what these tools do and how they are used. In the next few
sections we elaborate more on how they work. Figure 3 con-
tains a pictorial overview of the flow of information through
the tools.

Source compiler: To describe quantum algorithms, we
utilize the existing QCL [10] work. The QCL toolkit pro-
vides an interpreter for a fairly straightforward imperative
programming language that includes data types and opera-
tion primitives for quantum operations. We did not extend
this work significantly except to make minor changes to per-
form loop unrolling and output instructions in the instruction
set described in Section 4.

To allow for aggressive code optimization we require the
input to applications at compile time. The resulting assem-
bly output from the compiler contains only the operations re-
quired to perform the algorithm on the provided input data.
This may seem limiting, but two related reasons motivate this
design choice. First, our expectation is that the time required
for a quantum computer to execute an algorithm will be sig-
nificantly longer than the time required to optimize resource
usage for a particular algorithm/input dataset combination.
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Figure 3: Quantum architecture research infrastructure. This set of tools enables architects to start with a high level language description of an algorithm
and a microarchitecture and compile, add fault tolerant steps, schedule for the architecture, and simulate the speed and reliability of the algorithm.

Stated another way, there will be sufficient gains in execu-
tion time to spend significant time “up front” optimizing re-
source usage. The second reason is that error correction in-
curs a high overhead, suggesting that it should be applied as
minimally as possible. More general representations require
more general computation and hence more error correction,
while an executable targeted to only a single input dataset
can be optimized aggressively for just that dataset. Similar
findings have been reported in classical computing, where
dynamic optimizers aggressively tailor executables, folding
in constants, etc [11, 12, 13].

Error correction compiler: The output of our source
compiler is an assembly text. This assembly assumes an ide-
alized machine – one with no errors. This is not true at all –
quantum computers will have error rates between 1E−6 and
1E−10 per operation. To counteract this, researchers dis-
covered and explored many different types of quantum error
correction [14, 15, 16, 17]. For our purpose, we selected the
7 qubit Steane code [14] and the recursive construction pro-
cess described in [9]. The error correction compiler inputs
the assembly text that assumed an ideal computer and an “er-
ror correction strength” level and outputs another assembly
text that is the same algorithm except with fault tolerant con-
structs included. This output text is considerably larger –
potentially by several orders of magnitude – but is required
to coax the right answer from an otherwise noisy quantum
device.

Scheduler: The next step in the tool chain is to schedule
the resources of the quantum computer. For classical com-
puting devices, the schedule is implicit in the executable –
the semantics of von Neumann machines are sequential. For
quantum computers, sequential semantics are maintained,
but the importance of exploiting parallelism increases dra-
matically. Ignoring parallelism in a von Neumann machine
results in a longer execution time, but the computed result
does not change. In a quantum computer, ignoring paral-
lelism could result in a wrong answer. Thus our scheduler

takes in an assembly text and a description of the microar-
chitecture of the quantum computer and creates a parallel
schedule of operations that should be performed on the ac-
tual microarchitecture.

Simulator: Once the application is scheduled onto the
physical resources of the machine, the next step in the tool
chain is to decide whether or not the application will actu-
ally work. Too little error correction or a poor schedule will
produce noise instead of the correct answer. The purpose
of this step is to determine how reliable the scheduled ap-
plication will be on the device. If the simulator determines
the schedule will be reliable then we are done. The end re-
sults are two facts: how fast the algorithm executed on the
microarchitecture and how reliable the result was. If the re-
sult is determined to be unreliable, the user has to back up
two steps and add more error correction or model a different
microarchitecture that might perform better.

A schedule that shows a high rate of reliability under sim-
ulation is detailed enough to control the physical computer
during the execution of the algorithm and dataset. This step
is beyond the scope of this work, but basically, it involves
translating the schedule using a fairly straightforward map-
ping between operation steps and the pulses that control the
actual quantum computer.

4 Instruction set architecture

The design of an instruction set architecture (ISA) encom-
passes many different pieces. The most fundamental is the
execution model, which describes how a machine will pro-
cess a group of instructions. Next are the resources available
in the machine, typically memories and their interface. Fi-
nally, there are the actual instructions themselves. Figure 4
describes the ISA we designed.

The ISA we describe here is a “high-level ISA” which is
not directly executable by any quantum computer. These
ISAs have also been referred to as “virtual ISAs” [18] and
linear intermediate representations. The purpose of this ISA
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is to provide a workable representation of an application. By
workable, we mean that it has relatively straightforward se-
mantics, tools can process it largely piecemeal operation-by-
operation, and it can be translated in a direct way to the ac-
tual control sequences a quantum computer requires.

Execution model: We base our ISA on the von Neumann
execution model. This means that conceptually, the quan-
tum computer can be thought to fetch, decode, and execute
the primitive operations one-by-one. This design choice is
motivated by an additional restriction we place on execu-
tion: Quantum programs may not contain branches. All
loops must be fully unrolled, and all conditionals must be
converted into predicates. (see Figure 5).

The reason we chose to restrict applications in this way
is that it enables our software infrastructure to provide de-
velopers with concrete reliability results. Since there are no
branches in the compiled binary, every instruction must be
scheduled onto a quantum micro-architecture. Once sched-
uled, our simulator can provide a very precise answer to the
question, “Will it work?”

If branches were part of the ISA, then answering that ques-
tion would no longer be possible. The schedule of low-level
operations could vary significantly from execution-run to
execution-run based upon branch outcomes, which in quan-
tum software, depends largely on random noise the system
experiences and corrects for. These variances make it far
more difficult to predict reliably whether or not the schedule
will actually compute correctly.

Resources: In our high-level ISA, we assume an infi-
nite number of quantum and classical memory locations are
available. Memory is split into two segments, a quantum
segment and a classical segment. Quantum bits (qubits) are
referred to as qName1, qName2, ..., while classical bits are
referred to as cName1, cName2, .... Since this is a high-
level ISA, there is no need to restrict the name of bits to sim-
ple numerical addresses as a simple compilation pass prior to
scheduling can assign device specific addresses and resolve
any false dependencies caused by name reuse. We do not use
a hierarchical memory (i.e. there is no distinction between
memory and registers).

Operations: The instruction set we have devised operates
on both classical and quantum data. The classical opera-
tions are fairly ordinary and encompass a straightforward set
of opcodes (logic, arithmetic, etc). For brevity, we do not
describe them in detail because they are your typical three
operand RISC-like ISA: cOutput = cInput1 op cInput2.

The quantum opcodes are summarized in Figure 4. These
operations provide a fairly basic, yet complete set of op-
erations for manipulating quantum state. There are many
things to note about this instruction set. First, all quan-
tum operations (except measurement) are, by definition, re-

[@cond] op operands

Instruction set format:

optionally perform operation only
if conditional is true

operation to perform

quantum or classical memory
locations to operate on

x

z

rot

s

toffoli
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v
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swap

.exchange

Quantum Operations:

Pseudo-operations:
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qN1,qN2

qN,qC1,qC2
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Basic quantum primitives such as 
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.free

qN | cN

qN | cN

Figure 4: The instruction set architecture for quantum computers

procedure Example() {
qureg q[3];

int m;

Not(q[1]);

for m=0 to #q-1 {
     H(q[m]);
}

CNot(q[1],q[0]);
measure q[0],m;

}

    .new       q0, q1, q2

    .new       c0

    X          q1

 H          q0
 H          q1
 H          q2

    CNot       q1, q0
    measure    c0, q0

    .free      q0

     .free      c0 

QCL code from Ömer Compiled assembly

if m==1  
  Not(q[1]); 
else 
  Not(q[2]); 

@c0  X          q1
@!c0 X          q2

predicate 
conversion

loop 
unrolling

predicate 
conversion

quantum state
destroyed by
measurement

Figure 5: The compiler, based on QCL [10], transforms QCL source text
into assembly.
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versible. This is a constraint imposed by the quantum com-
puting model itself. One implication of this is there is no
distinction between input and output operands. Instead, op-
erations transform all of their operands. Second, this ISA is
a balance between high-level primitives, such as multi-qubit
complex operations, and low-level device-specific controls.
Our guiding principle has been to design an ISA with primi-
tive enough operations that a clear 1 : N mapping exists be-
tween the operations and device specific control sequences,
but high-level enough that the tool infrastructure could ma-
nipulate a useful block of related work.

5 Error correction compiler

After compilation to an assembly text, the next step is to
transform the application into a fault-tolerant version. Fault
tolerant quantum computing is done in pretty much the same
way it has been done for decades in the classical domain
– through redundancy. Each quantum bit is encoded into a
logical qubit. Logical qubits utilize several physical qubits
to store a coded version of the quantum state. Each operation
on the original qubit is transformed into an equivalent set of
operations on the qubits that make up the logical qubit. The
major drawback in all of these schemes is the increase in the
number of qubits required.

In our system, we utilize the 7-qubit Steane code [14]
and employ the recursive error correction constructions de-
scribed in [9]. We do this with an assembly source to source
translator. This translator converts a compiled quantum ap-
plication into an equivalent assembly source file which con-
tains the embedded error correction operations.

The precise fault tolerant constructions are not a contribu-
tion of our work. We base them on prior work [14, 9, 19]
and refer the interested reader there. However, to the best
of our knowledge, our tool is the first to apply them auto-
matically to an application, accounting for all of the required
ancilla preparation work and at multiple strength levels (0,1,
and 2 levels of error correction). Because of this, we have
calculated some useful statistical properties about its output.

The results are shown in Figure 5. Architects should take
note of the overhead in both time and space introduced by
the error correction processes. The critical path for a single-
qubit operation with one layer of error correction (EC1) is
31 operations long. Only 1 of those is devoted to actually
performing the operation on the logical qubit. The rest are
devoted to the fault tolerant correction step. More realis-
tically, not all operations will be conducted in parallel, the
overhead will be substantially higher, and stronger levels of
error correction will be required. This sizable overhead is
one of the reasons we can design quantum computing archi-
tectures now – Amdahl’s Law [20] suggests quantum com-
puters are going to spend all of their time error correcting!

q0 q1 q2

q1

Applying op 2 to q1

q0

moving q0 near q1
for op 3 q2 

moving q2 near q1
for op 5

Xop 1

Current timeHop 2

CNotop 3

Zop 4

CNotop 5

Figure 6: The goal of scheduling is to transform a program source (left)
into a sequence of primitive operations that move and manipulate ions in a
quantum computer (right). A main requirement is that the scheduler oper-
ate in O(instructions) time because the number of instructions is in the
billions for a complete fault tolerant run of Shor’s algorithm.

6 Device scheduler

Once we have a source assembly file with the error correc-
tion compiled in, the next step is produce a schedule for those
operations on an ion trap computer micro-architecture. Fig-
ure 6 depicts the overall goal: given a source assembly text
(represented in graph form on the left), the scheduler pro-
duces the parallel sequence of low-level operations (right).
In this section, we describe the scheduling process.

6.1 Input

The scheduler takes three pieces inputs: the source assem-
bly text to be scheduled, a description of the architecture to
schedule the source on, and a description of the technology
parameters and constraints. The source text has been previ-
ously described (Section 4).

The architecture description is a low-level description of
the ion trap layout. As a classical analogy, this is at the
same level as a VLSI layout produced with tools such as
Magic [21]. The description includes the precise X/Y co-
ordinates of ion-traps, the operations each trap can perform,
and their interconnection wiring.

The technology parameters provided to the scheduler con-
tain timing information for all device-specific operations.
This includes the timing of all operations (X, H, CNOT,
etc) and the timing for moving ions around the computer.
Specific movement parameters are included for moving ions
through wires, into and out of wires, and for turning corners.

6.2 Scheduling algorithm

The ability to process billions of operations was paramount
in designing the scheduler. Therefore, we chose to trade-off
optimality for speed. One of the major costs in scheduling
is determining the route an ion should take to travel between
traps that do not abut the same wire. This problem has paral-
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% cnot % measurement min max min max
time time space space

no EC - - 1 1 1
EC 1 56.37% 10.31% 31 447 16 96
EC 2 56.74% 9.44% 211 217529 58 12456

Table 1: Properties of error correction: In this table, we present results from our error correction compiler and scheduler. The first two columns
indicate the percentage of two-qubit CNOT gates and measurement operations. The next two columns min/max time indicate the time (in ops) required
to perform the error correction process. Minimum time refers to doing things maximally parallel (no architectural constraints), while maximum refers
to doing all operations sequentially. Minimum/max space refers to number of physical qubits required to perform the operation. Minimum space comes
from doing all operations sequentially (scheduled perfectly), while maximum space comes from doing as many operations in parallel as possible, reducing
execution time but increasing resource requirements.

lels in the routing of signals between logic units within FP-
GAs, so we adapted the PathFinder algorithm [22] to create
a collection of efficient paths from source to destination in
the micro-architecture. The biggest change is that we com-
pute 5-10 paths on the first movement between a source-
destination pair. This computation only occurs once, and
subsequent movements simply pick the best path from those
stored.

The next step is to parse the source assembly and sched-
ule the operations. For this we employ a variant of list-
scheduling [23]. First, the source text is parsed to comple-
tion and a graph representation is produced. We process this
graph in reverse order, starting from the leaves, and proceed-
ing to the root(s). By applying an earliest-possible greedy
approach in reverse, we approximate latest-possible schedul-
ing if run forward in time. From the view of the simulator,
qubits allocated only when absolutely necessary, allowing
reuse of “scratch” bits and attempting to minimize the time
that qubits must stay coherent.

At any given time point, the scheduler maintains a list of
operations that can be scheduled and attempts to allocate the
physical resources of the machine for the required number
of time steps. In the case of operations, this means simply
holding onto the ion trap for that time. For movement, it
means referring to the pre-computed path data structure and
choosing the path that with no conflicts for the time required.
Operations that cannot be scheduled due to resource conflicts
are simply delayed and another scheduling attempt is made
at the next opportune time step.

7 Simulator

The scheduler produces an exact set of command sequences
for controlling a quantum computer. One can directly read
the tail end of this schedule to determine the running time of
the application. Of critical importance, however, is whether
or not the qubits will contain correct values. Noise (decoher-
ence) could have corrupted them so much that the schedule
will not produce any meaningful result from a quantum de-
vice.

In all other quantum research projects, a precise physical
level simulator of the device is used to determine the relia-
bility. In our study, however, we are interested in comput-
ers with hundreds to thousands of qubits. Since the running
time of precise simulation is exponential in the number of
entangled qubits, the number of qubits that can be simulated
in reasonable time with current technology (clusters of ma-
chines, days of time) is in the low 30’s [24]. Clearly, this
approach will not work for 100 - 100,000 qubits.

Instead, we make the observation that if you do not care
about simulating the precise state of a quantum computer,
Monte Carlo simulation can be used to produce an expected
reliability for the device. With Monte Carlo simulation, the
expected probability of a phenomenon is determined by per-
forming an action several times and calculating what per-
centage of the time the phenomenon in question occurs.

In our case, the phenomenon in question is the introduc-
tion of error into an ion’s quantum state. To perform our
simulation, we start with a base error rate for each step of
computation. This base error rate represents the probability
that an error occurs in an ion at each time-step. We intro-
duce an error in the ion when our pseudo-random number
generator [25] produces a result less than this base error.

Within the simulation, errors are propagated based on the
dependencies of the computation. Once an ion is in error,
it stays in error and introduces error on any other ions it in-
teracts with. The only exception to this rule is when error
correction is applied. Our simulation framework models the
effect of the error correction added prior to scheduling. Once
an error correction is completed, the simulator examines the
qubits of the logical code word. If only one qubit is in error,
then the simulator assumes the error correction process fixed
that single qubit error. If two or more qubits are in error,
it propagates the error and assumes all qubits of that code
word are now in error (the upper bound of the effect of error
correction on a terminally broken code word).

Naturally, the effectiveness of Monte Carlo simulation de-
pends on the randomness of the pseudo-random number gen-
erator used. For this purpose, we have selected a random
number generator based on bit-rotation and addition which
is considered particularly well suited to Monte Carlo simu-
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Figure 7: Basic tile structure (left) and substrate micro architecture
(right). The key parameters: ion trap cells, connectivity, and substrate size
are varied in this study.

lation [25].
The simulator can be used to quickly (O(n) in the number

of scheduled operations) determine whether or not a sched-
ule and micro-architecture will operate accurately. Since the
problems targeted by quantum computers are in the com-
plexity class NP (a super-set of NP-complete), despite the
fact that solutions to these problems are hard to generate,
verification in possible in polynomial time. This means that
accuracy need only be around 90% (since incorrect answers
can be quickly detected and the process re-run if necessary).
The implication is that the reliability of the system can be
determined with a mere 100 trials on our simulator.

In addition to a quick test of the reliability of a quan-
tum program and micro-architecture pair, the simulator can
also execute an arbitrary number of trials to achieve a fine-
grained understanding of the rate of error. In the next section
of this paper, we use this technique to explore variations on
a canonical quantum micro-architecture and measure their
runtime performance and critical thresholds [9].

8 Micro-architecture exploration

In this section, we use our infrastructure to explore basic
micro-architectural trade-offs. We begin by first validat-
ing the simulation model. Next, we use the tools to ex-
plore trap width versus wiring density in a simple quantum
micro-architecture. Finally, we conclude by exploring the
differences between quantum computing theory and prac-
tice, which highlights both the challenges for future tech-
nology development, and the importance of architecture to
this discipline.

8.1 Validation

Since these tools are the first of their kind and our simu-
lation methodology is a novel approach to modeling relia-
bility in quantum systems, some form of validation is de-
sired. To do this, we produced a single fault-tolerant error
correction sequence. This was scheduled onto an architec-
ture and processed by our simulator. The parameters the
simulator used to model error were changed such that mov-
ing ions around the micro-architecture occurred in zero time,
ions that were not being operated on had zero chance of de-
cohering, and CNOT instructions required the same amount
of time as single-qubit gates. These parameters match the
theoretical model of quantum computing that is used in the
literature. Doing this, we found the critical threshold – the
maximum error per operation for sustainable fault tolerant
computation, to be 4E − 4. This is exactly in line with what
one would expect from the theoretical estimate previously
calculated [9, 19].

8.2 Exploration

A basic design of a quantum micro-architecture is depicted
in Figure 7. The concept is to use a substrate of identical
tiles. This design has two basic micro-architectural knobs
to vary: the number of ion traps in a tile and the amount of
wiring between tiles.

To explore the effects of these two parameters on execu-
tion time, we mapped the error-correction (level 1) process
onto varying substrates using our scheduler. We chose lay-
outs that provided 150 traps total and organized the tiles to
be as square as possible.

The scheduler is non-deterministic (being based on a syn-
thesis of PathFinder and list scheduler), so results vary
slightly between runs. Therefore we execute each test 8
times and average the results. The overall results are shown
in Figure 8.

The results show three interesting trends. First, except for
the smallest design, small numbers of traps per tile are fa-
vored. Too few traps and scheduling becomes more difficult.
Ions must move into and out of regions too often, increas-
ing execution time. With too many traps, the conflicts over
the single wire into the tile begins to counter the increased
potential for intra-tile movement. With larger trap numbers,
the ions must also move further, leading to longer execution
times.

Second, beyond 2 traps / tile, a single surrounding wire
(which is 2 wires between ion trap complexes; Figure 7)
is less efficient than having more interconnect. However,
moving from 2-3 surrounding wires provides no real sav-
ings. Looking carefully at each trap complex configuration,
there is a corresponding ideal interconnect width: 2 traps
/ 1 wire, 3 traps / 2 wires, 5 traps / 3 wires. This pairing
arises from the schedulers ability to exploit trap resources
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Figure 8: Performance of error-correction on various trap configurations,
from designs built from tiles that are 1 trap high and 1 wire in between, to 9
traps and 3 wires.

and wire-resources, and it makes intuitive sense that the or-
der of these (more traps - more wires) is aligned up until 5
traps. Beyond 5, the resources are not exploited well by the
scheduler and simply increase delay.

The final observation is that 2 traps / tile and a surrounding
wire per tile performs best on average for this single appli-
cation. For our scheduler algorithm and the error correction
process, this design point minimizes overall length of travel
for ions and balances trap complex size against interconnect
size.

8.3 Dealing with architectural reality in quan-
tum computers

We conclude our study by examining the critical threshold
– the error rate above which error correction processes will
not work. In the past [9], theorists have estimated this thresh-
old using an overly idealized model of computation that did
not account for the actual microarchitecture of the machine.
Using our tools, we can account for this.

Figure 9 plots the reliability of fault-tolerant operations
as various technology and architectural features are progres-
sively accounted for. The x-axis of this graph is the rate of
error for a single-qubit gate. The y-axis of this graph depicts
the rate of error for the qubit measured by our simulator.
The straight-line depicts the rate of error for a non-encoded
non-fault tolerant single qubit operation. The x-axis points
at which the other curves cross this line are their critical-
thresholds.

The first line (farthest to the right) is the theoretical quan-
tum computing model. In this model, there is no accounting
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Figure 9: Observed error rates for different technology and architectural
assumptions.

for architecture or technology implications – such as move-
ment, turns, the difference between single- and two- qubit
gates, and the reality that a quantum state naturally deco-
heres with time, even if no operation is performed on it.
This line crosses the non-fault tolerant line where prior liter-
ature [9, 19] estimates it should.

The next line over, architecture only alters the model to
begin to consider the implications of having to perform error
correction in a real micro-architecture. For this calculation,
the impact of decoherence from having to wait for resources
to become available is introduced.

Next comes the architecture and cnot line. This line de-
picts the effects of the micro-architecture and accounts for
the fact that CNOT gates require an order of magnitude more
time to operate than single qubit gates.

The final result, everything accounted for, is one of the
main results of our work. In this trial, we introduce the full
impact of movement and turns. We found that when operat-
ing on an actual micro-architecture and accounting for all of
the implications of scheduling, resource conflicts, the cost of
moves and turns and single versus two-qubit gates, the true
threshold lies at ≈ 1E− 9. This is lower than the theoretical
calculation by 5 orders of magnitude.

An important observation from this data is that of these
5 orders of magnitude in difference between the theoretical
model and the actual implementation, 3 of these are the re-
sult of movement and turning, ≈ 1.5 are the result of basic
resource contention and only ≈ 1/2 is the result of the in-
creased cost of binary operations such as CNOT.

The implication of this is that improving the accuracy of
individual quantum operations will only have a minimal im-
pact on the overall accuracy of quantum computation. In-
stead, our work indicates that physicists should focus on re-
ducing the error rate and improving the execution time for
turns, while architects can make a major contribution by de-
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signing micro-architectures and schedulers that capitalize on
locality to decrease the need for movement and allow for the
efficient utilization and placement of resources to decrease
contention. In this way, architects can raise the practical
threshold. Otherwise, it really will be later rather than sooner
before quantum computing is a reality.

9 Future work

There is much work left to do on quantum architectures.
Right now, and for the foreseeable future, the goal of this
work should be to reduce the critical threshold. What we
have presented in this paper is a set of tools and architec-
tural analyses that show the real threshold is ≈ 1E − 9. At
least two and perhaps as much as three orders of magnitude
of this threshold, however, are due to the micro-architecture
and tool chain infrastructure. We will elaborate below on
ways to reduce this threshold:

Better error correction processes: Our current infras-
tructure utilizes the error correction steps described in [19].
More complex, but parallel steps are known [26]. Chang-
ing the front end of the tool chain to utilize these alternative
constructions could reduce by about 1/3 the minimum-time
component in Table 5. This is at the expense of more com-
plex ancilla.

Dynamically adding teleportation-channels: In [27] the
authors describe an alternative way to move quantum state
around a large micro-architecture. Exploiting these telepor-
tation channels instead of direct movement where appropri-
ate could further parallelize the operations involved in mov-
ing quantum state about.

Better micro-architectures: For this paper we did not ex-
tensively study micro-architecture designs. Our goal was
more on the front end in creating all of the tools required
to really study micro-architectures. Thus, the very next step
seems to be to design architectures that are better able to ex-
ploit parallelism within the error correction processes.

Smarter scheduling: Our current scheduler is essentially
a greedy algorithm with a bounded window. Perfect schedul-
ing is NP-hard. There is a middle ground. Right now the
scheduler is micro-architecture agnostic. It can schedule
any set of quantum algorithms onto any micro-architecture.
Making the scheduler more micro-architecture and error-
code aware seems a rich area for performance gains. For
example, qubits are often operated on in repetitive ways.
Having efficient (perhaps hand-done) schedules for these
common-case operations that the scheduler could draw upon
to create a larger application schedule seems a viable ap-
proach.

Hierarchical simulation: Currently, our simulator is pes-
simistic. It is akin to an automated “counting” simulator
(used to count point of failure). If the actual device had the
technology characteristics specified it would be more reli-
able when executing the application. How much more re-
liable is not yet known, but it is speculated that it is per-
haps as much as an order of magnitude. The simulator can
be made more precise by integrating a precise device-level
physics simulator and grouping operations into large units.
These units can be modeled precisely using the device sim-
ulator and then their reliability parameters integrated using
the counting approach of our existing framework.

10 Conclusion

In this paper, we described our work in designing an instruc-
tion set architecture, compiler, device scheduler and simu-
lator for ion trap based quantum computers. Many design
choices in each of these components were made to make
them scale to real application sizes. Among them: the tools
compile-in the input dataset and fully unroll all loops so that
the scheduler and simulator can provide concrete results; the
error correction compiler automatically transforms arbitrary
input programs into fault tolerant versions; the scheduler
combines techniques from FPGA/CAD synthesis and tradi-
tional processor compilers; finally, the simulator efficiently
models errors instead of quantum state in order to quickly
provide reliability information.

