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Abstract

Consider the forward link of a mobile communications system with a
single transmitter and connecting to K destinations via randomly varying
channels. Data arrives in some random way and is queued according to the
K destinations until transmitted. Time is divided into small scheduling
intervals. Current systems can estimate the channel (e.g, via pilot signals)
and use this information for scheduling. The issues are the allocation of
transmitter power and/or time and bandwidth to the various queues in
a queue and channel-state dependent way to assure stability and good
operation. The decisions are made at the beginning of the scheduling
intervals. Stochastic stability methods are used both to assure that the
system is stable and to get appropriate allocations, under very weak con-
ditions. The choice of Liapunov function allows a choice of the effective
performance criteria. The resulting controls are readily implementable
and allow a range of tradeoffs between current rates and queue lengths.
The various extensions allow a large variety of schemes of current interest
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to be covered. All essential factors are incorporated into a “mean rate”
function, so that the results cover many different systems. Because of the
non-Markovian nature of the problem, we use the perturbed Stochastic
Liapunov function method, which is well adapted to such problems. The
method is simple and effective.

1 Introduction

We consider the problem of power and time control for the forward link of a
mobile communications system when the connecting channels are randomly time
varying. The control can be over allocated time, power, and bandwidth, or over
all simultaneously. More discussion of the possibilities appears in Section 4.
There are K queues at the base station, each receiving data according to some
random process, and each associated with a unique mobile destination. The
(nonnegative) content of any queue is simply its initial content plus its arrivals
minus its departures to date. Time is divided into small scheduling intervals
of length ∆ (typically, in the low tens of milliseconds) and the transmitter
decisions concerning the possible power, time, and bandwidth allocations are
made at the beginning of the intervals. With the appropriate use of pilot signals,
many systems have the ability to estimate key properties of the channel (e.g.,
S/N ratios) and to use this information to determine the controls. Such an
approach would greatly improve the performance [1]. More generally, there
might be only partial knowledge of the channel. The actual physical situation
that corresponds to a channel state value or to an estimate of the value is
unimportant. Each value of the state or of its estimate corresponds to some set
of allowed possibilities for the coding and resource allocations. For simplicity, it
is assumed that the controller quantizes the state of the K channels into a finite
number of values, indexed by (a K-vector) j: each value of j denotes the state
of all of the individual channels.1 The individual components of the channel
state might or might not be mutually independent. The rates of transmission
are measured in terms of packets. The queue state and data arrival processes
need not be Markovian. The actual transmission schemes that are allowed are
quite general. They can be based on TDMA, CDMA, bit interval control, or on
various combinations.

To best accommodate issues of fairness as well as the particular performance
criteria of interest, the power and time allocation in each scheduling interval
should depend on the lengths of the queues as well as on the current knowl-
edge of the (vector-valued) state of the channel. The resulting optimal control
problem is quite difficult. The dimension (K) might be high, the queue-length
processes might not be Markovian under any control scheme, and uncertainty of
the channel state can lead to a complicated filtering problem. These complica-
tions suggest an approximation approach. The small duration of the scheduling
interval ∆ and the (usually) fast rate of change of the channel-state process
suggest an approach to the control problem that is based on a “crude mean

1The finiteness of the number of channel states is assumed only for notational simplicity.

2



flow” idea. Loosely speaking, we require only that there is some allocation un-
der which an appropriately defined “mean” system is stable (stability is defined
in the next section), and then the stability approach can be carried out under
quite general conditions for a great variety of physical systems.

The conditions of typical applications (e.g., Rayleigh fading) do not usually
allow a Markov representation of the queue-length and channel-state processes,
even under “feedback” control; hence the usual methods of stability analysis,
which require a Markov model, are inappropriate. Because of the non-Markov
and randomly-time-varying nature of the problem, the stability is proved using
the perturbed Liapunov function methods of [8]. With this method, one starts
with a basic Liapunov function that works for a simpler (e.g., a “crude mean
flow”) system. Then one obtains finds a perturbation to this basic Liapunov
function which can be used as a Liapunov function for the actual non-Markov
physical system. Analogously to the usual “stability method” procedure that is
used to get controls, the controls are determined by maximizing the (conditional
expectation, given the current data, of the) negative of the gradient of the basic
(not the perturbed) Liapunov function. The development uses a basic Liapunov
function that is a polynomial which is the sum of terms, each depending on only
one component of the state of the queue. This is adequate for applications at
this time. Liapunov functions of a more general form can also be used, the main
requirement being that the gradient has positive components.2

Stability is of interest partly because it assures a robustness of behavior to
“small” changes in the system. For this reason an analysis based on Markov
models is inadequate. No physical model is truly Markov. If an approximating
Markov model is used for analysis, then it is important to know that the stability
holds for the original systems that are approximated. The perturbed Liapunov
function method is a powerful tool for checking such robustness since it does not
require Markovianness. Additionally, mild modifications of the proof allow the
basic data (e.g., the probabilistic structure of the data arrival process) to be time
varying. The Liapunov function can be chosen to reflect the relative importance
of the various queues or even to accommodate constraints. For example, if it
is desired to minimize the time that queue i is above a value Ai, one can let
the dependence of the Liapunov function on the state of queue i be very large
when it exceeds Ai. Analogously to the treatment of a related problem in [5],
where a sequence of systems scaled by speed was considered, one can allow a
received packet to be rejected by the receiver if it decides that it contains too
many errors. Then the acceptance probability will also depend on the allocated
power.

