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Parallel Nonlinear Optimization:
Limitations, Opportunities, and Challenges

Abstract

The availability and power of parallel computers is having a significant impact on how large-scale prob-
lems are solved in all areas of numerical computation, and is likely to have an even larger impact in the
future. This paper attempts to give some indication of how the consideration of parallel computation is
affecting, and is likely to affect, the field of nonlinear optimization. It does not attempt to survey the
research that has been done in parallel nonlinear optimization. Rather it presents a set of examples,
mainly from our own research, that is intended to illustrate many of the limitations, opportunities, and
challenges inherent in incorporating parallelism into the field of nonlinear optimization. These examples
include parallel methods for small to medium size unconstrained optimization problems, parallel methods
for large block bordered systems of nonlinear equations, and parallel methods for both small and large-
scale global optimization problems. Our overall conclusions are mixed. For generic, small to medium
size problems, the consideration of parallelism does not appear to be leading to major algorithmic innova-
tions. For many classes of large-scale problems, however, the consideration of parallelism appears to be
creating opportunities for the development of interesting new methods that may be advantageous for
parallel and possibly even sequential computation. In addition, a number of large-scale parallel optimiza-
tion algorithms exhibit irregular, coarse-grain structure, which leads to interesting computer science chal-
lenges in their implementation.






1. Introduction

Parallel computation is having a significant impact upon how large scale scientific computation is
performed. To solve the large scientific problems of interest to scientists and engineers today, very
powerful computers are necessary, and it appears that many if not all of the most powerful scientific com-
puters of the future (as well as at present) will be parallel computers. To scientific computation research-
ers, one of the most interesting aspects of this transition from sequential or vector computers to parallel
computers is that new algorithm development may be required to use parallel machines efficiently.

In this paper, we attempt to give some indication of how the move to parallel computers is affect-
ing, and is likely to affect, the field of nonlinear optimization. Our focus is on whether, and where, the
use of parallel computers is leading to interesting new algorithmic approaches for nonlinear optimization.
To address this issue, we try to point out some of the key limitations, opportunities, and challenges in
developing parallel algorithms for nonlinear optimization problems. Our overall conclusion is mixed: in
some portions for nonlinear optimization, primarily generic methods for small to medium scale problems,
the consideration of parallelism does not appear to be leading to major algorithmic changes or challenges,
while in other areas, primarily classes of large-scale optimization problems, there appear to be very
interesting opportunities and challenges that arise from the consideration of parallelism.

On the parallel architecture side, our focus in this paper is on moderately to massively parallel
MIMD computers. This broad class of machines appears to be the main architectural direction that the
parallel computation field is pursuing for general purpose, high performance computation. Section 2 gives
a brief overview of parallel computation that should be sufficient for the purposes of this paper. We
briefly summarize current trends in parallel computer architectures, and the relationship between parallel
computers and the needs of nonlinear optimization methods. This section is by no means intended to
serve as a tutorial in parallel computation; some references that fulfill this role include {1,18,29].

In nonlinear optimization, our focus in this paper is on continuous, nonlinear problems. These
include solving unconstrained and constrained optimization problems, and systems of nonlinear equa-
tions. (We assume that the reader of this paper is familiar with the basics of nonlinear optimization as
found in [11,14,17].) It is not, however, our intention in this paper to present a survey of parallel algo-
rithm research in these areas. Rather we will present a small number of examples, primarily from our
own research, that illustrate the limitations, opportunities, and challenges in parallel nonlinear optimiza-
tion. Section 3 discusses parallel methods for unconstrained optimization problems. It primarily illus-
trates the limitations in developing novel generic parallel optimization algorithms for moderate size prob-
lems. Section 4 discusses parallel methods for a special class of large scale problems, block-bordered
systems of nonlinear equations. This problem class illustrates the possibility for the consideration of
parallelism to lead to the development of new methods that are advantageous on sequential as well as
parallel computers. Then in Section 5 we describe parallel methods for large global optimization prob-
lems. Section 5 illustrates that large-scale parallel optimization algorithms can be particularly interesting
and challenging because they are often irregular, coarse-grain algorithms that are challenging both to
develop and to implement. Finally, Section 6 briefly summarizes our views of the limitations, opportuni-
ties, and challenges in parallel nonlinear optimization.

This paper is based upon lectures given at the NATO Advanced Research Institute on Algorithms
for Continuous Optimization at Il Ciocco, Italy in September 1993. I thank the organizers and partici-
pants of the institute for the stimulating environment that it provided. The parallel optimization research
described in Sections 3-5 that was performed at the University of Colorado is all joint work; the
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participants in various projects include Richard Byrd, Tom Derby, Cees Dert, Betty Eskow, Humaid
Khalfan, Bart Oldenkamp, Jerry Shultz, Andre van der Hoek, Alexander Rinnooy Kan, Chung-Shang
Shao, Sharon Smith, and Xiaodong Zhang.

2. Parallel Computation Background, with Relations to Parallel Optimization

The primary motivation for parallel computation is the continuing need for faster and larger com-
puters, in terms of computational speed, memory and input/output capacity. While computer speeds and
memory sizes have continued to increase dramatically, many important scientific problems still require
orders of magnitude greater speed and/or memory than is currently available. For decades, these
increases in speed and memory were attained by building ever faster and larger sequential electronic com-
puters. However, the evolution of these computers has now reached the stage where further improve-
ments are constrained by fundamental physical limits (e.g. the speed of light, the sizes of atoms) and the
limitations these place upon basic machine characteristics such as minimal feature sizes, minimal dis-
tances between components, and maximal rates of heat dissipation. Also, very powerful
processor/memory chips recently have become widely and cheaply available. These two trends, the lim-
its of sequential computation speed and the availability of commodity chips, along with the continuing
need for vastly increased computing power, are largely responsible for the greatly increased production of
parallel computers in the last five years.

The challenges in developing and effectively utilizing parallel computers come from many sides:
hardware, systems and language software, and applications algorithms and software. The discussion of
parallel applications algorithms for optimization is the main focus-of this paper, in Sections 3-5, and a
few comments on parallel systems and language support are included in these sections. This section
briefly discusses parallel architectures, concentrating on those that appear to be of greatest interest to non-
linear optimization. To motivate this, we first briefly consider the motivation and needs for parallel
optimization. T

2.1 Possibilities for Parallelism in Optimization

Parallelism is of interest in optimization because many optimization problems are expensive to
solve. To determine what sort of parallel computers may be of interest, it is useful to examine where the
expense in nonlinear optimization algorithms comes from. There are at least four different possible
sources:

1. The nonlinear functions, constraints, and/or derivatives may be expensive to evaluate.

2. The number of variables or constraints, and hence the cost of each iteration aside from function
and derivative evaluation, may be large.

3. Many evaluations of the objective function, constraints, or derivatives may be required.

4. Many iterations may be required.

These in turn lead to at least three levels at which one may consider introducing parallelism into an
optimization algorithm:
1. Parallelize each evaluation of the objective function, constraints, and/or their derivatives.
2. Parallelize the linear algebra involved in each iteration.
3. Parallelize the optimization process at a high level, either to perform multiple function, con-
straint, and/or derivative evaluations on multiple processors concurrently, and/or to reduce the
total number of iterations required.
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All of these are important ways to create parallel optimization methods, and any may be the best
way to utilize parallel computation for a given problem. In this paper, however, we are mainly interested
in the third possibility, parallelizing the optimization process, since this is the domain of optimization
researchers. The second possibility, parallelizing the linear algebra, may be the concern of optimization
researchers if the linear algebra is particular to optimization algorithms. The first possibility is likely to
be outside the domain of optimization research; for example if the objective function evaluation involves
the solution of a system of differential equations, this option would entail creating or using a parallel dif-
ferential equations solver.

As will be seen in Sections 3-5, parallelizing the optimization process in a nonlinear optimization
algorithm is likely to lead to a ‘‘coarse-grain’’ parallel algorithm. By this we mean an algorithm where
each processor performs a significant amount of computation in between each point where it communi-
cates or synchronizes with other processors. For example, if each processor performs at least one function
evaluation between communication points, and these function evaluations are even moderately expensive,
a coarse-grain parallel algorithm results. Such parallel algorithms are generally well suited to MIMD
computers, and less well suited to SIMD computers or vector computers. This is one reason why our
brief survey of parallel architectures in Section 2.2 concentrates on MIMD computers.

