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Abstract

A Large Deviations Principle (LDP), demonstrated for occupancy
problems with indistinguishable balls, is generalized to the case in
which balls may be distinguished by a finite number of colors. The col-
ors of the balls are chosen independently from the occupancy process
itself. There are r balls thrown into n urns with the probability of
a ball entering a given urn being 1/n (Maxwell-Boltzman statistics).
The LDP applies with the scale parameter n going to infinity and the
number of balls increasing proportionally. It holds under mild restric-
tions, the key one being that the coloring process by itself satisfies a
LDP. Hence the results include the important special cases of deter-
ministic coloring patterns and of colors chosen with fixed probabilities
independently for each ball.

1 Introduction

In occupancy models which follow Maxwell-Boltzman statistics, balls are
thrown in to n urns with the probability of a ball entering a given urn being
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1/n, independently of all other balls. References [1] and [4] develop sample
path large deviations principles for scaled occupancy processes in which the
time variable is (approximately) the number of balls thrown per urn, the
state is given by the fraction of urns which contain exactly i balls, and
the number of balls and urns are scaled up in fixed proportion. An LDP
is obtained for infinite-dimensional processes in [1], whilst [4] focuses on
processes with a finite number of occupancy levels, i = 0, . . . , I with i = I+
for urns with more than I balls. Additionally [4] provides explicit solutions
to the corresponding calculus of variations problem.

In this paper we consider a generalization of such occupancy models to
allow balls with more than one color. We fix on the case of two colors, as
the extension to any finite number of colors is straightforward. The over-
all process can be regarded as the conjunction of two independent random
processes, an occupancy process which determines which urn each ball en-
ters, and a second process that determines color. The coloring process can
be quite general and includes the important special case where each color
is picked independently and according to a fixed vector of probabilities (iid
coloring), as well as deterministic coloring patterns. Again time is scaled by
a factor of n, so that at time t ≈ k/n ∈ [0,β], k balls have been thrown.
The state of the process is the empirical measure, which records the fraction
of urns that contain i balls of color 1 and j balls of color 2, for 0 ≤ i ≤ I+
and 0 ≤ j ≤ J+, where I+ and J+ correspond to more than I balls and
more than J balls, respectively. Thus Γni,j(t) is the fraction of urns con-
taining i color 1 balls and j color 2 balls after approximately nt balls have
been thrown. In general the process {Γni,j(t)} will not be Markov unless the
coloring process itself is Markov.

There is a wide literature on occupancy problems, and the case of distin-
guished classes of balls is a common generalization [7, 8]. A recent motivat-
ing application for colored occupancy problems is the analysis of wavelength
conversion in the optical packet switch described in [6]. In each time slot,
a random collection of packets (balls) arrive on a set of input fibers and
must be routed onto a set of output fibers (urns). The packets on each fiber
are wavelength-multiplexed on a finite number of channels (colors). In the
absence of wavelength conversion, packets must use the same channel on the
input and output fiber. If multiple packets of the same channel belong to the
same output fiber, the excess packets must be converted to a different chan-
nel or discarded. Typical quantities to be computed include the probability
of requiring a large number of wavelength converters and the probability of
discarding a large number of packets. The problem was approached with
single color large deviation analysis in [6]; the results there give only an
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upper bound on the true number of converters because packets discarded
due to fiber capacity were also considered to require conversion. By con-
trast, the multi-colored analysis contains the information needed to avoid
this overestimation by taking fiber capacity into account. The multi-colored
approach may also be useful in studying packet switches with constrained
wavelength conversion patterns.

An example in statistics is the problem of coincidence, which may be
illustrated by the following example, see also [7]. Let days in a given period
be urns, and let there be three colors indicating the asthma attacks (balls)
of three individuals. A ball goes into an urn if the individual has an asthma
attack on that day. If there is no common cause (e.g., pollution event)
the distribution of attacks are independent, and we are interested in the
probability that the actual distribution could have arisen.

We derive the LDP for the colored occupancy processes by using the
representation theorem for the scaled log moment generating functions for
measurable functions of sample paths, see [3]. The representation is as an
infimum over measures of the sum of a relative entropy cost and a terminal
cost. As discussed in Section 2, there is a natural split of the relative entropy
cost between a cost for occupancy and one for the coloring process. The local
rate function in the single-color case is the relative entropy R (Θ(t) || Γ(t)),
where Θi(t) is the rate at which balls enter i-occupied urns when the time is
t [4]. The corresponding expression in the colored case is a weighted sum of
relative entropy terms ẋ1R

�
Θ1(t) || Γ(t)

�
+ẋ2R

�
Θ2(t) || Γ(t)

�
, where Θki,j(t)

is the normalized rate at which balls of color k enter urns that presently
contain i balls of color 1 and j balls of color 2, and where xi(t) is the
fraction of color i balls per urn by time t. The overall local rate function
also includes an additional term not present in the single color case, namely
the local rate function for the coloring process itself.

In [4], the large deviations upper bound followed from the results in [2],
but in the present case this is no longer true since the occupancy process need
not be Markov. Instead, we present a direct proof based on weak convergence
which only assumes a sample path LDP for the coloration process.

The most significant obstacle to obtaining an LDP occurs in the proof of
the large deviations lower bound. The difficulty here is the singular behavior
of the relative entropy cost when any element of Γ(t) approaches zero. In
[4], this difficulty is met in two steps. The boundary is avoided everywhere,
except at the initial point, using a perturbation argument which relies on
the joint convexity of the local rate function. A simple “filling” construction
is then employed in the vicinity of the initial point. The construction is es-
sentially equivalent to the construction of a change of measure with properly
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bounded Radon-Nikodym derivative that would be needed in the traditional
approach to the large deviation lower bound. In the present setting, a more
delicate perturbation argument is required because the local rate function
is not always jointly convex, as may be verified with simple examples (e.g.
coloring via a two-state Markov chain). In addition, the filling construction
is replaced by one based on time-reversal.

A striking feature of the single color occupancy analysis is that the cal-
culus of variations problem can be solved to obtain explicit extremal trajec-
tories, and the rate function for the final occupancy state can be computed
directly by solving a fixed-point equation [4]. The same is true in the present
case, and a companion paper [5] is in preparation that generalizes the cal-
culus of variations analysis to colored balls.

An outline of the paper is as follows. In Section 2 a precise formulation
of the model is given and the main results of the paper - the upper and
lower Laplace principles - are stated. These bounds are equivalent to the
large deviation upper and lower bounds. The section also presents three
important special cases for coloration processes. In Section 3 the upper
bound is established and Section 4 establishes some properties of the rate
function which will be needed in the proof of the lower bound in Section 5.

2 Preliminaries and Main Result

We construct an urn model with colored balls as follows. Balls are thrown
into one of n urns sequentially. The throwing process is modeled by a
collection of independent and identically distributed (iid) random variables
{Xn

l , l = 1, . . . , enτf+ 1}, where eaf denotes the integer part of the scalar
a. Each Xn

l is uniformly distributed on the set {1, . . . , n}, with each value
of the set corresponding to an urn. Thus a total of Nn

.
= enτf + 1 balls

are thrown. There is also a coloration process designated by Y nl ∈ {1, 2}.
At each discrete time a ball is assigned color Y nl , and then placed into urn
number Xn

l .
We form empirical measures Γni,j(t) as follows. If i ∈ {0, . . . , I} and

j ∈ {0, . . . , J}, then

Γni,j(l/n)
.
=
1

n

#
n[

m=1

1{ l
r=1 1{Xnr =m,Y nr =1}=i}1{ l

r=1 1{Xnr =m,Y nr =2}=j}

$
.

In other words, Γni,j(l/n) is the fraction of cells containing exactly i color 1
and j color 2 balls when l balls have been thrown. Similarly,
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ΓnI+,j(l/n)
.
=

1

n

#
n[

m=1

1{ l
r=1 1{Xnr =m,Y nr =1}>I}1{ l

r=1 1{Xnr =m,Y nr =2}=j}

$

Γni,J+(l/n)
.
=

1

n

#
n[

m=1

1{ l
r=1 1{Xnr =m,Y nr =1}=i}1{ l

r=1 1{Xnr =m,Y nr =2}>J}

$

ΓnI+,J+(l/n)
.
=

1

n

#
n[

m=1

1{ l
r=1 1{Xnr =m,Y nr =1}>I}1{ l

r=1 1{Xnr =m,Y nr =2}>J}

$
.

By definition Γn0,0(0)
.
= 1, and Γni,j(0)

.
= 0 for all other values of (i, j).

(One can also consider other initial conditions, with only simple notational
changes in the results to be stated below. When extended to accommo-
date general initial conditions, the large deviation results we will prove
are uniform in the initial condition, in the sense used in [4].) The defin-
ition of Γn is extended to all t ∈ [0, τ ] not of the form l/n by piecewise
linear interpolation. Let U denote the set of all probability measures on
{0, 1, . . . , I, I+}×{0, 1, . . . , J, J+}. The processes Γn are considered to take
values in the space of continuous functions S .

