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Abstract
The loop-free path-�nding algorithm (LPA) is pre-

sented. LPA speci�es the second-to-last hop and dis-
tance to each destination to ensure termination; in ad-
dition, it uses an inter-neighbor synchronization mech-
anism to eliminate temporary loops. A detailed proof
of LPA's correctness is presented and its complexity is
evaluated. LPA's average performance is compared by
simulation with the performance of algorithms repre-
sentative of the state of the art in distributed routing,
namely an ideal link-state (ILS) algorithm and a loop-
free algorithm that is based on internodal coordina-
tion spanning multiple hops (DUAL). The simulation
results show that LPA is a more scalable alternative
than DUAL and ILS in terms of the average number
of steps, messages, and operations needed for each al-
gorithm to converge after a topology change. LPA is
shown to achieve loop freedom at every instant with-
out much additional overhead over that incurred by
prior algorithms based on second-to-last hop and dis-
tance information.

1. Introduction
Some of the most popular routing protocols used in

today's Internet (e.g., RIP [9]) are based on the dis-
tributed Bellman-Ford algorithm (DBF) for shortest-
path computation [1]. However, DBF su�ers from
bouncing e�ect and counting-to-in�nity problems. The
counting-to-in�nity problem is overcome in one of
three ways in existing internet routing protocols.
OSPF [13] relies on broadcasting complete topology
information among routers, and organizes an inter-
net hierarchically to cope with the overhead incurred
with topology broadcast. BGP [11] exchanges dis-
tance vectors that specify complete paths to destina-
tions. EIGRP [2] uses a loop-free routing algorithm
called DUAL [5], which is based on internodal coordi-
nation that can span multiple hops; DUAL also elim-
inates temporary routing loops.

Recently, distributed shortest-path algorithms [3],
[4], [8], [10], [15] that utilize information regarding
the length and second-to-last hop (predecessor) of the
shortest path to each destination have been proposed
to eliminate the counting-to-in�nity problem of DBF.
We call these type of algorithms path-�nding algo-
rithms. Although these algorithms provide a marked
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improvement over DBF, they do not eliminate the pos-
sibility of temporary loops. Most of the loop-free al-
gorithms reported to date rely on mechanisms that
require routers to either synchronize along multiple
hops (e.g, [5], [12], or exchange path information that
can include all the routers in the path from source to
destination [7]. This paper presents a path-�nding al-
gorithm that is loop-free at every instant, which we
call the loop-free path-�nding algorithm (LPA).

Like previous path-�nding algorithms, LPA elimi-
nates the counting-to-in�nity problem of DBF using
the predecessor information. Because each router re-
ports to its neighbors the predecessor to each desti-
nation, any router can traverse the path speci�ed by
the predecessors from any destination back to a neigh-
bor router to determine if using that neighbor as its
successor would create a path that contains a loop
(i.e., involves the router itself). Of course, updates
take time to be propagated and routers have to up-
date their routing tables using information that can
be out of date, which can lead to temporary loops.
To block a potential temporary loop, a router sends
a query to all its neighbors reporting an in�nite dis-
tance to a destination before it changes its routing
table; the router is free to choose a new successor
only when it receives the replies from its neighbors.
To reduce the communication overhead incurred with
such inter-neighbor coordination, routers use a fea-
sibility condition to limit the number of times when
they have to send queries to their neighbors. In con-
trast to many prior loop-free routing algorithms [5],
[12], queries propagate only one hop in LPA; updates
and routing-table entries in LPA require a single node
identi�er as path information [7].

The rest of this paper speci�es LPA in detail, proves
that LPA is correct, and analyzes its complexity and
average performance, and also compares it with other
routing algorithms.

2. Network Model
A computer network is modeled as an undirected

�nite graph represented as G(N;E), where N is the
set of nodes and E is the set of edges or links connect-
ing the nodes. Each node represents a router and is
a computing unit involving a processor, local memory
and input and output queues with unlimited capacity.
A functional bidirectional link connecting the nodes i
and j is represented as (i; j) and is assigned a positive
weight in each direction. The link is assumed to exist
in both the directions at the same time. All the mes-
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sages are processed on a �rst come �rst serve basis.
An underlying protocol assures that:

� A node detects the existence of a new neighbor or
the loss of connectivity with a neighbor within a
�nite time

� All packets transmitted over an operational link
are received correctly and in the proper sequence
within a �nite time

� All update messages, changes in the link-cost, link
failures and link recoveries are processed one at a
time in the order in which they occur

Each node is represented by a unique identi�er.
Any link cost can vary in time. The distance between
two nodes in the network is measured as the sum of
the link costs of the shortest path between the nodes.

When a link fails, the corresponding distance entry
in the node's distance and routing tables are marked
as in�nity. A node failure is modeled as all the links
incident on that node failing at the same time. A
change in the operational status of a link or a node is
assumed to be noti�ed to its neighboring nodes within
a �nite time. These services are assumed to be reliable
and are provided by lower-level protocols.

3. LPA Description
LPA is built on two basic mechanisms: using pre-

decessor information to eliminate counting-to-in�nity
and blocking temporary routing loops using an inter-
neighbor synchronization method similar to the one
proposed in [6].