2.2 Brief Survey of Parallel Architectures

The main classes of parallel computers that are currently used for scientific computation are shared
and distributed memory MIMD multiprocessors, and SIMD processor arrays. We briefly discuss the key
characteristics of these types of computers in this section, and their main advantages and limitations. We
omit discussion of some other architectures, including data-flow computers and systolic arrays, that are
not currently in wide use for scientific computation.

An MIMD (Multiple Instruction Multiple Data) computer is a computer with multiple processors
that can execute different instructions on different data at the same time. This means that such a com-
puter can execute multiple, similar or dissimilar tasks concurrently. All MIMD computers include multi-
ple processors (arithmetic and instruction processing units) and some method of communicating between
them. In a shared memory multiprocessor, the processors all share access to a global memory, and com-
municate by reading and writing data residing in this memory. Generally, the shared memory is large,
many million bytes. In addition, the processors generally each have much smaller (typically 10,000-
100,000 byte) local memories. In a distributed memory multiprocessor, there is no shared memory.
Instead, each processor has a large local memory (typically 1-100 million bytes), and the processors com-
municate by sending messages to each other over a network that connects them.

Shared memory muitiprocessors have two fundamental advantages over distributed memory mul-
tiprocessors. First, communication via the shared memory is usually considerably faster than communi-
cation by messages in a distributed memory multiprocessor. This enables a wider range of parallel algo-
rithms, in particular those with higher communication/computation ratios, to run efficiently. Secondly,
shared memory machines generally are easier to program and utilize, since the programmer needs to give
less attention to communication and data partitioning. The main limitation of shared memory multipro-
cessors is that they appear difficult to build with large numbers of processors. The difficulty is the cost
and complexity of providing all the processors with uniform, fast access to the global shared memory.
Currently, shared memory multiprocessors are being built with two to about 32 processors by many ven-
dors including Cray, but only distributed memory architectures are providing computers with hundreds or
thousands of processors. (An in-between class, virtual shared memory multiprocessors, is addressed
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shortly.) One rather different and interesting alternative for providing a shared memory multiprocessor
that may scale effectively is the pipelined instruction and memory paradigm that is embodied in the Tera
computer currently under development; the description of this architecture is beyond the scope of this

paper.

Among distributed memory multiprocessors, one can currently identify at least three subclasses:
"pure” distributed memory multiprocessors, networks of computers, and virtual shared memory multipro-
cessors. In a pure distributed memory multiprocessor, each processor’s memory has its own address
space, and all communication is by message passing (at least at the hardware level). The main advan-
tages and disadvantages of pure distributed memory multiprocessors are exactly the reverse of those for
shared memory multiprocessors. The main advantage is that pure distributed memory multiprocessors
are relatively easy to construct and to scale to hundreds or thousands of processors; machines of this size
have been offered by several vendors including IBM, Intel, Meiko, NCUBE, and Thinking Machines.
Typically each processor is powerful, with roughly the capability of a modern scientific workstation. The
interconnection network is generally a hypercube or a two-dimensional grid; this will not be of impor-
tance in this paper. The first main disadvantage of pure distributed memory multiprocessors is that com-
munication is generally quite slow, with a typical ratio of the time to communicate a number to the time
to do one floating point operation being one thousand. This means that parallel algorithms must have
fairly coarse granularity to run efficiently on these machines. A second key disadvantage is that these
machines are rather difficult to program, due to the need to explicitly partition data structures among the
processors and manage communication. Current research in parallel programming languages, such as the
High Performance Fortran and Fortran D projects ([15,36]), is attempting to diminish or remove the latter
disadvantage.

Networks of computers can function as distributed memory multiprocessors. All that is needed is
some mechanism for communicating between multiple machines on the network, a facility that is pro-
vided by most modern operating systems. In comparison to pure distributed memory multiprocessors,
using a networks of computers as a multiprocessor has the advantages that it can utilize existing computa-
tional resources, and that the ratio of hardware cost to floating point speed is lower. The primary disad-
vantage is that communication is even slower than on a pure distributed memory multiprocessor. Gen-
erally this means that parallel algorithms must have very coarse granularity (thousands of computations
between communication points) to be efficient in this environment.

Virtual shared memory multiprocessors are a recently introduced class of computers that may be
considered to reside between shared and pure distributed memory multiprocessors. Physically, they are
distributed memory machines: each processor has its own memory and there is no global shared memory.
However, there is a single address space for all the memories, and any processor may directly access any
memory location in any processor’s memory. If the access is not to the local memory, the data is
retrieved by the hardware. As expected, the advantages of this architecture lie between those of shared
and pure distributed memory machines. Communication costs are expected to be in between the two
extremes, and the programmer may not have to manage the placement of data, although there may be
advantages to doing so. A key question is the scalability of this class of architectures, i.e. how many pro-
cessors can be supported effectively. Kendall Square Research has produced such a machine with up to
128 processors; it remains to be seen whether efficient virtual shared memory machines can be built with
considerably higher numbers of processors.

Finally, a SIMD (Single Instruction Multiple Data) computer is a computer with multiple proces-
sors that all can execute the same instruction on different data at the same time. This means that such a
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computer can execute a given program segment simultaneously (in lockstep) on multiple processors using
multiple data sets, so long as the program segment contains no data dependent branches. One addition to
this model that is generally supported is that some processors may do nothing ("mask") rather than exe-
cute a given instruction. Architecturally, such computers consist of a control processor and its memory,
which generates the sequence of instructions that all processors follow; multiple processors, each with a
local memory, that execute these instructions on their data; and a network that connects all the memories
and allows communication between them. A number of such computers have been built by several ven-
dors including MassPar and Thinking Machines. Their advantages are that they are relatively easy to
build with large number of processors, and to program. Their primary disadvantage is that the SIMD pro-
gramming model has limited applicability. For example, it would not usually be possible to evaluate a
nonlinear function f(x) at a different point x simultaneously on each processor of such a computer,
because most nonlinear function evaluation codes include data dependent branches.

2.3 Summary and Relation to Optimization

Among the parallel computers available today, the ones that appear suitable for general purpose
optimization algorithms are the various types of MIMD machines: shared memory multiprocessors, vir-
tual shared memory multiprocessors, distributed memory multiprocessors, and networks of computers
used as multiprocessors. In considering these four classes of machines, it is important to be aware of
several differences between them. First, the ratio of communication speed to (floating point) computa-
tional speed generally increases monotonically in the order that the classes are listed above. Second, the
ease of producing multiprocessors of these types arguably also increases monotonically in the order they
are listed. Third, the ease of programming these machines arguably decreases monotonically in the order
they are listed above. '

Because many parallel optimization algorithms have very coarse granularity, they are often well
suited to any type of MIMD computer. On the other hand, the SIMD architecture is not general enough
for most parallel optimization algorithms, particularly those involving multiple, concurrent evaluations of
an arbitrary nonlinear objective function, although it may be well suited to parallelizing the linear alge-
braic calculations in optimization algorithms. For these reasons, the remainder of this paper is oriented to
parallel computation on MIMD multiprocessors, usually without being specific about the type of MIMD
multiprocessor.

3. General Purpose Parallel Methods for Small to Medium Size Problems -- Unconstrained Optim-
ization

This section illustrates some of the opportunities and limitations that arise in creating general pur-
pose parallel algorithms for small to medium size optimization problems. It does so by considering the
example of the unconstrained optimization problem

minimize f(x):R"—R .
XeR*

The most commonly used approach for solving unconstrained optimization problems when the number of
variables is not too large, say less than 100, is probably the BFGS quasi-Newton method. In this section
we will discuss the opportunities and limitations in creating parallel quasi-Newton methods. This section
draws extensively on material in [7].
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Like all methods for finding local minimizers, quasi-Newton methods are iterative. Given a current
iterate x., the function and gradient values at this iterate, and a current Hessian approximation A., the
basic steps of a quasi-Newton method are:

1. Calculate the search direction d.: Solve A, -d, =-Vf (x.) ford,.
2. Line search: Find a A>0 for which f (x, +Ad,) < f (x.).
3. Calculate Vf (x, +Ad.) and decide whether to stop; if not

4. Update the Hessian approximation: A, =A, + rank-two matrix

The BFGS method corresponds to a specific choice of the rank-two matrix in step 4, but this formula is
not important to the discussion in this section. Also, there are various implementations of steps 1 and 4
that are mathematically equivalent but involve different methods of storing and updating A, and solving
for d.. These variants have interesting consequences for parallelism that are discussed later in this sec-
tion.

