

AFRL-IF-RS-TR-2007-9
Final Technical Report
January 2007

GENESIS: A FRAMEWORK FOR ACHIEVING
SOFTWARE COMPONENT DIVERSITY

University of Virginia

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. S472

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TR-2007-9 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

MICHAEL J. HENSON, Capt, USAF WARREN H. DEBANY, Jr.
Work Unit Manager Technical Advisor, Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JAN 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jun 04 – Aug 06
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-04-2-0246

4. TITLE AND SUBTITLE

GENESIS: A FRAMEWORK FOR ACHIEVING SOFTWARE
COMPONENT DIVERSITY

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER
S472

5e. TASK NUMBER
SR

6. AUTHOR(S)

J.C. Knight, J.W. Davidson, D. Evans, A. Nguyen-Tuong and C. Wang

5f. WORK UNIT NUMBER
SP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia
151 Engineers Way
Charlottesville VA 22904-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGB
3701 North Fairfax Drive 525 Brooks Rd
Arlington VA 22203-1714 Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2007-9

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 07- 017

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Genesis project sought to provide security through the diversification of software. A major weakness with current information
systems is that they use software applications that are clones of each other; a major exploitable flaw in one implies a flaw in all other
similarly configured software packages. Breaking this software monoculture was the goal of the bio-inspired diversity area of
DARPA’s self-regenerative systems program. The Genesis project exceeded the program’s goal of producing 100 functionally-
equivalent versions of software such that no more than 33 exhibited the same deficiency. This report presents an overview of the
Genesis project, the current status of the Genesis Diversity Toolkit, and future opportunities for technical transfer and research.

15. SUBJECT TERMS
Cyber Operations, Information Warfare, Information Assurance, Software Diversity, Monoculture

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Capt Michael Henson

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

119
19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Table of Contents

1 Introduction .. 1
2 Genesis Overview ... 2
2.1 Genesis Diversity Techniques.. 2
2.2 Genesis: Strata Virtual Machine .. 3
2.3 Strong Instruction Set Randomization ... 4
2.4 Calling Sequence Diversity.. 4
2.5 Genesis Diversity Toolkit (GDT) Evaluation .. 5
2.6 Genesis Toolkit Enhancements.. 8
2.7 Recommended Configuration .. 9
3 Summary of Results ... 10
3.1 Security Benefits of Genesis.. 10
3.2 Genesis Diversity Toolkit Status ... 10
3.3 Patent Applications .. 10
3.4 Technology Transfer.. 11
3.5 Other Results.. 11
4 List of Major Publications... 12
4.1 Website .. 12
5 Technology Transfer & Future Opportunities..................................... 13
5.1 Anti-Tampering Applications .. 13
5.2 Recovery .. 13
5.3 Finer-grained Diversity.. 13
6 Conclusion ... 14
7 References.. 14
Appendix A: Instruction Set Randomization .. 15
Appendix B: Calling Sequence Diversity ... 30
Appendix C: Genesis Fault Tree Analysis ... 44
Appendix D: Tamper Proofing.. 53
Appendix E: Secretless Security through Diversity.. 58
Appendix F: PHPrevent – Web Application Security through Diversity........ 76
Appendix G: Derandomizing Attacks .. 88

i

List of Figures

Figure 1. Genesis Diversity Toolkit Configuration Panel 3
Figure 2. Strata Virtual Machine Architecture 3
Figure 3. Sample Genesis Fault Tree 5
Figure 4. Strata and Strata+ISR Overhead Normalized to Native Execution (SPEC) 7
Figure 5. Apache Overhead Normalized to Native Execution 7
Figure 6. Bind Overhead Normalized to Native Execution 7
Figure 7. Number of Concurrent Calls 8
Appendix A. Instruction Set Randomization
Figure 1. Strata virtual machine virtualizing an application. 19
Figure 2. Runtime decryption and verification 21
Figure 3. Workflow for the binary rewriter Diablo 22
Figure 4. Diablo extension to support ISR 23
Figure 5. SDT overhead and SDT-ISR overhead normalized to native execution 25
Figure 6. Apache overhead normalized to native execution 26
Figure 7. Bind overhead normalized to native execution 26
Appendix B. Calling Sequence Diversity
Figure 1. Vulnerable function / Contents of the stack 31
Figure 2. Overflowing the stack 32
Figure 3. Returning to a legitimate call site 33
Figure 4. Key transformation 33
Figure 5. Returning to a legitimate call site with key transformation 34
Figure 6. Key transformation for an indirect function call 36
Figure 7. Intermediate language trees for foo(arg,100) 37
Figure 8. Modified intermediate language trees for foo (arg,100) 37
Figure 9. Modified intermediate language trees for (*fp)() 38
Figure 10. Problematic indirect call sequence 38
Figure 11. Saving call sequence values from Figure 10 for later 39
Figure 12. Key transformation for setjmp() and longjmp() 40
Figure 13. Overhead for SPEC benchmark suite normalized to native execution 42
Appendix E. Secretless Security through Diversity
Figure 1. N-Variant System Framework 59
Figure 2. Typical shared system call wrapper 68
Appendix F. PHPrevent - Web Application Security
Figure 1. Typical web application architecture 79
Appendix G. Derandomizing Attacks
Figure 1. Return attack 93
Figure 2. Jump attack 94
Figure 3. Incremental jump attack 95
Figure 4. Eliminating false positives 97
Figure 5. Extended attack 102
Figure 6. Micro VM 104
Figure 7. Guessing strategies 106
Figure 8. Time to acquire key bytes 109
Figure 9. Attempts per byte 109

ii

 1

1 Introduction
The overall goal of phase I of the Self-Regenerative System (SRS) program (DARPA BAA

03-44) was to develop technology for building military computing systems that could provide
critical functionality at all times, in spite of damage caused by unintentional errors or attacks.

A major problem today is that of our software monoculture. Critical infrastructure software
applications such as web servers, database servers, routers, and name resolution servers to name
only a few, are all shipped identically. An exploitable vulnerability present in one deployed
software application strongly implies an exploitable flaw in all copies of that application. This
situation provides adversaries with an overwhelming advantage and is very serious because it
multiplies the impact of any vulnerability by the number of machines running the software that
contains the vulnerability. Once a vulnerability is exposed, adversaries seek out machines that
are using the software with which the vulnerability is associated and proceed to exploit the
vulnerability. Thus, the software monoculture enables the spread of both worms, i.e., self-
replicating malicious code, and attacks that target specific servers.

Drawing inspiration from biological systems in which genetic diversity provides immunity
against a broad range of disease, the Genesis project sought to reproduce the genetic diversity
found in nature by deliberately and systematically introducing diversity into software
components. The basic idea was that while the phenotype (functional behavior) of software
components would be similar, the resulting genotypes would contain enough variations to protect
software applications against a broad class of attacks, including both self-replicating and directed
attacks.

In the past, the application of diversity for critical systems has been severely limited by the
fact that creating diverse versions has been attempted, for the most part, by producing the
versions using traditional, resource intensive methods. Creating two diverse web servers, for
example, involved actually writing both implementations. Clearly, this approach would not yield
a large number of diverse versions unless unrealistic amounts of resources were available. The
Genesis project sought machine transformation techniques to automate the task of creating large
number of program variants.

The success metric as specified in the SRS program was that of automatically producing 100
diverse but functionally equivalent versions of a software component such that no more than
thirty-three versions of a component shared the same deficiency. We exceeded this goal through
the use of novel program transformation techniques coupled with advances in virtual machine
technology, with demonstrated good performance on a range of real-world and critical
applications.

 2

2 Genesis Overview
In the Genesis approach, we took a biologically inspired approach to diversity in which we

investigated the two fundamental aspects of computation, state and state change, and we
introduce diversity systematically and comprehensively to both. In practice by “state” we mean
the data upon which a computation operates and by “state change” we mean the changes effected
by some interpreter (a hardware entity or a software interpreter) in response to a set of
instructions. We took a very general view of these two notions so that some entities were viewed
as part of a state at one point and as being involved in state change at a different point. For
example, machine instructions were part of the operating state of a compiler, i.e., data, but they
controlled an interpreter during program execution, i.e., instructions. Furthermore, we took a
multi-hierarchical and composable view of diversity in which we combined transformations from
different phases of a program’s lifecycle, from compile-time all the way to execution-time.

The Genesis project was implemented as the Genesis Diversity Toolkit henceforth called the
GDT. The GDT was a collection of compile-time, link-time, run-time, and post-processing tools
that allowed diversification of C and C++ software. The Genesis toolkit included the following
components:
• Zephyr, a compiler infrastructure developed at the University of Virginia.
• Diablo, an open source static binary rewriter developed at Ghent University in Belgium.
• Strata, an application-level virtual machine developed at the University of Virginia, along with

several modules to effect dynamic diversity techniques.
2.1 Genesis Diversity Techniques

The GDT supported the following diversity techniques:
• Address Space Randomization (ASR). ASR was a link-time option, whereby the static

(uninitialized and initialized) data segments were offset by a random amount. This coarse-
grained technique obfuscated the location of critical variables.

• Stack Space Randomization (SSR). This technique randomized the padding between stack
frames.

• Simple Execution Randomization (SER). This technique used a simple XOR encoding of a
binary executable. This was mainly a proof-of-concept implementation that has been
deprecated by the development of Strong Instruction Set Randomization.

• Strong Instruction Set Randomization (SISR). This technique protected applications against
both known and unknown code-injection attacks.

• Calling Sequence Diversity (CSD). This technique modified the calling convention of
functions to incorporate a hidden extra argument whose value is both generated at run-time
and dependent on the history of the calling context. This technique defended against return-to-
libc attacks [Nergal01].
The GDT provided defense-in-depth by allowing application developers to select and

compose among various techniques. Note that the first three techniques, ASR, SSR, and SER
provided only a limited amount of entropy relative to SISR and CSD. However, attack code
tends to be fragile and even small perturbations in the execution environment will thwart attacks.

Figure 1 illustrates the various configuration options for the Genesis toolkit. Developers
could compose various techniques, specify various configuration parameters, and generate an
arbitrary number of software variants. In practice, these various options were set via standard
build scripts, e.g., makefiles.

 3

Next we provide an overview of the Strata Virtual Machine and its role in the
implementation of Strong Instruction Set Randomization and Calling Sequence Diversity.
2.2 Genesis: Strata Virtual Machine

At the core of our approach was Strata, a software
dynamic translator (SDT) that implemented an
application-level virtual machine. Strata was a small,
efficient run-time execution environment that hosted,
monitored and ran applications. Strata could affect an
executing program by injecting new code, modifying
some existing code, or controlling the execution of
the program in some way.

Strata dynamically loads an application and
mediates application execution by examining and
translating an application’s instructions before they
execute on the host CPU (Figure 2). Strata essentially
operates as a co-routine with the application that it is
protecting. Translated application instructions are

held in a Strata-managed cache called the fragment cache. The Strata virtual machine (VM) is
first entered by capturing and saving the application context (e.g., program counter (PC),
condition codes, registers, etc.). Following context capture, Strata processes the next application
instruction. If a translation for this instruction has been cached, a context switch restores the
application context and begins executing cached translated instructions on the host CPU.

In the case of the GDT, Strata was used to support important run-time features of software
diversity, including dynamic code encryption/decryption and calling sequence diversity.

Figure 1. Genesis Diversity Toolkit Configuration Panel

Figure 2. Strata Virtual Machine Architecture

Context
Switch

Fetch

Decode

Translate

New
PC

Host CPU (Executing Translated Code from Cache)

Finished?

No

SDT Virtual Machine

Yes

Context
Capture

Cached?

Yes

New
Fragment

Next PC

 4

2.3 Strong Instruction Set Randomization
We provide a general overview of Instruction Set Randomization (ISR). A detailed

description is provided in Appendix A.
The main idea behind ISR for defending against any type of code-injection attack is to create

and use a process-specific instruction set that is created by a randomization algorithm. Code
injected by an attacker who does not know the randomization key will be invalid for the
randomized processor thereby thwarting the attack. Such an approach is known as randomized
instruction-set emulation (RISE) or instruction-set randomization (ISR) [Barrantes05, Kc03].

The basic operation of an ISR system is as follows. An encryption algorithm (typically
XOR’ing the instruction with a key) is applied statically to an application binary to encrypt the
instructions. The encrypted application is executed by an augmented emulator (e.g., Valgrind
[Nethercote04] or Bochs [Lawton96]. The emulator is augmented to decrypt the application’s
instructions before they are executed.

When an attacker exploits a vulnerability to inject code, the injected code is also decrypted
before emulation. Unless the attacker knows the encryption key/process, the resulting code will
be transformed into, in essence, a random stream of bytes that, when executed, will raise an
exception (e.g., invalid opcode, illegal address, etc.).

The security of ISR in general depends on several key factors: the strength of the encryption
process, protection of the encryption key, the security of the underlying execution process, and
that the decrypted code will, when executed, raise an exception. The practicality of the approach
is affected by the overheads in execution time and space introduced by the encryption and
decryption process.

Our implementation of ISR using the Strata Virtual Machine improved upon the prior art in
three important ways:
• We used a strong randomization algorithm—the Advanced Encryption Standard (AES).
• We demonstrated that ISR using AES could be implemented practically and efficiently

without requiring special hardware support.
• Our approach detected malicious code before its execution. Previous approaches had relied on

probabilistic arguments that execution of non-randomized foreign code would eventually
cause a fault or runtime exception.

2.4 Calling Sequence Diversity
While code-injections attacks constitute the overwhelming majority of attacks today, other

forms of attacks exist that do not require the execution of foreign exploit code. For example, in a
return-to-libc attack, an attacker supplies malicious arguments to existing library functions with
disastrous consequences. For example, supplying “bin/sh” to the system() function will execute a
shell and provide an attacker with full-featured access to the target host.

The typical return-to-libc exploit is possible because an attacker is able to disrupt the
intended control flow of the target program through manipulation of the return address (often
through a buffer overflow vulnerability).

Note that such an attack may be thwarted by the Address Space Randomization or Stack
Space Randomization techniques.

However, this style of attack critically depends on the attacker’s knowledge of the calling
convention. Calling Sequence Diversity provides a secure calling convention that prevents
unauthorized invocation of potentially malicious functions. Our approach to developing such a

 5

calling convent was to require a hidden parameter that was checked by the called function. Since
attackers do not know the value of this parameter, they cannot execute the function successfully.

Strata was used to automatically and dynamically insert and check this random key to thwart
return-to-libc attacks. For more details, refer to Appendix B, which incorporates a writeup of this
technique.
2.5 Genesis Diversity Toolkit (GDT) Evaluation

This section presents an overview of the security and performance evaluation of the
Genesis toolkit.
2.5.1 Security Evaluation

Integrity Violation of code stream allows ‘injected code’ from an attack to achieve goal
G in the Strata system and its application

Integrity violation of code stream
accomplishes G for attacker in SP

Integrity of code stream is
compromised

Injected code is
executed as system

level code. OS/
Hardware fault in
protected system

space integrity and/
or authorization

Code injected
into SP space

Code
injected into
P’s spaces

Strata doesn’t
insert correct

runtime
check(s) for
vulnerability

into vulnerable
fragment(s)

Input based
vulnerability exists in

application P

Stack
overrun

Double-Free
Malloc

Printf vulnerability

Other common input
pathways not listed

Code injected
into S’s spaces

Injected code is
executed as

application level
code

Code injected into
SP space and

executed by SP
codestream

Code
injected into

Strata’s
fragment

cache

Code is
stored in
IBTC or
thread
cache

Injected code
is executed

Insider
injects

malicious
code into
fragment

cache

Fault in
Strata’s

translation/
injection

mechanism

Privileged OS
process
modifies
cache

contents

Rogue S or
P thread

Design fault in
Strata fragment
cache injection

responds to
malicious

payload prog. P
to to inject
‘additional’

uninteded code.
(ex. Short string
literals stored by
P in instruction
cache contain
attack code

sequences, or
help reverse
engineer the

encryption key)

Prog P contains
malicious code

Strata executer
sets up Strata

fragment
cache for
process
sharing

Code is
used before

it is
overwritten

Feature is
not in freq

write use in
the prog

OS Permission
Fault: Incorrect
protection bits
on instruction

cache

Outside
process
modifies

contents of
fragment

cache

Erroneous
process

exec

Malicious
insider

Subtree A

Code is injected
into ~SP space

and executed by
SP code stream

OS-Hardware
Level

Erroneous
inter-process

isolation

Subtree A

Unintended
elements of

instruction stream
accomplish G

1

Logical AND

Logical
OR

Subtree
Reference

Subtree B

To analyze and demonstrate the strength and soundness of Genesis, we performed
several experiments in which we ran applications with known-vulnerabilities under
control of Genesis. We then ran the associated exploits on hundreds of variants
generated by the GDT. Example vulnerabilities included buffer overflows and format
string vulnerabilities targeted towards both the heap and stack. The success rate for ISR
(for code-injection attacks) and for Calling Sequence Diversity (for return-to-libc

Figure 3. Sample Genesis Fault Tree

 6

attacks) were both 100%. We also seeded applications with our own vulnerabilities,
developed associated attacks and achieved the same success rate.

However, these experiments represented only point samples in the space of attack
implementations. To argue for the soundness and broad applicability of our techniques,
we developed a fault-tree to enable a comprehensive analysis of the Genesis design and
implementation. This process uncovered a few omissions that we fixed and fed back
into the implementation of the system.

The top level of the fault tree is shown in Figure 3. The top node identifies the goal
state, namely that attack code was successfully injected and executed by the Strata
virtual machine. The tree refines this hazardous states using AND and OR gates and
details the necessary conditions required to reach this goal state. By systematically
identifying goals and subgoals, and by stating any required assumptions, the fault tree
provides a formal method of communications by which to evaluate the system design.

In addition to our own evaluation, we participated in two independent red team
exercises commissioned by our DARPA program manager. The first red team exercise
evaluated the strength of the GDT using the threat model of a remote attacker. We
provided the red team with vulnerable applications and associated exploits which they
used as a starting point for the exercise. The red team was unable to exploit applications
running under the GDT. However, due to resource constraints, this exercise was limited
in scope.

Thus, we undertook a second red team evaluation in which the scope of the exercise
was expanded dramatically to encompass not just applications but also the virtual
machine used as part of the GDT. In addition we provided the red team with our fault
tree and associated analyses (Figure 3, Appendix C). The main idea behind this second
exercise was to emulate a sophisticated insider as an attacker, i.e., what if one of the
developer of the system was part of the attacking team?

Overall, this second exercise resulted in a blue team (Genesis) victory and validated
the basic soundness of our design and implementation. However, we note that both
exercises were limited in scope and duration. A more thorough red team evaluation
would be needed prior to large-scale deployments on a DoD system. Reports for both
red team exercises are available through the program manager.
2.5.2 Performance Evaluation

Overall, the implementation of the Instruction Set Randomization and Calling Sequence
Diversity techniques did not add much overhead to the baseline case of running applications
under the Strata Virtual Machine. At first glance, this result may appear counter-intuitive in light
of the fact that ISR uses the AES algorithm and that other implementations of ISR used a very
simple XOR encoding scheme because of performance consideration [Kc03, Barrantes05]. The
use of aggressive caching techniques in the Strata virtual machine enabled efficient
implementations of diversity transformations since even relatively heavyweight operations such
as AES decryption were only performed once for a given code fragment throughout the
execution of a program. Thus as the working set of the program materialized in Strata’s code
fragment cache, little additional overhead is incurred as the program code executed natively.

 7

Thus the incorporation of diversity techniques and other security measures were to a first-order
approximation essentially free: the efficiency of diversity transformation techniques essentially
depends on the efficiency of the Strata virtual machine. As shown in Figure 4 for the SPEC
benchmark, there was little difference between the two scenarios.

The implication is that as virtual machine technology continues to mature and becomes more
efficient, diversity-based techniques will become even more practical. For example, during the
period of this award, Strata performance improved from 30-40% average overhead to under 10%
for applications such as Apache and BIND.

Figure 6. Bind Overhead Normalized to Native
Execution. Metric: queries/sec

Figure 4. Strata and Strata+ISR Overhead Normalized to Native Execution (SPEC)

Figure 5. Apache Overhead Normalized to Native
Execution. Metric: client request/sec

 8

In terms of absolute performance relative to native execution, we achieved average overhead
of 17% on the SPEC benchmark (Figure 4), less than 5% running the Apache web server (Figure
5), and between 5-11% on the BIND server (Figure 6).

We also measured the overhead on a commercially available GSM software-defined
radio (SDR) package. The primary metric was a Quality-of-Service (QoS)
measurements of the ability to sustain 100 concurrent call sessions for a protocol
converter application within the SDR package. The Strata-based version saturated the
CPU at 100 concurrent calls. After 100 calls, there could be a loss of fidelity because
less signal data is being communicated per channel. In discussion with the engineers of
the system, 100 calls was well within the acceptable range of operation and in fact
represented a high testing watermark (i.e., in actual deployments, they did not expect to
reach this level).

10 25 50 100
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Native
Strata
Strata/ISR

Number of Concurrent Calls

%
 C

P
U

 U
til

iz
at

io
n

On a micro-benchmark stress test we achieved 85% overhead. While this result seems high,

we note that this was a stress test that ran at faster than real-time in the sense that the processing
speed was higher than the input sampling rate of the audio stream. We would need to measure
macro-benchmark application-level overheads to determine the real-world performance
implication of our approach.

The use of Strata (and in fact, of virtual machine technology in general) in soft-real time
applications is a relatively uncharted area. Our preliminary results gave us confidence that with
further performance optimizations, we could reduce the CPU load and performance overheads
further.
2.6 Genesis Toolkit Enhancements

In the last phase of the project we worked towards improving the maturity and
stability of the Genesis toolkit. This was necessary to pave the way for an eventual tech
transfer to potential partners and for enabling the evaluation of the toolkit on real-world
commercial applications. Improvements made to the GDT are described below:

• Support for the Debian GNU/Linux operating system: Genesis was developed
on a variety of standard UNIX platforms, but had not been tested under this
environment. Minimal work was required to port the Genesis toolkit to Debian as
previous work had been tested under Red Hat Linux.

• Robust support for C++: The Genesis toolkit was originally implemented to
support the C programming language. Because the C and C++ run-time

 9

initialization takes place before the main() function is entered, we moved the
transfer of control to Strata to the very beginning of the process execution by
effectively prepending a few Assembly call instructions to the executable. This
put the global constructors and destructors under the control of Strata. Not a
single application instruction is executed outside the control of the Strata VM as
of this change.

• Robust support for multi-threaded software: While Strata did already support
threaded applications, a number of previously esoteric bugs were brought to light.
Running the pthreads unit tests for the GNU libc implementation no longer breaks
any previously working test cases.

• Improved engineering procedures and documentation: A large number of tests
were added to the engineering process. A number of third party tests have been
adopted, e.g. GNU libc unit tests, Linux threads unit tests, gzip package self tests.

• Independence from the C library: To support immediate control of the hosted
application by Strata, we needed to remove all dependencies upon code in the
standard C library. This allowed us to stop linking in a second copy of libc to
avoid sharing code at runtime between Strata and the hosted application. A total
of 48 functions were reimplemented in a stand-alone library. Of these only 18
were OS system calls. As a side effect of this change, the increase in the
application size as a result of embedding it in Strata was reduced by 44%.

• New logging infrastructure: A great deal of refactoring was done to create a
consistent logging facility. This was necessary to reduce the dependencies upon
the C library before implementing the stand-alone library replacements. Logging
was split into two parts: Strata logs binary data to a persistent store and a log
viewing client is used to render the log messages into human readable text.

• Build Process Integration: We modified the default configuration of the gcc
compiler such that a minimal number of options, often zero, were needed. As a
result the GDT tool chain can now be used to compile applications with little
modification of the sources.

Additional information about this phase of the project is available upon request. It was not
included in this report because of confidentiality agreements.
2.7 Recommended Configuration

The recommended configuration for the Genesis Diversity Toolkit depends on the
threat model assumed. Since code-injection attacks still predominate today, and will
likely continue do to so for the foreseeable future, we recommend the use of ISR to
protect networked applications. If more security is desired then all the other diversity
transformations of the Genesis toolkit could be combined.

If the threat model is that of exploitable vulnerabilities coupled with concerns about
code integrity, unauthorized copying and execution of applications, or reverse
engineering, then we recommend the static version of ISR in which binaries are
statically encrypted and decrypted only as the program executes. However, this
configuration option has wide ramifications for the deployment and maintenance
lifecycle of an application. Instead of producing a single image of an application and
distributing identical copies, this option would require the production at the factory of n
program variants, each with its own randomization key.

 10

3 Summary of Results
In this section, we present a summary of the results obtained by the Genesis team.

3.1 Security Benefits of Genesis
Using the Genesis Diversity Toolkit (GDT), C and C++ applications were protected against

code-injection and several forms of arc-injection attacks, including return-to-libc style attacks.
Code-injection attacks represented (and still represent) a large and important attack class that
afflicted popular Internet-enabled software applications such as Web, database, and domain
name resolution servers.

Unlike previous diversity-based approaches, the GDT provided techniques that: (1) protected
against all code-injection attacks regardless of the exploit path through a program, (2) did not
rely on probabilistic guarantees for attack detection, and (3) used strong cryptographic protocols
such as the Advanced Encryption Standard (AES).

Instead of targeting specific types of vulnerabilities, e.g., format strings, buffer overflows
etc…, the GDT provided broad protection against both known and unknown code-injection
attacks. In addition, the GDT also provided protection against return-to-libc attacks, though these
were and still are not nearly as prevalent as code-injection attacks.

The GDT was evaluated by two independent red teams. These exercises were conducted
under relatively tight budgetary and time constraints. Thus, while both exercises validated the
soundness of our approach—the red teams were unable to penetrate our defenses or find major
flaws with our system design—more thorough investigation would be required prior to large-
scale deployment.
3.2 Genesis Diversity Toolkit Status

The GDT supported C and C++ programs running on the Red hat Linux 7.x and Fedora Core,
and Debian 3.x operating systems. The GDT was evaluated on several real-world and relatively
large applications, including the Apache web server, the BIND name resolution server, and a
proprietary software-defined radio application, in addition to SPEC benchmarks. We achieved
average overheads of 17% on the SPEC2000 benchmark, 5%-10% on BIND, less than 5% on
Apache. For a commercial soft real-time application, we were able to meet QoS requirements
though at an increased CPU level. Preliminary performance data on a micro-benchmark stress-
test yielded overhead of 85%. Further research and optimizations would be warranted for soft-
real time applications in general, though early results were encouraging.
3.3 Patent Applications

The University of Virginia Patent Office filed for a patent application to cover the
technological foundation underlying the Genesis toolkit in July 2006. This technology was
licensed by a subsidiary of UTEK Corporation, a specialty finance company focused on
technology transfer (http://www.utekcorp.com/).

We note that the patent application was broader than just protection against code-injection
attacks and covered the execution of encrypted and encoded applications using virtual machine
technology. As discussed in Section 5.1 and in Appendix D, the technology developed has
applications to the field of anti-tampering, which is particularly well-suited to DoD military
systems.

 11

3.4 Technology Transfer
In addition to the license agreement described above, we have ongoing relationships with

several companies, including large defense contractors and smaller players in the defense arena,
to explore venues for continuing the development of the Genesis toolkit and for transitioning the
technology to wider use. The GDT has reached a maturity level that makes it practical to
evaluate its effectiveness on real-world military applications.
3.5 Other Results

The Genesis project has led to the establishment of several related research projects:
PhPrevent and Secretless Structures for Security (SSS). The former provided protection for web
applications against such attacks as SQL injection, Cross-site scripting (XSS), and Script
injections attacks. The latter sought to provide provable security guarantees against classes of
attacks and was a direct extension of the diversity work funded by this project. Its notable feature
was that by judiciously using diversity techniques, security could be provided without relying on
any secrets such as randomization or cryptographic keys. This project is now funded by the
National Science Foundation under the CyberTrust program.

 12

4 List of Major Publications
The following list itemizes the major publications during the contract period, including a

patent application that covered the execution of encrypted binaries using a virtual machine
approach:

Method for Software Protection Using Binary Encoding. Wei Hu, Jason Hiser, Dan
Williams, Adrian Filipi, Jack W. Davidson, David Evans,John C. Knight, Anh Nguyen-Tuong,
Jonathan Rowanhill, Adrian Filipi. Patent Application filed by the University of Virginia Patent
Foundation in July 2006. [Proprietary information not included in report. Available upon request
by DoD personnel].

Secure and Practical Defense Against Code-injection Attacks using Software Dynamic
Translation. Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David
Evans,John C. Knight, Anh Nguyen-Tuong, Jonathan Rowanhill. 2nd Virtual Execution
Environments Conference, Ottawa, Canada, June 2006. [Appendix A: Instruction Set
Randomization].

Where's the FEEB?: The Effectiveness of Instruction Set Randomization. Ana Nora Sovarel,
David Evans and Nathanael Paul. 14th USENIX Security Symposium. Baltimore, MD. August
2005. [Appendix G: Derandomizing Attacks].

Automatically Hardening Web Applications Using Precise Tainting. Anh Nguyen-Tuong,
Salvatore Guarnieri, Doug Greene, Jeff Shirley, David Evans. Twentieth IFIP International
Information Security Conference (SEC 2005). 30 May - 1 June 2005, Chiba, Japan. [Appendix F:
PHPrevent – Web Application Security].

4.1 Website
Presentations, papers and summaries are available through our various web sites. An

overview of Genesis is available at http://www.cs.virginia.edu/genesis; an overview of the web
application security project is available at: http://www.phprevent.org; an overview of the
Secretless Security project is available at http://www.nvariant.org; and finally an overview of
related projects can be found at http://dependability.cs.virginia.edu.

 13

5 Technology Transfer & Future Opportunities
Large-scale experimental evaluation and validation of the Genesis toolkit on actual

or next-generation DoD systems represent our logical next steps given the maturity of
the Genesis Diversity Toolkit. We have discussed this possibility with the Navy, with
several companies and with a large defense contractor. So far, we have not secured
commitments to undertake an expanded evaluation project, but are continuing
discussions with interested parties.

Through the University of Virginia Patent Foundation, we have licensed the
technology described in our patent application to a subsidiary of Utek Corporation. The
UVA Patent Foundation is actively seeking further licensees.
5.1 Anti-Tampering Applications

Anti-Tampering is an area of high interest to DoD, especially for systems that are
susceptible to capture by enemy forces or systems used by allies for which DoD seeks
to protect its intellectual property. In Appendix D: Tamper Proofing, we provide a
summary of Anti-Tampering using the Genesis toolkit, for providing protection against
the unauthorized modification of software, against reverse engineering of software, and
against piracy, i.e., running software on a different target host than was intended.
5.2 Recovery

Most diversity-based defense techniques are only able to detect and stop attacks.
While this is a significant first-step in building self-regenerative systems, further
research is needed in building software systems that can self-heal when faced with
attacks.

A primary and critical characteristic of our Strata-based implementation of ISR was
that instead of crashing a process like other diversity-based techniques, we actually
maintained control of the application when attack code was executed. Furthermore, we
could identify the attack code precisely. Thus, while our default policy is to exit a
program upon detection of an attack, the use of the Strata virtual machine opens the
door for more sophisticated policies that can analyze the captured code and effect repair
and recovery actions in situ. These repairs could prevent further similar attacks from
affecting the running program, thereby potentially increasing the availability of
mission-critical information systems.
5.3 Finer-grained Diversity

To reduce potential windows of vulnerability to a finite user-controlled time bound,
we would like to investigate the use of our virtual machine technology to re-diversify
applications dynamically (temporal diversity) while they are executing, without having
to restart applications, and with little impact on performance. A simple and relatively
easy to implement policy would be easy to dynamically change the AES key used in our
ISR implementation. Preliminary results indicate that flushing the instruction fragment
cache periodically on the order of seconds incurs acceptable overhead. Additional
policies to obfuscate or diversity the application code would result in a program that
presented a fast and dynamically shifting attack surface to attackers.