In LPA's description, the time at which the value
of a variable X of the algorithm applies is speci�ed
only when it is necessary; the value of X at time t is
denoted by X(t).

Each router maintains a distance table, a routing
table and a link-cost table. The distance table at each
router i is a matrix containing, for each destination j
and for each neighbor k of router i, the distance and
the predecessor reported by router k, denoted by Di

jk

and pijk, respectively. The set of neighbors of router i
is denoted by Ni.

The routing table at router i is a column vector con-
taining, for each destination j the minimum distance
(denoted by Di

j), the predecessor (denoted by pij), the

successor (denoted by sij), and a marker (denoted by

tagij) used to update the routing table. For destination

j, tagij speci�es whether the entry corresponds to a

simple path (tagij = correct), a loop (tagij = error) or

a destination that has not been marked (tagij = null).
The link-cost table lists the cost of each link adja-

cent to the router. The cost of the link from i to k is
denoted by dik and is considered to be in�nity when
the link fails.

An update message from router i consists of a vec-
tor of entries; each entry speci�es an update 
ag (de-
noted by uij), a destination j, the reported distance to

that destination (denoted by RDi
j), the reported pre-

decessor in the path to the destination (denoted by

rpij). The update 
ag indicates whether the entry is

an update (uij = 0), a query (uij = 1) or a reply to a

query (uij = 2). The distance in a query is always set
to 1.

The implicit path information from a router to any
destination can be extracted from the predecessor en-
tries of the router's distance and routing tables. In
the speci�cation of LPA, the successor to destination
j for any router is simply referred to as the successor
of the router, and the same reference applies to other
information maintained by a router. Similarly, up-
dates, queries and replies refer to destination j, unless
stated otherwise. Figure 1 speci�es LPA. The rest of
this section provides an informal description of LPA.

The procedures used for initialization are Init1 and
Init2; Procedure Message is executed when a router
processes an update message; procedures linkUp,
linkDown and linkChange is executed when a router
detects a new link, the failure of a link, or the change
in the cost of a link. We refer to these procedures
as event-handling procedures. For each entry in an
update message, Procedure Message calls procedure
Update, Query, or Reply to handle an update, a query,
or a reply, respectively. An important characteristic
of all the event-handling procedures is that they mark
tagij = null for each destination j a�ected by the input
event.

When router i receives an input event regarding
neighbor k (an update message from neighbor k or a
change in the cost or status of link (i; k)) it updates
its link-cost table with the new value of link dik if
needed, and then executes procedure DT . This pro-
cedure updates Di

jk = Dk
j + dik and p

i
jk = pik for each

destination j a�ected by the input event. In addition,
it determines whether the path to any destination j
through any other neighbor of router i includes neigh-
bor k. If the path implied by the predecessor infor-
mation reported by router b to destination j includes
router k, then the distance entry of that path is up-
dated as Di

jb = Di
kb+Dk

j and the predecessor entry is

updated as pijb = pkj .

After procedure DT is executed, the way in which
router i continues to update its routing table for a
given destination depends on whether it is passive
or active for that destination. A router is passive
if it has a feasible successor, or has determined that
no such successor exists and is active if it is search-
ing for a feasible successor. A feasible successor for
router i with respect to destination j is a neighbor
router that satis�es the feasibility condition (FC) de-
�ned subsequently. When router i is passive, it reports
the current value of Di

j in all its updates and replies.
However, while router i is active, it sends an in�nite
distance in its replies and queries. An active router
cannot send an update regarding the destination for
which it is active, this is because an update during ac-
tive state would have to report an in�nite distance to
ensure that the inter-neighbor synchronization mech-
anism used in LPA provides loop freedom at every
instant.



Feasibility Condition (FC): If at time t router i
needs to update its current successor, it can choose
as its new successor sij(t) any router n 2 Ni(t) such
that i is not present in the implicit path to j re-
ported by neighbor n, Di

jn(t) + din(t) = Dmin(t) =

MinfDi
jx(t)+dix(t)jx 2 Ni(t)g and Di

jn(t) < FDi
j(t).

If no such neighbor exists and Di
j(t) < 1, router i

must keep its current successor. If Dmin(t) =1 then
sij(t) = null.

If router i is passive when it processes an update
for destination j, it determines whether or not it has a
feasible successor, i.e., a neighbor router that satis�es
FC.

If router i �nds a feasible successor, it sets FDi
j

equal to the smaller of the updated value of Di
j and

the present value of FDi
j . In addition, it updates its

distance, predecessor, and successor using procedure
TRT . This procedure ensures that any �nite distance
in the routing table corresponds to a simple path by
allowing router i to select as the successors to desti-
nations only neighbors that satisfy the following prop-
erty:
Property 1: Router i sets sij = k at time t only

if Di
xk(t) � Di

xp(t) for every neighbor p other than k

and for every node x in the path from i to j de�ned
by the predecessors reported by neighbor k.