The main opportunities for using parallelism in existing or new quasi-Newton methods correspond
to the three general uses of parallelism in optimization algorithms that were mentioned in Section 2.1:

1. One can parallelize the individual evaluations of f (x) or Vf (x) in steps 2 and 3 above.
2. One can parallelize the linear algebraic calculations in steps 1 and 4 above.

3. One can perform multiple evaluations of f (x) (or V£ (x)) concurrently, either within the algo-
rithmic framework above, or by devising new algorithms.

The remainder of this section discusses each of these possibilities briefly, and then draws some overall
conclusions.

3.1 Parallelizing Function or Derivative Evaluations

As mentioned in Section 2.1, parallelizing the individual evaluations of f (x) may be a very effec-
tive way to utilize parallel computers in optimization algorithms if the function evaluations are expensive
and can be parallelized effectively, but this endeavor is outside the domain of optimization algorithm
research. Parallelizing the gradient evaluations is a little more interesting to discuss since there are
several possibilities. If the gradient is evaluated analytically then the same comments apply: this may be
an effective use of parallelism but is outside the optimization domain. If the gradient is evaluated by
finite differences, e.g. by the formula

Vf(xc)i ~ S (xc +hiZ,i)-f(XC) , i=1,n G.1)

where e; is the i-th unit vector, then a trivial use of parallelism is to perform the n additional, indepen-
dent function evaluations f (x. + h; e;) concurrently. If n is considerably larger than the number of pro-
cessors and function evaluation is expensive, this may be all that is necessary to effectively parallelize a
quasi-Newton method that uses finite difference gradients. Finally, if the gradient is evaluated by
recently developed automatic differentiation techniques ([21]), there are several possibilities. If the for-
ward version of automatic differentiation is used, analogous possibilities exists as for finite difference
gradients. If the reverse mode is used, utilizing parallelism appears to be more difficult and is a topic of
current research. In summary, parallelizing individual function or gradient evaluations may be an effec-
tive way to utilize parallelism for quasi-Newton methods, but it does not involve any change in the optim-
ization algorithm.
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3.2 Parallelizing Linear Algebraic Calculations

Next we turn to the issue of utilizing parallelism during the linear algebraic calculations of a quasi-
Newton method. This may be desirable if the number of variables is reasonably large. While this topic
also may appear to be outside the domain of optimization research, it is not entirely, because there are
several ways of performing the algebraic calculations in steps 1 and 4 that are mathematically equivalent
but have interesting differences and tradeoffs with respect to their operation counts, numerical properties,
and parallelizability. For example, when the BFGS update (or any other rank-two update that preserves
symmetry and positive definiteness) is used, the four main possibilities are:

1. Update A, to A; by adding a rank-two matrix to A ; each calculation of d, requires a Cholesky
factorization of A, and two triangular solves.

2. Update a Cholesky factorization of A, to a Cholesky factorization of A, by adding a rank-one
matrix to the Cholesky factor of A, and then reducing this updated matrix back to lower tri-
angular form by a sequence of 2n -2 Givens’ rotations; each calculation of d,. then requires two
triangular solves.

3. Update (A.)! to (A,)"! by adding a rank-two matrix to (A.)!; each calculation of d, requires a
matrix-vector multiplication.

4. Update the (non-triangular) factorization B, BT of (A.)"! to a (non-triangular) factorization B BT
of (A,)~! by adding a rank-one matrix to B, to obtain B; each calculation of d,. then requires
two matrix-vector multiplications.

Options #1 and #2 maintain approximations of the Hessian, while options #3 and #4 maintain the inverses
of these approximations. Options #2 and #4 keep the approximations in factored form, while options #1
and #3 keep them in unfactored form. For a detailed review of these possibilities, see [11] or [7]. Here
we just briefly review their comparison and then discuss the interesting issue from the viewpoint of this
paper, which is the impact that the consideration of parallelism has had upon the choice between these
options. This topic is also covered in more detail in [7].

Of the four options given above, the most straightforward, #1, requires O (n3) operations, while the
remainder require O (n?2) operations. Thus #1 is not generally used in practice. Of the remainder, #3 is
the cheapest, but #2 has been used in most production codes, because it implicitly retains positive
definiteness of the Hessian approximation by maintaining a Cholesky factorization of it. This in turn
guarantees that all the search directions d,. are descent directions, which is very important to optimization
algorithms. It had long been feared that the matrices generated by option #3 might lose positive
definiteness due to finite precision error, and then possibly generate non-descent directions, and for this
reason it has not often been used in codes.

However the consideration of parallelism introduces a conflicting factor into the comparison
between options #2 and #3, because option #3 is much more conducive to parallelism than option #2.
Option #3 requires only matrix-vector operations (a rank-two update and a matrix-vector multiplication),
which can be parallelized very nicely. On the other hand, option #2 is based upon Givens’ rotations and
triangular solves, which require sequences of vector-vector operations on vectors ranging from length 2 to
n and parallelize very poorly.

These reasons have motivated several researchers to examine whether there really is a difference in
the numerical performance of BFGS methods based on option #2 versus option #3. Tests by [7,19,27]
have found negligible differences in the iterates produced, over broad sets of problems. Given the



considerable advantage of option #3 with respect to parallel implementation, it therefore appears that
option #3 is preferable to option #2, at least on parallel computers. This is an interesting example where
the consideration of parallelism has led to the re-examination of a part of a basic optimization algorithm,
with interesting conclusions.

Finally, it should be noted that option #4 has rarely been considered, but is closely related to a
method proposed by Han [20] for use in parallel computation. Option #4 has some attractive properties:
like option #3, it parallelizes very well, and like option #2, it implicitly maintains positive definiteness by
keeping a factorization of the matrix. However, it is more expensive than option #3. Thus, as long as
option #3 does not have numerical problems, which appears to be the case, it would seem to be the prefer-
able option for parallel (and probably also sequential) computation. Otherwise, option #4 would seem to
be an attractive choice for parallel computation.

In summary, the consideration of parallelism has led to an interesting re-examination of the imple-
mentation of the linear algebraic steps in quasi-Newton methods. Note, however, that these options for
parallelism do not involve any change in the basic optimization method, only in the details of its imple-
mentation.

3.3 Performing Multiple Function or Derivative Evaluations Concurrently

Last we turn to the third possibility for parallelizing a quasi-Newton method, the utilization of mul-
tiple, concurrent function or derivative evaluations. We only will consider the case when each function
evaluation is performed by one processor, and the gradient is evaluated by finite differences (equation
3.1}, but the points that this discussion makes are more general.

To motivate this discussion, consider the overall pattern of function and derivative evaluations in a
standard quasi-Newton algorithm. Each line search requires one or more function evaluations, and is fol-
lowed by one gradient evaluation. Extensive computational experience shows that the average number of
function evaluations per line search is less than 1.5. Thus a typical sequence of function and gradient
evaluations for three iterations of an optimization algorithm might be

fGu, f&x12), Vi), fxa), Vf(xa1), flxesn), Vixs) . (3.2)

Here x; ; denotes the j-th point tried in the line search at the i-th iteration. (In some line search algo-
rithms, the gradient is evaluated at a small percentage of unsuccessful points as well, but this does not
affect our conclusions and so for simplicity we ignore this possibility.)