The assumptions and the precise definition of stability are in Section 2,
where the assumptions are discussed and seen to be unrestrictive, and a simple
example given. The main theorem is stated and proved in Section 3. The scope
of the approach and simplicity of application can be seen from the examples
in Sections 4 and 5, which can be read without knowledge of Section 3. Some

2For example, if we wish to more or less equalize the lengths of the various queues, one
can add terms to the Liapunov function that depend on the differences of the values of the
queue components.
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canonical classes of physical models (and various combinations and extensions)
are discussed in Section 4. These include the standard CDMA and TDMA and
show that many types of constraints can be handled. The approach and results
are the same when the channel is only partly known or retransmission of poorly
received packets is called for. A similar analysis can be used when there are
multiple antennas [15] and frequencies. Multiple antennas and frequencies are
used in the space-time coded OFDM (orthogonal frequency division multiplex-
ing) approach [10, 13], part of the purpose of which is to provide “space-time
diversity,” to partially neutralize the effects of channel variations. But, via the
approach of this paper and given sufficient information on the channel, one
might sometimes find it preferable to use only the most appropriate combina-
tions of antennas and frequencies for the various sources at any time. Section
5 contains a comparison of the obtained controls with optimal controls for a
closely related problem.

For the special case of problems of the type of Example 4.2 where the rate of
transmission is proportional to power, [1, 11] obtain rules for power allocation
whose form is similar to ours and which are based on stability considerations, al-
though the method uses large deviations estimates and the setup is Markovian.
The reference [14] was perhaps the first to consider the problem of dynamic
power allocation when the channels are time-varying. But, since their channel-
rate and data-arrival processes are all i.i.d. sequences, the range of applications
is very small. The reports [2, 3] deal with related problems. They prove in-
teresting results concerning the limit (as t → ∞) of (queue length at t)/t, and
show that (under appropriate conditions) this limit is zero. This is used to
show that the integral of the “rates” of transmission per unit time converges.
But such a result does not imply stability of the queue length process, since it
can grow sublinearly. [Consider, for example, a process modeled by a random
walk in one dimension, with reflection at the origin, where the queue is only
null recurrent.] Their scheduling is done continuously, rather than discretely in
time. They allocate a single resource (e.g., bandwidth) and the rate is propor-
tional to the allocation. This focus implies a more restricted set of applications.
For example, it does not seem to be able to handle the “discrete selection” bit
interval controls, the multiple antenna problem, or the joint bandwidth-power
allocation problem, or nonlinear dependencies on the controls in general (as in
Example 4.1). Their setup and proofs are much more complicated than that
here. Stability of the “rate of transmission” process in our case follows from
Theorem 3.1.

The work that is closest to ours is [12], where the channel-state process is
Markov, the data input sequence is i.i.d., and a “complete resource pooling”
condition is required. The decision rule is the same as ours for a quadratic
Liapunov function. The emphasis is on stability in the heavy traffic limit, and
showing how the problem simplifies there. Stability in the heavy traffic limit
does not imply stability for any one of the “prelimit” processes. See also [5] for
a stability analysis as the heavy traffic regime is approached.
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2 Assumptions and the Control Rule

Comment on controls. For purposes of concrete visualization, one could
suppose that the controls are over either the power and/or time or bandwidth
allocated to each queue. Other forms are noted in the examples in Section 4. Let
ui(j, x) denote the control applied to queue i in a scheduling interval, when the
(vector-valued) queue state is x and the estimate of the (vector-valued) channel
state is j. Some component of the control might also be a probability; e.g., as
in the example at the end of the section, where the control is the probability of
selecting a queue in an interval. The constraints need to be taken into account in
defining admissible controls. For example, the total time scheduled in an interval
cannot be greater than ∆. In the simplest model, where ui(j, x) denotes power,
the total allocated power cannot be greater than that available and then we
have ∑

i

ui(j, x) ≤ µ̄, (2.1)

where µ̄ is the (real-valued) total available power. More generally, one might
only require that the power “ average locally in time” to that available. Other
possible constraints might be a maximum length for any queue, or the control
might have to take values in some discrete set. Obviously, the queue contents
xi must be nonnegative.

Assumption (A2.1) gives the general definition of admissibility and gener-
alizes (2.1). Unless otherwise mentioned, when several users are transmitting
simultaneously, it is assumed for simplicity that the mutual interference is neg-
ligible. If this is not the case, then the same method can be used, but the rates
for any particular channel will depend on the vector of power allocations.

Definitions. The n-th scheduling interval is the real time interval (n∆, n∆+∆],
and the decisions for it are made at time n∆. Let Ln denote the value of the
random channel state process at time n∆. Let ai,n (resp., di,n) denote the
number of packets arriving to (resp., transmitted from) queue i in scheduling
interval n. The number sent from queue i in any scheduling interval depends
only on the channel and full queue states at the beginning of the interval, and
the control allocations to queue i in the interval. Let Fn denote the minimal
σ-algebra that measures the data (channel states, initial queue states, arrivals,
control values) up to and including time n∆, and let En denote the associated
conditional expectation.

