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Metallo-dielectric photonic crystals with cubic symmetries have been studied here both experimentally and
theoretically in the millimeter wavelength region (15–60 mm). In a direct analogy to linear systems, we con-
sidered the three-dimensional lattices as a stack of two-dimensional resonating screens. The overall three-
dimensional structure was introduced in the calculation through a structural phase. Such an approach
proved useful in understanding the related mode propagation and guided us in a study of the transition be-
tween cubic and centered body cubic symmetries. © 2005 Optical Society of America

OCIS codes: 260.3060; 290.3770.
1. INTRODUCTION
Metallo-dielectric photonic crystals have captured the at-
tention of researchers for filtering and imaging
applications.1–5 The complex characteristic of the corre-
sponding wave propagation6 has led researchers to inves-
tigate simpler three-dimensional forms composed of
stacks of inductive two-dimensional screens, where induc-
tive screens are simply metallic screens with holes.7–9

Such an approach has a direct root in linear filter systems
in which the peak resonance wavelength depends on the
geometrical dimension and arrangement of the holes.10

Our interest is in the long-wavelength regime, where the
features are smaller than the propagating wavelength.
In such a regime, diffraction is limited to only the zero
and first order,5 and thus we may interpret the experi-
mental data by analysis of the (transverse) resonance of a
single screen in addition to the obvious resonance in the
longitudinal direction (the Bragg condition along the di-
rection of propagation). To account for the screen thick-
ness and the original three-dimensional structure, we in-
troduce additional structural phases.

In general, metallic screens are classified according to
their fundamental conduction properties. Inductive
screens are metal foils with openings, while patches of
metal surrounded by a dielectric matrix are called capaci-
tive screens. These screens have complementary struc-
tures, and, if very thin, possess complementary transmis-
sion characteristics as well.11 Computational programs
such as the Fourier modal method12 have demonstrated
the validity of the Drude model from the long-wavelength
1084-7529/2005/020370-07$15.00 ©
region down to l 5 1 mm Yet it has been shown by oth-
ers and us,13,14 that the long-wavelength characteristics
may be extended, in fact, down to nanostructures, or just
below the plasma frequency. In this paper we adopt the
approach developed for inductive screens and apply it to
capacitive screens to study the wave propagation in cubic
photonic crystals, namely, propagation in simple cubic
(C), body-centered cubic (BCC), and face-centered cubic
(FCC) lattices.

2. EXPERIMENT AND ACCURATE
SIMULATIONS
Schematic structures of cubic, body-centered cubic, and
face-centered cubic lattices are shown in Fig. 1. In our
experiments, metal spheres each with a diameter of d
5 6.35 mm were arranged in a lattice form with a lattice
constant of a 5 20 mm. The transmitter included a
continuous-wave signal source (Hewlett-Packard 8673E
signal generator) fed through a standard gain horn (Mi-
croTech HWR112). The receiver was made of an identi-
cal gain horn connected to a signal spectrum analyzer
(Hewlett-Packard 8563E). A baseline characterization of
free space as a function of frequency was used as refer-
ence. Metal spheres were affixed to thin microwave-
transparent substrates with a refractive index close to
unity. Various cubic symmetries were achieved by proper
stacking of individual layers. The power transmitted
through the center axis of the crystal was measured for
each of six successive crystal plane layers and normalized
2005 Optical Society of America
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by the transmission of free space. The experimental
transmission spectra for cubic and body-centered cubic
structures are shown in Fig. 2 for successive numbers of
layers. Previous measurements have been conducted on
face-centered cubic structures.2

In the simulations, we analyzed a succession of thick,
metallo-dielectric capacitive screens. Each layer pos-
sesses a resonance wavelength close to the lattice con-
stant a.14 We used a commercial code15 to solve the re-
lated Maxwell’s equations for the stacked screens. Each
screen was simulated as a lattice of metallic waveguides
with an appropriate cross section. Input data for the pro-
gram are the lattice constants, the refractive indices of
the dielectrics, and the bulk conductivity value of metal
sphere. These simulations (Fig. 3) account for all trans-
mission dips in the experimental data shown in Fig. 2.
In the following, all simulations were made by using the
commercial code15 unless otherwise noted.