As stated previously, if the gradients in (3.2) are evaluated by finite differences, the gradient
evaluation can make excellent utilization of parallelism since it involves n independent function evalua-
tions that can be performed concurrently. However, if we assume that each function evaluation is per-
formed by just one processor, and we use a standard line search, the function evaluations in (3.2) present
a problem for parallelism. This is because in a standard line search, the selection of the next candidate
point x; j,; depends upon the value of f (x; j), and thus the evaluation of f (x; ;) must be concluded
before the evaluation of f (x; j4+1) is begun. Thus, if we implement a standard line search method on a
parallel computer and don’t parallelize function evaluations, then while one processor performs a function
evaluation, all the others processors will be idle.

This observation has led to the suggestion of developing new parallel line search algorithms that
evaluate the objective function at multiple points concurrently. For example if there are p processors, one
could pick p points along the search direction, evaluate f (x) at all of them (one per processor), and if any



9.

results in a decreased function value, use the point with the lowest function value as the next iterate. This
parallel line search suggestion fully utilizes the multiple processors during the line search’s function
evaluations. Note also that it is the first suggestion we have discussed that actually changes the optimiza-
tion method, i.e. the iterates produced, instead of just parallelizing it or possibly changing it due to finite
precision effects.

But the property of fully utilizing all processors does not necessarily make a parallel line search
algorithm desirable. To assess whether it is, one needs to consider two issues. First, one needs to ask
whether the extra evaluations are useful. That is, is the parallel line search algorithm faster on a parallel
machine than a straightforward implementation of a standard line search method on the same machine?
The answer to this question is probably yes for most problems. All that is needed is that the extra function
evaluations in the line searches lead to some decrease in the total number of iterations required to reach
the minimizer, and limited experiences indicates that this is usually so.

Secondly, one needs to consider whether there are better alternatives. In this case, an alternative is
to use ‘‘speculative gradient evaluation’’. By this, we mean that when a function evaluation is performed
in the line search, the remaining p—1 processors are used to evaluate p—1 components of the finite differ-
ence gradient at this new point. If the function value at the new point is too high and the point is rejected
(as with x,; above), this work is wasted unless some new way is found to use these gradient components
at the rejected point. If however the function value is acceptable, as it will be roughly 60-80% of the
time, then the speculative gradient evaluation has enabled us to do work on otherwise idle processors that
we would otherwise have to do next. Thus, it has saved us time in the parallel implementation. To illus-
trate this, define a concurrent function evaluation step as one where some number between 1 and p of the
processors do function evaluations while the remaining processors are idle. Then for the sequence (3.2),
if n =25 and p = 16, the number of concurrent function evaluation steps is 10 for the straightforward
implementation (1 for each function evaluation and 2 for each gradient evaluation) and 7 for the specula-
tive gradient evaluation version (1 for each combined function/partial-gradient evaluation and 1 to evalu-
ate the remaining 10 components for each gradient). ‘

So, to assess parallel line search algorithms, one needs to compare them with parallel speculative
gradient evaluation algorithms. This can in part be done analytically. The costs of the parallel line search
and speculative gradient evaluation algorithm in concurrent function evaluation steps are easy to express.
(We are continuing to assume that gradient evaluation is by finite differences.) For the parallel line
search algorithm, assuming the best case where an acceptable lower point is always found among the p
candidates, the number of concurrent function evaluation steps is

( 14 %} ) *t,
where It, is the number of iterations required by the parallel line search method. For the speculative gra-
dient evaluation method, the number of concurrent function evaluation steps is

(&{ﬂ-gl] ) *It;

where It; is the number of iterations required by the standard sequential line search method, and (1+9) is
the average number of function evaluations per line search. Thus the parallel line search will be superior
if
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For the example above (n = 25, p = 16), if 8 = 0.3, this would require (It,)/(Its) < 0.77. As another
example, if n = 100, p = 16, and & = 0.3, the parallel line search algorithm would be superior if
(Ity)/(Its) < 0.91. If p<n+1, the parallel line search algorithm is superior if (Iz, )/ (It;) < (5+1)/2.

Unfortunately, researchers who have proposed parallel line searches do not seem to have con-
sidered the comparison of their methods to speculative gradient methods, or to have examined whether
their methods satisfy (3.3) for various problem sets and values of p. Our intuition is that it will be
difficult to create parallel line search algorithms that satisfy (3.3), especially if n/p is not too large. The
main reason for this hypothesis is that asymptotically, the first point tried in the standard line search at
each iteration is essentially the best point along this line, and so the extra function evaluations are of little
or no help. Thus, we suspect that the fairly mundane option of parallel speculative gradient evaluation
~ may be preferable to new parallel line search algorithms, under the assumptions that function evaluations
are sequential and gradient evaluations are made by finite differences. Clearly, further research is needed
to assess this. The main points of this subsection are that it may be difficult to construct new parallel
algorithms for generic, small to moderate sized problems that are superior to intelligent parallel imple-
mentations of standard methods, and that one must consider the alternatives when assessing new methods.

3.4 Conclusions and Discussion

The discussions in this section illustrate the limitations in the development of parallel algorithms
for small to medium sized, generic optimization problems. Our opinion is that at least so far, the con-
sideration of parallelism has not led to the development of exciting new generic optimization methods for
small to medium size unconstrained optimization problems. Instead, the capabilities of parallel comput-
ers have best been utilized by parallelizing existing sequential algorithms in ways that do not affect the
algorithms at the optimization level. These include parallelizing the individual function evaluations,
parallelizing the linear algebraic operations, and using speculative derivative evaluations. We consider it
likely that similar comments will be true for algorithms for small to medium size constrained optimiza-
tion problems: the use of parallelism may not lead to the discovery and use of truly novel optimization
algorithms, although one may be able to utilize parallel computation effectively by simply parallelizing
standard sequential algorithms.

The above statements are not meant to imply that there hasn’t been interesting research on new
- generic parallel algorithms for small to medium sized unconstrained optimization problems. Besides the
use of parallelism in line searches, some interesting work has included new quasi-Newton methods for
parallel computation ([38]) and the use of partial Hessian information ([8]). So far, however, these new
methods do not appear to have had a large practical impact. There has also been interesting research on
new derivative-free methods for unconstrained optimization that are especially well suited to parallel
computation ([12]). This research may well have an important practical impact for the special problem
class for which it is intended, namely problems with very small numbers of variables.

On the other hand, once one considers large-scale problems, there are many opportunities for the
development of interesting new parallel optimization algorithms, including possibilities that superior
sequential methods may be discovered through this process. The remainder of this paper illustrates this in
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the contexts of nonlinear equations and global optimization. There are also examples of interesting new
parallel algorithms for large-scale unconstrained optimization, and we mention one very briefly. Nash
and Sofer [25,26] have developed new block truncated Newton methods that are well suited to parallelism
because they utilize p gradient values at each step, as opposed to one gradient value per step in the stan-
dard truncated Newton method. The new methods are significantly different than standard truncated
Newton methods: in a standard truncated Newton method, a quadratic model is minimized over a sub-
space that is expanded by dimension one at each inner iteration, whereas in the block method, the sub-
space is expanded by dimension p at each inner iteration. This results in considerably different
sequences of iterates. Preliminary tests by Nash and Sofer show promising results for this approach.

4. Parallel Methods for Large Problems with Special Structure -- Block Bordered Nonlinear Equa-
tions

This section illustrates the opportunities that the consideration of parallelism can provide for the
creation of new methods for large-scale optimization problems with special structure. It does this by
presenting one example, algorithms for the solution of block bordered systems of nonlinear equations.
The material in this section is based upon [39].

Block bordered nonlinear equations are a class of large, sparse nonlinear equations that occur in
many applications including VLSI design and structural engineering. Algebraically, they have the fol-
lowing form. The n variables and equations are grouped into g+1 subsets, xy, ..., x;41 and fy, ..., fg+1,
where for each i, x; and f; have the same number of components. Using this notation, the nonlinear sys- -
tem of equations has the form ‘

fiti, xg+)=0, i=1,..,q9, (4.1a)

Faer(xy, ey Xg4) =0 . (4.1b)

That is, each set of equations except the last depends only upon an ‘‘internal’’ set of variables x; and a
‘‘linking’’ set of variables xz4;, while the final “‘linking”’ set of equations f; involves all the variables.
A common situation where this block bordered structure arises is in partitioning equations based upon a
physical grid. If the variables correspond to values at the grid points, the equations correspond to relation-
ships between values at neighboring grid points, and one partitions the grid into subregions and intro-
duces artificial linking variables at the boundaries of the partition, a block bordered structure results. In
this case, x;, i=1," -+ g correspond to the variables within each subregion and x,; corresponds to the
artificial variables.