Using these tools, architects can design and quantitatively
evaluate large scale architectures. In the past, quantum re-
searchers have had to make careful analytical models for
system reliability and performance. Now, they can evaluate
these systems directly by compiling applications for them,
scheduling them for performance, and simulating them for
reliability. We did this for a few tile based designs and found
that a balanced design of 2 traps to 1 interconnect wire laid
out in a substrate performed best. We also found that the crit-
ical threshold is in fact five orders of magnitude lower than
previously found by theoretical models alone. In addition,
we determined that much of the difference between the theo-
retical, and practical breaking point can be attributed to prob-
lems that computer architects are particularly well suited to
solve.
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Abstract

The assumption of maximum parallelism support for the
successful realization of scalable quantum computers has
led to homogeneous, “sea-of-qubits” architectures. The re-
sulting architectures overcome the primary challenges of re-
liability and scalability at the cost of physically unaccept-
able system area. We find that by exploiting the natural se-
rialization at both the application and the physical microar-
chitecture level of a quantum computer, we can reduce the
area requirement while improving performance. In particu-
lar we present a scalable quantum architecture design that
employs specialization of the system into memory and com-
putational regions, each individually optimized to match
hardware support to the available parallelism. Through
careful application and system analysis, we find that our
new architecture can yield up to a factor of thirteen savings
in area due to specialization. In addition, by providing a
memory hierarchy design for quantum computers, we can
increase time performance by a factor of eight. This result
brings us closer to the realization of a quantum processor
that can solve meaningful problems.

1 Introduction
Conventional architectural design adheres to the concept

of balance. For example, the register file depth is matched
to the number of functional units, the memory bandwidth to
the cache miss rate, or the interconnect bandwidth matched
to the compute power of each element of a multiprocessor.
We apply this concept to the design of a quantum com-
puter and introduce the Compressed Quantum Logic Array
(CQLA), an architecture that balances components and re-
sources in terms of exploitable parallelism. The primary
goal of our design is to address the problem of large area,
approximately 1 m2 on a side, of our previous design [1].

Specifically, we discover that the prevailing approach to
designing a quantum computer, that of supporting maxi-
mal parallelism, is area inefficient. We also find that ex-
ploitable parallelism is inherently limited by both resource
constraints and application structure. This lack of paral-
lelism gives us the freedom to increase density by special-
izing components as blocks of memory and blocks of com-
putation.

We introduce the idea of periodically reducing our in-
vestment in reliability and thereby increasing speed. By
encoding the compute regions differently than memory we
provide very fast compute regions, while allowing the mem-
ory to be slower and more reliable. To ensure that the faster
compute region does not suffer from too many stalls, we
employ a quantum memory hierarchy wherein the cache uti-
lizes the same encoding mechanism as the compute region.
When making this effort to improve speed, it is critical that
overall system fidelity is maintained. We show how this can
be accomplished.

Due to the quantum no-cloning theorem [2], it is neces-
sary for all quantum data to physically move from source to
destination. We cannot create a copy of the data and send
the copy. Our architecture focuses on implementation with
an array of trapped atomic ions, one of the most mature and
scalable technologies that provides a wealth of experimen-
tal data. In ion-traps, the physical representation of data are
ions that are in constant motion, on a two dimensional grid,
throughout the computation. Since this physical movement
is slow, yet unavoidable, it limits available parallelism at the
microarchitecture level.

At the application level, we find that only a limited
amount of parallelism can be extracted from key quantum
algorithms. This means that we may only need a few com-
pute blocks for all the qubits in memory. This is in contrast
to the popular “sea of qubits” model which allows compu-
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tation at every qubit. Our results show up to a 13X increase
in density, particulary important in addressing our primary
goal, and a speedup of about 8. The large area improvement
brings the engineering of a quantum architecture closer to
the capabilities of current implementation technologies.

The choice of quantum error correction codes (ECC) in-
fluences our results and the architecture. In our special-
ized architecture analysis, we use the previously consid-
ered Steane [[7,1,3]] code [3] and utilize a newly optimized
Bacon-Shor [[9,1,3]] code [4, 5]. The [[9,1,3]] code, though
larger than the [[7,1,3]] code since it uses more physical
qubits to encode a single logical qubit, requires far fewer
resources for error-correction [6], thus reducing the overall
area and increasing the speed.

Furthermore, we find that communication is generally
dominated by computation for error correction. This com-
putation allows us to absorb the cost of moving data be-
tween different regions of the architecture. Error correction
is so substantial, in fact, that quantum computers do not suf-
fer from the memory wall faced by conventional computers.
Thus our dense structure with a communication infrastruc-
ture based on our prior work [1] can accommodate applica-
tions with highly-demanding communication patterns.

In summary, the contributions of this work are: 1) Our
specialized architecture, the CQLA, successfully tackles the
issue of size, which has been the biggest drawback facing
large-scale realizable quantum computers. 2) We show that
current parallelism in quantum algorithms is inherently lim-
ited and consideration of physical resources and data move-
ment restrict it even further. 3) We present and analyze the
abstractions of memory, cache and computation units for a
quantum computer; based on the insight that we can reduce
reliability for the compute units and cache without sacri-
ficing overall computation fidelity. This approach helps us
significantly increase the performance of the system.

The paper is organized as follows. Section 2 provides
a background of the homogeneous QLA architecture and
the low-level microarchitecture assumptions of our system.
Section 3 motivates the specialized CQLA architecture and
introduces the architectural abstractions. Thereafter we dis-
cuss how the Steane and Bacon-Shor error correction codes
affect the design of the CQLA. Results and analysis of our
abstractions are the focus of section 5 following which we
provide details of computation versus communication re-
quirements of the most widely accepted quantum applica-
tions. We end with future directions in Section 7 and our
conclusions in Section 8.

2 Background
Our architectural model is built upon our previous work

on the Quantum Logic Array (QLA) architecture [1]. The

QLA architecture is a hierarchical array-based design that
overcomes the primary challenges of scalability for large-
scale quantum architectures. It is a homogeneous, tiled ar-
chitecture with three main components: logical qubits im-
plemented as self-contained computational tiles structured
for quantum error error correction; trapped atomic ions
as the underlying technology; finally, teleportation-based
communication channels utilizing the concept of quantum
repeaters to overcome the long-distance communication
constraints.

2.1 The Logical Qubit
The basic structure of the QLA, our prior work, imple-

ments a fault-tolerant quantum bit, or a logical qubit as
a self-contained tile whose underlying construction is in-
tended for quantum error correction, by far the most domi-
nant and basic operation in a quantum machine [7]. Quan-
tum error correction is expensive because arbitrary relia-
bility is achieved by recursively encoding physical qubits
at cost of exponential overhead. Recursive error correc-
tion works by encoding N physical ion-qubits into a known
highly-correlated state that can be used to represent a single
logical data qubit. This data qubit is now at level 1 recur-
sion and may have the property of being in a superposition
of “0” and “1” much like a single physical qubit. Encoding
once more we can create a logical qubit at level 2 recursion
with N2 physical ion-qubits. With each level, L, of encoding
the probability of failure of the system scales as p2L

0 , where
p0 is the failure rate of the individual physical components
given a fault-tolerant arrangement and sequence of opera-
tions for the lower level components. The ability to apply
logical operations on a logical qubit without the need to de-
code and subsequently re-encode the data is key to the ex-
istence of fault-tolerant quantum microarchitecture design,
where arbitrary reliability can be efficiently reached through
recursive encoding.

The logical qubits in the QLA are arranged in a regular
array fashion, connected with a tightly integrated repeater-
based [8] interconnect. This makes the high-level design of
the QLA very similar to classical tile based architectures.
The key difference is that the communication paths must
account for data errors in addition to latency. Integrated re-
peaters known as teleportation islands redirect qubit traffic
in the 4 cardinal directions by teleporting data from one is-
land to the next. This interconnect design is one of the key
innovative features of QLA architecture, as it allows us to
completely overlap communication and computation, thus
eliminating communication latency at the application level
of the program.

Anticipating technology improvements in the near future
we found that for performing large, relevant instances of
Shor’s factoring algorithm, sufficient reliability is achieved
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(a) (b)

Figure 1. (a) A simple schematic of the basic elements of a planar ion-trap for quantum computing. Ions are trapped
in any of the trapping regions shown and ballistically shuttled from one trapping region to another. When two ions are
together a two-qubit gate can be performed. (b) Our abstraction of the ion-trap layout. Each trapping region can hold up
to two ions for two-qubit gates. The trapping regions are interconnected with the crossing junctions which are treated as
a shared resource.

at level 2 encoding per logical qubit using the Steane
[[7,1,3]] error correction code [9]. In the QLA, computa-
tion could occur at any logical qubit and each logical gate is
followed by an error correction procedure. To preserve ho-
mogeneity and maximum flexibility for large-scale applica-
tions each logical qubit was accompanied by all necessary
error correction auxiliary qubit resources such that compu-
tational speed was maximized. This amounted to a (1 : 2)
ratio between logical data qubits and ancillary qubits.

2.2 Low-Level Physical Architecture
Model

At the lowest level our architecture design is based on the
ion-trap technology for quantum computation. Initially pro-
posed by Cirac and Zoller in 1995 [10], the technology uses
a number of atomic ions that interact with lasers to quantum
compute. Quantum data is stored in the internal electronic
and nuclear states of the ions, while the traps themselves
are segmented metal traps (or electrodes) that allow indi-
vidual ion addressing. Two ions in neighboring traps can
couple to each other forming a linear chain of ions whose
vibrational modes provide qubit-qubit interaction used for
multi-qubit quantum gates [11, 12]. Together with single bit
rotations this yields a universal set of quantum logic gates.
All quantum logic is implemented by applying lasers on
the target ions, including measurement of the quantum state
[13, 14, 15, 16]. Sympathetic cooling ions absorb vibrations
from data ions, which are then dampened through laser ma-
nipulation [17, 18]. Recent experiments [19, 20, 21] have
demonstrated all the necessary components needed to build
a large-scale ion-trap quantum information processor. Fi-
nally, multiple ions in different traps can be controlled by
focusing lasers through MEMS mirror arrays [22].

Figure 1 shows a schematic of the physical structure of
an ion trap computer element. In Figure 1(a) we see a single

Operation Time µs now(future) Failure Rate now(future)

Single Gate 1 (1) 10−4 (10−8)
Double Gate 10 (10) 0.03 (10−7)
Measure 200 (10) 0.01 (10−8)
Movement 20 (10) 0.005 (5×10−8)/µm
Split 200 (0.1)
Cooling 200 (0.1)
Memory time 10 to 100 sec
Trap Size ∼ 200 (1−5) µm

Table 1. Column 1 gives estimates for execution
times for basic physical operations used in the QLA
model. Currently achieved component failure rates
are based on experimental measurements at NIST
with 9Be+ ions, and using 24Mg+ ions for sympathetic
cooling [14, 12]. All parameters are followed by their
projected parameters in parenthesis, extrapolated fol-
lowing recent literature [23, 24, 25], and discussions
with the NIST researchers; these estimates are used
in modeling the performance of our architecture.

ion trapped in the middle trapping region. Trapping regions
are the locations where ions can be prepared for the execu-
tion of a logical gate, which is implemented by an external
laser source pulsed on the ions in the trap. In the figure we
see an ion moving from the far right trapping region to the
top-right for the execution of a two-bit logical operation.

Figure 1(b) demonstrates our abstraction of the physical
ion-trap layout. The layout can be represented as a collec-
tion of trapping regions connected together through shared
junctions. A fundamental time-step, or a clock cycle, in
an ion-trap computer will be defined as any physical, un-
encoded logic operation (one-bit or two-bit), a basic move
operation from one trapping region to another, and measure-
ment. Table 1 summarizes current experimental parame-
ters and corresponding optimistic parameters for ion-traps.
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Figure 2. For a 64-qubit adder, the amount of paral-
lelism that can be extracted when resources are un-
limited, and when the number of gates per cycle are
limited. This figure shows that if 15 gates, or an un-
limited number of gates could be performed in each
cycle, the total runtime would remain the same. com-
pute blocks increases.

In our subsequent analysis we will assume that each clock
cycle for a fundamental time-step has a duration of 10 µs,
failure rates are 10−8 for single-qubit operations and mea-
surement, 10−7 for CNOT gates [25], and order of 10−6 per
fundamental move operation. The movement failure rate
is expected to improve from what it is now as trap sizes
shrink and electrode surface integrity continues to improve.
We will assume trap sizes of 5µm each [26], and on the or-
der of 10 electrodes per trapping region [27], which gives
us a trapping region dimension (including the junction) of
50µm. The parameters chosen for our study are optimistic
compared to [28] and [29]. Both of those papers, assume
more pessimistic near term parameters which are useful for
building a 100 bit prototype, but probably not a scalable
quantum computer that can factor 1024-bit numbers using
Shor’s algorithm. Based on the quantum computing ARDA
roadmap [23], we feel justified in using aggressive parame-
ters when looking 10-15 years into the future.

3 Architectural Abstractions
This section motivates the need for a compact architec-

ture for quantum processors and describes our design the
CQLA (Compressed Quantum Logic Array). We discuss
how separation into memory and compute regions benefits
the CQLA and then present our quantum memory hierarchy.

3.1 Motivation
Conventional quantum processor designs are based on

the sea-of-qubits design and allow computation to take

place anywhere in the processor. This design philosophy
follows the idea of maximum parallelism and is employed
in our previous work [1]. The area consumption of such a
design however, is untenably large, about 1 m2 to factor a
1024-bit number.

When we consider the amount of available parallelism in
quantum applications, we discover that much is to be gained
by limiting computation to a specifically designated loca-
tion. The remaining area can be optimized for storage of
quantum data. A good example for the benefit of specializa-
tion in quantum applications is the Draper carry-lookahead
quantum adder [30], which forms a basic basic component
of Shor’s quantum factoring algorithm [31]. Figure 2 shows
that providing unlimited computational resources for a 64-
bit adder does not offer a performance benefit over limiting
the computation to 15 locations. As illustrated in Section
2, the number of ancillary resources for each data location
where computation is allowed is twice as large. In this ex-
ample, by providing only 15 compute locations instead of
64, we can reduce the area consumed by the adder by ap-
proximately half and yet have no change in performance.

3.2 Specialized Components
The facts that qubits in an ion-trap quantum processor

have large lifetimes when idle, allows us to improve logical
qubit density in the memory. Qubits in memory can wait for
a longer time period between two consecutive error correc-
tions. We use this to significantly reduce the error correction
ancillary resources in memory, thereby reducing its density.
The majority of computation, on the other hand, is an in-
teraction between two distinct logical qubits. To maintain
adequate system fidelity, every gate must be followed by an
error correction procedure. Consequently, a quantum pro-
cessor spends most of its time performing error correction
and the compute regions are designed to allow fast error
correction by providing a greater number of ancilla in the
logical qubits. Figure 3(a) shows a specialization into com-
pute and memory regions. The ratio of (data:ancilla) can be
seen to be (8 : 1) for memory and (1 : 2) for the compute
region.

While specialization helps address our primary goal of
reducing size, it can possibly also reduce performance. In
Section 5 we show how judiciously choosing the size of the
compute region helps maintain adequate performance while
simultaneously reducing size .

3.3 Quantum Memory Hierarchy
Another important architectural design choice is the ef-

fect of the error correction code chosen in both the mem-
ory and the compute regions. Error correction is the most
dominant procedure and the resources used increase expo-
nentially with each level of concatenation. In addition to
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Figure 3. (a) Memory is denser since it has fewer ancilla qubits. The figure shows 3 data qubits in the compute block
which take the same area as 8 data qubits in memory. In the CQLA each compute block holds nine 9 data qubits and 18
ancilla. Both compute and memory are at level 2 encoding. (b) Memory is at level 2 encoding, while the compute and
cache are at level 1 encoding. The complete CQLA consists of memory at level 2, compute regions at level 2 and also
a cache and compute region at level 1.

resources, the time to error correct increases exponentially
with each level of concatenation. The benefits of concate-
nated error correction are that the reliability of each op-
eration increases double exponentially, thus allowing far
greater number of total operations to be performed. For any
application, all logical qubits are not being acted upon by
gates for the entire duration of the algorithm. In fact, just
like classical computers, data locality is a common phe-
nomenon. This implies that a logical qubit could start at
level 2 encoding, be encoded at level 1 during the peak in
its activity and return to level 2 when idle.

We now introduce a quantum memory hierarchy, in addi-
tion to the specialized design. Memory at level 2, which is
optimized for area and reliability will be inherently slower
than a computational structure, at level 1, optimized for gate
execution. This necessitates the need for a cache that can al-
leviate the need for constant communication.

Figure 3(b) outlines this approach. the separation be-
tween memory and compute regions. The cache and the
compute regions here are similar to Figure 3(a) in every way
save that they are at a lower level of encoding. In the mem-
ory hierarchy, memory and cache have a similar design,
only memory is at a higher level of encoding, and hence is
slower and much more reliable. The critical feature here is
the transfer network which is more complicated and hence
slower than the teleporation channels described above. The
transfer network comes into play only when we change the
encoding of a logical qubit. For all other communication
(within compute blocks, between cache and compute blocks
and within memory) teleportation is still the chosen mech-
anism. Section 4 describes how the transfer process is per-
formed in a fault-tolerant manner.

4 Error Correction and Code Transfer
In this section we describe the cost of the error correc-

tion circuits and code-transfer networks we use when a spe-
cific physical layout is considered. Section 2.2 describes in
detail our technology parameters, which we find to be nec-
essary for such a large-scale architecture. These parameters
allow the large scalability to be achieved because the phys-
ical component failure rates are below the threshold value
needed for efficient error correction [32].

4.1 Error Correction Codes
Some of the best error correction codes (ECC) are ones

that use very few physical qubits, and allow “easy” fault-
tolerant gate implementations. A requirement of a fault-
tolerant system is that computation proceeds without decod-
ing the encoded data. Thus logical gates are implemented
directly on encoded qubits, ensuring that errors introduced
during the gate can be corrected. Many code choices for
EC allow transversal logical gate implementation, which
means that the same physical gate acts on each lower-level
qubit.

Each logical quantum gate is preceded and followed by
an error correction procedure. The EC procedure works
by encoding ancillary qubits in the logical “0” state of the
data and interacting the data and the ancilla. The interaction
causes errors in the data to propagate to the ancilla and to
be detected when the ancilla is measured. There are several
very important logical gates that we must consider during
error correction. The bit-flip gate, X flips the value of the
qubit by reversing the probabilities between its “0” com-
ponent and its “1” component. The phase-flip gate, Z, acts
only on the qubit’s “1” component by changing its sign. The
most important gate is the controlled-X gate (denoted as the
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CNOT gate) which flips the state of the target qubit whenever
the state of the control qubit is set. Errors on the data can
be understood as the product of phase-flips and a bit-flips.
A syndrome is extracted for each types of error. We only
present the cost of error correction networks and details rel-
evant to building a large-scale architecture. The interested
reader can refer to the literature for additional theoretical
information [33].

Figure 4. A high-level view of an error correction se-
quence. Two syndromes for bit-flip and phase-flip er-
rors are extracted.

Figure 4 is a simple schematic of the general error cor-
rection procedure, where time flows from left to right and
each line represents the evolution of an encoded logical
qubit. An error correction code is labeled by [[n,k,d]] , en-
coding k logical qubits into n qubits and correcting (d −
1)/2 errors. If our target reliability is such that we require
L levels of recursion, each line in Figure 4 represents nL

level zero qubits. For the bit-flip error syndrome the an-
cilla are encoded into the logical (0+1), and the transversal
CNOT gate, which is essentially n level (L− 1) transversal
CNOT gates of which the ancillary qubits are targets. Each
of the lower level CNOT gates is followed by a lower level
error correction unless the lower level is zero. In our ar-
chitecture analysis we provide information about two error
correcting codes: the Steane [[7,1,3]] code [9], and an im-
proved version of the Shor [[9,1,3]] code [34] denoted as the
Bacon-Shor code [4, 5, 6].

The Steane [[7,1,3]] Code encodes 1 qubit into 7 qubits,
and is the smallest error correction code allowing transver-
sal gate implementation for all gates involved in concate-
nated error correction algorithms. The addition of the T
phase gate, which is harder to implement, provides univer-
sal quantum logic using the [[7,1,3]] error correcting code.
For this reason it was used as the underlying error correcting
code in the analysis of the QLA architecture [1]. It consists
of 7 data ions which encode our logical level 1 qubit with 14
ancillary ions used for error correction, seven of which are
used in the error correction and the other verify the ancilla.

Considering communication, the level 1 error correction
circuit in will take 154 cycles, where each cycle is in the
order of 10 microseconds, and can be as large as 0.003 per
error correction procedure at level 1. A level 2 [[7,1,3]] qubit
will be composed of 7 level 1 data qubits and 7 level 1 an-
cilla qubits - there is no need for verification ancilla at L = 2.

Error Correction Metric Summary
Architecture Metric Error Code - Level Value

EC Time (seconds) [[7,1,3]] - L1 3.1 ×10−3

[[7,1,3]] - L2 0.3
[[9,1,3]] - L1 1.2 ×10−3

[[9,1,3]] - L2 0.1

Qubit Size [[7,1,3]] - L1 0.2
(mm2) [[7,1,3]] - L2 3.4

[[9,1,3]] - L1 0.1
[[9,1,3]] - L2 2.4

Transversal Gate [[7,1,3]] - L1 6.2 ×10−3

Time (seconds) [[7,1,3]] - L2 0.5
[[9,1,3]] - L1 2.4 ×10−3

[[9,1,3]] - L2 0.2

Size, number of [[7,1,3]] - L1 7
logical qubits [[7,1,3]] - L1(ancilla) 21

[[7,1,3]] - L2 49
[[7,1,3]] - L2(ancilla) 441
[[9,1,3]] - L1 9
[[9,1,3]] - L1(ancilla) 12
[[9,1,3]] - L2 81
[[9,1,3]] - L2(ancilla) 298

Table 2. Error Correction Metric Summary. Given
the fact that we use optimistic ion-trap parameters all
numbers are estimates and are thus rounded to only
one significant digit.

The size of a level 2 qubit will be 3.4 mm2, and a fully seri-
alized error correction will last approximately 0.3 seconds
(this is two orders of magnitude more than the time to error
correct at level 1).

Bacon-Shor [[9,1,3]] Code: The [[9,1,3]] code was the first
error correcting code to be discovered for arbitrary errors
[34]. Recent observations make this code faster and spa-
tially smaller than the [[7,1,3]] code [4, 5, 6]. The compact
structure of the physical layout for the [[9,1,3]] code sig-
nificantly improves communication requirements. At level
1 the error correction time is only 0.001 seconds and 0.1
seconds at level 2. The level 2 qubit size is approximately
2.4 mm2. Table 2 summarizes the error correction we have
used and their parameters for some useful architecture met-
rics.

4.2 Code Transfer Networks: Overview
One of the most interesting components of the memory

hierarchy are the code transfer regions. This region trans-
fers data encoded in code C1 to a second code C2 with-
out the need to decode. Figure 4.2 illustrates this concept.
The transfer network teleports the data in C1 to C2, where
C1 and C2 may be any two error correcting codes. The
code teleportation procedure works much the same way
as standard data teleportation that is used for communica-
tion. A correlated ancillary pair is prepared first between
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(seconds) 7-L1 7-L2 9-L1 9-L2
7-L1 0 0.6 0.02 0.2
7-L2 1.3 0 1.3 1.5
9-L1 0.01 0.5 0 0.1
9-L2 0.4 0.9 0.4 0

Table 3. Transfer network latency for a combination
of the [[7,1,3]] and [[9,1,3]] codes.

C1 and C2 through the use of a multi-qubit cat-state (i.e.
“(00...0+11...1)”). The data qubit interacts with the equiv-
alently encoded ancillary qubit through a CNOT gate, and
the two are measured. Following the measurement the state
of the data is recreated at the C2 encoded ancillary qubit.
This process is required every time we transfer a qubit from
memory to the cache or vise-versa. Table 3 summarizes the
times for different code transfer combinations between lev-
els 1 and 2 for the [[7,1,3]] and the [[9,1,3]] codes.

Figure 5. Code Teleportation Network from Code 1
(C1) to Code 2 (C2) C1 and C2 can even be the same
error correcting code, but different levels of encoding.
The solid triangles denote an error correction step.

5 CQLA Analysis and Results
This section provides analysis of the abstractions pre-

sented in

to perform quantum modular exponentiation.

5.1 Specialization into Memory

We now analyze our design, the CQLA, when it sep-
arates the quantum processor into memory and compute
regions. High density in memory is achieved by greatly
reducing the ratio of logical data qubits to logical ancilla
qubits, which is (8 : 1) in memory and is (1 : 2) in the com-
pute regions. This greatly reduces overall area since prior
work had a ratio of (1 : 2) throughout the architecture. Thus
the memory is denser, but slower, which is permissible due
to the large memory wait times 1.

Quantum modular exponentiation is the most time con-
suming part of Shor’s algorithm, and the Draper carry-
lookahead adder is its most efficient implementation. This
adder comprises single qubit gates, two qubit cnot gates and
three qubit toffoli gates and is dominated by toffoli gates.
The time to perform a single fault-tolerant toffoli is equal
to the time for fifteen two qubit gates, each of which is fol-
lowed by an error-correction step. Table 5.1 shows the sav-
ings that can be achieved when using denser memory. Note
that performance is minimally impacted for the Steane Code
as we exploit the limited parallelism in the adder. We ad-
dress the parallelism available within the application itself
and determine the number of compute blocks to maximally
exploit this parallelism with change with problem size. Fig-
ure 6(a) shows how for a fixed problem size, utilization of
each compute block decreases with an increase the num-
ber of compute blocks. Clearly, the decrease in utilization
is offset by the increase in overall performance. Thus the
challenge here is to find the balance between utilization and
performance.