3. MODE ANALYSIS
A. Cubic Lattice and Body-Centered Cubic Lattice
Transmission line theory may be used for interpretation
of the various peaks and their dependences on the lattice
symmetry (Ref. 14 and Appendix A). Here, we first esti-
mate the resonance wavelength l (R) for a single capaci-
tive screen; see Ref. 16 and the black curve in Fig. 5 be-
low. The screen is then replaced by a filter whose
resonance wavelength is l (R). Owing to the periodic con-

Fig. 1. Schematics of simple cubic (C), body-centered cubic
(BCC) and face-centered cubic (FCC) crystal structure. In the
body-centered lattice, alternate cubic layers are displaced in the
diagonal direction. The distance between the first and the sec-
ond layer is one half of the lattice constant of the simple cubic
structure. The layers of the FCC have periodicity constant of
a/A2 and separation of a/2; alternate layers are shifted by a/2.
struction of screens along the direction of propagation,
stacking modes appear. Their corresponding resonance
wavelengths l (S) depend on the spacing between screens.
This approach is implemented on the experimental data
of Fig. 2; the results are shown in Fig. 4. As an example,
the resonance wavelength for the stacking mode for a cu-
bic lattice made of metal spheres in air is close to 2s,
twice the distance s between the layers, as one expects
from Bragg reflection. Thus we expect an enhanced re-
flectivity or a dip in the transmission curve.

1. Cubic Lattice
The transverse resonance wavelength l (RC) of a single cu-
bic layer should have a value close to the nearest-
neighbor distance a 5 20 mm and is assigned to the
broad peak near l (RC) 5 22 mm in Fig. 3, estimated from
simulation results. The value of the first-order stacking
mode l1

(SC) should be close to 2a 5 40 mm, and therefore
from Fig. 3 we assign it to the peak at l1

(SC) 5 42 mm.
The second-order stacking mode should appear at l2

(SC)

5 21 mm and contributes as well to the broad peak at l
5 22 mm. The third- and fourth-order stacking modes
are expected to have values close to 42/m, where m 5 3
or 4, and are assigned to the peaks at l3

(SC) 5 16 and
l4

(SC) 5 12 mm, respectively.

Fig. 2. Experimental transmission power of (a) C and (b) BCC
crystals with lattice constant 20 mm and metal sphere diameter
d 5 6.35 mm. The wavelengths in the figures are in millime-
ters. Successive curves are given for increasing number of lay-
ers: gray, one layer; black, five layers.
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Fig. 3. Simulated transmission of (a) C and (b) BCC structures
with lattice constant a 5 20 mm and metal sphere diameter d
5 6.35 mm. The wavelengths in the figures are in millimeters.
Successive curves are given for increasing number of layers:
gray, one layer; black, five layers.

Fig. 4. Simulations produced with transmission line formalism.
For cubic structure (gray curve) the input data are periodicity
constant g 5 20 mm, transverse resonance wavelength for each
screen l (R) 5 21 mm, resonance width Dv 5 0.05 mm, loss pa-
rameter a 5 0.2, number of layers f 5 6, spacing between layers
s1 5 20 mm, and structure phase F(l)cubic 5 tan21@ld/pWeff

2 #
1 c1 with c1 5 const. For BCC (black curve), same parameters
as for Figs. 2 and 3 with the exception of screen spacing s2
5 (0.5)s1 5 10 mm and a phase constant F(l)BCC

5 tan21@ld/pWeff
2 # 1 2c1 .
2. Body-Centered Cubic Lattice
Here the lattice constant in the longitudinal direction is
only one half of the corresponding value for the cubic lat-
tice. In addition, every other layer is laterally shifted by
a half-lattice constant in each direction with respect to its
nearest-neighbor layer. Thus, while the resonance wave-
length l (RBCC) of a single layer is expected to be l (RBCC)

; 20 mm, this mode is in fact split into two resonance
modes. This is because the base structure is composed of
two relatively shifted sublayers.9 One mode is assigned
to the peak at l1

(RBCC) 5 18 mm and the other to the peak
at l2

(RBCC) 5 22 mm. The first-order stacking mode
l (SBCC) is assigned to the peak at l1

(SBCC) 5 22 mm. The
second-order stacking mode expected at l2

(SBCC) ; 10 mm
is assigned to the peak at l2

(SBCC) 5 12 mm. A closer look
into the simulation is given in Appendix A.