The Jacobian matrix of (4.1) has th_e form

Ay B,
A, B>
: 4.2
" A, B
Ci Cy.. CZ !

Here the square matrices A; are the derivatives of f; with respect to x;, the square matrix P is the deriva-
tive of fy.1 with respect to x,41, and the rectangular matrices B; and C; are the derivatives of f; with
respect to x,4 and f,,; with respect to x;, respectively. The matrix (4.2) is referred to as a ‘‘block-
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bordered’’ matrix, from whence the problem class gets its name.

A standard way to solve (4.1) is to apply Newton’s method with a line search or trust region. This
results in solving a linear system of equations involving a matrix of the form (4.2) at each iteration. We
will refer to this approach as the “‘explicit method”’, for reasons that soon will become clear. An impor-
tant cost of this method is the factorization of the Jacobian at each iteration. Assuming there is no pivot-
ing between blocks, each factorization involves the factorization of each block A;, i = 1,--- ,q, along
with the modifications of B; and C;. These g steps can be performed independently of each other.
Finally it involves the formation and factorization of the matrix

P=P-YCA™lB . A (4.3)

=

The implicit method that is discussed next can be motivated by considering the costs of the factori-
zation of (4.2) on a parallel computer. On a parallel computer, the first g steps of the factorization, fac-
toring the diagonal blocks A; and modifying B; and C;, parallelize almost perfectly assuming the g sets
of blocks are partitioned equally among the processors. The final step, assembling and factoring P, can
be performed on one or several processors, but is likely to be a bottleneck in either case. The implicit
method attempts to do more of the first type of operation, which parallelizes almost perfectly, and less of
the second type.

The practical implicit method is derived from a ‘‘pure’’ implicit approach to solving (4.1). In this

- approach, each of the sets of internal variables x;, i = 1, - - ,q, is made into an implicit function x; (xg+1)
of the linking variables x, 4 through the equation
Si (xi Geget) s xg41) = 0. 4.4)
Then the entire system of equations is reduced to solving
G (xq+l) = fq+1 (x1 (xq+1)» s Xg (xq+l), Xg+1 ) =0. 4.5)

It is interesting to note that the Jacobian matrix of this system is given by (4.3). This is because in both
(4.5) and the final step of the factorization of (4.2), the equations (4.1a) have been used to eliminate the
variables x;, i = 1, -+ ,g. The difference is that in the implicit approach, these variables have been elim-
inated at the nonlinear rather than at the linear level.

If one applied Newton’s method directly to (4.5), one would need to solve exactly for each x; (xg+1)
for each new value of x4.;. This would not be efficient. Practical variants of the implicit method come
from making an approximation to this process that finds each x; (x;+1) much more approximately at each
step. A framework for this approach is given in Algorithm 4.1 below.

Zhang, Byrd, and Schnabel [39] investigated a number of variants of the practical implicit method
given by Algorithm 4.1, and their comparison to the explicit method. They found that if one performs
one ‘‘inner’’ iteration on each x; at step 1, and the outer iteration with no correction to the x;’s, then the
work per iteration is almost identical to the explicit method, but the performance is inferior. In particular,
the convergence is only 2-step quadratic. If, however, one also adds the correction

X =x —ATIB Axga, i=1,00 g (4.6)

in step 2b, then the method is identical to the explicit method. So far, this just constitutes a different
derivation of Newton’s method.
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Algorithm 4.1 -- Framework of an Implicit Method for Block Bordered Nonlinear Equations

At each iteration:

1. Inner iterations:
For each i = 1, -',g, perform some iterations towards solving the nonlinear equations
fi(xi, xg41) = 0, with x; as the variable and x4 fixed.

2. Outer iteration:
a. Calculate the Newton step for G (x441) = 0, with each x;, i <i<g, fixed at the value from step 1.

b. Perform a line search over all the variables x1, - - -, x;41, possibly incorporating a correction to
the steps in each of the sets of variables x;, i=1,- -+ g first.

The interesting implicit methods arise when one performs more than one inner iteration on each x;
at each iteration of Algorithm 4.1, while retaining the correction (4.6). It turns out to be preferable to use
the same matrices A; and B; for all the inner iterations of one iteration of Algorithm 4.1. Thus the addi-
tional inner iterations are quite inexpensive because no derivative matrices need to be computed or factor-
ized. '

These practical implicit methods have several good properties with respect to parallelism. First, by
performing extra inner iterations, the fraction of time that the entire algorithm spends communicating
- between processors on a parallel computer is reduced, because the inner iterations require no communica-
tion. Secondly, they have good theoretical properties that are consistent with the efficient use of parallel-
ism. Zhang, Byrd, and Schnabel [39] and Feng and Schnabel [13] show that these methods retain 1-step
quadratic convergence per iteration of Algorithm 4.1, that the direction used in step 2b can be guaranteed
to be a descent direction on F (x) if the inner iteration is monitored properly, and that this monitoring can
be done in a manner that does not require communication between the processors. Feng and Schnabel
also show how to address singularity of the diagonal blocks A; in a way that is amenable to paralleliza-
tion and consistent with global convergence.

Most interestingly, Zhang, Byrd, and Schnabel show that these implicit methods may have compu-
tational advantages over the explicit method on sequential and parallel computers. For example, on a cir-
cuit model with 115 variables and equations that has four sets of internal variables consisting of 24, 27,
23, and 27 variables each, and 14 linking variables, the implicit method with three inner iterations per
outer iteration was 15% faster than the explicit method on a sequential computer. On a parallel computer
(an Intel iPSC hypercube) with 4 processors, this implicit method was 21% faster than an efficient paral-
lel implementation of the explicit method. The advantage on the sequential computer arises because the
number of outer iterations is reduced from 20 to 12, which more than compensates for the increase in the
cost per iteration from the extra inner iterations. The parallel improvement is even greater because the
parallel implicit method also requires less communication per iteration than the parallel explicit method,
due to the higher ratio of inner to outer iterations. As a second example, on a related circuit model with
twelve diagonal blocks, the implicit method with two inner iterations per outer iteration was 19% faster
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than the explicit method on a sequential computer, and the parallel implicit method was 28% faster than
the parallel explicit method on an Intel hypercube with 12 processors. In this case, the number of outer
iterations was reduced from 18 to 12.

While these tests are not comprehensive enough for definitive conclusions, they indicate that the
new implicit methods outlined in Algorithm 4.1 may be preferable to the standard explicit method for
solving block bordered nonlinear equations, on parallel and sequential computers. What we find most
interesting about this is that the consideration of parallelism has led to the development of interesting new
methods that may be computationally advantageous, even on sequential computers. In short, this is
because the consideration of parallelism led naturally to the consideration of whether there were new
ways to utilize a partitioning of the problem, and this led to the development of new methods. The new
methods happened to be useful computationally; they also led to interesting challenges for theoretical
analysis. We speculate that there will be other large scale optimization problems where the consideration
of parallelism, particularly ways to subdivide the problem to accommodate parallelism, will lead to the
formulation of interesting new methods. This is one of the interesting opportunities and challenges that
parallelism presents to optimization.

5. Coarse Grain Parallel Algorithms for Large-Scale Optimization -- Global Optimization

This section illustrates some of the challenges and opportunities that arise in the design and imple-
mentation of coarse-grain parallel algorithms for large-scale optimization. By coarse-grain algorithms we
mean algorithms where the basic computational units are of large and possibly irregular size. There are
many problems in continuous and discrete optimization that give rise to coarse-grain algorithms, and they
present interesting opportunities and challenges for parallel computation. These challenges and opportun-
ities arise both in constructing efficient parallel algorithms and in the computer science issues associated
with the implementation of these algorithms.