We compare all our results to [1], which used only
the Steane ECC. Since the Bacon-Shor ECC uses fewer
overall resources 2 and allows faster error-correction, a
design based on these codes not only is much smaller,
but is also faster. The CQLA, thus reduces area re-
quired by a factor of 9 with minimal performance
reduction for the Steane ECC and by a factor of 13
with a speedup of 2 when using the Bacon-Shor ECC.
To compare the relative merit our design choices, we
use the gain product which can be defined by GP =
(Areaold ∗AdderTimeold)/(AreaCQLA ∗AdderTimeCQLA)
where AdderTime is the average time per adder for
modular exponentiation. The gain product indicates the
improvement in system parameters relative to our prior
work, the QLA. The higher the gain product, the better the
collective improvement in area and time of our system.

Communication Issues: Toffoli gates cannot be di-
rectly implemented on encoded data and have to be broken
down into multiple two qubit gates. Performing a fault-
tolerant Toffoli between three logical qubits requires ex-
tra logical ancilla and logical cat-state qubits. The flow of
data between these nine qubits to complete a single toffoli
forms the most intense communication pattern during the
entire addition operation. To study the bandwidth require-
ments during the toffoli gates, we developed a scheduler
that would try to have all the requirements for communica-
tion (creating EPR pairs, transporting and purifying them)
in place while the logical qubit to be transported was under-
going error-correction after completion of the previous gate.
With bandwidth of one channel, it was possible to overlap
communication with computation for the Steane [[7,1,3]]
code. To enable this overlap when using the Bacon-Shor
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Input Compute Area Reduced (Factor of) SpeedUp Gain Product
Size Blocks St-Code BSr-Code St-Code BSr-Code St-Code BSr-Code

32-bit 4 6.69 9.80 0.54 1.47 3.61 14.41
9 3.22 4.74 0.97 2.9 3.14 13.74

64-bit 9 6.36 9.32 0.70 1.92 4.45 17.70
16 3.79 5.56 0.98 3.0 3.71 16.68

128-bit 16 7.24 10.6 0.72 1.97 5.24 20.88
25 4.90 7.17 0.96 2.84 4.70 20.36

256-bit 36 6.65 9.47 0.92 2.51 6.12 23.68
49 5.07 7.43 0.98 2.98 4.96 22.14

512-bit 64 7.42 10.87 0.92 2.50 6.80 27.18
81 6.06 8.87 0.98 2.91 5.94 25.81

1024-bit 100 9.14 13.4 0.80 2.19 7.35 29.35
121 7.81 11.45 0.97 2.65 7.60 30.34

Table 4. For various size inputs, this table shows how the CQLA performs for Modular Exponentiation. The space
saved due to compressing the memory blocks and separating memory and compute regions is shown as compared to
prior work [1]. St-Code is the Steane ECC and BSr-Code is the Bacon-Shor code. The Gain Product is compared with
our prior work, the QLA, which has a Gain Product of 1.0.

code, the required bandwidth was three channels. Table 2
shows that while a logical qubit encoded in the Bacon-Shor
code is smaller when ancilla are considered; it has more
data qubits than the Steane code. Since only data qubits
are involved during teleportation, the time for teleporting
a logical qubit in the Bacon-Shor code is greater. In addi-
tion, the Bacon-Shor codes take far fewer error-correction
cycles. These two factors push its bandwidth requirement
higher. Note that the higher bandwidth is accounted for in
results of Table 5.1.

Superblocks: In the CQLA, several compute blocks to-
gether form compute superblocks. This is done to exploit
the locality inherent to an application. Having larger su-
perblocks also increases the perimeter bandwidth between
the compute and memory regions of the CQLA. This in-
crease in bandwidth of a larger superblock is offset by the
much greater increase in communication required. Our in-
tuition tells us that at a certain point, it may be more effi-
cient to have multiple small superblocks instead of one large
superblock. To determine this number concretely, we plot
the change in bandwidth required against change in band-
width available. Figure 6(b) shows the cross-over point is
36 compute blocks per superblock, immaterial of what error
correction code is used. Thereafter it is no longer beneficial
to increase the size of an individual compute superblock.

5.2 Memory Hierarchy
Reducing the encoding level of the compute region will

dramatically increase its speed. Recall that resources, time
and reliability all increase exponentially as we increase the
level of encoding. With the compute region at level 1 and

memory at level 2, the challenge is the very familiar one of
the CPU being an order of magnitude faster than the mem-
ory. To maximize the benefit of a much faster compute re-
gion, we introduce the quatum memory hierarchy. In our
hierarchy, the memory is at level 2 encoding (slow and reli-
able), cache is at level 1 (faster, less reliable) and the com-
pute region is also at level 1 (fastest and same reliability as
cache). The difference in speed between the compute re-
gion and the cache is the due to a greater number of ancilla
in the compute region.

To study the behavior of the CQLA with a cache and
multiple encoding levels, we developed a simulator that
models a cache. The simulator takes into account the com-
putation cost in both encoding levels and also the cost of
transferring logical qubits between encoding levels. The
application under consideration is still the Draper carry-
lookahead adder. Input to the simulator is a sequence of in-
structions; each instruction is similar to assembly language
and describes a logical gate between qubits. We have writ-
ten generators that output this code in a form that can take
advantage of an architecture with maximal parallelism.

When the simulator runs this code in the sequence in-
tended by the Draper carry-lookahead adder, the cache hit-
rate is limited to 20%. To improve the hit-rate, we utilize
the following optimized approach. Since we are schedul-
ing statically, the instruction fetch window for the simulator
can be the whole program. The simulator takes advantage
of this by first creating a dependency list of all input instruc-
tions. Then it carefully selects the next instruction such that
probability of finding all required operands in the cache is
maximized. This optimized fetch yields a cache hit-rate of
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adders when both cache and compute region are at
Level 1 recursion. Largest cache considered holds
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block. Results for both the non-optimized version and
the optimized version are shown.

almost 85% immaterial of adder size and cache size. The re-
placement policy in the cache is least recently used. Figure
7 shows the cache hit-rates for different sized adders for the
non-optimized and optimized instruction fetch approaches.
If n is the number of logical qubits in the compute region,
the cache sizes we studied were n,1.5n and 2n. As the graph
shows, the increase in hit-rate is more pronounced due to the
optimized fetch than increasing cache size. For the CQLA,
we thus employ a cache size of twice the number of qubits
in the compute region. The high hit-rate means the transfer
networks will not be overwhelmed.

Fault-tolerance with multiple encoding levels: A quan-
tum computer running an application of size S = KQ, where
K is the number of time-steps and Q is the number of logical
qubits, will need to have a component failure rate of at most
Pf = 1/KQ. To evaluate the expected component failure
rate at some level or recursion we use Gottesman’s estimate
for local architectures [35] shown in Equation 1 below.

Pf =
1

cr2rL (cr2 p0)2L
=

pth

rL (p−1
th p0)2L

(1)

The value for r is the communication distance between
level 1 blocks which are aligned in QLA to allow r = 12
cells on average and L denotes the level of recursion. The
threshold failure rate, pth, for the Steane [[7,1,3]] circuit ac-
counting for movement and gates was computed in [36] to
be approximately 7.5× 10−5. Taking as p0 the average of
the expected failure probabilities given in Table 1, and us-
ing Equation 1, we find that for our system to be reliable
it can spend only 2% of the total execution time in level
1. Recall that error-correction is the most frequently pe-
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Par Xfer Adder Size L1 SpeedUp L2 SpeedUp Adder SpeedUp Area Reduced Gain Product
Steane [[7,1,3]] Code

256 17.417 0.98 6.25 5.07 31.68
10 512 17.41 0.97 6.33 6.06 38.38

1024 18.18 0.88 4.93 9.14 45.06
256 10.409 0.98 4.05 5.07 24.99

5 512 10.408 0.97 4.04 6.06 24.48
1024 10.96 0.88 2.94 9.14 26.87

Bacon-Shor [[9,1,3]] Code
256 9.61 1.53 5.92 7.43 43.99

10 512 9.61 2.28 8.82 8.87 78.23
1024 10.15 2.00 8.10 13.4 108.53
256 5.17 1.53 3.66 7.43 27.19

5 512 5.17 2.28 5.45 8.87 48.37
1024 5.49 2.00 4.99 13.40 66.90

Table 5. This table shows the results of incorporating a memory hierarchy and two separate encoding levels. Depending
on the number of parallel transfers possible between memory and cache, we can expect different speedup values for
the adder at level 1. This combined with results from Table 5.1 give us the final Gain Product. Comparatively, prior work
has an Gain Product number of 1.0.

formed operation in the CQLA. For the Steane code, level
2 error correction takes 0.3 sec and level 1 takes 3.1×10−3

sec, which is approximately 1% of the level 2 time. Thus
if all operations performed by the CQLA were equally di-
vided between level 1 and level 2 operations, the system will
maintain its fidelity. The Bacon-Shor ECC can be analyzed
in a similar manner and their results are more favourable
due to a higher threshold.

The CQLA architecure now consists of a memory at
level 2, a compute region also at level 2, a cache and a com-
pute region at level 1 and transfer networks for changing the
qubit encoding levels. Since quantum modular exponentia-
tion is perfomed by repeated quantum additions, we could
perform half of these additions completely in level 2 and the
other half in level 1. To comfortably maintain the fidelity of
the system, we perform one level 1 addition for every two
level 2 additions. The resulting increase in performance is
shown in Table 5.

6 Application Behavior
In this secti compute and memory are at level 2 encod-

ing. Contrary to traditional silicon based processors, in the
CQLA a single communication step does not take longer
than the computation of a single gate. The reason behind
this phenomenon is the lack of reliability of quantum data,
which forces us to perform an error-correction procedure
after each gate. The time to complete a fault-tolerant Tof-
foli is about 20 times greater than a two-qubit CNOT gate.
The applications we study are modular exponentiation and

the quantum fourier transform.

6.1 Shor’s Algorithm
Shor’s algorithm is the most celebrated of quantum algo-

rithms due to its potential exponential advantage over con-
ventional algorithms and its application to breaking public-
key cryptography [31]. Shor’s algorithm is primarily com-
posed of two parts, the modular exponentiation and the
quantum fourier transform.

Modular Exponentiation: The execution of modular ex-
ponentiation is dominated by Toffoli gates. To keep the
compute block from having to wait for qubits, and hence
stalling, the bandwidth around the perimeter of the com-
pute block has to accommodate the transfer of three qubits
to and from memory. Intuitively, since the CQLA is a mesh,
and the bottleneck in bandwidth will be at the edge of the
compute blocks, having adequate bandwidth at this edge is
sufficient for the rest of the mesh.

Based on the communication results from [1], we calcu-
late that a 2 channels on the perimeter of the compute block
would provide adequate bandwidth for all required commu-
nication. We compute the time required for all communica-
tion steps and compare it against the total computation time
for differently sized adders. The result is shown in 8(a) and
demonstrates that communication requirements do not ad-
versely impact the design.

Quantum Fourier Transform: While the Quantum
Fourier Transform (QFT) comprises a small fraction of the
overall Shor’s algorithm, it requires all-to-all personalized
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Figure 8. Total communication and computation times for the two components of Shor’s algorithm, (a) Modular Expo-
nentiation (b) Quantum Fourier Transform (QFT). Although communication is significant in the QFT, Modular exponenti-
ation dominates Shor’s algorithm. Both these results are for the Bacon-Shor code

communication between data qubits. In addition, it uses
only one-qubit and two-qubit gates which consume much
less time. As a result, studying the performance of the QFT
gives us an insight into how the CQLA will behave when
faced with an communication heavy and a computation light
application.

In the worst case, all nine data qubits (maximum capac-
ity of the compute block) would have to be transferred to or
from memory simultaneously.

Between compute blocks, the QFT’s all-to-all personal-
ized communication must be supported on the CQLA mesh
network. We leverage the vast amount of prior work done in
studying mesh networks, and employ a near-optimal algo-
rithm proposed in [37]. The total time for communication
for varying problem sizes is shown in figure 8(b). Note that
while communication time is a little less, it closely tracks
the computation time for all problem sizes. This is due to
the difference in time to error correct a single logical qubit
and the time to transport a single qubit; which stays constant
immaterial of the problem size.

7 Future Work

A high-level goal of this work is to build abstractions
from which architects and systems designers can examine
open issues and help guide the substantial basic science and
engineering under investment towards building a scalable
quantum computer. The primary focus of our work has been
system balance. The driving force in this balance has been
application parallelism. A key open issue is the restruc-
turing of quantum algorithms to manage this parallelism in

the context of system balance. From an architectural point
of view, the most relevant abstract properties are density of
functional components, the memory hierarchy and commu-
nication bandwidth.

While our work has focused on trapped ions, most scal-
able technologies will have a similar two-dimensional lay-
out where our techniques can be easily applied. This is be-
cause the density is determined by the ratio of data to ancilla
rather than physical details of the underlying technology.

For ion-traps, lasers can also be a control issue. We
plan to study how our architecture can minimize the number
of lasers and minimize the power consumed by each laser,
since power is proportional to fanout. Efficiently routing
control signals to all electrodes in an ion-trap is a challeng-
ing proposition, one that has not yet been considered for
large systems. Currently, we perform the whole adder at
the fast level 1 encoding or at the level 2 encoding; clever
instruction scheduling techniques can allow us to improve
performance by reducing granularity.

8 Conclusion

The technologies and abstractions for quantum comput-
ing have evolved to an exciting stage, where architects and
system designers can attack open problems without intimate
knowledge of the physics of quantum devices. We explore
the amount of parallelism available in quantum algorithms
and find that a specialized architecture can serve our needs
very well. The CQLA design is an example where archi-
tectural techniques of specialization and balanced system
design have led to up to a 13X improvement in density and
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a 8X increase in performance, while preserving fault tol-
erance. We hope that further application of compiler and
system optimizations will lead to even more dramatic gains
towards a scalable, buildable quantum computer.
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Abstract—Advances in quantum devices have brought scal-
able quantum computation closer to reality. We focus on the
system-level issues of how quantum devices can be brought
together to form a scalable architecture. In particular, we examine
promising silicon-based proposals. We discover that communi-
cation of quantum data is a critical resource in such proposals.
We find that traditional techniques using quantum SWAP gates
are exponentially expensive as distances increase and propose
quantum teleportation as a means to communicate data over
longer distances on a chip. Furthermore, we find that realistic
quantum error-correction circuits use a recursive structure that
benefits from using teleportation for long-distance communi-
cation. We identify a set of important architectural building
blocks necessary for constructing scalable communication and
computation. Finally, we explore an actual layout scheme for
recursive error correction, and demonstrate the exponential
growth in communication costs with levels of recursion, and that
teleportation limits those costs.

Index Terms—Quantum architecture, quantum computers, sil-
icon-based quantum computing.

I. INTRODUCTION

M ANY important problems seem to require exponential
resources on a classical computer. Quantum com-

puters can solve some of these problems with polynomial
resources, which has led a great number of researchers to
explore quantum information processing technologies [1]–[7].
Early-stage quantum computers have involved a small number
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of components (less than ten) and have utilized molecules in
solution and trapped ions [8]–[11]. To exploit our tremendous
historical investment in silicon, however, solid-state silicon
quantum computers are desirable. Promising proposals along
these lines have begun to appear [12], [13]; these even include
ideas which merge atomic physics and silicon micromachining
[14]. However, as the number of components grows, quantum
computing systems will begin to require the same level of
engineering as current computing systems. The process of
architectural design used for classical silicon-based systems,
of building abstractions and optimizing structures, needs to be
applied to quantum technologies.

Even at this early stage, a general architectural study of
quantum computation is important. By investigating the po-
tential costs and fundamental challenges of quantum devices,
we can help illuminate pitfalls along the way toward a scalable
quantum processor. We may also anticipate and specify impor-
tant subsystems common to all implementations, thus fostering
interoperability. Identifying these practical challenges early will
help focus the ongoing development of fabrication and device
technology. In particular, we find that transporting quantum
data is a critical requirement for upcoming silicon-based
quantum computing technologies.

Quantum information can be encoded in a number of ways,
such as the spin component of basic particles like protons or
electrons, or in the polarization of photons. Thus, there are sev-
eral ways in which we might transfer information. First, we
might physically transport particles from one point to another.
In a large solid-state system, the logical candidate for informa-
tion carriers would be electrons, since they are highly mobile.
Unfortunately, electrons are also highly interactive with the en-
vironment and, hence, subject to corruption of their quantum
state, a process known asdecoherence. Second, we might con-
sider passing information along a line of quantum devices. This
swapping channelis, in fact, a viable option for short distances
(as discussed in Section IV), but tends to accumulate errors over
long distances.

Over longer distances, we need something fundamentally dif-
ferent. We propose to use a technique calledteleportation[15]
and to call the resulting long-distance quantum wire ateleporta-
tion channelto distinguish from a swapping channel. Telepor-
tation uses an unusual quantum property calledentanglement,
which allows quantum information to be communicated at a

1077-260X/03$17.00 © 2003 IEEE75
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distance.1 To understand the mathematical details and practical
implications of teleportation, we will need to cover some back-
ground before returning to the subject in Section II-C.

A striking example of the importance of quantum communi-
cation lies in the implementation of error-correction circuits.
Quantum computations must make use of extremely robust
error-correction techniques to extend the life of quantum data.
We present optimized layouts of quantum error-correction
circuits based upon quantum bits embedded in silicon.

We discover two interesting results from our quantum lay-
outs. First, the recursive nature of quantum error correction re-
sults in an H-tree-structured circuit that requires long-distance
communication to move quantum data as we approach the root.
Second, the reliability of the quantumSWAPoperator is perhaps
the most important operator for a technology to implement reli-
ably in order to realize a scalable quantum computer.

The remainder of this paper continues with a brief introduc-
tion to quantum computing in Section II. We describe our as-
sumptions about implementation technologies in Section III.
Next, Section IV discusses how quantum information can be
transported in solid-state technologies. This includes a discus-
sion of short-distanceswapping channelsand the more scal-
able long-distanceteleportation channels. Section V introduces
error-correction algorithms for quantum systems and discusses
the physical layout of such algorithms. Then, Section VI probes
details of two important error-correction codes. Following this,
in Section VII, we demonstrate the need for teleportation as a
long-distance communication mechanism in the layout of recur-
sive error-correction algorithms. Finally, Section VIII discusses
system bandwidth issues and in Section IX we conclude.

II. QUANTUM COMPUTATION

We begin with a brief overview of the basic terminology and
constructs of quantum computation. Our purpose is to introduce
the language necessary for subsequent sections; in-depth treat-
ments of these subjects are available in the literature [2].

A. Quantum States: Qubits

The state of a classical digital system can be specified
by a binary string composed of a number of bits , each
of which uniquely characterizes one elementary piece of the
system. For bits, there are possible states. The state of an
analogous quantum systemis described by a complex-valued
vector , a weighted combination (a “superposi-
tion”) of the basis vectors , where theprobability amplitudes

are complex numbers whose modulus squared sums to one,
.

A single quantum bit is commonly referred to as aqubit and
is described by the equation , where the
are complex valued. Legal qubit states include “classical” com-
putational basis states and , and states in superposition,
such as , or . Larger quantum sys-
tems can be composed from multiple qubits, for example,,
or . An -qubit state is described by

1The speed of this channel is, however, limited by the rate at which two
classical bits can be transmitted from source to destination, without which the
quantum information is ambiguous.

basis vectors, each with its own complex probability amplitude,
so an -qubit system can exist in an arbitrary superposition of
the possible classical states of the system.

Unlike the classical case, however, where the total can be
completely characterized by its parts, the state of larger quantum
systems cannot always be described as the product of its parts.
This property, known asentanglement, is best illustrated with
an example: there exist no single qubit states and
such that the two-qubit state can be
expressed as the composite state2 . Entanglement
has no classical analogue. It is what gives quantum computers
their computational powers.

Although a quantum system may exist in a superposition of
orthogonal states, only one of those states can be observed, or
measured. After measurement, the system is no longer in su-
perposition: the quantum state collapses into the one state mea-
sured, and the probability amplitude of all other states goes to
zero. For example, when the state is measured,
the result is either 00 or 11, with equal probability; the outcomes

or never occur. Furthermore, if a subset of the qubits
in a system is measured, the remaining qubits are left in a state
consistent with the measurement.

Since measurement of a quantum system only produces a
single result, quantum algorithms must maximize the proba-
bility that the result measured is the result desired. This may
be accomplished by iteratively amplifying the desired result, as
in Grover’s fast database search, for a dataset of size

[16]. Another option is to arrange the computation such that
it does not matter which of many random results is measured
from a qubit vector. This method is used in Shor’s algorithm for
finding a factor of a composite integer [17], [18], which is built
upon modular exponentiation and a quantum Fourier transform.
For the interested reader, quantum algorithms for a variety of
problems other than search and factoring have been developed:
adiabatic solution of optimization problems (a quantum ana-
logue of simulated annealing; complexity unknown) [19], pre-
cise clock synchronization (using EPR pairs to synchronize GPS
satellites) [20], [21], quantum key distribution (provably secure
distribution of classical cryptographic keys) [22], and very re-
cently, Gauss sums [23], and Pell’s equation [24].

B. Quantum Gates and Circuits

Just as classical bits are manipulated using gates such asNOT,
AND, andXOR, qubits are manipulated with quantum gates such
as those shown in Fig. 1. A quantum gate is described by a
unitary operator . The output state vector is the operator ap-
plied to the input vector; that is, . The classical
NOT has the quantum analogue which inverts the probabil-
ities of measuring 0 and 1. The quantum analogue ofXOR is
the two-qubitCNOT gate: thetarget qubit is inverted for those
states where thesourcequbit is 1. Most quantum gates, however,
have no classical analogue. Thegate flips the relative phase
of the state, thus exchanging and

. The Hadamard gate turns into and

2The composition operator for quantum systems is the tensor product,
 :

jxi 
 jyi = c jxi 
 c jyi = c c jx 
 yi, wherex 
 y is
simply the string formed by concatenatingx andy.
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Fig. 1. Basic quantum gates and their matrix representations.

Fig. 2. Quantum Teleportation: Quantum Teleportation of statejai. First,
entangledqubits jbi and jci are distributed. Then,jai is combined withjbi
after which measurements produce twoclassicalbits of information (double
lines). After transport, these bits are used to manipulatejci to regenerate state
jai at the destination.

into ; it can be thought of as performing a
radix-2 Fourier transform. Another important single-qubit gate,

, leaves unchanged but multiplies by . Single qubit
gates are characterized by a rotation around an axis:rotates
the qubit by around the -axis; rotates by around the
-axis; and rotates by around the axis. By composing

the and gates, any single-qubit gate can be approximated
to arbitrary precision. The combination of, , andCNOT pro-
vide auniversal set: just as any Boolean circuit can be com-
posed fromAND, OR, andNOT gates, any polynomially describ-
able multiqubit quantum transform can be efficiently approx-
imated by composing just these three quantum gates into a cir-
cuit.

One additional important operator is theSWAP gate. Just
as two classical values can be swapped using threeXORs, a
quantumSWAP can be implemented as threeCNOTs. However,
SWAP is often available natively for a given technology, which
is valuable, given its importance to quantum communication.

Fig. 2 shows aquantum circuitfor teleportation (described
in the next section). In quantum circuits, time goes from left
to right, where single lines represent qubits, and double lines
represent classical bits. A meter is used to represent measure-
ment. By convention, black dots represent control terminals for

quantum-controlled gates. The symbolis shorthand for the
target qubit of theCNOT gate.

C. Quantum Teleportation

Quantum teleportation is the recreation of a quantum state at
a distance, using only classical communication. It accomplishes
this feat by using a pair of entangled qubits,

, called an EPR pair.3

Fig. 2 gives an overview of the teleportation process. We start
by generating an EPR pair. We separate the pair, keeping one
qubit, , at the source and transporting the other,, to the
destination. When we want to send a qubit,, we first interact

with using aCNOTgate. We then measure the phase of
and the amplitude of , send the two one-bit classical results
to the destination, and use those results to recreate the correct
phase and amplitude in such that it takes on the original state
of . The recreation of phase and amplitude is done with
and gates, whose application is contingent on the outcome
of the measurements of and . Intuitively, since has a
special relationship with , interacting with makes
resemble , modulo a phase and/or amplitude error. The two
measurements allow us to correct these errors and recreate
at the destination. Note that the original state ofis destroyed
when we take our two measurements.4

Why bother with teleportation when we end up transporting
anyway? Why not just transport directly? First, we can

precommunicate EPR pairs with extensive pipelining without
stalling computations. Second, it is easier to transport EPR pairs
than real data. Since and have known properties, we can
employ a specialized procedure known aspurification to turn
a collection of pairs partially damaged from transport into a
smaller collection of asymptotically perfect pairs. Third, trans-
mitting the two classical bits resulting from the measurements
is more reliable than transmitting quantum data.

III. SOLID-STATE TECHNOLOGIES

With some basics of quantum operations in mind, we turn
our attention to the technologies available to implement these
operations. Experimentalists have examined several technolo-
gies for quantum computation, including trapped ions [26],
photons [27], bulk spin NMR [28], Josephson junctions [13],
[29], SQUIDS [30], electron spin resonance transistors [31],
and phosphorus nuclei in silicon (the “Kane” model) [12], [32].
Of these proposals, only the last three build upon a solid-state
platform; they are generally expected to provide the scalability
required to achieve a truly scalable computational substrate.