B. Spacing, Sphere Diameter, and Phase Transition
The transmission through up to ten successive 10 screens
with transverse lattice constant a 5 15 mm is shown in
Fig. 5. Simulations were made by using the commercial
code.15 A cubic symmetry was assumed for which the

Fig. 5. Simulations of a cubic lattice with a 5 15 mm. Mode
assignment: l1

(RC) 5 16 mm, l1
(SC) 5 32.5 mm, l2

(SC) 5 16 mm,
l3

(SC) 5 12 mm. Note that l1
(RC) overlaps l2

(SC) . Shown are lay-
ers in succession: gray, one layer; black, ten layers.

Fig. 6. Cubic lattice with a 5 15 mm for various separations
values, s 5 7.5 mm, s 5 15 mm, and s 5 20 mm, respectively.
Mode assignment: dark gray, s 5 7.5 mm: l (R) 5 17.5 mm,
l1

(S) 5 17.5 mm. Dotted black: s 5 15 mm: l (R) 5 16 mm,
l1

(S) 5 32.5 mm, l2
(S) 5 16 mm, l3

(S) 5 12 mm. Black: s
5 20 mm: l (R) 5 16 mm, l1

(S) 5 43 mm, l2
(S) 5 21.5 mm.
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spacing between layers was s 5 15 mm. Note that l1
(RC)

overlaps l2
(SC) . A variation on this theme is shown in

Fig. 6. Here we show results for a lattice composed of ten
screens, each case at different value, s 5 7.5, s 5 15, and
s 5 20 mm. Again, occasional overlapping of transverse
resonance and stacking modes occurs at particular
screens’ spacing. In Fig. 7 we show calculations using
transmission line theory. The input transverse reso-
nance wavelength was 16 mm, taken from Fig. 5. The
positions of transverse resonance and stacking modes
clearly coincide in Figs. 6 and 7.

The layered structure model allows us to study conve-
niently the phase transitions from BCC to C lattices.
The diameter db of the center sphere of the BCC lattice
may be made increasingly small to approach a zero value
while the size of the corner spheres is kept at a value of
d 5 6.35 mm. This transition is shown in Fig. 8. The
resonance mode shifts to longer wavelengths, and obvi-
ously the stacking mode at l1

(SC) 5 32 mm disappears for
the BCC structure, as mentioned above.

Fig. 7. Transmission line theory calculations for a cubic lattice
with a 5 15 mm for various separation values. Transmission
line resonance input: 16 mm. Thick black: s 5 7.5 mm:
l (R) 5 17.5 mm, l1

(S) 5 17.5 mm. Gray: s 5 15 mm: l (R)

5 16 mm, l1
(S) 5 32.5 mm, l2

(S) 5 16 mm, l3
(S) 5 12 mm. Thin

black: s 5 20 mm: l (R) 5 16 mm, l1
(S) 5 43 mm, l2

(S)

5 21.5 mm.

Fig. 8. Transition from BCC (black) to simple C (gray) struc-
ture, by decreasing the center sphere’s diameter db in BCC:
db 5 6.35, 5, 4, 1, and 0 mm, respectively. The first-order stack-
ing mode l1

(S) decreases in intensity with decreasing values of
db . The resonance mode R shifts from l (R) 5 16 mm to l (R)

5 17.5 mm.
The layered structure model also allows a study of
transmission change as a function of the sphere diameter
d: We considered a simple cubic lattice with a
5 15 mm and sphere diameter values of d 5 4, 6.35, 7.5,
and 8 mm (Fig. 9). The fundamental stacking mode ap-
pears at l1

(SC) 5 32.5 mm with increasing intensity for in-
creasing sphere diameter.