Stability: Definition. Owing to the non-Markovianness, an appropriate
definition of stability is a “uniform mean recurrence time” property, as follows.
Suppose that there are 0 < q0 < ∞ and a real-valued function F (·) ≥ 0 such
that the following holds: For any n, and σ1 = min{k ≥ n : |x(k∆)| ≤ q0}, we
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have3

En [σ1 − n] ≤ F (x(n∆))I{|x(n∆)|≥q0}. (2.2)

Then the system is said to be stable.4 The definition implies recurrence to
some compact set. If the (absolute value of the state of) the process reaches a
level q1 > q0, then the conditional expectation of the time required to return
to a value q0 or smaller is bounded by a function of q1, uniformly in the past
history and in n. This implies that the sequence {x(n∆)} is tight or bounded
in probability (see, for example, [8, Theorem 2, Chapter 6]).5

The basic Liapunov function. For simplicity in the computations (and
because they yield controls that are readily implemented) the basic Liapunov
functions will be polynomials of the form6

V (x) =
∑
i

ci(xi + hi)pi , (2.3)

where hi ≥ 0, ci > 0, and pi ≥ 2. The hi serve the purpose of reducing the
dependence of the controls on the queue size if the content is small. Define
p = maxi pi. Let Vx(·) (with components Vxi

(·)) denote the gradient of V (·).

Assumptions. The assumptions are discussed after being stated. Controls
satisfying (2.4) are called admissible.

(A2.1) There is a real (resp., vector7) valued function f(·) and sets Ui such
that such that the controls satisfy

f(j, u(x)) ≤ µ̄, , ui(j, x) ∈ Ui, all j, x, (2.4)

where µ̄ is a real (resp., vector) valued constant. The set of controls satisfying
(2.4) is compact.

(A2.2) The maximum number that can be sent from queue i over a scheduling
interval is bounded by the minimum of (a constant times ∆) and xi. [I.e., the
actual number of packets sent can be no greater than xi.] There are functions
gi(·), with values gi(j, x, ui(j, x)), and upper-semicontinuous8 in ui ∈ Ui for
each value of the other variables, such that if x(n∆) = x and Ln = j then the

3The stability condition in [14] requires only that return times be finite w.p.1, but the
mean return time might still be infinite. The form (2.2), based on mean return times, seems
more appropriate in applications.

4Restricting attention to the sampling times n∆ is unrestrictive in view of (A2.6).
5A sequence {Xn} is bounded in probability if limκ→∞ supn P{|Xn| ≥ κ} = 0.
6Other polynomial forms can be used in the development, provided that V (x) → ∞ as

x → ∞, Vxi (x) → 0 as xi → 0, and Vxi (x) → ∞ as xi → ∞, Vxi (x)/V (x) → 0 as x → ∞,
and Enen/|Vx(x)| → 0 as x → ∞, where en is defined in (3.5).

7We have the vector case if, for example, both power and time are being constrained or in
the multiple antenna case.

8All that is needed is that there be a maximizer in (2.6) that satisfies (2.4).
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conditional (given the data to n∆) mean number of packets sent from queue i
on (n∆, n∆ + ∆] can be represented as

Endi,n = ∆gi(j, x, ui(j, x)). (2.5)

(A2.3) There are positive constants λ̄a
i , i ≤ K, such that the sums

Ca
i,n =

∞∑
l=n

En

[
ai,l − ∆λ̄a

i

]
, i ≤ K,

are well defined and bounded, uniformly in n.

(A2.4) There are Πj ≥ 0 such that
∑

j Πj = 1 and En

[
I{Ll=j} − Πj

]
→ 0 fast

enough as l − n → ∞ so that
∑∞

l=n

∣∣EnI{Ll=j} − Πj

∣∣ is bounded uniformly in
n.

(A2.5) Define the average ḡi(x, u(x)) =
∑

j Πjgi(j, x, ui(j, x)). There are c0 >
0, K0 > 0, and an admissible control ũ(x) = {ũi(j, x); i, j}, such that if xi ≥ K0

then
λ̄a
i − ḡi(x, ũ(x)) ≤ −c0

and gi(j, x, ũi(j, x))) does not depend on x. 9

(A2.6) There is a constant C such that for each i

En [ai,n]l ≤ C∆, l ≤ pi,

where pi is defined by (2.3).

The control rule. Controls satisfying (A2.1) are called admissible. The actual
control is any admissible control that maximizes in

max
u

{∑
i

Vxi(x)gi(j, x, ui(j, x))

}
. (2.6)

It is assumed that there is at least one maximizing admissible control ūi(j, x).

Discussion of the conditions. Condition (A2.1) is intended to cover con-
straints such as (2.1) or where the controls take values in some finite set. The
f(·) and Ui are always defined by the problem at hand, and there is no need to

9The K0 is introduced in (A2.5) only because if the queue content is smaller than the
maximum of what can be transmitted on a scheduling interval, then the mean (weighing with
the Πj) output might be too small to assure the −c0 value. For example, if a queue is empty,
then the arrivals will exceed the departures. K0 will be of the order of ∆.
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specify them any further. The only additional conditions on the set of admissi-
ble controls is that there exist an admissible control satisfying (A2.5) and one
maximizing in (2.6). For cases where the control is unique and readily found,
see the examples in Sections 4 and 5.

If control is over power only and the total instantaneous power must be no
greater than µ̄, and can take only some finite set of values, then (2.4) reduces to
(2.1) and Ui is the set of allowed discrete values for queue i. Condition (A2.4)
would hold if the channel state process were a function of a finite-state ergodic
Markov process. It need not be Markovian itself. Loosely speaking, it would
hold if the future becomes less and less predictable (given the distant past) and
the conditional likelihood of any channel state approaches an average value.
Condition (A2.5) is likely very close to being necessary. It concerns an averaged
system, where the input is just a fluid flow at the mean rate and the output is
also a fluid flow, whose value is the mean over all channel states (i.e., there is
no randomness). If there was no control under which the condition held, then
even this mean system would be unstable and the physical system might not be
stable.

