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Abstract

We are concerned with the allocation of the base station transmitter time in time
varying mobile communications with many users who are transmitting data. Time is
divided into small scheduling intervals, and the channel rates for the various users are
available at the start of the intervals. Since the rates vary randomly, in selecting the
current user there is a conflict between full use (by selecting the user with the highest
current rate) and fairness (which entails consideration for users with poor throughput
to date). The Proportional Fair Scheduler (PFS) of the Qualcomm High Data Rate
(HDR) system and related algorithms are designed to deal with such conflicts. The
aim here is to put such algorithms on a sure mathematical footing and analyze their
behavior. The available analysis [6], while obtaining interesting information, does not
address the actual convergence for arbitrarily many users under general conditions.
Such algorithms are of the stochastic approximation type and results of stochastic
approximation are used to analyze the long term properties. It is shown that the
limiting behavior of the sample paths of the throughputs converges to the solution
of an intuitively reasonable ordinary differential equation, which is akin to a mean
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flow. We show that the ODE has a unique equilibrium and that it is characterized
as optimizing a concave utility function, which shows that PFS is not ad-hoc, but
actually corresponds to a reasonable maximization problem. These results may be
used to analyze the performance of PFS. The results depend on the fact that the
mean ODE has a special form that arises in problems with certain types of competitive
behavior. There is a large set of such algorithms, each one corresponding to a concave
utility function. This set allows a choice of tradeoffs between the current rate and
throughout. Extensions to multiple antenna and frequency systems are given. Finally,
the infinite backlog assumption is dropped and the data is allowed to arrive at random.
This complicates the analysis, but the same results hold.

1 Introduction: The Basic Algorithm

Consider the problem where there are a fixed number (N) of users competing to transmit
data from a single base station to N mobile destinations, each moving independently of
the others, and the possible rates of transmission of the individual users are randomly time
varying. Time is divided into small scheduling intervals (called slots). Until further notice,
in each interval one of the N users is chosen to transmit to its destination. If user i is selected
in interval n, then it transmits ri,n units of data, where {ri,n, n < ∞} is a bounded (and
usually correlated in n) random sequence, which might also be correlated among the i. They
need only satisfy some mixing-type condition, specified in Section 2.

Motivation for the work comes from recent cellular systems, such as the Qualcomm High
Data Rate system (the ISO 856 standard), which provide data connection via a common
shared downlink onto which user transmissions are scheduled. In that system, access to the
link is given one user at a time for a time slot of fixed duration of 1.67 ms. The decision as
to which user is to be chosen for that slot is made on the basis of how much data (i.e, the
rate) each could transmit over the interval, as well as the past history. These rates take into
account the estimated SNR, which is determined via measurements based on a pilot signal.
Since the time between measurement and prediction is short, fairly accurate rate predictions
can be made. Scheduling decisions can take into account Rayleigh fading with a frequency
of a few tens of Hertz.

The selection of the user at any time is based on a balance between the current possible
rates and “fairness.” One cannot choose the user with the highest rate at each slot, since
users with lower SNRs will be starved. The question is how to “fair share.” Fair sharing will
lower the total throughput over the maximum possible, but it will provide more acceptable
levels to users with poorer SNRs. The algorithm proposed by Qualcomm performs this
sharing by comparing the given rate for each user with its average throughput to date,
and selecting the one with the maximum ratio. This algorithm is known as proportional
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fair sharing (PFS) and is related to the fairness criterion given by Kelly [7] in allocating
connections over multiple links on the Internet.

Until further notice, it is assumed that each user has an infinite backlog of data, the
standard assumption in the literature to date. See [3, 10], where the channel behavior is
stationary and ergodic. Such results indicate the gains that can be made by exploiting
channel fluctuations that result from Rayleigh fading etc. Our assumptions will be weaker.
Let the end of time slot (i.e., scheduling interval) n be called time n. At time n, the possible
rates {ri,n+1, i ≤ N} for the next time slot are known. Let Ii,n+1 be the indicator function
of the event that user i is chosen at time n to transmit in slot n + 1. One definition of the
throughput for user i up to time n is the sample average

θi,n =
n∑

l=1

ri,lIi,l/n, (1.1)

where Ii,l+1 = 1 if user i is chosen at time l and is zero otherwise. With the definition
εn = 1/(n + 1), (1.1) can be written in the recursive form (which defines Yn)

θi,n+1 = θi,n + εn [Ii,n+1ri,n+1 − θi,n] = θi,n + εnYi,n. (1.2)

An alternative definition of throughput discounts past values of the ri,n. For small positive
ε, and the discount factor 1 − ε, the discounted throughput is defined by

θεi,n = (1 − ε)nθεi,0 + ε
n∑

l=1

(1 − ε)n−lri,lI
ε
i,l. (1.3)

This can be written in the recursive form (which defines Y ε
n )

θεi,n+1 = θεi,n + ε
[
Iεi,n+1ri,n+1 − θεi,n

]
= θεi,n + εY ε

i,n, (1.4)

where Iεi,n+1 is the indicator function of the event that user i is chosen at time n. The
representations (1.2)-(1.4) allow arbitrary initial conditions, which might reflect some past
history or bias. The recursive representation (1.2) allows the use of other values of the {εn}.
For example, they might go to zero more slowly than 1/n, giving a weighting between those
of (1.1) and (1.3). Owing to the boundedness of the ri,n, the solutions to (1.2) and (1.4) are
bounded.

The value of ε is chosen to balance the needs of estimating throughput (requiring a small
value of ε) with the ability to track changes in the channel characteristics (requiring a larger
value of ε). In general, ε should be chosen small enough so that it provides an acceptable
measure of the throughput. A useful guideline is ε×[number of time slots by real time t]
= O(t).

3



The representations (1.2) and (1.4) are of the stochastic approximation form (see the
comprehensive reference [8]), and the results of stochastic approximation theory will be used
for their analysis. The possibility of using more general queues and the arbitrariness of the
channel rate processes and of the εn illustrate the power of the approach. As will be seen,
there are also convenient adaptations to multiple antenna/frequency systems. In addition,
the assignment algorithm and convergence results will be seen to be typical of a large family
of algorithms, each corresponding to some concave utility function, which in turn is actually
maximized by the associated algorithm. Although the methods and conclusions exploit
current results in stochastic approximation, they are far from obvious.