C. Face-Centered Cubic Lattice
The structure of the FCC may also be considered as a
stack of screens (Fig. 1). Each screen has a lattice pa-
rameter of a/A2. The separation between screens is s
5 a/2. The transverse resonance mode is expected to
peak at l1

(RFCC) 5 a/A2 ; 10.6 mm, and the fundamental
stacking mode is expected to peak at a ; 15 mm. The
results from simulations for a 5 15 mm and d
5 6.35 mm are shown in Fig. 10. Indeed, there appear
two peaks at l1

(RFCC) 5 10 and l2
(SFCC) 5 18 mm, respec-

tively. The mode near 18 mm has been observed
experimentally.6 The other mode near 10 mm was below
the studied wavelength region.

D. Propagation in the Š011‹ and Š111‹ Directions
The layers for a C lattice in the ^011& direction are shown
schematically in Fig. 11. The layers have rectangular
shapes with side length of a and aA2. Alternate layers
are laterally shifted by (a/A2). The separation between

Fig. 9. Cubic lattice with a 5 15 mm for various values of the
ratio d/a of sphere diameter to lattice constant, with d 5 4, 6.35,
7.5, and 8 mm.

Fig. 10. Simulation for ten layers of a FCC lattice. Note the
resonance mode l (RFCC) 5 10 mm and stacking mode l (SFCC)

5 18 mm. The peak at 18 mm has been observed
experimentally6 at about the same wavelength.
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Fig. 11. Schematic of a layered structure of C in the ^011& and
^111& directions. The layers in the ^011& direction have two pe-
riodicity constants: a and aA2; alternate layers are laterally
shifted and spaced apart by a/A2. In the ^111& direction, the
first and fourth layers have cubic structure with periodicity con-
stant a. The second and third layers have hexagonal structure
with periodicity constants of aA(3/2) and a/A2. The layers are
shifted with respect to each other. All layers are separated by
a/A3.

Fig. 12. Propagation in a cubic structure along the ^011& direc-
tion. The strongest peak is made of two overlapping modes l1

(RC)

and l1
(SC) at 30 mm. Weaker peaks are observed at l2

(RC)

5 20 mm and l2
(SC) 5 15 mm. The curve is a succession of

simulations with 1, 3, 10, and 14 layers.

Fig. 13. Propagation in a cubic structure along the ^111& direc-
tion. The strongest peak is made of two overlapping of hexago-
nal, l1

(RHX) and stacking, l1
(SC) modes at l 5 24 mm. The reso-

nance l1
(RC) 5 22.5 mm is attributed to a cubic screen, whereas

the peak at l2
(RHX) 5 30.5 mm is attributed to a hexagonal

screen. The peak at l 5 27.5 is generated by shifting the hex-
agonal layers with respect to each other.
layers was taken as s 5 a/A2. The results from the
simulation15 are shown in Fig. 12. Transverse resonance
peaks are expected at l1

(RC) ; a 5 20 mm and l2
(RC)

; aA2 5 30 mm. The first-order stacking modes ap-
pears at l1

(SC) ; 2a/A2 5 30 mm.
The layers for a C lattice in the ^111& direction are

shown schematically in Fig. 11. The first and fourth lay-
ers have a square-shaped structure with side length of a;
thus l1

(RC) ; 20 mm. The second and third layers have
hexagonal structures with two transverse resonances at
aA(3/2) 5 24 mm and (a/A2) 5 30 mm, respectively.
These two layers are shifted with respect to each another.
All layers are separated by a/A3 5 12 mm, and the stack-
ing mode (S) is expected at 24 mm. The results from
simulation15 are shown in Fig. 13. The strongest peak is
made of two overlapping hexagonal, l1

(RHX) , and stacking,
l1

(SC) , modes at l 5 24 mm. The resonance l1
(RC)

5 22.5 mm is attributed to a cubic screen, whereas the
peak at l2

(RHX) 5 30.5 mm is attributed to a hexagonal
screen. The peak at l 5 27.5 mm is generated by shift-
ing the hexagonal layers with respect to each other.