= C ([0, τ ] : U), equipped with
the usual supremum norm.

We wish to analyze the large deviation asymptotics of these processes,
when the underlying coloration process satisfies a large deviation principle
and is independent of the urn selection. To this end, it is convenient to use
the Laplace formulation. Let F be any bounded and continuous function
on S. The processes Γn are said to satisfy a Laplace principle with rate
function I if the following two conditions hold:

• For each M <∞, the set {Γ : I(Γ) ≤M} is compact in S.
•

lim
n→∞

− 1
n
logE exp [−nF (Γn)] = inf

Γ∈S
[I(Γ) + F (Γ)] .

Since the processes Γn take values in a Polish space, the notions of Laplace
principle and large deviation principle are equivalent [3, Corollary 1.2.5].

Cumulative coloration processes {xn, n ∈ N} are defined for t = l/n by

xn1 (l/n)
.
=
1

n

l[
r=1

1{Y nr =1}, x
n
2 (l/n)

.
=
1

n

l[
r=1

1{Y nr =2}.

These definitions are also extended to t ∈ [0, τ ] not of the form l/n by
piecewise linear interpolation. Define the set of functions T by x = (x1, x2) ∈
T if
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• xk(·) is increasing and continuous with xk(0) = 0 for k = 1, 2,

• x1(t) + x2(t) = t for all t ∈ [0, τ ].

We consider this set of functions as endowed with the usual sup norm topol-
ogy, and make the following assumption.

Assumption 2.1 The sequence of coloration processes {xn, n ∈ N} satisfy
a large deviation principle on T with the rate function J .

Since T is also a Polish space, as noted previously this is equivalent to
the statement that J satisfies the corresponding Laplace principle: J has
compact level sets, and for all bounded and continuous functions G : T → R,

lim
n→∞

− 1
n
logE exp [−nG(xn)] = inf

x∈T
[J(x) +G(x)] .

Additional assumptions on the coloration processes will be introduced below.
In particular, a mild structural assumption on J must be assumed in order
to prove the large deviation lower bound.

We next describe a few typical coloration processes. The relative entropy
function will be used for this purpose, and indeed throughout the paper. For
two probability measures α and β on a Polish space A, the relative entropy
of α with respect to β is defined by

R (αnβ) .=
]
A

dα

dβ

�
log

dα

dβ

�
dβ =

]
A

�
log

dα

dβ

�
dα

whenever α is absolutely continuous with respect to β (and with the con-
vention that 0 log 0 = 0). In all other cases we set R (αnβ) =∞.

Example 2.1 Suppose we color the balls to achieve a deterministic fraction
pk of color k, with pk ∈ (0, 1). More precisely, if Nk

l−1 balls of color k have
been thrown in the first l − 1 throws (with N1

l−1 + N
2
l−1 = l − 1), and if

N1
l−1/n ≤ p1l/n, then we color the lth ball 1, and otherwise color it 2. The

rate function for the corresponding processes {xn, n ∈ N} is quite simple:

J(x)
.
=

�
0 if xk(t) = pkt
∞ else.

Example 2.2 An alternative coloring scheme is to select the color in an iid
fashion, with probability pk of color k, where pk ∈ (0, 1). If a is a probability
vector define

M(a)
.
= R(anp),
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and in all other cases let M(a)
.
=∞. Then the rate function is

J(x)
.
=


] τ

0
M(ẋ1(t), ẋ2(t))dt if x is absolutely continuous

∞ else.

Example 2.3 In our final example the color is determined by a two-state
ergodic Markov process. Let the underlying transition probabilities be de-
noted pk,l, k = 1, 2, l = 1, 2. Let b denote the invariant distribution, with
bk ∈ (0, 1). Given a probability vector a, let qk,l be any ergodic probability
transition matrix with invariant distribution a. Define

M(a)
.
= inf

2[
k=1

R (qk,· npk,· ) ak,

where the infimum is over all such transition matrices q. In all other cases
set M(a)

.
= ∞. Note that M(a) = 0 if and only if a = b. Here again the

rate function is written

J(x)
.
=


] τ

0
M(ẋ1(t), ẋ2(t))dt if x is absolutely continuous

∞ else.

Before turning to the proof of the large deviation result, we introduce
the notation needed to define the rate function. Define V be the set of real
(I + 2)× (J + 2) matrices, indexed over the set {0, . . . , I+} × {0, . . . , J+},
such that the sum of all elements of each matrix is zero. Let T k : U → V be
defined by the expressions

T 1i,j [α] = αi−1,j − αi,j1{i≤I}, T 2i,j [α] = αi,j−1 − αi,j1{j≤J},

where for convenience we define α−1,j = αi,−1 = 0.
Next, let Γ ∈ S be given with Γ0,0(0) = 1. Suppose there are Borel

measurable functions θk : [0, τ ] → U , k = 1, 2, and x ∈ T such that for all
t ∈ [0, τ ],

Γ(t) = Γ(0) +

] t

0

�
ẋ1T

1[θ1] + ẋ2T
2[θ2]

�
ds. (2.1)

Then I(Γ) is defined by

I(Γ) = inf
x,θ

] τ

0

�
ẋ1R

�
θ1nΓ

�
+ ẋ2R

�
θ2nΓ

��
ds+ J(x), (2.2)

7



where the infimum is over all such θk and x that satisfy (2.1). If rates
satisfying (2.1) exist with I(Γ) <∞ then we say that Γ is a valid occupancy
process. If such rates do not exist, we set I(Γ) = ∞. In Section 3 we show
that for every valid occupancy path, there exist rates x and θk which achieve
the infimum.

We interpret θki,j(t) as the rate at which balls of color k are thrown into
cells that at time t contain i balls of color 1 and j balls of color 2, where
the rates are normalized to give a probability measure for each k. We follow
our usual convention that i = I+ refers to more than I balls, and likewise
for j = J+. These normalized rates are modulated by the color selection
process x so that ẋkθ

k represents the true rate at which balls of color k
enter urns of various occupancy classes. Finally, the transformations T k[α]
represent the rate of change in Γ induced by balls of color k entering urns
at the rates given by α.

In the next three sections, under different assumptions for the upper
and lower bounds we will prove the Laplace principle for this urn model. In
particular, in Section 3 we will prove

lim inf
n→∞

− 1
n
logE exp [−nF (Γn)] ≥ inf

Γ∈S
[I(Γ) + F (Γ)] ,

and in Section 5 we will prove

lim sup
n→∞

− 1
n
logE exp [−nF (Γn)] ≤ inf

Γ∈S
[I(Γ) + F (Γ)] .

These bounds are equivalent to the large deviation upper and lower
bounds, respectively [3, Corollary 1.2.5]. In Section 3 we prove various
properties of the rate function I, and in particular show that I has compact
level sets. Although all statements and proofs are for the case of 2 colors,
there are obvious extensions to the case of any finite number of colors.

To prove these bounds it will be convenient to use a representation
for exponential integrals. Let X n and Yn denote the product space of
Nn

.
= enτf + 1 copies of {1, . . . , n} and {1, 2}, respectively. Let Πn de-

note product measure on Xn, where each marginal of Πn is πn, the uniform
distribution on {1, . . . , n}, and let Λn denote the distribution that is in-
duced on Yn by {Y nl , l = 1, . . . , Nn}. Let µn denote any probability measure
on Xn × Yn. Suppose that

�
X̄n
l , l = 1, . . . , Nn

�
and

�
Ȳ nl , l = 1, . . . , Nn

�
(on the canonical probability space Xn × Yn and with expectation op-
erator Ēn) have the joint distribution µn, and that Γ̄n and x̄n are con-
structed from

�
X̄n
l , l = 1, . . . , Nn

�
and

�
Ȳ nl , l = 1, . . . , Nn

�
in exactly the
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same way that Γn and xn are constructed from {Xn
l , l = 1, . . . ,Nn} and

{Y nl , l = 1, . . . ,Nn}. Then [3, Proposition 1.4.2]

− 1
n
logE exp [−nF (Γn)] = inf

µn
Ēn
�
1

n
R (µnnΠn ⊗ Λn) + F (Γ̄n)

�
. (2.3)

The process Γ̄n is an urn model with a “biased” or “twisted” distribution.
The representation equates the normalized log of the exponential integral
with a variational problem, in which we minimize the expected value of the
functional F under the twisted distribution, plus a relative entropy “cost”
to achieve the particular twist.

We next present an alternative expression for the relative entropy which
reflects the natural relations between the underlying measures. Suppose that
µn is decomposed into the following product of conditional distributions:

µn(dx1, . . . , dxNn , dy1, . . . , dyNn)

= λn(dy1, . . . , dyNn)

×µnx,1(dx1|y1, . . . , yNn) · · ·µnx,Nn (dxNn |x1, . . . , xNn−1, y1, . . . , yNn ).