Let P i
jk(t) denote the path from k to j de�ned by

the predecessors reported by neighbor k to router i
and stored in router i's distance table at time t. Pro-
cedure TRT enforces Property 1 by traversing all or
part of P i

jk(t) from j back to k using the predecessor
information. This path traversal ends when either a
predecessor x is reached for which tagix = correct or
error, or neighbor k is reached. If tagix = error, then
tagij is set to error too; otherwise, the neighbor k or a

correct tag must be reached, in which case tagij is set
to correct. This traversal correctly enforces Property
1, without having to traverse an entire implicit path;
as the simulation results presented in Section 6 show,
this makes LPA considerable more e�cient than other
similar algorithms.

After updating its routing table, router i prepares
an update to its neighbors if its routing table entry
changes.

Alternatively, if router i �nds no feasible successor,
then it updates FDi

j = 1 and updates its distance
and predecessor to re
ect the information reported by
its current successor. If Di

j(t) = 1, then sij(t)=null.

Router i also sets the reply status 
ag (rijk = 1) for all
k 2 Ni and sends a query to all its neighbors. Router
i is then said to be active, and cannot change its path
information until it receives all the replies to its query.

Queries and replies are processed in a manner sim-
ilar to the processing of an update described above. If
the input event that causes router i to become active
is a query from its neighbor k, router i sends a reply
to router k, reporting an in�nite distance. This is the

case, because router k's query, by de�nition, reports
the latest information from router k, and router i will
send an update to router k when it becomes passive if
its distance is smaller than in�nity. A link-cost change
is treated as a number of updates.

Once router i is active for destination j, it may not
have to do anything more regarding that destination
after executing procedures RT and DT as a result of
an input event. However, when router i is active and
receives a reply from router k, it updates its distance
table and resets the reply 
ag (rijk = 0).

Router i becomes passive at time t when rijk(t) = 0

for every k 2 Ni(t). At that time, router i can be
certain that all its neighbors have processed its query
reporting an in�nite distance and router i is therefore
free to choose any neighbor that provides the shortest
distance, if there is any; or router i has found a feasible
successor through one of its neighbors k 2 Ni. If such
a neighbor is found, router i updates the routing table
as the minimum in distance-table row for destination
j and also updates FDi

j = Di
j .

A router does not wait inde�nitely for replies from
its neighbors because a router replies to all its queries
regardless of its state. Thus, there is no possibility
of deadlocks due to the inter-neighbor coordination
mechanism.

If router i is passive and has already set Di
j = 1

and receives an input event that implies an in�nite
distance to j, then router i simply updates Di

jk and
dik and sends a reply to router k with an in�nite dis-
tance if the input event is a query from router k. This
ensures that updates messages will stop in G when a
destination becomes unreachable.

Router i initializes itself in passive state with an
in�nite distance for all its known neighbors and with
a zero distance to itself. After its initialization, router
i sends updates containing the distance to itself and
to all its neighbors.

When router i establishes a link with a neighbor k,
it updates its link-costs table and assumes that router
k has reported in�nite distances to all destinations and
has replied to any query for which router i is active;
furthermore, if router k is a previously unknown des-
tination, router i initializes the path information of
router k and sends an update to the new neighbor k
for each destination for which it has a �nite distance.
When router i is passive and detects that link (i; k)
has failed, it sets dik = 1, Di

jk = 1 and pijk=null;
after that, router i carries out the same steps used for
the reception of a link-cost change message in passive
state. When router i is active and loses connectivity
with a neighbor k, it resets the reply 
ag and resets
the path information, i.e., assumes that the neighbor
k sent a reply reporting an in�nite distance.

It follows from this description of router i's oper-
ation that the order in which router i processes up-
dates, queries and replies does not change with the
establishment of new links or link failures. The addi-
tion or failure of a router is handled by its neighbors as
if all the links connecting to that router were coming
up or going down at the same time.



Procedure Init1
when router i initializes itself
do begin

set a link-state table with costs of adjacent links;
N  fig;Ni  fx j dix < 1g;
for each (x 2 Ni)
do begin

N  N [ x; tagx  null;
six  null; pix  null; Dix  1; FDix  1

end

si
i
 i; pi

i
 i; tagi

i
 correct; Di

i
 0; FDi

i
 0;

for each j 2 N call Init2(x, j);
for each (n 2 Ni) do add (0, i, 0, i) to LISTi(n);
call Send

end
Procedure Init2(x, j)
begin

Di
jx
 1; pi

jx
 null; si

jx
 null; ri

jx
 0

end
Procedure Send
begin

for each (n 2 Ni)
do begin

if (LISTi(n) is not empty)
then send message with LISTi(n) to n
empty LISTi(n)

end
end
Procedure Message
when router i receives a message on link (i; k)
begin

for each entry (uk
j
; j; RDk

j
; rpk

j
) such that j 6= i

do begin
if (j 62 N)
then begin

if (RDk
j

= 1) then delete entry

else begin

N  N [ fjg; FDi
j
= 1;

for each x 2 Ni call Init2(x, j)

tagi
j
 null; call DT(j;k)

end
end
else begin

tagi
j
 null; call DT(j;k)

end
end

for each entry (uk
j
; j; RDk

j
; rpk

j
) left

such that j 6= i

do case of value of ui
j

0: call Update(j, k)
1: call Query(j, k)
2: call Reply(j, k)

end
call Send

end
Procedure TRT(j, DTmin)
begin

if (Di

j si
j

= DTmin) then ns  si
j

else ns  b j fb 2 Ni and Di
jb

= DTming;

x  j;
while (Dix ns = MinfDi

xb
8 b 2 Nig and Dixns

< 1 and tagix = null)

do x  pix ns;

if (pix ns = i or tagix = correct)

then tagi
j
 correct else tagi

j
 error

if (tagi
j
= correct)

then begin

if (Di
j
6= DTmin or pi

j
6= pi

j ns
) then

add (0, j, DTmin , p
i
j ns

) to LISTi(x) 8x 2 Ni;