The original proportional-fair sharing algorithm chose the user that maximizes in1

arg max
i≤N

{ri,n+1/θi,n}, (1.5)

or with θεi,n replacing θn if (1.4) is used. When all of the current components θi,n, i ≤ N, are
very small, there is little sense in (1.5), since the current throughputs are all essentially zero
and there is no reason to distinguish between them. We modify the algorithm slightly as
follows. Let di, i ≤ N, be positive numbers, which can be as small as we wish. The chosen
user at time n is that which maximizes in

arg max
i≤N

{ri,n+1/(di + θi,n)}, (1.6)

or with θεn used if the algorithm is (1.4). In the event of ties, let us randomize among
the possibilities. We choose randomization for resolving conflicts. But the end results are
completely independent of how the conflicts are resolved.

Discretized or quantized rates. Suppose that the variables ri,n are the theoretical rates
in that there is in principle a transmission scheme that could realize them, perhaps by
adjusting the symbol interval and coding in each scheduling interval. In applications, it
might be possible to transmit at only one of a discrete set of rates. The algorithms and
results are readily adjusted to accommodate this need. Continue to make the assignments
using (1.6), based on the values of the ri,n+1, i ≤ N . But use the true transmitted rate,
called rdn,i in computing the throughput. Then (1.4) is replaced by

θεi,n+1 = θεi,n + ε
(
Iεi,n+1r

d
i,n+1 − θεi,n

)
= θεi,n + εY ε

i,n, (1.7)

Much is known about the behavior of algorithms such as (1.2) and (1.4); see, for example,
[8, Chapters 8]. Under broad conditions, if the tracking parameter ε in (1.4) is small and

1The original algorithm, as applied to mobile communications, is due to D.N.C. Tse.
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constant, or if n is large in (1.2), then the path converges to the solution to a determin-
istic ordinary differential equation, which is computed from the “mean” dynamics of the
throughput process.

As we have just remarked, the path θε(·) will essentially “follow” the solution to the
ordinary differential equation (ODE). The ODE has a unique equilibrium point θ̄. The
sample throughputs of (1.2) will converge to θ̄ for large n. With (1.4), the sample throughputs
will congregate very close to θ̄ if ε is small. The existence of a unique equilibrium is of
significance for the performance analysis of the proportional fair algorithm. This is because
the equilibrium state which will determine the throughput of each user and hence delay.

An interpretation of (1.6); maximizing a utility function. Define the utility function

U(θ) =
∑
i

log(di + θi). (1.8)

An alternative view of (1.6) is that it maximizes U(θn+1)−U(θn) to first order in the εn, as
seen by the following argument. By a first order Taylor expansion,

U(θn+1) − U(θn) = εn
∑
i

ri,n+1Ii,n+1 − θi,n
di + θi,n

+ O(ε2n). (1.9)

Since
∑

i Ii,n+1 ≡ 1, to maximize the first order term we must choose Ii,n+1 by (1.6). It will
be shown in Section 3 that the rule (1.6) maximizes limn U(θn) over all other admissible
rules. See also the comments below (3.5) concerning the form (1.8). The function was not
chosen apriori. It is the unique one associated with the original form of PFS.

The outline of the paper is as follows. Section 2 begins with some definitions. Then the
assumptions are stated. They are stated in a general form, not only so that we can appeal
to general results in stochastic approximation to facilitate the development, but also so that
the basic structure that is required will be clear. The overall framework is quite flexible, and
there are many useful variations. It is seen that the assumptions are quite reasonable. Then
a weak convergence theorem for the iterative algorithms (1.2) and (1.4) is presented.

Theorems 2.2 and 2.3, which show that proportional fair has a unique stable point and op-
timizes the limiting utility limU(θn), are new. These results depend heavily on the structure
of proportional fair and its relationship to what are known as monotone dynamical systems,
as seen in Section 3. The existence of a unique equilibrium is of considerable significance for
the performance analysis of PFS; otherwise, the usefulness would be questionable. To date,
the primary alternative to such analysis has been simulation. Except for short transfers, the
equilibrium state determines user throughput, hence delay. In Section 4, we give an example
that illustrates the quality of the approach for modeling and analysis for the special case of
Rayleigh fading.
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Section 5 is devoted to extensions of the earlier results. The log concave utility is not
essential. See Subsection 5.1. The results also hold if there are multiple channels with more
than one user assigned at once. This allows applications such as scheduling from multiple
transmit antennas, see Subsection 5.2. In Section 6, we drop the assumption of infinitely
backlogged users. Suppose that (over the time period of interest), there are still a fixed
number of users in the system, but they create data at random rates. This data is queued
until transmitted. Under natural conditions, there is still a mean ODE which characterizes
the flow of the algorithm. The queues themselves need to be brought into the analysis, since
some might be empty at a scheduling time. This complicates the analysis, but the basic
properties of and use of the mean ODE have not changed.

The convergence theorems which characterize the asymptotic behavior of the algorithms
are given in Section 3, where it is also seen that argmax rule (1.6) also maximizes the utility
function (1.8) for small ε and large n. The special case of constant rates with discontinuous
dynamics is also discussed briefly. The utility function (1.8) plays no special role in the
analysis. In Subsection 5.1, we see that other strictly concave utility functions can be used
as well. This allows a choice of tradeoffs between the current rate and throughput in making
the assignments. One advantage of the flexibility of the approach is the ease with which
more complex systems can be treated. To illustrate this, in Subsection 5.2. we discuss the
extension when there are multiple antennas or channels, and they can be assigned either
individually or in some coordinated way.

Suppose that the users have a large, but not infinite, amount of data, and that new
users can arrive from time to time. Then, during periods in which the number is fixed, the
throughputs will follow the path of the mean ODE. For PFS to work well, one would need
to choose an appropriate initial condition for any new user. It would be best if this were
an estimate of the equilibrium value for that user in the current situation. For example, if
we start a user with a throughput value of zero, then it will take slots even with very poor
current rates. In Section 6, we drop the assumption of infinitely backlogged users. Suppose
that (over the time period of interest), there are still a fixed number of users in the system,
but they create data at random rates. This data is queued until transmitted. Under natural
conditions, there is still a mean ODE which characterizes the flow of the algorithm. The
queues themselves need to be brought into the analysis, since some might be empty at a
scheduling time. This complicates the analysis, but the basic properties of and use of the
mean ODE have not changed.
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2 Assumptions and Convergence Theorems

First, some definitions will be given. Then we make a few comments concerning what is
called weak convergence. The assumptions are then stated and discussed, after which the
theorems are stated.