 14

6 Conclusion
The Genesis team has developed novel techniques for defending against large

classes of attacks, including return-to-libc and code-injection attacks, and incorporated
these techniques into the Genesis Diversity Tookit (GDT). The GDT was developed to a
maturity level sufficient for protecting real-world C and C++ applications. We have
validated the soundness of our virtual-machine based approach and architecture through
both experimental evaluation and red team exercises. We have demonstrated the
practical benefits of our approach, with only minor performance overheads on several
real-world applications of interest to the DoD. We have also demonstrated the GDT on
soft real-time applications, using software-defined radio as our target application. We
feel that the GDT is now ready for evaluation on further DoD systems. Furthermore, we
have identified several promising areas for future research, notably in the field of anti-
tampering for critical military systems.

7 References
[Nergal01] Nergal. The advanced return-into-libc exploits: PaX case study. Phrack Magazine
58, Article 0x04. 2001. http://www.phrack.org/phrack/58/p58-0x04
[Barrantes05] Barrantes, E. G., Ackley, D. H., Forrest, S., and Stefanovic, D. Randomized
instruction set emulation. ACM Transactions on Information System Security. 8, 1 (2005), 3–
40.
[Kc03] Kc, G. S., Keromytis, A. D., and Prevelakis, V. Countering code-injection attacks
with instruction-set randomization. In CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security (New York, NY, USA, 2003), ACM Press, pp. 272–
280.
[Lawton96] Lawton, K. P. Bochs: A portable pc emulator for unix/x. Linux J. 1996, 29es
(1996), 7.
[Nethercote04] Nethercote, N. Dynamic binary analysis and instrumentation. Tech. Rep.
UCAM-CL-TR-606, University of Cambridge, Computer Laboratory, Nov. 2004.

15

Appendix A: Instruction Set
Randomization

Secure and Practical Defense Against Code-injection Attacks using Software Dynamic

Translation

By Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David Evans,John

C. Knight, Anh Nguyen-Tuong, Jonathan Rowanhill. Published in 2nd Virtual Execution
Environments Conference, Ottawa, Canada, June 2006.

 16

Secure and Practical Defense Against Code-
injection Attacks using Software Dynamic Translation

Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David Evans,
John C. Knight, Anh Nguyen-Tuong, Jonathan Rowanhill

Department of Computer Science
University of Virginia

{wh5a,jdh8d,dww4s,atf3r,jwd,evans,jck,an7s,jch8f}@cs.virginia.edu

Abstract

One of the most common forms of security attacks involves exploiting a vulnerability to inject malicious
code into an executing application and then cause the injected code to be executed. A theoretically strong
approach to defending against any type of code-injection attack is to create and use a process-specific
instruction set that is created by a randomization algorithm. Code injected by an attacker who does not
know the randomization key will be invalid for the randomized processor effectively thwarting the attack.
This paper describes a secure and efficient implementation of instruction-set randomization (ISR) using
software dynamic translation. The paper makes three contributions beyond previous work on ISR. First,
we describe an implementation that uses a strong randomization algorithm—the Advanced Encryption
Standard (AES). AES is generally believed to be imprevious to known attack methodologies. Second, we
demonstrate that ISR using AES can be implemented practically and efficiently (considering both
execution time and code size overheads) without requiring special hardware support. The third
contribution is that our approach detects malicious code before it is executed. Previous approaches relied
on probabilistic arguments that execution of non-randomized foreign code would eventually cause a fault
or runtime exception.

1. Introduction
Despite heightened awareness of security concerns, security incidents continue to occur at alarming rates.
In 2004, the Department of Homeland Security reported 323 buffer overflow vulnerabilities—an average
of 27 new instances per month [13]. The most common attack to exploit buffer overflow vulnerability is a
code-injection attack. In a code-injection attack, an attacker exploits the buffer overflow vulnerability to
inject malicious code into a running application and then cause the injected code to be executed. The
execution of the malicious code allows the attacker to gain the privileges of the executing program. In the
case of programs that communicate over the network, such attacks can be used to break into host systems.

A theoretically strong approach to defending against any type of code-injection attack is to create and use
a process-specific instruction set that is created by a randomization algorithm. Code injected by an
attacker who does not know the randomization key will be invalid for the randomized processor thereby
thwarting the attack. Such an approach is known as randomized instruction-set emulation (RISE) or
instruction-set randomization (ISR) [2, 9]. In this paper, we will use the term ISR exclusively.

The basic operation of an ISR system is as follows. An encryption algorithm (typically XOR’ing the
instruction with a key) is applied statically to an application binary to encrypt the instructions. The
encrypted application is executed by an augmented emulator (e.g., Valgrind [17] or Bochs [14]. The
emulator is augmented to decrypt the application’s instructions before they are executed.

 17

When an attacker exploits a vulnerability to inject code, the injected code is also decrypted before
emulation. Unless the attacker knows the encryption key/process, the resulting code will be transformed
into, in essence, a random stream of bytes that, when executed, will raise an exception (e.g., invalid
opcode, illegal address, etc.).

The security of ISR depends on several key factors: the strength of the encryption process, protection of
the encryption key, the security of the underlying execution process, and that the decrypted code will,
when executed, raise an exception. The practicality of the approach is affected by the overheads in
execution time and space introduced by the encryption and decryption process. This paper describes an
implementation of ISR that addresses both the security and practicality issues.

The implementation is secure. It uses the Advanced Encryption Standard (AES) to perform the encryption
process. AES has been approved by the United States government to protect classified information at the
SECRET level with a 128-bit key and at the TOP SECRET level with either a 192- or 256-bit key [24].
Furthermore, the approach does not require storage of the encryption key on the disk. The key is
generated dynamically when the program is loaded. A further benefit is that each execution of an
application uses a different key. The underlying execution process is provided by a small, robust virtual
execution environment. Finally, the approach does not rely on the generation of an exception or fault by
the execution of randomized code. Injected code is detected before it is readied for execution.

Extensive testing of our approach (including an attack exercise carried out by third-party security experts
on an Apache web server that had been seeded with vulnerabilities) revealed no security breaches.

The implementation is practical. Rather than use emulation or postulating hardware extensions, we use a
robust, efficient software dynamic translation (SDT) system [21]. Performance measurements using a
variety of benchmarks including the full SPEC CPU2000 suite, a domain name server, and a web server,
showed the runtime overhead of SDT-based ISR to be modest—16% for SPEC CPU2000, 6–10% for the
domain server, and no overhead for the web server. Space overhead of SDT-based ISR is also
reasonable—the text size of a protected web server was 53% larger than an unprotected web server.
However, the working set size of the two implementations were similar. More detailed measurements of
the overheads of ISR are reported in Performance Evaluation.

The remainder of this paper is organized as follows. Threat Model describes the class of attacks that ISR
handles. Previous work on ISR is described in Previous Work. Secure and Practical ISR describes our
SDT-based implementation of ISR. An evaluation of the security and performance of our approach is
given in Evaluation. Related Work gives an overview of related work, and Summary concludes the
paper.

2. Threat Model
The threat model addressed by our infrastructure is application-level binary code injection into an
executing program. Attackers exploit some vulnerability in the target program, inject malicious code, and
alter program control to execute the malicious code. The model handles all currently identified
mechanisms for injecting foreign code into an application (e.g., buffer overflow [19, 13], format string
attacks [6], and malloc/free errors [7]). Collectively, these attacks account for over 50% of the CERT
advisories issued in the years 1999–2002. Because the approach is independent of the mechanism used to
inject code, it can protect against nascent injection mechanisms.

While the threat model covers a wide range of known attacks, there are several that are not covered. The
model does not cover arc-injection attacks (also known as return-to-libc) [18], or attacks that modify data
locations (e.g., a critical data value) [5]. Furthermore, the model assumes that the operating system is
secure and that the application image on disk cannot be modified by the attacker.

 18

3. Previous Work
Using randomization to create an instruction set that is unique to the running process so that an attacker
cannot create a payload which can be injected into the application and execute properly was
independently developed by groups at the University of New Mexico [3] and Columbia University [9].
Both groups implemented ISR prototypes for the x86 using emulation (Valgrind in the case of New
Mexico and Bochs at Columbia).

One of the major differences in the two approaches is how the application code is randomized. Both
groups used the XOR operation to produce the randomized binary. The Columbia implementation used a
32-bit key applied to 32-bit blocks containing the instruction or instruction fragment (many x86
instructions are longer than four bytes). The New Mexico implementation used a one-time pad that is the
length of the program. The bytes of the one-time pad are XORed with individual bytes of the original
application program to create the randomized program. Unfortunately, encryption techniques that use
XOR are susceptible to attack. Indeed, it was demonstrated that the New Mexico approach can be cracked
with modest effort [23]. It is also important to note that the use of a one-time pad the length of program
effectively doubles the program size. For some applications, a doubling of code size could be
problematic.

Because both techniques used emulation, the overhead of decryption and execution was quite high. On
CPU-bound benchmarks, the Columbia group reported runtime overhead as high as 25 times native
execution speed. On I/O-intensive programs such as ftp, the overhead was 1.34x. Based on their results,
the Columbia group concluded that ISR would only be feasible with special hardware support.

The New Mexico group carefully benchmarked a single program, Apache, and the trend of their results
were similar to Columbia’s results—I/O-bound programs incur less overhead [2]. When serving many
small pages (less than 1KB in size), the runtime overhead was high—2.88x. When serving larger pages
(100 KB in size), the runtime overhead was 1.05x. The New Mexico group noted that a software dynamic
translator might make ISR practical.

Both techniques assumed that the execution of decrypted payloads would eventually cause an exception
to occur. Barrantes et al. performed a theoretical analysis of the probability that execution of a sequence
of random code will escape [2]. The analysis showed that independent of the exploit or process size, there
will always be a nonzero probability that the code will escape.

4. Secure and Practical ISR

4.1 Overview
To address the security and performance overheads of the preliminary implementations of ISR, we
employ a combination of binary rewriting and software dynamic translation. We use an efficient software
dynamic translation system to provide the necessary virtual execution environment for safe execution.
The SDT system loads and encrypts the application, decrypts the application instructions in preparation
for execution, and checks that the decrypted instructions are valid application instructions prior to
execution. Binary rewriting is used to prepare the binary for strong encryption and introduce the
information necessary to detect foreign code before it is executed.

The following subsections describe these two components in more detail. We begin with the virtual
execution environment because its operation motivates the necessary transformations performed by the
binary rewriter.

 19

4.2 Virtual Execution Environment
We use Strata to provide the virtual execution environment for support of ISR. Strata is a retargetable
software dynamic translation infrastructure designed to support experimentation with novel applications
of SDT. Strata has been used for a variety of applications including system call monitoring [20], profiling
[12], and code compression [22]. The following paragraphs provide a brief introduction Strata’s
operation.

Strata dynamically loads an application and mediates application execution by examining and translating
an application’s instructions before they execute on the host CPU (see Strata virtual machine virtualizing
an application.). Strata essentially operates as a co-routine with the application that it is protecting.
Translated application instructions are held in a Strata-managed cache called the fragment cache. The
Strata virtual machine (VM) is first entered by capturing and saving the application context (e.g., program
counter (PC), condition codes, registers, etc.). Following context capture, Strata processes the next
application instruction. If a translation for this instruction has been cached, a context switch restores the
application context and begins executing cached translated instructions on the host CPU.

If there is no cached translation for the next application instruction, the Strata VM allocates storage for a
new fragment of translated instructions. The Strata VM then populates the fragment by fetching,
decoding, and translating application instructions one-by-one until an end-of-fragment condition is met.
The end-of-fragment condition is dependent on the particular software dynamic translation client being
implemented. As the application executes under Strata control, more and more of the application’s
working set of instructions materialize in the fragment cache.

Fragment Cache

inst1
inst2
…
instx
inst3
inst4
cmpl %eax,%ecx
trampoline

Code Fragment1

inst7
inst8
…
trampoline

Code Fragment2

Context
Switch

Fetch

Decode

Translate

New
PC

Finished?

No

Strata Virtual Machine

Yes

Context
Capture

Cached?

Yes

New
Fragment

Next PC

inst1
inst2
…
instx
jmp L2
insty
…

L2: inst3
inst4
cmpl %eax,%ecx
bne L4
inst5
inst6
…
jmp L8

L4: inst7
inst8
…

Application Text

CFn

CFn+1

CFn+2

CFn+3

CFn+4

CFn+5

CFn+x

inst5
inst6
…
trampoline

Code Fragment3

Figure 1: Strata virtual machine virtualizing an application.

 20

The implementation of ISR required two simple extensions to Strata. First, we introduced an encryption
feature that applies AES to the application text before Strata begins execution of the application. Second,
we overrode Strata’s default fetch mechanism. The new fetch method decrypts and verifies an instruction
before calling the default target-machine fetch method.

Runtime decryption and verification. gives the basic steps Strata carries out to implement ISR. In Step 1,
Strata’s security API is used to intercept all system calls to mprotect and sigaction. This is done to prevent
an application from inadvertently disabling write protection of the text segment or the fragment cache. In
particular, we are concerned with preventing attacks that are intended to corrupt Strata’s code since it runs
in the same address space as the application.

Step 2 encrypts the binary. The binary rewriting process created and embedded in the application text a
table, called the encrypttable, that specifies the blocks of the application text that should be encrypted.
The binary rewriter also modifies the application text so that the start of each block is aligned on a 128-bit
address boundary. Strata uses the mprotect system call to enable modification of the text segment. Using
the information in the encrypttable and a 128-bit key obtained from the pseudo-device /dev/urandom,
Strata encrypts the application text. The text segment is then write protected.

Step 3 describes the modification necessary to decrypt and verify application instructions. The new fetch
method loads two 128-bit blocks into a decoding buffer. It fetches the block that contains the first byte of
the instruction pointed to by the PC and the following 128-bit block. Both blocks are then decrypted.
Fetching two consecutive 128-bit blocks guarantees that the complete instruction is fetched and decrypted
even if the instruction starts on the last byte of the first 128-bit block (the maximum length of an x86
instruction is 15 bytes).

To illustrate the process, suppose the PC points to a ten-byte instruction that begins at memory location
0x1017B3D. The decryption engine fetches and decrypts the 128-bit blocks at addresses 0x1017B30 and
0x107B40. The following is a schematic of the decoding buffer after the fetches.

The shaded portion indicates the bytes of the buffer that contain the ten-byte instruction.

As part of the binary rewriting process (see Binary Preprocessing), each instruction is tagged with a
simple eight-bit MAC (message authentication code). After decrypting the two blocks, Strata checks the
MAC to ensure that the fetched bytes represent a valid application instruction. If the MAC is valid, Strata
simply invokes the default fetch method with the PC pointing at the first byte of the instruction.

 21

1. Initialize the system call watch table.
2. Encrypt the application.

a. Obtain a 128-bit encryption key from the pseudo-
device /dev/urandom.

b. Use the mprotect system call set write permission
for the text segment.

c. Use the table of address ranges created by the
binary rewriter and the key to encrypt the
application’s text.

d. Write protect the text segment.
3. Fetch the next instruction.

a. Fetch the 128-bit aligned block that contains
instruction pointed to by current application PC.
Also fetch the next 128-bit aligned block

b. Decrypt the two 128-bit blocks.
c. Check that the instruction tag is correct. If the tag

is incorrect, report an error and dump the current
PC and the plain-text instructions located there.

d. If the tag is correct, call the default target-machine
fetch function to retrieve the next instruction.

e. The decoding and translation steps proceed as
normal.

Figure 2: Runtime decryption and verification.

The use of an eight-bit MAC means that there is a 1 in 256 chance that the MAC is coincidentally correct.
However, in order for Strata to execute the fragment containing the injected code, the MAC for each
instruction in the fragment must be correct. Thus for a fragment containing four instructions, the
probabilty that four individual MAC would be coincidently correct is 2-32. However, with no penalty in
runtime, the size of the MAC could easily be increased.

If the MAC is invalid, the first stage of a code injection attack is underway—a vulnerability has been
exploited to inject code and control flow has been diverted in an attempt to execute the malicious code.
When an invalid MAC is detected, Strata reports the violation, and dumps the current program counter
and the undecrypted code pointed to by the program counter (i.e., the malicious payload). This
information can be used for offline forensic analysis.

It is important to note that the process of decrypting the application text, checking the MAC, and building
a specific fragment generally only occurs once. Thus, the performance overhead of SDT-based
implementation of ISR is closely related to the basic overhead of software dynamic translation.
Performance Evaluation provides detailed measurements of the overheads of our SDT-based
implementation of ISR.

 22

1. Link Emulator

m1.o

m2.o

application object files

linker map

libc.a

crt0.o

run time libraries

2. Disassembler 3. Control graph
Builder

executable

6. Optimizer

5. Flattener4. Assembler

rewritten
executable

7. Writer

Diablo

Figure 3: Work flow of the binary rewriter Diablo.

There are a few other details that deserve discussion. Strata controls access to the fragment cache using
the mprotect system call. During application execution, the fragment cache is write protected. The
decryption key is also maintained in a memory region not accessible to the application. On a context-
switch from the application back into Strata, Strata makes the fragment cache writeable so that it may
create new fragments or perform updates of existing fragments. It also makes the location containing the
decryption key readable. Before the context switch back to the application occurs, Strata reprotects the
fragment cache and the encryption key.

Our current implementation of ISR does not support applications that employ legitimate uses of self-
modifying code. We do not view this as a serious limitation. None of the critical applications that we have
examined employed self-modifying code. Nonetheless, we plan to investigate techniques for safely
handling legitimate uses of self-modifying code.

4.3 Binary Preprocessing

To prepare the binary for encryption using AES and to introduce the necessary MACs, we modified
Diablo, an existing binary rewriting tool [4]. Work flow of the binary rewriter Diablo. illustrates the basic
workflow of Diablo.

Diablo reads all object files and libraries constituting an application, the linked application, and the map
file generated by the normal linker. In phase 1, Diablo uses this information to replay the linking process
of the normal linker. In phase 2, Diablo dissects and translates the program into an internal
representation. In phase 3, Diablo disassembles the instructions and builds a control flow graph (CFG).
Phase 4 then applies various analysis and optimization techniques to the CFG (e.g., useless code
elimination, architecture-dependent peephole optimizations, etc.). After completion of phase 4, phase 5
flattens the CFG into a linear representation and phase 6 produces target-machine instructions. In the
final step, the binary writer emits the modified executable.

 23

The shaded blocks in Work flow of the binary rewriter Diablo. are the Diablo modules that required
extension to produce a binary with the transformations and informations needed to support ISR. The
extensions to each phase are outlined in Diablo extensions to support ISR..

1. Flattener
For each basic block do:
a. Determine the source of the basic block. If the basic block is application code, mark the basic block

for encryption. Otherwise do not mark the block for encryption.
b. If the block is marked for encryption, reserve one byte before each instruction for a MAC.
c. Recalculate the offsets among basic blocks and update all instructions affected.
d. Maintain a record of each block that should be encrypted.

2. Assembler
For each basic block do:
a. Determine the source of the basic block.
b. If the basic block is application code and instruction tagging is enabled, insert a MAC in the each

instruction in the block.
c. If the basic block is application code and instruction tagging is disabled, insert an NOP in the space

reserved for the MAC.
3. Writer

a. Create a new section, encrypttable, to contain the information about the text blocks to encrypt at load
time.

b. Set up the ELF executable and output the binary (the text segment, the data segment, the encrypttable
segment, and any other segments).

Figure 4: Diablo extensions to support ISR.

Phase 5, the Flattener, assigns a linear order to the CFG and updates the offsets in control transfer
instructions according to that order. We added a function AlignBlock that is invoked after the linear order
is assigned, but before offsets are updated. This function processes each basic block. If the block is
application code, AlignBlock reserves space for a MAC before each instruction. It then aligns the block
appropriately by padding the beginning of the block with NOPs (these NOPs are elided by Strata during
its translation process).

Not every basic block needs alignment. If the previous block was aligned and the following basic block is
part of the application text, it can be grouped with the previous basic block. After all blocks are
processed, the Flattener recalculates branch offsets and updates all instructions affected. The starting
address and length of each block that should be encrypted is collected so this information can included in
the modified binary emitted by the Writer.

Phase 6, the Assembler, is modified to fill the placeholder preceding each instruction with a MAC if
instruction tagging is enabled, or with a NOP if instruction tagging is disabled. Again, Strata’s translation
process elides NOPs.

The final phase of Diablo emits the modified binary to disk. This phase of Diablo was extended to create
a new segment, .encrypttable, to contain the encryption information that Strata uses to initially encrypt the
application text.

5. Evaluation
With any system designed to protect software against malicious exploitation of vulnerabilities, there are
tradeoffs in terms of performance and the level of security provided. In this section, we evaluate the
security and performance of SDT-based ISR.

 24

5.1 Security Evaluation
As previously described, our implementation uses AES to encrypt the application text using a key that is
generated at runtime. It is generally believed that AES is secure.

When encryption is used to protect a system, an important issue is management of the encryption key.
Where is the key stored? How is the key protected? How long is the key valid? Our approach addresses
these issues. The encryption key is never stored on disk, the key is maintained in a protected region of
memory only accessible by Strata, and a new key is generated for each execution of the application.

To evaluate the security of SDT-based ISR, we seeded published vulnerabilities into several real
applications and then exploited the vulnerability to effect a code-injection attack. Table I lists the
applications, the type of vulnerability, and the target memory region of the injected code. For each
vulnerability, we demonstrated that exploitation of the vulnerability could be used to compromise an
unprotected system. In all cases, ISR was able to detect the attempt to execute injected code and prevent
the attack from proceeding.

Our protected version of Apache was also subjected to attack by a security team consisting of several
security experts. All algorithms, source code, and design documents were provided to the security team
for analysis in advance of the exercise. The target system was seeded with several known vulnerabilities
and subjected to concerted code-injection attacks. The system was able to stop all attacks.

Application Vulnerability Location of injected code

Apache Buffer overflow Stack

Apache Format string Heap/Stack

Samba Buffer overflow Stack

Bind Format tring Heap/Stack

rpc.statd Format string Global offset table

cvs server double free Stack

Table 1: Tested applications.

5.2 Performance Evaluation
A major concern raised by initial implementations of ISR was the high runtime overheads incurred. To
evaluate the runtime overhead of SDT-based ISR, we measured the performance of a variety of
benchmarks. In all measurements, the performance measures are normalized to native execution—the
application running directly on the hardware.

All measurements reported in this section were taken on a 2.8GHz P4 Xeon with 512MB of RAM.
Hyperthreading was enabled. The installed operating system was RedHat 8.0. In the case of the
client/server applications, Apache and Bind, client processes were run on separate, but identical machines.

SDT overhead and SDT-ISR overhead normalized to native execution. Metric: SPEC ratio. shows the
performance results for SPEC CPU2000. We measured the overhead of the baseline SDT system (no
ISR), and the overhead of the SDT-based ISR system. The performance metric used to compute the
overhead was the reportable SPEC ratio produced by the SPEC measurement infrastructure.

 25

Figure 5: SDT overhead and SDT-ISR overhead normalized to native execution. Metric: SPEC ratio.

The average overhead for SDT-based ISR is 1.17 while the overhead of the baseline SDT system is 1.16.
This basic trend is seen for all the benchmarks—ISR incurs little or no additional overhead over a
baseline SDT system.

It is interesting to note that the high average is due to a few outliers—perlbmk, gap, and gcc. These
benchmarks execute a high percentage of indirect control transfers which are problematic for SDT
systems [15, 21].

We also measured the overhead of two applications that are representative of the types of programs that
might be desirable to protect with ISR. One is Apache, the widely-used Web server. The other is Bind, a
widely used domain name server.

To measure Apache performance, we used flood, the web server performance measurement tool
developed and supported by the Apache Software Foundation. Flood’s performance metric is number of
client requests served per second. For the measurements reported here, flood was configured to spawn
eight clients each requesting pages from the server. We confirmed that the server was saturated with
requests.

To determine if performance was sensitive to the size of the page served, we measured performance using
a variety of page sizes. We also measured the performance when the web page served consisted of several
components. In these instances, the sum of the components is reported. For example, the label “200KB
Compound” indicates that the web page served consisted of several individual files and the sum of the
sizes of the individual files was 200KB. Apach contains the results.

 26

 As the chart shows, the overhead of running either the
baseline SDT system or the SDT-ISR system is
negligible. The performance is independent of the size
of the web page being served or whether it is a single,
flat file or a page consisting of several individual
components.

To measure the performance of the Berkeley Domain
Name server, Bind, we created three representative zone
files. Briefly, a zone file contains directory records for
mapping names such as www.apache.org to an IP
address, and for mapping an IP address to a name (a
reverse lookup). We created zone files containing 1000
records, 10,000 records, and 100,000 records to

represent a small organization, a mid-size organization, and a large organization, respectively. Using
queryperf, a DNS server performance testing tool, we measured the number of queries processed per
second of Bind running under our SDT system with and without ISR enabled.

The measurement results are presented in Bin. The overhead of querying the small and mid-size databases
is about 10%, while the overhead for the larger database was 5%. Again, there was no statistically
significant difference between the SDT-only system and the SDT-ISR system.

We also measured the space overhead of SDT-based ISR.
For Apache and Bind, the text size of the rewritten binary
was 53 and 57 percent larger, respectively, than the text
size of the corresponding native binaries. Most of this
overhead was due to the one byte MAC inserted before
each instruction.

The encrypttable which was stored in a separate segment
increased the size of the initialized data segments by 16%
for Apache and 40% for Bind. The size of the
encrypttable depends on the number of encryption
blocks. For all performance experiments, the size of
Strata’s fragment cache was fixed at 4MB.

We also observed the working set size of the running
applications. We saw no difference in the working set size between the SDT versions and the native
versions. This is not surprising as Strata itself is small and only the code that is executed materializes in
the fragment cache.

While we believe that the size overheads are reasonable for server applications, for some environments
reducing space overhead may be desirable. The size of the text segments could be substantially reduced
by computing a MAC for a block of instructions rather than a one-byte MAC for every instruction.

6. Related Work

Code injection attacks represent a major threat to computer security, and as a result there is a large body
of work describing various techniques for stopping attackers from running injected code. Many of these
techniques focus on particular areas of memory that are often attacked, most often the stack. StackGuard
[8] and PaX [25] are two popular example of such methods.

Previous work involving software-base implementations of ISR is described in Previous Work.
Milenkovic et al. propose a method of basic block signing, similar to ISR, but partially implemented in

Figure 6: Apache overhead normalized to native
execution. Metric: client requests served per second.

Figure 7: Bind overhead normalized to native
execution. Metric: queries per second.

 27

hardware [16]. This system uses AES, which a hardware key to create a signature of each basic block to
ensure that it has not been modified. Similarly Kirovski et al. created the "Secure Program Execution
Framework" for the ARM instruction-set architecture [11]. This framework also creates hashes of groups
of instructions, which are checked in hardware before the instructions are allowed to execute. However,
the system constructs the hashes in such a way that instruction rescheduling and basic block reordering,
and register permutations could still be performed.

Software dynamic translators have also been used for other security systems, mainly in policy
enforcement. Strata has been used to enforce security policies [20]. Here Strata provides an API to watch
sensitive system calls and function calls, and alter them or prevent them if they behave outside the
implemented policy.

DynamoRIO is used as the base for program shepherding [10]. Program shepherding restricts program
execution based on a number of policies like disallowing modified code and restricting targets of branch
instructions. Similarly, Abadi et al. propose restrictions on control flow using static binary rewriting [1].
This system uses labels to ensure that return instructions match valid return sites.

7. Summary
This paper has described a software dynamic translation-based implementation of instruction-set
randomization. Instruction-set randomization is a powerful technique that defends against all application-
level binary code injection attacks independent of the vulnerability used to inject the code. The
implementation uses a strong encryption algorithm, the Advanced Encryption Standard, to produce a
random instruction set each time the protected application is loaded and executed. Without access to the
encryption key, an adversary cannot produce a payload that will successfully execute on a protected
system. We tested the security of our system by seeding different types of vulnerabilities into applications
and then exploiting the vulnerabilities to inject code. In every case, our ISR-protected implementations
detected and prevented execution of the foreign code. In addition, an Apache server was seeded with
vulnerabilities. The server along with detailed information about the seeded vulnerabilites was delivered
to a set of security experts for analysis and testing. The seeded server was subsequently subjected to a
concerted set of attacks by the security experts. The ISR-protected web server was not compromised.

The SDT-based implementation of ISR is sufficiently efficient to be used to protect critical service
applications that are often the target of attack. Measurements of an ISR-protected Apache web server
showed little or no performance loss over a natively executing Apache web server. Similarly, the
performance of an ISR-protected domain name server was evaluated. The performance loss over a
natively executing version was observed to be between 5 and 10 percent. [20]

These performance results along with the security of the approach make SDT-based ISR a viable
protection mechanism for critical server applications. While the approach only protects against code-
injection attacks, these represent a large class of attacks. Encouraged by the performance results, we are
investigating the use of SDT to protect against other types of attack including arc injection and data
corruption attacks.

 28

8. References

[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J. Control-flow integrity. In Microsoft
Research Technical Report MSF-TR-05-18 (2005).

[2] BARRANTES, E. G., ACKLEY, D. H., FORREST, S., AND STEFANOVIC, D. Randomized instruction set
emulation. ACM Transactions on Information System Security. 8, 1 (2005), 3–40.

[3] BARRANTES, E. G., ACKLEY, D. H., PALMER, T. S., STEFANOVIC, D., AND ZOVI, D. D. Randomized
instruction set emulation to disrupt binary code injection attacks. In CCS ’03: Proceedings of the
10th ACM conference on Computer and communications security (New York, NY, USA, 2003),
ACM Press, pp. 281–289.

[4] BUS, B. D., SUTTER, B. D., PUT, L. V., CHANET, D., AND BOSSCHERE, K. D. Link-time optimization
of ARM binaries. ACM SIGPLAN Notices 39, 7 (July 2004), 211–220.

[5] CHEN, S., XU, J., SEZER, E., GAURIAR, P., AND IYER, R. Non-control-data attacks are realistic
threats. In Proceedings of the 14th USENIX Security Symposium (Berkeley, CA, USA, 2005),
USENIX Association, pp. 177–192.

[6] COWAN, C., BARRINGER, M., BEATTIE, S., AND KROAH-HARTMAN, G. Formatguard: Automatic
protection from printf format string vulnerabilities. In Proceedings of the 10th USENIX Security
Symposium (August 2001).

[7] COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, P. PointGuard exttrademark:
Protecting pointers from buffer overflow vulnerabilities. In Proceedings of the 12th USENIX
Security Symposium (Aug. 2003), USENIX, pp. 91–104.

[8] COWAN, C., PU, C., MAIER, D., HINTON, H., BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., , AND
ZHANG, Q. Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks. In
Proceedings of the 1998 USENIX Security Symposium (1998).

[9] KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. Countering code-injection attacks with
instruction-set randomization. In CCS ’03: Proceedings of the 10th ACM conference on Computer
and communications security (New York, NY, USA, 2003), ACM Press, pp. 272–280.

[10] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. P. Secure execution via program
shepherding. In Proceedings of the 11th USENIX Security Symposium (Berkeley, CA, USA, 2002),
USENIX Association, pp. 191–206.

[11] KIROVSKI, D., DRINIC, M., AND POTKONJAK, M. Enabling trusted software integrity. In ASPLOS-X:
Proceedings of the 10th International Conference on Architectural Support for Programming
Languages and Operating systems (New York, NY, USA, 2002), ACM Press, pp. 108–120.

[12] KUMAR, N., AND CHILDERS, B. Flexible instrumentation for software dynamic translation. In
Workshop on Exploring the Trace Space, International Conference on Supercomputing (2003).