Define the random measures

µ̄nl (dxl)
.
= µnx,l(dxl|X̄r, r = 1, . . . , l − 1, Ȳr, r = 1, . . . , Nn).

Thus µ̄nl is the distribution of the cell into which the lth ball is thrown, given
the outcome of all previous throws and the colors of all the balls. Using the
fact that Πn is product measure and the chain rule for relative entropy [3,
Theorem C.3.1], we have

R (µnnΠn ⊗ Λn) = Ēn
%
Nn[
l=1

R (µ̄nl nπn) +R (λnnΛn)
&
. (2.4)

This representation separates the total relative entropy into a contribution
due to the twisting of the coloration distribution, and a sum of contributions
due to twisting of the distribution of the individual throws, conditioned on
the coloration process and all previous throws.

3 The Large Deviation Upper Bound

In this section we prove

lim inf
n→∞

− 1
n
logE exp [−nF (Γn)] ≥ inf

Γ∈S
[I(Γ) + F (Γ)] , (3.1)
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which corresponds to the large deviation upper bound. Since in the oc-
cupation measure problem we do not distinguish between cells that con-
tain the same number of balls of the various colors, it makes sense to
rewrite the relative entropy one last time. Given

�
X̄n
r , l = 1, . . . , l − 1

�
and�

Ȳ nl , l = 1, . . . , Nn
�
, we know that nΓ̄ni,j(l/n) is the number of cells that

contain i balls of color 1 and j balls of color 2. For (i, j), let Ki,j denote
the set of cells of the corresponding type, and let |Ki,j | = nΓ̄ni,j(l/n) denote
the number of elements of Ki,j . Let ν

n
i,j(l/n) denote the total probability

assigned to cells of this type by µ̄nl (the definition being irrelevant when
|Ki,j | = 0) :

νni,j(l/n) = µ̄
n
l (Ki,j) =

[
m∈Ki,j

µ̄nl ({m}).

The convexity of x log x then implies the following bound:

Ēn [R (µ̄nl nπn)]

= Ēn

 I+,J+[
i=0,j=0

[
m∈Ki,j

�
log

�
µ̄nl ({m})
πn ({m})

�
µ̄nl ({m})

�
≥ Ēn

 I+,J+[
i=0,j=0

|Ki,j |

log
 m∈Ki,j µ̄

n
l ({m})

|Ki,j |
πn ({m})

S
m∈Ki,j

µ̄nl ({m})
|Ki,j |




= Ēn

 I+,J+[
i=0,j=0

%
log

#
νni,j(l/n)

Γ̄ni,j(l/n)

$
νni,j(l/n)

&
= Ēn

�
R
�
νn(l/n)nΓ̄n(l/n)

��
.

(3.2)
The inequality above becomes an equality when the measure µ̄nl puts the
same weight on urns of the same type, and thus one would expect this
property to hold for the measure that achieves the minimum in the vari-
ational representation. For each t ∈ [0,Nn/n] define νn(t) = νn(l/n) if
t ∈ [l/n, l/n + 1/n). Let Γ̂n denote the piecewise constant (rather than
piecewise linear) interpolant:

Γ̂n(t) = Γ̄n(l/n) for t ∈ [l/n, l/n+ 1/n).

Note that if Γ̄n converges uniformly to Γ̄, then so does Γ̂n.
For a U-valued process η and x ∈ T , we define increasing processes

(η ⊗ xk)i,j , i ∈ {0, . . . , I, I+}, j ∈ {0, . . . , J, J+} by

(η ⊗ xk)i,j(t) =
] t

0
ηi,j(s)ẋk(s)ds.

10



When xk(τ) > 0 and (η⊗xk)/xk(τ) appears in the relative entropy function,
it is interpreted as the probability measure on {0, . . . , I+} × {0, . . . , J+} ×
[0, τ ] that assigns to the set A×B mass]

B

[
i,j∈A

ηi,j(s)ẋk(s)ds
1
xk(τ).

Theorem 3.1 Define the processes Γ̄n, Γ̂n, x̄nk , k = 1, 2 and ν
n as above for

the given measure µn. Then the collectionq
(Γ̄n, x̄nk , Γ̂

n ⊗ x̄nk , νn ⊗ x̄nk), k = 1, 2, n ∈ N
r

is tight. Thus given any subsequence there exists a further subsequence which
converges in distribution to processes Γ̄, x̄k,Λ

k, ζk, k = 1, 2 defined on a prob-
ability space with expectation operator Ē. These limit processes have the
following properties.

1. Each process x̄k is absolutely continuous (w.p.1), with derivative in t
denoted by ˙̄xk.

2. Each process ζk can be decomposed in the form

ζk = θ̄k ⊗ x̄k,

where the measurable process θ̄k takes values in U .

3. Each process Λk can be decomposed in the form

Λk = Γ̄⊗ x̄k.

4. The relation (2.1) holds, with Γ, x1, x2, θ
1, θ2 replaced by Γ̄, x̄1, x̄2, θ̄

1, θ̄2.

Proof: It is easy to see that the processes Γ̄n, x̄nk , Γ̂
n ⊗ x̄nk , νn ⊗ x̄nk , k =

1, 2 are all uniformly (in n and ω) Lipschitz continuous. Therefore the
ensemble takes values in a compact set, which automatically gives tightness,
and hence convergence along subsequences. If a convergent subsequence is
fixed (with limit Γ̄, x̄k,Λ

k, ζk, k = 1, 2), the limit processes are also Lipschitz
continuous, and hence a.e. (in t) differentiable, w.p.1. It follows directly
from the definitions that

SI+,J+
i=0,j=0 ζ

k
i,j(t) = x̄k(t) for t ∈ [0, τ ]. Since each

component of ζki,j(t) is nondecreasing, there is a measurable U-valued process
θki,j such that ζ

k
i,j(t) =

U t
0 θ

k
i,j(s) ˙̄xk(s)ds. The convergence of nondecreasing

11



processes x̄nk → x̄k and continuity of Γ̄ imply Γ̄ ⊗ x̄nk → Γ̄ ⊗ x̄k. Since Γ̄n
and hence also Γ̂n converge uniformly to Γ̄, Γ̂n⊗ x̄nk → Γ̄⊗ x̄k. Thus Λk has
the indicated decomposition.

Finally we consider the last item in the theorem. Consider a component
Γ̄i,j . We assume that i ∈ {1, . . . , I} , j ∈ {1, . . . , J}, and observe that a
similar argument to the one used below will give the analogous conclusion
for all other cases. Let Fnl

.
= σ

�
Ȳ nr , 1 ≤ r ≤ Nn, X̄n

r , 1 ≤ r ≤ l
�
. We can

write

Γ̄ni,j(l/n+ 1/n)− Γ̄ni,j(l/n)

=
1

n
1{Ȳ nk =1}

�
1{X̄n

k is an urn of type (i−1,j) at time l}
− 1{X̄n

k is an urn of type (i,j) at time l}
�

+
1

n
1{Ȳ nk =2}

�
1{X̄n

k is an urn of type (i,j−1) at time l}
− 1{X̄n

k is an urn of type (i,j) at time l}
�

=
1

n
1{Ȳ nk =1}

�
νni−1,j(l/n)− νni,j(l/n)

�
+
1

n
1{Ȳ nk =2}

�
νni,j−1(l/n)− νni,j(l/n)

�
+ eni,j(l/n),

where
q
eni,j(l/n), l = 0, . . . , Nn − 1

r
is a martingale difference with respect

to Fnl with E
k
eni,j(l/n)

l2
= O(1/n2). Thus

Γ̄ni,j(t)− Γ̄ni,j(0) = (νn ⊗ x̄n1 )
1,n
i−1,j(t)− (νn ⊗ x̄n1 )

1,n
i,j (t)

+ (νn ⊗ x̄n2 )
2,n
i,j−1(t)− (νn ⊗ x̄n2 )

2,n
i,j (t) + g

n
i,j(t),

where the process gni,j tends uniformly to zero on [0, τ ]. Therefore

Γ̄i,j(t)− Γ̄i,j(0) = (θ1 ⊗ x̄1)1i−1,j(t)− (θ1 ⊗ x̄1)1i,j(t)
+ (θ2 ⊗ x̄2)2i,j−1(t)− (θ2 ⊗ x̄2)2i,j(t).

The last display is equivalent to the i, j-th element of (2.1).

Theorem 3.2 Under Assumption 2.1,

lim inf
n→∞

− 1
n
logE exp [−nF (Γn)] ≥ inf

Γ∈S
[I(Γ) + F (Γ)] .

12



Proof: Owing to the representation, it suffices to show that

lim inf
n→∞

inf
µn
Ēn
�
1

n
R (µnnΠn ⊗ Λn) + F (Γ̄n)

�
≥ inf

Γ∈S
[I(Γ) + F (Γ)] .

According to equations (2.4) and (3.2), we have the bound

1

n
R (µnnΠn ⊗ Λn) ≥ Ēn

%
1

n

Nn[
l=1

R
�
νn(l/n)nΓ̄n(l/n)

�
+
1

n
R (λnnΛn)

&
.