4. DISCUSSION AND CONCLUSIONS
In this paper we analyzed wave propagation through suc-
cessive stacks of thick capacitive screens. The basic idea
was that the wave propagation might be represented as a
stack of dispersive filters. The corresponding modes
were categorized as follows: transverse resonance mode
of a single screen and stacking modes between screens
(Bragg diffraction modes in the longitudinal direction).
The advantage of this interpretation was demonstrated
by using two simulation techniques: One technique em-
ployed an accurate commercial code15 that was corrobo-
rated by experiments. In the second technique the ex-
perimental dips could be accurately generated and
interpreted by using transmission line simulations.

We note that we are operating in the long-wavelength
regime where the wavelength is larger than any struc-
tural feature. For periodic metallic screens, we find that
at resonance, the induced-surface-charge-wave vector kp
obeys the relationship kt 1 K 1 kp 5 0; here kt is the
transverse wave vector of the incident electric field and K
is the wave vector of the screen. At normal angle of in-
cidence, a surface plasmon wave is launched when sin(u)
5 l/qa 2 (edem /ed 1 em)1/2 [ 0, where u is the angle with
respect to the normal. Here l is the propagating wave-
length, a is the lattice constant of the screen, q is an in-
teger signifying plasmon waves extending over more than
one period,3 ed and em are the dielectric constants of the
dielectric and the metal portions of the screen, respec-
tively, and typically (edem /ed 1 em)1/2 ; 1 for a perfect
conductor in air. Note that the polarization of the inci-
dent wave at normal incidence conditions is parallel to
the screen (i.e., a TE wave). Therefore the lowest-order
laterally propagating wave (along the metal surface) has
to be acoustic.17 The second-order propagating mode is
optical (nonzero frequency at zero wave number). Lat-
eral confinement of the plasmon wave means that 2kp
5 mK/q with m integer. Therefore, when kt 5 0 (or u
5 0), where k is the wave vector, the transverse reso-
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nance wavelength occurs at lc ; a if 2 5 m/q. This
means that the mode is leaky (i.e., can be radiated to and
from the periodic structure).17 Alternatively, a resonat-
ing capacitive screen may be viewed as contributing to
two effects: diffraction and lateral confinement. Dif-
fraction dictates that kt8 5 k 6 K where kt8 is the lateral
component of the diffracted wave. At normal incidence,
k has no lateral component and kt8 5 K. Lateral con-
finement dictates that 2kt8 5 mK with m 5 2 or higher
order of diffraction. In a direct analogy to dielectric op-
tical waveguides, the propagation of a mode along the
metal screen is dictated by the cladding material (the di-
electric surrounding the screen). In our case, refractive
index is n 5 1 and the wave number of the lateral com-
ponent is kt ; k. The resonance wavelength will also
obey l ; a. The difference between an inductive screen
and a capacitive screen at resonance is in the way the in-
cident energy is funneled out of the screen. The induc-
tive screen will transmit all the incident energy in a col-
linear propagation. The capacitive screen, however, will
reflect the energy back. Finally, one may observe that
the wave propagation in thick screens is like the propaga-
tion of an electromagnetic wave in coupled metallic
waveguides. The inductive screen has a dielectric core
with metal cladding, whereas the capacitive screen is an
antiwaveguide of the latter. Since the field is zero within
the metal, then at resonance the electric field just beyond
the screen may be either symmetric—namely, of the form
cos(K – r), with (K – r) being a dot product—or asymmet-
ric, namely, of the form sin(K – r), where r is r:(x, y). Ei-
ther mode will have a resonance wavelength at l ; a.

Our more ambitious goal was to analyze three-
dimensional metallo-dielectric photonic crystals by using
this method. Comparison between the experiments (Fig.
2) and commercial code simulations (Fig. 3) exhibit an ex-
cellent agreement. Our interpretive transmission line
approach (Fig. 4) produced a good agreement between the
experimental data and simulations as well, especially
when the wave was propagating along crystallographic
directions such as ^001& or ^011&. However, transmission
line theory does not account for lateral mismatch between
screens. The agreement between simulations and ex-
perimental data was made possible by introduction of a
structural phase factor for each screen to account for its
thickness and another phase factor to account for the lat-
eral displacement between screens. Yet when the propa-
gation is made along a more evolved crystallographic axis,
such as along the ^111& direction of cubic crystals, the
simple picture of modes becomes too complex, owing to
the large extent of mode mixing.