[13] KUPERMAN, B. A., BRODLEY, C. E., OZDOGANOGLU, H., VIJAYKUMAR, T. N., AND JALOTE, A.
Detection and prevention of stack buffer overflow attacks. Communications of the ACM 48, 11
(2005), 50–56.

[14] LAWTON, K. P. Bochs: A portable pc emulator for unix/x. Linux J. 1996, 29es (1996), 7.

 29

[15] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI,
V. J., AND HAZELWOOD, K. Pin: building customized program analysis tools with dynamic
instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation (New York, NY, USA, 2005), ACM Press,
pp. 190–200.

[16] MILENKOVIC, M., MILENKOVIC, A., AND JOVANOV, E. Using instruction block signatures to counter
code injection attacks. SIGARCH Computer Architecture News 33, 1 (2005), 108–117.

[17] NETHERCOTE, N. Dynamic binary analysis and instrumentation. Tech. Rep. UCAM-CL-TR-606,
University of Cambridge, Computer Laboratory, Nov. 2004.

[18] PINCUS, J., AND BAKER, B. Beyond stack smashing: Recent advances in exploiting buffer overruns.
IEEE Security & Privacy 2, 4 (jul/aug 2004), 20–27.

[19] PRASAD, M., AND CHIUEH, T. A binary rewriting defense against stack based buffer overflow
attacks. In Proceedings of the 2003 USENIX Annual Technical Conference (June 2003), pp. 211–
224.

[20] SCOTT, K., AND DAVIDSON, J. Safe virtual execution using software dynamic translation. In Annual
Computer Security Applications Conference (2002).

[21] SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS, B. R., DAVIDSON, J. W., AND SOFFA, M. L.
Retargetable and reconfigurable software dynamic translation. In International Symposium on Code
Generation and Optimization (San Francisco, CA, Mar. 2003), IEEE Computer Society, pp. 36–47.

[22] SHOGAN, S., AND CHILDERS, B. Compact binaries with code compression in a software dynamic
translator. In Design Automation and Test in Europe (2004).

[23] SOVAREL, N., EVANS, D., AND PAUL, N. Where’s the feeb? the effectiveness of instruction set
randomization. In Proceedings of the 14th USENIX Security Conference (2005).

[24] THE COMMITTEE ON NATIONAL SECURITY SYSTEMS. National policy on the use of the advanced
encryption standard (aes) to protect national security systems and national security information.

[25] THE PAX TEAM. http://pax.grsecurity.net.

30

Appendix B: Calling Sequence Diversity

 31

Calling Sequence Diversity

1. Introduction
Software vulnerabilities manifest themselves in many different ways. The traditional stack
smashing attack takes advantage of a buffer overflow vulnerability to inject malicious code on to
the stack and execute it [1]. In order to protect against such an attack, several defenses that
effectively render the stack non-executable have been proposed. While this approach will
certainly thwart a stack smashing attack, it is not foolproof.
A return-to-libc attack can bypass a non-executable stack by relying on existing code. Instead of
executing injected exploit code, the attack uses existing library functions that can have malicious
consequences with certain arguments. A simple example involves pointing the return address to
the system() library function with the argument pointing to an instance of the string "/bin/sh".
When the compromised function returns, a shell is executed without ever using any injected code
[2].

This paper proposes a method that will detect and prevent return-to-libc attacks and other
attacks that take advantage of existing code. It is intended as a supplement to existing schemes
that already thwart code injection attacks.

2. Return-to-libc Exploits
In order to understand how a return-to-libc attack works, consider the vulnerable function

foo() shown in Figure 1a. The contents of the stack during the execution of foo() are shown in
Figure 1b.

void foo(int arg1, int arg2)

{
 char buffer[100];

 ...
 scanf("%s", buffer);
 ...
}

 (a) Vulnerable function (b) Contents of the stack

Figure 1

A buffer overflow vulnerability is present in foo() because scanf() will overwrite data
beyond the allocated memory for buffer if the user provides a string that is longer than 100
bytes. Looking at the stack, we can see that this data will overwrite the return address for foo().
Since the attacker can overwrite the return address for foo(), she can redirect control to any
location she chooses once foo() returns. In the case of a return-to-libc attack, the return address
will be changed to the address of a library function.

...
arg2
arg1

(return address)
(saved ebp)
buffer[99]
buffer[98]

...

hi
gh

er

stack

 32

Figure 2: Overflowing the stack

Figure 2 illustrates how to overwrite the stack in order to cause a return-to-libc attack.

The saved base pointer is overwritten by the arbitrary dummy value, since its value is
unimportant. The return address is replaced by lib_function, the address of the library
function to be executed. The value new_ret_addr will act as the return address for
lib_function, as if it were pushed onto the stack during a normal function call. Following
new_ret_addr is the argument list for the call to lib_function, starting at new_arg1 [2].

Consider the case where the attacker wants to execute the system() function, which
takes one string argument that is executed as if it were entered as a command in a shell. If the
attacker sets lib_function as the address of system() and sets new_arg1 as a pointer to the
string "/bin/sh", this will execute a shell whenever foo returns.

3. Approach
The return-to-libc exploit is possible because the attacker is able to disrupt the intended

control flow of the program through manipulation of the return address. In order to prevent this
type of attack we need a technique to ensure that any execution of library code comes from a
legitimate function call in the program.

One way to enforce legitimate execution of library functions is to develop a calling
convention that prevents unauthorized invocation of potentially malicious functions. Our
approach to developing such a secure calling convention is to require a hidden parameter that
will be checked by the called function. This hidden parameter would be an arbitrary value acting
as a key. Since the attacker does not know what the key is, she will not be able to execute the
function successfully.

3.1 First Attempt
Consider a simple implementation of this key system. Vulnerable library functions such

as system() are identified and rewritten to accept an additional parameter. Code to verify that
the parameter is the correct key is also added to these functions. The modified library code is
recompiled to produce a new protected shared library.

Any calls to these protected functions must be changed to include the key as well. The
compiler is modified to add the key as the additional parameter. Programs must be compiled
with the modified compiler and linked with the modified library in order to receive protection.

This implementation will prevent the attacker from returning directly to a protected
function because he must supply the key. However, it is possible to indirectly execute such a

...

arg2

arg1

(return
address)
(saved ebp)

buffer[99]

buffer[98]

...

...

new_arg1

new_ret_addr

lib_function

dummy

buffer[99]

buffer[98]

...

 33

function by returning to a point in the code that contains a legitimate library function call. This
call would set up the key correctly and the call would succeed.

Figure 3: Returning to a legitimate call site

 Consider the example in Figure 3. Instead of changing foo’s return address to the

address of system(), the attacker changes it to L1, the location of a legitimate call to system().
This call has been compiled to include the key parameter, so the call to system() will succeed.
In this situation the attacker is forced to use the command argument already in place at the call
site, making it difficult to apply a set of malicious commands. However, it could be possible to
overwrite the data pointed to by command if it is on the stack. Also, if a call site is found that gets
arguments from registers or from the stack, it may be possible to manipulate these data locations
in a way that gains control of the arguments.

3.2 Improved Key System
In order to account for this vulnerability, consider a different approach. Rather than

passing the key as an explicit parameter to the function, the key is kept in a global variable
available to all functions. Each function in the program has its own unique key. As the program
enters and exits functions, the global key variable changes accordingly.

Figure 4: Key transformation

 Figure 4 illustrates the basic idea behind key transformation. First, a global key variable

is added to the program. It should be initialized to the key for main(). Whenever main() calls
another function such as foo(), the key is transformed from main’s key into foo’s key through
the keygen() process. When that function returns, the key is transformed back into main’s key.

int main()

{

 foo();

}

int key;

int main() {
 key = keygen(key, &main, &foo);
 foo();
 key = keygen(key, &foo, &main);
}

void main() {
 ...
 foo();
 ...
L1: system(command, key);
 ...
}

void foo() {
 // buffer overflow in foo sets
 // return address to L1
}

 34

Note that keygen() is not an actual function. It is merely pseudocode to illustrate the key
transformation process.

 The transformation is actually performed as an exclusive-or operation. Given a source
function and a destination function, a constant is calculated. Performing an exclusive-or of this
constant with the source key will produce the destination key. This is demonstrated in the
following equation, where c is the constant and ksrc and kdst are keys for the source and
destination functions respectively.

src dstk c k⊕ =

 The transformation is achieved by providing a constant c that satisfies this equation. We

can solve for c:

0

src dst

src src src dst

src dst

src dst

k c k
k k c k k

c k k
c k k

⊕ =
⊕ ⊕ = ⊕

⊕ = ⊕
= ⊕

 Therefore the constant c can be computed as an exclusive-or of the source and destination

keys. As shown in Figure 4, the keygen() process uses three values: the value of the global key,
and the addresses of the source and destination functions. The transformation is achieved by
looking up the keys for the source and destination functions, performing an exclusive-or of the
keys to produce the constant, and finally performing an exclusive-or of the global key with the
constant. The resulting value is stored back into the global key variable.

 This process may seem excessive, but there is an important property involved. The
constant is calculated for specific source and destination functions, and therefore it assumes that
the global key is already set to the key for the source function. However, if the global key is not
set to the correct key, the transformation will produce a meaningless and incorrect value.

Figure 5: Returning to a legitimate call site with key transformation

void main() {
 ...
 key = keygen(key, &main, &foo);
 foo();
 key = keygen(key, &foo, &main);
 ...
L2: key = keygen(key, &main, &system);
L1: system(command);
 key = keygen(key, &system, &main);
 ...
}

void foo() {
 // buffer overflow in foo rewrites
 // return address
}

 35

Consider this in the context of our example from Section 3.2 involving a jump to a legitimate
call site. If the attacker modifies the return address to jump to some call in another part of the
program, the global key will still have the value of the vulnerable function that he came from.
This will be the wrong key for the transformation, and the resulting key will be wrong as well.

 Figure 5 shows the example from Section 3.2 with the improved key system. The global
key variable is changed to foo’s key before the call to foo(). Again, a buffer overflow in foo()
overwrites the return address. However, if the attacker returns to the call at L1, the key will not
be set to system’s key and the key check will fail. If the attacker returns to L2, the key
transformation from main() to foo() will fail because the key is actually still set to foo’s key.

4. Implementation
If such a key system were implemented statically, the attacker could easily inspect the

binary file and determine the value of the key. Therefore the proposed scheme will use a new
random key every time the program is executed. First, the program needs to be compiled with
the new calling convention. For this step I modified the Zephyr compiler infrastructure [3]. The
key will be dynamically inserted into the code using Strata, a software dynamic translation tool
[4].

4.1 Passing Information to Strata
 A call to an actual keygen() function would incur significant overhead, so we would like

Strata to insert the appropriate XOR instruction directly into the code fragment. Strata will need
to know the source and destination functions in order to calculate the correct constant. If
keygen() were compiled as a function call, it would be difficult for Strata to reliably determine
the arguments. The compiler pushes arguments on to the stack, and may end up using registers
or temporary variables in the process. Strata would need to backtrack through the code in order
to determine the value of those arguments.

 However, it is much easier to pass function addresses to Strata using function calls.
Strata can determine the target of a function call without the need to look at any other code. We
can accomplish this by using a sequence of three function calls. The first call to the reserved
function strata_key_direct() acts as a placeholder to notify strata that a key should be
transformed. Strata should then use the next two function calls to determine the source and
destination functions for the transformation. When building a fragment, all three calls are
discarded and replaced by the XOR instruction.

So, instead of the compiler generating our original code at a call to foo():

key = keygen(key, &main, &foo);
foo();
key = keygen(key, &foo, &main);

The following code is generated:

strata_key_direct();
main();
foo();

foo();

strata_key_direct();

 36

foo();
main();

The compiler produces the following assembly code:

call strata_key_direct ; notify Strata of key transformation
call main ; extract the address of main
call foo ; extract the address of foo

call foo ; original function call

call strata_key_direct ; reverse the key transformation
call foo
call main

Finally, Strata will examine the binary and insert the following code into the fragment:

 xor %0x1234, key
 call foo
 xor %0x1234, key

where 0x1234 represents the constant that is calculated by Strata.

However, this method will not work for indirect function calls since the destination of the
function call is not constant. In this case we must incur the overhead of a call to a
strata_key_indirect() function that will use the value of the function pointer when
calculating the constant to use in the transformation. Figure 6 shows how a call through function
pointer fp would be protected.

Figure 6: Key transformation for an indirect function call

 The strata_keygen_indirect() function will examine the values of its arguments in

order to calculate the required constant. The global key variable will be transformed with an
exclusive-or operation as usual. Since the key variable is global, it does not need to be passed as
an argument. Strata will process the call to strata_key_indirect() as a normal function.

void main() {
 void (*fp)();
 fp = &foo;

 strata_key_indirect(&main, fp);
 (*fp)();
 strata_key_indirect(fp, &main);
}

void foo() {
}

 37

4.2 Compiler Modifications
The Zephyr compiler [3] is used to add the key transformation code at all function call

sites. This was done by modifying lcc, one of Zephyr’s possible front ends. The keygen() code
is inserted after the intermediate language trees have been fully constructed by lcc. As these
trees are added to the code list that will be passed to the code expander, they are checked for any
function calls. If a function call is present, the keygen() code is inserted before and after the
call.
4.2.1 Direct Calls

Figure 7: Intermediate language trees for foo(arg, 100)

 As an example, Figure 7 illustrates the forest of trees that is constructed for the function

call foo(arg, 100). Solid arrows represent parent-child relationships within the trees, and
dashed arrows represent links between trees in the forest. At this point in the compilation
process, function arguments have been pulled out into separate trees, and the structure is quite
simple.

 The modified version of lcc traverses this forest, looking for a CALL node. If any such

node is found, the appropriate strata_key_direct() calls are inserted before the first argument
and after the original function call. Figure 8 illustrates the modification made to the forest
shown in Figure 7, assuming that the function foo() is called from main().

Figure 8: Modified intermediate language trees for foo(arg, 100) (original call is shaded)

A A CA

ADDRG
foo

INDI

ADDRL
arg

CONST
100

ARG ARG CALL

ADDRG
foo

INDIR

ADDRL
arg

CONST
100

CALL

ADDRG
foo

CALL

ADDRG
main

CALL

ADDRG
strata_key_

direct

CALL

ADDRG
strata_key_

direct

CALL

ADDRG
foo

CALL

ADDRG
main

 38

4.2.2 Indirect Calls

Figure 9: Modified intermediate language trees for (*fp)() (original call is shaded)

 If a CALL node is found with an INDIR node as a child, the call is an indirect call and must

be treated differently. A call to strata_key_indirect() must be inserted with the appropriate
arguments. Figure 9 shows how to handle key transformation for an indirect call through the
function pointer fp, again assuming that the call is made in main(). These modifications mirror
the example shown in Figure 6.

Figure 10: Problematic indirect call sequence

Unfortunately, certain compiler generated call sequences make the transformation in
Figure 9 difficult. Figure 10 shows a sequence that requires multiple trees to calculate the
address of the function to call. The call is performed through a temporary variable that is
assigned in the previous tree. This is not a realistic example, but a simplification of much more
complex call trees that use temporary variables to simplify the calculation of the function
address.

The problem with the sequence in Figure 10 arises when generating the first call to
strata_key_indirect(). We must place this call before the first argument tree, but the value
of temp is invalid at this point because the assignment to temp has not taken place yet. The call
to strata_key_indirect() cannot go after the assignment tree, because the compiler will
assume that the existing argument should be associated with strata_key_indirect() rather
than the original indirect call.

CALL

INDIR

ADDRL
fp

CALL

ADDRG
strata_key_

indirect

ARG

ADDRG
main

ARG

INDIR

ADDRL
fp

CALL

ADDRG
strata_key_

indirect

ARG ARG

INDIR

ADDRL
fp

ADDRG
main

 ARG ASGN CALL

INDIR

ADDRL
temp

CONST
100

INDIR ADDRL
temp

ADDRL
fp

 39

Figure 11: Saving call sequence values from Figure 10 for later

 In order to avoid this problem, call sequence values are saved in new temporaries so that

they can be used later. As the compiler advances through the code, it maintains a list of pointers
to arguments that it has come across. If it turns out that these arguments belong to an indirect
call, all arguments and the call itself are rewritten as assignments to temporaries. Figure 11
illustrates how the sequence from Figure 10 would be transformed. The argument is stored in
temp_arg1 and the function pointer is stored in temp_fp while the middle assignment tree
remains unchanged.

 Once these values have been stored in temporaries, the remaining work is simple. In
addition to generating the calls to strata_key_indirect(), the original call must be
reconstructed. All the values required are now stored in convenient temporary variables. The
key transformation is achieved by generating the following code sequence (assuming the code is
in main()):

 strata_key_indirect(&main, temp_fp);
 (*temp_fp)(temp_arg1);
 strata_key_indirect(temp_fp, &main);

 At this point, I will omit the tree structure for this code sequence, but it will be very

similar to the sequence shown in Figure 9. Note that these new temporaries will generate some
additional overhead, but they are only used in the event of an indirect call, which is already
incurring more overhead than usual.

4.3 Strata Modifications
 Strata is a software dynamic translation tool capable of modifying binary code on the fly

[4]. Strata is used to dynamically generate and insert the key transformation code based on the
placeholders created by the compiler. Strata also maintains the keys themselves, storing them in
a hashtable for quick access.
4.3.1 Key Hashtable

 The keys themselves are random 32-bit integers. The hashtable stores keys for each
function and is indexed by the function address. It is structured as an array of linked lists. The
index into this array is computed by selecting the least significant bits of the function address.

 For ease of programming all access to the key hashtable is done through the
keytable_lookup() function. This function takes an address as an argument. If there is a key
installed for that address, its value is returned. However, if no key is found, a random key is

 ASGN

INDIR ADDRL
temp

ADDRL
fp

ASGN

ADDRL
temp_arg1

CONST
100

ASGN

INDIR ADDRL
temp_fp

ADDRL
temp

 40

generated, installed, and its value is returned. Therefore the programmer can call
keytable_lookup() whether or not a key exists for that address yet.
4.3.2 Call Translation

 Our goal in modifying Strata is to recognize the calls set in place by the compiler and to
replace them with the appropriate key transformation code. This goal is achieved by providing a
custom xlate_call() function to the target interface. This function is responsible for
translating any call statements encountered in the program text while building a fragment.

The custom function, called xlate_key_call(), examines the target address of all
function calls. If a call to strata_key_direct() is found, Strata will fetch the next two
instructions assuming that these are calls to the source and destination functions of the key
transformation. A target address is computed for each of these function calls, and keys are
retrieved from the hashtable for these addresses using keytable_lookup(). An exclusive-or of
these keys is performed to produce the required constant. Finally, Strata emits code into the
fragment to perform an exclusive-or of the global key variable with the constant.

 In order to handle indirect function calls, the strata_key_indirect() function is
implemented in Strata. The functionality is the same as the xlate_key_call() function
described above with some obvious exceptions. The function addresses are supplied as
arguments to the function, so these can be passed directly to keytable_lookup(). Also, instead
of emitting code to perform the exclusive-or, it is performed as part of the function. There is no
special code to handle calls to strata_key_indirect(). They are treated just as any other call.
4.3.3 setjmp() and longjmp()

 The setjmp() and longjmp() functions in C are used transfer control across functions.
When setjmp() is called, the stack environment is saved. When longjmp() is called later from
another function, the stack environment is restored and program execution continues as if the
corresponding call to setjmp() had just returned. This is a concern because the key will need to
be maintained appropriately when jumping across functions.

Figure 12 illustrates the key transformations applied when jumping from bar() to foo() using
longjmp() (with our original keygen pseudocode). The call to setjmp() is fine, since it returns
normally. However, the call to longjmp() transfers to the setjmp() and acts as if setjmp()
was returning again. So, the key is transformed from bar’s key to longjmp’s key, and then from
setjmp’s key to foo’s key.

void foo() {
 key = keygen(key, &foo, &setjmp);
 setjmp(env);
 key = keygen(key, &setjmp, &foo);
}

void bar() {
 key = keygen(key, &bar, &longjmp);
 longjmp(env);
 key = keygen(key, &longjmp, &bar);
}

Figure 12: Key transformation for setjmp() and longjmp()

 41

 The transformation from setjmp() to foo() will fail since the key is still set to
longjmp’s key. However, this problem is easily solved by giving setjmp() and longjmp() the
same key. We can easily pre-install keys into the hashtable during Strata’s initialization. If
setjmp() and longjmp() have the same keys, a longjmp() will correctly maintain the global
key.

4.4 Library Modifications
 The key transformation system detailed here is useless without modifications to the

library functions in order to verify that the correct key has been established. The source code to
glibc was obtained so that the code could be modified to include key verification.

Checking the key is accomplished by a call to strata_key_check(), which takes the
address of the current function as an argument. For example, protecting the system() function
involves placing strata_key_check(&system) in the code for system(). The
strata_key_check() function will look up the key for the address given in the argument and
compare it to the global key. If the keys do not match, this is evidence that the intended control
flow of the program has been disturbed. An error message is displayed and execution is
terminated, preventing the attack.

5. Results

5.1 Verification
 For verification, the Apache web server (version 1.3.33) was compiled with the modified

compiler. There are no known buffer overflows in this version, so the source code was modified
to add one. Work done by Shacham et. al. [5] describes a method for creating a buffer overflow
in Apache and exploiting it with a return-to-libc attack. This same technique was replicated to
produce a working exploit for testing and verification purposes.

 The buffer overflow was created in Apache’s ap_getline() function which returns the
current line of an incoming HTTP request. A local buffer was added to this function, and the
HTTP request is copied to it using strcpy(). A very large request will now overflow the local
buffer and overwrite the stack frame. If the request is carefully constructed, the return address
can be overwritten by system’s address with it’s parameter pointing into the request string. As a
result, any arbitrary string can be passed to system().

 With a little tweaking, the exploit was successful in executing system() with an

unprotected version of Apache. Next the exploit was tried with the protected version of Apache
using a version of system() that checks the key. This time, the exploit was not successful in
executing system. The server logs showed that the key check had indeed failed while attempting
to execute system().

5.1 Performance
 Performance was tested using the SPEC benchmark suite. Each benchmark was run

using three different compilers. The first compiler, labeled native, is the Zephyr compiler using
the unmodified lcc frontend. This version measures the performance of native execution on the
processor. The second compiler, labeled strata, adds the default version of Strata. This version
is running under Strata, but no protection is enabled. The final compiler, labeled protected, uses
the full call sequence diversity protection. Currently, the only function with a key check is the
system() function.

 42

All benchmarks were compiled and executed on a dual 2.8GHz Intel Pentium 4 machine
running Redhat Linux 7.3.

0

0.5

1

1.5

2

2.5

3

3.5

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

av
era

ge

native
strata
protected

Figure 13: Overhead for SPEC benchmark suite normalized to native execution

 Figure 13 shows the results of the performance tests. For the most part, the added

protection of call sequence diversity does not add much more overhead than Strata itself. The
gap and vortex benchmarks are the exceptions. These benchmarks add a much higher overhead
presumably due to frequent indirect function calls. Even when you include these, there is an
average overhead of 1.54x over native execution. Considering the overhead of software dynamic
translation, this is reasonable. However, there is certainly room for improvement.

6. Related Work
 Some techniques that defend against return-to-libc attacks involve what is known as

address obfuscation. This includes the work of Bhatkar, DuVarney, and Sekar [6] and Xu,
Kalbarczyk, and Iyer [7]. In this approach the locations of program data and code are
randomized, as well as relative distances between data locations. The attacker will not be able to
execute the attack because the locations of the stack and library code are randomized at load
time. While the attacker could try to find these locations, the probability of guessing correctly is
extremely low.

 Several techniques have been proposed that protect the stack from being modified
illegally. These include StackGuard [8] and StackShield [9]. StackGuard uses canary values on
the stack that are checked when the program returns. StackShield saves the return address to a
write-protected memory area when the function is entered. Such defenses would protect the
return address from ever being modified. However, these defenses are not perfect and they do
not address other methods of modifying control flow such as alterations to the global offset table.

 43

7. Conclusion
 When used in conjunction with techniques that prevent code injection, call sequence

diversity can provide even further security by thwarting return-to-libc attacks. Any attempt to
subvert the intended control flow of the program will be reflected in the global key. The
program will not allow the execution of any protected function if the key is incorrect.

 However, it is difficult to say exactly which functions should be protected. Certainly
there are some obvious ones, such as system(), but it is difficult to say which functions can and
cannot be used maliciously. It may be best to simply protect every function, though that
approach may incur significantly higher overheads.

 Given that a system call is generally necessary for a hacker to do any harm to the system,
it may be a good idea to check the key at every system call. This could be accomplished by
patching the operating system, or through Strata. An added bonus of this approach is that it
could prevent most code injection attacks as well, since they generally rely on some sort of
system call.

8. References
[1] Aleph One. Smashing the stack for fun and profit. Phrack Magazine 49. 1996.

http://www.phrack.org/phrack/49/P49-14
[2] Nergal. The advanced return-into-libc exploits: PaX case study. Phrack Magazine 58,

Article 0x04. 2001. http://www.phrack.org/phrack/58/p58-0x04
[3] A. Appel, J. Davidson, and Ramsey N. The zephyr compiler infrastructure. November

1998. http://www.cs.virginia.edu/zephyr
[4] Kevin Scott and Jack Davidson. Strata: A Software Dynamic Translation
Infrastructure, In Proceedings of the IEEE 2001 Workshop on Binary
Translation, Barcelona, Spain, September 8, 2001.
[5] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. “On the

Effectiveness of Address-Space Randomization.” In B. Pfitzmann and Peng Liu, eds., CCS
2004, pp. 298-307. ACM Press, Oct. 2004.

[6] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: an Efficient Approach
to Combat a Broad Range of Memory Error Exploits. In Proceedings of the 12th USENIX
Security Symposium, pages 105-120, August 2003.

[7] Jun Xu, Zbigniew Kalbarczyk and Ravishankar K. Iyer. Transparent Runtime
Randomization for Security. Technical Report UILU-ENG-03-2207, Center for Reliable and
High-Performance Computing, University of Illinois at Urbana-Champaign. May 2003.

[8] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection and prevention of

buffer-overflow attacks. In Proceedings of the 7th USENIX Security Symposium, Jan. 1998.
[9] Vendicator. Stack shield. http://www.angelfire.com/sk/stackshield/.

44

Appendix C: Genesis Fault Tree Analysis

 45

Strata Fault Tree Analysis
Genesis Team

1.0 Introduction

Red team exercises can greatly increase knowledge about the vulnerabilities of a system.
Generally speaking, red team exercises rapidly introduce adversarial thinking into the system
testing process. This thinking centers on probing a system for vulnerabilities—system responses
of advantage to an adversary—that may side-step or abuse the intended functionality of the
system. The results of the red team exercise can lead to new insights into the system’s service
definition, improve its implementation, and provide more realistic expectations of its capabilities.

Despite the advantages of “red teaming,” there are several constraints that often limit the
effectiveness of the experience. First, experimental systems are often complex and contain novel,
non-standard features. Second, red teams have limited time to examine a system, as their
expertise is often chartered as a matter of cost effectiveness. This contrasts with the great length
of time and effort that a true adversary might devote.

Therefore, we seek ways to enhance a red team’s capabilities within a realistic time frame. We
note the relationship between the novelty of many experimental systems and the limited time of
procured red teams. Novelty means that time might be required for a red team to learn the system
to be attacked. Yet time is of limited supply. We argue that by reducing the amount of time
required to communicate expert knowledge of a system to a red team, the system team may
enhance the red team exercise.

Communication of system knowledge to red teams is often informal. We propose the
formalization of this communication through formal documentation to directly communicate
system knowledge into the viewpoint of a red team. One such formal document is a fault tree
analysis. This document describes the hazards, or potential undesirable scenarios that might arise
in a system. Each hazard is followed by a logical postulate defining how the hazard can occur.

It is our intention that the presented Strata fault tree identify general strategies with which
hazardous conditions may arise. The goal of this fault tree is not necessarily to list specific
vulnerabilities, but to provide a guide for how one might track down and find vulnerabilities in a
program protected by Strata’s mechanisms.

1.1Symbols

The fault tree uses several symbols for the purposes of brevity. These symbols have the following
meaning:

S: Strata code, data structures, and control context

P: The server program’s code, data structures, and control context

 46

SP: The total Strata and server program’s code, data structures, and control contexts (the entire
application)

G: The specific goal of an attacker If an attacker achieves G, an attack succeeds. If not, it fails.
Think of G as a Boolean postulate over the state of SP.

1.2Textual Representation

The fault tree presented in the next section is represented as a tree as follows:

• The root of every tree is a hazard
• A node is labelled as one of LEAF, AND,OR, SUBTREE DEFINITION, or

SUBTREE REFERENCE
• A LEAF NODE is a textual description of a fault
• An AND node indicates a fault such that the fault occurs only if all of its child nodes

occur. Its textual representation is a summary of its causality or consequence
• An OR node indicates a fault that occurs if any of its child nodes occur. Its textual

representation is summary or causally descriptive
• A SUBTREE definition node has a single child, and is simply a named subtree
• A Subtree reference node has no children, and indicates that the current node is a

reference to a subtree as defined by a subtree node (see previous bullet.) A copy of
the referenced subtree effectively replaces this node.

• A node’s children are represented nodes below the node’s representation in the list,
and indented one unit.

2.0 Fault Tree Analysis

1. Integrity Violation of code stream allows ‘injected code’ from an attack to achieve
goal G in the strata system and its application

•AND: Integrity violation of code stream accomplishes G for attacker in SP
•OR: Integrity of code stream is compromised

•OR: Injected code is executed
•LEAF:Injected code is executed as system level code. OS/Hardware fault

in protected system space integrity and/or authorization
•OR: Injected Code is executed as application level code

•AND: Code is injected into SP space and executed by SP code stream
•OR: Code is injected into SP space

•AND: Code is injected into P’s spaces
•OR: Input-based vulnerability exists in application P

•LEAF:Stack overrun
•LEAF:Double-Free Malloc
•LEAF:Printf vulnerability
•LEAF:Other common input attack pathways not listed

•LEAF:Strata does not insert correct run-time check(s) for
vulnerability(ies) into vulnerable fragment(s)

•OR: Code is injected into S’s spaces

 47

•OR: Code is injected into Strata’s fragment cache
•OR: Insider injects malicious code into fragment cache

•LEAF:Rogue S or P thread
•LEAF:Privileged OS process modifies cache

contents
•AND: Fault in Strata translation/injection mechanism

•LEAF: Design fault in Strata fragment cache
injection responds to malicious payload
program P to inject ‘additional’ unintended
code. (ex. Short string literals stored by P in
instruction cache contain attack code
sequences, or help reverse engineer the
encryption key)

•LEAF:program P contains malicious payload
•OR: Outside process modifies contents of fragment

cache
•OR: OS Permission Fault: Incorrect protection bits

on instruction cache.
•OR: Strata executer sets up Strata fragment cache

for process sharing
•LEAF:Erroneous process exec
•LEAF:Malicious inside operator

•LEAF: Code is stored in allocated IBTC or thread cache
•LEAF:Feature is not in frequent write use in the

program (example, no indirect jumps)
•LEAF:Code is used before it is overwritten

•DEFINES SUBTREE A:
•AND: SP Control Stream correctly executes injected code

•OR: Code does not generate protection or instruction
faults on execution

•LEAF:Attacker guesses variations correctly on first try
•DEFINES SUBTREE E:SUBTREE

•REFERENCE to SUBTREE:
•AND: Memory Holding Injected Code is Executable

•LEAF:MProtect cannot make read-allowed memory
non-executable (This is always true in current
STRATA implementation.)

•LEAF:Code is allocated from POSIX mmap as
executable by Strata in fragment cache

•LEAF:MMAP fails to protect read|write only memory
from execution (POSIX noncompliance)

•OR: SP Control Stream is redirected to Code Injection
Space

•OR: By expected control flow of SP Injected code is
reached by normal SP instruction/data stream.