Using the chain rule ([3, Theorem C.3.1]) again, the non-negativity of rela-
tive entropy, and τ ≤ Nn/n, we can write

Ēn

%
1

n

Nn[
l=1

R
�
νn(l/n)nΓ̄n(l/n)

�&

≥ Ēn
�] τ

0
R
�
νnnΓ̂n

�
dx̄n1 +

] τ

0
R
�
νnnΓ̂n

�
dx̄n2

�
= Ēn

%
x̄n1 (τ)R

#
νn ⊗ x̄n1
x̄n1 (τ)

����� Γ̂n ⊗ x̄n1x̄n1 (τ)

$
+ x̄n2 (τ)R

#
νn ⊗ x̄n2
x̄n2 (τ)

����� Γ̂n ⊗ x̄n2x̄n2 (τ)

$&
.

According to Theorem 3.1, given any subsequence of N we can find a further
subsequence (again denoted by n) along which we have the convergence in
distribution of (Γ̄n, x̄nk , Γ̂

n⊗ x̄nk , νn⊗ x̄nk , k = 1, 2). Using Fatou’s Lemma (for
convergence in distribution) and the lower semicontinuity of relative entropy
[3, Lemma 1.4.3],

lim inf
n→∞

Ēn

%
1

n

Nn[
l=1

R
�
νn(l/n)nΓ̄n(l/n)

�&

≥ lim inf
n→∞

Ēn

%
x̄n1 (τ)R

#
νn ⊗ x̄n1
x̄n1 (τ)

����� Γ̂n ⊗ x̄n1x̄n1 (τ)

$
+ x̄n2 (τ)R

#
νn ⊗ x̄n2
x̄n2 (τ)

����� Γ̂n ⊗ x̄n2x̄n2 (τ)

$&

≥ Ē

�
x̄1(τ)R

�
θ̄1 ⊗ x̄1
x̄1(τ)

���� Γ̄⊗ x̄1x̄1(τ)

�
+ x̄2(τ)R

�
θ̄2 ⊗ x̄2
x̄2(τ)

���� Γ̄⊗ x̄2x̄2(τ)

��
= Ē

�] τ

0
R
�
θ̄1(t)

��Γ̄(t)� dx̄1(t) + ] τ

0
R
�
θ̄2(t)

��Γ̄(t)� dx̄2(t)� .
We claim that since {xn, n ∈ N} satisfies a large deviation principle on

T with rate function J ,

lim inf
n→∞

1

n
R (λnnΛn) ≥ ĒJ(x̄). (3.3)

13



Indeed, it follows from the variational representation that for all bounded
and continuous functions G : T → R,

lim inf
n→∞

Ēn
�
1

n
R (λnnΛn) +G(x̄n)

�
≥ inf
x∈T

[J(x) +G(x)] .

Thus

lim inf
n→∞

Ēn
�
1

n
R (λnnΛn)

�
≥ inf
x∈T

[J(x) +G(x)]− Ē [G(x̄)] ,

and since G is arbitrary,

lim inf
n→∞

1

n
R (λnnΛn) ≥ sup

G∈Cb(T )

�
inf
x∈T

[J(x) +G(x)]− Ē [G(x̄)]
�
.

We claim that the right hand side of this display is bounded below by ĒJ(x̄).
Let −Gr be a sequence of bounded, non-negative continuous functions that
converge up to J as r →∞. It follows that J(x) +Gr(x) ≥ 0 for all r and
x ∈ T , and so infx∈T [J(x) + Gr(x)] ≥ 0. Since the monotone convergence
theorem implies Ē [−Gr(x̄)] ↑ Ē [J(x̄)], the result now follows.

We have the following inequalities, each of which is explained after the
display.

lim inf
n→∞

− 1
n
logE exp [−nF (Γn)]

= lim inf
n→∞

Ēn
�
1

n
R (µnnΠn ⊗ Λn) + F (Γ̄n)

�
≥ lim inf

n→∞
Ēn

%
1

n

Nn[
l=1

R
�
νn(l/n)nΓ̄n(l/n)

�
+
1

n
R (λnnΛn) + F (Γ̄n)

&

≥ Ē

�] τ

0
R
�
θ̄1(t)

��Γ̄(t)� dx̄1(t)
+

] τ

0
R
�
θ̄2(t)

��Γ̄(t)� dx̄2(t) + J(x̄) + F (Γ̄)�
≥ Ē

�
I(Γ̄) + F (Γ̄)

�
≥ inf

Γ∈S
[I(Γ) + F (Γ)] .

The first equality is due to the relative entropy representation and the fact
that µn is a minimizer; the following inequality uses the decomposition (2.4)
and the bound (3.2); the second inequality uses the bound (3.3), the bound

14



immediately above (3.3), the convergence in distribution of Γ̄n to Γ̄, and
the continuity of F ; the third inequality uses the properties of the limit
processes stated in Theorem 3.1 and the definition of the rate function; the
final inequality is obvious. We have proved that given any subsequence of
N there is a further subsequence along which (3.1) holds. By the usual
argument by contradiction, (3.1) holds as stated.

4 Properties of the Rate Function

In this section we prove some important properties of the rate function.

Theorem 4.1 Under Assumption 2.1 the set {Γ : I(Γ) ≤ M} is compact
for each M ∈ [0,∞).

Proof: Since all paths Γ with I(Γ) < ∞ are Lipschitz continuous with a
common constant, we need only show that Γ → I(Γ) is lower semicontin-
uous. Let Γn → Γ as n → ∞. If lim infn→∞ I (Γn) < I(Γ), then we can
extract a subsequence (again denoted by n) such that I (Γn) converges and
limn→∞ I (Γn) = I(Γ) − ε for some ε > 0. Let θk,n, k = 1, 2 and xn be
associated rates and cumulative coloration processes that satisfy

Γ̇n = ẋ
n
1T

1
�
θ1,n

�
+ ẋn2T

2
�
θ2,n

�
and

I (Γn) =

] τ

0

�
ẋn1R(θ

1,n nΓ) + ẋn2R(θ2,n nΓ)
�
dt+ J(xn) + 1/n.

Exactly as in the proof of the convergence theorem (Theorem 3.1), the
uniformly Lipschitz continuous processes (Γn, x

n
k , θ

k,n ⊗ xnk ,Γn ⊗ xnk , k =
1, 2) converge, at least along a subsequence, to a collection of processes
(Γ, xk, θ

k ⊗ xk,Γ ⊗ xk, k = 1, 2). Using the lower semicontinuity of J and
the relative entropy,

lim inf
n→∞

�] τ

0

�
ẋn1R(θ

1,n nΓn) + ẋn2R(θ2,n nΓn)
�
dt+ J(xn)

�
= lim inf

n→∞

� �
xn1 (τ)R

�
θ1,n ⊗ xn1
xn1 (τ)

���� Γn ⊗ xn1xn1 (τ)

�
+ xn2 (τ)R

�
θ2,n ⊗ xn2
xn2 (τ)

���� Γn ⊗ xn2xn2 (τ)

��
dt+ J(xn)

�

15



≥
� �

x1(τ)R

�
θ1 ⊗ x1
x1(τ)

���� Γ⊗ x1x1(τ)

�
+ x2(τ)R

�
θ2 ⊗ x2
x2(τ)

���� Γ⊗ x2x2(τ)

��
dt+ J(x)

�
=

�] τ

0

�
ẋ1R(θ

1 nΓ) + ẋ2R(θ2 nΓ)
�
dt+ J(x)

�
.

Since we also have

Γ(t)− Γ(0) = lim
n→∞

(Γn(t)− Γn(0))

= lim
n→∞

] t

0

�
ẋn1T

1
�
θ1,n

�
+ ẋn2T

2
�
θ2,n

��
ds

= lim
n→∞

�
T 1
�] t

0
ẋn1θ

1,nds

�
+ T 2

�] t

0
ẋn2θ

2,nds

��
= T 1

�] t

0
ẋ1θ

1ds

�
+ T 2

�] t

0
ẋ2θ

2ds

�
=

] t

0

�
ẋ1T

1
�
θ1
�
+ ẋ2T

2
�
θ2
��
ds,

we conclude that

I(Γ) ≤
�] τ

0

�
ẋ1R(θ

1 nΓ) + ẋ2R(θ2 nΓ)
�
dt+ J(x)

�
≤ lim
n→∞

I (Γn) ,

a contradiction. Therefore, lim infn→∞ I (Γn) ≥ I(Γ).

It is also true that given any Γ, infimizing θ’s and x’s exist.

Lemma 4.2 Let Γ ∈ S be given. There exist measurable functions θk, k =
1, 2 and x ∈ T which achieve the infimum in the definition of I(Γ).