For the purposes of this paper, the key feature of these
solid-state platforms are as follows.

1) Quantum bits are laid out in silicon in a two-dimensional
(2-D) fashion, similar to traditional CMOS VLSI.

2) Quantum interactions are near-neighbor between bits.

3An EPR or Einstein-Podolsky-Rosen pair is a special instance of entangle-
ment noted in the Einstein-Podolsky-Rosen paradox [25], [62].

4This is consistent with theno-cloningtheorem, which states that an arbitrary
quantum state cannot be perfectly copied; this is fundamentally because of the
unitarity of quantum mechanics.
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Fig. 3. The basic quantum bit technology proposed by Kane [34]. Qubits are
embodied by the nuclear spin of a phosphorus atom coupled with an electron
embedded in silicon under high magnetic field at low temperature.

3) Quantum bits cannot move physically, but quantum data
can be swapped between neighbors.

4) The control structures necessary to manipulate the bits
prevent a dense 2-D grid of bits. Instead, we have linear
structures of bits which can cross, but there is a minimum
distance between such intersections that is on the order of
20 bits for our primary technology model [33]. This re-
striction is similar to a “design rule” in traditional CMOS
VLSI.

These four assumptions apply to several solid-state technolo-
gies. For concreteness, we will focus upon an updated version of
Kane’s phosphorus-in-silicon nuclear-spin proposal [34]. This
scheme will serve as an example for the remainder of the paper,
although we will generalize our results when appropriate.

Fig. 3 illustrates important dimensions of the Kane scheme.
Shown are two phosphorus atoms spaced 15–100 nm apart.
Quantum states are stored in relatively stable electron-donor

spin pairs, where the electron and the donor
nucleus have opposite spins. The basis states,and
are defined as the superposition states
and . Twenty nanometers above the
phosphorus atoms lie three classical control wires, onegate
and two gates. Precisely timed pulses on these gates provide
arbitrary one- and two-qubit quantum gates.

Single qubit operators are composed of pulses on the A-gates,
modulating the hyperfine interaction between electron and nu-
cleus to provide Z axis rotations. A globally applied static mag-
netic field provides rotations around the X axis. By changing the
pulse widths, any desired rotational operator may be applied,
including the identity operator. Two-qubit interactions are me-
diated by S-gates, which move an electron from one nucleus to
the next. The exact details of the pulses and quantum mechanics
of this technique are beyond the scope of this paper and are de-
scribed in [34].

Particularly apropos to the next few sections of this paper,
however, is the interqubit spacing of 15–100 nm. The exact
spacing is currently a topic of debate within the physics commu-
nity, with conservative estimates of 15 nm, and more aggressive
estimations of 100 nm. The tradeoff is between noise immunity

and difficulty of manufacturing. For our study, we will use a
figure (60 nm) that lies between these two. This choice implies
that the A and S gates are spaced 20 nm apart. We parameterize
our work, however, to generalize for changes in the underlying
technology.

The Kane proposal, like all quantum computing proposals,
uses classical signals to control the timing and sequence of op-
erations. All known quantum algorithms, including basic error-
correction for quantum data, require the determinism and reli-
ability of classical control. Without efficient classical control,
fundamental results demonstrating the feasibility of quantum
computation do not apply (such as the Threshold Theorem used
in Section IV-B.3).

Quantum computing systems display a characteristic tension
between computation and communication. Fundamentally,
technologies that transport data well do so because they are
resistant to interaction with the environment or other quantum
bits; on the other hand technologies that compute well do so
precisely because theydo interact. Thus, computation and
communication are somewhat at odds.

In particular, atomic-based solid-state technologies are good
at providing scalable computation but complicate communica-
tion, because their information carriers have nonzero mass. The
Kane proposal, for example, represents a quantum bit with the
nuclear spin of a phosphorus atom implanted in silicon. The
phosphorus atom does not move, hence, transporting this state
to another part of the chip is laborious and requires carefully
controlled swapping of the states of neighboring atoms. In con-
trast, photon-based proposals that use polarization to represent
quantum states can easily transport data over long distances
through fiber. It is very difficult, however, to get photons to in-
teract and achieve any useful computation. Furthermore, trans-
ferring quantum states between atomic- and photon-based tech-
nologies is currently extremely difficult.

Optimizing these tensions, between communication and com-
putation, between classical control and quantum effects, im-
plies a structure to quantum systems. In this paper, we begin
to examine this optimization by focusing on communication in
solid-state quantum systems. Specifically, we begin by exam-
ining the quantum equivalent of short and long “wires.”

IV. TRANSPORTINGQUANTUM INFORMATION: WIRES

In this section, we explore the difficulty of transporting
quantum information within a silicon substrate. Any optimistic
view of the future of quantum computing includes enough
interacting devices to introduce a spatial extent to the layout
of those devices. This spatial dimension, in turn, introduces a
need for wires. One of the most important distinctions between
quantum and classical wires arises from theno-cloningtheorem
[2] is that quantum information cannot be copied but must
rather betransportedfrom source to destination (see footnote
4).

Section IV-A begins with a relatively simple means of
moving quantum data via swap operations, called aswapping
channel. Unfortunately, the analysis of Section IV-B indicates
that swapping channels do not scale well, leading to an al-
ternative called ateleportation channel. This long-distance
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Fig. 4. Short wires are constructed from successive qubits (phosphorus atoms).
Information in the quantum data path is swapped from qubit to qubit under
classical control. A singleSWAPoperator requires multiple A- and S-gate voltage
pulses. The control circuitry is not to scale.

technology is introduced in Section IV-C and analyzed in
Section IV-D.

A. Short Wires: Swapping Channel

In solid-state technologies, a line of qubits is one plausible
approach to transporting quantum data. Fig. 4 provides a
schematic of aswapping channelin which information is
progressively swapped between pairs of qubits in thequantum
datapath—somewhat like a bubble sort.5 Swapping channels
require active control from classical logic as illustrated by the
classical controlplane of Fig. 4.

As simple as it might appear, a quantum swapping channel
presents significant technical challenges. The first hurdle is the
placement of the phosphorus atoms themselves. The leading
work in this area has involved precise ion implantation through
masks, and manipulation of single atoms on the surface of sil-
icon [35]. For applications where only a few trial devices are de-
sired, slowly placing a few hundred thousand phosphorus atoms
with a probe device [36] may be possible. For bulk manufac-
turing, the advancement of DNA-based or other chemical self-
assembly techniques [37] may need to be developed. Note that,
while new technologies may be developed to enable precise
placement, the key for our work is only the spacing (60 nm)
of the phosphorus atoms themselves, and the number of control
lines (three) per qubit. The relative scale of quantum interaction
and the classical control of these interactions is what will lead
our analysis to the fundamental constraints on quantum com-
puting architectures.

A second challenge is the scale of classical control. Each con-
trol line into the quantum datapath is roughly 10 nm in width.
While such wires are difficult to fabricate, we expect that either
electron beam lithography [38], or phase-shifted masks [39] will
make such scales possible.

A remaining challenge is the temperature of the device. In
order for the quantum bits to remain stable for a reasonable
period of time the device must be cooled to less than one de-
gree Kelvin. The cooling itself is straightforward, but the ef-

5For technologies that do not have an intrinsic swap operation, one can be
implemented by threeCONTROLLED-NOTgates performed in succession. This is
a widely known result in the quantum computing field and we refer the interested
reader to [2].

Fig. 5. Quantization of electron states overcome by increasing the physical
dimension of the control lines beyond 100 nm. The states propagate
quantum-mechanically downward through access vias to control the magnetic
field around the phosphorus atoms.

fect of the cooling on the classical logic is a problem. Two is-
sues arise. First, conventional transistors stop working as the
electrons become trapped near their dopant atoms, which fail to
ionize. Second, the 10-nm classical control lines begin to ex-
hibit quantum-mechanical behavior, such as conductance quan-
tization and interference from ballistic transport [40].

Fortunately, many researchers are already working on
low-temperature transistors. For instance, single-electron
transistors (SETs) [41] are the focus of intense research due to
their high density and low power properties. SETs, however,
have been problematic for conventional computing because
they are sensitive to noise and operate best at low temperatures.
For quantum computing, this predilection for low temperatures
is exactly what is needed! Tucker and Shen describe this
complementary relationship and propose several fabrication
methods in [42].

On the other hand, the quantum-mechanical behavior of the
control lines presents a subtle challenge that has been mostly
ignored to-date. At low temperatures, and in narrow wires, the
quantum nature of electrons begins to dominate over normal
classical behavior. For example, in 100-nm-wide polysil-
icon wires at 100 mK, electrons propagate ballistically like
waves, through only one conductance channel, which has an
impedance given by the quantum of resistance, .
Impedance mismatches to these and similar metallic wires
make it impossible to properly drive the ac current necessary to
perform qubit operations, in the absence of space-consuming
impedance matching structures such as adiabatic tapers.

Avoiding such limitations mandates a geometric design con-
straint: narrow wires must be short and locally driven by nearby
wide wires. Using 100 nm as a rule of thumb6 for a minimum
metallic wire width sufficient to avoid undesired quantum be-
havior at these low temperatures, we obtain a control gate struc-
ture such as that depicted in Fig. 5. Here, wide wires terminate in
10-nm vias that act as local gates above individual phosphorus
atoms.

6This value is based on typical electron mean free path distances, given known
scattering rates and the electron Fermi wavelength in metals.
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Fig. 6. A linear row of quantum bits: In this figure (not drawn to scale) we depict access control for a line of quantum bits. On the left, we depict a “top down”
view. On the right is a vertical cross-section which more clearly depicts the narrow-tipped control lines that quickly expand to classical dimensions.

Fig. 7. Intersection of quantum bits. In this simplified view, we depict
a four-way intersection of quantum bits. An inversely (diamond shaped)
organized junction is also needed to densely pack junction cells.

Producing a line of quantum bits that overcomes all of the
above challenges is possible. We illustrate a design in Fig. 6.
Note how access lines quickly taper into upper layers of metal
and into control areas of a classical scale. These control areas
can then be routed to access transistors that can gate on and off
the frequencies (in the 10s to 100s of MHz) required to apply
specific quantum gates.

Of course, any solution for data transport must also support
routing. Routing is not possible without fanout provided by wire
intersections. We can extend our linear row of quantum bits to
a four-way intersection capable of supporting sparsely inter-
secting topologies of quantum bits. We illustrate the quantum
intersection in Fig. 7. This configuration is similar to Fig. 6 ex-
cept that the intersection creates a more challenging tapering.

B. Analysis of the Swapping Channel

We now analyze our swapping channel to derive two
important architectural constraints: the classical-quantum
interface boundary and the latency–bandwidth characteristics.
We strive to achieve a loose lower bound on these constraints
for a given quantum device technology. While future quantum
technologies may have different precise numbers, it is almost
certain they will continue to be classically controlled and, thus,

also obey similar constraints based upon this classical-quantum
interface.

1) Pitch Matching: Our first constraint is derived from the
need to have classical control of our quantum operations. As
previously discussed, we need a minimum wire width to avoid
quantum effects in our classical control lines. Referring back to
Fig. 7, we can see that each quadrant of our four-way intersec-
tion will need to be some minimum size to accommodate access
to our control signals.

Recall from Fig. 3 that each qubit has three associated control
signals (one A and two S gates). Each of these control lines must
expand from a thin 10 nm tip into a 100 nm access point in an
upper metal layer to avoid the effects of charge quantization at
low temperatures (Fig. 5). Given this structure, it is possible to
analytically derive the minimum width of a line of qubits and its
control lines, as well as the size of a four-way intersection. For
this minimum size calculation, we assume all classical control
lines are routed in parallel, albeit spread across the various metal
layers. This parallel nature makes this calculation trivial under
normal circumstances (sufficiently “large” lithographic feature
size ), with the minimum line segment being equal in length
to twice the classical pitching, 150 nm in our case, and the junc-
tion size equal to four times the classical pitching, 400 nm, in
size. However, we illustrate the detailed computation to make
the description of the generalization clearer. We begin with a
line of qubits.

Let be the number of qubits along the line segment. Since
there are three gates (an A and two S lines), we need to fit in

classical access points of 100 nm in dimension each in line
width. We accomplish this by offsetting the access points in the
x and y dimensions (Fig. 6) by 20 nm. The total size of these
offsets will be 100 nm divided by the qubit spacing 60 nm times
the number of control lines per qubit (three), times the offset
distance of 20 nm. This number 100 nm/60 nm3 20 nm =
100 nm is divided by 2 because the access lines are spread out
on each side of the wire. Hence, the minimum line segment will
be 100 nm + 50 nm. Shorter line segments within larger, more
specialized cells are possible.

Turning our attention to an intersection (Fig. 7), letbe the
number of qubits along each “spoke” of the junction. We need
to fit classical access points in a space of (60 nm) ,
where each access point is at least 100 nm on a side. As with
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the case of a linear row of bits, a 20-nm x and y shift in access
point positioning between layers is used for via access. Starting
with a single access pad of 100 nm, we must fit 100 nm/60 nm

3 additional pads shifted in x and y within the single quad-
rant of our intersection. This leads to a quadrant size of 100 +
100 nm/60 nm 3 20 nm = 200 nm. Therefore, the minimum
size four-way intersection is eight (rounding up) qubits in each
direction.

In this construction, we have assumed a densely packed edge
to each spoke. However, this is easily “unpacked” with a spe-
cialized line segment, or by joining to another junction that is
constructed inversely from that shown in Fig. 7. Obviously, the
specific sizes will vary according to technological parameters
and assumptions about control logic, but this calculation illus-
trates the approximate effect of what appears to be a funda-
mental tension between quantum operations and the classical
signals that control them. A minimum intersection size implies
minimum wire lengths, which imply a minimum size for com-
putation units.

2) Technology Independent Limits:Thus far, we have fo-
cused our discussion on a particular quantum device technology.
This has been useful to make the calculations concrete. Nev-
ertheless, it is useful to generalize these calculations to future
quantum device technologies. Therefore, we parameterize our
discussion based on a few device characteristics as follows.

Assuming 2-D devices (i.e., not a cube of quantum bits), let
be the classical pitching required, andthe quantum one.

Furthermore, let be the ratio of the classical to quantum
distance for the device technology,be the number of classical
control lines required per quantum bit, and finallybe the fea-
ture size of the lithographic technology. We use two separate
variables and to characterize the “classical” technology
because they arise from different physical constraints. The pa-
rameter comes from the lithographic feature size, while
(which is a function of ) is related to the charge quantization
effect of electrons in gold. With the Kane technology we assume
a spacing of 60 nm between qubits, three control lines per bit
of 100 nm each, and a of 5 nm. We can use these to
generalize our pitch matching equations. Here, we find that the
minimum line segment is simply equivalent to
qubits in length.

Examining our junction structure (Fig. 7), we note that it is
simply four line segments, similar to those calculated above,
except that the control lines must be on the same side. Therefore,
the minimum crossing size of quantum bits in a 2-D device is of
size on a side.

3) Latency and Bandwidth:Calculating the latency and
bandwidth of quantum wires is similar to but slightly different
than it is for classical systems. The primary difficulty is
decoherence (i.e., quantum noise). Unlike classical systems,
if you want to perform a quantum computation, you cannot
simply resend quantum information when an error is detected.
The no-cloning theorem prohibits transmission by duplication,
thereby making it impossible to retransmit quantum informa-
tion if it is corrupted. Once the information is destroyed by the
noisy channel, you have to start the entire computation over
(“no-cloning” also implies no checkpointing of intermediate
states in a computation). To avoid this loss, qubits are encoded

in a sufficiently strong error-correcting code that, with high
probability, will remain coherent for the entire length of the
quantum algorithm. Unfortunately, quantum systems will likely
be so error-prone that they will probably execute right at the
limits of their error tolerance [43].

Our goal is to provide a quantum communication layer which
sits below higher level error-correction schemes. Later, in Sec-
tion VIII, we discuss the interaction of this layer with quantum
error correction and algorithms. Consequently, we start our cal-
culation by assuming a channel with no error correction. Then,
we factor in the effects of decoherence and derive a maximum
wire length for our line of qubits.

Recall that data traverses the line of qubits withSWAP gates,
each of which takes approximately 1s to execute in the Kane
technology. Hence, to move quantum information over a space
of 60 nm requires 0.57 s. A single row of quantum bits has
latency

s (1)

where is the distance in qubits, or the physical dis-
tance divided by 60 nm. This latency can be quite large.
A short 1 m has a latency of 17 s. On the plus side, the
wire can be fully pipelined and has a sustained bandwidth of

s one million quantum bits per second (Mqbps).
This may seem small compared to a classical wire, but keep in
mind that quantum bits can enable algorithms with exponential
speedup over the classical case.

The number of error-free qubits is actually lower than this
physical bandwidth. Noise, or decoherence, degrades quantum
states and makes the true bandwidth of our wire less than the
physical quantum bits per second. Bits decohere over time, so
longer wires will have a lower bandwidth than shorter ones.

The stability of a quantum bit decreases with time (much like
an uncorrected classical bit) as a function . Usually, a nor-
malized form of this equation is used, , where in this new
equation is the number of operations andis related to the time
per operation and the original. As quantum bits traverse the
wire, they arrive with a fidelity that varies inversely with latency,
namely

fidelity (2)

The true bandwidth is proportional to the fidelity

bandwidth bandwidth fidelity (3)

Choosing a reasonable7 value of , we find the true
bandwidth of a wire to be

s
(4)

which for a 1 m wire is close to the ideal (999 983 qbps).
This does not seem to be a major effect, until you consider

an entire quantum algorithm. Data may traverse back and forth

7This value for� is calculated from a decoherence rate of10 per operation,
where each operation requires 1�s. It is aggressive, but potentially achievable
with phosphorus atoms in silicon [32], [44].
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Fig. 8. Architecture for a Quantum Wire: Solid double lines represent classical communication channels, while chained links represented a quantum swapping
channel. Single lines depict the direction in which the swapping channel is being used for transport.

across a quantum wire millions of times. It is currently esti-
mated [45] that a degradation of fidelity more than makes
arbitrarily long quantum computation theoretically unsustain-
able, with the practical limit being far higher [43]. This limit is
derived from the Threshold Theorem, which relates the deco-
herence of a quantum bit to the complexity of correcting this
decoherence (as discussed in detail, in Section V) [45]–[47].8

Given our assumptions about, the maximum theoretical wire
distance is about 6m.

4) Technology Independent Metrics:Our latency and band-
width calculations require slightly more device parameters. Let

be the time per basicSWAPoperation. Some technologies
will have an intrinsicSWAP, and others will require synthesizing
theSWAPfrom 3CNOToperations. Let be the decoherence rate,
which for small and is equivalent to the decoherence a
quantum bit undergoes in a unit of operation time . This
makes the latency of a swapping channel wire equal to

(5)

where the distance is expressed in the number of qubits.
The bandwidth is proportional to the fidelity or:

bandwidth (6)

This bandwidth calculation is correct so long as the fidelity
remains above the critical threshold required for
fault tolerant computation. Finally, the maximum distance of
this swapping channel is the distance when the fidelity drops
below the critical threshold

(7)

No amount of error correction will be robust enough to
support a longer wire, while still supporting arbitrarily long
quantum computation. For this, we need a more advanced
architecture. One obvious option is to break the wire into

8By “practical,” we mean without an undue amount of error correction. The
threshold theorem ensures that, theoretically, we can compute arbitrarily long
quantum computations, but the practical overhead of error correction makes the
real limit 2–3 orders of magnitude higher [43].

segments and insert “repeaters” in the middle. These quantum
repeaters are effectively performing state restoration (error
correction). However, we can do better, which is the subject of
the next section.

C. Long Wires: Teleportation Channel

In this section, we introduce an architecture for quantum com-
munication over longer distances in solid-state technologies,
shown in Fig. 8. This architecture makes use of the quantum
primitive of teleportation (described earlier in Section II-C). In
the next few sections, we provide a brief introduction to the core
components of this architecture.

Although teleportation and the mechanisms described in this
section are known in the literature, what has been missing is
the identification and analysis of which mechanisms form fun-
damental building blocks of a realistic system. In this section,
we highlight three important architectural building blocks: the
entropy exchange unit, theEPR generator, and thepurification
unit. Note that the description of theses blocks is quasi-classical
in that it involves input and output ports. Keep in mind, how-
ever, that all operations (except measurement) are inherently re-
versible, and the specification of input and output ports merely
provides a convention for understanding the forward direction
of computation.

1) Entropy Exchange Unit:The physics of quantum compu-
tation requires that operations are reversible and conserve en-
ergy. The initial state of the system, however, must be created
somehow. We need to be able to createstates. Furthermore,
decoherence causes qubits to become randomized—the entropy
of the system increases through qubits coupling with the ex-
ternal environment.

Where do these zero states come from? The process can be
viewed as one of thermodynamic cooling. “Cool” qubits are dis-
tributed throughout the processor, analogous to a ground plane
in a conventional CMOS chip. The “cool” qubits are in a nearly
zero state. They are created by measuring the qubit, and in-
verting if . The measurement process itself requires a source
of cold spin-polarized electrons (created, for example, using a
standard technique known as optical pumping [44], [48]).

As with all quantum processes, the measurement operation is
subject to failure but, with high probability, leaves the measured
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Fig. 9. Quantum EPR generator. Solid double lines represent classical
communication (or control), and single lines depict quantum wires.

Fig. 10. Quantum purification unit. EPR states are sufficiently regular that they
can be purified at the ends of a teleportation channel.

qubit in a known state from which s may be obtained. To ar-
bitrarily increase this probability (and make an extremely cold
zero state) we can use a technique calledpurification. Specif-
ically, one realization employs an efficient algorithm for data
compression [49], [50] that gathers entropy across a number of
qubits into a small subset of high-entropy qubits. As a result, the
remaining qubits are reinitialized to the desired pure,state.

2) EPR Generator:Constructing an EPR pair of qubits is
straightforward. We start with two state qubits from our en-
tropy exchange unit. A Hadamard gate is applied to the first of
these qubits. We then take this transformed qubit that is in an
equal superposition of a zero and a one state and use it as the
control qubit for aCNOT gate. The target qubit that is to be in-
verted is the other fresh qubit from the entropy exchange
unit. A CNOT gate is a qubit like a classicalXOR gate in that the
target qubit is inverted if the control qubit is in the state.
Using a control qubit of and a target qubit of
we end up with a two-qubit entangled state of :
an EPR pair.

The overall process of EPR generation is depicted in Fig. 9.
Schematically, the EPR generator has a single quantum input
and two quantum outputs. The input is directly piped from the
entropy exchange unit and the output is the entangled EPR pair.

3) EPR Purification Unit: The final building block we re-
quire is the EPR purification unit. This unit takes as input
EPR pairs, which have been partially corrupted by errors, and
outputs asymptotically perfect EPR pairs. is the entropy
of entanglement, a measure of the number of quantum errors
which the pairs suffered. The details of this entanglement pu-
rification procedure are beyond the scope of this paper but the
interested reader can see [51]–[53].

Fig. 10 depicts a purification block. The quantum inputs to
this block are the input EPR states and a supply ofqubits.
The outputs are pure EPR states. Note that the block is carefully
designed to correct only up to a certain number of errors; if

more errors than this threshold occur, then the unit fails with
increasing probability.

Fig. 8 illustrates how we use these basic building blocks and
protocols for constructing our teleportation channel. The EPR
generator is placed in the middle of the wire and “pumps” en-
tangled qubits to each end (via a pipelined swapping channel).
These qubits are then purified such that only the error-free
qubits remain. Purification and teleportation consume zero-state
qubits that are supplied by the entropy exchange unit. Finally,
the coded-teleportation unit transmits quantum data from one
end of the wire to the other using the protocol described in
Section II-C. Our goal now is to analyze this architecture and
derive its bandwidth and latency characteristics.

D. Analysis of the Teleportation Channel

The bandwidth of a teleportation channel is proportional to
the speed with which reliable EPR pairs are communicated.
Since we are communicating unreliable pairs, we must purify
them, so the efficiency of the purification process must be taken
into account. Purification has an efficiency roughly proportional
to the fidelity of the incoming, unpurified qubits [49]

purification fidelity (8)

Entropy exchange is a sufficiently parallel process that we as-
sume enough zero qubits can always be supplied. Therefore, the
overall bandwidth of this long quantum wire is

s
(9)

which for a 1- m wire is 999 967 qbps. Note that this result is
less than for the simple wiring scheme, but the decoherence in-
troduced on the logical qubits is only . It is this latter
number that does not change with wire length which makes
an important difference. In the previous short-wire scheme we
could not make a wire longer than 6m. Here we can make a
wire of arbitrary length. For example, a 10-mm-long wire has a
bandwidth of 716 531 qbps, while a simple wire has an effective
bandwidth of zero at this length (for computational purposes).

The situation is even better when we consider latency. Unlike
the simple wire, the wire architecture we propose allows for the
precommunication of EPR pairs at the sustainable bandwidth of
the wire. These precommunicated EPR pairs can then be used
for transmission with a constant latency. This latency is roughly
the time it takes to perform teleportation, or s. Note
that this latency is much improved compared with the distance-
dependent simple wiring scheme.

Using the same constants defined above for the swapping
channel, we can generalize our analysis of teleportation chan-
nels. The latency is simply

(10)

The bandwidth is

bandwidth (11)

Unlike the short wire, this bandwidth isnot constrained by
a maximum distance related to the Threshold Theorem since
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teleportation is unaffected by distance. The communication of
EPR pairs before teleportation, however, can be affected by dis-
tance, but at a very slow rate. While purification must discard
more corrupted EPR pairs as distance increases, this effect is
orders-of-magnitude smaller than direct data transmission over
short wires and is not a factor in a practical silicon chip of up to
tens of millimeters on a side.