•DEFINES SUBTREE B:

 48

•REFERENCE to SUBTREE:. (By modified control flow,
Injected code is reached by abnormal SP
instruction stream)

•AND: Code is injected into ~SP space and executed by SP code stream
•LEAF:OS-Hardware Level Erroneous inter-process isolation
•REFERENCE to :SUBTREE A

•DEFINES SUBTREE B:
•LEAF:Instruction pointer position is erroneous

•LEAF:Strata jumps to incorrect code position for next segment
•OR: Relative address is modified

•LEAF:return address modified
•LEAF:jump address modified
•LEAF:interrupt number modified

•LEAF:Absolute jump address is modified
•LEAF:Unintended interrupt is generated

•LEAF:Unintended elements of instruction stream accomplish G

2.Data manipulation affects behavior of SP allowing an attacker to achieve goal G

•AND: Data Overwrite modified behavior of SP to achieve goal G
•DEFINES SUBTREE E:

•REFERENCE to SUBTREE:
•DEFINES SUBTREE C:Data Overwrite write on SP space by adversary

•OR: Attacker changes (non-instructional) data of SP
•LEAF:Attacker has legitimate indirect write access to a data structure

through input messages (example, hash table degeneration)
•OR: Attacker applies a vulnerability in SP to write Strata /App data

•LEAF:Attacker’s input exploit an error in a data structure
implementation to modify contents within a data structure
(adding extra records, duplicates, etc.)

•LEAF:Attacker’s input exploits a general software architecture
vulnerability allowing attack to succeed

•LEAF:Race conditions overwrite the legitimate client’s request
•LEAF:Buffer overflows allow server-unintended modification of

client request data
•LEAF:pointer-based attacks (double-free)
•LEAF:Code injected through a vulnerability deforms client

request
•LEAF:Other Attack Strategies?

•AND: Incorrect setting of memory protection in OS, plus incorrect
MPROTECT settings, allows another process to overwrite data

•LEAF:MProtect Fails to Set Read Only
•LEAF:Operating System allows another process access to the data by

failure to use read protect (in mmap if POSIX OS)
•OR: SP data structure overwritten accidentally by another process,

where that other process does so:

 49

•LEAF:Accidentally
•LEAF:Maliciously as insider process
•LEAF:Unintentionally by vulnerability exploited by attacker(buffer

overflow)
•LEAF:Carelessly through overextended power applied by attacker

(printf)
•OR: Strata run-time checks do not detect the data overwrite

•LEAF:No run-time check for data integrity
•LEAF:Fault in run-time check
•LEAF:false-negative in run-time check

•LEAF:The Overwritten Data results in the attacker achieving goal G
•LEAF:Overwritten data modifies branching behavior in code
•LEAF:Overwritten data modifies internal records such as traces, alarms,

profiles, etc.
•LEAF:Overwritten data modifies values, sums, records of the application
•LEAF:Overwritten data modifies who is contacted by the application (as might

be used in an indirect DoS attack)
•LEAF:others?

3.The integrity of a client request is violated within the server environment and is not
prevented from affecting the server. (Note the request includes any validation material.
Signature, hash check, etc.)

•DEFINES SUBTREE D:
•AND:

•OR: No Run-Time Detection
•LEAF:Failure of all run-time checks on the integrity of client input.
•LEAF:Run-time check cannot detect the change to input (ex, hash is

modified to correctly reflect the input message)
•LEAF:Integrity failure of client request is effective (not write over of same

data)
•OR: Memory storing the client request has modified values from client

request
•LEAF:Privileged insider modifies server memory
•OR: MemProtect set inadequately on server, allowing the client request

to be modified in the sever’s memory by other processes with
unintended access

•LEAF:Accidentally
•LEAF:Maliciously as insider process
•LEAF:Unintentionally by vulnerability exploited by attacker(buffer

overflow)
•LEAF:Carelessly through overextended power applied by attacker

(printf)
•OR: Application and/or Strata code erroneously overwrites a client’s

message in local memory with erroneous data

 50

•LEAF:Random, non malicious, Application/Strata error overwrites
client request with predictable or unpredictable values

•OR: Deliberate outside influence results in placement of predictable
(to outsider) values within the client request message

•LEAF:Malicious outsider can send input to the system
•OR: Malicious outsider can use its input events to cause SP code

to unintentionally write over the other client’s request
through a vulnerability

•LEAF:Race conditions overwrite the legitimate client’s request
•LEAF:Buffer overflows allow server-unintended modification of

client request data
•LEAF:pointer-based attacks (double-free)
•LEAF:Code injected through a vulnerability deforms client

request
•LEAF:Other Attack Strategies not listed

•LEAF:SP code cannot decode the client message properly from local memory
(The message is proper but SP has an interpretation error)

4.The integrity of a bind response message to a client is violated within the server
environment prior to sending to client

•REFERENCE to SUBTREE:C

5.Applying Strata to application causes erroneous application behavior achieving the
goal G of an adversary (such as local denial of service to legitimate clients)

•OR: STRATA induces slow processing of application
•OR: HASH TABLE DEGENERATION

•AND: LARGE FRAGMENT CACHE DEGENERATION: causing linear search
of the fragment cash for fragments each time a fragment is accessed.

•LEAF:Odd fragment locations in executable memory does not cause a
highly unusual executable in size that is noticed by sys admins

•OR: BIND code is aligned in a manner that is degenerate with respect to
the STRATA HASH() function

•LEAF:Accidental misalignment (highly unlikely)
•LEAF:Deliberate poor alignment (adversary has access to compiler)

•LEAF:Indirect Branch Table Degeneration
•LEAF:IBTC Resonance results in performance hit

•LEAF:Adaptive Indirect Branch Caching is enabled
•LEAF:Many Branch usages are highly oscillatory at a frequency

resonating with the occurrence of reaching the branch usage
count for storage in the IBTC (IBTC_THRESHOLD)

•LEAF:The periodically used branches conflict with one another for
space in the IBTC

6.Privacy of client communications is violated

 51

•AND: Adversary reads information from SP memory and retrieves this information
•LEAF:Adversary knows where messages to and from clients are stored
•LEAF:Adversary reads the memory storing the client messages (read

vulnerability)
•LEAF:Adversary writes the information read into a useful location such as

outgoing message queue (write vulnerability)
•LEAF:Adversary intercepts the outgoing message
•LEAF:Outgoing message is not encrypted (not secured) or encryption is known

7.Strata reveals secrets necessary for many forms of attack

•DEFINES SUBTREE E:
•OR: Strata Configuration Information is revealed that is in use to protect the

Application and Strata
•AND: Encryption is known to the adversary

•LEAF:Encryption is being used
•OR: Encryption key is discovered

•AND: Encryption key is read from Strata space by adversary
•LEAF:Key is not read protected using M-protect when not in Strata-

mode
•LEAF:Key location is identified by the adversary

•AND: Encryption key space is successfully searched by adversary
•LEAF:Small enough encryption key space
•LEAF:Application restart on crash
•LEAF:repeated crashing is not easily detected

•LEAF:Calling Sequence Permutation discovered by adversary
•OR: Jump tag discovered by adversary

•AND: Expected Jump Tag Read from Strata Space
•LEAF:M-Protect does not protect Jump Tag in Strata Space when not

in Strata execution
•LEAF:Jump tag storage location is read by adversary and is known as

jump tag to the adversary
•OR: Jump Tag Read from Environment Space by adversary

•LEAF:Through exploit allowing read of environment variables while
executing application fragment

8.Misconfiguration of Strata

•OR: Misconfiguration of Strata
•LEAF:Misconfiguration through operator error
•LEAF:Misconfiguration for possibly by an attacker through re-execution of Strata

through an libc exec vulnerability

3.0 Potentially Vulnerable Data Structures

The data structures of greatest importance to Strata’s security are:

 52

• stats in strata.c
• target interface record
• Strata’s thread table (it keeps its own)
• fcache: fragment cache that holds the decrypted application
• indirect branch targets cache
• Strata arena: memory management abstraction for Strata data structures
• Encryption Context Data Structure (stores the encryption key)

An adversary may examine how the integrity of these object’s code and data may be violated so
as to achieve the goal of the attacker, using the general guidelines of the presented fault tree.

4.0 Usage Suggestions

As was stated in the introduction to this document, the purpose of this fault tree is to identify
general strategies with which hazardous conditions might arise. To the best of our ability the tree
is sound, but cannot be complete. The goal of this fault tree is not to list specific
vulnerabilities.To reiterate, this is a guide for how one might track down and find vulnerabilities
for Strata’s protection of a server program, not a specification of a vulnerability’s existence.

Two approaches to using the tree seem useful.

1. The high level hazards and their branches might provide guidelines, while the leaves of the
tree give examples of how a search for a fault might proceed.

2. The leaves of the tree represent interactions with the data structures of interest to an
attacker, and their correlation to hazards can be followed up through the tree

 53

Appendix D: Tamper Proofing

Novel Application of Genesis Technology.
Tamper Proofing White Paper

 54

Tamperproofing Computer Software
Using Strong Encryption

Department of Computer Science
University of Virginia

dependability@cs.virginia.edu
+1 434.982.2216

Background
Software tampering can be defined as carrying out unauthorized modifications on software that
allow an adversary to misuse the software in some way. A survey of tampering issues and anti-
tamper technology can be found in the work of Atallah et al [1].

Tampering is conducted by adversaries for many reasons including:

• Changing the software’s functionality. For correct operation, all computer systems depend on
the use of the software that was designed and built to realize the computer systems’ intended
purpose. If that software is altered or replaced by an adversary with malicious intent, the
result could be serious. For example, information could be compromised or service could be
altered. In a weapon system, an ATM machine, financial software, a “smart” card and similar
systems, tremendous damage could be done.

• Reverse engineering the software. Software often contains valuable intellectual property that
would be useful to an adversary. By stealing a copy of the software and reverse engineering it,
the adversary can obtain the intellectual property with little cost.

• Changing the software’s target. In some cases, reverse engineering is not necessary for an
adversary to gain value from an existing piece of software, it is often only necessary to
execute the software under conditions different from those intended by the software’s owners.
By stealing a copy and using his or her own target computer, an adversary gains the value of
the software without paying for it. This type of malicious behaviour is often called piracy.

Since tampering can have serious consequences, the owners and operators of many computer
systems desire a mechanism to make tampering as difficult as possible, i.e., they desire their
software to be hardened against tampering, and, if possible, made tamperproof. The need for
anti-tamper technology and practices has been documented by the Department of Defense [2]
and the Government Accounting Office [3].

Tamperproofing software is difficult because the software is often stored at many different
locations and often transmitted between locations. A given software system S might be built
using hundreds of source-code files that are kept in a file system maintained by S’s
manufacturer. That file system will usually be shared so that a number of people might have

 55

access to the file system and possibly also to all or part of S.

Once the system S is built, it will be in one of several different forms usually referred to as
binary and be stored using one of several different media. Supplying the binary form of S to
those who will use it might involve physical movement of the media or transmission over a
network.

The binary software used by a computer is usually stored in a file system that is physically close
to that computer. When it is not being used, the software remains available in that file system.
When it is being used, the software is also stored in the main memory of the computer using it.

An adversary only needs to gain access to the software once in order to tamper with it, and, for
some forms of tampering, the access gained need not be to all of the software. If the adversary
wants to change the functionality of the software, all that he or she needs to do is gain access to
that part of the software which provides the functionality to be changed. Access might be to the
source files, the binary files, to the tools that are used to build the software (such as compilers
and linkers), to shared libraries that the software uses, or to the software during execution. If the
change is not detected, then the adversary has met his or her goal. The number of locations in
which the software resides in its various forms makes protecting software from tampering very
difficult.

The goal of those with a stake in the correct operation of the software is to ensure that the
software is protected from tampering in all locations and in all forms. Protection of the software
at the manufacturers location requires trust in all of those preparing the software. This is similar
to any situation in which information is being developed, and so traditional techniques, such as
access restriction, can be employed. Beyond the site of the software’s original manufacturer,
however, the problem of protecting the software against tampering is much harder since most
people with access to the software are not known to be trustworthy.

Our technique described here achieves the stakeholders’ goal and defeats all known credible
tampering threats. It works by encrypting the software using a strong encryption algorithm. The
protection that this affords is assured, and it is much more reliable as an anti-tampering technique
than software obfuscation approaches. The technique implements anti-tampering efficiently
requiring only a small execution overhead, can be applied to virtually any software system, and
can be applied retroactively to existing systems.

Summary Of Technique
The technique meets the anti-tampering goal discussed above by maintaining the software in
encrypted form until it is executed. The protection provided by encryption can be very strong
because: (1) decryption by an adversary using state-space exploration requires resources that are
beyond those available; and (2) decryption by an adversary using the appropriate key or keys is
only possible if the key or keys are not protected properly. Existing techniques are available for
key distribution and protection.

Encrypting software as an anti-tamper mechanism is not new. Present software encryption

 56

mechanisms, however, either leave the software in plain form to such an extent that the software
becomes vulnerable to tampering or the decryption process is extremely inefficient. The
technique presented here addresses both of these problems.

Applying the technique consists of five steps: (1) the software is encrypted on a host computer in
a trusted facility by its owners or the manufacturer prior to its deployment; (2) the software is
conveyed to any location where it is needed in encrypted form; (3) the software is stored on the
target computer upon which it is to run in encrypted form; (4) the software is loaded into
memory on the target computer in encrypted form; (5) the software is decrypted just prior to
execution. Only part of the software is kept in decrypted form at any given time. The decrypted
software is held in a protected memory area.

Encryption at the trusted facility is carried out using an unspecified encryption mechanism.
Decryption just prior to execution is effected using an unspecified decryption mechanism. An
example of how decryption might be implemented in practice is the use of a supplemental
specialized hardware unit of which many are available. Such devices contain the decryption
key(s) and the processing hardware that executes the decryption algorithms. Without this device,
the encrypted software cannot be decrypted. The keys used for encryption and decryption are
made available to the host and target computers using a conventional key management system.

An example of how decryption might be controlled is by the use of a dynamic binary translation
mechanism. With this approach, each fragment of the software is fetched as needed and sent to
the decryption mechanism. The decrypted version of the fragment is stored in a region of
memory called a fragment cache and then executed. If the fragment is executed more than once,
the originally decrypted version is fetched from the fragment cache provided it is still there. The
fragment cache is emptied periodically to ensure that only a small amount of the software is
stored in plaintext form.

In order to tamper with the software after it has been encrypted, an adversary would have to
either: (1) break the encryption; or (2) tamper with the software during execution. Decrypting the
software is as difficult as decrypting any form of encrypted information. Provided the software is
free of tampering when it is encrypted, the chances of tampering prior to execution is the same as
the chances that the encryption can be broken.

Tampering during execution requires that the adversary gain access to that part of the software
maintained in plain text form by the decryption mechanism. Nothing is specified in this
technique about the decryption mechanism and so nothing is specified about what parts of the
software will be in plain text form at any given point during execution. Using the example of a
decryption mechanism given above in which dynamic binary translation is used, the only place
where the software is maintained in plain text form is the fragment cache. In this example, the
fragment cache is protected with a variety of software and hardware mechanisms.

Applying our Technique
Our technique provides very strong protection against tampering, for example:
• Changing the software’s functionality. This form of tampering is prevented by the fact that the

 57

software remains encrypted everywhere that it is stored and during all transmissions prior to
execution. Without the decryption key(s), any modification(s) effected by an adversary to the
encrypted software would either not survive the decryption process or would be detected.

• Reverse engineering the software. This form of tampering is prevented by the fact that the
software remains encrypted everywhere that it is stored and during all transmissions prior to
execution. As a result, the adversary would only be able to acquire an encrypted version of the
software. Acquiring the encrypted software does the adversary no good because he or she will
not be able to conduct any form of static or dynamic analysis on the software.

• Changing the software’s target. This form of tampering is prevented by the fact that the
software requires a decryption key in order for it to be executed. Thus, copying the software
will not allow it to be executed on an unauthorized target.

For more information, please refer to the following publication. While this paper focuses on
using our technique for protection against code-injection attacks, the mechanisms involved apply
to the general problem of anti-tampering.

Secure and Practical Defense Against Code-injection Attacks Using Software Dynamic
Translation. Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David
Evans, John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. Second International
Conference on Virtual Execution Environments. Ottawa, Canada, June 14-16, 2006.

The technology described in this paper provides a solid foundation on which to build
sophisticated tamper proofing technologies, above and beyond what was described in this white
paper.

References
[1] Atallah, M., E. Bryant, and M. Stytz, “A Survey of Anti-Tamper Technologies”, CrossTalk:

the Journal of Defense Software Engineering, November 2004.

[2] Office of the Secretary of Defense, Interim Defense Acquisition Guidebook, October 2002.

[3] Government Accounting Office, DOD Needs to Better Support Program Managers’
Implementation of Anti-Tamper Protection, GAO-04-302, March 2004.

 58

Appendix E: Secretless Security through
Diversity

N-Variant Systems: A Secretless Framework for Security through Diversity

 59

N-Variant Systems
A Secretless Framework for Security through Diversity

Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill,
Wei Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser

University of Virginia, Department of Computer Science
http://www.nvariant.org

Abstract

We present an architectural framework for systematically using automated diversity to provide high assurance
detection and disruption for large classes of attacks. The framework executes a set of automatically diversified
variants on the same inputs, and monitors their behavior to detect divergences. The benefit of this approach is that it
requires an attacker to simultaneously compromise all system variants with the same input. By constructing variants
with disjoint exploitation sets, we can make it impossible to carry out large classes of important attacks. In contrast
to previous approaches that use automated diversity for security, our approach does not rely on keeping any secrets.
In this paper, we introduce the N-variant systems framework, present a model for analyzing security properties of N-
variant systems, define variations that can be used to detect attacks that involve referencing absolute memory
addresses and executing injected code, and describe and present performance results from a prototype
implementation.

1. Introduction

Many security researchers have noted that the current
computing monoculture leaves our infrastructure
vulnerable to a massive, rapid attack [70, 29, 59]. One
mitigation strategy that has been proposed is to increase
software diversity. By making systems appear different
to attackers, diversity makes it more difficult to
construct exploits and limits an attack’s ability to
propagate. Several techniques for automatically
producing diversity have been developed including
rearranging memory [8, 26, 25, 69] and randomizing
the instruction set [6, 35]. All these techniques depend
on keeping certain properties of the running execution
secret from the attacker. Typically, these properties are
determined by a secret key used to control the
randomization. If the secret used to produce a given
variant is compromised, an attack can be constructed
that successfully attacks that variant. Pointer
obfuscation techniques, memory address space
randomization, and instruction set randomization have
all been demonstrated to be vulnerable to remote
attacks [55, 58, 64]. Further, the diversification secret
may be compromised through side channels,
insufficient entropy, or insider attacks.

Our work uses artificial diversity in a new way that
does not depend on keeping secrets: instead of
diversifying individual systems, we construct a single
system containing multiple variants designed to have
disjoint exploitation sets. Figure 1 illustrates our

framework. We refer to the entire server as an N-variant
system. The system shown is a 2-variant system, but
our framework generalizes to any number of variants.
The polygrapher takes input from the client and copies
it to all the variants. The original server process P is
replaced with the two variants, P0 and P1. The variants
maintain the client-observable behavior of P on all
normal inputs. They are, however, artificially
diversified in a way that makes them behave differently
on abnormal inputs that correspond to an attack of a
certain class. The monitor observes the behavior of the
variants to detect divergences which reveal attacks.
When a divergence is detected, the monitor restarts the
variants in known uncompromised states.

As a simple example, suppose P0 and P1 use disjoint
memory spaces such that any absolute memory address
that is valid in P0 is invalid in P1, and vice versa. Since

Server

Input
from

Client

P0

Polygrapher

P1

Output
to

Client

Monitor

Figure 1. N-Variant System Framework.

 60

the variants are transformed to provide the same
semantics regardless of the memory space used, the
behavior on all normal inputs is identical (assuming
deterministic behavior, which we address in Section 5).
However, if an exploit uses an absolute memory
address directly, it must be an invalid address on one of
the two variants. The monitor can easily detect the
illegal memory access on the other variant since it is
detected automatically by the operating system. When
monitoring is done at the system call level, as in our
prototype implementation, the attack is detected before
any external state is modified or output is returned to
the attacker.

The key insight behind our approach is that in order for
an attacker to exploit a vulnerability in P, a pathway
must exist on one of the variants that exploits the
vulnerability without producing detectably anomalous
behavior on any of the other variants. If no such
pathway exists, there is no way for the attacker to
construct a successful attack, even if the attacker has
complete knowledge of the variants. Removing the
need to keep secrets means we do not need to be
concerned with probing or guessing attacks, or even
with attacks that take advantage of insider information.

Our key contributions are:

1. Introducing the N-variant systems framework
that uses automated diversity techniques to
provide high assurance security properties
without needing to keep any secrets.

2. Developing a model for reasoning about
N-variant systems including the definition of the
normal equivalence and detection properties
used to prove security properties of an ideal
N-variant system (Section 3).

3. Identifying two example techniques for
providing variation in N-variant systems: the
memory address partitioning technique
(introduced above) that detects attacks that
involve absolute memory references and the
instruction tagging technique that detects
attempts to execute injected code (Section 4).

4. Describing a Linux kernel system
implementation and analyzing its performance
(Section 5).

In this paper we do not address recovery but consider it
to be a successful outcome when our system transforms
an attack that could compromise privacy and integrity
into an attack that at worst causes a service shutdown
that denies service to legitimate users. It has not

escaped our attention, however, that examining
differences between the states of the two variants at the
point when an attack is detected provides some
intriguing recovery possibilities. Section 6 speculates
on these opportunities and other possible extensions to
our work.

2. Related Work

There has been extensive work done on eliminating
security vulnerabilities and mitigating attacks. Here,
we briefly describe previous work on other types of
defenses and automated diversity, and summarize
related work on redundant processing and design
diversity frameworks.

Other defenses. Many of the specific vulnerabilities
we address have well known elimination, mitigation
and disruption techniques. Buffer overflows have been
widely studied and numerous defenses have been
developed including static analysis to detect and
eliminate the vulnerabilities [66, 67, 39, 23], program
transformation and dynamic detection techniques [19,
5, 30, 45, 49, 57] and hardware modifications [38, 40,
41, 64]. There have also been several defenses proposed
for string format vulnerabilities [56, 20, 63, 47]. Some
of these techniques can mitigate specific classes of
vulnerabilities with less expense and performance
overhead than is required for our approach. Specific
defenses, however, only prevent a limited class of
specific vulnerabilities. Our approach is more general;
it can mitigate all attacks that depend on particular
functionality such as injecting code or accessing
absolute addresses.

More general defenses have been proposed for some
attack classes. For example, no execute pages (as
provided by OpenBSD’s W^X and Windows XP
Service Pack 2) prevent many code injection attacks
[2], dynamic taint analysis tracks information flow to
identify memory corruption attacks [43], and control-
flow integrity can detect attacks that corrupt an
application to follow invalid execution paths [1].
Although these are promising approaches, they are
limited to particular attack classes. Our framework is
more general in the sense that we can construct defense
against any attacker capability that can be varied across
variants in an N-variant system.

Automated diversity. Automated diversity applies
transformations to software to increase the difficulty an
attacker will face in exploiting a security vulnerability
in that software. Numerous transformation techniques
have been proposed including rearranging memory [26,

 61

8, 69, 25], randomizing system calls [17], and
randomizing the instruction set [6, 35]. Our work is
complementary to work on producing diversity; we can
incorporate many different sources of variation as long
as variants are constructed carefully to ensure the
disjointedness required by our framework. A major
advantage of the N-variant systems approach is that we
do not rely on secrets for our security properties. This
means we can employ diversification techniques with
low entropy, so long as the transformations are able to
produce variants with disjoint exploitation sets.
Holland, Lim, and Seltzer propose many low entropy
diversification techniques including number
representations, register sets, stack direction, and
memory layout [31]. In addition, our approach is not
vulnerable to the type of secret-breaking attacks that
have been demonstrated against secret-based diversity
defenses [55, 58, 64].

O’Donnell and Sethu studied techniques for distributing
diversity at the level of different software packages in a
network to mitigate spreading attacks [44]. This can
limit the ability of a worm exploiting a vulnerability
present in only one of the software packages to spread
on a network. Unlike our approach, however, even at
the network level an attacker who discovers
vulnerabilities in more than one of the software
packages can exploit each of them independently.

Redundant execution. The idea of using redundant
program executions for various purposes is not a new
one. Architectures involving replicated processes have
been proposed as a means to aid debugging, to provide
fault tolerance, to improve dependability, and more
recently, to harden vulnerable services against attacks.

The earliest work to consider running multiple variants
of a process of which we are aware is Knowlton’s 1968
paper [37] on a variant technique for detecting and
localizing programming errors. It proposed
simultaneously executing two programs which were
logically equivalent but assembled differently by
breaking the code into fragments, and then reordering
the code fragments and data segments with appropriate
jump instructions inserted between code fragments to
preserve the original program semantics. The CPU
could run in a checking mode that would execute both
programs in parallel and verify that they execute
semantically equivalent instructions. The variants they
used did not provide any guarantees, but provided a
high probability of detecting many programming errors
such as out-of-range control transfers and wild memory
fetches.

More recently, Berger and Zorn proposed a redundant
execution framework with multiple replicas each with a
different randomized layout of objects within the heap
to provide probabilistic memory safety [7]. Since there
is no guarantee that there will not be references at the
same absolute locations, or reachable through the same
relative offsets, their approach can provide only
probabilistic expectations that a memory corruption will
be detected by producing noticeably different behavior
on the variants. Their goals were to enhance reliability
and availability, rather than to detect and resist attacks.
Consequently, when variations diverge in their
framework, they allow the agreeing replicas to continue
based on the assumption that the cause of the
divergence in the other replicas was due a memory flaw
rather than a successful attack. Their replication
framework only handles processes whose I/O is through
standard in/out, and only a limited number of system
calls are caught in user space to ensure all replicas see
the same values. Since monitoring is only on the
standard output, a compromised replica could be
successfully performing an attack and, as long as it does
not fill up its standard out buffer, the monitor would not
notice. The key difference between their approach and
ours, is that their approach is probabilistic whereas our
variants are constructed to guarantee disjointedness
with respect to some property, and thereby can provide
guarantees of invulnerability to particular attack
classes. A possible extension to our work would
consider variations providing probabilistic protection,
such as the heap randomization technique they used, to
deal with attack classes for which disjointedness is
infeasible.

Redundant processing of the same instruction stream by
multiple processors has been used as a way to provide
fault-tolerance by Stratus [68] and Tandem [32]
computers. For example, Integrity S2 used triple
redundancy in hardware with three synchronized
identical processors executing the same instructions
[32]. A majority voter selects the majority output from
the three processors, and a vote analyzer compares the
outputs to activate a failure mode when a divergence is
detected. This type of redundancy provides resilience to
hardware faults, but no protection against malicious
attacks that exploit vulnerabilities in the software,
which is identical on all three processors. Slipstream
processors are an interesting variation of this, where
two redundant versions of the instruction stream
execute, but instructions that are dynamically
determined to be likely to be unnecessary are removed
from the first stream which executes speculatively [60].
The second stream executes behind the first stream, and
the processor detects inconsistencies between the two

 62

executions. These deviations either indicate false
predications about unnecessary computations (such as a
mispredicted branch) or hardware faults.

The distributed systems community has used active
replication to achieve fault tolerance [9, 10, 16, 18, 50].
With active replication, all replicas are running the
same software and process the same requests. Unlike
our approach, however, active replication does nothing
to hide design flaws in the software since all replicas
are running the same software. To mitigate this
problem, Schneider and Zhou have suggested proactive
diversity, a technique for periodically randomizing
replicas to justify the assumption that server replicas
fail independently and to limit the window of
vulnerability in which replicas are susceptible to the
same exploit [51]. Active replication and N-variant
systems are complementary approaches. Combining
them can provide the benefits of both approaches with
the overhead and costs associated with either approach
independently.

Design diversity frameworks. The name N-variant
systems is inspired by, but fundamentally different
from, the technique known as N-version programming
[3, 14]. The N-version programming method uses
several independent development groups to develop
different implementations of the same specification
with the hope that different development groups will
produce versions without common faults. The use of N-
version programming to help with system security was
proposed by Joseph [33]. He analyzed design diversity
as manifest in N-version programming to see whether it
could defeat certain attacks and developed an analogy
between faults in computing systems that might affect
reliability and vulnerabilities in computer systems that
might affect security. He argued that N-version
programming techniques might allow vulnerabilities to
be masked. However, N-version programming
provides no guarantee that the versions produced by
different teams will not have common flaws. Indeed,
experiments have shown that common flaws in
implementations do occur [36]. In our work, program
variants are created by mechanical transformations
engineered specifically to differ in particular ways that
enable attack detection. In addition, our variants are
produced mechanically, so the cost of multiple
development teams is avoided.

Three recent projects [46, 62, 28] have explored using
design diversity in architectures similar to the one we
propose here in which the outputs or behaviors of two
diverse implementations of the same service (e.g.,
HTTP servers Apache on Linux and IIS on Windows)

are compared and differences above a set threshold
indicate a likely attack. The key difference between
those projects and our work is that whereas they use
diverse available implementations of the same service,
we use techniques to artificially produce specific kinds
of variation. The HACQIT project [34, 46] deployed
two COTS web servers (IIS running on Windows and
Apache running on Linux) in an architecture where a
third computer forwarded all requests to both servers
and compared their responses. A divergence was
detected when the HTTP status code differed, hence
divergences that caused the servers to modify external
state differently or produce different output pages
would not be detected. The system described by Totel,
Majorczyk, and Mé extended this idea to compare the
actual web page responses of the two servers [62].
Since different servers do not produce exactly the same
output on all non-attack requests because of
nondeterminism, design differences in the servers, and
host-specific properties, they developed an algorithm
that compares a set of server responses to determine
which divergences are likely to correspond to attacks
and which are benign. The system proposed by Gao,
Reiter, and Song [28] deployed multiple servers in a
similar way, but monitored their behavior using a
distance metric that examined the sequence of system
calls each server made to determine when the server
behaviors diverged beyond a threshold amount.

All of these systems use multiple available
implementations of the same service running on
isolated machines and compare the output or aspects of
the behavior to notice when the servers diverged. They
differ in their system architectures and in how
divergences are recognized. The primary advantage of
our work over these approaches is the level of
assurance automated diversity and monitoring can
provide over design diversity. Because our system takes
advantage of knowing exactly how the variants differ,
we can make security claims about large attack classes.
With design diversity, security claims depend on the
implementations being sufficiently different to diverge
noticeably on the attack (and functionality claims
depend on the behaviors being sufficiently similar not
exceed the divergence threshold on non-attack inputs).
In addition, these approaches can be used only when
diverse implementations of the same service are
available. For HTTP servers, this is the case, but for
custom servers the costs of producing a diverse
implementation are prohibitive in most cases. Further,
even though many HTTP servers exist, most advanced
websites take advantages of server-specific
functionality (such as server-side includes provided by
Apache), so would not work on an alternate server.

 63

Design diversity approaches offer the advantage that
they may be able to detect attacks that are at the level of
application semantics rather than low-level memory
corruption or code injection attacks that are better
detected by artificial diversity. In Section 6, we
consider possible extensions to our work that would
combine both approaches to provide defenses against
both types of attacks.

3. Model

Our goal is to show that for all attacks in a particular
attack class, if one variant is compromised by a given
attack, another variant must exhibit divergent behavior
that is detected by the monitor. To show this, we
develop a model of execution for an N-variant system
and define two properties the variant processes must
maintain to provide a detection guarantee.