The global optimization problem is a good example of a problem that leads naturally to coarse-
grain algorithms, and is used in this section to illustrate this problem class. In particular, this section is
based upon our research in constructing parallel global optimization algorithms for generic global optimi-
zation problems with rather small numbers of variables (these are still large and expensive computations),
and for problems from molecular chemistry with large numbers of variables. It draws upon material in
[2-6, 32-35], as well as recent, as yet unpublished work. This section does not give a comprehensive
review of this research; rather it attempts to describe this research at a level sufficient to illustrate the
interesting issues that arise in conjunction with constructing coarse-grain parallel optimization algo-
rithms.

The global optimization problem is to find the lowest minimizer of a nonlinear function f (x) that
may have multiple local minimizers, in some closed subregion D of R". In this section we will assume
that the subregion D is just given by upper and lower bounds on each variable. This problem arises in
many practical applications, such as the molecular configuration problems discussed later in this section.
It can be very difficult to solve, for two basic reasons. First, it is very difficult, if not impossible, to find
mathematical approaches that lead to efficient and reliable deterministic algorithms for solving these
problems. Secondly, solving global optimization problems accurately appears to require a huge amount
of computation in many practical cases. For this reason, large-scale nonlinear global optimization prob-
lems were hardly attempted until recently. This means that much of the initial algorithm development for
these problems has occurred in the context of parallel computation. Therefore, as opposed to the previous
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sections, it is sometimes impossible to distinguish clearly between "standard" and parallel algorithms for
large-scale global optimization.

A wide variety of approaches to global optimization have been proposed, mostly in the context of
solving problems with just a handful (say 2-6) of parameters. We do not survey these in this paper; for
comprehensive recent surveys, see [22,31]. Rather, we start by describing one approach, the stochastic
global optimization approach of Rinnooy Kan and Timmer [30], that was the starting point for our paral-
lel global optimization methods for problems with small numbers of variables.

The method of Rinnooy Kan and Timmer [30] is basically an intelligent ‘‘multi-start’’ algorithm.
In a simple multi-start algorithm, one generates a number of random points x in the feasible domain D,
starts a local minimization algorithm from each, and chooses the lowest local minimizer found (within D)
as the candidate global minimizer. The main inefficiencies of this approach are that it may find all the
local minimizers, and that it may find some of the local minimizers many times.

The approach of Rinnooy Kan and Timmer differs from simple multi-start mainly in that local
minimizations are only started from carefully selected subset of the sample points, in a way that reduces
or eliminates multiple local minimizations that lead to the same local minimizer. In particular, a local
minimization is started from a sample point only if it has the lowest function value among all sample
points within some ‘‘critical distance’” from it. Also, the sampling/start-point-selection/local-
minimization process is applied iteratively: for some number of iterations, new sample points are chosen,
the critical distance is reduced by a carefully derived formula, start points for local minimizers are
chosen, and the local minimizations are performed.

It can be shown that under reasonable assumptions, the method of Rinnooy Kan and Timmer finds
all the local minimizers in a finite number of iterations, but that even if one iterates forever, the number of
local minimizations remains finite. That is, a main inefficiency of simple multi-start has been eliminated.
Computationally, this approach appears to be efficient if the number of local minimizers is fairly small.
As will be mentioned later in this section, it does not appear to be an efficient approach to large-scale glo-
bal optimization by itself, but is an important component of our approach to large-scale problems. For
this reason, efficient parallel variants of it are of considerable practical interest.

5.1 A Simple Parallel Global Optimization Algorithm

It is fairly easy to construct a parallel algorithm that simply "parallelizes" the sequential stochastic
method of Rinnooy-Kan and Timmer, and this was done as an initial research project in parallel global
optimization ([4]). A straightforward and reasonably efficient way to do this is to partition the feasible
region D into p subregions, where p is the number of processors. Then at each iteration, each processor
samples and selects start points from its subregion. The latter step may require communication with other
processors if a sample point is the lowest in its subregion within the critical distance, but is within the
critical distance of other subregions. Finally at each iteration, all the start points for local minimizations
are collected and distributed among the processors. It is necessary to collect and distribute start points,
rather than having each processor simply perform the local minimizations from all the start points in its
subregion, because subregions may have highly varying numbers of start points and the time per local
minimization may vary significantly. This parallel algorithm is outlined in Algorithm 5.1.

Algorithm 5.1 has several interesting characteristics that begin to indicate the important parallel
computation issues that are the focus of much of this section. First, the pieces of the algorithm that are
executed in parallel between communication or synchronization points each involve large amounts of
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Algorithm 5.1 -- Framework of a Simple Parallel Global Optimization Algorifhm
Given f : R" —R, feasible region D, p processors
Partition D into p subregions

At each iteration:

1. Sampling : Each processor generates the coordinates of the new random sample points in its su-
bregion, and evaluates f (x) at each new sample point.

2. Start Point Selection : Each processor selects a subset of the sample points in its subregion to be
start points for local minimizations. A sample point is selected to be a start point if it has the
lowest function value of all sample points within the "critical distance" from it. This may re-
quire communication with processors that are responsible for neighboring subregions.

3. Local Minimizations : When all processors have completed start point selection, one processor
collects all the start points and distributes them to the processors to perform the local minimi-
zations from them. (Distribute one start point per processor; if there are more than p start
points, distribute the remaining start points to the processors as they complete their current
local minimizations.) When all local minimizations are complete, decide whether to stop, if
not, begin the next iteration.

computation: sampling and evaluating f (x) at large numbers of points (typically about 100), or perform-
ing one complete local minimization. This exemplifies coarse granularity. Second, due to the coarse
granularity and the synchronization before and after step 3 at each iteration, it is possible that some pro-
cessors may be idle for significant amounts of time. This can occur because each local minimization step
(and even each start point selection step) can take widely varying amounts of time, and also because the
number of local minimizations may not be a multiple of p. Third, the algorithm puts equal sampling
effort into each subregion, regardless of whether or not it appears to be a fruitful region for finding the
global minimizer. This is also true of the original sequential method and is not a parallel computation
issue, but once one starts thinking in terms of subregions due to the consideration of parallelism, it
becomes natural to consider varying this effort.

Byrd, Dert, Rinnooy-Kan and Schnabel [4] report computational experience with Algorithm 5.1 on
a parallel computer. Basically, their conclusions are consistent with the above observations. On prob-
lems with relatively small numbers of variables, the method makes fairly effective use of small numbers
of processors (say 8-32). But the coarse granularity and synchronization lead to idle time on some pro-
cessors, and it is clear that this effect would be more pronounced with a greater number of processors.
Also, it is apparent that greater efficiency in the basic method could be achieved by varying the sampling
effort per subregion based upon the problem. The algorithm discussed in Section 5.2 is motivated by
these observations.
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5.2 An Adaptive, Asynchronous Parallel Global Optimization Algorithm

The limitations of the simple parallel stochastic global optimization method discussed above lead
to the more interesting adaptive, asynchronous parallel approach for small, generic global optimization
- problems that we discuss next. The framework of such an algorithm is outlined in Algorithm 5.2. In
comparison to Algorithm 5.1, there are two main new goals in this approach. The first is to concentrate
the sampling and minimization effort in "productive" portions of the feasible domain D, i.e. subregions
that are considered most likely to contain low minimizers. This goal is equally valid for sequential or
parallel algorithms, but is more natural to achieve in an algorithm where the feasible region is divided
into subregions, as it is for parallel computation. It is achieved by the adaptive portion of the algorithm,
which consists of dynamically identifying subregions that are deemed more likely to contain low minim-
izers, and concentrating the sampling effort there. The second goal is to improve the load balancing of the
algorithm, that is the distribution to work among processors, to eliminate processor idle time. This goal
applies only to parallel implementations. It is achieved by the asynchronous part of the algorithm.

The framework that is chosen to accommodate both the adaptive and asynchronous features of
Algorithm 5.2 is one where each sampling/start-point selection step for each subregion, and each local
minimization from a new starting point, is a separate task. These tasks are distributed among the proces-
sors by some scheduling scheme. The overall control of this process is an important issue that is
addressed below.