Definitions. Define the vectors θn = {θi,n, i ≤ N}, θεn = {θεi,n, i ≤ N}, and Rn = {ri,n, i ≤
N}. The usual stochastic approximation asymptotic (or large time) analysis of the algorithms
(1.2) and (1.4) uses continuous time interpolations. For each n, define the shifted process
θn(·) (with components θni (·), i ≤ N) by θn(0) = θn and, for l ≥ 0,

θn(t) = θn+l for t ∈
[
n+l−1∑
k=n

εk,
n+l∑
k=n

εk

)
,

where the empty sum is defined to be zero. Since the interpolated process θn(·) starts at
iterate n, the behavior of θn(·) as n → ∞ is that of θn as n → ∞. Analogously, define the
interpolated process θε(·) (with components θεi(·), i ≤ N) by θε(t) = θεn for t ∈ [nε, nε + ε).

Weak convergence. We work in a so-called weak convergence setup, which is the most
powerful approach for the analysis of such algorithms [8, Chapter 8]. It is concerned with the
characterization of the limits of the processes θn(·) for large n and θε(·) for large time. The
details of the theory are not necessary for the development of the results. If we say that θε(·)
converges weakly to a process with constant value θ̄, it means that for large n, the paths of
θε(·) are very close to the point θ̄, with a high probability. The algorithm (1.4) requires the
weak convergence view, since there will not be probability one convergence. One would not
usually want to use (1.2) with the step size εn = 1/(n+1) since a few bad values of the noise
in the early stages can mess up the behavior of the sample path for a long time to come, and
such robustness considerations require that we have a larger discounting of past values than
εn = 1/(n+1) provides. The weak convergence approach gives us much more flexibility than
a probability one method, where that is possible. The discounted algorithm (1.4), or any
form which is set up to allow tracking in the presence of time varying parameters, cannot
converge w.p.1, so that a weak convergence analysis must always be done. More detail and
discussion is in the comprehensive reference [8, Chapter 8].

Assumptions. The assumptions are quite weak. For convenience in applications, they are
stated in a way that allows two options. The first, which is (A2.1), is simpler to state and
requires stationarity of {Rn}. The second, which is (A2.2), is implied by (A2.1) and allows
more general behavior, such as deterministic cycling, etc. The conditions and the problem
formulation are designed to take maximum advantage of the results in [8, Chapter 8]. Owing
to the boundedness of the Rn, the conditions of the convergence theorems [8, Sections 8.2,
8.4] are implied by the forms used below. Let En denote the expectation conditioned on
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{Rl, l ≤ n; θ0}, the data needed to calculate θn. The symbol ri is used as the canonical value
of the components ri,n, and θi and θj are used as the canonical values of θi,n and θj,n, resp.
Let IRN

+ denote the set of points x ∈ IRN with all components nonnegative. The requirements
of the first stochastic approximation result, Theorem 2.1, are minimal. But, once the mean
ODE is characterized, we need to know more about the set of possible limit points. The fact
that the the limit point is unique and globally asymptotically stable is proved by using some
results from dynamical systems theory.

A2.0. Let ξn denote the past: {Rl : l ≤ n}. For each i, n, ξn,

hi,n(θ, ξn) = Enri,n+1I{ri,n+1/(di+θi)≥rj,n+1/(dj+θj),j �=i}

is continuous in θ ∈ IRN
+ . Here θ is considered fixed. Let δ > 0 be arbitrary. Then in the set

{θ : θi ≥ δ, i ≤ N}, the continuity is uniform in n and in ξn.

A2.1a. {Rn, n < ∞} is stationary. Define h̄i(·) by the stationary expectation:

h̄i(θ) = EriI{ri/(di+θi)≥rj/(dj+θj),j �=i}, i ≤ N. (2.1)

In (2.1), θ is considered fixed. Also,

lim
m,n→∞

1

m

n+m−1∑
l=n

[
Enri,l+1I{ri,l+1/(di+θi)≥rj,l+1/(dj+θj),j �=i} − h̄i(θ)

]
= 0 (2.2)

in the sense of probability. There are small positive δ and δ1 such that

P {ri,n/di ≥ rj,n/(dj − δ) + δ1, j �= i} > 0, i ≤ N. (2.3)

A2.1b. Rn is defined on some bounded set and has a bounded density.

Comments on assumptions (A2.0) and (A2.1). The last part of (A2.1a) is innocuous
and is used to assure that when a component θi is very small there is a nonzero chance that
user i will be chosen, no matter what the values of the other components of θ. This is hardly
a restriction. It guarantees that the mean rate function h̄i(θ) defined in (2.1) is positive when
θi is small, The density assumption (A2.1b) is satisfied under standard physical assumptions.
Indeed all the assumptions hold under Rayleigh fading if the channels are independent. The
density condition is used only to show that the limit point is unique. Condition (2.2) is a
very weak form of the law of large numbers, due to the use of the conditional expectation
En. If the conditional expectation of the transmitted rate at time l, given the data to time
n, is close to its stationary expectation for large positive l− n, then it holds. If the channel
rate process is ergodic, then the condition holds even without the conditional expectation.
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So the combination of the effects of the conditional expectation and the division by m gives
a very weak condition indeed. Condition (A2.0) asks that slight changes in θn would change
the conditional (on data to the present) expectation of the next accepted rates only slightly.
It is [8, condition (A2.3), Chapter 8]. The condition can be weakened by the approach taken
in Section 7, but is good enough for typical applications where (A2.1b) holds.

On the smoothness of h̄(·). By (A2.1b), h̄(·) is Lipschitz continuous. To see this, consider
the two dimensional case and let p(·) denote the density of Rn. Let θ ∈ IRN

+ and write
w = (d1 + θ1)/(d2 + θ2). Then

h̄1(θ) =
∫

r1I{r1/r2≥w}p(r1, r2)dr1dr2,

which is Lipschitz continuous with respect to w, since the area of the region where the
indicator is not zero is a differentiable function of w. The derivative of h̄i(·) will be continuous
if p(·) is bounded and continuous.

A weaker set of conditions. The set of assumptions (A2.2a,b) is weaker than (A2.1a,b) in
that it covers it and allows the distributions of the Rn to vary with n. For example, they can
cycle in a deterministic way. A weak ergodicity property analogous to (2.2) is still required.
In (A2.1), the condition (2.3) was sufficient to assure that the solution of (2.7) would have all
components positive after an arbitrarily small time. We need a similar property when using
(A2.2a,b) in order to avoid the possibility that some component will be zero in the limit
due to degeneration of the rates. Because of the possibility of nonstationarity, a reasonably
general sufficient condition cannot be expressed as simply as it was in (2.3). There are many
sets of conditions which will assure it. For example, consider the random variables RM

n

obtained by randomizing among {Rn+l, l ≤ M} for some integer M . If RM
n satisfies (2.3)

uniformly in n, then the desired positivity will be assured. In order to avoid lots of examples,
we simply write a sufficient condition (2.6) for what is required. Analogously to the situation
with the set (A2.1), (A2.2a) is used in the basic stochastic approximation result, Theorem
2.1, and (A2.2b) is used to show that there is a unique limit point. Also, as noted above,
the use of the conditional expectation in (2.5) gives a very weak form of the law of large
numbers.