Proof: Since the proof uses the same ideas as that of the previous theorem,
the argument is only sketched. If I(Γ) = ∞ there is nothing to prove. If
I(Γ) <∞ then there exist θk,n, k = 1, 2 and xn ∈ T such that

Γ̇ = ẋn1T
1
�
θ1,n

�
+ ẋn2T

2
�
θ2,n

�
and ] τ

0

�
ẋn1R

�
θ1,n nΓ

�
+ ẋn2R

�
θ2,n nΓ

��
dt ≤ I(Γ) + 1/n.
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Arguing exactly as in the previous theorem, we can consider the limit n→∞
(along a subsequence) and construct the minimizing θk, k = 1, 2 and x ∈ T .

A special but common case is when the coloration rate function takes
the form

J(x) =

] τ

0
M(ẋ1, ẋ2)dt

for some convex proper function M : R2 → [0,∞] (see the examples of
Section 1). In this case we can write I as

I(Γ) =

] τ

0
L(Γ, Γ̇)dt.

in terms of a local rate function

L(Γ, η)
.
= inf

�
a1R(θ

1 nΓ) + a2R(θ2 nΓ) +M(a1, a2) :

a ∈ C, θk ∈ U , η = a1T 1
�
θ1
�
+ a2T

2
�
θ2
�r
, (4.1)

where C is the set of probability distributions on {1, 2}. We will rely on the
following assumption in the proof of the lower bound.

Assumption 4.1 Assumption 2.1 holds, and in addition:

(A) The rate function J(x) takes the form
U τ
0 M(ẋ)dt, whereM is a proper

convex function.

(B) There is a point a ∈ C such that M(a) = 0 and ai > 0, i = 1, 2.

As noted previously, the assumed form for J is typical. SinceM is a rate
function, there is at least one probability vector a at which M(a) = 0. The
assumption that this occurs at a point where both components are positive
is very mild.

In the remainder of this section we will construct processes and controls
that will be used in the proof of the large deviation lower bound. We first
define the natural occupancy path corresponding to a given colorization
process, and the zero-cost path. For y ∈ [0,∞) and i ∈ Z let

Pi(y) =
+

yi

i! e
−y i ≥ 0
0 i < 0
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denote the i-th component of a Poisson distribution with mean y, and let
Qi(y) =

S
j>i Pj(y) be the Poisson tail probability function. The product

of two independent Poisson distributions with means y1 and y2 defines a
mapping Φ : IR+ × IR+ → U given by

Φi,j(y1, y2) = Pi(y1)Pj(y2)
Φi,J+(y1, y2) = Pi(y1)QJ(y2)
ΦI+,j(y1, y2) = QI(y1)Pj(y2)
ΦI+,J+(y1, y2) = QI(y1)QJ(y2).

The mapping Φ is the limiting (as n→∞) mean urn occupancy distribution
for an experiment in which nyk balls of color k are thrown into n urns.

Lemma 4.3 (Natural occupancy path) Suppose that condition (A) of
Assumption 4.1 holds. Let x ∈ T be a colorization process with finite cost
J(x). The natural occupancy path corresponding to x defined by Γ∗(t) =
Φ(x1(t), x2(t)) is an occupancy path in S which satisfies the initial condition
Γ∗0,0(0) = 1 and the bound I(Γ

∗) ≤ J(x).

Proof: The initial condition is immediate from the fact that x(0) = 0. The
continuity of x and of the Poisson distribution with respect to its mean
ensure that Γ∗ ∈ S. To establish the bound on I(Γ∗), we will show that the
derivative of the path satisfies the differential equation

Γ̇∗ = ẋ1T
1[Γ∗] + ẋ2T

2[Γ∗].

Then according to the definition of the rate function,

I(Γ∗) ≤
] τ

0

#
2[
k=1

ẋkR (Γ
∗ || Γ∗) +M(ẋ)

$
dt =

] τ

0
M(ẋ) dt = J(x).

Note that d
dxPi(x) = Pi−1(x) − Pi(x). Then, for i ≤ I and j ≤ J , we

have

Γ̇∗i,j = ẋ1 [Pi−1(x1)− Pi(x1)]Pj(x2) + ẋ2Pi(x1) [Pj−1(x2)− Pj(x2)]
= ẋ1

�
Γ∗i−1,j − Γ∗i,j

�
+ ẋ2

�
Γ∗i,j−1 − Γ∗i,j

�
as desired. Using the fact that d

dxQi(x) = Pi(x), the cases involving i = I+
or j = J+ follow similarly.

The following lemma is immediate, using the linear colorization process
x(t) = at.
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Lemma 4.4 (Zero cost path) Suppose that Assumption 4.1 holds, with
a ∈ C such that M(a) = 0. Then the function Z(t) = Φ(a1t, a2t) is an
occupancy path in S which satisfies I(Z) = 0 and the initial condition
Z0,0(0) = 1.

In the single color case analyzed in [4], the local rate function expressed
by (4.1) takes the simpler form

Ls(Γ, η) = R (Θ || Γ)

where Γ and Θ are probability distributions on {0, . . . , I+} and where Θ
has the explicit form Θi = −

Si
j=0 ηj . In that case, the convexity of the

relative entropy implies that the local rate function is a convex function of
its arguments.

In the present case, the local rate function is a convex function of η but
is not necessarily jointly convex in (Γ, η). It can be shown in fact that, under
Assumption 4.1, L is convex if and only if the functionM(a)+h(a) is convex
for a ∈ C, where h(a) = −a1 log a1 − a2 log a2 is the entropy function. It is
easy to see that Examples 2.1 and 2.2 always satisfy this condition. However,
it can also be demonstrated that Example 2.3 satisfies this condition if and
only if the Markov transition probabilities satisfy p11 + p22 ≤ 1.

In our proof of the lower bound, we require a technical result showing
that every valid occupancy path Γ is close, both in sup norm and in cost,
to an occupancy path for which each element is bounded away from zero by
a power of t. This fact allows us to avoid explictly considering occupancy
paths which are close to the boundary after time t = 0. When the local rate
function is convex, this technical result is easily demonstrated by slightly
perturbing the given occupancy path in the direction of the zero-cost path
(which is itself avoids the boundary after t = 0).

We will use a modified form of this argument to establish this result
without requiring convexity of the local rate function. We first show that
Γ is close to an occupancy path Γ̂ whose optimal colorization process x̂ has
each component x̂k(t) bounded below by a function of the form δt for some
δ > 0. Secondly, we show that perturbing Γ̂ in the direction of the natural
occupancy process Γ∗ corresponding to x̂ yields an occupancy process with
the desired properties. These steps are undertaken in the next two lemmas.

Lemma 4.5 Suppose that Assumption 4.1 holds. Let Γ ∈ S be given and
let ε > 0. There exists Γ̂ ∈ S, with I(Γ̂) < ∞ and associated optimal rates
x̂ and θ̂, which further satisfies the following properties:

• I(Γ̂) ≤ I(Γ) + ε,
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• d(Γ, Γ̂) ≤ ε,

• there exists δ > 0 such that x̂k(t) ≥ δt for all t ∈ [0, τ ].

Proof: We will construct Γ̂ by following the zero cost path Z of Lemma 4.4
for a short time ∆ and then closely tracking the original process Γ for t > ∆.

The key step is to construct an occupancy process Γ̃ which has initial
condition Γ̃(0) = Z(∆), which for sufficiently small ∆ satisfies d(Γ, Γ̃) ≤ ε/2
and I(Γ̃) ≤ I(Γ) + ε.

Once Γ̃ has been constructed, we then may define

Γ̂(t) =

�
Z(t) 0 ≤ t ≤ ∆

Γ̃(t−∆) ∆ < t ≤ τ.

Since the absolute value of the derivative of each element of an occupancy
function with finite cost is bounded by 1, we immediately have d(Γ̂, Γ̃) ≤ ∆,
and hence d(Γ̂,Γ) < ε for sufficiently small ∆. Moreover

I(Γ̂) = 0 +

] τ−∆

0
L
�
Γ̃, ˙̃Γ

�
dt ≤ I(Γ̃) ≤ I(Γ) + ε.

Finally, the optimal colorization rate for Γ̂ on the interval [0,∆] is given by
x̂k(t) = akt. Because the colorization processes are monotonically increas-
ing, we have the bound x̂k(t) ≥ (ak(∆ ∧ τ)/τ) t for all t ∈ [0, τ ]

It remains to construct an occupancy function Γ̃ with the required prop-
erties. We define

Γ̃(t) = e−∆ (Γ(t)− Γ(0)) + Z(∆) = e−∆Γ(t) + (1− e−∆)Zc(∆)

where Z(∆) is the zero-cost distribution of Lemma 4.4 at time ∆, and where

Zc(∆) =
Z(∆)− e−∆Γ(0)

1− e−∆

is the conditional distribution obtained from Z(∆) by removing the prob-
ability mass from its (0, 0) element. As Γ̃ is a convex combination of two
elements of S, we immediately have Γ̃ ∈ S, and it is also clear that d(Γ̃,Γ)
can be made arbitrarily small by decreasing ∆.