Condition (A2.6) will hold if the inputs occur continuously in time, but at
a bounded maximum rate (the usual case). Then the maximum input to any
queue over a scheduling interval is proportional to ∆. Alternatively, suppose
that the input rate is unbounded and a batch of packets can arrive all at once.
Suppose (without loss of generality) that they arrive at instants k∆, k = 1, 2, . . . ,
and have bounded pth moments. Let the values over the scheduling intervals
be mutually independent, and let the probability of an input to queue i during
any interval be ci∆ (a discrete time Poisson process). Then (A2.6) holds.

Comments on (A2.3). Condition (A2.3) says that the expectation of the
number of packets arriving on any distant future interval given the data to the
remote past converges to the average number of arrivals per unit time as the
difference between the times goes to infinity. The following simple examples
illustrate the condition. First suppose that the {ai,n; i, n} are mutually inde-
pendent with the inputs to each queue being identically distributed, with λ̄a

i

defined so that Eai,n = ∆λ̄a
i . Then the summands in Ca

i,n are all zero and
Ca

i,n = 0. If the input sequence is only M -dependent, then all but at most the
first M summands in Ca

i,n are zero.
Let us now examine Ca

i,n more closely to understand why our requirement on
its convergence and boundedness is reasonable. Henceforth let us lump together
all arrivals in the nth interval and suppose (w.l.o.g) that it occurs at the end.
Consider queue i. First suppose that arrivals occur in batches at (real time)
moments τai,n, i = 1, 2, . . ., which is assumed to be a renewal process with values
in {n∆, n = 1, 2, . . .}. Define the mean interval ma

i = E[τai,n+1−τai,n], and let the
number of arrivals at the renewal time τai,n be denoted by vai,n. For each queue
i, let the vai,n, n < ∞, be mutually independent and identically distributed
with mean v̄ai , and suppose that the sequences for the different queues are
mutually independent. Define λ̄a

i = v̄ai /m
a
i and let ∆µa

i,n,l, l = 1, 2, . . . , denote
the sequence of renewal times that occur after time n∆. By the independence

8



and renewal property, for any integer v ≥ 1, we have En[µa
i,n,v+1 − µa

i,n,v] =
ma

i /∆ and, hence,

En

µa
i,n,v+1∑

l=µa
i,n,v

+1

[
ai,l −

∆v̄ai
ma

i

]
=

[
v̄ai − ma

i

∆
∆v̄ai
ma

i

]
= 0.

Thus, Ca
i,n reduces to

Ca
i,n = En

µa
i,n,1∑
l=n

[
ai,l −

∆v̄ai
ma

i

]
,

which is just a scaled residual time term

v̄ai En

[
1 −

∆µa
i,n,1 − n∆
ma

i

]
,

where the ratio is the time to the next arrival divided by the mean interar-
rival time. Thus (A2.3) holds. If the amounts remain independent, but the
interarrival times are correlated, then Ca

i,n is just the residual time term plus

v̄ai
∑

l:τa
i,l

>n∆

En

[
1 −

τai,l+1 − τai,l
ma

i

]

and the condition holds under suitable mixing-type conditions on the interarrival
times. Analogously, if the independence of the amounts is dropped, then the
condition will hold under suitable mixing-type conditions on the interarrival
times and amounts.

Example. The simplest example is where the ai,n, i ≤ K, sequences are i.i.d.,
Ln is an ergodic Markov chain and only one queue can be selected in any
interval. Let ∆λ̄a

i denote the mean number of arrivals to queue i in an interval.
Then Ca

i,n = 0 in (A2.3). In this example, let ui(j, x) denote the probability of
selecting queue i under channel state j and queue state x. Let λ̄d

i (j) denote the
maximum rate of transmission per unit time if i is selected. Then we have (rate
per unit time times ∆ times the probability of selecting i) ∆gi(j, x, ui(j, x)) =
min{∆λ̄d

i (j), xi}ui(j, x). Suppose that there are αi(j) with
∑

j αi(j) = 1 for all
i, such that λ̄a

i −
∑

j Πj λ̄
d
i (j)αi(j) < 0. all i. Then (A2.5) holds. This is just

a requirement on a mean flow and is analogous to the mean flow condition in
[14].

3 Proof of Stability

The key is to show that if a certain “mean flow” system is stable, then the actual
physical system is. Proofs of stability most often work with Markov models,
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where the Liapunov functions are supermartingales for large values of the state.
In our case, the sequence of interest is {x(n∆)}, which will not be Markov
unless the members of the sequences of channel states and arrival numbers
are all mutually independent. In the present case, these latter sequences are
not necessarily even Markov. The queue might grow “on the average” when
in certain channel states and decrease “on the average” when in others. All
that we care about is that in the long term these effects (and the effects of
the bursty non Markov arrival processes) are averaged in some way due to the
random variations of the channel and arrival processes so that the behavior of
the physical system is approximated by the “mean flow ” system. The idea of
a stochastic Liapunov function that has the supermartingale property for large
queue states is still crucial, but it is obtained a little indirectly. One starts with
a Liapunov function, which is a function only of the queue state, and that can
be used for the mean flow system. This cannot be applied to the true physical
system to get the desired result. But it turns out that that this Liapunov
function can be modified by the addition of certain bounded terms that allow
averaging of the random effects of the input and channel processes, and the
modification will serve our needs. The basic Liapunov function is (2.3). The
perturbations will be defined first, and then the modified or perturbed Liapunov
function will be defined. As usual in stability proofs using Liapunov functions,
the work consists essentially of a sequence of bounds on conditional expectations
of differences between of various functions.