Di
j
 DTmin ; p

i
j
 pi

j ns
; si
j
 ns

end
else begin

if (Di
j
< 1) then add (0, j, 1, null) to LISTi(x) 8x 2 Ni;

Di
j
 1; pi

j
 null; si

j
 null

end
end
Procedure AU(j, k)
begin

if (k = si
j
) then begin

Di
j
 Di

jk
; pi
j
 pi

jk
end

end
Procedure Update(j, k)
begin

if (ri
jx

= 0;8x 2 Ni)

then begin

if ((si
j
= k) or (Di

jk
< Di

j
)) then call PU(j)

end
else call AU(j, k)

end

Procedure Link Up (i; k; dik)
when link (i; k) comes up do begin

dik  cost of new link;
if k 62 N then begin

N  N [ fkg; Di
k
 1; FDi

k
 1;

tagi
k
 null; pi

k
 null; si

k
 null;

for each x 2 Ni do call Init2(x, k)
end
Ni  Ni [ fkg;
for each j 2 N do call Init2(k, j);
for each j 2 N � k j Di

j
< 1 do add (0, j, Di

j
, pi
j
) to LISTi(k);

call Send
end
Procedure Link Down(i; k)
when link (i; k) fails do begin

dik  1;
for each j 2 N do begin

call DT(j, k);
if (k = si

j
) then tagi

j
 null

end
delete column for k in distance table; Ni  Ni � fkg;

delete ri
jk

;

for each j 2 (N � i) j k = si
j
do begin

call Update(j, k)
end
call Send

end
Procedure Link Change (i; k; dik)
when dik changes value do begin

old  dik ; dik  new link cost;
for each j 2 N do begin

call DT(j, k);
for each j 2 N

do if (Di
j
> Di

jk
or k = si

j
) then tagi

j
 null

end
for each j 2 N do begin

if (dik < old)

then for each j 2 N � i j Di
j
> Di

jk
do call Update(j, k);

else for each j 2 N � i j k = si
j
do call Update(j, k)

end
call Send

end
Procedure DT(j;k)
begin

Di
jk
 RDk

j
+ dik ; p

i
jk
 rpk

j
;

for each neighbor b do begin
h j;

while (h 6= i or k or b) do h pb
h
;

if (h = k) then begin

Di
jb
 Di

kb
+ RDk

j
; pi
jb
 rpk

j
end
if (h = i) then begin

Di
jb
 1; pi

jb
 null

end
end

end
Procedure Reply(j, k)
begin

ri
jk
 0;

if (ri
jn

= 0;8n 2 Ni)

then if ((9x 2 Ni j D
i
jx

< 1) or (Di
j
< 1))

then call PU(j) else call AU(j, k)
end Procedure Query(j, k)
begin

if (ri
jx

= 08x 2 Ni)

then begin

if (Di
j
= 1 and Di

jk
= 1)

then add (2, j, Di
j
, pi
j
) to LISTi(k)

else begin
call PU(j);
add (2, j, Di

j
, pi
j
) to LISTi(k);

end
else call AU(j, k)

end
Procedure PU(j)
begin

DTmin  MinfDi
jx
8 x 2 Nig;

FCSET  fn j n 2 Ni; D
i
jn

= DTmin; D
n
j
< FDi

j
g;

if (FCSET 6= ;) then begin

call TRT(j, DTmin); FD
i
j
 MinfDi

j
;FDi

j
g

end
else begin

FDi
j
= 1; ri

jx
= 1 8x 2 Ni; D

i
j
= Di

j si
j

; pi
j
= pi

j si
j

;

if (Di
j
= 1) then si

j
 null;

8 x 2 Ni
do begin

if (query and x = k) then ri
jk
 0

else add (1, j, 1, null) to LISTi(x)
end

end
end

Fig. 1. LPA Speci�cation
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Fig. 2. Example of LPA's Operation

3.1 Example

As an example of LPA's operation and its loop-
freedom property, consider the �ve-node network de-
picted in Figure 2. In this network, links and nodes
have the same processing or propagation delays; Q
represents the queries, R replies and U indicates up-
dates. The operation of the algorithm is discussed for
the case in which the cost of link (a; j) changes. The
arrowhead from node x to node y indicates that node
y is the successor of node x towards the destination
j (i.e., sxj = y). The label in parenthesis assigned
to node x indicates the feasible distance from x to j
(FDx

j ), current distance (D
x
j ), and predecessor of the

path from x to j (pxj ). Steps 1 through 5 of Figure 2
depicts the behavior of LPA. Updates and replies are
followed by the value of RDx

j and rpxj in parentheses.
Nodes in the active state are indicated with a circle
around them. FDi

j is always decreasing as long as
node i is in the active state.