In summary, we have provided a simple way to inter-
pret all transmission resonance in stacked, thick capaci-
tive screens when propagation occurs along specific crys-
tallographic axes.

APPENDIX A: TRANSMISSION LINE
THEORY FOR A SUCCESSION OF SCREENS
Transmission line theory for the calculation of reflectance
and transmittance of thin inductive and capacitive metal
screens has been developed previously.18 A short descrip-
tion is given in Ref. 16. The original scheme was later
corrected19 and will be used here with some modifications.
We start with a simulation15 of a single metallo-dielectric
capacitive screen. The output of these simulations re-
sults in three parameters: the resonance frequency v0 ,
the resonance bandwidth Dv, and the metal loss param-
eter a. A single screen is described by shunt
impedance.19 Therefore for a lattice constant g,

Y~l! 5 1/@a 1 ~iV~l!/2v1NDv!#. (A1)

Here

V~l! 5 g/lv0 2 lv0 /g, (A2)

N 5 ~n1
2 1 n2

2!. (A3)

The wave propagates in a medium with refractive index
n1 , and the corresponding value for the dielectric portion
of the screen is n2 . The resonance frequency v0 , its
width Dv, and the loss parameter a, are all taken from
the simulation of a single screen.

The single-screen simulations are followed by trans-
mission line theory of stacked or cascaded screens.20 The
incident and reflected waves are related by a 2 3 2 ma-
trix M to the transmitted and backward-traveling waves,
b1 5 m11a2 1 m12b2 and a1 5 m21a2 1 m22b2 . For a2
5 0, that is, for the case with no backward-traveling
wave, the ratio between the reflected wave b1 and inci-
dent wave a1 is b1 /a1 5 m12 /m22 . The ratio between
the transmitted wave b2 and the incident wave a1 is
b2 /a1 5 1/m22 . The transmitted intensity is calculated
from the (2, 2) element of the resulting matrix.

The matrix MC representing one layer has the ele-
ments

mc11 5 ~2Y/2 1 1 !exp@2iF~l!#, mc12 5 2Y/2,

mc21 5 Y/2, mc22 5 ~Y/2 1 1 !exp@1iF~l!#. (A4)

The matrix MS represents the propagation in between
screens at separation s:

ms11 5 exp@2i2psn1 /l 2 iF~s!~l!#, ms12 5 0,
(A5)

ms21 5 0, ms22 5 exp@i2psn1 /l 1 iF~s!~l!#.
(A6)

In a departure from the standard transmission line
theory, we introduce a structural phase F(l) to account
for the screen thickness and to accommodate lattice pa-
rameters, which are more complex than for a typical cubic
lattice.

A multilayer metallo-dielectric crystal is therefore rep-
resented by a product of matrices: M 5 @MC#
3 @MS#...@MC#. Thus for a cubic crystal we get

MC~l!cubic 5 @MC~l!MS1~l!# fMC~l!, (A7)

where f is the number of layers plus 1 and s1 is the sepa-
ration between the layers. As mentioned above, the in-
put transverse resonance frequency v0 is taken from
simulations for a single screen, and all refractive indices
are set to unity. The phase is F(l)cubic
5 tan21@ld/pn2Weff

2 # 1 c1 , where 2Weff 5 (a 2 d)/A2 is
the effective opening in the screen (formed by an equiva-
lent circular opening), d is the metal sphere’s diameter, a
is the lattice constant, n2 is the refractive index of the
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screen’s dielectric material, and c1 5 (A3)p/2 is a phase
constant independent of the wavelength. In addition,
Fcubic

(s) (l) 5 0. The BCC crystal is represented by

MC~l!BCC 5 @MC~l!MS2~l!# fMC~l!, (A8)

where the separation s between screens is now one half of
the value used for the cubic crystal. The transverse reso-
nance frequency is the same for all screens. The phases
for the BCC crystal are, for the individual screen,

F~l!BCC 5 tan21@ld/pn2Weff
2 # 1 c1 5 F~l!C ,

FBCC
~s ! ~l! 5 c1 5 ~A3 !p/2.

The results of the calculations are shown in Fig. 4.
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