A2.2a. The limits (stationary expectation used)

h̄i(θ) = lim
m,n→∞

1

m

n+m−1∑
l=n

Ehi,l(θ, ξl) (2.4)

exist and, for each θ,

lim
m,n→∞

1

m

n+m−1∑
l=n

En

[
hi,l(θ, ξl) − h̄i(θ)

]
= 0, i ≤ N, (2.5)
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in probability. There are small positive δ, δ1, and an integer M :

inf
n
P {ri,n+l/di ≥ rj,n+l/(dj − δ) + δ1, j �= i, for some l ≤ M} > 0, i ≤ N. (2.6)

A2.2b. For any integer M , consider the random variables RM
n obtained by randomizing

among the {Rn+l, l ≤ M}. There is M such that the RM
n , n < ∞, have densities pMn (·) which

are uniformly (in n) bounded.

Note on quantized rates. If the transmitted rates are quantized as in (1.7), then redefine

hi,n(θ, ξn) = Enr
d
i,n+1I{ri,n+1/(di+θi)≥rj,n+1/(dj+θj),j �=i},

h̄i(θ) = Erdi I{ri/(di+θi)≥rj/(dj+θj),j �=i},

and in (2.2) use
Enr

d
i,l+1I{ri,l+1/(di+θi)≥rj,l+1/(dj+θj),j �=i}.

The limit process and mean ODE. The next theorem is a standard result in stochastic
approximation. It basically says that the limit points of the algorithms (1.2) and (1.4) are
contained in those of the ODE (2.7).

Theorem 2.1. (This is [8, Theorems 2.2 and 2.3, Section 8.2].) Assume the algorithm
(1.2), (A2.0), and either (A2.1a) or (A2.2a). Then for any initial condition, θn(·) converges
weakly to the set of limit points of the solution of the ODE

θ̇i = h̄i(θ) − θi, i ≤ N. (2.7)

The same conclusion holds if the εn in (1.2) is replaced by a sequence εn such that εn →
0,

∑
n εn = ∞, and where εn doesn’t vary too fast in that for some sequence αn → ∞

lim
n

sup
0≤l≤αn

|εn+l/εn − 1| = 0. (2.8)

For algorithm (1.4), the same conclusion holds for the sequence θε(εqε + ·) for any sequence
of integers qε. In particular, if θε0 → θ(0), then θε(·) converges to the unique solution to (2.7)
with initial condition θ(0). The conclusions hold if the discretized rates are used.

Comment on the proof. The conditions of [8, Theorems 2.2 and 2.3, Section 8.2] are
easily verified. The boundedness of Rn implies the uniform integrability needed in (the
following cited conditions (conditions (A1.1)–(A1.9) are those in the reference) (A1.1) and
(A1.8). The quantity βn in (A1.5) is zero. In our case, we can suppose that ξn is defined on
a compact sequence space, so (A1.7) is trivially satisfied. The averaging assumption (A1.9)
is assured by either (2.2) or (2.5). The next two theorems will be proved in Section 4.
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Theorem 2.2. Assume algorithm (1.2), (A2.0), and either (A2.1a,b) or (A2.2a,b). The
limit point (θ̄) of (2.7) is unique, irrespective of the initial condition. So the processes θn(·)
and θε(εqε + ·) converge to θ̄ as n → ∞ (resp., as ε → 0 and εqε → ∞, or as ε → 0 and
t → ∞). The conclusions hold if the discretized rates are used.

Optimizing the utility function (1.8). Up to now, we have concentrated on the algorithm
(1.6). Theorem 2.2 shows that there is a unique asymptotically stable limit point θ̄ of the
ODE and algorithm. We have not addressed the optimality of the algorithm. We can see
intuitively from the argument below (1.8) that (1.6) is, in the limit, a “steepest ascent”
algorithm for a strictly concave utility function. The problem is that the allowed directions
of ascent at each value of θ depend on θ. Hence there is no a priori guarantee of any type of
maximization. The following theorem is one way of quantifying this idea.

Theorem 2.2. Assume the conditions of Theorem 2.2. There is no assignment policy which
yields a limit throughput θ̃ �= θ̄ such that U(θ̃) ≥ U(θ̄).

3 The Limit Point: Proof of Theorem 2.2

The proof depends on a monotonicity property of the solution to (2.7), which is fundamental
to the analysis of a large class of stochastic algorithms which model competitive or coopera-
tive behavior. The importance of these concepts was introduced in [5] and further discussion
is in [1, 2]. First, some general facts from the theory of dynamical systems will be stated.

Definitions. For vectors X, Y ∈ IRN , we write X ≥ Y (resp., X > Y ) if Xi ≥ Yi for all
i (resp., and, in addition X �= Y ). If Xi > Yi for all i, then we write X 	 Y . Let H,K
be subsets of IRN . Then write H ≥ K (resp., H 	 K) if X ≥ Y (resp., X 	 Y ) for all
X ∈ H, Y ∈ K. Consider a dynamical system in IRN :

ẋ = f(x), f(·) Lipschitz continuous. (3.1)

Where helpful for clarity, we might write x(t|y) for the solution to (3.1) when the initial
condition is y, and use analogous notation for (2.7).

We say that the solution of (3.1) has a continuous dependence on perturbations if x(t|y+
δy) converges to x(t|y) on each compact t-set as δy → 0. The function f(·) is said to satisfy
the Kamke (or simply the K-condition) if for any x, y and i, satisfying x ≤ y and xi = yi, we
have fi(x) ≤ fi(y). In our case, f(θ) = h̄(θ) − θ, and the condition holds. The K-condition
implies the following monotonicity result. Its proof in [9, Proposition 1.1] assumes continuous
differentiability of f(·). But, it used only the K-condition, uniqueness of solutions, and the
continuous dependence of the path on perturbations, all of which hold if f(·) is only Lipschitz
continuous.
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Theorem 4.1. [9, Proposition 1.1] Let f(·) be Lipschitz continuous and assume the K-
condition. If x(0) ≤ y(0) (resp., <,
, then x(t|x(0)) ≤ x(t|y(0))) (resp., <,
).