The basic idea behind the perturbed Liapunov function method can be
loosely summarized as follows. Suppose that EnV (x(n∆ + δ)) − V (x(n∆)) =
cn, a random quantity. Suppose that there is a constant c̄ < 0 such that
δVn =

∑
i=n En[ci − c̄] is well defined. Define Vn = V (x(n∆)) + δVn. Then

EnδVn+1 − δVn = −(cn− c̄) and EnVn+1 −Vn = cn− [cn− c̄] = c̄ < 0. Thus, the
use of the perturbation allows the replacement of the random cn by a “mean.”
This idea will be used in the proof.

Theorem 3.1. Under (A2.1)–(A2.6) and rule (2.6), the system is stable.

Proof. For each i, j, n, define

Cd
i,j,n = −

∞∑
l=n

En

[
I{Ll=j} − Πj

]
,

δV a
i,n = Vxi(x(n∆))Ca

i,n,

δV d
i,j,n = ∆Vxi

(x(n∆))gi(j, x(n∆), ũi(j, x(n∆))Cd
i,j,n,

where ũ(·) is defined in (A2.5), and Cd
i,j,n is well defined by (A2.4). We will

use the “perturbed” (and time dependent) Liapunov function Vn whose value
at time n∆ is

Vn = V (x(n∆)) +
∑
i

δV a
i,n +

∑
i,j

δV d
i,j,n, (3.1)

10



where V (·) is defined by (2.3). Let ū(·) be an admissible control that max-
imizes in (2.6). Since xi(n∆ + ∆) − xi(n∆) = ai,n − di,n and Endi,n =
∆

∑
j gi(j, x(n∆), ui(j, x(n∆)))I{Ln=j}, a first order expansion under ū(·) yields

EnV (x(n∆ + ∆)) − V (x(n∆)) =
∑
i

Vxi(x(n∆)) [En (ai,n − di,n)] + e1
n

=
∑
i

Vxi(x(n∆))


Enai,n − ∆

∑
j

gi(j, x(n∆), ūi(j, x(n∆)))I{Ln=j}


 + e1

n,

(3.2)
where the “error” term e1

n is

e1
n = EnV (x(n∆ + ∆)) − V (x(n∆)) −

∑
i

Vxi(x(n∆)) [Enai,n − Endi,n] .

By the fact that ū(·) maximizes in (2.6), for each j,

−
∑
i

Vxi
(x(n∆))gi(j, x(n∆), ūi(j, x(n∆)))

≤ −
∑
i

Vxi(x(n∆))gi(j, x(n∆), ũi(j, x(n∆)).
(3.3)

Analogously, we can write

EnδV
a
i,n+1 − δV a

i,n = −Vxi(x(n∆))En

[
ai,n − ∆λ̄a

i

]
+ eai,n, (3.4)

where
eai,n = En [Vxi

(x(n∆ + ∆)) − Vxi
(x(n∆))]Ca

i,n+1.

Note that the main term on the right of (3.4), added to the component Vxi(x(n∆))Enai,n
in (3.2), yields the “average” Vxi(x(n∆))∆λ̄a

i . Thus by adding the perturbation
δV a

i,n to V (x), we effectively replace the Enai,n in (3.2) by the average ∆λ̄a
i .

This is the motivation behind the form chosen for the perturbation. A similar
result will be seen to hold for the service variables.

If xi(n∆) ≥ K0 +K1, where K1 is the maximum that can be transmitted on
an interval and K0 is defined in (A2.5), then, xi(n∆+∆) ≥ K0 and, by (A2.5),
gi(j, x(n∆), ũi(j, x(n∆))) = gi(j, x(n∆ + ∆), ũi(j, x(n∆ + ∆))). Using this, we
have

EnδV
d
i,j,n+1 − δV d

i,j,n

= ∆Vxi(x(n∆))gi(j, x(n∆), ũi(j, x(n∆)))
[
I{Ln=j} − Πj

]
+ edi,j,n,

(3.5)

where

edi,j,n = ∆En [Vxi
(x(n∆ + ∆)) − Vxi

(x(∆))] gi(j, x(n∆), ũi(j, x(n∆)))Cd
i,j,n+1.

Note that the jth summand in the brackets in the right hand term of (3.2),
with ū(·) replaced by ũ(·) and added to the first term on the right of (3.5), is
−∆Vxi

(x(n∆))gi(j, x(n∆), ũi(j, x(n∆)))Πj .
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Define δi,l = ai,l−di,l. By the definition of V (·) and the binomial expansion,

e1
n =

∑
i

ci

pi∑
l=2

(
pi
l

)
(xi(n∆) + hi)

pi−l
Enδ

l
i,n,

where the terms with the large parentheses are the binomial coefficients. The
terms eai,n and edi,j,n are bounded by a constant times the absolute value of

∑
i

En

[
(xi(n∆) + hi + δi,n)pi−1 − (xi(n∆) + hi)

pi−1
]
.