V. FAULT-TOLERANT ARCHITECTURE AND

GEOMETRIC CONSTRAINTS

We turn now to a keysystemrequirement for quantum com-
puting. The ability to tolerate and dynamically handle internal
faults while preserving the integrity of the computation. Unlike
present classical computing systems, where the gate failure
probability is extremely low (mosfets in CMOS fail with prob-
ability lower than per operation), current and projected
quantum gates have to probabilities of
failure per operation,

Nevertheless, as was mentioned in the introduction, a main
result in the field is that by using a construction involving fine-
grained fault tolerance, an arbitrarily reliable quantum informa-
tion processor can be efficiently constructed using unreliable
components [45].

In this section, we study geometric constraints on scalable,
quantum fault-tolerant construction. Key to our study of
quantum wires was a tradeoff between the geometric design of
the system and the noise generated during operation: shrinking
the wires exposes quantum effects in conductivity and voltage,
and lowers the fidelity of the operations performed on the qubit.
Allocating more space allows us to reduce the noise; however,
there is a different way to use this spatial resource. Instead of
making larger gates or wires, space can alternatively be used to
perform computations using a fault-tolerant quantum circuit,
employing redundant, faulty quantum gates. These two strate-
gies for achieving reliable computation, either at the cost of
larger devices, or at the cost of more area for redundant circuits,
present different tradeoffs between space and reliability.

In the remainder of this section, we present an explicit analyt-
ical mathematical formula capturing this tradeoff, and demon-
strate some global geometric bounds on fault-tolerant quantum
computation. We begin in Section V-A with an overview of
the fault tolerance, which is then described in detail in terms
of quantum error correction (Section V-B); how to compute
on encoded data (Section V-C); and how to do so recursively
(Section V-D). We then introduce our reliability model in Sec-
tion V-E, and describe how geometry is involved. This, then,
leads to our main result of this section, in Section V-F.

A. Overview of Quantum Fault-Tolerant Strategy

In order for a system to operate reliably despite a partial
corruption of the data it processes, it must introduce a certain
amount of redundancy in the form of an error-correction code.
This protection can only be effective if the redundancy is present
at all times in the computational process. All operators need
to be consistently modified as to compute directly on encoded
data. The choice of a code is dictated by three criteria. First,

it should minimize the complexity overhead due to the afore-
mentioned modification of the circuit. Second, the concentration
of redundancy should be focused around strategic operators,
whose erroneous behavior is likely to occur and critical for the
computation. Third, and this is a general requirement in coding
theory, the code should raise a syndrome allowing an identifi-
cation or/and correction of the expected errors. The freedom in
encoding differs in a quantum and in a classical context. The
no-cloning theorem forbids any data duplication in a quantum
system. On the other hand, coding and decoding schemes might
be drastically sped up by the use of quantum resources such as
entanglement.

It is possible to develop a fault-tolerant strategy for quantum
systems based on the recursive encoding of states by concate-
nation of quantum error-correction codes (see Section V-D,
[2], and [54]). The main result we build upon is the following:
A quantum circuit containing error-free gates can be
simulated with a probability of failure of at most using

imperfect gates which fail with proba-
bility as long as , where is a constant threshold
that is independent of . This remarkable result, theThreshold
Theorem[45], is achieved by three steps: 1) using quantum
error-correction codes (Section V-B); 2) performing all com-
putations on encoded data, usingfault tolerant procedures
(Section V-C); and 3) recursively encoding until the desired
reliability is obtained (Section V-D). All of these results are
from prior literature [2], [45], [54]–[56], but we describe them
here to make our contributions clearer in later sections.

B. Quantum Error Correction

The only errors which can occur to a classical bit are bit-flips
and erasures, which can be modeled as conditional and random
NOT gates. Quantum bits suffer more kinds of error, because of
the greater degree of freedom in their state representation; sur-
prisingly, however, there are general strategies for reducing the
universe of possible quantum errors to only two kinds: bit-flips
(random gates) and phase-flips (randomgates). Classical
error-correction codes only take into account bit flip errors and,
thus, are insufficient for correcting quantum data. Furthermore,
quantum states collapse upon measurement, so strategies must
be employed for determining errors without actually measuring
encoded data.

Classical error correction relies upon distributingbits
of information across bits and ensuring enough
redundancy to recreate the original information. Because of the
no-cloning theorem, quantum information cannot be simply
duplicated. Instead, redundancy is achieved through entangled
states with known properties. For example, a single logical
qubit, can be represented using three physical
qubits, as the state . A bit flip error on the first
(left-most) qubit would turn this into ; this
error can be detected by computing theparity of each pair of
qubits, and leaving the result in an extra qubit called anancilla.
The three parities give theerror syndrome, uniquely locating
any single bit-flip error. Crucially, this strategy reveals nothing
about the coefficients and , since the parities cannot
distinguish between and or any single bit-flip
84
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Fig. 11. MeasuringZ , the phase difference between and .

Fig. 12. Syndrome measurement for a 3-qubit code. The meter boxes indicate
measurement, and the double lines indicate classical communication controlling
the application of theZ operator.

TABLE I
PHASE CORRECTION FORA 3-QUBIT CODE

version of the two three-qubit strings. By measuring parities,
errors can be detected without collapsing encoded data.

Correcting phase flips is achieved by measuring differences
in phase by using a circuit like the one in Fig. 11. This works
by using a Hadamard gate to transform phase flips into bit flips.
Parities are then measured as before, the results stored in ancilla
qubits, and then the qubits are transformed back into their orig-
inal basis. Fig. 12 shows how a phase error syndrome can be
computed and a corresponding correction procedure applied to
correct the error, following the specification of Table I.

A quantum code which encodes one qubit and allows any
single bit-flip or phase-flip error to be corrected uses the en-
coding , where the logical zero and one qubits
are

This nine qubit code, discovered by Peter Shor [55], is also
known as the code, in the notation , where is
the number of physical qubits,is the number of logical qubits
encoded, and is the quantum Hamming distance of the code.
A code with distance is able to correct errors.

C. Computing on Encoded Data

The nine qubit code has a remarkable property that illustrates
a key requirement for fault tolerance: applying agate to each
of the nine qubits takes to and vice versa. It is the
same as applying a logical operator9 to the encoded qubit!
Similarly, can be performed by applying an operator to
each qubit.

In this paper, we employ Steane’s code [57]. The
code is the smallest code that allows direct fault-tol-

erant application of nearly all the operators in the universal set
of operators discussed in Section II-B, namely the subset {,

, , CNOT}. The gate can also be performed fault-tolerantly,
using a slightly more involved procedure. Thus, universal com-
putation is possible without requiring that the data be decoded.

Merely computing on encoded data is not sufficient, however;
one additional step is required, which is frequent error correc-
tion. Because all gates used in this task are assumed to be sub-
ject to failure, this must be done in a careful manner, such that
no single gate failure can lead to more than one error in each
encoded qubit block. Such constructions are known asfault tol-
erant procedures, and the impact of this requirement on our
study is twofold: 1) no single operation may cause multiple fail-
ures and 2) measurement errors must not be allowed to propa-
gate excessively. To achieve 1), no two encoding qubits are al-
lowed to both interact directly with a third qubit. Instead, the
“third” qubit is replaced with acat state(a generalization of
an EPR pair), , that has itself been
verified. Cat states are used because they do not transmit errors
throughCNOTgates. To achieve 2), measurements are performed
in a multiple fashion. While it is not possible to copy a value be-
fore measuring, it is possible to form a three-qubit state, similar
to the three-qubit bit-flip encoding (Section V-B), where all of
the qubits should measure to the same value—if one of the mea-
surements differs, it is assumed to be in error. The implications
are explored in detail in later examples.

Any logical operator may be applied as a fault tolerant proce-
dure, as long as the probability,, of an error for a physical oper-
ator is below a certain threshold, , where is determined by
the implementation of the error-correction code. For the Steane

code, is about . The overall probability of error for
the logical operator is . That is, at some step in the applica-
tion of the operator, and subsequent error correction, two errors
would have to occur in order for the logical operator to fail.

D. Recursive Error Correction

A very simple construction allows us to tolerate additional
errors. If a logical qubit is encoded in a block ofqubits, it is
possible to encode each of thosequbits with an -qubit code
to produce an encoding. Such recursion, orconcatenation,
of codes can reduce the overall probability of error even further.
For example, concatenating the code with itself gives
a code with an overall probability of error of
(see Fig. 13). Concatenating it times gives , while
the size of the circuit increases by and the time complexity
increases by , where is the increase in circuit complexity for
a single encoding, andis the increase in operation time for a

9The overscore denotes an operator on a logical qubit: a logical operator.
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Fig. 13. Tree structure of concatenated codes.

single encoding. For a circuit of size , to achieve a desired
probability of success of , must be chosen such that [2]

(12)

The number of operators required to achieve this result is

(13)

E. Reliability Versus Resources

Given recursive codings, we can, in principle, reduce the
probability of error to arbitrarily low levels. Another way to
view this is that there is a close relationship between the spatial
resources used by a gate and its reliability. The first part of
this paper pointed out that (at least in the Kane model), an
essential limitation comes from the rise of quantum effects in
the wires driving the fields used to control individual qubits
and their interactions. As the dimensions of the wires shrink,
their current becomes quantized, leading to an imperfect field
profile around the controlled qubit. This reduces the fidelity of
the quantum gate performed on the qubit. This observation is
very interesting, and general. Fundamentally,classical control
circuitry becomes unreliable at small length scales, but the
reliability increases with area used.

This failure behavior can be modeled in the following manner.
Assuming we have a quantum circuit consuming an areaon a
layout, we may let be its failure probability. The argument
above justifies the assumption thatis a decreasing function
of , and is given generically by a graph similar to Fig. 14.
For example, it is likely decreases exponentially, as

, or for statistical errors, as a complimentary error function,
, for some technology-dependent parameter

.

F. Criteria for the Efficiency of Fault Tolerance

Given our model for failure probability as a function of area,
, and the resources required for the fault-tolerant scheme

using recursive encoding, from Section V-D, we can now
analytically express the tradeoff between the area required to
achieve a system of some specified reliability. We consider two
approaches. The first is simply to allocate a large area, such
that is as small as desired. The alternative is to apply the
fault-tolerant construction using elementary building blocks
with a small area , which fails with higher probability ,
requiring an area of .

Fig. 14. Relation between circuit reliability and area required, showing the
general decreasing trend expected forp(A), and achievable configurations using
either of two approaches, requiring areaA , orA , to achievep(A) < ".

Suppose we want to obtain a circuit whose failure probability
is bounded by . The first approach involves using a large
area, . The second approach utilizes a recursive,
fault tolerant construction, which makes sense if the component
area is chosen such that , that
is, the component failure probability is smaller than the failure
probability threshold tolerated by the error-correction code. The
overall area required is then , where the recursion
level is determined by the solution to (12),

(14)

The fault tolerant construction will be more efficient if and only
if or, equivalently, if there exists an such that

(15)

(16)

This is an interesting, and nonlinear inequality; solutions may be
visualized using Fig. 14. The existence of an area efficient fault-
tolerant implementation depends on the structure of the function

. If decreases slowly enough with the area (as inverse
power of the area for instance), then such an implementation
exists.

Fault tolerance through recursive encoding can drastically
improve the reliability of quantum circuits, and perhaps even in
an error efficient manner. (16) gives a method for determining
the appropriate redundancy in the design of a quantum circuit
from the standpoint of area efficiency. The possibilities offered
by this strategy are far from being entirely explored. Some so-
lutions to this equation are presented elsewhere [58], but other
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approaches, using different fault-tolerant schemes (such as non-
recursive constructions), or quantum resource assisted fault tol-
erance [59], may lead to modifications of this bound. In gen-
eral, however, the concept expressed by (16) will remain: fine-
grained fault tolerant circuit constructions can provide valuable
means for resource efficiency tradeoffs in future quantum archi-
tectures.

G. Layout of Error-Correction Circuits

While our high-level analysis shows that recursive error cor-
rection has desirable efficiency properties, we shall see that the
details of implementing such schemes will reveal some key is-
sues. The most important of these issues is the need for reliable,
long-distance communication.

Given the pitch-matching constraints of linearity with infre-
quent junctions from IV-B-1, there are still several ways to lay
out physical and logical qubits. Optimally, qubits should be ar-
ranged to minimize communication overhead.

In a fault tolerant design, the main activity of a quantum com-
puter is error correction. To minimize communication costs,
qubits in an encoding block should be in close proximity. As-
suming that the distance between junctions is greater than the
number of qubits in the block, the closest the qubits can be is in
a straight line.

A concatenated code requires a slightly different layout. Error
correction is still the important operation, but the logical qubits
at all but the bottom level of the code are more complicated. For
the second level, the qubits are themselves simple encodings,
and so can be laid out linearly. However, we want these qubits in
as close proximity to each other as possible, for the same reasons
we wanted the qubits in the simple code close. Hence, we need
to arrange the bottom level as branches coming off of a main
bus. Similarly, the third level would have second-level branches
coming off of a main trunk, and so on for higher levels.

In the next two sections, we describe a basic error-correction
algorithm and its recursive application, focusing on illustrating
realistic space and time costs such as those described above,
imposed by 2-D implementation technologies.

VI. ERROR-CORRECTIONALGORITHMS

A. Code

Error correcting using the code consists of measuring
the error syndrome parities of the encoding qubits in various
bases, and correcting the codeword based on the measured syn-
drome. As shown in Fig. 15, the qubits are rotated to the different
measurement bases with Hadamard gates. Parity is then mea-
sured in much the same way as with a classical code, using two-
qubit CNOT operators acting asXORs. Conceptually, the parity
can be measured in the same way as the three-qubit code in
Section V-B, gathering the parity on ancilla s. To perform a
fault-tolerant measurement, however, a cat state is used in place
of a . Fig. 15 shows all six parity measurements using cat
states. Not shown are cat-state creation and cat-state verifica-
tion.

A parity measurement consists of the following steps.

1) Prepare a cat state from four ancillae, using a Hadamard
gate and threeCNOT gates.

Fig. 15. Measuring the error syndrome for the[[7; 1; 3]] error-correction code.

2) Verify the cat state by taking the parity of each pair of
qubits. If any pair has odd parity, return to step 1. This
requires six additional ancillae, one for each pair.

3) Perform aCNOTbetween each of the qubits in the cat state
and the data qubits whose parity is to be measured (See
Fig. 15).

4) Uncreate the cat state by applying the same operators used
to create it in reverse order. After applying the Hadamard
gate to the final qubit, , that qubit contains the parity.

5) Measure :
A With , create the three-qubit state,

by using as the control for two
CNOT gates, and two fresh ancillae as the targets.

B Measure each of the three qubits.
6) Use the majority measured value as the parity of the cat

state.

Each parity measurement has a small probability of introducing
an error, either in the measurement, or in the data qubits. Hence,
the entire syndrome measurement must be repeated until two
measurements agree. The resulting syndrome determines
which, if any, qubit has an error, and which, , or operator
should be applied to correct the error. After correction, the
probability of an error in the encoded data is .

For the Steane code, each parity measurement
requires twelve ancillae—four for the cat state to capture the
parity, six to verify the cat state, and two additional qubits to
measure the cat state. The six parity measurements are each
performed at least twice, for a minimum of 144 ancillae to
measure the error syndrome!

The minimum number of operations required for an error
correction is 38 Hadamards, 288CNOTs, and 108 measure-
ments. With parallelization, the time required for the operations
is , where is the time required for a single
qubit operator, is the time required for aCNOT, and is the
time required for a measurement. (We assume all but the last
measurement are performed in parallel with other operations.)

B. Concatenated Codes

The two-level concatenated code is mea-
sured in the same way as the code, except the qubits
are encoded, and each parity measurement uses a 12-qubit cat
state.10

10In the [[7; 1; 3]] code, anX consists of anX on each qubit. The parity of
the logical qubit is the same as that of the physical qubits. Since a logical qubit
is a valid codeword, a four-qubit subset of the qubits has even parity, and the
remaining three qubits has the same parity as the logical qubit.
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Fig. 16. “Two-rail” layout for the three-qubit phase-correction code. The schematic on the left shows qubit placement and communication, whereD s indicate
data qubits, andA s are cat-state ancillae. The column ofD s andA s form a swapping channel and can also interact with the data and cat-state ancilla. The open
qubit-swapping channel at the bottom brings in fresh ancillae, and removes used ancillae. The same layout is shown as a quantum circuit on the right, with the
operations required to create and verify an ancillary cat state, and to measure the parity of a pair of data qubits.

The error syndrome measurement is analogous to the singly-
encoded case, except that the lower-level encodings
must be error corrected between the following operations.

1) Prepare 12 ancillae in a cat state.
2) Verify the cat state (66 ancillae for pairwise verification.)
3) PerformCNOTs between the cat state qubits and the qubits

encoding the data qubits whose parity is to be measured.
4) Error correct the four logical data qubits.
5) Uncreate the cat state, and measure the resulting qubit.
As in the singly-encoded case, each syndrome measurement

must be repeated, in this case at least four times. The resulting
syndrome determines which, if any, logical qubit has an error.
The appropriate , , or operator can be applied to correct
the error. After the correction operator is applied to a logical
qubit, that qubit must be error-corrected. The probability of an
error in the encoded data is after correction.

Each parity measurement requires 154 Hadamards, 1307
CNOTs, and 174 measurements, in time ,
using the same assumptions as for the nonconcatenated case.

Of course, the code can be concatenated more than
once. The error-correction procedure for higher levels of con-
catenation is similar to the above. The key is that probability of
error for each parity measurement must be , for a code
concatenated times.

VII. COMMUNICATION COSTS ANDERRORCORRECTION

In this section, we model the communication costs of the
error-correction algorithms of Section VI, under the constraint
of having only near neighbor interactions. While it has previ-
ously been proven that under such constraints, the Threshold
Theorem can still be made to apply (given suitably reduced
failure probability thresholds) [60], a detailed study was not per-
formed with layout constraints on quantum error-correction cir-
cuits. We first study the growth rate of errors when usingSWAP

operations. Second, we analyze quantum teleportation as an al-
ternative toSWAP operations for long-distance communication.
Finally, we show that teleportation is preferable both in terms of

distance and in terms of the accumulating probability of corre-
lated errors between redundant qubits in our codewords.

A. Error-Correction Costs

The error-correction algorithms in the previous section are
presented for the ideal situation, where any qubit can interact
with any other qubit. Usually, qubits can only interact with their
near neighbors, so before applying a two-qubit operator, one of
the operand qubits must be moved adjacent to the other.

One of the easiest ways to move quantum data is to use the
SWAPoperator. By applyingSWAPs between alternating pairs of
qubits, the values of alternating qubits are propagated in one
direction, while the remaining qubit values are propagated in the
reverse direction. This swapping channel can be used to supply

ancillae for the purpose of error correction, remove “used”
ancillae, and allow for qubit movement. Fig. 16 illustrates this
for the three-qubit example, using two columns of qubits, one
for the data and cat-state qubits, and one for communication.

The same layout can be applied to the code, giving a
minimum time for an error-correction parity check of

(17)

where
time for cat-state creation;
time for cat-state verification;
time to entangle the cat state with the parity qubits;
time to uncreate the cat state; and
time to perform a triply-redundant measurement.

For in the ideal, parallel, “sea-of-qubits” model,
, , , and
, where

time required for a single-qubit operator;
time required for aCNOT operator;
time required for aSWAP operator;
time required for redundant measurement.
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Fig. 17. Schematic layout of the H-tree structure of a concatenated code. The
branches labeledjD i are for logical data qubits, and consist of two rails of
eleven qubits each—seven qubits for data and four for ancillae. The branch
labeledjA i is for creating, verifying, and uncreating the cat state.

If communication by swapping is used

(18)

(19)

(20)

(21)

In the Kane model, . In-
cluding parallelism between parity measurements, the minimum
time for a syndrome measurement is

Since measurement is fully parallelizable, these times assume
that there are enough measurement units to perform measure-
ment in parallel with the other operations in the error-correction
cycle.

B. Multilevel Error Correction

For the singly concatenated code, the data movement in the
upper level is more complicated, although (17) still holds. The
first step in the error correction is creating and verifying the
12-qubit cat state. Fig. 17 shows how the ancillae “branches”
are incorporated into the data branches. After verification, the
cat state is moved to the appropriate data branches, where it is
CNOTed with the data qubits. The cat state is then moved back
and uncreated, while the data branches are error-corrected. Fi-
nally, a Hadamard is applied to the last cat-state ancilla, which
is then redundantly measured. The layout in Fig. 17 is not nec-
essarily optimal.

For concatenated with itself times

(22)

(23)

(24)

(25)

(26)

(27)

where the subscript indicates the level of encoding, is the
number of qubits in the cat state at level, is the branch
distance between logical qubits at level, is the minimum
number of qubits between two branches for a given architec-
tural model, and is the number of physical qubits in the non-
concatenated code.

With communication by swapping channel, theSWAP oper-
ator becomes very important. In the sea-of-qubits model,SWAPs
are not required. In the model described above,SWAPs account
for over 80% of all operations.

C. Avoiding Correlated Errors

An important assumption in quantum error correction is that
errors in the redundant qubits of a codeword are uncorrelated.
That is, we do not want one error in a codeword to make a second
error more likely. To avoid such correlation, it is important to try
not to interact qubits in a codeword with each other.

Unfortunately, we find that a 2-D layout cannot avoid indirect
interaction of qubits in a codeword. At some point, all the qubits
in a codeword must be brought to the same physical location in
order to calculate error syndromes. In order to do this, they must
pass through the same line of physical locations. Although we
can avoid swapping the codeword qubits with each other, we
cannot avoid swapping them with some of the same qubits that
flow in the other direction.

For concreteness, if two qubits of codewordand both
swap with an ancilla going in the opposite direction, there
is some probability that and will become correlated with
each other through the ancilla. This occurs if bothSWAPs ex-
perience a partial failure. In general, ifis the probability of a
failure of aSWAPgate, the probability of an error from swapping
a logical qubit is

where is the number of qubits between branches at level,
and the higher order terms are due to correlation between the
qubits. From this form, it is clear that correlated errors are dom-
inated by uncorrelated errors, when .

By calculating the number of basic computation and commu-
nication operations necessary to use teleportation for long-dis-
tance communication, we can quantify when we should switch
from swapping to teleportation in our tree structure. Fig. 18 il-
lustrates this tradeoff. We can see that for , teleportation
should be used when .

D. Teleportation

Table II lists the number ofSWAPoperations required to move
an unencoded qubit from one level-code word to the adjacent
code word for different minimum branch distances, as well as
the total operations to teleport the same qubit. Since a teleporta-
tion channel precommunicates EPR pairs, it has a fixed cost. To
use teleportation for our circuit, we must evaluate the number
of computation and communication operations within the tele-
portation circuit. By comparing this number of operations with
the swapping costs from the previous section, we can decide at
what level of the tree to start using teleportation instead of
swapping for communication.
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Fig. 18. Cost of teleportation compared to swapping. TheB-values chosen
illustrate break-even points for different levels of recursion.

TABLE II
COMPARISON OF THECOST OFSWAPPING AN ENCODED QUBIT TO THE

COST OFTELEPORTING IT. THE B-VALUES ARE THE DISTANCE

BETWEEN ADJACENT QUBITS

Teleportation has another advantage, which is beyond the
scope of this study. By suitably modifying the EPR pairs,
teleportation can be used to perform operations at a distance
[59]. It does not eliminate the need for error correction, and
correctly modifying the EPR pairs has its own costs. This is an
interesting area for future research.

VIII. SYSTEM BANDWIDTH

Our goal has been to design a reliable, scalable quantum com-
munication layer that will support higher-level quantum error
correction and algorithms functioning on top of this layer. A key
issue for future evaluation, however, is that the lower latency of
our teleportation channel actually translates to an even higher
bandwidth when the upper layers of a quantum computation are
considered. It is for this reason that long wires should not be
constructed from chained swapping-channels and quantum “re-
peaters.”

The intuition behind this phenomenon is as follows. Quantum
computations are less reliable than any computation technology
that we are accustomed to. In fact, quantum error correction con-
sumes an enormous amount of overhead both in terms of redun-
dant qubits and time spent correcting errors. This overhead is
so large that the reliability of a computation must be tailored
specifically to the run length of an algorithm. The key is that,
the longer a computation runs, the stronger the error correction
needed to allow the data to survive to the end of the compu-
tation. The stronger the error correction, the more bandwidth

consumed transporting redundant qubits. Thus, lower latency
on each quantum wire translates directly into greater effective
bandwidth of logical quantum bits.

IX. CONCLUSION

Quantum computation is in its infancy, but now is the time
to evaluate quantum algorithms under realistic constraints and
derive the architectural mechanisms and reliability targets that
we will need to scale quantum computation to its full potential.
Our work has focused upon the spatial and temporal constraints
of solid-state technologies.

Building upon key pieces of quantum technology, we have
provided an end-to-end look at a quantum wire architecture. We
have exploited quantum teleportation to enable pipelining and
flexible error correction. We have shown that our teleportation
channel scales with distance and that swapping channels do not.
Finally, we have discovered fundamental architectural pressures
not previously considered. These pressures arise from the need
to colocate physical phenomena at both the quantum and clas-
sical scale. Our analysis indicates that these pressures will force
architectures to be sparsely connected, resulting in coarser-grain
computational components than generally assumed by previous
quantum computing studies.