Proof of Theorem 2.2. By Theorem 2.1, we need only prove the assertions concerning the
limit points of the paths of the mean ODE (2.7). Because of the boundedness of h̄(·), the
path θ(t|θ(0)) will be bounded, uniformly in the initial condition in any compact set, and all
paths tend to some compact set as t → ∞. Also, without loss of generality (say, by shifting
the time origin), we can suppose where needed that there is δ > 0 such that θi(t|θ(0)) ≥ δ
for all t. Since the path is initially monotone increasing (in each coordinate) when started
near the origin (since h̄(θ) − θ 	 0 for θ near the origin), it follows from the monotonicity
property (Theorem 4.1), that it will be monotonic (nondecreasing) in each coordinate for all
t, for any initial condition sufficiently close to the origin. Thus, there is a unique limit point
for the path θ(t|θ(0)) for each θ(0) near the origin. By the monotonicity, θ(t|θ(0)) ≤ θ̄ for
all θ(0) sufficiently close to the origin and all t.

Let θ̄ and θ̃ be two such limit points for paths corresponding to initial conditions θ̄(0)
and θ̃(0), resp., arbitrarily close to the origin. The next step is to show that θ̄ = θ̃. All com-
ponents of all paths that start very close to the origin are initially monotonically increasing.
Thus for small enough θ̄, we must have θ(t0|θ̃(0)) 	 θ̄(0) for some t0 > 0. Then, by mono-
tonicity, θ(t + t0|θ̃(0)) = θ(t|θ(t0|θ̃(0))) ≥ θ(t|θ̄(0)) for all t ≥ 0. Thus, θ̃ ≥ θ̄. An analogous
argument yields that θ̄ ≥ θ̃. We can conclude that there is a unique limit point, say θ̄, for
all paths starting sufficiently close to the origin. Any limit point must be an equilibrium for
(2.7) in that h(θ̄) = θ̄.

Now, consider the path starting at an arbitrary initial condition θ̂ ≤ θ̄. After some small
time t0 > 0, all components of the path will be positive. Hence there is θ(0) 	 0, and
arbitrarily close to the origin, such that θ(t0|θ̂) ≥ θ(0). Then, the monotonicity argument
of the above paragraph yields that θ(t + t0|θ̂) ≥ θ(t|θ(0)) for all t. Hence any limit point
of θ(t|θ̂) must be no smaller than θ̄, the limit point of θ(t|θ(0)). But, by the monotonicity
again, θ(t|θ̂) ≤ θ(t|θ̄) = θ̄ for all t (the equality holds since θ̄ is an equilibrium point). We
can conclude that θ(t|θ̂) → θ̄ as t → ∞.

Define the set Q(θ) = {x : x ≥ θ}. Now, consider an arbitrary initial condition θ(0).
The monotonicity argument can be used again to show that all limit points of the path are
in Q(θ̄). It only remains to show that any path starting in Q(θ̄) must ultimately go to θ̄
also. So far, we have used only the monotonicity property and not any other aspect of the
original stochastic approximation process that led to (2.7). The rest of the details involve the
properties of the argmax rule and essentially standard stochastic approximation arguments.
Suppose that there is a point θ̃ ∈ Q(θ̄), θ̃ �= θ̄, such that

U̇(θ̃) =
∑
i

(h̄i(θ̃) − θ̃i)/(di + θ̃i) ≥ 0. (3.2)
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Since θ̃ ≥ θ̄ and θ̃ �= θ̄, (3.2) implies that∑
i

(h̄i(θ̃) − θ̄i)/(di + θ̄i) > 0. (3.3)

Consider the algorithm (1.4) started at θ̄, but with the slot allocation rule

arg max
i≤N

{
ri,n+1/(di + θ̃i)

}
used at time n. Let Ĩεi,n+1 denote the indicator function of the event that user i is chosen at
time n. Modulo a second order error of order O(ε)t, the expansion (1.9) and the maximizing
property of Iεn+1 (see (1.6)) yield

U(θε(t)) − U(θ̄) = ε
∑
i

[t/ε]−1∑
l=0

ri,l+1I
ε
i,l+1 − θεi,l

di + θεi,l
≥ ε

∑
i

[t/ε]−1∑
l=0

ri,l+1Ĩ
ε
i,l+1 − θεi,l

di + θεi,l
(3.4)

where [t/ε] denotes the integer part of t/ε, and θεl (with interpolation θε(·)) is the solution
to (1.4) under (1.6).

The stochastic approximation arguments that led to Theorem 2.1, together with (3.4),
imply that as ε → 0 the limit θ(·) satisfies

U(θ(t)) − U(θ̄) =
∫ t

0

∑
i

h̄i(θ(s)) − θi(s)

di + θi(s)
ds ≥

∫ t

0

∑
i

h̄i(θ̃) − θi(s)

di + θi(s)
ds.

This, together with the inequality in (3.3) implies that

U̇(θ(t))|t=0 =
∑
i

h̄i(θ̄) − θ̄i
di + θ̄i

≥
∑
i

h̄i(θ̃) − θ̄i
di + θ̄i

> 0.

But the first sum is zero since h̄(θ̄) = θ̄. Thus, we have a contradiction to (3.2) and can
conclude that U̇(θ) < 0 for all θ ∈ Q(θ̄)− θ̄. This implies that U̇(θ(·|θ̃)) is strictly decreasing
when the path is in Q(θ̄)− θ̄, which implies that any path starting at some θ(0) ∈ Q(θ̄) must
end up at θ̄. Thus, θ̄ is the unique limit point of (2.7), irrespective of the initial condition.
Hence it is asymptotically stable.

A two-user example. Consider two independent users with received signal power deter-
mined by stationary Rayleigh fading (the Jakes model) and with constant external noise.
Suppose further that their rate declarations are proportional to the absolute SNR, with mean
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rates 1/βi, i = 1, 2 respectively. Then the function h̄ in (2.7) can be explicitly evaluated and
we get

θ̇1 =
1

β1

− β1(d1 + θ1)
2

(β1(d1 + θ1) + β2(d2 + θ2))
2 − θ1,

θ̇2 =
1

β2

− β2(d2 + θ2)
2

(β1(d1 + θ1) + β2(d2 + θ2))
2 − θ2.

(3.5)

For di = 0, i = 1, 2, it is readily shown that θi = 3/4 · 1/βi is a limit point. More generally
θi = G(N)/N · 1/βi where G(N) =

∑N
j=1 1/j. Note that this represents a scheduling gain,

since with simple TDMA we would have θi = 1/[Nβi]. This fact was also noted in [6], under
the special conditions used there. The fact that the limit throughput is proportional to the
mean rate is a consequence of the facts that the stationary distribution for Rayleigh fading is
exponential, the channels mutually independent, and the scheduling rule is (1.6), the last fact
being a consequence of the logarithmic utility function. In [4], under the same conditions it
is shown that all users get the same fraction of slots, asymptotically. The argument supposes
that there is an equilibrium point, a fact proved here.