Substitute the inequality (3.3) into (3.2). Then combining the above computa-
tions and canceling terms where possible yields

EnVn+1 − Vn ≤ O(∆) + en+

∑
i:xi(n∆)≥K0+K1

∆Vxi
(x(n∆))


λ̄a

i −
∑
j

gi(j, x(n∆), ũi(j, x(n∆)))Πj


 ,

(3.6)

where the O(∆) term is due to the components i for which xi(n∆) < K0 +K1,
and is bounded in x, and

en = e1
n +

∑
i

eai,n +
∑
i,j

edi,j,n = O(1)∆
∑
i

(xi(n∆) + hi)pi−2. (3.7)

Note that, by (A2.5), [λ̄a
i −

∑
j gi(j, x(n∆), ũi(j, x(n∆)))Πj ] ≤ −c0 for all

i such that xi(n∆) ≥ K0. Thus under any control ū(·) determined by the
maximization rule (2.6), we must have

EnVn+1 − Vn ≤ −
∑

i:xi(n∆)≥K0+K1

∆Vxi
(x(n∆))c0 + O(∆) + en. (3.8)

The dependence of en on xi(n∆) is dominated by a constant times ∆xp−2
i (n∆).

The main term on the right of (3.8) is of the order of
∑

i:xi(n∆)≥K0+K1
xp−1
i (n∆).

Hence, there is a constant K2 such that if |x(n∆)| ≥ K2, then we can write

EnVn+1 − Vn ≤ −∆
∑

i:xi(n∆)≥K0+K1

Vxi
(x(n∆))c0/2

= −∆
∑

i:xi(n∆)≥K0+K1

pi (xi(n∆) + hi)
pi−1

c0/2.
(3.9)

In particular,

EnVn+1 − Vn → −∞, uniformly in n as x(n∆) → ∞. (3.10)

Before continuing, let us note the following. Suppose that x(n∆) were
Markov, and there were constants c1 > 0,K3 > 0, such that EnV (x(n∆ +
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∆) − V (x(n∆)) ≤ −c1 if V (x(n∆)) ≥ K3. Then the segments of the process
V (x(n∆)) on the time intervals on which the V (x(n∆)) are no less than K3 are
supermartingales and classical stability theorems [7] imply that Exτ ≤ V (x)/c1,
where τ is the return time to the set where V (x) ≤ K3 and Ex is the expectation
given initial condition x. This is (2.2) in this special case.

In the general case of interest in the theorem, x(n∆) is not necessarily
Markov and the Liapunov function is (3.1). The result (3.10) implies that the
segments of the process Vn on the time intervals on which the |x(n∆)| are no less
than K2 are supermartingales. Obtaining the bounds on the conditional mean
return time from (3.10) is similar to what is done in the Markov case. One
just has to ensure that the effects of the perturbations can be appropriately
“dominated.” Using (A2.3) and (A2.4), we have the bound∣∣∣∣∣∣

∑
i

δV a
i,n +

∑
i,j

δV d
i,j,n

∣∣∣∣∣∣ = O(1)
∑
i

(xi(n∆) + hi)
pi−1

, (3.11)

which is of smaller order than V (·). Hence, Vn is bounded below and goes to
infinity (uniformly in n) as x(n∆) → ∞. This and (3.10) imply the conditions
of [8, Theorem 2, Chapter 6] which yields (2.2), and we fill in the details next.

By (3.10), there are c1 > 0, q0 > 0, such that, for |x(n∆)| ≥ q0, EnVn+1 −
Vn ≤ −c1. Given small δ > 0, (3.11) implies that for q0 sufficiently large,
|V (x(n∆))−Vn| ≤ δ(1+V (x(n∆)). Let σ0 be a stopping time for which |x(σ0)| =
c2 > q0, and define the stopping time σ1 = min{n∆ > σ0 : |x(n∆)| ≤ q0}. Then
we have

Eσ0Vσ1 − Vσ0 ≤ −c1Eσ0 [σ1 − σ0]. (3.12)

Using (3.12) and the bound (3.11) on Vn − V (x(n∆)) to bound Vσi
− V (x(σi)),

i = 0, 1, yields

−δEσ0 [1 + V (x(σ1))] + Eσ0V (x(σ1))

≤ Eσ0Vσ1 ≤ −c1Eσ0(σ1 − σ0) + [δ + V (x(σ0))(1 + δ)]

or

Eσ0(σ1 − σ0) ≤
2δ + V (x(σ0))(1 + δ) + δEσ0V (x(σ1))

c1

which is equivalent to (2.2), since V (x(σ1)) ≤ sup|x|≤q0 V (x).

4 Examples

The examples are only idealized outlines of a sampling of the possibilities. In
all cases, we write x(n∆) = x. Let the bit interval for queue i be be ∆b

i . The
data arrival process need not be specified in the following discussions.

Example 4.0. The simplest example is where only one queue can be powered in
any interval, as follows. The constraint is (2.1) and in (A2.1), Ui = {0, ū}. There
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are λi(j) ≥ 0 such that min{λi(j), xi} is the number of packets transmitted in
the interval if queue i is selected. Let Ii(j, x) denote the indicator function of
the event that queue i is selected. Then gi(·) is defined by ∆gi(j, x, ui(j, x)) =
min{λi(j), xi}Ii(j, x). To maximize the expression (2.6), we choose the i that
gives arg max{Vxi

(x) min{λi(j), xi}}.