When node a detects the change in the cost of link
(a; j), it determines that it does not have a feasible
successor as none of its neighbors have a distance
smaller than FDa

j=1. Accordingly, node a becomes
active and sends a query to all its neighbors (Step 1
in Figure 2).

Nodes b and c also recognize that they do not have
a feasible successor. This is achieved in a single step as
the node traces through all its neighbors on receipt of
an input event. Node b (c) becomes active and sends
query to c (b) and reply to a. On the other hand,
node d is able to �nd a path to j and replies with the
cost of the alternate path to j to node a's query and
updates its distance to j maintaining the same feasible
distance.

When node a receives replies from all its neighbors,
it becomes passive again, and replies to the queries
of nodes b and c with its feasible distance. Hav-
ing found their feasible successor, nodes b and c up-
date their path information accordingly. All nodes
exchange update messages informing the new path in-
formation with their neighbors (Step 4) and the �nal
stable topology is shown in Step 5.

4. Correctness of LPA
To prove that LPA converges to correct routing-

table values in a �nite time, we assume that there is a
�nite time Tc after which no more link-cost or topol-
ogy changes occur. This proof relies on the fact that
LPA is free of loops at every instant, which is shown
in [14]. The approach to showing that LPA is always
loop free is almost the same as the one presented in
[6] for another algorithm.
Lemma 1: LPA is live.

Proof: Consider the case in which the network has a
stable topology. When a router is in the active state
and receives a query froma neighbor, the router replies
to the query with an in�nite distance. The router up-
dates its distance table entries when either an update
or a reply message is received in active state. On the
other hand, when a router in passive state receives
a query from its neighbor, it computes the feasible
distance and updates its distance and routing tables
accordingly. If the router �nds a feasible successor, it
replies to its neighbor's query with its current distance
to the destination. If the router can �nd no feasible
successor, it forwards the query to the rest of is neigh-
bors and sends a reply with an in�nite distance to the
neighbor who originated the query. Accordingly, in a
stable topology, a router that receives a query from a
neighbor for any destination must answer with a re-
ply within a �nite time, which means that any router
that sends a query in a stable topology must become
passive after a �nite time.

Consider now the case in which the network topol-
ogy changes. When a link fails or is reestablished, an
active router that detects the link status change sim-
ply assumes that the router at the other end of the
link has reported an in�nite distance and has replied
to the ongoing query. Because an active router must
detect the failure or establishment of a link within a �-
nite time, and because router failures or additions are
treated as multiple link failures or additions, it follows
from the previous case that no router can be active for
an inde�nite period of time and the lemma is true. 2
Lemma 2: TRT correctly enforces Property 1.

Proof: TRT correctly enforces Property 1 if the tag
value given by TRT at router i for destination j equals
correct. This is true only when the neighbor n that
router i chooses as successor to j o�ers the smallest
distance from i to each node in its reported implied
path from n to j.

First note that, procedure DT is executed before
TRT and ensures that router i sets Di

jb = 1 if its
neighbor b reports a path to b that includes i. There-
fore, TRT deals with simple paths only.

According to procedure TRT, there are two cases
in which a router stops tracing the routing table (a)
the trace reaches node i itself (i.e., pixns = i), and (b)
a node on the path to j is found with tagix=correct.
We prove that the correct path information is reached
in both cases.
Case 1: Assume that TRT is executed for destination
j after an input event. The tag for each destination
a�ected by the input event is set to null before proce-
dure TRT is executed. Therefore, if TRT is executed



for destination j and node i (the source) is reached,
the tag of each node in the path from i to j through
neighbor n must be null. Therefore, the distance from
i to j through n is the shortest path among all neigh-
bors since node i chooses the minimum in row entry
among its neighbors for a given destination j. The
lemma is true for this case.
Case 2: If node x1 with tagix1=correct is reached, then
it must be true that either node i or a node x2 with
tagix2=correct is reached from x1.

If node i is reached from x1, then it follows from
case 1 that neighbor n o�ers the smallest distance
among all of i's neighbors to each node in the im-
plied subpath from n to x1 reported by neighbor n.
Furthermore, because x1 is reached from j, node n
must also o�er the smallest distance among all of i's
neighbors to each node in the implied subpath from
x1 to j reported by n. Therefore, it follows that the
lemma is true if node i is reached from x1 (from case
1). Otherwise, if x2 is reached, the argument used
when i is reached from x1 can be applied to x2. Be-
cause router i always sets tagii=correct and TRT deals
with simple paths only, this argument can be applied
recursively only for a maximum of h <1 times until
i is reached, where h is the number of hops in the im-
plicit path from n to j reported by n to i. Therefore,
case 2 must eventually reduce to case 1 and it follows
that the lemma is true. 2