Proof of Theorem 2.3: Optimality properties of the rule (1.6). We work with (1.4)
for notational convenience. Suppose that there is an initial condition and a slot assignment
policy that depends only on the available data and which attains some limit point θ̃ �= θ̄
such that U(θ̃) ≥ U(θ̄); i.e., there is an admissible assignment sequence {Ĩi,n; i ≤ N, n < ∞}
under which the weak sense limit is θ̃ starting with the some given initial condition.

Now, consider the assignment algorithm which starts at the point θ̄ at time n, but uses
the “tilde ” strategy. This yields

θεi(nε + t) = (1 − ε)[t/ε]θ̄i + ε
[t/ε]∑
l=1

(1 − ε)[t/ε]−lri,n+lĨi,n+l. (3.6)

Under (A2.0) and either (A2.1a) or (A2.2a), as ε → 0 and n → ∞, this converges weakly to
the process with values e−tθ̄i+[1−e−t]θ̃i. This, in turn, implies that the limit (as ε → 0) path
goes in a straight line from θ̄ to θ̃ �= θ̄. Since U(θ̃) ≥ U(θ̄), the rate of increase of the utility
U(·) along that line is strictly positive (this is where the strict concavity of U(·) is used).
An argument that exploits the maximizing property of the rule (1.6) and the equilibrium of
θ̄ for (2.7), such as that used in the proof of Theorem 2.2, shows that it is impossible to have
such a path in a neighborhood of θ̄.
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4 Numerical Results

The graphs are from simulations based on Rayleigh fading, and the relation between the
current rates and signal to noise ratios is taken from Table 1, which comes from [3]. Our
first results depict the advantages to be gained by taking advantage of the current values of
the time varying rates. In Figure 1, one set of curves corresponds to the transient behavior for
three mobiles using table 1 and mean SNRs, -12dB,-2dB,-8dB, respectively, using algorithm
(1.4). There are two sets of curves: those with solid lines and (the higher ones) those with
dotted lines. The solid lines depict the throughputs if the SNRs (and hence the rates) are
assumed to be constant at the average values. We take ε = 0.0001. The value of ε is
determined by a balance between what is considered a reasonable measure of discounted
throughput and the desire to track changing conditions. If there are 1000 slots per second,
then (roughly speaking) ε = 0.0001 corresponds to a measure over about 10 seconds. Initially
slots are offered only to mobile 2, with the throughputs for the other two mobile exponentially
decaying. Also there are two “switching times”. At first, slots are equally divided between
mobiles 2 and 3 (0, 1/2, 1/2), then the slots are divided as (1/3, 1/3, 1/3). (This behavior is
generic for constant rates.)

The second set of curves (dotted lines/filled symbol) are obtained for Rayleigh fading
with fading rate 6 Hz and the same mean SNRs. The true current rates are used. The
significant gains in the throughput for all mobiles are evident. Since the dependence on
rates is roughly linear on absolute SNR, it is expected the slots will be approximately evenly
divided in equilibrium as the users all have exponential SNR distributions.

Example. Consider a case with two users with received signal power determined by a
stationary Rayleigh fading process and with constant and white external noise. Suppose
further that their rate declarations are proportional to the SNR, with mean rates 1/β1, 1/β2

respectively. Using algorithm (1.4), the ODE is (3.5). For two such users and initial through-
put 250.0, Figure 2 shows a sample path for the values of θ based on the proportional fair
throughput algorithm with ε = 0.0001, as well as a numerical solution to the corresponding
ODE. The sample path rates were given via a Rayleigh fading simulator with 1/β1 = 572
bits/slot and 1/β2 = 128 bits/slot. The fading rates were taken as 60 Hz. With smaller
values of ε and/or lower fading rates the sample paths fluctuate somewhat more about the
solution to the ODE. In equilibrium the throughputs are, 3

2
· 1

2
· 572 = 429, 3

2
· 1

2
· 128 = 96.

The time constant for convergence is 1/ε intervals and the results confirm convergence in
a period of this order. The results also show the theoretical equilibrium being approached.
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5 Extensions

5.1 Other Utilities and Allocation Rules

As noted in Sections 3 and 4. the algorithm (1.6) is based on the utility function U(θ) =∑
i log(di + θi). Other strictly concave utility functions can be used as well and there are

several that seem advantageous. One class is described next. Consider the utility

U(θ) =
∑
i

ci/(θi + di)
γ, 0 < γ < 1, ci > 0, di > 0. (5.1)

Then

U̇(θ) = γ
∑
i

ciθ̇i
(θi + di)1−γ

. (5.2)

Thus the chosen user is

arg max
i≤N

{
ciri,n+1

(θi,n + di)1−γ

}
. (5.3)

The ODE is θ̇i = EriI{ciri/cjrj≥[(θi+di)/θj+dj)]1−γ ,j �=i} − θi. The rule (5.3) is not as sensitive to
large values of θi as is (1.6). The analogs of Theorems 2.1–2.3 hold. Thus, there is a wide
choice of useful and convergent algorithms which allow a variety of tradeoffs between the
current rates and throughputs in making the assignment.

5.2 Extension to Multiple Channels and/or Antennas

Up to this point, there was only a single resource (say, a transmitter) to be assigned. There
are similar algorithms and results when there are multiple resources to be assigned. To illus-
trate some of the possibilities, consider the following form, where there are two transmitters
to be assigned, with possibly different locations and frequencies, but at the same base sta-
tion. The associated channels will usually have different characteristics. For simplicity in
exposition, we suppose that each user has an infinite backlog of data to be sent, and base the
assignment rule on the utility (1.8) and the discounted throughput as in (1.4). In general,
any number of antennas can be used.