It remains to establish the desired bound on I(Γ̃). If α ∈ U is the
distribution that puts all of its mass on the (I+, J+) element, note that
T k[α] = 0 for k = 1, 2, reflecting that balls thrown into I+, J+ urns have
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no effect on the occupancy state. Let x and θ be the optimal rate processes
for Γ. Then the rates x̃ = x and θ̃k = e−∆θk + (1− e−∆)α satisfy

˙̃x1T
1[θ̃1] + ˙̃x2T

2[θ̃2] = e−∆
�
ẋ1T

1[θ1] + ẋ2T
2[θ2]

�
= e−∆Γ̇ = ˙̃Γ

and are therefore feasible rates for constructing Γ̃. Using x̃ = x and the
joint convexity of the relative entropy, we have

I(Γ̃) ≤
] τ

0

2[
k=1

˙̃xkR
�
θ̃k || Γ̃

�
dt+ J(x̃)

≤ e−∆
] τ

0

2[
k=1

ẋkR
�
θk || Γ

�
dt

+ (1− e−∆)
] τ

0

2[
k=1

ẋkR (α || Zc(∆)) dt+ J(x)

≤ I(Γ) + τ(1− e−∆)R (α || Zc(∆)) .

Using the bound ZI+,J+(∆) ≥ PI+1(a1∆)PJ+1(a2∆) the difference I(Γ̃) −
I(Γ) is bounded by

τ(1− e−∆) log
�
a−I−11 a−J−12 ∆−(I+J+2)(I + 1)!(J + 1)!e∆(1− e−∆)

�
,

which approaches zero as ∆→ 0.

Lemma 4.6 Suppose that Assumption 4.1 holds. Let Γ ∈ S be given such
that I(Γ) < ∞, and let ε > 0. Then there exists δ > 0,K ∈ N and Γε ∈ S
with the following properties.

1. I(Γε) ≤ I(Γ) + ε,

2. d(Γε,Γ) ≤ ε,

3. Γεi,j(t) > δtK for all t ∈ (0, τ ] and (i, j) ∈ {0, 1, . . . , I, I+}×{0, 1, . . . , J, J+} .

Proof: Using Lemma 4.5, there exists Γ̂ and δ̄ > 0 with d(Γ, Γ̂) < ε/2,
I(Γ̂) ≤ I(Γ) + ε, and x̂k ≥ δ̄t, where x̂ and θ̂ are the optimal rates used in
the definition of I(Γ̂). Let Γ∗ = Φ(x̂1, x̂2) be the natural occupancy path
corresponding to x̂, and define

Γε = (1− λ)Γ̂+ λΓ∗.

21



By the triangle inequality, Γε will be sufficiently close to Γ if λ < ε/4. Note
that the rates xε = x̂ and θk,ε = (1 − λ)θ̂k + λΓ∗ are feasible rates for
generating Γ̇ε, so that

I(Γε) ≤
] τ

0

2[
k=1

˙̂xkR
�
θk,ε || Γε

�
dt+ J(x̂)

≤ (1− λ)I(Γ̂) + λI(Γ∗)

≤ I(Γ̂)

≤ I(Γ) + ε

where we have used convexity of the relative entropy and the fact that
I(Γ∗) = J(x̂) ≤ I(Γ̂).

Finally, for i ≤ I, j ≤ J , the i, j-th element of Γε satisfies the lower
bound

Γεi,j(t) ≥ λΓ∗i,j(t)

= λ
x̂i1(t)x̂

j
2(t)

i!j!
e−t

≥ λ
δ̄i+je−τ

i!j!
ti+j

for all t ∈ [0, τ ]. Similar bounds hold for cases involving i = I+ and j = J+,
since Qi ≥ Pi+1. Hence Γε has all of the desired properties.

The final lemma of this section is the principle result that will be used
to support the proof of the lower bound.

Lemma 4.7 Suppose that Assumption 4.1 holds. Let Γ ∈ S be given such
that I(Γ) < ∞ and such that for some δ > 0 and K ∈ N the lower bound
Γi,j(t) ≥ δtK holds for all (i, j) ∈ {0, 1, . . . , I, I+} × {0, 1, . . . , J, J+}. Let
x, θ1 and θ2 satisfy

Γ̇ = ẋ1T
1
�
θ1
�
+ ẋ2T

2
�
θ2
�

and

I(Γ) =

] τ

0

�
ẋ1R

�
θ1 nΓ

�
+ ẋ2R

�
θ2 nΓ

��
dt+ J(x).

Given ε > 0 there exist Γ∗, θ1,∗, θ2,∗ and σ > 0 with the following properties.

1.

Γ̇∗ = ẋ1T
1
�
θ1,∗

�
+ ẋ2T

2
�
θ2,∗

�
,Γ∗0,0(0) = 1,
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2.

I(Γ∗) ≤
] τ

0

�
ẋ1R

�
θ1,∗

��Γ∗i,j � + ẋ2R �θ2,∗ ��Γ∗i,j �� dt+J(x) ≤ I(Γ)+ ε,

3. d(Γ∗,Γ) ≤ ε,

4. The rate processes θ1,∗ and θ2,∗ are piecewise constant on [0, τ ], with
a finite number of intervals of constancy.

5. When restricted to [0,σ), the rate processes are pure in the sense that
on any interval of constancy (s1, s2), and for each k = 1, 2, there is

(i, j) ∈ {0, 1, . . . , I, I+}×{0, 1, . . . , J, J+} such that θk,∗i,j (t) = 1 for all
t ∈ (s1, s2). In addition, for k = 1, 2 and any interval of constancy on
which θk,∗i,j (t) = 1, Γ

∗
i,j(t) ≥ δσK .

Proof: Suppose that Γ, θ1, θ2, and x satisfy the assumptions of the lemma.
Let σ ∈ (0, τ ]. By assumption, we have Γi,j(σ) ≥ δσK . We can choose σ > 0
such that −σ log

�
δσK

�
≤ ε/2, and such that if Γ1 and Γ2 are any occupancy

processes with the same initial condition, then nΓ1(s)− Γ2(s)n ≤ ε for all
s ∈ [0,σ] (here we use the common Lipschitz continuity for all occupancy
functions). A time-reversed induction argument will be used to construct
the pure controls on [0,σ) described in the lemma. The main idea is that
the occupancy path Γ∗ will proceed on [0,σ] in such a way that each element
increases to a maximum level before decreasing to its final value Γ∗(σ) =
Γ(σ). Hence the contents of any given occupancy class are only reduced at
times when that class has at least a fraction δσK of the urns. In other words,
θk,∗i,j (s) > 0 implies Γ∗i,j(s) ≥ δσK , allowing the cost of Γ∗ on (0,σ) to be
made arbitrarily small.

For a given Γ ∈ U , the associated minimum number of balls of each color
per urn is given by applying the linear operators

βe1(Γ) =
I[
i=0

J+[
j=0

iΓi,j +
J+[
j=0

(I + 1)ΓI+,j

βe2(Γ) =
J[
j=0

I+[
i=0

jΓi,j +
I+[
i=0

(J + 1)Γi,J+.

(4.2)

Because x is a coloring process which generates Γ(σ) it must satisfy xk(σ) ≥
βek(Γ(σ)). As another way to see this point, one may verify the relations

βe1(T
1[θ]) =

SI
i=0

SJ+
j=0 θi,j βe1(T

2[θ]) = 0

βe2(T
1[θ]) = 0 βe2(T

2[θ]) =
SI+
i=0

SJ
j=0 θi,j .

(4.3)
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The definition of Γ̇ in terms of ẋ, θ then implies that 0 ≤ β̇ek(Γ) ≤ ẋk.
To simplify the exposition, we first assume xk(σ) = βek(Γ(σ)), and sub-

sequently extend the argument to cover inequality.
For colors k = 1, 2, we define orderings ξk : {0, . . . , I+}×{0, . . . , J+}→

N by
ξ1(i, j) = (J + 1)i+ j, ξ2(i, j) = i+ (I + 1)j,

where strictly speaking we substitute i = I+1 or j = J+1 on the right-hand
side when i = I+ or j = J+ appears on the left. Observe that each class of
urns corresponds to a distinct value of ξk. For any Γ ∈ U , let U(Γ) be the
set of (i, j) pairs such that Γi,j > 0, and for k = 1, 2 define

κk(Γ) = max
U(Γ)

ξk(i, j)

uk(Γ) = argmax
U(Γ)

ξk(i, j).

To begin the induction, we set τ1 = σ and Γ∗(τ1) = Γ(σ), noting that
xk(τ1) = βek(Γ

∗(τ1)), and initialize the induction variable as m = 1.
Denote the highest non-empty urn class under the color-k ordering by

umk = uk(Γ
∗(τm)), and denote the corresponding order number by κmk =

ξk(u
m
k ). Now imagine in reverse time pulling balls from these urns so that

mass drains from Γum1 at a rate specified by ẋ1 and from Γum2 at a rate
specified by ẋ2. At some time τm+1 < τm, one of the two urn classes will
empty. If um1 = u

m
2 , this time is given by

τm+1 = max

+
t :

2[
k=1

xk(τm)− xk(t) = Γ∗u11(τm)
,

and otherwise it is given by

τm+1 = max{t : x1(τm)− x1(t) = Γ∗um1 (τm) or x2(τm)− x2(t) = Γ
∗
um2
(τm)}.