The adaptive, dynamic, and asynchronous aspects of Algorithm 5.2 make it significantly different
than the parallel algorithms discussed earlier in this paper. Another way of stating this is that this algo-
rithm is an irregular, task-oriented parallel algorithm, as opposed to.the parallel methods discussed previ-
- ously in this paper, which are either based upon data parallelism, or upon synchronized stages where at
each stage, each processor performs the same task. The characteristics of Algorithm 5.2 lead to interest-
ing algorithmic and parallel computation issues, and indicative of one of the key points of this paper:
there appear to be a number of optimization problems that lend themselves to coarse-grain, irregular,
task-oriented parallelism, and there are many interesting challenges and opportunities in designing and
implementing these methods.

We will discuss the algorithmic and parallel computer implementation issues associated with Algo-
rithm 5.2 only briefly, to illustrate these challenges. On the algorithmic side, one has to decide how to
make the adaptive decisions in the algorithm. For example, how does one determine which subregions
should receive more, or less, attention? In [32,33] this decision was based upon the percentage of low
function values in the subregion relative to the overall domain. The sampling density was modified based
upon this percentage, and very productive subregions were divided into smaller subregions while very
unproductive subregions were skipped at some iterations. New algorithmic procedures are also necessary
due to the irregular subregion and task structure: for example, rather than trying to locate neighboring
subregions and obtain information about their sample points in the start point selection step, a new, self-
contained ‘‘over-sampling’’ strategy was devised. These examples indicate that the consideration of
adaptive, dynamic variants of existing optimization methods, like Algorithm 5.2, leads to the emergence
of new algorithmic issues.

On the parallel implementation side, a key issue is how one controls and schedules the entire asyn-
chronous, dynamic parallel algorithm. This is an important and significant research topic by itself. Smith
[32] and [34,35] investigate this topic extensively. They consider fully centralized and fully distributed
scheduling strategies, and introduce a new partially distributed ‘‘centralized mediator’’ strategy. Through
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Algorithm 5.2 -- Framework of an Adaptive, Parallel Global Optimization Algorithm
Given f : R" —R, feasible region D, p processors
Partition D into g 2 p subregions

For each subregion :

1. Sampling : Generate the coordinates of the new random sample points in the subregion, and
evaluate f (x) at each new sample point.

2. Start Point Selection : Select a subset of the sample points to be start points for local minimiza-
tions. (A sample point is selected to be a start point if it has the lowest function value of all
sample points within the "critical distance" from it; special techniques that do not require
communication with other processors are used for sample points near subregion boundaries.)

3. Adaptive Decisions : Decide whether to split this subregion into smaller subregions, what the
new density of sample points for the subregion(s) should be, and the relative priority of con-
tinuing to process this subregion. Then apply this algorithm recursively to each of the new
subregions as processors become available and as its pnorlty prescribes. (Generally this will
be done after the current local minimizations in step 4.)

4. Local Minimizations : As processors become available, perform, on some processor, a local
minimization from each start point selected in step 2.

Note : A central process generally controls termination of the entire algorithm and may also perform part
or all of the scheduling of the parallel algorithm.

modeling, simulation, and paralle] implementation, they show that the centralized mediator approach has
considerable advantages in scalability over a fully centralized approach, and is very competitive with a
fully distributed approach while being easier to implement. The details of these results are not important
to this paper, but this topic illustrates that there are significant computer science challenges associated
with implementing irregular, coarse-grained parallel algorithms. No matter what the control mechanism,
there are also lower level parallel implementation issues that arise for this type of algorithm. For exam-
ple, one must determine how to schedule processes to minimize data movement, what the priorities
among tasks should be, and how to stop the algorithm without resorting to global synchronization.

Computational results for Algorithm 5.2 on some test problems, in a parallel environment consist-
ing of a network of computer workstations, are given in [6,33]. They show that for problems where the
local minimizers are unevenly distributed in the domain, the adaptive features of Algorithm 5.2 can lead
to large improvements in efficiency over Algorithm 5.1, on sequential or parallel computers. On the other
hand, the gains from the asynchronous, rather than synchronous, parallel implementation are more
moderate.

These experiments and several others also illustrate several other, important lessons about these
adaptive parallel global optimization algorithms. First, controlling them by a centralized scheduled
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process is reasonable for small numbers of processors (say 8) but likely to be a bottleneck for larger
numbers of processors (say 32 or 64). This supports the need for the scheduling research mentioned
above. Second, these algorithms are difficult to program and debug on parallel computers, mainly due to
their asynchronous, task-oriented nature. This points to the need for research in systems or language sup-
port for asynchronous, task-oriented parallel algorithms.

Third, while the adaptive adjustments in Algorithm 5.2 greatly improve its efficiency in solving
some small-scale global optimization problems, we have found that the algorithm is still not close to
- being an effective method for solving the much larger and more specialized problems that we discuss
next. (To the best of our knowledge, this statement is equally true for other general purpose approaches
to global optimization that have been developed for small problems.) Instead, as we discuss next, larger
global optimization problems appear to require considerably more focused, and possibly more problem-
specific, approaches.

5.3 A Parallel, Large-Scale Global Optimization Algorithm for Molecular Configuration Problems

To illustrate some of the additional challenges and opportunities that stem from larger scale parallel
global optimization, the final portion of this section briefly discusses some aspects of our work in global
optimization for molecular configuration problems. The molecular configuration problem is to find the
configuration of a chemical molecule or compound that has the minimum potential energy. This is
believed usually to correspond to the configuration that the molecule or compound assumes in nature.
Many problems whose solution is very important to scientists, including the protein folding problem, are
posed in this manner.

There are several aspects that make molecular configuration problems very challenging global
optimization problems. First, problems of real interest have hundreds or thousands of parameters,
whereas until recently, the global optimization community was developing algorithms for problems with
fewer than ten parameters. Second, typical potential energy functions have vast numbers of local minim-
izers; often the number is believed to be an exponential function of the number of variables. Third, there
are many local minimizers whose function values are very close to the global minimizer. Finally, all the
local minimizers seem to have small basins of attraction (regions in the domain from which local minimi-
zations lead to them). These last three reasons combine to make it very difficult to find the global minim-
izer.

When one considers constructing global optimization algorithms for problems with so many
parameters, and so many hard-to-find low local minimizers, one must address two main new difficulties
in comparison to smaller problems. First, how can one explore (e.g. sample) effectively in such a huge
dimensional space? Adding to this challenge is the fact that for molecular configuration problems, the
function values of randomly selected configurations are often many orders of magnitude higher than the
functions values of good configurations. Thus one must find efficient ways to find relatively low points
throughout the domain in order to get an idea of whether a particular region is likely to contain low
minimizers. Second, how can one find the lowest local minimizers efficiently? One cannot afford to find
all the minimizers or even all the low ones; rather, it appears one must find a way to move from low
minimizers to even lower ones efficiently. These issues indicate the need for new algorithmic
approaches.

Algorithm 5.3 outlines the approach taken by [2,5] to address these issues for a class of molecular
configuration problems. (In particular, this approach applies to molecular clusters; some modifications
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are needed for chains such as proteins or other polymers.) It is not our intent here to justify the merits of
this algorithmic approach, but just to explain it sufficiently to be able to point out some interesting issues
that it illustrates for parallel optimization.

The framework used in Algorithm 5.3 bears some relation to the stochastic methods discussed ear-
lier in this section, but there are two very significant differences. First, the algorithm has two phases, one
that is used to find an initial set of fairly low local minimizers, and a second that is used to move
efficiently from low local minimizers to related, lower local minimizers. The first phase is closely related
to the stochastic methods discussed previously, but the second phase, which accounts for the bulk of the
computational work of the algorithm in practice, is quite different and essentially deterministic. The
second difference will be seen to be particularly pertinent to our discussion of interesting issues for paral-
lelism: a key technique used in the algorithm is the consideration of small dimensional subproblems
within the large dimensional problem. In the first phase, this involves sampling steps that sample on only
a small subset of the variables at once (step 1b). In the local minimizer improvement phase, it involves
small-scale global optimizations in which only a few variables are allowed to vary with the remainder
temporarily fixed (step 2b). Note that this means that the small-scale global optimization algorithm dis-
cussed above in Algorithm 5.2 can be used as a subalgorithm at Step 2b of the large-scale Algorithm 5.3.