One can allow many alternatives in the way that the transmitters are assigned. The
examples are only intended to be illustrative of the possibilities that can be handled by the
approach. In all cases to be discussed, it is assumed that the receiver at the mobiles are
equipped to handle the method. The simplest method of assignment is to assign each of the
two via an analog of (1.6) just as the single transmitter was assigned in Section 2. Then
both might be assigned to one user, or only one might be assigned to each. The assignment
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algorithm is just (1.6), applied to each transmitter separately. Equivalently, one assigns
so as to maximize the first order term in U(θεn+1) − U(θεn), where U(·) is defined by (1.8).
The assumptions are just those of Theorems 2.1–2.3, applied to the channels from each
transmitter separately. In particular, there is a unique globally asymptotically stable limit
point θ̄, and the argmax assignment algorithm maximizes the utility. The basic properties
that were used in the proofs still hold. In particular, the mean ODE still satisfies the Kamke
condition, and the argmax rule maximizes the increment in the utility to first order. Let rij,n
denote the canonical rates for user i in the channel from transmitter j at scheduling interval
n. For the two user case, the iteration is

θε1,n+1 = (1 − ε) θε1,n + εr11,n+1I{r11,n+1/r21,n+1≥(d1+θε1,n)/(d2+θε2,n)}

+εr12,n+1I{r12,n+1/r22,n+1≥(d1+θε1,n)/(d2+θε2,n)},

with the analogous formula for the other user.
There was no coordination between the assignments of the two transmitters in the method

just discussed. Next consider an alternative that allows for more efficient use of the resource.
We still allow the above choices, where each transmitter is assigned independently. But now
we allow, in addition, the possibility of the two antennas being used in a coordinated way
for the same user, with (for example) space-time coding. This simply adds another possible
rate to be considered when using the argmax rule when making the assignment. Space-time
coding is selected simply because it is one way of using both channels for the same user. The
choice is still made for each scheduling interval, and might differ from interval to interval.
The full assignment algorithm increases the channel capacity over what space-time coding
used by itself could achieve. Let rci,n denote the rate using space-time coding when both
channels are assigned to user i and let Iε,ci,n denote the indicator of this event. It is usually the
case that rci,n ≥ ri1,n + ri2,n, and we make this assumption. For simplicity in the notation,
the discussion is restricted to the case of two users.

Let Iεij,n denote the indicator function of the event that user i is assigned to channel j in
interval n but space-time coding is not used. Clearly, we need

∑
i[I

ε
ij,n + Iε,ci,n] = 1 for j = 1, 2,

Then, to first order in ε, U(θεn+1) − U(θεn) equals ε times:

r11,n+1I
ε
11,n+1

d1 + θε1,n
+

r12,n+1I
ε
12,n+1

d1 + θε1,n
+

r21,n+1I
ε
21,n+1

d2 + θε2,n
+

r22,n+1I
ε
22,n+1

d2 + θε2,n

+
rc1,n+1I

ε,c
1,n+1

d1 + θε1,n
+

rc2,n+1I
ε,c
2,n+1

d2 + θε2,n
− θε1,n

d1 + θε1,n
− θε2,n

d2 + θε2,n
.

This yields a slightly more complicated form of the arg max rule of (1.6). One looks for the
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maximum of

r11,n+1

θε1,n + d1

+
r22,n+1

θε2,n + d2

,
r12,n+1

θε1,n + d1

+
r21,n+1

θε2,n + d2

,
rc1,n+1

θε1,n + d1

,
rc2,n+1

θε2,n + d2

.

Define Rn = (r11,n, r12,n, r21,n, r22,n, r
c
1,n, r

c
2,n). Suppose that Rn is bounded, stationary, and

has a bounded density. Then, under the natural analogs of the other parts of (A2.0) and
(A2.1a), the analysis of the resulting algorithm is similar to what was done for (1.2) and
(2.4), and the analogs of Theorems 2.1–2.3 hold. Thus, even for this more complicated case,
there is a unique limit point and the algorithm is a utility maximizer.

6 A General data Arrival Model

The formulation in Section 1 supposed that each user always has an infinite amount of data
to be sent. This is, in fact, a shortcoming of the literature to date. Consider an alternative
model, where there are still N users, but data arrives at random and is queued, awaiting
transmission, and an arg max discipline such as (1.6) is used. We will confine our attention
to the throughput as measured by (1.3), although (1.1) could be used as well. Let Qε

i,n

denote the content of the queue for user i at time n. Define Qε
n = {Qε

i,n, i ≤ N} and
W ε

i,n = min{ri,n, Qε
i,n−1}. The decisions for the (n + 1)st interval are still made at time n,

when Rn+1 is known. We will suppose that each queue i has a finite buffer of size Bi, and
inputs to a full buffer are rejected and disappear from the system.

If Qε
i,n ≥ ri,n+1 and queue i is selected, then an amount ri,n+1 is transmitted and the

queue decreases by that amount. But, if 0 < Qε
i,n < ri,n+1, then one needs to modify the

algorithm to reflect the fact that if queue i is selected, then the entire slot won’t be filled.
There are many ways of dealing with this problem. We will choose the practical approach
of assuming that the decision is made on the basis of the current rates and the current value
of the throughput, as in (1.6). More particularly, the decision at time Rl is

arg max
i≤N :Qε

i,l
>0

{
ri,l+1/(di + θεi,l)

}
. (6.1)

The throughput is updated as (which defines Y ε
n )

θεi,n+1 = θεi,n + ε
[
ri,n+1I

ε
i,n+1 − θεi,n

]
I{Qi,n>0} = θεi,n + εY ε

i,n. (6.2)

The motivation for (6.2) is that the scheduler will know only the rates and whether or not a
queue is empty, but not the content of the queue. The scheme can be adjusted in many ways,
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taking into account whatever information is available. For example, after a queue reaches
zero, there might be a latency period before it is polled again. The queues evolve as

Qε
i,n+1 = Qε

i,n + δAi,n+1 −W ε
i,n+1I

ε
i,n+1 − U ε

i,n+1, (6.3)

where δAi,n+1 denotes the number of arrivals to queue i in time slot n+1, and U ε
i,n+1 denotes

the amount of data that was rejected due to a full buffer.
The model for the evolution of the queue and the {Rn} will now be specified. We have

in mind that there are essentially continuous arrivals to the queues, but at randomly time
varying rates. The pair (Qε

n, rn+1), together with δAn+1 and θn, determines Qi,n+1. The pair
(Qε

n, rn+1), together with θεn, determines θεn+1. The process {Rn, n < ∞} does not depend
on the evolution of the throughputs θn in that

P {Rn+1 ∈ ·|Rl, θ
ε
l , l ≤ n} = P {Rn+1 ∈ ·|Rl, l ≤ n} .

But
P {Qn+1 ∈ ·|Ql, θ

ε
l , l ≤ n} �= P {Qn+1 ∈ ·|Ql, l ≤ n} ,

since the values of the θεn still influence the assignments when some queues are empty or
nearly empty. The contents of the queues, on the other hand, helps determine the evolution
of the throughputs. The Qε

n (together with the Rn) play the role of “noise” and the θεn are the
“states” of the system and we have what is called “state-dependent” noise [8, Chapters 6, 8]
(at least the Q-component is state-dependent). The assumptions are stated in a somewhat
abstract way since we wish to cover as many cases as possible within a single framework.