Example 4.1. [Power only control.] Suppose that the queued data is optimally
recoded before transmission and that the queues and outputs are measured in
terms in bits. The Shannon capacity of a white-Gaussian channel with un-
restricted alphabet and fixed symbol intervals is log(1 + S/N)/2 per symbol,
where S and N are the signal and noise powers, resp., at the receiver [6, Eqn.
10.17]. [For complex signals multiply by 2.] Suppose that this form models
all the channels and there is negligible mutual interference. Let Ki denote the
number of symbols that can be transmitted per second for queue i. Since the
symbol intervals are assumed to be very short relative to the scheduling interval,
with appropriate coding the total number of bits transmitted over a scheduling
interval is well approximated by ∆Ki times the capacity. The power constraint
is

∑
i ui(j, x) ≤ µ̄ for all j, x, where µ̄ is the total available power and ui(j, x)

is the actual power applied to transmission from queue i in the interval. This
constraint is (A2.1) in this case, where the Ui can be taken to be the nonneg-
ative real numbers [0,∞). Then, there are constants αij , Nij such that if the
channel state is fixed at j, the channel capacity Ci(j, ui(j, x)) for queue i under
ui(j, x) is

Ci(j, ui(j, x)) =
1
2

log [1 + αijui(j, x)/Nij ] . (4.1)

The αi,j scales for channel attenuation. Then we can suppose that, when the
channel state is j, di,n = ∆gi(j, x, ui(j, x)) = min {∆Ci(j, ui(j, x)), xi}. This
defines the functions gi(·). Let V (x) =

∑
i x

p
i , for some p > 1. Then, when the

channel state is j, the control maximizes

∑
i

xp−1
i min

{
∆
Ki

2
log (1 + αijui(j, x)/Nij) , xi

}
. (4.2)

Due to the strict concavity of the function log(1 + cu), several queues might be
powered simultaneously. If desired, one can add the constraint that only one
queue is powered during any scheduling interval. In this case one looks for the
summand in (4.2) that is largest when ui(j, x) ≡ ū, and all power goes to that
user. If the maximizer is not unique, then select any one, or randomize among
them.

Example 4.2. [Power only control.] Now suppose that the number transmit-
ted is proportional to the power, and one might transmit from several queues
simultaneously with negligible mutual interference. In particular, let there be
constants λ̄d

i (j) such that the number of packets per unit time that can be sent
from queue i under channel state j is λ̄d

i (j)ui(j, x) for ui(j, x) ∈ Ui, a finite
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set for each i. We still require the constraint (2.1). The function gi(·) is de-
fined by ∆gi(j, x, ui(j, x)) = min

{
∆λ̄d

i (j)ui(j, x), xi

}
. Given V (x) of the form

in Example 4.1, the maximization is trivial.
There are many ways that one can realize the number transmitted being

proportional to power. If bandwidth is the single resource to be allocated and
power is proportional to the bandwidth, then it is often the case that the rate is
proportional to power. With CDMA, one possibility is to allow several “spread-
ing sequences” per queue [15]. Another possibility is to allow the bit interval
(duration) to be controllable. In particular suppose that (for queue i) there are
basic time intervals δbi , of which the actual bit interval ∆b

i is one of the multi-
ples mδbi ,m = 1, . . . ,mi, for some given mi < ∞. Suppose that the channels
are white-Gaussian, that there is perfect synchronization at the receiver, and
that the system design is such that if the power allocation to any queue is not
zero then it must be such that the SNR per bit at the receiver is at least some
given positive number ci(j). This minimal amount ci(j), together with the bit
interval, determines the capacity. Thus, cutting the bit interval in half would
require twice the power for the same SNR. The chosen bit interval is constant
during a scheduling interval.

Example 4.3. [Power and time control.] In Examples 4.1 and 4.2, the total
power was constrained to µ̄ at each time and the transmissions from all selected
queues in an interval were done simultaneously. Alternatively, suppose that we
schedule by dividing time as well as power in the following generalized form of
TDMA. For each queue i, channel state j, and queue state vector x, partition the
nth scheduling interval into K subintervals (some subintervals might have length
zero) of total lengths ∆i(j, x), i ≤ K, where

∑
i ∆i(j, x) = ∆. Summarizing,

in the nth scheduling interval, we transmit from queue i on a total time ∆i,n,
which can depend on i and on the current queue and channel states x, j.

Suppose that we can vary the power within an interval provided that it
averages to µ̄ over the interval. In particular, let pi(j, x) denote the power
applied to queue i during the part of the interval that queue i is being worked
on. Then the full vector-valued control ui(j, x) is (pi(j, x),∆i(j, x)). Then, in
lieu of the pointwise constraint (2.1), we now constrain average total power over
the interval and the constraint (2.1) is replaced by∑

i

pi(j, x)[∆i(j, x)
/
∆] ≤ µ̄, all j. (4.3)

Now consider the setup in Example 4.1, but where only one queue can be
powered at a time and the scheduling interval is divided among the queues, as
above. Define gi(·) by

∆gi(j, x, ui(j, x)) = min
{

∆i(j, x)
Ki

2
log [1 + αijpi(j, x)/Nij ] , xi

}
.
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Then, the rule (2.6) is the maximizing (power and time) value in

max

{∑
i

Vxi
(x)gi(j, x, ui(j, x))

}
,

with constraints (4.3) and
∑

i ∆i(j, x) = ∆.