At the systems level, the behavior of wires becomes a cru-
cial limiting factor in the ability to construct a reliable quantum
computer from faulty parts. While the Threshold Theorem al-
lows fault-tolerant quantum computers to be realized in prin-
ciple, we showed that in practice many assumptions must be
carefully scrutinized, particularly for implementation technolo-
gies that force a 2-D layout scheme for qubits and their inter-
connects. Our analysis suggests that, rather counterintuitively,
fault-tolerant constructions can be more resource efficient than
equivalent circuits made from more reliable components, when
the failure probability is a function of resources required. And
a detailed study of the resources required to implement recur-
sive quantum error-correction circuits highlights the crucial role
of qubit communication, and in particular, the dominant role of
SWAPgates. We find that at a certain level of recursion, resources
are minimized by choosing a teleportation channel instead of the
SWAP. It is likely that the reliability of the quantumSWAP oper-
ator used in short-distance communication will be the dominant
factor in future quantum architecture system reliability.
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Determining classically whether a coin is fair (head on one side,
tail on the other) or fake (heads or tails on both sides) requires an
examination of each side. However, the analogous quantum
procedure (the Deutsch–Jozsa algorithm1,2) requires just one
examination step. The Deutsch–Jozsa algorithm has been real-
ized experimentally using bulk nuclear magnetic resonance
techniques3,4, employing nuclear spins as quantum bits (qubits).
In contrast, the ion trap processor utilises5 motional and elec-
tronic quantum states of individual atoms as qubits, and in
principle is easier to scale to many qubits. Experimental advances
in the latter area include the realization of a two-qubit quantum
gate6, the entanglement of four ions7, quantum state engineering8

and entanglement-enhanced phase estimation9. Here we exploit
techniques10,11 developed for nuclear magnetic resonance to
implement the Deutsch–Jozsa algorithm on an ion-trap quantum
processor, using as qubits the electronic and motional states of a
single calcium ion. Our ion-based implementation of a full
quantum algorithm serves to demonstrate experimental pro-
cedures with the quality and precision required for complex
computations, confirming the potential of trapped ions for
quantum computation.

Laser-cooled trapped ions are ideally suited to the investigation
and implementation of quantum information processing12 because
they exhibit these properties: (1) localization of the single particle to
less than a few tens of nanometres13–15; (2) control of the motional
state down to the zero point of the trapping potential8,16; (3) a high
degree of isolation from the environment and thus a very long time
available for manipulations of their quantum state17; and (4) the
ability to detect the ion’s quantum state with high precision by the
electron shelving technique18. The same properties make single
trapped ions well suited for storing quantum information in
long-lived internal states19.

In our experiment we implement the Deutsch–Jozsa algorithm
on a quantum processor based on a single trapped 40Caþ ion which
is driven by laser pulses. A compensation technique for frequency
shifts allows us to achieve the required control over the optical
phases of the pulses20. Following a recent proposal10, we also
successfully combine ion-trap techniques for quantum state

manipulation with the method of composite pulses11 adopted
from NMR technology. Thus we achieve complete control over
the ion’s motional and electronic state. The implementation of a
quantum algorithm on an ion-trap processor, which we demon-
strate here, serves as a test of the suitability of these techniques,
particularly in view of their scalability towards a larger number of
qubits.

To illustrate the Deutsch–Jozsa algorithm, we represent the four
possible coins by four functions f that map one input bit (a ¼ 0,1
standing for ‘which side of the coin’) onto one output bit
( f(a) ¼ 0,1 standing for ‘head or tail’). These functions can be
divided into two constant functions f1(a) ¼ 0, f2(a) ¼ 1, represent-
ing the fake coins, and two balanced functions f 3ðaÞ ¼ a; f 4ðaÞ ¼
NOT a; which stand for the fair coins (see Table 1). An unknown
function is characterized as constant or balanced by evaluating
f ð0Þ%f ð1Þ which yields 0 (or 1) for a constant (or balanced)
function (% denotes addition modulo 2). This evaluation classically
requires two function calls, whereas the Deutsch–Jozsa quantum
algorithm allows us to obtain the desired information with a single
evaluation of the unknown f. The circuit diagram shown in Fig. 1
describes the implementation of the Deutsch–Jozsa algorithm with
basic quantum operations21. The two qubits required for the
Deutsch–Jozsa algorithm are encoded in the electronic state and
in the phonon (vibrational quantum) number of the axial vibration
mode of the single trapped ion (see Fig. 2). Qubit operations are
realized by applying laser pulses on the ‘carrier’ or the ‘blue side-
band’ of the electronic quadrupole transition as described in the
Methods.

In general, a quantum algorithm is implemented by a sequence of
such pulses on the carrier and sideband, but two major sources of
error have to be overcome. First, as the simplest algorithms already
require several pulses, we need to control precisely the relative
optical phases of these pulses or, at least, to keep track of them such
that the required pulse sequences lead to the desired operations. In
particular, this requires the precise investigation and subsequent
compensation of all phases introduced by the light shifts of the
exciting laser beams. These light shifts arise as we have to drive

Table 1 Truth table for the four possible functions

Constant functions Balanced functions

Case 1 Case 2 Case 3 Case 4
.............................................................................................................................................................................

f(0) 0 1 0 1
f(1) 0 1 1 0
w%f(a) ID NOT CNOT Z-CNOT
.............................................................................................................................................................................

The third line is the effect of the logic function Uf n
on the qubit w: ID denotes the identity, CNOT is a

controlled NOToperation, Z-CNOT is a zero controlled NOT, and the control bit in cases 3 and 4
is the input bit a.

Figure 1 Quantum circuit for implementing the Deutsch–Jozsa algorithm with basic

quantum operations. The upper line shows the input qubit jal (‘which side of the coin’

information), the lower line an auxiliary working qubit jwl (corresponding to the channel

on which the answer is provided). The rotations R y (see Methods for details) create

superpositions jal1 ¼ ðj0lþ j1lÞ=
ffiffiffi
2
p

and jw l1 ¼ ðj0l 2 j1lÞ=
ffiffiffi
2
p

from the inputs

jal0 ¼ j0l and jw l0 ¼ j1l: The box U f n
represents a unitary operation specific to each of

the functions f n, which applies f n to a and adds the result to w modulo 2. Table 1 lists

the logic operations required for transforming jwl into jw%f nðaÞl: The output of the box

is ja;w l2 ¼ ðj0;w in%f nð0Þlþ j1;w in%f nð1ÞlÞ=
ffiffiffi
2
p
: Up to an overall sign jwl is left

unchanged, but the positive superposition ðj0lþ j1lÞ=
ffiffiffi
2
p

on jal is transformed into a

negative superposition jal2 ¼ ðj0l 2 j1lÞ=
ffiffiffi
2
p

if f is balanced; otherwise it is

unchanged. After the final rotations R ȳ, a measurement on jal is performed with

result jal3 ¼ either j0l or j1l. Because of the sign change in jal2 if f is balanced,

jk1 j al3j
2
¼ f nð0Þ%f nð1Þ; that is, jal3 yields the desired information whether the

function fn is balanced or constant. The working qubit w resumes its initial value

jw l3 ¼ jwl0 ¼ j1l:
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sideband transitions (which couple much more weakly than carrier
transitions) with high laser intensity. We cancel the unwanted light
shifts with an additional off-resonant laser field, inducing a light
shift of equal strength but opposite sign20.

Second, a peculiarity of encoding a qubit within the ion’s
motional state is that we must ensure that the system does not
leave the computational subspace {jS;0zl; jD;0zl; jS;1zl; jD;1zlj}
(for notation, see Methods). The main problem here is that owing to
the degenerate spectrum of a harmonic oscillator, sideband pulses
work simultaneously on all levels. Therefore any population in
jS;1zl prior to a blue sideband pulse will leave the computational
subspace. To avoid this, we use composite pulses, that is, a sequence
of carrier and/or sideband pulses that—up to an overall phase—
constrain the system to the subspace10. We adopted this method
from NMR technology11. The translation of the Deutsch—Jozsa
algorithm into composite pulses acting on the two qubits is
described in the Methods.

For our experiments we load Ca ions into a linear Paul trap with
axial frequency qz < 2p £ 1:7 MHz: Figure 2 shows the relevant
optical transitions used for laser cooling, state preparation and
detection. Each experimental cycle starts with Doppler cooling for
2 ms on the S1/2 ! P1/2 transition yielding average vibrational
quantum numbers �nz < 20: Further cooling of the axial motion
to a ground state occupation of more than 99% is achieved by about
12 ms of sideband cooling8. To initalize the quantum processor in
j01l¼ jS;0zl; we optically pump the ion to the S1/2 ðm¼21=2Þ
state. Manipulations of both qubits are achieved by pulses from a
stabilized titanium–sapphire laser (linewidth , 100 Hz, relative
intensity noise , 0.02r.m.s.) emitting at the S1/2$D5/2 transition
wavelength near 729 nm. In order to switch between R and Rþ

rotations we shift the laser frequency with an acousto-optical
modulator. The phase of the light field is switched via the phase
of the radio frequency driving the acousto-optical modulator with
an inaccuracy of less than 0.06 rad. Using the electron shelving
technique8 we detect the ion’s electronic state (S 1/2 or D5/2) with a
fidelity of 99.9% within a detection time of 3 ms.

We measure the fidelity of the implemented algorithm by
repeating several thousand times the experimental sequence of
cooling, initialization of both qubits, laser pulses for the algorithm
and final measurement. Table 2 displays the achieved results. For
cases 1, 3 and 4, the fidelity of identifying the function’s class with a
single measurement exceeds 97%; for case 2, it is above 90%. Note

that to decide whether the function is constant or balanced, only
jk1 j al3j

2
at the end of the algorithm needs to be measured. We also

verified that the working qubit jwl is reset to its initial value by
reading out the phonon number through a measurement of the
Rabi frequency of the blue sideband transition8,16.

The measured output of the algorithm shown in Table 2 slightly
deviates from the ideal result. We identified the major sources for
this infidelity and attribute it mainly to decoherence of the laser-
atom phase, in particular caused by ambient magnetic field fluctu-
ations22. Furthermore, in the implementation of case 2, which
requires the most complex pulse sequence, we used higher laser
power of the sideband transitions in order to speed up the algorithm
and thus reduce the sensitivity to phase decoherence. This in turn
caused off-resonant carrier excitation which limited the obtainable
fidelity.

A major advantage of our state detection technique is the ability
to follow the evolution of jk1 j alj2 during the quantum algorithm.
For this, we truncate the pulse sequence at a certain time t and reveal
jk1 j aðtÞlj2 by measuring the probability of finding the ion in the
D5/2 state. In Fig. 3 we display this probability as a function of time
for all four cases. The data agree very well with the calculated ideal

Figure 2 Quantum mechanical energy levels relevant for the ion-trap quantum computer.

a, Caþ level scheme. The upper and lower electronic states S 1/2 (m ¼ 21/2) and D 5/2

(m ¼ 21/2) of the narrow quadrupole transition ðtD < 1sÞ at 729 nm serve to

implement one of the qubits, jal. Coherent radiation of a titanium–sapphire laser at

729 nm drives the qubit transition. Lasers at 397 nm, 866 nm and 854 nm are used for

the excitation of resonance fluorescence, for Doppler cooling, and optical pumping. The

laser system is described in detail elsewhere19. b, The lowest two number states,

nz ¼ 0z ,1z , of the axial vibrational motion in the trap form the other qubit, jwl. c, The

combination of electronic states and energy eigenstates of the harmonic oscillator

potential span the computational subspace. Numbers in ket notation denote the quantum

logical values assigned to the respective states. Solid lines show carrier transitions;

dashed lines show blue sideband transitions.

Table 2 Expected and measured results of the complete Deutsch–Jozsa algorithm

Constant Balanced

Case 1 Case 2 Case 3 Case 4
.............................................................................................................................................................................

Expected jk1 j alj2 0 0 1 1
Measured jk1 j alj2 0.019(6) 0.087(6) 0.975(4) 0.975(2)
Expected jk1 jwlj2 1 1 1 1
Measured jk1 jwlj2 – 0.90(1) 0.931(9) 0.986(4)
.............................................................................................................................................................................

The numbers in brackets are statistical 1j uncertainties.

Figure 3 Time evolution of jk1 j alj2. Points are the probabilities, each inferred from

100 measurements, the line shows the ideal evolution. No parameters were adjusted

to fit the data. The implementation of the functions R �yw
U f n

Ry w
takes place between

the dashed lines. An initial Rya
and a final Rȳa

rotation on jal, implemented by carrier

pulses, complete the algorithm. Taking case 3 as an the example, Ry a
lasts from

12 ms to 22 ms. Then R �yw
U f n

R y w
on ja,wl is implemented from 54 ms to 212 ms

with the laser tuned to the blue sideband. The laser phase is switched at 87, 133

and 166 ms according to Table 3. The final R �ya
pulse is applied from 240 to

250 ms.
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evolution (solid lines in Fig. 3, no fit parameters), demonstrating
the high precision of the applied pulse sequence, especially the
control over the optical phases.

The results demonstrate a high degree of control of all relevant
experimental parameters, that is, laser frequency and intensity,
optical phases, and trap frequency qz , over long pulse sequences.
Therefore, the procedures presented here pave the way for imple-
menting more complex algorithms and for scaling the system to
multi-qubit operation. In particular, the light shift compensation
technique demonstrated in this experiment can be directly trans-
ferred and advantageously applied to a several-qubit quantum
processor. This technique will become increasingly important for
scaling such a system because as the ion crystal becomes heavier,
the higher laser intensities required to drive sideband transitions
result in increased light shifts. Furthermore, by merging the
composite pulse technique with our trapped-ion quantum com-
puter we gain full access to all gate operations on the motional
qubit. The employed composite-pulse phase gate also simplifies
the Cirac–Zoller scheme5 for a universal set of quantum gates, by
dispensing with the auxiliary level transition. Thus our procedures
become applicable to a wider choice of ion species including
43Caþ, which offers a potentially much longer coherence time
than 40Caþ. A

Methods
Encoding of qubits and single-qubit rotations
The two qubits required for the Deutsch–Jozsa algorithm are encoded in the electronic
quantum state (S 1/2 ðm¼21=2Þ; j0l ; jSl and D5/2 ðm¼21=2Þ; j1l ; jDlÞ and in
the phonon number of the axial vibration mode of the single trapped ion ðnz ¼ 0z ; j1l
and nz ¼ 1z ; j0l: Note the counterintuitive encoding of the vibrational mode, which
simplifies the desired initial state preparation in j01l¼ jS;0zl: The operations which
modify the electronic qubit (‘single-qubit rotations’) are performed with laser pulses on
the carrier ðjS;nzl$jD;nzl) transition, that is, no change of vibrational quantum
number, laser on resonance. To connect the two qubits (‘two-qubit rotations’) the laser is
detuned byþq z from the jSl$jDl resonance to the ‘blue sideband’ ðjS;nzl$jD;nz þ 1lÞ
as indicated in Fig. 2. Qubit rotations can be written as unitary operations in the following
way12:

Carrier rotations are given by

Rðv;fÞ ¼ exp i
v

2
ðeifjþ þ e2ifj2Þ

� �
whereas transitions on the blue sideband are denoted as

Rþðv;fÞ ¼ exp i
v

2
ðeifjþb† þ e2ifj2bÞ

� �
Here j^ are the atomic raising and lowering operators which act on the electronic
quantum state of the ion, that is, the first qubit, by inducing transitions from the jSl to jDl
state and vice versa (notation: jþ ¼ jDlkSjÞ: The operators b and b † stand for the
annihilation and creation of a phonon at the trap frequency, that is, they work on the
motional quantum state, the second qubit. The parameter v depends on the strength and
the duration of the applied pulse and f is its phase, that is, the relative phase between the
optical field and the atomic polarization. We use the definitions Ry ¼ Rðp=2;0Þ and R�y ¼

Rðp=2;pÞ:

Translation of the Deutsch–Jozsa algorithm into composite pulses
The quantum circuit shown in Fig. 1 shows the quantum logic operations used for the

implementation and Table 1 lists the logic functions corresponding to the unitary
operations U f n

. The Ry rotations on the electronic qubit jal are carrier pulses. For efficient
computation we combine the rotations R�y;Ry on jwl and the manipulations for
implementing U f n

into an optimized pulse sequence, R�yw
Uf n

Ryw
(dashed box in Fig. 1). As

these operations act also on the motional state, we implement them with pulses on the
carrier and the blue axial sideband. However, sideband pulses operate on both qubits
simultaneously. Thus, for operations on jwl alone, we first swap the information from jwl
into jal with a sequence of three blue sideband pulses, then we rotate jal as desired and
swap back.

For a swap operation one might be tempted to use a single p-pulse on the blue
sideband. However, applying this to the state j00l¼ jS;1zl leads to a population of states
with two phonons outside the computational subspace. Therefore we use a composite
pulse sequence consisting of three pulses, whose lengths are chosen such that starting from
jS,1zl the ion is rotated by p,2p and p, respectively. As a result the ion is rotated by 4p

back to jS,1zl independently of the pulses’ relative phases. In addition, using the blue
sideband ensures that j11l ; jD;0zl also stays unchanged as required for the swap
operation.

The desired swap operation jS;0zl$jD;1zl is possible because compared to the
jS;1zl$jD;2zl transition, the Rabi frequency for the jS;0zl$jD;1zl transition is smaller
by 1=

ffiffiffi
2
p

(refs 8, 16). So in this manifold the three pulses’ lengths correspond to rotation
angles of p=

ffiffiffi
2
p
;2p=

ffiffiffi
2
p
;p=

ffiffiffi
2
p
: It can be shown that choosing the laser-atom phase of the

second pulse to be arcosðcot2ðp=
ffiffiffi
2
p
ÞÞ ¼ p0:3033. . . relative to the first and the third

pulses, the populations of j10l¼ jD;1zl and j01l¼ jS;0zl are exchanged. This realises the
desired swap. Table 3 (case 2) lists the complete pulse sequence for the implementation of
R�yw

Uf 2
Ryw

: Similar procedures are applied to realise the pulse sequences for cases 3 and 4.
In these cases the rotations R�yw

;Ryw
and the operations required for U f3, U f4 can be

combined in such a way that swap operations become unnecessary.
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Table 3 Implementations of R�yw
Ufn

Ryw

Logic Laser pulses
.............................................................................................................................................................................

f1 R�yw
Ryw

No pulses

f2 R�yw
SWAP21 NOTa SWAP Ryw

Rþ pffiffi
2
p ;0
� �

Rþ 2pffiffi
2
p ;JSWAP

� �
Rþ pffiffi

2
p ;0
� �

R p
2 ;0
ÿ �

R p;p2
ÿ �

R p
2 ;p
ÿ �

Rþ pffiffi
2
p ;p
� �

Rþ 2pffiffi
2
p ;pþJSWAP

� �
Rþ pffiffi

2
p ;p
� �

f3 Rȳ w
CNOT Ryw

Rþ pffiffi
2
p ;0
� �

Rþ p;p2
ÿ �

Rþ pffiffi
2
p ;0
� �

Rþ p;p2
ÿ �

f4 Rȳw
Z-CNOT Ryw

Rðp;0ÞRþ pffiffi
2
p ;0
� �

Rþ p;p2
ÿ �

Rþ pffiffi
2
p ;0
� �

Rþ p;p2
ÿ �

Rðp;0Þ
.............................................................................................................................................................................

The rotation angle for Rþ(v,J) is given for the j10l ! j01l transition. v and J denote the pulse
duration and phase, respectively. JSWAP ¼ arccosðcot2ðp=

ffiffiffi
2
p
ÞÞ; where the SWAP operation is

explained in the Methods.
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We report the realization of a nuclear magnetic resonance computer with three quantum bits that
simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new
insight into how quantum resources can be used to solve hard problems. This experiment uses a
particularly well-suited three quantum bit molecule and was made possible by introducing a technique
that encodes general instances of the given optimization problem into an easily applicable Hamiltonian.
Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction
of a simple decoherence model.
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Since the discovery of the algorithms of Shor [1] and
Grover [2], the quest of finding new quantum algorithms
proved a formidable challenge. Recently, however, a
novel algorithm was proposed, using adiabatic evolution
[3,4]. Despite the uncertainty in its scaling behavior, this
algorithm remains a remarkable discovery because it
offers new insights into the potential usefulness of quan-
tum resources for computational tasks.

Experimental realizations of quantum algorithms in
the past demonstrated Grover’s search algorithm, the
Deutsch-Jozsa algorithm, order finding, and Shor’s algo-
rithm [5,6]. Recently, Hogg’s algorithm was implemented
using only one computational step [7]; however, a dem-
onstration of an adiabatic quantum algorithm thus far has
remained beyond reach.

Here, we provide the first experimental implementation
of an adiabatic quantum optimization algorithm using
three qubits and nuclear magnetic resonance (NMR)
techniques [8]. NMR techniques are especially attractive
because several tens of qubits may be accessible, which is
precisely the range that could be crucial in determining
the scaling behavior of adiabatic quantum algorithms [9].
Compared to earlier implementations of search problems
[5,10], this experiment is a full implementation of a true
optimization problem which does not require a black box
function or ancilla bits.

This experiment was made possible by overcoming two
experimental challenges. First, an adiabatic evolu-
tion requires a smoothly varying Hamiltonian over
time, but the terms of the available Hamiltonian in our
system cannot be smoothly varied and may even have
fixed values. We developed a method to approximately
smoothly vary a Hamiltonian despite the given restric-
tions by extending NMR average Hamiltonian techniques
[11]. Second, general instances of the optimization algo-
rithm may require the application of Hamiltonians that
are not easily accessible. We developed methods to imple-

ment general instances of a well-known classical NP-
complete (nondeterministic, polynomial time) optimiza-
tion problem given a fixed natural system Hamiltonian.

We provide a concrete procedure detailing these meth-
ods. We then apply the results to the Maximum Cut
(MAXCUT) [12] optimization problem. Our experiments
indicate there exists an optimal total running time which
can be predicted using a decoherence model based on
independent stochastic relaxation of the spins.

An adiabatic quantum algorithm evolves the quantum
state with a slowly varying, time-dependent Hamiltonian.
Suppose we are given some time-dependent Hamiltonian
H�t�, where 0 � t � T, and at t � 0 we start in the ground
state of H�0�. By varying H�t� slowly, the quantum sys-
tem remains in the ground state of H�t� for all 0 � t � T
provided the lowest two energy eigenvalues of H�t� are
never degenerate [13]. Now suppose we can encode an
optimization problem into H�T�. Then the state of the
quantum system at time t � T represents the solution
to the optimization problem [3]. The total run time T of
the adiabatic algorithm scales as g�2

min, where gmin is
the minimum separation between the lowest two energy
eigenvalues of H�t� [3,14]. The scaling behavior of gmin

will ultimately determine the success of adiabatic quan-
tum algorithms. Classical simulations of this scaling
behavior are hard due to the exponentially growing size
of Hilbert space. In contrast, sufficiently large quantum
computers could simulate this behavior efficiently.

Smoothly varying some time-dependent Hamiltonian
appears straightforward but contrasts with the traditional
picture of discrete unitary operations including fault tol-
erant quantum circuit constructions [15]. Fortunately, we
can approximate a smoothly varying Hamiltonian using
methods of quantum simulations [16] and recast adiabatic
evolution in terms of unitary operations.

Discretizing a continuous Hamiltonian is a straightfor-
ward process and changes the run time T of the adiabatic
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algorithm only polynomially [14]. For simplicity, let the
discrete time Hamiltonian H�m� be a linear interpolation
from some beginning Hamiltonian H�0� � Hb to some
final problem Hamiltonian H�M� � Hp such that
H�M� � �m=M�Hp � �1�m=M�Hb. The unitary evolu-
tion of the discrete algorithm can be written as

U �
Y

m

Um �
Y

m

e�i��1�m=M�Hb��m=M�Hp��t; (1)

where �t � T=�M� 1�, andM� 1 is the total number of
discretization steps. The adiabatic limit is achieved when
both T;M ! 1 and �t! 0.

Full control over the strength ofHb andHp is needed to
implement Eq. (1). However, this may not necessarily be a
realistic experimental assumption.We will next show how
the discrete time adiabatic algorithm can still be imple-
mented when Hb and Hp cannot both be applied simul-
taneously and when they are both fixed in strength.

When both Hb and Hp are fixed, we can approximate
Um to second order by using the Trotter formula
exp��A� B��t� � exp�A�t=2� exp�B�t� exp�A�t=2� �
O��t2� [16]. Higher order approximations can be con-
structed if more accuracy is required.

Now suppose Hb and Hp are both constant. Since any
unitary matrix is generated by an action �iH�t, we can
increase the effect of a constant Hamiltonian H by
lengthening the time �t. Thus, we can implicitly increase
the strength ofHb andHp even when they are constant by
simply increasing the time during which they are applied.

This technique also allows cases when the accessible
Hamiltonians are not of the required strength, for ex-
ample, when we are given H0

b � gHb and H0
p � hHp but

still wish to implement Hb and Hp. Using all of the
described techniques, we can now write Um as

Um � e�iH
0
b��1�m=M��t=2g� 
 e�iH

0
p��m=M��t=h�; (2)

where A 
 B � ABA. Each discretization step is of length
�1�m=M��t=g� �m=M��t=h, which is not constant
when g � h. As an illustration consider Fig. 1(a).