We can view an execution as a possibly infinite
sequence of states: [S0, S1, …]. In an N-variant system,
the state of the system can be represented using a tuple
of the states of the variants (for simplicity, this
argument assumes the polygrapher and monitor are
stateless; in our implementation, they do maintain some
state but we ignore that in this presentation). Hence, an
execution of an N-variant system is a sequence of state-
tuples where St,v represents the state of variant v at step
t: [<S0,0, S0,1, … S0,N-1>, <S1,0, S1,1, … S1,N-1>, …].

Because of the artificial variation, the concrete state of
each variant differs. Each variant has a canonicalization
function, Cv, that maps its state to a canonical state that
matches the corresponding state for the original
process. For example, if the variation alters memory
addresses, the mapping function would need to map the
variant’s altered addresses to canonical addresses.
Under normal execution, at every execution step the
canonicalized states of all variants are identical to the
original program state:

∀t ≥ 0, 0 ≤ v < N, 0 ≤ w < N:
Cv (St, v) = Cw (St, w) = St.

Each variant has a transition function, Tv, that takes a
state and an input and produces the next state. The
original program, P, also has a transition function, T.
The set of possible transitions can be partitioned into
consistent transitions and aberrant transitions.
Consistent transitions take the system from one normal
state to another normal state; aberrant transitions take
the system from a normal state to a compromised state.
An attack is successful if it produces an aberrant
transition without detection. Our goal is to detect all
aberrant transitions.

We partition possible variant states into three sets:
normal, compromised, and alarm. A variant in a normal
state is behaving as intended. A variant in a
compromised state has been successfully compromised
by a malicious attack. A variant in an alarm state is
anomalous in a way that is detectable by the monitor.
We aim to guarantee that the N-variant system never
enters a state-tuple that contains one or more variants in
comprised states without any variants in alarm states.
To establish this we need two properties: normal
equivalence and detection.

Normal equivalence. The normal equivalence property
is satisfied if the N-variant system synchronizes the
states of all variants. That is, whenever all variants are
in normal states, they must be in states that correspond
to the same canonical state. For security, it is sufficient
to show the variants remain in equivalent states. For
correctness, we would also like to know the canonical
state of each of the variants is equivalent to the state of
the original process.

We can prove the normal equivalence property
statically using induction:

1. Show that initially all variants are in the same
canonical state: ∀ 0 ≤ v < N: Ci (S0, v) = S0.

2. Show that every normal transition preserves the
equivalence when the system is initially in a
normal state:

 ∀S ∈ Normal, 0 ≤ v < N, Sv
 where Cv (Sv) = S, p ∈ Inputs:
 Cv (Tv (Sv, p)) = T (S, p).

Alternatively, we can establish it dynamically by
examining the states of the variants and using the
canonicalization function to check the variants are in
equivalent states after every step. In practice, neither a
full static proof nor a complete dynamic comparison is
likely to be feasible for real systems. Instead, we argue
that our implementation provides a limited form of
normal equivalence using a combination of static
argument and limited dynamic comparison, as we
discuss in Section 5.

Detection. The detection property guarantees that all
attacks in a certain class will be detected by the
N-variant system as long as the normal equivalence
property is satisfied. To establish the detection proper-
ty, we need to know that any input that causes one
variant to enter a compromised state must also cause
some other variant to enter an alarm state. Because of
the normal equivalence property, we can assume the

 64

variants all are in equivalent states before processing
this input. Thus, we need to show:

∀S ∈ Normal, 0 ≤ v < N, Sv where Cv (Sv) = S,
∀p ∈ Inputs:
 Tv (Sv, p) ∈ Compromised ⇒
 ∃w such that Tw (Sw, p) ∈ Alarm and Cw (Sw) = S

If the detection property is established, we know that
whenever one of the variants enters a compromised
state, one of the variants must enter an alarm state. An
ideal monitor would instantly detect the alarm state and
prevent all the other variants from continuing. This
would guarantee that the system never operates in a
state in which any variant is compromised.

In practice, building such a monitor is impossible since
we cannot keep the variants perfectly synchronized or
detect alarm states instantly. However, we can
approximate this behavior by delaying any external
effects (including responses to the client) until all
variants have passed a critical point. This keeps the
variants loosely synchronized, and approximates the
behavior of instantly terminating all other variants
when one variant encounters an alarm state. It leaves
open the possibility that a compromised variant could
corrupt the state of other parts of the system (including
the monitor and other variants) before the alarm state is
detected. An implementation must use isolation
mechanisms to limit this possibility.

4. Variations

Our framework works with any diversification
technique that produces variants different enough to
provide detection of a class of attack but similar enough
to establish a normal equivalence property. The
variation used to diversify the variants determines the
attack class the N-variant system can detect. The
detection property is defined by the class of attack we
detect, so we will consider attack classes, such as
attacks that involve executing injected instructions,
rather than vulnerability classes such as buffer overflow
vulnerabilities.

Next, we describe two variations we have implemented:
address space partitioning and instruction set tagging.
We argue (informally) that they satisfy both the normal
equivalence property and the detection condition for
important classes of attacks. The framework is general
enough to support many other possible variations,
which we plan to explore in future work. Other possible
variations that could provide useful security properties
include varying memory organization, file naming,

scheduling, system calls, calling conventions,
configuration properties, and the root user id.

4.1 Address Space Partitioning

The Introduction described an example variation where
the address space is partitioned between two variants to
disrupt attacks that rely on absolute addresses. This
simple variation does not prevent all memory
corruption attacks since some attacks depend only on
relative addressing, but it does prevent all memory
corruption attacks that involve direct references to
absolute addresses. Several common vulnerabilities
including format string [56, 54], integer overflow, and
double-free [24] may allow an attacker to overwrite an
absolute location in the target’s address space. This
opportunity can be exploited to give an attacker control
of a process, for example, by modifying the Global
Offset Table [24] or the .dtors segment of an ELF
executable [48]. Regardless of the vulnerability
exploited and the targeted data structure, if the attack
depends on loading or storing to an absolute address it
will be detected by our partitioning variants. Since the
variation alters absolute addresses, it is necessary that
the original program does not depend on actual memory
addresses (for example, using the value of a pointer
directly in a decision). Although it is easy to construct
programs that do not satisfy this property, most sensible
programs should not depend on actual memory
addresses.

Detection. Suppose P0 only uses addresses whose high
bit is 0 and P1 only uses addresses whose high bit is 1.
We can map the normal state of P0 and P1 to equivalent
states using the identity function for C0 and a function
that flips the high bit of all memory addresses for C1 (to
map onto the actual addresses used by P, more complex
mapping functions may be needed). The transition
functions, T0 and T1 are identical; the generated code is
what makes things different since a different address
will be referenced in the generated code for any
absolute address reference. If an attack involves
referencing an absolute address, the attacker must
choose an address whose high bit is either a 0 or 1. If it
is a 0, then P0 may transition to a compromised state,
but P1 will transition to an alarm state when it attempts
to access a memory address outside P1’s address space.
In Unix systems, this alarm state is detected by the
operating system as a segmentation fault. Conversely, if
the attacker chooses an address whose high bit is 1, P1
may be compromised but P0 must enter an alarm state.
In either case, the monitor detects the compromise and
prevents any external state modifications including
output transmission to the client.

 65

Our detection argument relies on the assumption that
the attacker must construct the entire address directly.
For most scenarios, this assumption is likely to be valid.
For certain vulnerabilities on platforms that are not
byte-aligned, however, it may not be. If the attacker is
able to overwrite an existing address in the program
without overwriting the high bit, the attacker may be
able to construct an address that is valid in both
variants. Similarly, if an attacker can corrupt a value
that is subsequently used with a transformed absolute
address in an address calculation, the detection property
is violated. As with relative attacks, this indirect
memory attacks would not be detected by this variation.

Normal equivalence. We have two options for
establishing the normal equivalence property: we can
check it dynamically using the monitor, or we can
prove it statically by analyzing the variants. A pure
dynamic approach is attractive for security assurance
because of its simplicity but impractical for
performance-critical servers. The monitor would need
to implement C0 and C1 and compute the canonical
states of each variant at the end of each instruction
execution. If the states match, normal equivalence is
satisfied. In practice, however, this approach is likely to
be prohibitively expensive. We can optimize the check
by limiting the comparison to the subset of the
execution state that may have changed and only
checking the state after particular instructions, but the
overhead of checking the states of the variants after
every step will still be unacceptable for most services.

The static approach requires proving that for every
possible normal state, all normal transitions result in
equivalent states on the two variants. This property
requires that no instruction in P can distinguish between
the two variants. For example, if there were a
conditional jump in P that depended on the high bit of
the address of some variable, P0 and P1 would end up in
different states after executing that instruction. An
attacker could take advantage of such an opportunity to
get the variants in different states such that an input that
transitions P0 to a compromised state does not cause P1
to reach an alarm state. For example, if the divergence
is used to put P0 in a state where the next client input
will be passed to a vulnerable string format call, but the
next client input to P1 is processed harmlessly by some
other code, an attacker may be able to successfully
compromise the N-variant system. A divergence could
also occur if some part of the system is
nondeterministic, and the operating environment does
not eliminate this nondeterminism (see Section 5).
Finally, if P is vulnerable to some other class of attack,
such as code injection, an attacker may be able to alter

the transition functions T0 and T1 in a way that allows
the memory corruption attack to be exploited
differently on the two variants to avoid detection (of
course, an attacker who can inject code can already
compromise the system in arbitrary ways).

In practice, it will not usually be possible to completely
establish normal equivalence statically for real systems
but rather we will use a combination of static and
dynamic arguments, along with assumptions about the
target service. A combination of static and dynamic
techniques for checking equivalence may be able to
provide higher assurance without the overhead
necessary for full dynamic equivalence checking. Our
prototype implementation checks equivalence
dynamically at the level of system calls, but relies on
informal static arguments to establish equivalence
between them.

Implementation. To partition the address space, we
vary the location of the application data and code
segments. The memory addresses used by P0 and P1 are
disjoint: any data address that is valid for P0 is invalid
for P1, and vice versa. We use a linker script to create
the two variants. Each variant loads both the code and
data segments of the variants at different starting
addresses from the other variant. To ensure that their
sets of valid data memory addresses are disjoint, we use
ulimit to limit the size of P0’s data segment so it cannot
grow to overlap P1’s address space.

4.2 Instruction Set Tagging

Whereas partitioning the memory address space
disrupts a class of memory corruption attacks, partition-
ing the instruction set disrupts code injection attacks.
There are several possible ways to partition the
instruction set.

One possibility would be to execute the variants on
different processors, for example one variant could run
on an x86 and the other on a PowerPC. Establishing the
security of such an approach would be very difficult,
however. To obtain the normal equivalence property we
would need a way of mapping the concrete states of the
different machines to a common state. Worse, to obtain
the detection property, we would need to prove that no
string of bits that corresponds to a successful malicious
attack on one instruction set and a valid instruction
sequence on the other instruction set. Although it is
likely that most sequences of malicious x86 instructions
contain an invalid PowerPC instruction, it is certainly
possible for attackers to design instruction sequences
that are valid on both platforms (although we are not

 66

aware of any programs that do this for the x86 and
PowerPC, Sjoerd Mullender and Robbert van Renesse
won the 1984 International Obfuscated C Code Contest
with an entry that replaced main with an array of bytes
that was valid machine code for both the Vax and PDP-
11 but executed differently on each platform [35]).

Instead, we use a single instruction set but prepend a
variant-specific tag to all instructions. The
diversification transformation takes P and inserts the
appropriate tag bit before each instruction to produce
each variant.

Detection. The variation detects any attack that
involves executing injected code, as long as the
mechanism used to inject code involves injecting
complete instructions. If memory is bit-addressable, an
attacker could overwrite just the part of the instruction
after the tag bit, thereby changing an existing
instruction while preserving the original tag bit. If the
attacker can inject the intended code in memory, and
then have the program execute code already in the
executable that transforms the injected memory (for
example, by XORing each byte with a constant that is
different in the two variants), then it is conceivable that
an attacker could execute an indirect code injection
attack where the code is transformed differently on the
two variants before executing to evade the detection
property. For all known realistic code injection attacks,
neither of these is considered a serious risk.

Normal equivalence. The only difference between the
two variants is the instruction tag, which has no effect
on instruction execution. The variants could diverge,
however, if the program examines its own instructions
and makes decisions that depend on the tag. It is
unlikely that a non-malicious program would do this.
As with the memory partitioning, if the instruction tags
are visible to the executing process an attacker might be
able to make them execute code that depends on the
instruction tags to cause the variants to diverge before
launching the code injection attack on one of the
variants. To prevent this, we need to store the tagged
instructions in memory that is not readable to the
executing process and remove the tags before those
instructions reach the processor.

Implementation. To implement instruction set tagging,
we use a combination of binary rewriting before
execution and software dynamic translation during
execution. We use Diablo [61, 22], a retargetable binary
rewriting framework, to insert the tags. Diablo provides
mechanisms for modifying an x86 binary in ELF
format. We use these to insert the appropriate variant-

specific tag before every instruction. For simplicity, we
use a full byte tag even though a single bit would
suffice for two variants. There is no need to keep the
tags secret, just that they are different; we use
10101010 and 01010101 for the A and B variant tags.

At run-time, the tags are checked and removed before
instructions reach the processor. This is done using
Strata, a software dynamic translation tool [52, 53].
Strata and other software dynamic translators [4, 11]
have demonstrated that it is possible to implement
software dynamic translation without unreasonable
performance penalty. In our experiments (Section 5),
Strata’s overhead is only a few percent. The Strata VM
mediates application execution by examining and
translating instructions before they execute on the host
CPU. Translated instructions are placed in the fragment
cache and then executed directly on the host CPU.
Before switching to the application code, the Strata VM
uses mprotect to protect critical data structures
including the fragment cache from being overwritten by
the application. At the end of a translated block, Strata
appends trampoline code that will switch execution
back to the Strata VM, passing in the next application
PC so that the next fragment can be translated and
execution will continue. We implement the instruction
set tagging by extending Strata’s instruction fetch
module. The modified instruction fetch module checks
that the fetched instruction has the correct tag for this
variant; if it does not, a security violation is detected
and execution terminates. Otherwise, it removes the
instruction tag before placing the actual instruction in
the fragment cache. The code executing on the host
processor contains no tags and can execute normally.

5. Framework Implementation

Implementing an N-variant system involves generating
variants such as those described in Section 4 as well as
implementing the polygrapher and monitor. The trusted
computing base comprises the polygrapher, monitor
and mechanisms used to produce the variants, as well as
any operating system functionality that is common
across the variants. An overriding constraint on our
design is that it be fully automated. Any technique that
requires manual modification of the server to create
variants or application-specific monitoring would
impose too large a deployment burden to be used
widely. To enable rapid development, our
implementations are entirely in software. Hardware im-
plementations would have security and performance
advantages, especially in monitoring the instruction
tags. Furthermore, placing monitoring as close as
possible to the processor eliminates the risk that an

 67

attacker can exploit a vulnerability in the monitoring
mechanism to inject instructions between the
enforcement mechanism and the processor.

The design space for N-variant systems
implementations presents a challenging trade-off
between isolation of the variants, polygrapher, and
monitor and the need to keep the variant processes
synchronized enough to establish the normal
equivalence property. The other main design decision is
the granularity of the monitoring. Ideally, the complete
state of each variant would be inspected after each
instruction. For performance reasons, however, we can
only observe aspects of the state at key execution
points. Incomplete monitoring means that an attacker
may be able to exploit a different vulnerability in the
server to violate the normal equivalence property,
thereby enabling an attack that would have otherwise
been detected to be carried out without detection. For
example, an attacker could exploit a race condition in
the server to make the variants diverge in ways that are
not detected by the monitor. Once the variants have
diverged, the attacker can construct an input that
exploits the vulnerability in one variant, but does not
produce the detected alarm state on the other variants
because they started from different states.

In our first proof-of-concept implementation, described
in Section 5.1, we emphasized isolation and executed
the variants on separate machines. This meant that any
nondeterminism in the server program or aspects of the
host state visible to the server program that differed
between the machines could be exploited by an attacker
to cause the processes to diverge and then allow a
successful attack. It also meant the monitor only
observed the outputs produced by the two variants that
would be sent over the network. This enabled certain
attacks to be detected, but meant a motivated attacker
could cause the states to diverge in ways that were not
visible from the output (such as corrupting server data)
but still achieved the attacker’s goals.

Our experience with this implementation led us to
conclude that a general N-variant systems framework
needed closer integration of the variant processes to
prevent arbitrary divergences. We developed such a
framework as a kernel modification that allows multiple
variants to run on the same platform and normal
equivalence to be established at system call granularity.
This eliminates most causes of nondeterminism and
improves the performance of the overall system.
Section 5.2 describes our Linux kernel implementation,
and Section 5.3 presents performance results running
Apache variants on our system.

5.1 Proof-of-Concept Implementation

In our proof-of-concept implementation, the variants
are isolated on separate machines and the polygrapher
and monitor are both implemented by the nvd process
running on its own machine. We used our
implementation to protect both a toy server we
constructed and Apache. In order for our approach to
work in practice it is essential that no manual
modification to the server source code is necessary.
Hence, each server variant must execute in a context
where it appears to be interacting normally with the
client. We accomplish this by using divert sockets to
give each variant the illusion that it is interacting
directly with a normal client. To implement the
polygrapher we use ipfw, a firewall implementation for
FreeBSD [27] with a rule that redirects packets on port
80 (HTTP server) to our nvd process which adjusts the
TCP sequence numbers to be consistent with the
variant’s numbering. Instead of sending responses
directly to the client, the variant’s responses are
diverted back to nvd, which buffers the responses from
all of the variants. The responses from P0 are
transmitted back to the client only if a comparably long
response is also received from the other variants.
Hence, if any variant crashes on a client input, the
response is never sent to the client and nvd restarts the
server in a known uncompromised state.

We tested our system by using it to protect a toy server
we constructed with a simple vulnerability and Apache,
and attempted to compromise those servers using pre-
viously known exploits as well as constructed exploits
designed to attack a particular variant. Exploit testing
does not provide any guarantees of the security of our
system, of course, but it does demonstrate that the
correct behavior happens under the tested conditions to
increase our confidence in our approach and
implementation. Our toy server contained a contrived
format string vulnerability, and we developed an exploit
that used that vulnerability to write to an arbitrary
memory address. The exploit could be customized to
work against either variation, but against the N-variant
system both versions would lead to one of the variants
crashing. The monitor detects the crash and prevents
compromised outputs from reaching the client. We also
tested an Apache server containing a vulnerable
OpenSSL implementation (before 0.9.6e) that contained
a buffer overflow vulnerability that a remote attacker
could exploit to inject code [13]. When instruction set
tagging is used, the exploit is disrupted since it does not
contain the proper instruction tags in the injected code.

 68

We also conducted some performance measurements on
our 2-variant system with memory address partitioning.
The average response latency for HTTP requests
increased from 0.2ms for the unmodified server to
2.9ms for the 2-variant system.

The proof-of-concept implementation validated the N-
variant systems framework concept, but did not provide
a practical or secure implementation for realistic
services. Due to isolation of the variants, various non-
attack inputs could lead to divergences between the
variants caused by differences between the hosts. For
example, if the output web page includes a time stamp
or host IP address, these would differ between the
variants. This means false positives could occur when
the monitor observes differences between the outputs
for normal requests. Furthermore, a motivated attacker
could take advantage of any of these differences to
construct an attack that would compromise one of the
variants without leading to a detected divergence.

5.2 Kernel Implementation

The difficulties in eliminating nondeterminism and
providing finer grain monitoring with the isolated
implementation, as well as its performance results,
convinced us to develop a kernel implementation of the
framework by modifying the Linux 2.6.11 kernel. In
this implementation, all the variants run on the same
platform, along with the polygrapher and monitor. We
rely on existing operating system mechanisms to
provide isolation between the variants, which execute
as separate processes.

We modified the kernel data structures to keep track of
variant processes and implemented wrappers around

system calls. These wrappers implement the
polygraphing functionality by wrapping input system
calls so that when both variants make the same input
system call, the actual input operation is performed
once and the same data is sent to all variants. They
provide the monitoring functionality by checking that
all variants make the same call with equivalent
arguments before making the actual system call.

This system call sharing approach removes nearly all of
the causes of nondeterminism that were problematic in
the proof-of-concept implementation. By wrapping the
system calls, we ensure that variants receive identical
results from all system calls. The remaining cause of
nondeterminism is due to scheduling differences, in
particular in handling signals. We discuss these
limitations in Section 6.

In order to bring an N-variant system into execution we
created two new system calls: n_variant_fork, and
n_variant_execve. The program uses these system calls
similarly to the way a shell uses fork/execve to bring
processes into execution. The n_variant_fork system
call forks off the variants, however instead of creating a
single child process it creates one process per variant.
The variants then proceed to call n_variant_execve,
which will cause each of the variants to execute their
own diversified binary of the server. Note that our
approach requires no modification of an existing binary
to execute it within an N-variant system; we simply
invoke a shell command that takes the pathnames of
variant binaries as parameters and executes
n_variant_execve.

Next, we provide details on the system call wrappers
that implement the polygraphing and monitoring. The

ssize_t sys_read(int fd, const void *buf, size_t count) {
 if (!hasSibling (current)) { make system call normally } // not a variant process
 else {
 record that this variant process entered call
 if (!inSystemCall (current->sibling)) { // this variant is first
 save parameters
 sleep // sibling will wake us up
 get result and copy *buf data back into address space
 return result;
 } else if (currentSystemCall (current->sibling) == SYS_READ) { // this variant is second, sibling waiting
 if (parameters match) { // what it means to “match” depends on variation and system call
 perform system call
 save result and data in kernel buffer
 wake up sibling
 return result;
 } else { DIVERGENCE ERROR! } // sibling used different parameters
 } else { DIVERGENCE ERROR! } } } // sibling is in a different system call

Figure 2. Typical shared system call wrapper.

 69

Linux 2.6.11 kernel provides 267 system calls. We
generalize them into three categories based on the type
of wrapper they need: shared system calls, reflective
system calls, and dangerous system calls.

Shared System Calls. For system calls that interact
with external state, including I/O system calls, the
wrapper checks that all variants make equivalent calls,
makes the actual call once, and sends the output to all
variants, copying data into each of the variants address
space if necessary. Figure 2 shows pseudocode for a
shared call, in this case the read system call. The actual
wrappers are generated using a set of preprocessor
macros we developed to avoid duplicating code. The
first if statement checks whether this process is part of
an N-variant system. If not, the system call proceeds
normally. Hence, a single platform can run both normal
and N-variant processes. If the process is a variant
process, it records that it has entered this system call
and checks if its sibling variant has already entered a
system call. If it has not, it saves the parameters and
sleeps until the other variant wakes it up. Otherwise, it
checks that the system call and its parameters match
those used by the first variant to make the system call.
If they match, the actual system call is made. The result
is copied into a kernel buffer, and the sibling variant
process (which reached this system call first and went
to sleep) is awoken. The sibling process copies the
result from the kernel buffer back into its address space
and continues execution.

Reflective System Calls. We consider any system call
that observes or modifies properties of the process itself
a reflective system call. For these calls, we need to
ensure that all observations always return the same
value regardless of which variant reaches the call first,
and that all modifications to process properties are done
equivalently on all variants. For observation-only
reflective calls, such as getpid, we check that all
variants make the same call, and then just make the call
once for variant 0 and send the same result to all
variants. This is done using wrappers similar to those
for shared system calls, except instead of just allowing
the last variant that reaches the call to make the actual
system call we need to make sure that each time a
reflective call is reached, it is executed for the same
process.

Another issue is raised by the system calls that create
child processes (sys_fork, sys_vfork, and sys_clone).
The wrappers for these calls must coordinate each
variant’s fork and set up all the child processes as a
child N-variant system before any of the children are
placed on the run queue. These system calls return the

child process’ PID. We ensure that all the parents in the
N-variant system get the same PID (the PID of variant
0’s child), as with the process observation system calls.

The other type of reflective system call acts on the
process itself. These system calls often take parameters
given by the reflective observation system calls. In this
case, we make sure they make the same call with the
same parameters, but alter the parameters accordingly
for each variant. For example, sys_wait4 takes a PID as
an input. Each of the variants will call sys_wait4 with
the same PID because they were all given the same
child PID when they called sys_fork (as was required to
maintain normal equivalence). However, each variant
needs to clean up its corresponding child process within
the child system. The wrapper for sys_wait4 modifies
the PID value passed in and makes the appropriate call
for each variant with its corresponding child PID.
Similar issues arise with sys_kill, sys_tkill, and
sys_waitpid.

Finally, we have to deal with two system calls that
terminate a process: sys_exit and sys_exit_group. A
terminating process does not necessarily go through
these system calls, since it may terminate by crashing.
To ensure that we capture all process termination events
in an N-variant system we added a monitor inside the
do_exit function within the kernel which is the last
function all terminating processes execute. This way, if
a process receives a signal and exits without going
through a system call, we will still observe this and can
terminate the other variants.

Dangerous System Calls. Certain calls would allow
processes to break assumptions on which we rely. For
example, if the process uses the execve system to run a
new executable, this will escape the N-variant
protections unless we can ensure that each variant
executes a different executable that is diversified
appropriately. Since it is unlikely we can establish this
property, the execve wrapper just disables the system
call and returns an error code. This did not pose
problems for Apache, but might for other applications.

Other examples of dangerous system calls are those for
memory mapping (old_mmap, sys_mmap2) which map
a portion of a file into a process’ address space. After a
file is mapped into an address space, memory reads and
writes are analogous to reads and writes from the file.
This would allow an attacker to compromise one
variant, and then use the compromised variant to alter
the state of the uncompromised variants through the
shared memory without detection, since no system call
is necessary. Since many server applications (including

 70

Apache) use memory mapping, simply blocking these
system calls is not an option. Instead, we place
restrictions on them to allow only the
MAP_ANONYMOUS and MAP_PRIVATE options with
all permissions and to permit MAP_SHARED mappings
as long as write permissions are not requested. This
eliminates the communication channel between the
variants, allowing memory mapping to be used safely
by the variants. Apache runs even with these
restrictions since it does not use other forms of memory
mapping, but other solutions would be needed to
support all services.

5.3 Performance

Table 1 summarizes our performance results. We
measured the throughput and latency of our system
using WebBench 5.0 [65], a web server benchmark
using a variety of static web page requests. We ran two
sets of experiments measuring the performance of our
Apache server under unsaturated and saturated load
conditions. In both sets, there was a single 2.2GHz
Pentium 4 server machine with 1GB RAM running
Fedora Core 3 (2.6.11 kernel) in the six different
configurations shown in Table 1. For the first set of
experiences, we used a single client machine running
one WebBench client engine. For the load experiments,
we saturated our server using six clients each running
five WebBench client engines connected to the same
networks switch as the server.

Configuration 1 is the baseline configuration: regular
apache running on an unmodified kernel. Configuration
2 shows the overhead of the N-variant kernel on a
normal process. In our experiments, it was negligible;
this is unsurprising since the overhead is only a simple
comparison at the beginning of each wrapped system
call. Configuration 3 is a 2-variant system running in
our N-variant framework where the two variants differ
in the address spaces according to the partitioning
scheme described in Section 4.1. For the unloaded
server, the latency observed by the client increases by

17.6%. For the loaded server, the throughput decreases
by 48% and the latency nearly doubles compared to the
baseline configuration. Since the N-variant system
executes all computation twice, but all I/O system calls
only once, the overhead incurred reflects the cost of
duplicating the computation, as well as the checking
done by the wrappers. The overhead measured for the
unloaded server is fairly low, since the process is
primarily I/O bound; for the loaded server, the process
becomes more compute-bound, and the approximately
halving of throughput reflects the redundant
computation required to run two variants.

The instruction tagging variation is more expensive
because of the added cost of removing and checking the
instruction tags. Configuration 4 shows the
performance of Apache running on the normal kernel
under Strata with no transformation. The overhead
imposed by Strata reduces throughput by about 10%.
The Strata overhead is relatively low because once a
code fragment is in the fragment cache it does not need
to be translated again the next time it executes. Adding
the instruction tagging (Configuration 5) has minimal
impact on throughput and latency. Configuration 6
shows the performance of a 2-variant system where the
variants are running under Strata with instruction tag
variation. The performance impact is more than it was
in Configuration 3 because of the additional CPU
workload imposed by the instruction tags. For the
unloaded server, the latency increases 28% over the
baseline configuration; for the saturated server, the
throughput is 37% of the unmodified server’s
throughput.

Our results indicate that for I/O bound services, N-
variant systems where the variation can be achieved
with reasonable performance overhead, especially for
variations such as the address space partitioning where
little additional work is needed at run-time. We
anticipate there being many other interesting variations
of this type, such as file renaming, local memory
rearrangement, system call number diversity, and user

Configuration 1 2 3 4 5 6

Description
Unmodi

fied Apache,
unmodified

kernel

Unmodi
fied Apache,

N-variant
kernel

2-
variant
system,
address

partitioning

Ap
ache

running
under
Strata

Apa
che with
instructio

n tags

2-
variant
system,

instructio
n tags

Throughput
(MB/s)

2.36 2.32 2.04 2.27 2.25 1.80
Unsaturated

Latency (ms) 2.35 2.40 2.77 2.42 2.46 3.02
Throughput
(MB/s)

9.70 9.59 5.06 8.54 8.30 3.55
Saturated

Latency (ms) 17.65 17.80 34.20 20.30 20.58 48.30

 71

id diversity. For CPU-bound services, the overhead of
our approach will remain relatively high since all
computation needs to be performed twice.
Multiprocessors may alleviate some of the problem (in
cases where there is not enough load to keep the other
processors busy normally). Fortunately, many
important services are largely I/O-bound today and
trends in processor and disk performance make this
increasingly likely in the future.

6. Discussion

Our prototype implementation illustrates the potential
for N-variant systems to protect vulnerable servers from
important classes of attacks. Many other issues remain
to be explored, including how our approach can be
applied to other services, what variations can be created
to detect other classes of attacks, how an N-variant
system can recover from a detected attack, and how
compositions of design and artificially diversified
variants can provide additional security properties.

Applicability. Our prototype kernel implementation
demonstrated the effectiveness of our approach using
Apache as a target application. Although Apache is a
representative server, there are a number of things other
servers might do that would cause problems for our
implementation. The version of Apache used in our
experiments on uses the fork system call to create
separate processes to handle requests. Each child
process is run as an independent N-variant
system. Some servers use user-level threading libraries
where there are multiple threads within a single process
invisible to our kernel monitor. This causes problems in
an N-variant system, since the threads in the variants
may interleave differently to produce different
sequences of system calls (resulting in a false
detection), or worse, interleave in a way that allows an
attacker to exploit a race condition to carry out a
successful attack without detection. One possible
solution to this problem is to modify the thread
scheduler to ensure that threads in the variants are
scheduled identically to preserve synchronization
between the variants.

The asynchronous property of process signals makes it
difficult to ensure that all variants receive a signal at the
exact same point in each of their executions. Although
we can ensure that a signal is sent to all the variants at
the same time, we cannot ensure that all the variants are
exactly at the same point within their program at that
time. As a result, the timing of a particular signal could
cause divergent behavior in the variants if the code
behaves differently depending on the exact point when

the signal is received. This might cause the variants to
diverge even though they are not under attack, leading
to a false positive detection. As with user-level threads,
if we modify the kernel to provide more control of the
scheduler we could ensure that variants receive signals
at the same execution points.

Another issue that limits application of our approach is
the use of system calls we classified as dangerous such
as execve or unrestricted use of mmap. With our
current wrappers, a process that uses these calls is
terminated since we cannot handle them safely in the
N-variant framework. In some cases, more precise
wrappers may allow these dangerous calls to be used
safely in an N-variant system. Some calls, however, are
inherently dangerous since they either break isolation
between the variants or allow them to escape the
framework. In these situations, either some loss of
security would need to be accepted, or the application
would need to be modified to avoid the dangerous
system calls before it could be run as an N-variant
system.