Results of applying the approach outlined in Algorithm 5.3 to molecular configuration problems are
given in [2,3,5] as well as in some forthcoming papers. One problem class the algorithm was applied to is
Lennard-Jones problems. These problems consist of simple mathematical equations that model pairwise
attractive/repulsive forces in clusters of identical, spherically symmetric atoms. They are much-studied
~ in the chemistry community, in part because the forces they involve are a crucial part of the mathematical
models of the energy of more complex molecular systems, including proteins and polymers. They are
also very difficult global optimization problems, with the property of having many low, hard-to-locate
local minimizers that was discussed above. Special purpose algorithms have been developed for this
problem class based on the known geometrical structure of the solutions. Based upon these, the global
minimizers are believed to be known for all the instances with up to at least 150 atoms (450 variables)
([24,28]). Our algorithm has been tested on all the instances with up to 76 atoms (228 variables), and
appears to find the best known solution in all cases (including an improved solution for 72 atoms recently
discovered by [10]) and a better solution than previously discovered for 75 atoms). A second problem
that the approach of Algorithm 5.3 has been applied to is the conformation of water molecules modeled
by a well regarded potential energy function ([9]). In the two cases tried, 20 and 21 molecules (180, 189
variables), the energy values found by Algorithm 5.3 are far lower than those found by a previous method
([23]). All these results have been obtained on parallel computers, mainly 16 or 32 processors of an Intel
iPSC/860 hypercube for the Lennard-Jones problems, and 64 processors of the Intel Delta at Caltech for
the water problems.

These results indicate that parallel global optimization algorithms like the one outlined in Algo-
rithm 5.3 have promise for solving important scientific problems. For this reason, we conclude this sec-
tion by discussing some of the interesting parallel computation challenges presented by this type of algo-
rithm.

The new challenges and opportunities in the area of parallel computation that are posed by a
method like Algorithm 5.3 come mainly from the multi-level nature of the algorithm. For example in
Phase II, it is possible for the algorithm to work on improving multiple configurations simultaneously,
with each of these improvement steps involving the use of a small-scale global optimization algorithm.
This allows for the use of two or even three levels of parallelism. For instance in our runs on a distributed
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Algorithm 5.3 - Framework of a Parallel Global Optimization Algorithms
for a Class of Molecular Configuration Problems

1. Coarse Identification of Configurations: On each processor:

(a) Sampling in Full Domain: Randomly generate the coordinates of sample configurations in the
feasible domain, and evaluate the energy at each new sample point.

(b) One-Atom/Molecule Sampling Improvement: For some (low energy) sample points: Select the
atom/molecule that contributes the most to the energy function value, randomly sample on new
locations for this atom/molecule, replace this atom/molecule in the sample configuration with
the new location that gives the lowest energy value, and repeat until energy is below a threshold
value.

(c¢) Full-Dimensional Local Minimizations: Perform a local minimization from a subset of the im-
proved sample points. Save these local minimizers for Step 2a.

2. Improvement of Local Minimizers:
On each group of processors, for some number of iterations:

(a) Select a Configuration (and Expand it): From the list of full-dimensional local minimizers,
select a local minimizer to improve [and expand it around its center by a fixed factor, generally
1.25-2], and the atom/molecule that contributes the most (or second most) to the energy of this
configuration. ‘

(b) One-Atom/Molecule Global Optimization: Apply a parallel global optimization algorithm (on
this group of processors) to the energy of the selected configuration with only the coordinates of
the selected atom/molecule as variables.

(c) Full-Dimensional Local Minimization: Apply a local minimization procedure, with all
atoms/molecules as variables, to the lowest configurations that resulted from the one-
atom/molecule global optimization (one minimization at a time per processor), and merge the
new local minimizers into the list of local minimizers.

memory multiprocessor with 64 processors, we generally improve 16 configurations simultaneously,
using a group of four processors for each configuration. This means that the second level of parallelism
involves using four processors for the small-scale global optimization in step 2b, and doing four large
scale local minimizations simultaneously in step 2c. (Our experience indicates that using two levels of
parallelism is preferable to using all the parallelism at either one of the levels in this case: at one extreme,
improving 64 configurations at once is not effective due to the nature of the search space, while at the
other extreme, improving one configuration at once and using 64 processors for the small-scale global
optimization is not effective since the small-scale global optimization does not effectively utilize this
much parallelism.) If we were using more processors, say 256, we could use a third level of parallelism at
step 2c, for instance using four processors for each of the four local minimizations for each of 16
configurations.
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We expect that algorithms that utilize multiple levels of parallelism will arise naturally in a number
of large-scale optimization contexts, as well as many other areas of numerical computation. There is very
limited experience with multi-level parallel algorithms so far in any context, and many interesting
research issues arise in implementing them. For example, the issues of control and scheduling that were
mentioned above for Algorithm 5.2 are even more difficult for these methods. In our two-level parallel
implementation of Algorithm 5.3, it appears preferable to allow the algorithm to be asynchronous at both
levels due to the irregular computational costs of the steps, and this leads to more difficult challenges in
scheduling and controlling the algorithm than for the single-level asynchronous method discussed in Sec-
tion 5.2. The issues involved in implementing irregular, multi-level parallel algorithms are an interesting
part of the challenge in parallel large-scale optimization.

6. Summary

This paper has attempted to point out limitations, opportunities, and challenges in parallel nonlinear
optimization through a set of examples. The examples are by no means exhaustive, and have been
confined mainly to our own research. But they illustrate some important points.

First, it appears that so far, the consideration of parallelism hasn’t led to many significant algo-
rithmic innovations, or new theoretical challenges, for small to medium size generic optimization prob-
lems. This may be because, as is often conjectured, the best basic optimization approaches for small to
moderate size problems are inherently sequential and already known. If this is true, it may mean that
parallelism will mainly lead to new implementations, as opposed to fundamentally new algorithms, for
these problems. '

Second, it appears that for many classes of large-scale optimization problems, the consideration of

parallelism may lead to the discovery of new algorithms that may be advantageous for parallel and possi-
- bly even sequential computation. This was illustrated by block-bordered systems of nonlinear equations,
where the consideration of parallelism led to the investigation of new, implicit methods. It was also illus-
trated by global optimization problems with moderate numbers of variables, where the consideration of
parallelism led naturally to the investigation of adaptive methods that dynamically partition the domain
and decide which subregions should receive more or less emphasis. In both cases, the technique that led
to the investigation of new methods was the partitioning of the problem into subproblems, and this parti-
tioning was motivated by the consideration of parallelism. Related possibilities are likely to exist for
other large problems.

Third, it appears that a number of large-scale optimization problems give rise to a coarse-grain,
task-oriented, irregular type of parallelism. This was illustrated by the discussion of parallel global
optimization; similar characteristics are seen, for example, in many branch and bound algorithms for
discrete optimization problems ([37]). These types of algorithms not only are challenging from the point
of view of the development of the optimization algorithm, but also pose many new challenges on the -
computer science side. These include the control and scheduling of the algorithms, and the development
of communication and language features that make them easier to program and debug.

As a final comment, this paper has not considered problems where the optimization algorithm and
the evaluation of the objective function or the constraints are combined. For example, this has been con-
sidered by [16] and others in cases where the evaluation of the objective function involves the solution of
a system of partial differential equations. At one extreme, which was assumed in Section 3, the solution
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of this system of differential equations can be considered an atomic unit by the optimization algorithm.
At another extreme, the variables within the differential equation solver can be incorporated into the
optimization problem, and the solution of the differential equations considered a set of constraints to the
optimization problem. This results in a very large-scale optimization problem whose variables are both
the optimization parameters and the variables within the differential equations solver. This problem may
have considerable exploitable structure, but may also be very difficult to solve ([16]). There are also
intermediate approaches, such as splitting the domain of the differential equations into subdomains and
making only the boundary points of these subdomains variables to the optimization algorithm. These
approaches offer attractive possibilities for the use of parallelism. To the extent that they prove to be
fruitful ways to solve these problems, they present additional interesting challenges and opportunities for
optimization algorithms that are in part motivated by the consideration of parallelism.
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