We choose �t � T=�M� 1� to be constant as we vary
the number of discretization steps M� 1. This way, the
total run time T increases withM� 1, allowing us to test
the behavior of the algorithm when approaching one of
the conditions for the adiabatic limit. Even when the
discrete approximation is not close to the adiabatic limit,
the implemented algorithm can often find solutions using
relatively few steps but lacks the guaranteed performance
of the adiabatic theorem [17].

Adiabatic evolution has been proposed to solve general
optimization problems, including NP-complete ones. In
this general setting, the algorithm can depend on the
existence of a black box function or the usage of large
amounts of workspace. Our goal here is to optimize a
hard natural problem in a way that avoids these difficul-

ties. We will first describe which problem we chose and
later explain why it does not require ancilla qubits.

We found the MAXCUT problem to be a well-suited
problem to demonstrate an adiabatic quantum algorithm
because it allows a variety of interesting test cases. It also
appears in the study of spin glasses [18], among others.
The decision variant of the MAXCUT problem is part of
the core NP-complete problems [12], and even the ap-
proximation within a factor of 1.0624 of the perfect
solution is NP complete [19].

The MAXCUT problem can be understood as follows.
A cut is defined as the partitioning of an undirected
n-node graph with edge weights into two sets. We define
the payoff as the sum of weights of edges crossing the cut.
The maximum cut is a cut that maximizes this payoff. By
assigning either si � 0 or si � 1 to each node i, depend-
ing on its location with respect to the cut, the MAXCUT
problem can be restated as finding the n-bit number s that
maximizes the payoff. An extension of the MAXCUT
problem is to let the nodes themselves carry weights,
which can be regarded as the nodes having a preference
on their location. As an illustration consider a graph with
three nodes as drawn in Fig. 1(b).

The payoff as a function of the cut defined by s is

P�s� �
X

i

wisi �
X

i;j

si�1� sj�wij; (3)

where wij are the edge weights, wi denotes the node
weights, and si is the value of the ith bit of s.

The smallest meaningful test case of the MAXCUT
problem requires three nodes and admits a variety of
interesting cases by varying wi and wij. We aimed at
two goals when choosing a representative set of weights.
First, we wanted the minimum energy gap gmin to be
smaller than the one for a three-qubit adiabatic Grover
search. Second, we wanted a resulting energy landscape
with both a global and local maximum such that a greedy
classical search would incorrectly find the local maxi-
mum half the time [20]. These goals are met by the choice

FIG. 1. (a) Illustration of Eq. (2). The shaded and clear boxes
denote the strength and duration of the Hamiltonians Hb and
Hp, respectively. (b) Illustration of a graph consisting of three
nodes and three edges. The edges carry weights w12, w13, and
w23. When min�wij� � w23 as indicated by the length of the
edges, the MAXCUT corresponds to the drawn cut. The solu-
tion is therefore s � 100 and also s � 011 due to symmetry.
This symmetry can be broken by assigning the weights w1, w2,
and w3 to the nodes.
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w1 � w2 � w3 � 2, w12 � 2, w13 � 1, and w23 � 3.
The payoff function for this set of weights is P�s� �
�0 6 7 7 5 9 8 6�, where s � �000 001 010 011 100 101
110 111�. The global maximum lies at s � 101 so the
answer on the quantum computer following measurement
should be j101i, and not at the local maximum s � 110

In the quantum setting, this payoff function P�s� can be
encoded into the Hamiltonian Hp by rewriting Eq. (3)
using Pauli matrices:

Hp �
X

i

wi�I � �zi�=2�
X

i<j

wij�I � �zi�zj�=2; (4)

where I is the 2n � 2n identity matrix and �zi is the Pauli
Z matrix on spin i. The identity matrices in the equation
above only lead to an overall phase which cannot be
observed and, hence, they can be ignored. The diagonal
values of Eq. (4) are equal to P�s�. Because of the direct
encoding of P�s� intoHp, no black box function or ancilla
qubits are required, which makes this a full implementa-
tion of an optimization problem.

Similar to Eq. (4), the natural Hamiltonian of n
weakly coupled spin-1=2 nuclei subject to a static mag-
netic field B0 is well approximated by [21]

H � �
X

i

!i�zi=2�
X

i<j

�Jij�zi�zj=2�H env; (5)

where the first term represents the Larmor precession of
each spin i about �B0, and !i is its Larmor frequency.
The second term describes the scalar spin-spin coupling
of strength Jij between spins i and j. The last term
represents coupling to the environment, causing decoher-
ence. Note the resemblances between H and Hp.

Despite the similarities, the spin-spin couplings of
Eq. (5) are generally different from a randomly chosen
set of weights. Therefore, we require a procedure to turn
the fixed Jij into any specified weights wij. This is
achieved using refocusing schemes that are typically
used to turn on only one of the couplings while turning
all others off [21].

We have modified a refocusing scheme to effectively
change the couplings to any arbitrary value. Consider the
pulse sequence drawn in Fig. 2. Based on this scheme, we
can derive the underconstrained system ���  � !�
"�J12 � w12, ���  � !� "�J13 � w13, and ���  �
!� "�J23 � w23, which can be solved for positive �,  ,
!, and " such that Jij ! wij.

The single weights wi are implemented by introducing
a reference frame for each spin i which rotates about �B0

at frequency �wi � wi�=2. In order to apply the single
qubit rotations of our refocusing scheme on resonance,
we apply the reference frequency shift only during the
delay segment �, which we can always choose to be a
positive value. Thus, Hp is implemented by applying the
refocusing scheme from Fig. 2 while going off resonance
during the delay segment �.

A full implementation of an adiabatic algorithm also
requires a proper choice of Hb. We choose Hb �

P
i �xi

for several reasons. First, its highest two excited states are
nondegenerate. Second, it can be easily generated using
single qubit rotations. Third, its highest excited state is
created from a pure state with all qubits in the j0i state by
applying a Hadamard gate on all qubits (we require the
initial state to be the highest excited state of Hb because
we are optimizing for the maximum value of Hp).

The full adiabatic quantum algorithm is now imple-
mented by first creating the highest excited state of Hb.
We then applyM� 1 unitary matrices as given by Eq. (2)
and illustrated by Fig. 1(a). Accordingly, from slice to
slice, we decrease the time during which Hb is active
while increasing the time during which Hp is active.
Finally, we measure the quantum system and read out
the answer.

We selected 13C-labeled CHFBr2 for our experiments
[10]. The Hamiltonian of the 1H-19F-13C system is of the
form of Eq. (5) with measured couplings JHC � 224 Hz,
JHF � 50 Hz, and JFC � �311 Hz. Experiments were
carried out at MIT using an 11.7 Tesla Oxford
Instruments magnet and a Varian Unity Inova spectrome-
ter with a triple resonance (H-F-X) probe from Nalorac.

The experiments were performed at room temperature
at which the thermal equilibrium state is highly mixed
and cannot be turned into the required initial state by just
unitary transforms. We thus first created an approximate
effective pure state as in Ref. [10] by summing over three
temporal labeling experiments.

FIG. 2. Refocusing scheme to effectively change Jij into wij.
The horizontal lines denote qubits 1, 2, and 3 and time goes
from left to right. The black rectangles represent 180
 rotations.
The delay segments are of length �,  , !, and ". When all
segments are of equal length, all couplings are effectively
turned off [22] because �xie�i�zi�zjt�xi � ei�zi�zjt. In our ex-
periment, � � 0:42 ms,  � 0 ms, ! � 4 ms, and " � 2:9 ms
in the last slice M� 1. The rf pulses that implement Hb0

perform 33:75
 rotations on the qubits in the first slice.

FIG. 3. Plot of the absolute value of the deviation density
matrix for M � 100 (T � 374 ms), M � 30 (T � 115 ms), and
M � 15 (T � 59:2 ms), adjusted by an identity portion such
that the minimum diagonal value equals zero. The scale is
arbitrary but the same for each plot.
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In our experiments, we actually implemented 0:5Hp
and 0:5887Hb instead ofHp andHb. This ensures that the
error due to the second order Trotter approximation is
sufficiently small. We also choose g so the applied rf field
does not heat the sample, and g� h so Jij can be ignored
when applying Hb. All of these choices result in a total
experimental time that is within the shortest T2 decoher-
ence time [10]. We reconstructed the traceless deviation
density matrices upon completion of the experiments
using quantum state tomography [10].

We executed this algorithm for several M [with wi and
wij as listed above Eq. (4)]. Since we chose �t to be
constant, this meant increasing the run time T of the
algorithm. The reconstructed deviation density matrices
are shown in Fig. 3. The plots clearly display the expected
pure state j101i. The local maximum at s � 110 has a
decreasingly small probability of being measured for
increasing M. Simulations using Eq. (2) show that this
optimization algorithm performs better for increasing
M. We wanted to verify whether this is indeed true
experimentally.

For this purpose, we estimate the error of our obtained
deviation density matrices compared with the ideal case
of M � 1. Figure 4(a) plots the trace distance as a
function of M, using the same arbitrary scale as in
Fig. 3. From the plot, we observe there exists an optimal
run time of the algorithm, corresponding to 0.226 s in our
experiment. This optimal run time is in good agreement
with the prediction of a previously developed simple
decoherence model [6]. Predicting the impact of decoher-
ence has already provided invaluable insight into estimat-
ing errors in previous experiments [6], and we believe
continued effort towards understanding decoherence will
greatly benefit experimental investigations of quantum
systems.

In conclusion, we have provided the first experimental
demonstration of an adiabatic quantum optimization al-
gorithm. We show a concrete procedure turning a continu-
ous time adiabatic quantum algorithm into a discrete time

version, even when certain restrictions apply to the ac-
cessible Hamiltonians. Our results indicate that there
exists an optimal run time of the algorithm which can
be roughly predicted using a simple decoherence model.
We believe this implementation opens the door to a vari-
ety of interesting experimental demonstrations and inves-
tigations of adiabatic quantum algorithms.
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ABSTRACT
Quantum computation has become an intriguing technology with
which to attack difficult problems and to enhance system security.
Quantum algorithms, however, have been analyzed under idealized
assumptions without important physical constraints in mind. In this
paper, we analyze two key constraints: the short spatial distance of
quantum interactions and the short temporal life of quantum data.

In particular, quantum computations must make use of extremely
robust error correction techniques to extend the life of quantum
data. We present optimized spatial layouts of quantum error correc-
tion circuits for quantum bits embedded in silicon. We analyze the
complexity of error correction under the constraint that interaction
between these bits is near neighbor and data must be propagated
via swap operations from one part of the circuit to another.

We discover two interesting results from our quantum layouts.
First, the recursive nature of quantum error correction circuits re-
quires a additional communication technique more powerful than
near-neighbor swaps – too much error accumulates if we attempt
to swap over long distances. We show that quantum teleportation
can be used to implement recursive structures. We also show that
the reliability of the quantum swap operation is the limiting factor
in solid-state quantum computation.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Miscellaneous; C.4 [Performance
of Systems]: Fault Tolerance; C.5 [Computer System Implemen-
tation]: Miscellaneous; E.4 [Coding and Information Theory ]:
Error control codes

General Terms
Performance, Design, Algorithms, Reliability

Keywords
quantum computing, quantum architecture, silicon-based quantum
computing
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1. INTRODUCTION
Physical systems that behave quantum-mechanically have dy-

namics which can be exploited to speed up certain computational
tasks. This is the essential thought behind the field of quantum
computation and quantum information. A significant challenge
arises in implementing quantum computation, however, because
quantum systems are unstable: their quantum state is easily altered
by omnipresent extraneous noise. This problem ofdecoherence
was once thought to be a fundamental problem for quantum infor-
mation processing [8], but the discovery of fault-tolerant construc-
tions [1, 23, 27, 10] changed this; it is now known that an arbitrar-
ily reliable quantum computer can be constructed from unreliable
quantum wires and gates, as long as certain conditions are met.
These constructions are made possible by recursive application of
quantum error correction, generalizing the classical version of von
Neumann’s early constructions for reliable automata [37, 39].

The conditions for fault-tolerant quantum computation are as fol-
lows: First, the probability of failure of each elementary component
must be less than some threshold valuepth, currently estimated
to be around 10−4. Second, current fault models assume that
errors are independent and uniformly distributed (although other
error models can also be dealt with by changing the scheme ap-
propriately). Third, and most interesting, a variety of assumptions
are made about both the quantum circuit and the necessary classi-
cal controller. In particular, it is essential that the quantum circuit
employ maximum parallelism – executing as many quantum gates
simultaneously as possible – and that the classical circuitry con-
trolling the quantum operations run at a much higher clock speed
than the quantum circuitry. Without these properties,pth decreases
significantly [1, 10].

Here, we take this study one step further, and consider the im-
pact ofphysical layouton the requirements for fault-tolerant quan-
tum computation. Do realistic physical implementations of these
machines allow achievable fault-tolerance thresholds? In particu-
lar, what constraints must be satisfied in the architectural design
of a quantum computer in order to allow a reliable machine to be
realized?

Such questions can now be seriously considered in light of recent
progress in the physical implementation of quantum computers,
with a wide variety of systems ranging from spins in molecules [9]
and single photons [18], to spins in semiconductors [16], trapped
ions [19,?], and superconducting systems [36], among others. These
systems have led to successful demonstrations of a wide variety of
quantum information processing tasks, including quantum telepor-
tation [4], creation of multiple quantum-bit entangled states [24],
fast quantum search [7, 14], and recently, Shor’s fast quantum fac-
toring algorithm [35], in factoring the number fifteen, using a seven
quantum bit (qubit) machine.
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Figure 1: Basic quantum gates and their matrix representations

Among these implementations, the solid state systems are per-
haps the most intriguing, because of the extensive investment that
has been made in semiconductor technology for conventional clas-
sical computing, and the potential for scaling to large numbers of
qubits. One such scheme, proposed by Kane, is particularly well
suited for architectural study; it captures common elements from
the whole range of implementations, using the nuclear spins of
dopant atoms in silicon as qubits, classically controlled metal elec-
trodes for control of quantum gates, and near neighbor, planar spin-
spin interactions for multi-qubit gates. This scheme is also suitable
for VLSI style CAD layout and modeling, and reveals an interest-
ing constraint arising from pitch-matching large classical wires to
small qubits, which forces computation units to be distributed in
clusters rather than a single sea-of-qubits structure [22].

Our study of the architectural constraints on fault-tolerant quan-
tum computation builds on the scenario posed by the Kane solid-
state implementation proposal, and within this framework we ob-
tain several interesting results. We first present complete layouts of
qubits and gate sequences required to implement a concatenated
seven-qubit Steane code for recursive quantum error correction.
These layouts give us analytic expressions for the circuit’s space
and time resource requirements as a function of desired system re-
liability. We also consider the impact of planar near neighbor inter-
actions onpth and find that a huge limiting role will be played by a
single gate, theSWAP gate, in determining achievable reliabilities.

We begin our study in the next two sections with a brief overview
of quantum computation and error correction in quantum systems.
In Section 4, we discuss the model we will be using for the rest of
the paper, and the limitations it and similar models impose. Sec-
tion 5 discusses implementations for error correction codes, while
section 6 discusses the impact of communication on error correc-
tion algorithms. Finally, Section 7 discusses future work, while
Section 8 concludes.

2. QUANTUM COMPUTATION
We begin with a brief overview of the basic terminology and

constructs of quantum computation. Our purpose is to introduce the
language necessary for subsequent sections; in-depth treatments of
these subjects are available in the literature [21].

2.1 Quantum States: Qubits
The state of a classical digital systemX can be specified by a

binary stringx composed of a number of bitsxi , each of which
uniquely characterizes one elementary piece of the system. Forn
bits, there are 2n possible states. The state of an analogous quantum
systemψ is described by a complex-valued vector|ψ〉=∑xcx|x〉, a
weighted combination (a “superposition”) of the basis vectors|x〉,

where theprobability amplitudes cx are complex numbers whose
modulus squared sums to one,∑x |cx|2 = 1.

A single quantum bit is commonly referred to as aqubit and
is described by the equation|ψ〉 = c0|0〉+ c1|1〉, where theci are
complex valued. Legal qubit states include pure states, such as
|0〉 and |1〉, and states in superposition, such as1√

2
|0〉+ 1√

2
|1〉,

or 1
2 |0〉− i

√
3

2 |1〉. Larger quantum systems can be composed from
multiple qubits, for example,|00〉, or 1

2 |00〉+ 1
2 |01〉− 1√

2
|11〉. An

n-qubit state is described by 2n basis vectors, each with its own
complex probability amplitude, so ann-qubit system can exist in
an arbitrary superposition of the possible 2n classical states of the
system.

Unlike the classical case, however, where the total can be com-
pletely characterized by its parts, the state of larger quantum sys-
tems cannot always be described as the product of its parts. This
property, known asentanglement, is best illustrated with an ex-
ample: there exist no single qubit states|ψA〉 and |ψB〉 such that
the two-qubit state|Ψ〉 = 1√

2
|00〉+ 1√

2
|11〉 can be expressed as

the composite state1 |ψA〉⊗ |ψB〉. Entanglement and superposition
have no classical analogues: they give quantum computers their
computational powers.

Although a quantum system may exist in a superposition of states,
only one of those states can be observed, or measured. After mea-
surement, the system is no longer in superposition: the quantum
state collapses into the one state measured, and probability am-
plitude of all other states goes to 0. For example, when the state

1√
2
|00〉+ 1√

2
|11〉 is measured, the result is either 00 or 11, with

equal probability; the outcomes|01〉 or |10〉 never occur. Further-
more, if a subset of the qubits in a system is measured, the remain-
ing qubits are left in a state consistent with the measurement.

Since measurement of a quantum system only produces a sin-
gle result, quantum algorithms must maximize the probability that
the result measured is the result desired. This may be accom-
plished by iteratively amplifying the desired result, as in Grover’s
fast database search,O(

√
n) for a dataset of sizen [11]. Another

option is to arrange the computation such that it does not matter
which of many random results is measured from a qubit vector.
This method is used in Shor’s algorithm for factoring the product
of two large primes [26], which is built upon modular exponenti-
ation and a quantum Fourier transform. For the interested reader,
quantum algorithms for a variety of problems other than search and
factoring have been developed: adiabatic solution of optimization
problems (the quantum analogue of simulated annealing; complex-

1The composition operator for quantum systems is the tensor prod-
uct, ⊗: |x〉 ⊗ |y〉 = ∑xcx|x〉 ⊗∑y cy|y〉 = ∑x,y cxcy|x⊗ y〉, where
x⊗y is simply the string formed by concatenatingx andy.
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Figure 2: Quantum Teleportation: Quantum Teleportation of
state |a〉. First, entangledqubits |b〉 and |c〉 are exchanged.
Then, |a〉 is combined with |b〉 after which two classicalbits
of information (double lines) are produced via measurement
(“meter” boxes). After transport, these bits are used to ma-
nipulate |c〉 to regenerate state|a〉 at destination.

ity unknown) [5], precise clock synchronization (using EPR pairs
to synchronize GPS satellites) [15, 6], quantum key distribution
(provably secure distribution of classical cryptographic keys) [3],
and very recently, Gauss sums [33], testing of matrix multiplica-
tion (in O(n1.75) steps versus theO(n2) required classically) [13],
and Pell’s equation [12].

2.2 Quantum Gates and Circuits
Just as classical bits are manipulated using gates such asNOT,

AND, andXOR, qubits are manipulated with quantum gates such as
those shown in Figure 1. A quantum gate is described by a unitary
operatorU . The output state vector is the operator applied to the
input vector; that is,|ψout〉 = U |ψin〉. The classicalNOT has the
quantum analogueX which inverts the probabilities of measuring 0
and 1. The quantum analogue ofXOR is the two-qubitCNOT gate:
the target qubit is inverted for those states where thesourcequbit
is 1. Most quantum gates, however, have no classical analogue.
The Z gate flips the relative phase of the|1〉 state, thus exchang-
ing 1√

2
(|0〉+ |1〉) and 1√

2
(|0〉− |1〉). The Hadamard gateH turns

|0〉 into 1√
2
(|0〉+ |1〉) and|1〉 into 1√

2
(|0〉− |1〉); it can be thought

of as performing a radix-2 Fourier transform. Another important
single-qubit gate,T, leaves|0〉 unchanged but multiplies|1〉 by

√
i.

Single qubit gates are characterized by a rotation around an axis:
X rotates the qubit byπ around the ˆx-axis; Z rotates byπ around
the ẑ-axis; andT rotates byπ/4 around the ˆz axis. By composing
the T andH gates, any single-qubit gate can be approximated to
arbitrary precision. The combination ofT, H, andCNOT provide
a universal set: just as any Boolean circuit can be composed from
AND, OR, andNOT gates, any polynomially describable multi-qubit
quantum transformU can be efficiently approximated by compos-
ing just these three quantum gates into a circuit.

One additional important operator is theSWAP gate. Just as
two classical values can be swapped using threeXOR’s, a quan-
tum SWAP can be implemented as threeCNOTs. However,SWAP is
often available natively for a given technology, which is valuable,
given its importance to quantum communication.

Figure 2 shows aquantum circuitfor teleportation (described in
the next section). In quantum circuits, time goes from left to right,
where single lines represent qubits, and double lines represent clas-
sical bits. A meter represents measurement. By convention, black
dots represent control terminals for quantum-controlled gates. The
symbol⊕ is shorthand for the target qubit of theCNOT gate.

2.3 Quantum Teleportation
Quantum teleportation is the re-creation of a quantum state at a

distance, using only classical communication. It accomplishes this

feat by using a pair of entangled qubits,|Ψ〉 = 1√
2
(|00〉+ |11〉),

called an EPR pair2.
Figure 2 gives an overview of the teleportation process. We start

by generating an EPR pair. We separate the pair, keeping one qubit,
|b〉, at the source and transporting the other,|c〉, to the destination.
When we want to send a qubit,|a〉, we first interact|a〉 with |b〉
using aCNOT gate. We then measure the phase and the amplitude
of |a〉, send the two one-bit classical results to the destination, and
use those results to re-create the correct phase and amplitude in|c〉
such that it takes on the original state of|a〉. The re-creation of
phase and amplitude is done withX andZ gates, whose application
is contingent on the outcome of the measurements of|a〉 and |b〉.
Intuitively, since|c〉 has a special relationship with|b〉, interacting
|a〉 with |b〉 makes|c〉 resemble|a〉, modulo a phase and/or ampli-
tude error. The two measurements allow us to correct these errors
and re-create|a〉 at the destination. Note that the original state of
|a〉 is destroyed when we take our two measurements3.

Why bother with teleportation when we end up transporting|c〉
anyway? Why not just transport|a〉 directly? First, we can pre-
communicate EPR pairs with extensive pipelining without stalling
computations. Second, it is easier to transport EPR pairs than real
data. Since|b〉 and |c〉 have known properties, we can employ a
specialized procedure known aspurification to turn a collection of
pairs partially damaged from transport into a smaller collection of
asymptotically perfect pairs. Third, transmitting the two classical
bits resulting from the measurements is more reliable than trans-
mitting quantum data.

3. FAULT-TOLERANT COMPUTATION
We turn now to an outline of the basic constructions of fault-

tolerant quantum computation. This is a rather involved subject
(for which the reader is referred to the literature [21, 10]), but three
essential ideas are covered here. The main result we build upon
is the following: A quantum circuit containing N error-free gates
can be simulated with a probability of failure of at mostε using
O(poly(log(N/ε))N) imperfect gates which fail with probability p
as long as p< pth, where pth is a constant threshold that is inde-
pendent of N.This remarkable result, theThreshold Theorem[1], is
achieved by three steps: (1) using quantum error-correction codes
(Section 3.1), (2) performing all computations on encoded data,
using fault tolerant procedures(Section 3.2), and (3) recursively
encoding until the desired reliability is obtained (Section 3.3). All
of these results are from prior literature [1, 28, 31, 21, 10], but
we describe them here to make our contributions clearer in future
sections.

3.1 Quantum Error Correction
The only error which can occur to a classical bit is a bit-flip,

which can be modeled as a randomNOT gate. Quantum bits suf-
fer more kinds of error, because of the greater degree of freedom
in their state representation; surprisingly, however, there are gen-
eral strategies for reducing the universe of possible quantum er-
rors to only two kinds: bit-flips (randomX gates), and phase-flips
(randomZ gates). Classical error correction codes only take into
account bit flip errors, and thus are insufficient for correcting quan-
tum data; furthermore, quantum states collapse upon measurement,
so strategies must be employed for determining errors without ac-
tually measuring encoded data.

2An EPR or Einstein-Podolsky-Rosen pair is a special instance of
entanglement noted in the Einstein-Podolsky-Rosen paradox [2].
3This is consistent with theno-cloningtheorem, which states that
a quantum state cannot be copied.
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Figure 3: Quantum circuit for measuring Z12, the phase differ-
ence betweenψ2 and ψ1. The meter box indicates measurement
and double lines indicate classical information.

Figure 4: Syndrome Measurement for a 3-qubit Code. The
classical results of measurement (double lines) control appli-
cation of theZ operator.

Z12 Z23 Error Type Action

0 0 no error no action
0 1 qubit 3 flipped flip qubit 3
1 0 qubit 1 flipped flip qubit 1
1 1 qubit 2 flipped flip qubit 2

Table 1: Phase correction for a 3-qubit code

Classical error correction relies upon distributingk bits of infor-
mation acrossn bits, n > k, and ensuring enough redundancy to
recreate the original information. Because of the no-cloning the-
orem, quantum information cannot be simply duplicated. Instead,
redundancy is achieved through entangled states with known prop-
erties. For example, a single logical qubit,c0|0L〉+ c1|1L〉 can
be represented using three physical qubits, as the statec0|000〉+
c1|111〉. A bit flip error on the first (left-most) qubit would turn
this into c0|100〉+ c1|011〉; this error can be detected by comput-
ing theparity of each pair of qubits, and leaving the result in an
extra qubit called anancilla. The three parities give theerror syn-
drome, uniquely locating any single bit-flip error. Crucially, this
strategy reveals nothing about the coefficientsc0 andc1, since the
parities cannot distinguish between|000〉 and |111〉 or any single
bit-flip version of the two three-qubit strings. By measuring pari-
ties, errors can be detected without collapsing encoded data.