Other variations. The variations we have implemented
only thwart attacks that require accessing absolute
memory addresses or injecting code. For example, our
current instruction tagging variation does not disrupt a
return-to-libc attack (since it does not involve injecting
code), and our address space partitioning variation
provides no protection against memory corruption
attacks that only use relative addressing. One goal for
our future work is to devise variations that enable
detection of larger classes of attack within the
framework we have developed. We believe there are
rich opportunities for incorporating different kinds of
variation in our framework, although the variants must
be designed carefully to ensure the detection and
normal equivalence properties are satisfied.
Possibilities include variations involving memory
layout to prevent classes of relative addressing attacks,
file system paths to disrupt attacks that depend on file
names, scheduling to thwart race condition attacks, and
data structure parameters to disrupt algorithmic
complexity attacks [21].

Composition. Because of the need to satisfy the normal
equivalence property, we cannot simply combine
multiple variations into two variants to detect the union
of their attack classes. In fact, such a combination risks
compromising the security properties each variation
would provide by itself. By combining variations more
carefully, however, we can compose variants in a way
that maintains the properties of the independent
variations. To do this securely, we must ensure that, for

 72

each attack class we wish to detect, there is a pair of
variants in the system that differs only in the
transformation used to detect that attack class. This is
necessary to ensure that for each variation, there is a
pair of variants that satisfy the normal equivalence
property for that variation but differ in the varied
property. This approach can generalize to compose n
binary variations using n + 1 variants. More clever
approaches may be able to establish the orthogonality
of certain variations to allow fewer variants without
sacrificing normal equivalence.

Another promising direction is to combine our
approach with design diversity approaches [46, 28, 62].
We could create a 3-variant system where two variants
are Apache processes running on Linux hosts with
controlled address space partitioning variation, and the
third variant is a Windows machine running IIS. This
would provide guaranteed detection of a class of low-
level memory attacks through the two controlled
variants, as well as probabilistic detection of attacks
that exploit high-level application semantics through
the design variants.

Recovery. Our modified kernel detects an attack when
the system calls made by the variants diverge. At this
point, one variant is in an alarm state (e.g., crashed),
and the other variant is in a possibly compromised state.
After detecting the attack, the monitor needs to restart
the service in an uncompromised state. Note that the
attack is always detected before any system call is
executed for a compromised process; this means no
external state has been corrupted. For a stateless server,
the monitor can just restart all of the variants. For a
stateful server, recovery is more difficult. One
interesting approach is to compare the states of the
variants after the attack is detected to determine the
valid state. Depending on the variation used, it may be
possible to recover a known uncompromised state from
the state of the alarm variant, as well as to deduce an
attack signature from the differences between the two
variants’ states. Another approach involves adding an
extra recovery variant that maintains a known
uncompromised state and can be used to restart the
other variants after an attack is detected. The recovery
variant could be the original P, except it would be kept
behind the normal variants. The polygrapher would
delay sending input to the recovery variant until all of
the regular variants process it successfully. This
complicates the wrappers substantially, however, and
raises difficult questions about how far behind the
recovery variant should be.

7. Conclusion

Although the cryptography community has developed
techniques for proving security properties of
cryptographic protocols, similar levels of assurance for
system security properties remains an elusive goal.
System software is typically too complex to prove it has
no vulnerabilities, even for small, well-defined classes
of vulnerabilities such as buffer overflows. Previous
techniques for thwarting exploits of vulnerabilities have
used ad hoc arguments and tests to support claimed
security properties. Motivated attackers, however,
regularly find ways to successfully attack systems
protected using these techniques [12, 55, 58, 64].

Although many defenses are available for the particular
attacks we address in this paper, the N-variant systems
approach offers the promise of a more formal security
argument against large attack classes and
correspondingly higher levels of assurance. If we can
prove that the automated diversity produces variants
that satisfy both the normal equivalence and detection
properties against a particular attack class, we can have
a high degree of confidence that attacks in that class
will be detected. The soundness of the argument
depends on correct behavior of the polygrapher,
monitor, variant generator and any common resources.

Our framework opens up exciting new opportunities for
diversification approaches, since it eliminates the need
for high entropy variations. By removing the reliance
on keeping secrets and providing an architectural and
associated proof framework for establishing security
properties, N-variant systems offer potentially
substantial gains in security for high assurance services.

Availability
Our implementation is available as source code

from http://www.nvariant.org. This website also
provides details on the different system call wrappers.

Acknowledgments
We thank Anil Somayaji for extensive comments

and suggestions; Lorenzo Cavallaro for help with the
memory partitioning scripts; Jessica Greer for
assistance setting up our experimental infrastructure;
Caroline Cox, Karsten Nohl, Nate Paul, Jeff Shirley,
Nora Sovarel, Sean Talts, and Jinlin Yang for
comments on the work and writing. This work was
supported in part by grants from the DARPA Self-
Regenerative Systems Program (FA8750-04-2-0246)
and the National Science Foundation through NSF
Cybertrust (CNS-0524432).

References

 73

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and
Jay Ligatti. Control-Flow Integrity: Principles,
Implementations, and Applications. CCS 2005.

[2] Starr Andersen. Changes to Functionality in
Microsoft Windows XP Service Pack 2: Part 3:
Memory Protection Technologies. Microsoft
TechNet. August 2004.

[3] Algirdas Avizienis and L. Chen. On the
Implementation of N-version Programming for
Software Fault-Tolerance During Program
Execution. International Computer Software and
Applications Conference. 1977.

[4] Vasanth Bala, E. Duesterwald, S. Banerjia.
Dynamo: A Transparent Dynamic Optimization
System. ACM Programming Language Design
and Implementation (PLDI). 2000.

[5] Arash Baratloo, N. Singh, T. Tsai. Transparent
Run-Time Defense against Stack Smashing
Attacks. USENIX Technical Conference. 2000.

[6] Elena Barrantes, D. Ackley, S. Forrest, T. Palmer,
D. Stefanovic, D. Zovi. Intrusion Detection:
Randomized Instruction Set Emulation to Disrupt
Binary Code Injection Attacks. CCS 2003.

[7] Emery Berger and Benjamin Zorn. DieHard:
Probabilistic Memory Safety for Unsafe
Languages. ACM Programming Language Design
and Implementation (PLDI), June 2006.

[8] Sandeep Bhatkar, Daniel DuVarney, and R. Sekar.
Address Ofuscation: an Efficient Approach to
Combat a Broad Range of Memory Error Exploits.
USENIX Security 2003.

[9] Kenneth Birman. Replication and Fault Tolerance
in the ISIS System. 10th ACM Symposium on
Operating Systems Principles, 1985.

[10] K. Birman, Building Secure and Reliable Network
Applications, Manning Publications, 1996.

[11] Derek Bruening, Timothy Garnett, Saman
Amarasinghe. An Infrastructure for Adaptive
Dynamic Optimization. International Symposium
on Code Generation and Optimization. 2003.

[12] Bulba and Kil3r. Bypassing StackGuard and
StackShield. Phrack. Vol 0xa Issue 0x38. May
2000. http://www.phrack.org/phrack/56/p56-0x05

[13] CERT. OpenSSL Servers Contain a Buffer
Overflow During the SSL2 Handshake Process.
CERT Advisory CA-2002-23. July 2002.

[14] L. Chen and Algirdas Avizienis. N-Version
Programming: A Fault Tolerance Approach to
Reliability of Software Operation. 8th
International Symposium on Fault-Tolerant
Computing. 1978.

[15] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi
Gauriar, R. K. Iyer. Non-Control-Data Attacks
Are Realistic Threats. USENIX Security 2005.

[16] Marc Chérèque, David Powell, Philippe Reynier,
Jean-Luc Richier, and Jacques Voiron. Active
Replication in Delta-4. 22nd International
Symposium on Fault-Tolerant Computing. July
1992.

[17] Monica Chew and Dawn Song. Mitigating Buffer
Overflows by Operating System Randomization.
Tech Report CMU-CS-02-197. December 2002.

[18] George Coulouris, Jean Dollimore and Tim
Kindberg. Distributed Systems: Concepts and
Design (Third Edition). Addison-Wesley. 2001.

[19] Crispin Cowan, C. Pu, D. Maier, H. Hinton, J.
Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
and Q. Zhang. Stackguard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow
Attacks. USENIX Security 1998.

[20] C. Cowan, M. Barringer, S. Beattie, G. Kroah-
Hartman, M. Frantzen, and J. Lokier.
FormatGuard: Automatic Protection From printf
Format String Vulnerabilities. USENIX Security
2001.

[21] Scott Crosby and Dan Wallach. Denial of Service
via Algorithmic Complexity Attacks. USENIX
Security 2003.

[22] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, D.
Chanet, K. De Bosschere. Link-time Optimization
of ARM Binaries. Language. Compiler and Tool
Support for Embedded Systems. 2004.

[23] Nurit Dor, M. Rodeh, M. Sagiv. CSSV: Towards a
Realistic Tool for Statically Detecting All Buffer
Overflows in C. ACM Programming Language
Design and Implementation. June 2003.

[24] Jon Erickson. Hacking: The Art of Exploitation.
No Starch Press. November 2003,

[25] Hiroaki Etoh. GCC extension for protecting
applications from stack-smashing attacks. IBM,
2004. http://www.trl.ibm.com/projects/security/ssp

[26] Stephanie Forrest, Anil Somayaji, David Ackley.
Building diverse computer systems. 6th Workshop
on Hot Topics in Operating Systems. 1997.

[27] The FreeBSD Documentation Project. FreeBSD
Handbook, Chapter 24. 2005.

[28] Debin Gao, Michael Reiter, Dawn Song.
Behavioral Distance for Intrusion Detection. 8th
International Symposium on Recent Advances in
Intrusion Detection. September 2005.

[29] Daniel Geer, C. Pfleeger, B. Schneier, J.
Quarterman, P. Metzger, R. Bace, P. Gutmann.
Cyberinsecurity: The Cost of Monopoly. CCIA
Technical Report, 2003.

[30] Eric Haugh and Matt Bishop. Testing C programs
for buffer overflow vulnerabilities. NDSS 2003.

[31] David Holland, Ada Lim, and Margo Seltzer. An
Architecture A Day Keeps the Hacker Away.

 74

Workshop on Architectural Support for Security
and Anti-Virus. April 2004.

[32] D. Jewett. Integrity S2: A Fault-Tolerant Unix
Platform. 17th International Symposium on Fault-
Tolerant Computing Systems. June 1991.

[33] Mark K. Joseph. Architectural Issues in Fault-
Tolerant, Secure Computing Systems. Ph.D.
Dissertation. UCLA Department of Computer
Science, 1988.

[34] James Just, J. Reynolds, L. Clough, M. Danforth,
K. Levitt, R. Maglich, J. Rowe. Learning
Unknown Attacks – A Start. Recent Advances in
Intrusion Detection. Oct 2002.

[35] Gaurav Kc, A. Keromytis, V. Prevelakis.
Countering Code-injection Attacks with
Instruction Set Randomization. CCS 2003.

[36] John Knight and N. Leveson. An Experimental
Evaluation of the Assumption of Independence in
Multi-version Programming. IEEE Transactions
on Software Engineering, Vol 12, No 1. Jan 1986.

[37] Ken Knowlton. A Combination Hardware-
Software Debugging System. IEEE Transactions
on Computers. Vol 17, No 1. January 1968.

[38] Benjamin Kuperman, C. Brodley, H.
Ozdoganoglu, T. Vijaykumar, A. Jalote. Detection
and Prevention of Stack Buffer Overflow Attacks.
Communications of the ACM, Nov 2005.

[39] David Larochelle and David Evans. Statically
Detecting Likely Buffer Overflow Vulnerabilities.
USENIX Security 2001.

[40] Ruby Lee, D. Karig, J. McGregor, and Z. Shi.
Enlisting Hardware Architecture to Thwart
Malicious Code Injection. International
Conference on Security in Pervasive Computing.
March 2003.

[41] John McGregor, David Karig, Zhijie Shi, and
Ruby Lee. A Processor Architecture Defense
against Buffer Overflow Attacks. IEEE
International Conference on Information
Technology: Research and Education. August
2003.

[42] Sjoerd Mullender and Robbert van Renesse. The
International Obfuscated C Code Contest Entry.
1984. http://www1.us.ioccc.org/1984/mullender.c

[43] James Newsome and Dawn Song. Dynamic Taint
Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity
Software. NDSS 2005.

[44] Adam J. O’Donnell and H. Sethu. On Achieving
Software Diversity for Improved Network
Security using Distributed Coloring Algorithms.
CCS 2004.

[45] Manish Prasad and T. Chiueh. A Binary Rewriting
Defense against Stack-Based Buffer Overflow

Attacks. USENIX Technical Conference. June
2003.

[46] James Reynolds, J. Just, E. Lawson, L. Clough, R.
Maglich, K. Levitt. The Design and
Implementation of an Intrusion Tolerant System.
Foundations of Intrusion Tolerant Systems
(OASIS). 2003.

[47] Michael Ringenburg and Dan Grossman.
Preventing Format-String Attacks via Automatic
and Efficient Dynamic Checking. CCS 2005.

[48] Juan Rivas. Overwriting the .dtors Section. Dec
2000. http://synnergy.net/downloads/papers/dtors.txt

[49] Olatunji Ruwase and Monica S. Lam. A Practical
Dynamic Buffer Overflow Detector. NDSS 2004.

[50] Fred Schneider. Implementing Fault-Tolerant
Services Using the State Machine Approach: A
Tutorial. ACM Computing Surveys. Dec 1990.

[51] Fred Schneider and L. Zhou. Distributed Trust:
Supporting Fault-Tolerance and Attack-
Tolerance, Cornell TR 2004-1924, January 2004.

[52] Kevin Scott and Jack W. Davidson. Safe Virtual
Execution Using Software Dynamic Translation.
ACSAC. December 2002.

[53] Kevin Scott, N. Kumar, S. Velusamy, B. Childers,
J. Davidson, M. L. Soffa. Retargetable and
Reconfigurable Software Dynamic Translation.
International Symposium on Code Generation and
Optimization. March 2003.

[54] Scut / team teso. Exploiting Format String
Vulnerabilities. March 2001.

[55] Hovav Shacham, M. Page, B. Pfaff, Eu-Jin Goh,
N. Modadugu, Dan Boneh. On the effectiveness of
address-space randomization. CCS 2004.

[56] Umesh Shankar, K. Talwar, J. Foster, D. Wagner.
Detecting Format String Vulnerabilities with Type
Qualifiers. USENIX Security 2001.

[57] Stelios Sidiroglou, G. Giovanidis, A. Keromytis.
A Dynamic Mechanism for Recovering from
Buffer Overflow Attacks. 8th Information Security
Conference. September 2005.

[58] Ana Nora Sovarel, David Evans, Nathanael Paul.
Where’s the FEEB?: The Effectiveness of
Instruction Set Randomization. USENIX Security
2005.

[59] Mark Stamp. Risks of Monoculture.
Communications of the ACM. Vol 47, Number 3.
March 2004.

[60] Karthik Sundaramoorthy, Z. Purser, E. Rotenberg.
Slipstream Processors: Improving both
Performance and Fault Tolerance. Architectural
Support for Programming Languages and
Operating Systems (ASPLOS). Nov 2000.

[61] Bjorn De Sutter and Koen De Bosschere.
Introduction: Software techniques for Program

 75

Compaction. Communications of the ACM. Vol
46, No 8. Aug 2003.

[62] Eric Totel, Frédéric Majorczyk, Ludovic Mé.
COTS Diversity Intrusion Detection and
Application to Web Servers. Recent Advances in
Intrusion Detection. September 2005.

[63] Timothy Tsai and Navjot Singh. Libsafe 2.0:
Detection of Format String Vulnerability Exploits.
Avaya Labs White Paper. February 2001.

[64] Nathan Tuck, B. Calder, and G. Varghese.
Hardware and Binary Modification Support for
Code Pointer Protection from Buffer Overflow.
International Symposium on Microarchitecture.
Dec 2004.

[65] VeriTest Corporation. WebBench 5.0.
http://www.veritest.com/benchmarks/webbench

[66] John Viega, J. Bloch, T. Kohno, Gary McGraw.
ITS4 : A Static Vulnerability Scanner for C and
C++ Code. ACSAC. Dec 2000.

[67] David Wagner, J. Foster, E. Brewer, A. Aiken. A
First Step Towards Automated Detection of
Buffer Overrun Vulnerabilities. NDSS 2000.

[68] D. Wilson. The STRATUS Computer System.
Resilient Computer Systems: Volume 1. John
Wiley and Sons, 1986. p. 208-231.

[69] Jun Xu, Z. Kalbarczyk, R. Iyer. Transparent
Runtime Randomization for Security. Symposium
on Reliable and Distributed Systems. October
2003.

[70] Yongguang Zhang, H. Vin, L. Alvisi, W. Lee, S.
Dao. Heterogeneous Networking: a New
Survivability Paradigm. New Security Paradigms
Workshop 2001.

76

Appendix F: PHPrevent – Web
Application Security

 77

Automatically hardening web applications
using precise tainting

Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, David Evans
Department of Computer Science, University of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904-4740, USA ⊥

Abstract: Most web applications contain security vulnerabilities. The simple and natural
ways of creating a web application are prone to SQL injection attacks and cross-site scripting
attacks as well as other less common vulnerabilities. In response, many tools have been
developed for detecting or mitigating common web application vulnerabilities. Existing
techniques either require effort from the site developer or are prone to false positives. This
paper presents a fully automated approach to securely hardening web applications. It is based
on precisely tracking taintedness of data and checking specifically for dangerous content only
in parts of commands and output that came from untrustworthy sources. Unlike previous work
in which everything that is derived from tainted input is tainted, our approach precisely tracks
taintedness within data values.
Key words: web security; web vulnerabilities; SQL injection; PHP; cross-site scripting attacks; precise tainting; information

flow

1. Introduction

Nearly all web applications are security critical, but only a small fraction of deployed web
applications can afford a detailed security review. Even when such a review is possible, it is
tedious and can overlook subtle security vulnerabilities. Serious security vulnerabilities are
regularly found in the most prominent commercial web applications including Gmail1, eBay2,
Yahoo3, Hotmail3 and Microsoft Passport4. Section 2 provides background on common web
application vulnerabilities.

Several tools have been developed to partially automate aspects of a security review,
including static analysis tools that scan code for possible vulnerabilities5 and automated testing

⊥ This work was funded in part by DARPA (SRS FA8750-04-2-0246) and the National

Science Foundation (NSF CAREER CCR-0092945, SCI-0426972).

 78

tools that test web sites with inputs designed to expose vulnerabilities5-7. Taint analysis identifies
inputs that come from untrustworthy sources (including user input) and tracks all data that is
affected by those input values. An error is reported if tainted data is passed as a security-critical
parameter, such as the command passed to an exec command. Taint analysis can be done
statically or dynamically. Section 3 describes previous work on securing web applications,
including taint analysis.

For an approach to be effective for the vast majority of web applications, it needs to be fully
automated. Many people build websites that accept user input without any understanding of
security issues. For example, PHP & MySQL for Dummies8 provides inexperienced
programmers with the knowledge they need to set up a database-backed web application.
Although the book does include some warnings about security (for example, p. 213 warns
readers about malicious input and advises them to check correct format, and p. 261 warns about
<script> tags in user input), many of the examples in the book that accept user input contain
security vulnerabilities (e.g., Listings 11-3 and 12-2 allow SQL injection, and Listing 12-4
allows cross-site scripting). This is typical of most introductory books on web site development.

In Section 4 we propose a completely automated mechanism for preventing two important
classes of web application security vulnerabilities: command injection (including script and SQL
injection) and cross-site scripting (XSS). Our solution involves replacing the standard PHP
interpreter with a modified interpreter that precisely tracks taintedness and checks for dangerous
content in uses of tainted data. All that is required to benefit from our approach is that the
hosting server uses our modified version of PHP.

The main contribution of our work is the development of precise tainting in which taint
information is maintained at a fine level of granularity and checked in a context-sensitive way.
This enables us to design and implement fully-automated defense mechanisms against both
command injection attacks, including SQL injection, and cross-site scripting attacks. Next, we
describe common web application vulnerabilities. Section 3 reviews prior work on securing
web applications. Section 4 describes our design and implementation, and explains how we
prevent exploits of web application vulnerabilities.

2. Web Application Vulnerabilities

Figure 1 depicts a typical web application. For clarity, we focus on web applications
implemented using PHP, which is currently one of the most popular language for implementing
web applications (PHP is used at approximately 1.3M IP addresses, 18M domains, and is
installed on 50% of Apache servers9). Most issues and architectural properties are similar for
other web application languages.

A client sends input to the web server in the form of an HTTP request (step 1 in Figure 1).
GET and POST are the most common requests. The request encodes data created by the user in
HTTP header fields including file names and parameters included in the requested URI. If the

 79

URI is a PHP file, the HTTP server will load the requested file from the file system (step 2) and
execute the requested file in the PHP interpreter (step 3). The parameters are visible to the PHP
code through predefined global variable arrays (including $_GET and $_POST).

The PHP code may use these values to construct commands that are sent to PHP functions
such as a SQL query that is sent to the database (steps 4 and 5), or to make calls to PHP API
functions that call system APIs to manipulate system state (steps 6 and 7). The PHP code
produces an output web page based on the returned results and returns it to the client (step 8).

We assume a client can interact with the web server only by sending HTTP requests to the
HTTP server. In particular, the only way an attacker can interact with system resources,
including the database and file system, is by constructing appropriate web requests. We divide
attacks into two general classes of attacks: injection attacks attempt to construct requests to the
web server that corrupt its state or reveal confidential information; output attacks (e.g., cross-site
scripting) attempt to send requests to the web server that cause it to generate responses that
produce malicious behavior on clients.

a. Command injection attacks

In a command injection attack an attacker attempts to access confidential information or
corrupt the application state by constructing an input that allows the attacker to inject malicious
control logic into the web application. With the system architecture shown in Figure 1, an attack
could attempt to inject PHP code that will be executed by the PHP interpreter, SQL commands
that will be executed by the database, or native machine code that will be executed by the web
server host directly. We consider only the first two cases. Web application vulnerabilities are far
more common than vulnerabilities in the underlying server or operating system since there are

HTTP Server

PHP Interpreter

1

8

2 3

4

5

File System

file.php

Database

C
lie

nt

Web Server System APIs

67

Figure 1. Typical web application architecture

 80

far more different web applications than there are servers and operating systems, and developers
of web applications tend to be far less sophisticated from a security perspective than developers
of operating systems and web servers.

PHP injection. In a PHP injection attack, the attacker attempts to inject PHP code that will
be interpreter by the server. If an attacker can inject arbitrary code, the attacker can do
everything PHP can and has effectively complete control over the server. Here is a simple
example of a PHP injection in phpGedView, an online viewing system for genealogy
information10. The attack URL is of the form:
 http://[target]/[...]/editconfig_gedcom.php?gedcom_config=../../../../../../etc/passwd

The vulnerable PHP code uses the gedcom_config value as a filename: require($gedcom_config);.
The semantics of require is to load the file and either interpret it as PHP code (if the PHP tags are
found) or display the content. Thus this code leaks the content of the password file. Abuse of
require and its related functions is a commonly reported occurrence11,12, despite the fact that,
properly configured, PHP is impervious to this basic attack. However, additional defenses are
needed for more sophisticated injection attacks such as the recently released Santy Worm13 and
the phpMyAdmin attack14.

SQL injection. Attacking web applications by injecting SQL commands is a common
method of attacking web applications15,16. We illustrate a simple SQL injection that is
representative of actual vulnerabilities. Suppose the following is used to construct an SQL query
to authenticate users against a database:

$cmd="SELECT user FROM users WHERE user = ' " . $user
 . "' AND password = ' " . $pwd . " ' ";
The value of $user comes from $_POST['user'], a value provided by the client using the login

form. A malicious client can enter the value: ' OR 1 = 1 ; --' (-- begins a comment in SQL which
continues to the end of the line). The resulting SQL query will be: SELECT user FROM users WHERE
user = ' ' OR 1 = 1 ; -- ' AND password = 'x'. The injected command closes the quote and comments out
the AND part of the query. Hence, it will always succeed regardless of the entered password.

The main problem here is that the single quote provided by the attacker closes the open
quote, and the remainder of the user-provided string is passed to the database as part of the SQL
command. This attack would be thwarted by PHP installations that use the default magic quotes
option. When enabled, magic quotes automatically sanitize input data by adding a backslash to
all strings submitted via web forms or cookies. However, magic quotes do not suffice for attacks
that do not use quotes17.

One solution to prevent SQL injections is to use prepared statements18. A prepared statement
is a query string with placeholders for variables that are subsequently bound to the statement and
type-checked. However, this depends on programmers changing development practices and
replacing legacy code. Dynamic generation of queries using regular queries will continue to be
prevalent for the foreseeable future.

 81

b. Output attacks

Output attacks send a request to a web application that causes it to produce an output page
designed by the attacker to achieve some malicious goal. The most dangerous kind of output
attack is a cross-site scripting attack, in which the web server produces an output page
containing script code generated by the attacker. The script code can steal the victim’s cookies
or capture data the victim unsuspectingly enters into the web site. This is especially effective in
phishing attacks in which the attacker sends potential victims emails convincing them victim to
visit a URL. The URL may be a trusted domain, but because of a cross-site scripting
vulnerability the attacker can construct parameters to the URL that cause the trusted site to
create a page containing a form that sends data back to the attacker. For example, the attacker
constructs a link like this:
<a href='http://bad.com/go.php?val=<script src="http://bad.com/attack.js"></script>'>

If the implementation of go.php uses the val parameter in the generated web page output (for
example, by doing print "Results for: " . $_GET['val'];), the malicious script will appear on the resulting
page. A clever attacker can use character encodings to make the malicious script appear
nonsensical to a victim who inspects the URL before opening it.

Five years ago, CERT Advisory 2000-02 described the problem of cross-site scripting and
advised users to disable scripting languages and web site developers to validate web page
output19. Nevertheless, cross-site scripting problems remain a serious problem today. Far too
much functionality of the web depends on scripting languages, so most users are unwilling to
disable them. Even security-conscious web developers frequently produce websites that are
vulnerable to cross-site scripting attacks1,4,20-22. As with SQL injection, ad hoc fixes often fail to
solve discovered problems correctly—the initial filters develop to fix the Hotmail vulnerability
could be circumvented by using alternate character encodings4. Hence, we focus on fully
automated solutions.

3. Related work

Several approaches have been developed for securing web applications including filtering
input and output that appears dangerous, automated testing and diversity defenses. The
approaches most similar to our proposed approach involve analyzing information flow.

Input and Output Filtering. Scott and Sharp developed a system for providing an
application-level firewall to prevent malicious input from reaching vulnerable web servers23.
Their approach required a specification of constraints on different inputs, and compiled those
constraints into a checking program. This requires a programmer to provide a correct security
policy specific to their application, so is ill-suited to protecting typical web developers. Several

 82

commercial web application firewalls provide input and output filtering to detect possible
attacks24,25. However, these tools are prone to both false positives and negatives26.

Automated Testing. There are several web application security testing tools designed
specifically to find vulnerabilities5,27,28. The problem with these tools is that they have to guess
the exploit data in order to expose the vulnerability. For well-known generic classes of
vulnerabilities, such as SQL injection, this may be possible. But for novel or complex
vulnerabilities, it is unlikely the scanner will guess the right inputs to expose the vulnerability.

Diversity Defenses. Instruction-Set Randomization is a form of diversity in which defenders
modify the instruction set used to run applications29. Thus, code-injection attacks that rely on
knowledge of the original language are detected and thwarted easily. This approach has been
advocated for general scripting languages29 and for protection against SQL injections30. There
are two main problems with ISR: (1) it is effective only against code injection attacks and
incomplete by itself (it does not handle cross-site scripting attacks), and (2), the deployment of
ISR is not transparent to developers and requires the transformation of application code.

Information Flow. All of the web vulnerabilities described in Section 0 stem from insecure
information flow: data from untrusted sources is used in a trusted way. The security community
has studied information flow extensively31. The earliest work focused on confidentiality, in
particular in preventing flows from trusted to untrusted sources32. In our case, we are primarily
concerned with integrity. Biba showed that information flow can also be used to provide
integrity by considering flows from untrusted to trusted sources33.

Information flow policies can be enforced statically, dynamically or by a combination of
static and dynamic techniques. Static taint analysis has been used to detect security
vulnerabilities in C programs34,35. Static approaches have the advantage of increased precision,
no run-time overhead and the ability to detect and correct errors before deployment. However,
they require substantial effort from the programmer. Since we are focused on solutions that will
be practically deployed in typical web development scenarios, we focus on dynamic techniques.

Huang et. al developed WebSSARI, a hybrid approach to securing web applications36. The
WebSSARI tool uses a static analysis based on type-based information flow to identify possible
vulnerabilities in PHP web applications. Their type-based approach operates at a coarse-grain:
any data derived from tainted input is considered fully tainted. WebSSARI can insert calls to
sanitization routines that filter potentially dangerous content from tainted values before they are
passed to security-critical functions. Because we propose techniques for tracking taintedness at a
much finer granularity, our system can be more automated than WebSSARI: all we require is
that the server uses our modified interpreter PHP to protect all web applications running on the
server.

 83

4. Automatic Web Hardening

Our design is based on maintaining precise information about what data is tainted through
the processing of a request, and checking that user input sent to an external command or output
to a web page contains only safe content. Our automated solution prevents a large class of
common security vulnerabilities without any direct effort required from web developers.

The only change from the standard web architecture in Figure 1 is that we replace the
standard PHP interpreter with a modified interpreter that identifies which data comes from
untrusted sources and precisely tracks how that data propagates through PHP code interpretation
(Section a), checks that parameters to commands do not contain dangerous content derived from
user input (Section b), and ensures that generated web pages do not contain scripting code
created from untrusted input (Section 0).

a. Keeping track of precise taint information

We mark an input from untrusted sources including data provided by client requests as
tainted. We modified the PHP interpreter’s implementation of the string datatype to include
tainting information for string values at the granularity of individual characters. We then
propagate taint information across function calls, assignments and composition at the granularity
of a single character, hence precise tainting. The application of precise tainting enables the
prevention of injection attacks and the ability to easily filter output for XSS attacks. If a function
uses a tainted variable in a dangerous way, we can reject the call to the function (as is done with
SQL queries or PHP system functions) or sanitize the variable values (as is done for preventing
cross-site scripting attacks).

Web application developers often remember to sanitize inputs from GET and POSTs, but will
omit to check other variables that can be manipulated by clients. Our approach ensures that all
such external variables, e.g. hidden form variables, cookies and HTTP header information, are
marked as tainted. We also keep track of taint information for session variables and database
results.

i. Taint strings

For each PHP string, we track tainting information for individual characters. Consider the
following code fragment where part of the string $x comes from a web form and the other from a
cookie:
 $x = "Hello " . $_GET['name1'] . ". I am " . $_COOKIE['name2'];

The values of $_GET['name1'] and $_COOKIE['name2'] are fully tainted (we assume they are Alice
and Bob). After the concatenation, the values of $x and its taint markings (underlined) are:
Hello Alice. I am Bob.

 84

ii. Functions

We keep track of taint information across function calls, in particular functions that
manipulate and return strings. The general algorithm is to mark strings returned from function as
tainted if any of the input arguments are tainted. Whenever feasible, we exploit the semantics of
functions and keep track of taintedness precisely. For example, consider the substring function
in which taint markings for the result of the substr call depend on the part of the string they
select: substr(“precise taint me”, 2, 10); // ecise tai

iii. Database values and session variables

Databases provide another potential venue for attackers to insert malicious values. We treat
strings that are returned from database queries as untrusted and mark them as tainted. While this
approach may appear overly restrictive, in the sense that legitimate uses may be prevented, we
show in Section 4.3 how precise tainting and our approach to checking for cross-site scripting
mitigates this potential problem. Further, if the database is compromised by some other means,
the attacker is still unable to use the compromised database to construct a cross-site scripting
attack.