Lemma 3: The change in the cost or status of a
link will be re
ected in the distance and the routing
tables of a router adjacent to the link within a �nite
time.
Proof: Regardless of the state in which router i is for
a given destination j, it updates its link-cost and dis-
tance table within a �nite time after it is noti�ed of
an adjacent link changing its cost, failing, or starting
up. On the other hand, router i is allowed to update
its routing table for destination j only when it is in
passive state for that destination. However, because
LPA is live (Lemma 1), if router i is active for des-
tination j, it must receive all the replies to its query
regarding j within a �nite time, i.e., when it becomes
passive. When router i becomes passive for destina-
tion j, it executes Procedure TRT, which updates the
routing-table entry for destination j using the most
recent information in router i's distance table. This
implies that any change in a link is re
ected in the dis-
tance and routing tables of a neighbor router within a
�nite time T . 2

Given Lemma 3 and our assumption about time
Tc, a �nite time must exist when all routers adjacent
to the links that changed cost or status have updated
their link cost and status information, and after which
no more link-cost or topology changes occur. Let T
denote that time, where Tc � T <1.
Theorem 1: After a �nite time t � T , the routing

tables of all routers must de�ne the �nal shortest path
to each destination.
Proof: Let T (H) be the time at which all messages
sent by routers with shortest paths having H�1 hops
(H � 1) to a given destination j have been processed
by their neighbors.

Assume that destination j is reachable from every
router.

For any router a adjacent to j, it follows from
Lemma 3 that, if router a's shortest path to j is the
link (a; j), then router a must update Da

j = daj by
time T = T (0) and the theorem is true for H = 0.

Because LPA is loop free at every instant [14], the
number of hops in any shortest path (as implied by
the successor graph) is �nite. Accordingly, the proof
can proceed by induction on H.

Assume that the theorem is true for some H >
0. According to this inductive assumption, by time
T (H), router i must have a correct routing-table en-
try for every destination for which it has a shortest
path of H hops or less. Property 1 must be satis�ed
for all such destinations and LPA enforces it correctly
(Lemma 2). On the other hand, from the de�nition
of T (H + 1), it follows that any update messages sent
by routers with shortest paths of H hops or less to j
or any other destination have been processed by their
neighbors by time T (H + 1). Therefore, if router i's
shortest path to destination j has H + 1 hops, Prop-
erty 1 must be satis�ed at router i for that destination
by time T (H+1), because all possible predecessors for
destination j must satisfy Property 1 at router i and
that router must have the correct information for link
(i; sij) at time T (0) < T (H +1) (Lemma 3). It follows
that the theorem is true for the case of a connected
network.

Consider the case in which j is not accessible to
a connected component C of the network. Assume
that there is a router i 2 C such that Di

j < 1 at
some arbitrarily long time. If that is the case, j must
satisfy Property 1 through at least one of router i's
neighbors at that time; the same applies to such a
neighbor, and to all the routers in at least one path
from i to j de�ned by the routing tables of routers in
C. This is not possible, because C is �nite and LPA
is always free of loops and live, which implies that,
after a �nite time tf � T , all paths to j de�ned by the
successor entries in the routing tables of routers in C
must lead to routers that have set their distance to j
equal to1. Therefore, because C is �nite, LPA is live,
and messages take a �nite time to be transmitted, it
follows that destination j will fail to satisfy Property
1 at each router within a �nite time t � tf , who must
then set its distance to in�nity, and the theorem is
true. 2
Theorem 2: A �nite time after t, no new update

messages are being transmitted or processed by routers
in G, and all entries in distance and routing tables are
correct.
Proof: After time T , the only way in which a router
can send an update message is after processing an up-
date message from a neighbor. Accordingly, the proof
needs to consider three cases, namely: router i receives
an update, a query, or a reply from a neighbor.

Consider an arbitrary router i 2 G. Because LPA
is live (Lemma 1) and router i obtains its shortest
distance and corresponding path information for des-
tination j in a �nite time after T (Theorem 1), router
i must be passive within a �nite time ti � T .



If router i receives an update for destination j from
router k after time ti, router i must execute Proce-
dure Update. If router i has no path to destination
j, Di

j must be in�nity and router k must report an
in�nite distance as well, because router i achieves its
�nal shortest-path at time ti; in this case, router i sim-
ply updates its distance table. On the other hand, if
router i has a path to destination j, then Di

j <1 and
router imust �nd that FC is satis�ed and execute Pro-
cedure TRT. Because an update entry is added only
when the shortest distance or predecessor to j change,
router i can send no update or query of its own.

If router i receives a query from a neighbor for des-
tination j after time ti, it must execute Procedure
Query. If router i has no physical path to destination
j, Di

j must be in�nity and router k must report an
in�nite distance in its query, because router i achieves
its �nal shortest-path at time ti; in this case, router i
simply updates its distance table and sends a reply to
router k with an in�nite distance. On the other hand,
if router i has a physical path to destination j, it must
determine that FC is satis�ed when it processes router
k's query. Accordingly, it simply sends a reply to its
neighbor with its current distance and predecessor to
router j. Therefore, router i cannot send an update
or query of its own when it processes a query from a
neighbor after time ti.

After time ti, router i cannot receive a reply from
a neighbor, unless it �rst sends a query after time ti,
which is impossible according to the above two para-
graphs.