Correcting phase flips is achieved by measuring differences in
phase, using a circuit like the one in Figure 3. This works by us-
ing a Hadamard gate to transform phase flips into bit flips; parities
are then measured as before, the results stored in ancilla qubits,
and then the qubits are transformed back into their original basis.
Figure 4 shows how a phase error syndrome can be computed and
a corresponding correction procedure applied to correct the error,
following the specification of Table 1.

A quantum code which encodes one qubit and allows any sin-
gle bit-flip or phase-flip error to be corrected uses the encoding
c0|0L〉+c1|1L〉, where the logical zero and one qubits are

|0L〉=
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)

2
√

2

|1L〉=
(|000〉− |111〉)⊗ (|000〉− |111〉)⊗ (|000〉− |111〉)

2
√

2

This nine qubit code, discovered by Peter Shor [28], is also known
as the[[9,1,3]] code, in the notation[[n,k,d]] , wheren is the num-
ber of physical qubits,k is the number of logical qubits encoded,
andd is the quantum Hamming distance of the code. A code with
distanced is able to correct(d−1)/2 errors.

3.2 Computing on Encoded Data
The nine qubit code has a remarkable property that illustrates a

key requirement for fault tolerance: applying aZ gate to each of

the nine qubits takes|0L〉 to |1L〉 and vice versa. It is the same as
applying a logicalX operator4 to the encoded qubit! Similarly,Z
can be performed by applying anX operator to each qubit, andH
by applying anH operator to each qubit.

In this paper, we employ Steane’s[[7,1,3]] code [30], which also
allows simple computation on encoded data, but requires two fewer
physical qubits. In addition, aCNOT gate on two encoded qubits
can be accomplished using sevenCNOT gates, between each pair of
corresponding physical qubits. The last remaining gate necessary
to achieve the universal set from Section 2.2, theT gate, can also
be performed, albeit with some extra effort [21]. Thus, universal
computation is possible without requiring that the data be decoded.

Merely computing on encoded data is not sufficient, however;
one additional step is required, which is frequent, periodic error
correction. Because all gates used in this task are assumed to be
subject to failure, this must be done in a careful manner, such that
no single gate failure can lead to more than one error in each en-
coded qubit block. Such constructions are known asfault toler-
ant procedures, and the impact of this requirement on our study
is twofold: (1) no single operation may cause multiple failures,
and (2) measurement errors must not be allowed to propagate ex-
cessively. To achieve (1), no two encoding qubits are allowed
to both interact directly with a third qubit. Instead, the “third”
qubit is replaced with acat state(a generalization of an EPR pair),

1√
2
|00. . .0〉+ 1√

2
|11. . .1〉, that has itself been verified. Cat states

are used because they do not transmit errors throughCNOT gates.
To achieve (2), measurements are performed in a multiple fashion.
While it is not possible to copy a value before measuring, it is pos-
sible to form a three-qubit state, similar to the three-qubit bit-flip
encoding (Section 3.1), where all of the qubits should measure to
the same value; if one of the measurements differs, it is assumed to
be in error. These impacts are explained in detail in later examples.

Any logical operator may be applied as a fault tolerant proce-
dure, as long as the probability,p, of an error for a physical op-
erator is below a certain threshold, 1/c, wherec is determined by
the implementation of the error correction code. For the Steane
[[7,1,3]] code,c is about 104. The overall probability of error for
the logical operator iscp2. That is, at some step in the application
of the operator, and subsequent error correction, two errors would
have to occur in order for the logical operator to fail.

3.3 Recursive Error Correction
A very simple construction allows us to tolerate additional errors.

If a logical qubit is encoded in a block ofn qubits, it is possible to
encode each of thosen qubits with anm-qubit code to produce an
mn encoding. Such recursion, orconcatenation, of codes can re-

4The overscore denotes an operator on a logical qubit: a logical
operator.
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duce the overall probability of error even further. For example,
concatenating the[[7,1,3]] with itself gives a[[49,1,7]] code with
an overall probability of error ofc(cp2)2 (see Figure 5). Concate-
nating it k− 1 times gives(cp)2k

/c, while the size of the circuit
increases bydk and the time complexity increases bytk, whered
is the increase in circuit complexity for a single encoding, andt is
the increase in operation time for a single encoding. For a circuit
of sizep(n), to achieve a desired probability of success of 1− ε, k
must be chosen such that [21]:

(cp)2k

c
≤ ε

p(n)

The number of operators required to achieve this result is

O(poly(log p(n)/ε)p(n)) .

4. TECHNOLOGY MODEL
With some basics of quantum operations in mind, we turn our

attention to the technologies available to implement these oper-
ations. Experimentalists have examined several technologies for
quantum computation, including trapped ions [19], photons [32],
bulk spin NMR [34], Josephson junctions [20, 36], electron spin
resonance transistors [38], and phosphorus nuclei in silicon (the
“Kane” model) [16] [29]. The last three of these proposals, which
are built on a solid-state silicon substrate, share the following key
aspects:
1 Qubits are laid out in silicon in a 2-D fashion, similar to tradi-

tional CMOS VLSI.
2 Quantum interactions are near-neighbor between qubits.
3 Qubits are stored at fixed locations, but quantum data may be

swapped between nearest neighbors.
4 The control structures necessary to manipulate the bits prevent

a dense 2-D grid of bits. Instead, we have linear structures of
bits that can cross, but that have a minimum distance between
such intersections [22]. This restriction is similar to a “design
rule” in traditional CMOS VLSI.

These four assumptions apply to several solid-state technolo-
gies, but for concreteness, we will focus upon an updated version
of Kane’s phosphorus-in-silicon nuclear-spin proposal [29]. This
scheme will serve as an example for the remainder of the paper,
although we will generalize our results when appropriate.

Figure 6 illustrates the Kane scheme. Quantum states are stored
in relatively stable electron-donor (e−–31P+) spin pairs, where the
electron (e) and the phosphorous donor nucleus (n) have opposite
spins. The basis states,|0〉 and|1〉 are defined as the phase differ-
ence|0〉 ≡ |↑e↓n 〉+ |↓e↑n 〉 and|1〉 ≡ |↑e↓n 〉−|↓e↑n 〉, respectively.
Twenty nanometers above the phosphorus atoms lie three classical
gates, oneA gate and twoSgates. Precisely timed pulses on these
gates provide arbitrary one- and two-qubit quantum gates.

Single qubit operators are composed of pulses on theA-gates,
modulating the hyperfine interaction between the electron and nu-
cleus to provide rotations around the ˆz-axis. A globally applied,

A S S A

20nm

20nm 15-100nm

Ground plane

Classical control gates

P
31
+

P
31
+

Figure 6: The basic quantum bit technology proposed by Kane.
Qubits are embodied by the nuclear spin of a phosphorus atom
coupled with an electron embedded in silicon under high mag-
netic field at low temperature.

static magnetic field provides rotations around the ˆx-axis. By chang-
ing the pulse widths, any desired rotational operator may be ap-
plied. including the identity operator5. Two-qubit interactions are
mediated byS-gates, which move an electron from one nucleus to
the next. Exact details of the pulses and quantum mechanics of
this technique are beyond the scope of this paper and are described
in [29].

The Kane proposal, like all quantum computing proposals, uses
classical signals to control the timing and sequence of operations.
All known quantum algorithms, including basic error correction
for quantum data, require the determinism and reliability of classi-
cal control. Without efficient classical control, fundamental results
demonstrating the feasibility of quantum computation do not apply
(such as the Threshold Theorem used in Section 3).

The scale required by the Kane model, on the other hand, is at
odds with efficient classical control. In order to provide the fine-
grained control necessary, the control lines need to operate in a
classical manner. That is, there need to be enough quantum states
in the control lines so that electron movement is bulk, not ballistic,
and voltage transitions are smooth rather than stair-stepped. Be-
cause of this, the control lines need to be physically much larger
than the qubits they are controlling [22]. Conceptually, the control
lines need to be ofclassicalsize and pitch, and packed closely to
control quantum bits placed on aquantumscale. This imposes
a constraint that qubits be laid out in straight lines, with a certain
minimum number of qubits between junctions.

Given the constraint of linearity with infrequent junctions, there
are several ways to lay out physical and logical qubits. Optimally,
qubits should be arranged to minimize communication overhead.

In a fault tolerant design, the main activity of a quantum com-
puter is error correction. To minimize communication costs, qubits
in an encoding block should be in close proximity. Assuming that
the distance between junctions is greater than the number of qubits
in an encoding, the closest the qubits can be is in a straight line.
But in order to avoid interacting two qubits in an encoding with a
third, a two-rail approach is used–one rail for data qubits, and one
for communication.

A concatenated code requires a slightly different layout (see Fig-
ure 7). Error correction is still the important operation, but the
logical qubits at all but the bottom level of the code are more com-
plicated. For the second level, the qubits are themselves simple
encodings, laid out using the two-rail construction. However, to
minimize communication costs, we want these logical qubits in as
close proximity to each other as possible, just like the bottom level.

5One impact of the external magnetic field is the state of the qubit
is in constant flux. The identity operator must be applied on every
“cycle” in order to keep the current state.
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Figure 8: Measuring the error syndrome for the [[7,1,3]] error-
correction code.
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Hence, we need to arrange the bottom level as branches coming off
of a main bus. Similarly, the third level would have second-level
branches coming off of a main trunk, and so on for higher levels,
forming anH-tree.

5. ERROR CORRECTION ALGORITHMS
We’ve discussed error correction in a general sense, and how

the need for recursive error correction influences the architectural
design. In addition, we have introduced several error-correction
codes, such as Shor’s 3-qubit phase-flip code, Shor’s 9-qubit code,
and Steane’s 7-qubit code. The constructions in Figures 4 and 9
deal with the simplest of these codes, the 3-qubit code, which only
corrects phase flips. In order to correct both bit and phase flips,
a more complicated code is needed. For the remainder of this pa-
per, we will focus on the 7-qubit code,[[7,1,3]] , which corrects up
to a single error, and recursive codes based on[[7,1,3]] which can
correct many errors. We choose[[7,1,3]] because of the ease with
which logical operators may be applied. In particular, remember
that the logical operatorsX, Z, H, andCNOT are applied by apply-
ing the simple operator to each qubit in the encoding block.

5.1 The[[7,1,3]] Code
Error correcting using the[[7,1,3]] code consists of measuring

the parity of the encoding qubits in various bases. As shown in Fig-
ure 8, the qubits are rotated to the measurement basis with Hada-
mard gates. Parity is then measured in much the same way it is on
a classical code, using two-qubitCNOT operators acting asXOR’s.
Conceptually, the parity can be measured in the same way as the
three-qubit code in Section 3.1, gathering the parity on ancilla|0〉’s.
To perform a fault tolerant measurement, however, a cat state is

used in place of a|0〉. Figure 8 shows a schematic for measuring
the [[7,1,3]] code. Not shown are cat-state creation and cat-state
verification. In addition, each parity measurement must be per-
formed twice to reduce the probability of an error fromO(p) to
O(p2); if the measurements disagree, the parity must be measured
a third time!

A parity measurement consists of the following:
1 Prepare a cat state from four ancillae, using a Hadamard gate

and threeCNOT gates.
2 Verify the cat state by taking the parity of each pair of qubits. If

any pair has odd parity, return to step 1. (Note that this requires
six additional ancillae, one for each pair.)

3 Use the four-ancillae cat state as theCNOT target of the data
qubits whose parity is to be measured.

4 Deconstruct the cat state by selecting one of the ancillae,|A0〉,
and using it as theCNOT target of the remaining three ancillae.
|A0〉 now has the overall parity of the cat state.

5 Measure this|A〉0:
A With |A0〉= α|0〉+β|1〉, create the three-qubit state,α|000〉+

β|111〉 by using|A0〉 as the control for twoCNOT gates, and
two fresh|0〉 ancillae as the targets.

B Measure each of the three qubits.
6 Use the majority measured value as the parity of the cat state.

The resulting syndrome determines which, if any, qubit has an er-
ror, and whichX, Z, orY operator will correct the error.

For the Steane[[7,1,3]] code, each parity measurement requires
twelve ancillae–four for the cat state to capture the parity, six to ver-
ify the cat state, and two additional qubits to measure the cat state.
The six parity measurements are each performed at least twice, for
a minimum of 144 ancillae to measure the error syndrome! A less
complex example is shown in Figure 9.
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Each of the twelve parity measurements require:
• One Hadamard and threeCNOT’s to create the cat state;
• TwelveCNOT’s to verify the cat state;
• Four CNOT’s, which can be applied in parallel, to collect the

parity of the data qubits;
• ThreeCNOT’s and a Hadamard to uncreate the cat state;
• Two CNOT’s to create the three-qubit state for measurement;

and
• Three qubit measurements, which may be performed in parallel

with the next parity measurement.
If the time required to apply a single-qubit operator isS, a CNOT

is C, and a measurement isM, then the minimum time required to
measure the error syndrome is 2S+12(2S+24C).

5.2 Concatenated Codes
The [[7,1,3]]×[[7,1,3]] two-level concatenated code is measured

in the same way as the[[7,1,3]] code, except the qubits and ancillae
are encoded. For example, each logical ancilla must be prepared in
the following manner6

1 Begin with seven ancillae.
2 Measure the error syndrome, and correct, as in Section 5.1. At

this point, the seven qubits constitute a valid code word.
3 Measure the value of the logical ancilla:

A Create a cat state with another seven ancillae to collect the
parity of the seven qubits in the logical ancilla.

B Verify the cat state.
C Use the cat-state qubits as theCNOT target of the qubits

encoding the logical ancilla.
D Uncreate the cat-state, collecting the parity into a single

qubit.
E With two fresh ancillae, createα|000〉+β|111〉
F Measure each of these three qubits.

4 Use the majority measured value as the value of the logical an-
cilla.

5 If the measurement is|1L〉, applyX.
The error syndrome measurement is analogous to the singly-encoded
[[7,1,3]] case, except that the lower-level encodings must be error
corrected between operations:
1 Prepare four logical ancillae in a cat state.
2 Error correct the four ancilla.
3 Verify the cat state.
4 Use the ancillae as theCNOT target of the qubits whose parity

is to be measured.
5 Error correct the four qubits in the cat state and the logical data

qubits.
6 Measure each of the four logical cat-state qubits. The parity of

these measurements is the parity of the four encoding qubits.
This step is equivalent to the cat-state deconstruction step for
the singly-encoded case.

As in the singly-encoded case, each parity measurement must be
performed at least twice. The resulting syndrome determines which,
if any, logical qubit has an error. The appropriateX, Z, orY opera-
tor can be applied to correct the error. Of course, after the operator
is applied to a logical qubit, that qubit must be error-corrected.

Higher levels are error-corrected analogously.

6. COMMUNICATION COSTS
In this section, we derive the primary results of this paper. First,

we model the communication costs of our error correction algo-
rithms under the near neighbor constraint. We show that there are

6Fault-tolerant algorithms that avoid the overhead of encoded an-
cilla are a topic of future research.

too manySWAP operations between upper levels of our tree struc-
tures and that too much error accumulates to be corrected. Second,
we analyze quantum teleportation as an alternative toSWAP op-
erations for long-distance communication. Finally, we show that
teleportation is necessary both in terms of distance and in terms of
the accumulating probability of correlated errors between redun-
dant qubits in our code words.

6.1 Error Correction Costs
The error correction algorithms in the previous section are in an

ideal situation, where any qubit can interact with any other qubit.
Usually, qubits can only interact with their near neighbors, so be-
fore applying a two-qubit operator, one of the operand qubits must
be moved adjacent to the other.

One of the easiest ways to move quantum data is to use theSWAP

operator. By applyingSWAP’s between alternating pairs of qubits,
the values of alternating qubits are propagated in one direction,
while the remaining qubit values are propagated in the reverse di-
rection. This can be used to supply|0〉 ancillae for the purpose of
error correction. As a side benefit, this also removes “used” ancil-
lae. Figure 9 illustrates this method for the three-qubit example,
using two rows of qubits, one for the encoding data qubits and one
for the ancillae.

The same method can be applied to the[[7,1,3]] code. The actual
communication costs depend on the physical implementation used.
The time required for an error correction parity check is

tecc= 12(tcc+ tcv+ tp + tcd + tm) (1)

where

tcc is the time for cat state creation;
tcv is the time for cat state verification;
tp is the time to entangle the cat state with the parity qubits;
tcd is the time to uncreate the cat state; and
tm is the time to perform a fault-tolerant measurement.

For[[7,1,3]] in the ideal, sea-of-qubits model,tcc is tsingle+3tcnot,
tcv is 6(2tcnot+tmeas), tp is tcnot–four CNOT’s performed in parallel,
tcd is 3tcnot+ tsingle andtoverlap is tdecat+ tmeas, where

tsingle is the time required for a single-qubit operator;
tcnot is the time required for aCNOT operator;
tswap is the time required for aSWAP operator; and
tmeas is the time required for the measurement operator.

If communication by swapping is used,

tcc = max(tsingle, tswap)+4tswap+3max(tcnot, tswap), (2)

tcv = max(tsingle, tswap)+18tswap+12max(tcnot, tswap), (3)

tp ≤ 4max(tcnot, tswap), and (4)

tcd ≤ 3tswap+2max(tcnot, tswap)+ tsingle. (5)

In the Kane model,tsingle< tswap< tcnot, so the overall cost is

tecc≤ 336tswap+168tcnot+ tmeas.

Since measurement is fully parallelizable, these times assume
that there are enough measurement functional units to perform mea-
surement in parallel with the other operations in the error-correction
cycle.

6.2 Multilevel Error Correction
For the concatenated code, the data movement in the upper lev-

els is more complicated. Although Eq. 1 still holds, each parity
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k SWAP CNOT 1-Qubit Measurement
1 1620 288 12 108
2 690,000 120,000 4800 43,000
3 2.7×1008 4.7×1007 1.9×1006 1.7×1007

4 1.1×1011 1.8×1010 7.5×1008 6.7×1009

5 4.3×1013 7.3×1012 3.0×1011 2.7×1012

Table 2: Operations required for an error-correction cycle at
level k.

measurement requires the following. Since ancillae are themselves
encoded, they each require their own branch, and the first step is to
create the encoded ancillae, by error correcting, measuring, and if
necessary, inverting. The second step is to create the four-qubit cat
state from the logical ancillae, by applyingH to one of the ancilla,
moving a second ancillae through the main branch to the second
rail of the first ancilla, applyingCNOT, moving the second ancilla
back, and error-correcting both ancillae. This is repeated for the
second and third ancillae, and the third and fourth ancillae. Since
the ancillae are error corrected along the way, the cat state need not
be verified.

Next, an ancillae is moved through the main branch to the data
branch that holds a bottom-level encoding. After applyingCNOT,
the ancilla is moved back to its own branch, and both it and the
logical data qubit are error-corrected. Since measuring the ancillae
can be performed completely in parallel, all four ancillae are mea-
sured, and the parity of the measurements is the parity of the data
qubits.

For [[7,1,3]] concatenated with itselfk times,

tanc,k = tecc,k−1 + tm,k−1; (6)

tcc,k = 6tecc,k−1 +6tb,k; (7)

tcv,k = 18tecc,k−1 +28tb,k; (8)

tp,k = 8tecc,k−1 +10tb,k; (9)

tcd,k = 4tm,k−1 (10)

tm,k = 4k−1tm,1; and (11)

tb,k =






1, k = 1
tB,arch, k = 2
(n+a)tb,k−2 + tB,arch, k > 2

(12)

where the subscriptk indicates the level of encoding,tanc,k is the
cost of encoding an ancilla,tb,k is the branch distance between log-
ical qubits at levelk, tm,1 is the time required to measure a singly-
encoded qubit,tB,arch is the minimum number of qubits between
two branches for a given architectural model,n is the number of
physical qubits in the non-concatenated code anda is the number of
ancillae per parity measurement. For concatenated codes, parallel
operation is determined by the ratio of ancillae delivery to ancillae
consumption for a singly-encoded parity check. For[[7,1,3]] and a
single-qubit-wide branch this ratio is around 3. Arranging the an-
cillae as in the inset of Figure 7 minimizes the distance that ancillae
must travel.

The recurrence relation given in Eqs. 6 through 12 give an over-
all time to perform an error-correction cycle at a given level of re-
cursion. A similar recurrence relation gives the total number of
operations required. The number of operators required for differ-
ent levels of encoding are summarized in Table 2, which shows that
theSWAP operator is very important in a realistic model, compared
to the sea-of-qubits model, whereSWAP’s are not required. In this
realistic model,SWAP’s account for over 80% of all operations.

k Teleportation Swapping, Swapping, Swapping,
tB,arch = 22 tB,arch = 61 tB,arch = 285

1 864 1 1 1
2 864 22 61 285
3 864 77 194 866
4 864 330 876 4,012
5 864 913 2,317 10,381
6 864 3,696 9,819 44,987

Table 3: Comparison of the cost of swapping an encoded qubit
to the cost of teleporting it. The “swapping” values arebk, the
distance between adjacent qubits.
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Figure 10: Cost of teleportation compared to swapping. The
values chosen illustrate the break-even point for different levels
of recursion.

6.3 Teleportation
Fortunately, we can use quantum teleportation as an alternative

to swapping for communication over long distances. To use tele-
portation for our circuit, we must evaluate the number of computa-
tion and communication operations within the teleportation circuit.
By comparing this number of operations with the swapping costs
from the previous section, we can decide at what levelk of the tree
to start using teleportation instead of swapping for communication.

6.4 Distance Tradeoff
By calculating the number of basic computation and commu-

nication operations necessary to use teleportation for long-distance
communication, we can quantify when we should switch from swap-
ping to teleportation in our tree structure. Figure 10 illustrates this
tradeoff. We can see that fortB,arch = 22, teleportation should be
used whenk≥ 5.

6.5 Avoiding Correlated Errors
An important assumption in quantum error correction is that er-

rors in the redundant qubits of a codeword are uncorrelated. That
is, we do not want one error in a codeword to make a second error
more likely. To avoid such correlation, it is important to try not to
interact qubits in a codeword with each other.

Unfortunately, we find that a 2D layout cannot avoid indirect
interaction of qubits in a codeword. At some point, all the qubits
in a codeword must be brought to the same physical location in
order to calculate error syndromes. In order to do this, they must
pass through the same line of physical locations. Although we can
avoid swapping the codeword qubits with each other, we cannot
avoid swapping them with some of the same qubits that flow in the
other direction.
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For concreteness, if two qubits of codewordd0 andd1 both swap
with an ancillaa0 going in the opposite direction, there is some
probability thatd0 andd1 will become correlated with each other
through the ancilla. This occurs if bothSWAPs experience a partial
failure. In general, ifp is the probability of a failure of aSWAP

gate, the probability of an error from swapping a logical qubit is

nkbkp+
(

nk

2

)

bkp2 +
(

nk

3

)

bkp3 + · · · ,

wherebk is the number of qubits between branches at levelk, and
the higher order terms are due to correlation between the qubits.
From this form, it is clear that correlated errors are dominated by
uncorrelated errors, whennkp
 1.

7. FUTURE WORK
Our results have interesting implications for the Threshold Theo-

rem, effectively increasing the reliability requirements for quantum
operators, particularlySWAP operators. In addition to the telepor-
tation solution to long-distance communication, it may be possible
to modify the straightforward recursive structure used in quantum
error correction codes to include intermediate error correction steps
in the middle of long chains ofSWAPoperators. There are, however,
serious challenges of getting the ancillae to all of these intermediate
points in such a layout.

At the lowest level, the largest consumer of ancillae for error
correction is cat-state verification. However, at higher levels, the
cat states themselves are constructed from logical ancillae, each of
which must be error corrected, measured, and the whole cat state
verified. This approach is a straightforward analog to the lowest
level, but there may be more efficient algorithms from the stand-
point of ancilla use.

The proposed teleportation solution assumes that the distribution
of reliable EPR pairs is significantly easier than transporting arbi-
trary quantum data. EPR pairs are precommunicated in a pipelined
fashion, then “purified” using an entanglement-concentrating algo-
rithm that eliminates bad EPR pairs [25]. Quantifying the reliabil-
ity and bandwidth of this mechanism is the subject of future study.

Finally, this paper has focused on solid-state implementations
with static qubits. There is a proposal for scalable ion-trap quantum
computers, built using conventional microfabrication techniques,
where the qubits are mobile [17]. How the mobility constraints of
such a system compare to swapping with static qubits is a subject
of future study.

8. CONCLUSION
Quantum computation is in its infancy, but now is the time to

evaluate quantum algorithms under realistic constraints and derive
the architectural mechanisms and reliability targets that are needed
in order to scale quantum computers to their full potential. This pa-
per has focused upon the spatial and temporal constraints of solid-
state technologies, and has shown that the recursive construction
for quantum error correction codes requires a long-distance com-
munication technology such as quantum teleportation. We derived
the tradeoff point between short- and long-distance technologies.
Also, the reliability of the quantumSWAP operation used in short-
distance communication is the dominant factor in system reliabil-
ity. These results are a beginning. The next step is moving quantum
computation from theory to practice, unlocking an unprecedented
tool to attack difficult problems.
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