Suppose that um1 = (i, j) for some i > 0. Then (see (4.2)),

x1(τm) = βe1(Γ
∗(τm)) ≥ Γ∗um1 (τm)

so that there must be a solution t ∈ [0, τm) to x1(t) = x1(τm) − Γ∗um1 (τm)
Together with similar analysis of um2 , this means that a solution τm+1 ∈
[0, τm) always exists unless u

m
1 = u

m
2 = (0, 0). In the latter case, all urns are

empty at time τm, and κm1 + κm2 = 0.
Otherwise, if κm1 + κm2 > 0, we define

θ1,∗(t) = e{um1 −(1,0)} and θ2,∗(t) = e{um2 −(0,1)}
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for all t ∈ [τm+1, τm), where eij is the distribution in U which puts all
mass on the i, j-th element. That is, during the m-th interval, in forward
time, we are throwing balls into urns with occupancies um1 − (1, 0) and
um2 − (0, 1) in order to fill the urn classes umk . The process Γ∗ is then
defined on the interval [τm+1, τm) by the existing terminal condition Γ

∗(τm)
and the differential equation Γ̇∗ =

S
k ẋkT

k[θk,∗]. Because the θk,∗ put all
their mass on urn classes with i ≤ I, j ≤ J , the relations (4.3) establish that
x(τm+1) = βek(Γ

∗(τm+1)), setting up the next induction step.
Note that τm+1 was chosen so that at least one of the classes u

m
k is empty

in Γ∗(τm+1). This ensures the strict inequality
S2
k=1 κ

m+1
k <

S2
k=1 κ

m
k , so

that the induction must terminate after a finite number of steps (say M)
with κM1 + κM2 = 0, meaning that Γ∗(τM ) = e0,0 = Γ(0). Moreover, the fact
that xk(τM ) = βek(Γ

∗(τM )) = 0 shows that this occurs at time τM = 0.
This establishes the existence of Γ∗, θ∗ on [0,σ) with Γ∗(σ) = Γ(σ) and

with θ∗ consisting of pure, piecewise constant controls. In addition, Γ∗i,j(t)
increases during intervals when um1 = (i − 1, j) or um2 = (i, j − 1), and it
decreases when umk = (i, j) for k = 1, 2. By construction, the order numbers
κmk increase monotonically with decreasing m, ensuring that the intervals
on which Γ∗i,j increases preceed the intervals of decrease.

Finally, we extend the argument to the case when xk(σ) > βek(Γ(σ)) for
some k ∈ 1, 2. Let sk be the last time in [0,σ] such that xk(sk) = βek(Γ(σ)),
and assume without loss that 0 < s2 < s1 < σ. By virtue of (4.3), the event
x1(t) > βe1(Γ(t)) can only occur if balls of class 1 have been thrown into
(I+, j)-occupied urns, which can only happen with finite cost if these urns
hold some mass:

SJ+
j=0 ΓI+,j(t) > 0.

On the interval [s1,σ), we may define θ
1,∗ = e(I+,0) and θ2,∗ = e(0,J+).

Throwing balls into such urns has no effect on the occupancy distribution,
meaning that Γ∗(t) = Γ(σ) is the solution on this interval to the equation

Γ̇∗ =
2[
k=1

ẋkT
k[θk,∗] = 0.

The desired property that θi,j(t) > 0 implies Γi,j(t) ≥ δσk is trivially satis-
fied on this interval.

At time s1, we have x1(s1) = βe1(Γ
∗(s1)) and x2(s1) > βe2(Γ

∗(s1)). On
the interval [s2, s1), we use a modified reverse-time induction in which

τm+1 = max{t : x1(τm)− x1(t) = Γ∗um1 (τm) or t = s2}.

On them-th subinterval, the occupancy rates naturally are defined as θ1,∗ =
eum1 −(1,0) and θ

2,∗ = e0,J+. Using similar arguments to before, it follows that
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after a finite number of steps, the induction terminates with τM = s2, with
Γ∗0,J+(s2) ≥ Γ0,J+(σ), and with κm1 strictly decreasing in m. Since now
xk(s2) = βek(Γ

∗(s2)), k = 1, 2, the original induction argument may be used
to continue the definition of Γ∗ on [0, s2). Now both κm1 and κm2 are both
strictly decreasing in m across the entire interval [0,σ), and we have the
desired property that θi,j > 0 implies Γ

∗
i,j(s) ≥ Γi,j(σ) for s ∈ [0,σ].

This completes the construction of the processes Γ∗, θ1,∗, θ2,∗ on [0,σ].
Note that ] σ

0

�
ẋ1R(θ

1,∗ nΓ∗ ) + ẋ2R(θ2,∗ nΓ∗ )
�
ds

≤ −
] σ

0

�
ẋ1 log

�
δσK

�
+ ẋ2 log

�
δσK

��
ds

= −σ log
�
δσK

�
≤ ε/2,

and that Γ∗ deviates no more than ε from Γ on [0,σ], while ending up at
the same place: Γ∗(σ) = Γ(σ).

The construction on [σ, τ ] is simpler. Let M ∈ N, and observe that
Γi,j(s) is uniformly bounded away from zero for all i, j and s ∈ [σ, τ ]. We
partition [σ, τ ] into M subintervals of length cM = (τ − σ)/M . On each
interval we set

θk,∗i,j (s) =

] σ+(l+1)cM

σ+lcM

ẋk(r)θ
k
i,j(r)dr

1
[xk(σ + (l + 1)cM )− xk(σ + lcM )]

if σ + lcM ≤ s ≤ σ + (l+ 1)cM (the definition is unimportant if xk(σ + (l+
1)cM )− xk(σ + lcM ) = 0). For s ∈ [σ, τ ] let

Γ̇∗ = ẋ1T
1
�
θ1,∗

�
+ ẋ2T

2
�
θ2,∗

�
,Γ∗(σ) = Γ(σ).

Since Γi,j(s) is uniformly bounded away from zero, it is easy to check that
for large enough M , Γ∗ is a valid occupancy path that is associated with
the processes θ1,∗, θ2,∗ and x. The convergence Γ∗ → Γ on [σ, τ ] as M →∞
is immediate, and it follows from the Lebesgue Dominated Convergence
Theorem that

lim
M→∞

] τ

σ

�
ẋ1R(θ

1,∗ nΓ∗ ) + ẋ2R(θ2,∗ nΓ∗ )
�
ds

=

] τ

σ

�
ẋ1R(θ

1 nΓ) + ẋ2R(θ2 nΓ)
�
ds.

Therefore all parts of the lemma hold for sufficiently large M.
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5 Proof of the Large Deviation Lower Bound

Theorem 5.1 Under Assumption 4.1

lim sup
n→∞

− 1
n
logE exp [−nF (Γn)] ≤ inf

Γ∈S
[I(Γ) + F (Γ)] .

Proof: Consider any Γ for which I(Γ) <∞. Then it suffices to show that

lim sup
n→∞

− 1
n
logE exp [−nF (Γn)] ≤ I(Γ) + F (Γ).

Owing to Lemma 4.5 and the continuity of F , we can assume without loss
that there are δ > 0 and K ∈ N such that Γi,j(t) ≥ δtK .

We again utilize the representation (2.3). Fix b > 0. According to the
representation, the inequality in the last display will follow if we can find a
sequence {µn, n ∈ N} such that

lim sup
n→∞

1

n
R (µnnΠn ⊗ Λn) ≤ I(Γ) + b, (5.1)

and such that if Γ̄n is the urn process constructed under the distribution
µn, then

lim sup
n→∞

P̄n
�
d(Γ̄n,Γ) > b

�
≤ b. (5.2)

To prove the desired bound we must construct an appropriate sequence of
measures µn. For Γ as above, let θ1, θ2 and x̃ denote corresponding rate
and coloration processes which achieve the infimum. Without loss we can
assume these processes satisfy the properties ascribed to θ1,∗ and θ2,∗ in
Lemma 4.7.

For a > 0 let G : T → R be continuous and satisfy

G(x) =

�
1/a if d(x, x̃) ≥ 2a
0 if d(x, x̃) ≤ a,

and also G(x) ∈ [0, 1/a] for all x ∈ T . Since {xn, n ∈ N} satisfies a large
deviation principle with rate function J , there is a sequence {λn, n ∈ N},
satisfying

Ēn
�
1

n
R (λnnΛn) +G(x̄n)

�
→ inf

x∈T
[J(x) +G(x)]

≤ J(x̃).
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We use these measures in constructing µn by setting

µn(dx1, . . . , dxNn , dy1, . . . , dyNn)

= µn1 (dx1|y1, . . . , yNn) · · ·µnNn (dxNn |x1, . . . , xNn−1, y1, . . . , yNn)
λn(dy1, . . . , dyNn).