It follows from the above that, for any given des-
tination, no router in G can generate a new update
or query after it reaches its �nal shortest path and
predecessor to that destination. Because every router
must obtain its �nal shortest distance and predecessor
to every destination within a �nite time (Theorem 1),
the theorem is true. 2

5. Performance of LPA

5.1 Complexity
This section compares LPA's worst-case perfor-

mance with respect to the performance of DBF,
DUAL, and ILS. This comparison is made in terms
of the overhead required to obtain correct routing-
table entries assuming that the algorithmbehaves syn-
chronously, so that every router in the network exe-
cutes a step of the algorithm simultaneously at �xed
points in time. At each step, the router receives and
processes all the inputs originated during the preced-
ing step and, if required, sends update messages to the
neighboring routers at the same step. The �rst step
occurs when at least one router detects a topological
change and issues update messages to its neighbors.
During the last step, at least one router receives and
processes messages from its neighbors and after which
the router stops transmitting any update messages till
a new topological change has taken place. The num-
ber of steps taken for this process is called the time
complexity (TC); the number of messages required to

accomplish this is called the communication complex-
ity (CC).

DBF has a worst-case time complexity of O(jN j)
and worst-case communication complexity of O(jN2j),
where jN j is the number of routers in the network G
[5]. ILS has TC = O(d) (where d is the network diam-
eter), and CC = O(E) [14]. DUAL has TC = O(x)
and CC = O(x), where x is the number of routers
a�ected by the single topology change [5]. LPA has
been shown to have a worst-case communication com-
plexity of O(x) after a single resource failure [14].

5.2 Average Performance
To obtain insight into the average performance

of LPA, we have developed simulation using an
actor-based, discrete-event simulation language called
Drama [16], together with a network simulation li-
brary. We compared LPA's performance with the per-
formance of ILS, PFA, and DUAL. PFA (path �nding
algorithm) operates similar to LPA, except that it does
not use queries to block temporary loops and does not
use the tagging scheme and must update the entire
routing table when it processes an input event [14].
All the simulation runs are done for the unit propaga-
tion time and all the links are assumed to be of unit
cost. If a link fails, the packets in transit are dropped.

In the simulation, a router receives a packet and
responds to it by running the simulated routing al-
gorithm and queueing the outgoing updates and pro-
cessing the packets one at a time in the order of their
arrival. Once the processing time of all the events have
expired, all the redundant packets are removed from
the queue. We have kept the packet processing time as
zero. Drama's internals ensure that all the packets at
a given simulation time are processed before the new
updates are generated.

5.2.1 Instrumentation

To obtain the average �gures, the simulationmakes
each link (router) in the network fail, and counts the
steps and messages needed for each algorithm to con-
verge. It then makes the same link (router) recover
and repeats the process. The average is then taken
over all link (router) failures and recoveries. The rout-
ing algorithm was allowed to converge after each such
change. In all cases, routers were assumed to perform
computations in zero time and links were assumed to
provide one time unit of delay. For the failure and
recovery runs, the costs were set to unity. Both the
mean and the standard deviation were computed for
each counter; the four counters used are

� Events: The total number of updates and changes
in link status processed by routers.

� Packets: The total number of packets transmit-
ted over the network. Each packet may contain
multiple updates.

� Duration: The total elapsed time it takes for the
algorithm to converge.

� Operations: The total number of operations per-
formed by all the nodes in the network. The oper-
ation count is incremented when an event occurs.



TABLE I

Simulation Results for ARPANET

Parameter PFA LPA DUAL ILS
mean sdev mean sdev mean sdev mean sdev

Link Failure

Event Count 962.1 392.9 587.3 381.5 720.9 449.1 160.0 0.0

Packet Count 96.5 45.9 126.1 59.8 266.8 97.3 158.0 0.0
Duration 7.16 1.75 9.24 3.39 15.1 3.45 8.5 0.74

Operation Count 843.90 594.5 385.6 190.8 813.9 449.1 25600.2 57. 121

Link Recovery

Event Count 638.2 370.3 242.4 112.8 362.2 147.6 162.7 15.4
Packet Count 108.6 48.9 33.0 25.5 79.3 21.3 160.7 15.4
Duration 6.89 1.51 5.96 2.75 7.3 1.46 7.84 0.67

Operation Count 1144.9 620.1 213.2 56.4 454.2 147.6 26900.8 2477 .9

Router Failure

Event Count 1350.8 373.8 646.5 424.4 1050.4 300.8 218.8 67.1
Packet Count 96.6 75.9 144.7 55.3 382.6 81.2 212.1 65.1

Duration 5.4 3.4 9.12 2.4 17.8 9.2 8.6 0.72
Operation Count 1803.8 407.4 589.5 271.3 1320.8 563.5 33356.7 10 766.2

Router Recovery

Event Count 980.4 699.7 551.6 296.4 691.9 235.5 301.2 45.3
Packet Count 107.2 80.1 68.06 42.03 207.9 46.7 294.5 42.9

Duration 5.27 2.56 7.78 3.33 8.5 0.73 9.6 1.14
Operation Count 3252.0 1911.5 542.0 224.4 957.6 347.3 50102.2 79 30.4

5.2.2 Simulation Results

The simulation results for the ARPANET topol-
ogy are shown in Table I. The table shows the aver-
age number of events (updates and link-status changes
processed by routers), the average number of update
messages transmitted, the average number of steps
needed for the algorithms to converge, and the aver-
age number of operations performed by all the routers
in the network. Similar simulation results for other
network topologies (NSFNET and Los-Nettos) appear
elsewhere.