Example 4.4. The general scheme is not restricted to systems with only one
antenna. This will be briefly illustrated when there are two antennas, and we
have power only control, with one queue being scheduled at a time, analogously
to the situation of Example 4.0. For notational simplicity, suppose that there are
two antennas. Let the channel state for antenna α be denoted by jα, write the
full channel state as j = (j1, j2), and let uα

i (j, x) denote the power that antenna
α applies to queue i. The total power constraints are

∑
i u

α
i (j, x) = ūα, α = 1, 2.

The Ui in (A2.1) becomes a product set U1
i × U2

i , where Uα
i = {0, ūα}.

The scheduling can be done independently between the antennas, or there
could be coordination. We will consider all possibilities. First allow the two an-
tennas to be scheduled independently. One simply uses (2.6) for each antenna
with uα

i (j, x) depending only on (i, jα, x). Let min{λα
i (j), xi} denote the num-

ber of packets transmitted in an interval on antenna α when queue i is selected
for it and the (channel, queue) state is (j, x). When the antennas are scheduled
independently, there are two functions gαi (jα, x, uα

i (jα, x)), α = 1, 2, each ob-
tained analogously to the construction in Example 4.0. Now let us coordinate
the decisions. The simplest form of coordination is to modify the foregoing by
allowing only one queue to be powered at a time at each antenna. Let Iαi (j, x)
denote the indicator of the event that queue i is selected by antenna α. Then
the constraints can be considered to be∑

i

Iαi (j, x) = 1, α = 1, 2,
∑
α

Iαi (j, x) ≤ 1. (4.4)

The expression (2.6) becomes

max
∑
i

Vxi(x)
{
min

{
λ1
i (j), xi

}
I1
i (j, x) + min

{
λ2
i (j), xi

}
I2
i (j, x)

}
. (4.5)

Another option allows the possibility of using a more sophisticated coding
scheme, say that of space time coding [13], still under the constraints (4.4).
In this case, both antennas are used for the selected queue, with the coding
accounting for the fact that there are two antennas. This gives a different
function g(·). There might be some channel and queue states for which the
value of (4.5) is larger than the value of (2.6) under space-time coding and
conversely. One would take the best choice.
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5 Examples of Controls and Relation to Optimal
Controls

Consider Example 4.2, where the rate of transmission is proportional to power
(the model used in [1]) and let V (x) =

∑
i x

p+1
i , p ≥ 1. Then the control given

by (2.6) is the maximizer in

max

{
∆

∑
i

xp
i λ̄i(j)ui(j, x)

}

over the allowed discrete values. In the rest of the discussion of the controls, we
ignore the small queues, which are readily accounted for.

A two-dimensional case. Consider a two-queue and two-channel state ex-
ample with no constraints on the power allocation. Let λ̄d

1(1) > λ̄d
2(1), and

λ̄d
1(2) < λ̄d

2(2). For channel state 1, apply all power to queue 1 when

x1/x2 ≥
[
λ̄d

2(1)/λ̄d
1(1)

]1/p
. (5.1)

For channel state 2, apply all power to queue 2 when

x2/x1 ≥
[
λ̄d

1(2)/λ̄d
2(2)

]1/p
. (5.2)

As p → ∞, the switching lines move to the diagonal.

An alternative Liapunov function. Now consider the Liapunov function
V (x) =

∑
i[xi + hi]p+1. With equal hi, this gives results that are closer to the

numerically computed optimal controls for an approximating diffusion with cost
rate max{x1, x2} (see below). The inequalities (5.1) and (5.2) are replaced by.
respectively,

x1 + h1/x2 + h2 ≥
[
λ̄d

2(1)/λ̄d
1(1)

]1/p
, (5.3)

x2 + h2/x1 + h1 ≥
[
λ̄d

1(2)/λ̄d
2(2)

]1/p
. (5.4)

Here the cost rate is less sensitive to differences in the xi unless they are large.

Comparison with optimal controls. It is interesting to relate the control
forms determined by ((5.1), (5.2)) and by ((5.3), (5.4)) to optimal controls for
diffusion processes with similar dynamics. Figure 5.1 gives the optimal switching
surfaces for control problem for the diffusion process dx = ḡ(x, u(x))dt + σdw.
The qualitative form of the controls did not depend on σ. We let λ̄d

1(1) >
λ̄d

2(1), λ̄d
1(2) < λ̄d

2(2), and the optimal controls are obtained by numerical so-
lution using the methods of [9]. The cost rate is k(x) = max{x1, x2} for the
left-hand figure and

∑
i xi for the right-hand figure. The total cost was ei-

ther of the ergodic or discounted form with small discount factor, with little
difference in the controls between them. Similar results hold for discrete time
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problems. The slopes for the linear cost rate tend to be larger than those for
the max{x1, x2} criterion. Equivalently, for the linear cost rate we put more
emphasis on using the most efficient channel and less on attaining closeness of
the queues. Note the similarity of the controls to the forms given by ((5.1),
(5.2)) and ((5.3), (5.4)). The controls in the left hand figure have the form of
((5.3), (5.4)), and those in the right hand figure have the form of ((5.1), (5.2)).
Thus, with appropriate choices of the parameters, the controls are close to those
for optimal processes for closely related problems.
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Figure 5.1. Switching curves for the optimal control:
k(x) = max{x1, x2} and

∑
i xi.
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