The stateless nature of HTTP requires developers to keep track of application state across
client requests. However, exposing session variables to clients would allow attackers to
manipulate applications. Well-designed web applications keep session variables on the server
only and use a session id to communicate with clients. We modified PHP to store taint
information with session variables.

b. Preventing command injection

The tainting information is used to determine whether or not calls to security-critical
functions are safe. To prevent command injection attacks, we check that the tainted information
passed to a command is safe. The actual checking depends on the command, and is designed to
be precise enough to prevent all command injection attacks from succeeding while allowing
typical web applications to function normally when they are not under attack.

i. PHP injection

To prevent PHP injection attacks we disallow calls to potentially dangerous functions if any
one of their arguments is tainted. The list of functions checked is similar to those disallowed by
Perl and Ruby’s taint mode37,38 and consists of functions that treat input strings as PHP code or
manipulate the system state such as system calls, I/O functions, and calls that are directly
evaluated.

 85

ii. SQL injection

Preventing SQL injections requires taking advantage of precise taint information. Before
sending commands to the database, e.g. mysql_query, we run the following algorithm to check for
injections:

1. Tokenize the query string; preserve taint markings with tokens.
2. Scan each token for identifiers and operator symbols (ignore literals, i.e., strings,

numbers, boolean values).
3. Detect an injection if an operator symbol is marked as tainted. Operator symbols are

,()[].;:+-*/\%^<>=~!?@#&|`
4. Detect an injection if an identifier is tainted and a keyword. Example keywords

include UNION, DROP, WHERE, OR, AND.
Using the example from Section 2.a:

$cmd="SELECT user FROM users WHERE user = ' " . $user
 . "' AND password = ' " . $password . " ' ";

The resulting query string (with $user set to ' OR 1 = 1 ; -- ') is tainted as follows: SELECT user
FROM users WHERE user = ' ' OR 1 = 1 ; -- ' AND password = 'x'. We detect an injection since OR is both
tainted and a keyword.

iii. Preventing cross-site scripting

Our approach to preventing cross-site scripting relies on checking generated output. Any
potentially dangerous content in generated HTML pages must contain only untainted data. We
modify the PHP output functions (print, echo, printf and other printing functions) with functions
that check for tainted output containing dangerous content. The replacement functions output
untainted text normally, but keep track of the state of the output stream as necessary for
checking. For a contrived example, consider an application that opens a script and then prints
tainted output: print "<script>document.write ($user)</script>";

An attacker can inject JavaScript code by setting the value of $user to a value that closes the
parenthesis and executes arbitrary code: " me");alert("yo". Note that the opening script tag could be
divided across multiple print commands. Hence, our modified output functions need to keep
track of open and partially open tags in the output. We do not need to parse the output HTML
completely (and it would be unadvisable to do so, since many web applications generate
ungrammatical HTML).

Checking output instead of input avoids many of the common problems with ad hoc filtering
approaches. Since we are looking at the generated output any tricks involving separating attacks
into multiple input variables or using character encodings can be handled systematically. Our
checking involves whitelisting safe content whereas blacklisting attempts to prevent cross-site
scripting attacks by identifying known dangerous tags, such as <script> and <object>. The latter

 86

fails to prevent script injection involving other tags. For example, a script can be injected into
the apparently harmless (bold) tag using parameters such as onmouseover.

Our defense takes advantage of precise tainting information to identify web page output
generated from untrusted sources. Any tainted text that could be dangerous is either removed
from the output or altered to prevent it being interpreted (for example, replacing < in unknown
tags with <). Our conservative assumptions mean that some safe content may be inadvertently
suppressed; however, because of the precise tainting information, this is limited to content that is
generated from untrusted sources.

5. Conclusion

We have described a fully automated, end-to-end approach for hardening web applications.
By exploiting precise tainting in a way that takes advantage of program language semantics and
performing context-dependent checking, we are able to prevent a large class of web application
exploits without requiring any effort from the web developer. Initial measurements indicate that
the performance overhead incurred by using our modified intepreter is less than 10%.

Effective solutions for protecting web applications need to balance the need for precision
with the limited time and effort most web developers will spend on security. Fully automated
solutions, such as the one described in this paper, provide an important point in this design
space.

6. References

1. N. Weidenfeld, Security Hole Found in Gmail, (27 October 2004);
http://net.nana.co.il/Article/?ArticleID=155025&sid=10.

2. Report of Ebay Cross-Site Scripting Attack; http://securityfocus.com/archive/82/246275.
3. Remotely Exploitable Cross-Site Scripting in Hotmail and Yahoo, (March 2004);

http://www.greymagic.com/security/advisories/gm005-mc/.
4. EyeonSecurity, Microsoft Passport Account Hijack Attack: Hacking Hotmail and More, Hacker’s Digest.
5. Y.-W. Huang et al., Web Application Security Assessment by Fault Injection and Behavior Monitoring, Proc. of

the World Wide Web Conference (WWW 2003), (May 2003).
6. M. Benedikt et al., Veriweb: Automatically Testing Dynamic Web Sites, Proc. of the World Wide Web

Conference, (May 2002).
7. F. Ricca, and P. Tonella, Analysis and Testing of Web Applications, Proc. of the IEEE International Conference

on Software Engineering, (May 2001).
8. J. Valade, Php & Mysql for Dummies, (Wiley Publishing, 2002).
9. Netcraft Survey, (January 2005); http://news.netcraft.com/.
10. JeiAr, Phpgedview Php Injection, (Jan 2004); http://xforce.iss.net/xforce/xfdb/14205.
11. Gentoo, Gallery Php Injection, (February 2004);

http://www.linuxsecurity.com/advisories/gentoo_advisory-4015.html.

 87

12. K. Więsek, Gonicus System Administrator Php Injection, (February 2003).
13. Santy Worm Used Google to Spread, (23 December 2004);

http://newsfromrussia.com/world/2004/12/23/57537.html.
14. N. Symbolon, Phpmyadmin Critical Bug; http://xforce.iss.net/xforce/xfdb/16542.
15. D. Litchfield, Sql Server Security, (McGraw-Hill Osborne Media, 2003).
16. K. Spett, “Sql Injection: Are Your Web Applications Vulnerable?” (SPI Labs White Paper, 2002).
17. L. Armstrong, Phpnuke Sql Injection, (20 February 2003).
18. Improved Mysql Extensions; http://www.php.net/manual/en/ref.mysqli.php.
19. Malicious Html Tags Embedded in Client Web Requests, (February 2, 2000);

http://www.cert.org/advisories/CA-2000-02.html.
20. G. Hoglund, and G. McGraw, Exploiting Software: How to Break Code, (Addison-Wesley, 2004).
21. R. Ivgi, Cross-Site-Scripting Vulnerability in Microsoft.Com, (4 October 2004).
22. J. Ley, Simple Google Cross Site Scripting Exploit, (17 October 2004).
23. D. Scott, and R. Sharp, Abstraction Application-Level Web Security, Proc. of the WWW, (May 2002).
24. Interdo Web Application Firewall; http://www.kavado.com/products/interdo.asp.
25. Teros, Inc., Teros-100 Application Protection System, (2004);

http://www.teros.com/products/aps100/aps.shtml.
26. T. Dyck, Review: Appshield and Review: Teros-100 Aps 2.1.1, (May 2003);

http://www.eweek.com/article2/0,3959,1110435,00.asp.
27. Tenable Network Security, Nessus Open Source Vulnerability Scanner Project, (2005);

http://www.nessus.org.
28. J. Offutt et al., Bypass Testing of Web Applications., Proc. of the IEEE International Symposium on

Software Reliability Engineering, (November 2004).
29. G. S. Kc et al., Countering Code-Injection Attacks with Instruction-Set Randomization., Proc. of the ACM

Computer and Communication Security (CCS), (October 2003).
30. S. W. Boyd, and A. D. Keromytis, Sqlrand: Preventing Sql Injection Attacks, Proc. of the 2nd Applied

Cryptography and Network Security (ACNS) Conference, (June 2004).
31. A. Sabelfeld, and A. C. Myers, Language-Based Information-Flow Security, IEEE Journal on Selected

Areas in Communications (January 2003).
32. D. E. Bell, and L. J. LaPadula, Secure Computer Systems: Mathematical Foundations Mtr-2547, (MITRE

Corporation, 1973).
33. K. J. Biba, Integrity Considerations for Secure Computer Systems Esd-Tr-76-372, (USAF Electronic

Systems Division, 1977).
34. U. Shankar et al., Detecting Format-String Vulnerabilities with Type Qualifiers, Proc. of the USENIX

Security Symposium.
35. D. Evans, and D. Larochelle, Improving Security Using Extensible Lightweight Static Analysis, IEEE

Software (January/February 2002).
36. Y.-W. Huang et al., Securing Web Application Code by Static Analysis and Runtime Protection, Proc. of

the World Wide Web Conference, (May 2004).
37. Perl 5.6 Documentation: Perl Security; http://www.perldoc.com/perl5.6/pod/perlsec.html.
38. D. Thomas et al., Programming Ruby: The Pragmatic Programmer’s Guide, (Pragmatic Programmers, ed.

Second, 2004).

 88

Appendix G: Derandomizing Attacks

Attack on Instruction Set Randomization diversity technique

 89

Where’s the FEEB?
The Effectiveness of Instruction Set Randomization

Ana Nora Sovarel David Evans Nathanael Paul
University of Virginia, Department of Computer Science

http://www.cs.virginia.edu/feeb

Abstract

Instruction Set Randomization (ISR) has been proposed as a promising defense against code injection attacks. It
defuses all standard code injection attacks since the attacker does not know the instruction set of the target machine.
A motivated attacker, however, may be able to circumvent ISR by determining the randomization key. In this paper,
we investigate the possibility of a remote attacker successfully ascertaining an ISR key using an incremental attack.
We introduce a strategy for attacking ISR-protected servers, develop and analyze two attack variations, and present
a technique for packaging a worm with a miniature virtual machine that reduces the number of key bytes an attacker
must acquire to 100. Our attacks can break enough key bytes to infect an ISR-protected server in about six minutes.
Our results provide insights into properties necessary for ISR implementations to be secure.

1. Introduction

In a code injection attack, an attacker exploits a software vulnerability (often a buffer overflow vulnerability) to
inject malicious code into a running program. Since the attacker is able to run arbitrary code on the victim's
machine, this is a serious attack which grants the attacker all the privileges of the compromised process.

In order for the injected code to have the intended effect, the attacker must know the instruction set of the target.
Hence, a general technique for defusing code injection attacks is to obscure the instruction set from the attacker.
Instruction Set Randomization (ISR) is a technique for accomplishing this by randomly altering the instructions
used by a host machine, application, or execution. By changing the instruction set, ISR defuses all code injection
attacks. ISR does not prevent all control flow hijacking attacks, though; for example, the return-to-libc attack [18]
does not depend on knowing the instruction set. Much work has been done on the general problem of mitigating
code injection attacks, and ISR is one of many proposed approaches. Previous papers have discussed the advantages
and disadvantages of ISR relative to other defense strategies [3, 12, 4]. In this paper, we focus on evaluating ISR’s
effectiveness in protecting a network of vulnerable servers from a motivated attacker and consider properties
necessary for an ISR implementation to be secure.

Several implementations of ISR have been proposed. Kc et al.’s design emphasized the possibility of an efficient
hardware implementation [12]. They considered a processor in which a special register stores the encryption key.
When an instruction is loaded into the processor, it is decrypted by XORing it with the value in the key register.

 90

The processor provides a special privileged instruction for writing into the key register and a different encryption
key is associated with each process. The code section of target executable is encrypted with a random key, which is
stored in the executable header information so it can be loaded into the key register before executing the program.
Kc et al. evaluated their design using the Bochs emulator simulating an x86 processor with a 32-bit key register.

Barrantes et al.’s design, RISE, is not constrained by the need for an efficient hardware implementation [3]. Instead
of using an encryption key register, they use a key that can be as long as the program text and encrypt each byte in
the code text by XORing it with the corresponding key byte. Encryption is done at load time with a generated
pseudo-random key, so each process will have its own, arbitrarily long key. Their implementation used an emulator
built on Valgrind [16] to decrypt instruction bytes with the corresponding key bytes when they are executed.

Existing code injection attacks assume the standard instruction set so they will fail against an ISR-protected server.
This paper presents a strategy a motivated attacker who is aware of the defense may be able to use to circumvent
ISR by determining the key. Our attack is inspired by Shacham et al.’s attack on memory address space
randomization [17]. Like ISR, memory address space randomization attempts to defuse a class of attacks by
breaking properties of the target program on which the attacker relies (in this case, the location of data structures
and code fragments in memory). Shacham et al. demonstrated that the 16-bit key space used by PaX Address Space
Layout Randomization [15] could be quickly compromised by a guessing attack.

Many of the necessary conditions for our attack are similar to the conditions needed for Shacham et al.s memory
randomization attack. However, since the key space used in ISR defenses is too large for a brute force search, we
need an attack that can break the key incrementally. Kc et al. mention the possibility that an attacker might be able
to guess parts of the key independently based on the fact that some useful instructions in x86 architecture have only
one or two bytes . Our attacks exploit this opportunity.

The key contributions of this paper are:

1. The first quantitative evaluation of the effective security provided by ISR defenses against a motivated
adversary.

2. An identification of an avenue of attack available to a remote attacker attempting to determine the encryp-
tion key used on an ISR-protected server.

3. Design and implementation of a micro-virtual machine that can be used to infect an ISR-protected server
using a small number of acquired key bytes.

4. An evaluation of the effectiveness of two types of attack on a prototype ISR implementation.
5. Insights into the properties necessary for an ISR implementation to be secure against remote attacks.

Next, we describe our incremental key guessing approach. Section 3 provides details on our attack and analyzes its
efficiency. Section 4 describes how an attacker could use our attack to deploy a worm on a network of ISR-
protected servers. Section 5 discusses the impact of our results for ISR system designers.

2. Approach

The most difficult task in guessing a key incrementally is to be able to notice a good partial guess. Suppose we
correctly guess the first two bytes of a four byte key. We would not be able to determine whether or not the guess is
correct if the random instruction in the next two bytes executes and causes the program to crash. The result would

 91

be indistinguishable from an incorrect guess of the first two bytes. Even if the next random instruction is harmless,
there is a high probability that a subsequently executed instruction will cause the program to crash in a way that is
indistinguishable from an incorrect guess.

Our approach to distinguish correct and incorrect partial guesses is to use control instructions. We attempt to inject
a particular control instruction with all possible randomization keys. When the guess is correct the execution flow
changes in a way that is remotely observable. For an incremental attack to work, the attacker must be able to
reliably determine if a partial guess is correct.

For each attempt, there are four possible outcomes:

 Apparently Correct Behavior Apparently Incorrect Behavior
Correct Guess Success False Negative
Incorrect Guess False Positive Progress

Ideally, a correct guess would always lead to distinguishably “correct” behavior, and an incorrect guess would
always lead to distinguishably “incorrect” behavior. Given sufficient knowledge of the target system, we should be
able to construct attacks where a correct guess never produces an apparently incorrect execution (barring exogenous
events that would also make normal requests fail). However, it is not possible to design an attack with perfect
recognition: some incorrect guesses will produce behavior that is remotely indistinguishable from that produced by
a correct guess. For example, an incorrect guess may decrypt to a harmless instruction, and some subsequently
executed instruction may produce the apparently correct execution behavior.

We present attacks based on two different control instructions: return, a one-byte instruction, and jump, a two-byte
instruction. For both attacks, if the guess is incorrect, there is a high probability that executing random instructions
will cause the process to crash. If the guess is correct, the attacker will observe different server behavior:
recognizable output for the return attack and an infinite loop for the jump attack.

Next we describe conditions necessary for the attacks to succeed, explain how each attack is done, and how an
incremental attack can be carried out on a large key. For both attacks, there are situations where an incorrect guess
produces the same behavior as a correct guess and complications that arise in guessing larger keys. In Section 3, we
discuss those issues in more detail and analyze the expected number of attempts required for each attack.

2.1 Requirements

In order for the attack to be possible, the attacker must have some way of injecting code into the target system. We
assume the application is vulnerable to a simple stack-smashing buffer overflow attack, although our attack does
not depend on how code is injected into the randomized program. It depends only on a vulnerability that can be
exploited to inject and execute code in the running process.

Our attack is only feasible for vulnerabilities where the attacker can inject code to a fixed memory location. In a
normal stack-smashing attack, the attacker sometimes cannot determine the exact location where code will be
inserted because of variations in system libraries, operating system patches and configurations [13]. A common
solution is to pad the injected code with nop instructions, often referred to as a nop sled [2]. The attack will succeed
as long as the return address is overwritten with an address that is in the range of injected nop instructions. When

 92

building an attack against an application protected by ISR, the attacker cannot use this approach because the
encryption masks for the positions where nop instructions should be placed are unknown. Another technique, called
a register spring [7], overwrites the return address with the address of an instruction found in the application or a
library that will indirectly transfer control to the buffer, such as jmp esp or call eax. These instructions are not likely
to appear normally in the code, but it is sufficient for an attacker to locate one of the instructions as operand bytes
or overlapping bytes in the code segment. Sapphire used a register spring technique by jumping to a jmp esp found
in sqlsort.dll [10].

The 32-bit or longer key typically used for ISR is too large for a practical brute force attack, so we must determine
the key incrementally. The attacker must be able to acquire enough key bytes to inject the malicious code before the
target program is re-randomized with a different key. Since our attack will necessarily crash processes on the target
system, it requires either that application executions use the same randomization key each time the target
application is restarted, or that the target application uses the same key for many processes it forks. A typical
application that exhibits this property is a server that forks a process to serve each client’s request. Since failed
guess attempts will usually cause the executing process to crash, the attacker must have an opportunity to send
many requests to a server encrypted with the same key. Many servers create separate processes to handle
simultaneous requests. For example, Apache (since version 2.0), provides configuration options to allow both
multiple processes and multiple threads within each process to handle simultaneous requests [1].

Since our attack depends on being able to determine the correct key mask from observing correct guesses, the
method used to encrypt instructions must have the property that once a ciphertext-plaintext pair is learned it is
possible to determine the key. The XOR encryption technique used by RISE [3] trivially satisfies this property. Kc
et al. suggest two possible randomization techniques: one uses XOR encryption and the other uses a secret 32-bit
transposition [12]. The XOR cipher, which is what their prototype implements, is vulnerable to our attack. Our
attack would not work without significant modification on the 32-bit transposition cipher. Learning one ciphertext-
plaintext pair would reduce the keyspace considerably, but is not enough to determine the transposition. Thus,
several known plaintext-ciphertext pairs would be needed to learn the transposition key.

The final requirement stems from the remote attacker’s need to observe enough server behavior to distinguish
between correct and incorrect guesses. If the attack program communicates with the server using a TCP connection
it can learn when the process handling the request crashes because the TCP socket is closed. If the key guess is
incorrect, the server process will (usually) crash and the operating system will close the socket. Hence, the server
must have a vulnerability along an execution path where normal execution keeps a socket open so the remote
attacker can distinguish between the two behaviors. If the normal execution flow would close the connection with
the client before returning from the vulnerable procedure, the attacker is not able to easily observe the effects of the
injected code. The return attack has additional requirements, described in the next section. In cases where those
requirements are not satisfied, the (slower) jump attack can be used.

2.2 Return Attack

The return attack uses the near return (0xc3) control instruction [11]. This is a one byte instruction, so it can be
found with at most 256 guesses.

Figure 1 shows the stack layout before and after the attack. The attack string preserves the base pointer, replaces the
original return address with the target address where the injected code is located, and places the original return
address just below the overwritten address. When the routine returns it restores the base pointer register from the
stack and jumps to the overwritten return address, which is now the injected instruction. If the guess is correct, the

 93

derandomized injected code is the return instruction. When it executes, the saved return address is popped from the
stack and the execution continues as if the called routine returned normally.

There is one important problem, however. When the guess is correct, the return statement that is executed pops an
extra element from the stack. In Figure 1, the star marks the position of the top of the stack in normal case (left) and
after the injected code is executed successfully (right). After returning from the vulnerable routine, the stack is
compromised because the top of the stack is now one element below where it should be. This means the server is
likely to crash soon even after a correct guess since all the values restored from the stack will be read from the
wrong location.

Thus, the return attack can only be used to exploit a vulnerability at a location where code that sends a response to
the client will execute before the compromised stack causes the program to crash. Otherwise, the attacker will not
be able to distinguish between correct and incorrect guesses since both result in server crashes. An obvious problem
is caused by a subsequent return. At the next return instruction, corresponding to the return from the method that
called the vulnerable method, the actual return address is one element up the stack from the location that will be
used. It is very likely that the element on the stack interpreted as the return address will be an illegal memory
reference. Even when the memory reference is legal, it is unlikely to jump to a location that corresponds to the
beginning of a valid instruction.

So, the return attack can only be used effectively for vulnerabilities in which observable server activity (such as a
message back to the attack client) occurs between the guessed return and the first instruction that would cause the
server to crash (which at the latest, occurs at the end of the called vulnerable routine, but often occurs earlier). We

Figure 1. Return attack.

 94

suspect situations where the return attack can be used are rare, but an attacker who is fortunate enough to find such
a vulnerability can use it to break an ISR key very quickly.

2.3 Jump Attack

For vulnerabilities where the return attack cannot succeed, we can use the jump attack instead. The advantage of the
jump attack is it can be used on any vulnerability where normal behavior keeps a socket open to the client.
However, it requires guessing a two-byte instruction, instead of the one-byte return instruction. Another
disadvantage of the jump attack is that it produces infinite loops on the server. This slows down server processing
for further attack attempts (and may also be noticed by a system administrator). We will present techniques for
substantially reducing both the number of guess attempts required and the number of infinite loops created in
Section 3.2.

The jump attack is depicted in Figure 2. As with the return attack, the jump attack overwrites the return address
with an address on the stack where a jump instruction encrypted with the current guess is placed. The injected
instruction is a near jump (0xeb) instruction with an offset -2 (0xfe). If the guess is correct it will jump back to
itself, creating an infinite loop. The attacker will see the socket open but receive no response. After a timeout has
expired, the attacker assumes the server is in an infinite loop. Usually, an incorrect guess will cause the process
handling the request to crash. This is detected by the attacker because the socket is closed before the timeout
expires.

Figure 2. Jump attack.

2.4 Incremental Key Breaking

After the first successful guess, the attacker has obtained the encryption key for one (return attack) or two (jump
attack) memory locations. Since other locations are encrypted with different key bits, however, finding one or two
key bytes is not enough to inject effective malicious code.

 95

The next step is to change the position of the guessed key byte. For the return attack, we just advance to the next
position and repeat the attack using the next position as the return address. With the jump attack, the attacker needs
up to obtain the first two key bytes at once, but can proceed in one byte at a time thereafter. On the first attack,
shown in the left side of Figure 3, the positions base and base+1 of the attack string are occupied by the jump
instruction. On the second attack, we attempt to guess the key at location base–1. Since we already know the key
for location base, we can encode the offset value -2 at that location, and can guess the key for the jump opcode with
at most 28 attempts.

During the incremental phase of the attack, we decrement the return address placed on the stack for each memory
location we guess. At some point the last byte of the address will be zero. This address cannot be injected using a
buffer overflow exploit, because it will terminate the attack string before the other bytes can be injected. To deal
with this case we introduce an extra jump placed in a position where we already know the encryption key and
whose address does not contain a null byte. The return address will point to this jump, which will then jump to the
position for which we are trying to guess the key.

When a repeated 32-bit randomization key is used (as in [12]), the number of attempts required to acquire the key
using the straightforward attacks would be at most 1024 (4×28) for the return attack and 66,048 (216+2×28) for the
jump attack (extra attempts may be needed to distinguish between correct guesses and false positives, as explained
in the next section). For ISR implementations, such as RISE [3], that do not use short repeated keys the attacker
may need to obtain many key bytes before the malicious code can be injected. This cannot be done realistically with
the approach described here. Section 3 describes techniques that can be used to make incremental key breaking
more efficient. Section 4 explains how many key bytes an attacker will need to compromise to inject and propagate
an effective worm.

Figure 3. Incremental jump attack.

3. Attack Details and Analysis

The main difficulty in getting the attack to work in practice is that an incorrect guess may have the same behavior
as the correct guess. In order to determine the key correctly, the attacker needs to be able to identify the correct key
byte from multiple guesses with the same apparently correct server behavior. The next two subsections explain how

 96

false positives can be eliminated with the return and jump attacks respectively. Section 3.3 describes an extended
attack that can be used to break large keys.

3.1 Return Attack

There are three possible reasons a return attack guess could produce the apparently correct behavior:

1. The correct key was guessed and the injected instruction decrypted to 0xc3.
2. An incorrect key was guessed, but the injected instruction decrypted to some other instruction that

produced the same observable behavior as a near return.
3. The injected instruction decrypted to an instruction that did not cause the process to crash, and some

subsequently executed instruction behaved like a near return.

The first case will happen once in 256 guess attempts.

There are several guesses that could produce the second outcome. The most likely is when the injected instruction
decrypts to the 3-byte near return and pop instruction, 0xc2 imm16. The near return and pop has the same behavior
as the near return instruction, except it will also pop the value of its operand bytes off the stack. Hence, if the
current stack height is less than the decrypted value of the the next two bytes on the stack, the observed behavior
after a 0xc2 instruction may be indistinguishable from the intended 0xc3 instruction. In the worst case, the stack is
high enough for all values to be valid and we will have a false positive corresponding to 0xc2 once every 256 guess
attempts.

There are two other types of instructions that can also produce the apparently correct behavior: calls and jumps. In
order to produce the near return behavior, the 4-byte offset of the call or jump instruction must jump to the return
address. The probability of encountering such a false positive is extremely remote (approximately 2-36). Thus, we
ignore this case in our analysis and implementation; this has not caused problems in our experiments.

Given that we observe the return behavior, we can estimate the probability that the correct mask was guessed. We
use ph to represent the probability an arbitrarily long random sequence of bits will start with a harmless instruction.
We consider any instruction that does not cause the execution to crash immediately after executing it to be harmless
(even though it may alter the machine state in ways that cause subsequent instruction to produce a crash).
Instruction lengths vary, so determining whether a given injected byte is harmless may depend on the subsequent
bytes on the stack. The value of ph depends on the current state of the execution. Whether or not a given instruction
produces a crash depends on the execution’s address space, as well as the current values in registers and memory.

We use pr to represent the probability a random sequence of bits on the stack exhibits the same behavior as the near
return instruction, thus capturing cases 1 and 2 above. As we have defined it, the harmless instructions include
instructions that behave like the near return. We use phnr = ph – pr to denote the probability random bits correspond
to a harmless instruction that does not behave like a near return. Then, we can estimate the probability that a guess
produces the apparently correct behavior as:

 97

Given that we observe the correct behavior for some guess, the conditional probability that the guess was actually
correct is:

The actual values of ph and pr depend on the execution state. For our test server application (described in Section
5.1), we compute pr as 1/256 (probability of guessing 0xc3) + 1/256 (probability of guessing 0xc2) × 10588/216
(fraction of immediate values that do not cause a crash) = 0.00454. In our experiments (described in Section 5.3),
we observed the apparently correct behavior with probability 0.0073. The false positive probability is 0.0034. From
this, we estimate ph = 0.43. Thus, 57% of the time an execution will crash on the first random instruction inserted.

Eliminating False Positives

For each memory location for which we want to learn the randomization key, a straightforward implementation
guesses all 255 possibilities. We cannot guess the mask 0xc3 using a string buffer overflow attack, since this would
require inserting a null byte. If none of the 255 attempts produce the return behavior, we conclude that the actual
mask is 0xc3.

If more than one guess produces the apparently correct behavior, we place a known harmless instruction at the
guessed position followed by a previously injected guess that produced the return behavior at the next stack position
as shown in Figure 4. If this attempt does not exhibit the apparently correct behavior, we can safely eliminate the
guessed mask since we know the injected byte did not decrypt to a harmless one-byte instruction as expected. Note
that we do not need to know the exact mask for the next position, just a guess we have previously learned produces
the return behavior at that location. This approach allows us to distinguish correct guesses from false positives at all
locations except for the bottom address (the first one we guess since we are guessing in reverse order on the stack).
In cases where multiple guesses are possible for the bottom location, we use its guessed mask only to eliminate
false positives in the other guesses, but do not use that location to inject code.

Figure 4. Eliminating false positives.

 98

Harmless instructions help us eliminate false positives for two reasons. If the guess is correct they have known
behavior; otherwise, they may decrypt to either a harmful instruction or to an instruction with a different size that
will alter the subsequent instructions. In the second case, it is possible to still produce the apparently correct
behavior when the mask guess is incorrect. Hence, we learn conclusively when a mask is incorrect, but still cannot
be sure the guess is correct just because it exhibits the correct behavior.

The number of useful harmless one-byte instructions is limited by the density of x86 instruction set. If there are
groups of harmless instructions with similar opcodes, it is hard to differentiate between them. Harmless instructions
are only useful if an incorrect mask guess encrypts the guessed harmless instruction to an instruction that causes a
crash. For example, if we use as harmless instructions a group of similar instructions such as clear carry flag (0xf8),
clear direction (0xfc), complement carry flag (0xf5), set carry flag (0xf9), set direction flag (0xfd), the number of
masks eliminated is in most of the cases is the same as if we had use only one of these instructions. Our attack uses
three disparate one-byte harmless instructions: nop (0x90), clear direction (0xfc), and increment ecx register (0x42).

For a given set of possible masks it would be possible to determine a minimal set of distinguishing harmless
instructions, however this would add substantially to the length and complexity of the attack code. Instead, in the
rare situations where the three selected one-byte harmless instructions are unable to eliminate all but one of the
guessed masks, we use harmless two-byte instructions, of which there are many. This approach works for all
locations except the next-to-bottom address. In the rare situations when it is not possible to determine the correct
mask for this location, we can simply start the injected attack code further up the stack.

Using harmless one-byte and two-byte instructions we are able to reduce the number of apparently correct masks to
at most two. We cannot handle the case where the first instruction decrypts to a near return and pop instruction
(0xc2 imm16) using this elimination process described because the near return (0xc3) and near return and pop
(0xc2) opcodes differ by only their final bit. There is no harmless x86 instruction we can use to reliably distinguish
them. When a harmless instruction is encrypted with an incorrect mask and decrypted with the correct masks, the
opcode of the instruction executed differs only by one bit from the guessed harmless instruction. It is likely that this
instruction will be a harmless instruction too.

To distinguish between the two forms of near return we place the bytes 0xc2 0xff 0xff on the stack using the guessed
masks. This is a near return which pops 65,535 bytes from the stack. For many target vulnerabilities (including our
test server), this is enough to generate a crash. To use this approach, we need to already know the next two masks
on the stack. This is not a problem because we start elimination from the bottom of the stack. The first two times we
apply elimination with 0xc2 we have to execute an attempt for each combination of possible masks of the next two
positions. After that, we know the correct masks for the locations where we place the 0xffff.

For target applications for which popping 65,535 bytes from the stack does not cause a crash, we can use another
type of elimination. After we guess enough bytes, we use a jump instruction to eliminate incorrect masks. We place
a jump instruction with its offset encrypted using one of the apparently correct guessed masks. The jump instruction
when the mask is correct will cause a jump to a memory location where a near return is placed.

 99

Once we have determined six or more masks, we can take advantage of additional injected instructions to further
minimize the likelihood of false positives and improve guessing efficiency. These techniques are similar for both
the return and jump attacks, and are described in Section 3.3.

3.2 Jump Attack

Because it involves guessing a 2-byte key and the distinguishing behavior is less particular, the jump attack is more
prone to false positives than the return attack. Fortunately, the structure of the x86 instruction set can be used to
take advantage of the false positives to improve the key search efficiency.