PFA, LPA and DUAL have better overall average
performance than ILS after the recovery of a single
router or link. In the average, LPA requires fewer
steps, messages, and CPU cycles than DUAL does af-
ter a single resource failure or addition. The number of
steps and update messages of LPA are comparable to
that of ILS after a single resource failure, but requires
orders of magnitude fewer operations. Furthermore,
the number of entries per update message in LPA is
small.

PFA incurs fewer steps than the rest of the algo-
rithms after single failures. This is because PFA pre-
vents the formation of some temporary loops with-
out the need for any internodal coordination, just
like Procedure DT of LPA does. However, the re-
sults obtained for LPA after router or link failures
are very encouraging. Because of the inter-neighbor
synchronization scheme used in LPA, it can be ex-
pected that a few more steps are needed for conver-
gence after a router failure, in addition to the steps

required to propagate link-failure updates across the
network. This is because a wave of queries must prop-
agate from the routers detecting the failure of the links
adjacent to the failed router, to the routers that are
the farthest from the sources of updates. In the case
of ARPANET, at most eight steps are needed to reach
the farthest router, and two more steps are needed to
handle the last query and reply after that. The simu-
lation results show that approximately nine steps are
needed in the average case for LPA's convergence after
a router failure, compared to ILS's eight or nine steps,
which provides the fastest convergence that is possible
after a router failure.

The small di�erence between the number of steps
required in LPA and PFA indicates that LPA's inter-
neighbor coordination mechanism achieves loop free-
dom at every instant with little overhead. Another
important point of comparison between LPA and PFA
is the number of operations (operation count) they re-
quire. In the implementation of PFA used in our sim-
ulation, the entire shortest-path tree de�ned in the
routing table has to be traversed every time a router
processes an input event. In contrast, LPA uses a
tagging mechanism (implemented in Procedure TRT),
with which only those routing table entries that are af-
fected by the input event need to be updated, and the
path traversal needed for such updates stops when a
node marked with the correct tag value is encountered.
This reduces the number of operations performed in
LPA. The simulation results clearly show that consid-
erable e�ciency is achieved by the tagging mechanism
used in LPA.



5.3 Comparison with Prior Path-Finding

Algorithms
LPA provides loop freedom at every instant. Ref-

erence [3] discusses loop freedom; however, the path
�nding algorithm presented in that work does not pro-
vide loop-free paths at every instant. The approach
proposed in [5] relies on each router sending a query
to its neighbors with the intended new routing-table
entries, and waiting for the neighbors' replies before
making the change. Data packets are held at a router
waiting for its neighbors' replies. This approach incurs
substantial communication overhead, because a router
sends queries every time it tries to change its routing
table, and also incurs unnecessary queueing delays for
data packets.

Routing algorithms have been proposed in the past
that provide loop-free paths at every instant by block-
ing potential loops. However, in these algorithms [7],
[6], a router sends path information to its neighbors in
update messages containing explicit labels of variable
size that can contain the complete path in some cases.
In contrast, LPA uses �xed-size entries in update mes-
sages, because path information is obtained from the
predecessor entries.

LPA updates routing table entries using a mech-
anism that ensures that only simple paths are used.
This mechanism is similar to those proposed in [3],
[15]; however, Procedure DT in LPA makes a router
check the consistency of predecessor information re-
ported by all its neighbors each time an input event
is processed. In contrast, earlier path �nding algo-
rithms [3], [15], [10] check the consistency of the pre-
decessor information only for the neighbor associated
with the input event.

LPA is more scalable than the algorithms in [3],
[10], because LPA updates only those entries of the
distance and routing tables that are a�ected by the
input event, rather than the entire tables, using tags
similar to those used in [15]. In contrast, the algorithm
in [10] uses a breath-�rst search on the entire distance
table each time a router processes an input event; the
algorithms reported in [3] make sure that Property 1 is
satis�ed by all destinations every time an input event
is processed, much like PFA does.

6. Conclusions
We have presented and veri�ed a routing algo-

rithm (LPA) that eliminates the formation of tem-
porary routing loops without internodal synchroniza-
tion spanning multiple hops or the communication of
complete or variable-length path information. LPA is
based on the notion of using information about the
second to last hop (predecessor) of shortest paths to
ensure termination, and an e�cient inter-neighbor co-
ordination mechanism to eliminate temporary loops.
The worst-case time complexity of LPA for single
recovery or failure is O(x), x being the number of
routers a�ected by this recovery or failure. The per-
formance comparison of LPA and PFA con�rms that
LPA achieves loop-freedom with very limited addi-
tional overhead. Our simulation results show that
LPA converges faster than DUAL for single-resource

changes and that the number of messages exchanged
is comparable to the number obtained for DUAL. The
results also show that LPA is comparable to ILS inso-
far as number of steps and number of messages needed
for convergence after resource failures, and is faster
than ILS after resource recoveries. However, LPA re-
quires much fewer operations than ILS. In summary,
taking the average number of steps, messages, and
operations into account, LPA is more e�cient than
DUAL and ILS.
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