Wewill need to know howmuch λn mass is placed on sequences y1, . . . , y�nτ0+1
such that if x̄n is the corresponding cumulative coloration process, then

sup
t∈[0,τ ]

d(x̄n(t), x̃(t)) ≥ 2a.

We have

lim sup
n→∞

1

a
P̄n

+
sup
t∈[0,τ ]

d(x̄n(t), x̃(t)) ≥ 2a
,
≤ lim sup

n→∞
Ēn [G(x̄n)]

≤ inf
x∈T

[J(x) +G(x)]

≤ J(x̃)

< ∞.

Thus the probability P̄n
q
supt∈[0,τ ] d(x̄

n(t), x̃(t)) ≥ 2a
r
can be made as small

as desired for large n by taking a small. Since nFn∞ <∞, when construct-
ing the controlled urn process we will be able to ignore these paths, and can
let the measures that select the urns be the original uniform measure for
such points in the underlying probability space. The relative entropy cost
for such paths is then zero. Thus in the rest of this construction we focus
on the case where the underlying coloration process satisfies

sup
t∈[0,τ ]

d(x̄n(t), x̃(t)) ≤ 2a.

To finish the construction we must specify the conditional distributions
of the Xn

l . Note that when specifying these distributions we get to see the
complete outcome Y n1 , . . . , Y

n
Nn

of the coloration process, and can assume
that this process satisfies the last equation.

The construction naturally separates according to the partition [0, τ ] =
[0,σ)∪[σ, τ ]. We must specify the distribution of the measures µnl (or equiva-
lently, the distribution of the random measures µ̄nl ) for l = 1, . . . , Nn. Recall
that in general these measures are allowed to depend on the “past”Xn

q , q < l
However, it will turn out that we can assign µnl based on just the coloration
sequence and the time index l (i.e., “open loop” controls). Let (sm1 , s

m
2 ) be
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denote the finite collection of intervals on which θki,j(t) is constant, so that

these intervals are nonoverlapping, and [0, τ ] \ ∪Mm=1 (sm1 , sm2 ) consists of a
finite number of points. Suppose l/n ∈ [sm1 , sm2 ).

• If sm2 ≤ σ then for each k there is (i, j) such that θki,j(t) = 1 for
t ∈ (sm1 , sm2 ). If Y nl = k (the ball at time l is color k), then µnl set to
be the uniform distribution on all urns of class (i, j). Note that when
we rewrite the relative entropy as in (3.2) there will be equality, and
in fact

Ēn [R (µ̄nl nπn)] = Ēn
�
R
�
νn(l/n)nΓ̄n(l/n)

��
= Ēn

 I+,J+[
i=0,j=0

%
log

#
νni,j(l/n)

Γ̄ni,j(l/n)

$
νni,j(l/n)

&
= −Ēn

�
log
�
Γ̄ni,j(l/n)

��
.

• If sm2 > σ then the controls are no longer “pure.” If yl = k then
each θki,j(t) determines a “weight” that should be placed on urns of

class (i, j). We let µnl be the measure which places mass θ
k
i,j(t) on the

urns of class (i, j), and within this class uses the uniform distribution
to apportion mass. We again have equality in the relative entropy in
(3.2), and in fact

Ēn [R (µ̄nl nπn)] = Ēn
�
R
�
νn(l/n)nΓ̄n(l/n)

��
= Ēn

 I+,J+[
i=0,j=0

%
log

#
θki,j(l/n)

Γ̄ni,j(l/n)

$
θki,j(l/n)

& .
Note that for the controls constructed in Lemma 4.7 we have Γi,j(t) ≥

δσK for any (i, j) for which θ1i,j(t) ∨ θ2i,j(t) > 0. Owing to the random-
ness of the prelimit processes, we cannot guarantee the corresponding result
Γ̄ni,j(t) ≥ δσK for any (i, j) for which θ1i,j(t) ∨ θ2i,j(t) > 0. We therefore use
a stopping time argument in the construction of the measures µnl . Let l̄n
be the first time l such that Γ̄ni,j(l/n) ≤ δσK/2 for some (i, j) for which

θ1i,j(l/n)∨θ2i,j(l/n) > 0. From time l̄n on the construction above is modified,
in that the measure is selected so that νn(l/n) = Γ̄n(l/n) for l ≥ l̄n. Thus a
weight of Γ̄ni,j(l/n) is placed on the urns of class (i, j). Note that with this

definition Ēn
�
R
�
νn(l/n)nΓ̄n(l/n)

��
= 0 for l ≥ l̄n. We now apply Theo-

rem 3.1. Thus given any subsequence we have convergence along a further
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subsequence as indicated in the theorem, with limit (Γ̄, x̄1, x̄2, θ̄
1, θ̄2). Using

the standard argument by contradiction, it will be enough to prove the con-
vergence of controlled processes and bounds on the relative entropy cost for
this convergent subsequence. Let γn = (l̄n/n) ∧ τ . Note that because the
applied controls are pure, the process Γ̄n(t) is deterministic prior to σ, and
also that prior to this time, the time derivative of both Γ̄n(t) and Γ(t) are
piecewise constant. In fact, the two derivatives are identical except possibly
on a bounded number of intervals of length less then 1/n (located near the
endpoints of the intervals of constancy of Γ̇(t)). Thus for large n we cannot
have γn < σ. Since the range of γn is bounded we can also assume γn

converges (along the same subsequence) in distribution to a limit γ, and it
is easy to check that the limit control processes a.e. satisfy

θ̄ki,j(t) =

�
θki,j(t) if t ≤ γ

Γ̄i,j(t) if t > γ.

Owing to the definition of γn, if γ < τ then Γ̄i,j(γ) = δσK/2 for some (i, j).
Recall also that Γi,j(t) ≥ δσK for all t ∈ [σ, τ ].

Observe that the limit processes all implicitly depend on a > 0 through
the function G. We claim that for each b > 0

lim
a↓0
P̄
�
d(Γ̄,Γ) > b

�
= 0.

We already know that

lim
a↓0
P̄ {d(x̄, x̃) > 2a} = 0

However, since the rate processes θki,j are all piecewise constant, the integral] t

0

�
˙̄x1T

1
�
θ1
�
+ ˙̄x2T

2
�
θ2
��
ds

converges uniformly to] t

0

�
˙̃x1T

1
�
θ1
�
+ ˙̃x2T

2
�
θ2
��
ds

as d(x̄, x̃)→ 0. Therefore,

lim
a↓0
P̄

+
sup
0≤t≤γ

��Γ̄(t)− Γ(t)�� > b, = 0.
If b > 0 is sufficiently small, then following three items, all of which hold
under γ < τ , form a contradiction:
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• Γ̄i,j(γ) = δσK/2 for some (i, j),

• Γi,j(t) ≥ δσK for all t ∈ [0, τ ] ,

• sup0≤t≤γ
��Γ̄(t)− Γ(t)�� ≤ b.

We conclude that lima↓0 P̄ {γ < τ} = 0, and therefore lima↓0 P̄
�
d(Γ̄,Γ) > b

�
=

0 for all sufficiently small b > 0. It follows that given b > 0, for some fixed
(sufficiently small) a > 0 lim supn→∞ P̄

�
d(Γ̄n,Γ) > b

�
≤ b.

We must also consider the relative entropy costs. However, again using
the convergence lima↓0 P̄

�
d(Γ̄,Γ) > b

�
= 0 and the dominated convergence

theorem,

lim sup
a↓0

lim sup
n→∞

Ēn

%
1

n

Nn[
l=1

R
�
νn(l/n)nΓ̄n(l/n)

�&

= lim sup
a↓0

lim sup
n→∞

Ēn

%
M[
m=1

#
Nn[
l=1

R
�
θ1(l/n)nΓ̄n(l/n)

�
(xn1 ((l + 1) /n)− xn1 (l/n))

$

+

#
Nn[
l=1

R
�
θ2(l/n)nΓ̄n(l/n)

�
(xn2 ((l + 1) /n)− xn2 (l/n))

$&

= lim sup
a↓0

Ē

%
M[
m=1

] s2m

s1m

R
�
θ1(t)nΓ̄(t)

�
dx̄1(t) +

] s2m

s1m

R
�
θ2(t)nΓ̄(t)

�
dx̄2(t)

&

=

] τ

0

�
˙̃x1(t)R

�
θ1(t)nΓ(t)

�
+ ˙̃x2(t)R

�
θ2(t)nΓ(t)

��
dt.

When combined with the bound

lim sup
n→∞

1

n
R (λn nΛn ) ≤ J(x̃),

for small enough a > 0 we have proved (5.1). Since lima↓0 P̄
�
d(Γ̄,Γ) > b

�
=

0 implies (5.2) for small a > 0, the proof is complete.
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