There are four possible reasons the apparently correct behavior is observed for a jump attack guess:

1. The correct key was guessed and the injected instruction decrypted to a jump with offset -2.
2. The injected guess decrypted to some other instruction which produces an infinite loop.
3. The injected instruction decrypted to a harmless instruction, and some subsequently executed

instruction produces an infinite loop.
4. The injected guess caused the server to crash, but because of network lag or server load, it still

took longer than the timeout threshold the attacker uses to identify infinite loops.

We can avoid case 4 by setting the timeout threshold high enough, but this presents a tradeoff between attack speed
and likelihood of a false positive. A more sophisticated attack would dynamically adjust the timeout threshold.
Since case 4 is likely to occur for many guesses and will not occur repeatedly for the same guess, case 4 is usually
distinguishable from the other three cases and the attacker can increase the timeout threshold as necessary.
From a single guess, there is no way to distinguish between case 1 (a correct guess) and cases 2 and 3. However, by
using the results from multiple guesses, it is possible to distinguish the correct guesses in nearly all instances.

For the second case, there are two kinds of false positives to consider: (1) the opcode decrypted correctly to 0xeb,
but the offset decrypted to some value other than -2 which produced an infinite loop; or (2) the opcode decrypted to
some other control flow instruction that produces an infinite loop.

An example of the first kind of false positive is when the offset decrypts to -4 and the instruction at offset -4 is a
harmless two-byte instruction. This is not a big problem, since, as we presented in Section 2.3, except for when we
are guessing the first two bytes we are encrypting the offset with a known mask. When it does occur in the first two
bytes, the attacker has several possibilities. One is to ignore this last byte and use only the memory locations above
it. Another possibility is to launch different versions of the injected attack code, one for each possibly correct mask.
Sometimes it would be faster to launch four versions of the attack code, one of which will succeed, than to
determine a single correct mask at the bottom location.

The second case, where the opcode is incorrect, is more interesting. The prevalence of these false positives, and the
structure of the x86 instruction set, can be used to reduce the number of guesses needed. The other two-byte
instructions that could produce infinite loops are the near conditional jumps. Like the unconditional jump
instruction, the first byte specifies the opcode and the second one the relative offset. There are sixteen conditional
jump instructions with opcodes between 0x70 and 0x7f. For example, opcode 0x7a is the JP (jump if parity)
instruction, and 0x7b is the JNP (jump if not parity) instruction. Regardless of the state of the process, exactly one
of those two instructions is guaranteed to jump. Conveniently, all the opcodes between 0x70 and 0x7f satisfy this

 100

complementary property. Thus, for any machine state, exactly 8 of the instructions with opcodes between 0x70 and
0x7f will jump, producing the infinite loop behavior if the mask for the offset operand is correctly guessed. When
we find several masks sharing the same high four bits of the first byte that all produce infinite loops, we can be
almost certain that those four bits correspond to 0x7.

We can take further advantage of the instruction set structure by observing that if we try both guesses for the least
significant bit in the opcode, we are guaranteed that one of the two guesses will produce the infinite loop behavior if
the first four bits of the guess opcode are 0x7. That is, if we guess two complementary conditional jump
instructions, one of them will produce the infinite loop behavior; it doesn’t matter what the other three bits are,
since all of the conditional jump opcodes have the same property.

This observation can be used to substantially reduce the number of attempts needed. Instead of needing up to 256
guesses to try all possible masks for the opcode byte, we only need 32 guesses (0x00, 0x10, 0x20, ..., 0xf0, 0x01,
0x11,...,0xf1) to try both possibilities for the least significant bit with all possible masks for the first four bits. Those
32 guesses always find one of the taken conditional jump instructions. Hence, the maximum number of attempts
needed to find the first infinite loop (starting with no known masks) is 213 (25 guesses for the opcode × 28 guesses
for the offset). When the offset is encrypted with a known mask (that is, after the first two byte masks have been
determined), at most 32 attempts are needed to find the first infinite loop. The expected number of guesses to find
the first infinite loop is approximately 15.75 since we can find it by either guessing a taken conditional jump
instruction or the unconditional jump. (This analytical result is approximate since it depends on the assumption that
each conditional jump is taken half the time. Since the actual probability of each conditional jump being taken
depends on the execution state, the actual value here will vary slightly.)

After finding the first infinite loop producing guess, we need additional attempts to determine the correct mask. The
most likely case (15/16ths of the time), is that we guessed a taken conditional jump instruction. If this is the case, we
know the first four bits unmask to 0x7, but do not know the second four bits. To find the correct mask, we XOR the
guess with 0x7 ⊕ 0xe and guess all possible values of the second four bits until an infinite loop is produced. This
means we have found the 0xeb opcode and know the mask. Thus, we expect to find the correct mask with 8
guesses. The other 1/16th of the time, the first loop-producing guess is the unconditional jump instruction. We
expect to find two infinite loops within first four attempts. If we find them, we know we guessed the correct mask;
otherwise we continue. We expect on average to use 15.75 guesses to find the first infinite loop and 7.75 guesses to
determine the correct mask. Hence, after acquiring the first two key bytes, we expect to acquire each additional key
byte using less than 24 guesses on average, while creating two infinite loops on the server.

In rare circumstances, the first infinite loop encountered could be caused by something other than guessing an
unconditional or conditional jump instruction. One possibility is the loop instruction. The loop instruction can
appear to be an infinite loop since it keeps jumping as long as the value in the ecx register is non-zero. When ecx
initially contains a high value the loop instruction can loop enough times to exceed the timeout for recognizing an
infinite loop. There are several possible solutions: wait long enough to distinguish between the jump and the loop,
find a vulnerability in a place where ecx has a low value (an attacker may be able to control the input in such a way
to guarantee this), or to use additional attempts with different instructions to distinguish between the loop and jump
opcodes. For simplicity, we used the second option: in our constructed server, the ecx register has a small value
before the vulnerability.

The other possibility is the injected code decrypts to a sequence of harmless instructions followed by a loop-
producing instruction. This is not as much of a problem as it is with the return attack since the probability of two

 101

random bytes decrypting to a loop-producing instruction is much lower than the probability of a single random byte
decrypting to a return instruction. Further, when it does occur, the structure of the conditional jumps in the
instruction set makes it easy to eliminate incorrect mask guesses. The probability of encountering an infinite loop
by executing random instructions was found by Barrantes, et al. to be only 0.02% [3]. However, since we are not
guessing randomly but using structured guesses, the probability of creating infinite loops is somewhat higher. In the
first step of the attack we generate all possible combinations for first two bytes. An infinite loop is created by an
incorrect guess when first byte decrypts to a harmless one-byte instruction, and the second byte decrypts to a
conditional or unconditional jump instruction, and the third byte decrypts to a small negative value. In this case
both -2 and -3 will create infinite loops. To avoid false positives and increased load on the server, after we find the
first infinite loop, we change the sign bit of the third byte. This changes the value to a positive one. If the loop was
created by an incorrect mask, when we verify the mask with conditional jumps and fail to find the expected infinite
loops we can conclude the mask guess is incorrect.

3.3 Extended Attack

The techniques described so far are adequate for obtaining a small number of key bytes. For ISR implementations
that use a short repeated key, such as [12], obtaining a few key bytes is enough to inject arbitrarily long worm code.
For ISR implementations that use a long key, however, an attacker may need to acquire thousands of key byte
masks before having enough space to inject the malicious code. Acquiring a large number of key bytes with the
jump attack is especially problematic since attempts leave processes running infinite loops running on the server.
After acquiring several key bytes this way, the server becomes so sluggish it becomes difficult to distinguish guess
attempts that produce crashes from those that produce infinite loops.

Once we have learned a few masks, we can improve the attack efficiency by putting known instructions in these
positions. With the jump attack, once we have guessed four bytes using short jumps, we change the guessed
instruction to a near jump (0xe9). Near jump is a 5-byte instruction that takes a 4-byte offset as its operand. This is
long enough to contain an offset that makes the execution jump back to the original return address. Hence, we no
longer need to create infinite loops on the server to recognize a correct guess: we recognize the correct guess when
the server behaves normally, instead of crashing.

When the server has the properties required by the return attack, we will encounter false positives for the near jump
guessed caused by a relative call (0xe8). Since the opcode differers from the near jump opcode in only one bit, we
are not able to reliably distinguish between the two instructions using harmless instructions. Instead, we keep both
possible masks under consideration until the next position is guessed, and then identify the correct mask by trying
each guess for the offset mask. At worst, we need four times as many attempts because it is possible that there are
two positions with two possible masks in the offset bytes. Despite requiring more attempts, this approach is
preferable to the short jump guessing since it reduces the load on the server created by infinite loops.

 102

Figure 5. Extended attack.

Once we have acquired eight masks, we switch to the extended attack illustrated in Figure 5. The extended attack
requires a maximum of 32 attempts per byte, and expected number of 23.5. The idea is to use a short jump
instruction to guess the encryption key for current location with an offset that transfers control to a known mask
location where we place a long jump instruction whose target is the original return address. The long jump
instruction is a relative jump with a 32 bit offset. Hence, we need to acquire four additional mask bytes before we
can use the extended attack with the jump attack.

To eliminate false positives, we inject bytes that correspond to an interrupt instruction in the subsequent already
guessed positions. Interrupt is a two-byte instruction (0xcd imm8). The second byte is the interrupt vector number.
When the guessed instruction decrypts to a harmless instruction, the next instruction executed will be 0xcdcd (INT
0xcd) which causes a program crash. The only value acceptable for the interrupt vector number in user mode when
running on a Linux platform is 0x80 [5]. The key is to place enough 0xcd bytes in the region such that when the
first instruction decrypts to some harmless non-jump instruction (which could be more than one byte), the next
instruction to execute is always an illegal interrupt. Once we have room for six 0xcd bytes, we encounter no false
positives.

If any of the masks in this region are 0xcd, we cannot place a 0xcd byte at that location since injecting the necessary
instruction which would require injecting a null byte. In this case, we place an opcode corresponding to a two-byte
instruction (we use AND, but any instruction would work). The 0xcd will be the second byte of the two-byte
instruction. After the two-byte instruction it will find a 0xcd which causes a crash.

The most important advantage of this approach is that the only cases when the server sends the expected response
are when (1) the first instruction executed is a taken unconditional jump; or (2) the first instruction executed is a

 103

conditional jump where the condition is true. With the return attack there is a third case: the first instruction
executed is a near return. This possibility can be eliminated using the techniques described in Section 3.1.

The other advantage of this attack is that it does not need to create infinite loops on the server. Once we have
enough mask bytes to inject a long jump instruction, we can distinguish correct guesses without putting the server
in an infinite loop. Instead, the attacker is able to recognize a correct guess when it receives the expected response
from the server.

4. Deployment

If the malicious code is small (for example, the Sapphire worm was 376 bytes [9]), we can acquire enough key
bytes to inject it directly. This is reasonable if we are attacking a single ISR-protected machine using this approach
and can run our attack client code on a machine we control to obtain enough key bytes to inject the malicious code.
If the attacker wants to propagate a worm on a network of ISR-protected servers, however, the worm code needs to
contain all the code for implementing the incremental key attack also. This may require acquiring more key bytes
than can be done without the system administrator noticing the suspicious behavior and re-randomizing the server.
Since the ISR-breaking code is inherently complex, even if the malicious payload is small many thousands of key
bytes would be needed to inject the worm code.

Our strategy is to instead inject a micro virtual machine (MicroVM) in the region of memory where we know the
key masks. The MicroVM executes the worm code by moving small chunks of it at a time into the region where the
key masks are known. The next subsections describe the MicroVM and how worm code can be written to work
within our MicroVM. In order to make the MicroVM as small as possible we place restrictions and additional
burdens on the worm code.

4.1 MicroVM Implementation

The MicroVM is illustrated in Figure 6. At the heart of the MicroVM is a loop that repeatedly reads a block of
worm code into a region of memory where the masks are known and executes that code. The code (shown in
Appendix A) is 98 bytes long (including the 22 bytes of space reserved for executing worm code).

 104

Figure 6. MicroVM.

Before starting the execution loop, the MicroVM initializes the worm instruction pointer (WormIP) to contain 0 to
represent the beginning of the worm code. The WormIP stores the next location to read a block of worm code.
Next, a block of worm code is fetched by copying the bytes from the worm code (from the WormIP) into an
execution buffer inside the MicroVM itself, so that execution can simply continue through the worm code and then
back into the MicroVM code without needing a call. The addresses of the beginning of the worm code and worm
data space are hardcoded by the worm code into the MicroVM when it is deployed on a new host.

No encryption is necessary when worm code is copied into the execution buffer, since the worm code was already
encrypted with known key masks for the worm execution buffer locations where it will be loaded into the worm
execution buffer.

 105

Just before the execution of the worm block, the MicroVM pushes its registers on the stack and then restores the
worm’s registers from the beginning of the worm data region. After the buffer’s execution, the MicroVM saves the
worm’s registers to the worm data region. In the last step, the MicroVM restores its registers and then jumps back
to the beginning of the MicroVM code to execute the next block of worm code.

4.2 Worm Code

To work in the MicroVM, the worm code is divided into blocks matching the size of the worm execution buffer (22
bytes in our implementation). No instruction can be split across these blocks, so the worm code is padded with nops
as necessary to prevent instructions from crossing block boundaries. The worm code cannot leave data on the
execution stack at the end of a block, since the MicroVM registers are pushed on the stack just before the worm
execution begins. To use persistent data, the worm must write into locations in the worm data space instead of using
the execution stack.

The most cumbersome restrictions involve jumps. Any jump can occur within a single worm block, but jumps that
transfer control to locations outside the buffer must be done differently since all worm code must executed at
known mask locations in the worm buffer. Our solution is to require that all jumps must be at the end of a worm
code block, and all jump targets must be to the beginning of a worm code block. Instead of actually executing a
jump, the worm code updates the value of the WormIP (which is now stored in a known location in memory, and
will be restored when the MicroVM resumes) to point to the target location, and then continues into the MicroVM
code normally so the target block will be the next worm code block to execute. To implement a conditional jump,
we use a short conditional jump with the opposite condition within the worm buffer to skip the instruction that
updates the WormIP when the condition is unsatisfied.

4.3 Propagation

To propagate, the worm uses the techniques described in Section 3 to acquire enough key bytes to hold the
MicroVM. Those key bytes are stored in the worm data region. The MicroVM code is 98 bytes long so at least 98
key bytes are needed. We may need to acquire a few additional key bytes to avoid needing to place null bytes in the
attack code. If the mask found for a given location matches the bytes we want to put there, we instead put a nop
instruction at that location and obtain an extra key byte. As long as the masks are randomly distributed, two or
fewer will be sufficient over 99% of the time, so we can nearly always inject the worm once 100 key bytes have
been acquired.

To generate an instance of the worm for a new key, we XOR out the old key bytes from the worm code and XOR in
the new key bytes. To support this, the propagated worm data includes th host’s acquired mask bytes. As with the
injected MicroVM code, we need to worry about the impossibility of injecting null bytes. We insert nops in the
injected worm code as necessary to avoid null bytes. If the added nops would cause a worm code block to exceed
the available space, we need to create a new block and move the overflow instructions into that block. Jump targets
in the worm code may need to be updated to reflect insertion of the new block.

5. Results

To test our attack we built a small echo server with a buffer overflow vulnerability. The application waits for a
client to connect. When the client connects, the server forks a process to process its request. The next step is to call
a method which has a local buffer that can be overflowed. This method reads the request from the client and writes

 106

back an acknowledgment message. After this method call the application sends a termination message (“Bye”) and
closes the socket. Although we use a contrived vulnerability to make the attack easier to execute and analyze,
similar vulnerabilities are found in real applications.

5.1 Attack Client

The attack client structure is the same for both the jump and return attacks. For each guess attempt, the attack client
(1) opens a socket to the server, (2) builds an attack string, (3) writes it to the socket, (4) reads the acknowledgment,
(5) installs an alarm signal handler, (6) sets up an alarm, and (7) reads the termination message or handles the alarm
signal. The return attack recognizes a possibly correct guess when it receives the termination message in step 7; the
jump attack recognizes a possibly correct guess when the alarm signal handler is called before the socket is closed.

The attack strategy used for different key bytes is depicted in Figure 7. The number of key bytes guessed by the
attack is denoted by size. For vulnerabilities suitable for the return attack, the first eight positions are guessed using
the return instruction. The rest are guessed using the extended short jump attack (expected 23.5 attempts per byte).
For the jump attack, the first two key bytes acquired have positions size-1 and size-2. We guess those two bytes
simultaneously, using the 2-byte jump instruction to create an infinite loop. The next two bytes are guessed
separately using the jump instruction to create an infinite loop. After the fourth byte is acquired, we do not
(intentionally) create any more infinite loops. For the next six bytes, we use near jump, with a worst case of 1024
attempts per byte. After this position, we use the extended short jump attack.

Figure 7. Guessing strategies.

 107

For the attack client to be efficient there are some constraints on the address where the attack starts. For both attacks
the address has to be far enough from the next smaller address which has null as its last byte so we have enough
space to place two short jump instructions, and a sufficient number of illegal opcodes. As long as the vulnerable
buffer is sufficiently large, the attack client can find a good location to begin the attack.

We ran our client normally, not inside the MicroVM. Hence, our results correspond to the time needed to launch the
initial attack on the first ISR-protected server. The attack time would increase for later infections because of the
additional overhead associated with executing in the MicroVM.

5.2 Target

We executed our attack on our constructed vulnerable server protected by RISE [3]. The RISE implementation
presents a major difficulty in executing our attack because of the way it implements fork, pthreads and
randomization keys. This necessitated a small modification to RISE in order for our attack to succeed. Other ISR
implementations, however, may be vulnerable to our attack without needing this modification.

RISE uses a different key to randomize an application each time it is started. Since the attack causes the server to
crash, the attack can only work against a server that forks separate processes to handle client requests. Valgrind [16]
(the emulator modified to implement RISE) implements pthreads to use only one process. Thus, if the attack
crashes a thread, then the entire server will crash and the next execution will use a different randomization key. So,
our attack will only work against a server that forks separate processes.

When RISE loads an application, a cache data structure is initialized that holds the key mask for each instruction
address that has been loaded. There is a different randomization key byte for each byte in the text segment, and the
mask value is stored in the cache the first time the corresponding instruction address is loaded.

The fork call is forwarded to the operating system and results in a new child process running the emulator. When
the injected instructions execute, the child process will determine that no mask has been initialized for the address
on the stack and it will generate a new one. Hence, the child process will share the same randomization key for the
addresses already loaded in memory at fork time, but for the addresses it accesses later it will use it’s own key. This
is problematic since the incremental attack only works if multiple attempts can be launched attacking the same key.

Perhaps an attacker could control the execution enough to ensure that the necessary masks are initialized before the
child process forks to ensure they would be the same on all executions. This would only happen, however, if the
server legitimately ran code on the stack before reaching the vulnerability. Hence, the RISE implementation of ISR
is not vulnerable to our attack.

In order to experiment with our attack, we modified RISE to initialize the masks for all used instruction addresses
before the child process forks to ensure that all child processes have the same key. Obviously, a real attacker would
not have this opportunity.

In addition to the problems caused by the emulator itself, we encountered others caused by the operating system.
The Fedora Linux distribution has address space layout randomization enabled by default. For our experiments, we
disabled this defense. Attacks on systems using both address and instruction randomization pose additional
challenges that are beyond the scope of this paper.

 108

5.3 Experimental Results

Table 1, Figure 8 and Figure 9 summarize the results from our experiments. The target and client ran on separate
Linux dual AMD Athlon XP 2400+ machines. connected to the same network switch. For key lengths up to 128, we
executed 100 trials; for longer keys, we executed 20 trials. In all cases, our attacks are nearly always able to obtain
the correct key and the attack completes in under one hour, even for acquiring a 4096-byte key using the jump
attack. A successful attack is an execution in which the attack client correctly guesses the desired number of key
bytes. Every key byte must be correct for us to consider the attack a success.

Table 1. Jump attack results (averages over all trials).

The experiments confirm the analytical predictions regarding the decrease of number of attempts per byte as key
length increases. After breaking the first 12 bytes, fewer than 24 guess attempts are required per byte to acquire
additional key bytes. On average, we can break a 100-byte key (enough to inject our MicroVM code) in just over
six minutes with the jump attack. The return attack is faster, and requires less than two minutes. The difference is
the additional approximately 4000 expected attempts the jump attack needs to guess the first two bytes
simultaneously. The other difference is the increased time per attempt needed for the jump attack stemming from
the infinite loops running on the server. The return attack produces an infinite loop on the server only in the unlucky
circumstances when a random instruction happens to produce an infinite loop. In our experiments, the average
number of infinite loops created during a return attack is 0.76. Rarely, we may be unlucky and create many infinite
loops with the return attack (such as was the case for the extreme maximum time value in breaking a 4-byte key in
Figure 8). The jump attack must create several infinite loops to guess the first key bytes. The actual number of
loops created, shown in Table 1, varies depending on the number of apparently correct offset values.

 109

Figure 8. Time to acquire key bytes. Figure 9. Attempts per byte.
Times are wall-clock times measured by the client for the duration of the attack. The marked points are the median values and the bars show the 95th

percentile maximum and minimum results over all trials.

In our initial experiments, we had surprising results where trials guessing 32-byte keys were always taking longer
than guessing 2048-byte keys. The bytes placed on the stack during the near jump phase of the 32-byte attack
(guessing mask bytes 5 through 11) included an 0xfe byte. This meant if the guessed instruction decrypted to a
harmless instruction the execution could fall through to the 0xfe instruction and generate an infinite loop. Instead of
the typical number of infinite loops, over 20 infinite loops were being created. This increased the server load
enough to make the 32-byte key trials take longer than the 2048-byte keys. We modified the attack client to avoid
this problem by making it select an address for starting the guessing that ensures 0xfe will not appear in the near
jump offset.

In a few cases, our attack was not able to determine the correct key. The failures are caused by the inability to use
certain masks because injecting the desired encrypted byte would require placing a null byte on the stack, which
will cause the attack string to end before the return address is overwritten. Workarounds are possible, and necessary
for the common cases. For example, in the return attack we will get an incorrect mask when a position has an
apparently correct guess, but the mask is the return opcode. We assume 0xc3 is the correct mask when all the other
255 masks fail to produce the return behavior. Similarly, for the jump attack we will have false positives when the
mask for the last position guessed is 0xfe. Our experimental results demonstrate that with the strategies we use the
likelihood of incorrect guesses is small enough that it is not worth increasing the length and complexity of the
attack code to deal with the rare special cases.

 110

6. Discussion

Our attack is essentially a chosen-ciphertext attack on an XOR encryption scheme. If we obtain a known ciphertext-
plaintext pair with such a cipher, obtaining the encryption key is a trivial matter of XORing the plaintext and
ciphertext. The challenge is obtaining a known plaintext. We do not actually obtain the plaintext for a given
ciphertext guess, but instead obtain clues from the remotely observed behavior. After enough guesses, though, we
can reliably determine the corresponding plaintext for an input ciphertext, and acquire the key.

This suggests some simple modifications to ISR implementations that can be used to make incremental guessing
attacks much less likely to succeed. Our attack strategy would not work against any ISR scheme that uses an
encryption algorithm that is not susceptible to a simple known plaintext-ciphertext attack. Any modern block
encryption algorithm (such as AES [8]) satisfies this property. Unfortunately, the performance overhead of
decrypting executing instructions with such an algorithm may be prohibitive. A more efficient but less secure
alternative might be to randomly map each 8-bit value to a value using a lookup table. Combining this with the
XOR encryption would make incremental key attacks like we propose much more difficult since it would hide the
structure of the actual instruction set from the adversary.

The other property our attack relies on that is easily altered is the need to make many attempts that crash a process
against a binary randomized using the same key. RISE is largely invulnerable to our attack because of the way it
uses different randomization keys for forked processes. If re-randomizing is inexpensive, an implementation that re-
randomizes the binary after every process or thread crash would not be susceptible to incremental key breaking
attacks. This approach, however, does make the server increasingly vulnerable to denial-of-service attacks since all
an attacker needs to do to force the server to shutdown and restart itself with a new randomization key is to crash a
single thread.

The details of our attacks are heavily dependent on the x86 instruction set. In particular, our attacks rely on the
presence of short (one or two-byte) control instructions and short harmless instructions, and benefit substantially
from the structure of the conditional jump instructions. For any RISC architecture with fixed instruction length, the
minimum number of key bits that must be guessed at once is determined by the instruction length. Most RISC
architectures use instruction lengths of at least 32 bits, which is probably too long to realistically guess using a
brute-force approach.

7. Conclusion

We have demonstrated that servers protected using ISR may be vulnerable to an incremental key-breaking attack.
Our attack enables a remote attacker to acquire enough key bytes to inject an arbitrarily long worm in an ISR-
protect server in approximately six minutes using the jump attack.

Our results apply only to the use of ISR at the machine instruction set level; our techniques could not be used
directly to attack ISR defenses for higher-level languages such as SQL [6] and Perl [12].

Our results indicate that doing ISR in a way that provides a high degree of security against a motivated attacker is
more difficult than previously thought. The most efficient ISR proposals, such as the repeated 32-bit XOR key,
provide little security under realistic conditions. This does not mean ISR is no longer a promising defense strategy,
but it means designers of ISR systems must consider carefully how effectively their randomization thwarts possible
strategies for remotely determining the randomization key.

 111

Acknowledgments

The authors thank Gabriela Barrantes for generously providing the RISE implementation for our experiments. We
are grateful to Stephanie Forrest, Patrick Graydon, and Trent Jaeger for providing useful and insightful comments
on early versions of this paper. This work benefited from fruitful discussions with Lee Badger, Steve Chapin, Jack
Davidson, Dragos Halmagi, Xuxian Jiang, Angelos Keromytis, John Knight, David Mazières, Cristina Nita-Rotaru,
Anh Nguyen-Tuong, Fred Schneider, Jeffrey Shirley, Mary Lou Soffa, Peter Szor, Dan Williams, Dongyan Xu, and
Jinlin Yang. We thank Andrew Barrows, Jessica Greer, Scott Ruffner, and Jing Yang for technical assistance, and
the Guadalajara Restaurant for Special Lunch #3. This work was supported in part by grants from the DARPA Self-
Regenerative Systems Program (FA8750-04-2-0246) and the National Science Foundation (through grants NSF
CAREER CCR-0092945 and NSF ITR EIA-0205327).

References

[1] Apache Software Foundation. Apache MPM Worker. Apache HTTP Server Version 2.0 Documentation.
http://httpd.apache.org/docs 2.0/mod/worker.html

[2] Murat Balaban. Buffer Overflows Demystified. http://www.enderunix.org/documents/eng/bof-eng.txt

[3] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer, Darko Stefanovic, and Dino Dai
Zovi. Intrusion detection: Randomized instruction set emulation to disrupt binary code injection attacks. 10th
ACM Conference on Computer and Communication Security (CCS), pp 281 – 289. October 2003.

[4] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, and Darko Stefanovic. Randomized Instruction
Set Emulation. ACM Transactions on Information and System Security. In Press, 2005.

[5] Daniel Bovet and Marco Cesati. Understanding the Linux Kernel (Second Edition). O’Reilly and Associates.
2002.

[6] Stephen W. Boyd and Angelos D. Keromytis. SQLrand: Preventing SQL Injection Attacks. 2nd Applied
Cryptography and Network Security Conference (ACNS). June 2004.

[7] Jedidiah R. Crandall, S. Felix Wu, and Frederic T. Chong. Experiences Using Minos as A Tool for Capturing
and Analyzing Novel Worms for Unknown Vulnerabilities. GI/IEEE SIG SIDAR Conference on Detection of
Intrusions and Malware and Vulnerability Assessment (DIMVA). July 2005.

[8] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard.
Springer-Verlag, 2002.

[9] Roman Danyliw. CERT Advisory CA-2003-04 MS-SQL Server Worm. January 2003.
http://www.cert.org/advisories/CS-2003-04.html

[10] eEye Digital Security. Sapphire Worm Code Disassembled. January 2003.
http://www.eeye.com/html/Research/Flash/sapphire.txt

 112

[11] Intel Corporation. Intel Architecture Software Developer’s Manual Volume 2: Instruction Set Reference. 1997.
http://developer.intel.com/design/ pentium/manuals/24319101.pdf.

[12] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering Code-Injection Attacks With
Instruction-Set Randomization. 10th ACM International Conference on Computer and Communications
Security (CCS). October 2003.

[13] David Litchfield. Variations in Exploit methods between Linux and Windows. July 2003.
http://www.ngssoftware.com/papers/exploitvariation.pdf

[14] The NASM Project. The Netwide Assembler. http://nasm.sourceforge.net/

[15] The Pax Team. The Design and Implementation of PaX. November 2003.
http://pax.grsecurity.net/docs/pax.txt

[16] Julian Seward. The Design and Implementation of Valgrind. 2003. http://developer.kde.org/~sewardj/
docs-2.0.0/mc_techdocs.html

[17] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, Dan Boneh. On the
Effectiveness of Address-Space Randomization. 11th ACM Conference on Computer and Communications
Security. October 2004.

[18] Solar Designer. Return-to-libc Attack. Bugtraq Mailing List. August 1997.

A. MicroVM Code

The MicroVM code is shown below using NASM assembly code [14]. For clarity, we use symbolic constants in
this code; the appropriate values would be hard coded into the injected code by the worm during deployment.
NUM_BYTES is the size of the worm execution buffer (22), DATA_OFFSET is the offset from the beginning of
the worm code to the beginning of the data (a four-byte value), and REG_BYTES is the number of bytes used to
store the worm registers (24).

_start:
 push ebp ; save frame pointer
 ; get location of stored worm registers
 mov ebp, WORM_ADDRESS + REG_OFFSET
 pop dword [ebp + DATA_OFFSET], ebp
 xor eax, eax ; eax is the IP into worm
 ; WormIP = eax (zeroing eax starts at the beginning)

read_more_worm:
 ; copy next NUM_BYTES into worm execution buffer
 cld
 xor ecx, ecx
 mov byte cl, NUM_BYTES
 mov dword esi, WORM_ADDRESS

 113

 ; get WormIP (points at next instruction to fetch)
 add dword esi, eax
 mov edi, begin_worm_exec
 rep movsb
 ; change next WormIP to point to next block
 add eax, NUM_BYTES
 pushad ; save MicroVM registers

 ; load worm registers
 mov edi, dword [ebp + EDI_OFFSET]
 … ; do the same for esi, eax, ebx, ecx, and edx

begin_worm_exec:
 nop ; Reserve NUM_BYTES using nops to leave
 nop ; room for worm code fragment
 … ; end of worm code space

 ; save worm registers
 mov [ebp + EDI_OFFSET],edi
 … ; do the same for esi, eax, ebx, ecx, and edx

 popad ; load MicroVM registers
 jmp read_more_worm

 114

Acronym List

AES Advanced Encryption Standard
API Application Programmer Interface
ASR Address Space Randomization
BAA Broad Agency Announcement
BIND Berkeley Internet Net Daemon
CERT Computer Emergency Response Team
CSD Calling Sequence Diversity
DOD Department Of Defense
GAO General Accountability Office
GDT Genesis Diversity Toolkit
GNU GNU’s Not Unix
GSM Groupe Special Mobile
HTTP HyperText Transfer Protocal
ISR Instruction Set Randomization
MAC Message Authentication Code
OS Operating System
PC Program Counter
PHP PHP: Hypertext Preprocessor
QOS Quality Of Service
RISE Randomize Instruction Set Emulation
SDR Software-Defined Radio
SER Simple Execution Randomization
SISR Strong Instruction Set Randomization
SPEC Standard Performance Evaluation Corporation
SQL Structured Query Language
SRS Self-Regenerative System
SSR Stack Space Randomization
VM Virtual Machine
XSS Cross-Site Scripting