The main issue in the convergence proof concerns the fact that the evolution of the noise
is determined by that of the throughputs, unlike the situation in Section 4. This complicates
the averaging and use of conditions such as (2.2). But the fact that θεn varies slowly for small
ε will help. Redefine the “memory” random variables to be ξεn = {Rl, Q

ε
l ; l = n, n − 1, . . .}.

Let Eε
n denote the expectation, conditioned on the new ξεn. For each n and θ, define the

fixed-θ process {ξεl (θ), l ≥ n} as follows: Suppose that after time n, we use the fixed value
θ in (6.1) instead of the true current throughput. For l > n, we define it to be Qε

l (θ), with
“initial” condition Qε

n(θ) = Qε
n, since the change is for times l > n only. Define the functions

hi,n(θ, ξ
ε
n) = Eε

nri,n+1I{ri,n+1/(di+θi)≥rj,n+1/(dj+θj), j �=i, Qε
j,n>0}I{Qε

i,n>0}. (6.4)

We will need the following conditions. They are quite weak, and their reasonableness will
be seen by the example below.

(A8.1) There are Lipschitz continuous functions h̄i(·), i ≤ N, such that as m → ∞

1

m
E

∣∣∣∣∣
n+m−1∑
l=n

Eε
n

[
hi,l(θ, ξ

ε
l (θ)) − h̄i(θ)

]∣∣∣∣∣ → 0 (6.6)
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uniformly in n, ε, and in θ in any compact set. There is h0 > 0 such that h̄i(·) ≥ h0 for small
θi.

(A8.2) For each integer m,

1

m
E

∣∣∣∣∣
n+m−1∑
l=n

Eε
nhi,l(θ

ε
n, ξ

ε
l (θ

ε
n)) − Eε

nhi,l(θ
ε
l , ξ

ε
l )

∣∣∣∣∣ → 0, (6.5)

uniformly in n, as ε → 0.

(A8.3) For each integer m and as |θ̂ − θ̃| → 0,

1

m
E

∣∣∣∣∣
n+m−1∑
l=n

|Eε
nhi,l(θ̂, ξ

ε
i (θ̂)) − Eε

nhi,l(θ̃, ξ
ε
i (θ̃))

∣∣∣∣∣ → 0, (6.7)

uniformly in n and ε, where θ̃ and θ̂ are in any compact set.

Example and discussion of the conditions. The conditions are intuitively reasonable
and the Jakes model of Rayleigh fading is again covered. Conditions (A8.2) and (A8.3)
are basically conditions on the sensitivity of the “conditional expectation of the amount
transmitted” for user i to very small changes in the throughput that is used to make the
decisions. Let us examine (A8.2) with n < l ≤ n + m. The difference between the terms
Eε

nhi,l(θ
ε
n, ξ

ε
l (θ

ε
n)) and Eε

nhi,l(θ
ε
l , ξ

ε
l ) is that the second is the conditional expectation of the true

amount transmitted for user i at l, given the data to n, and the first term is the conditional
expectation of the amount that would have been transmitted if the rule (6.4) were used with
θ = θεn. However, over the time [n, n + mε), the change in θεl is bounded by εmε, which goes
to zero as ε → 0. Thus, the value of the state at the times of the summands in (6.5) is
arbitrarily close to θεn, uniformly in n. Condition (A8.3) is similar. It says that if we make
the decisions on [n, n + mε) always using either θ̂ or θ̃, that are very close to one another,
then the conditional mean amounts transmitted on that interval are also very close.

Let us illustrate the above comment via a simple example. Let {Rn} and {δAn} be mutu-
ally independent, with the members of the latter sequence being mutually independent and
identically distributed. Suppose that the component sequences {ri,n, n < ∞} are mutually
independent in i. Let there be 0 ≤ αi < 1, such that ri,n+1 = αiri,n + δri,n, where for each
i, the δri,n are mutually independent, identically distributed, bounded, and have a bounded
and continuous density. Then, due to the Markov property, we can use ξεn = (Qn, Rn). In
(6.4), we have ri,n+1 = αiri,n + δri,n, where the δri,n are bounded, mutually independent, and
have a bounded density. This independence and density properties imply that small changes
in the value of θ used in (6.4) changes the value of (6.4) only slightly, provided that the
set of empty queues does not change. Furthermore, since the Rn are bounded, over any m
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iterates the value of θεn changes by at most Km for some constant K. By using the above
facts and working forward from iterate to iterate, it can be seen that the probability that
the decision at any l ∈ [n, n + m] will be different (implying the possibility that the set of
empty queues might change) for the two assignment methods goes to zero uniformly in n as
ε → 0. Thus (A8.2) holds. Similarly, the probability that any assignment in [n, n+m] based
on the argmax rule using θ̂ will differ from that based on θ̃ also goes to zero as |θ̂ − θ̃| → 0.
Thus (A8.3) holds.

(A8.1) is a weak ergodic condition. Let us make the decisions using the value θ for all
n ≥ 0, and not the true throughput. This yields the fixed-θ Markov process which we call
ξn(θ) = (Rn, Qn(θ), for n ≥ 0, with some arbitrary initial condition ξ0. The process ξn(θ)
has a unique invariant measure. Then, owing to the fact that the transition probability
of the Markov process does not depend on time, (A8.1) says nothing more than that the
conditional expectation (given ξ0) of the throughput on [0, n] corresponding to the continual
use of the value θ, converges to the average value as n → ∞. The convergence is uniform in
the initial data and in the value of θ in any compact set.

Although the Rayleigh fading process is not Markovian, it has “mixing and density”
properties that are similar to our Markov example.

Theorem 8.1. Assume (A8.1)–(A8.3). Then the conclusions of Theorems 2.1–2.3 hold.

Comment on the proof. Conditions (A8.2) and (A8.3), then (A8.1), (A8.2), and (A8.3),
are close to conditions (A4.6), (A4.16′), and (A4.17′), resp., of [8, Theorem 4.4, Chapter 8],
and can replace them in the proof of the cited theorem. Theorem 4.4 in [8, Chapter 8] is an
analog for the state dependent noise case of the result cited in Theorem 2.1, and assures the
conclusions of Theorem 2.1. The conclusions of Theorem 2.2 hold since they depend only on
certain properties of the mean ODE, which hold in the present case. Theorem 2.3 depends
on the stochastic approximation arguments which led to Theorem 2.1, the uniqueness of the
limit point, and the strict concavity of the utility function, all of which hold in the present
case.
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Figure 1: Time dependent behavior of Proportional Fair
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Figure 2: Sample path for θ and the Solution to the ODE

≤ SNR -12.5 -9.5 -8.5 -6.5 -5.7 -4.0
Rate 0.0 38.4 76.8 102.6 153.6 204.8

≤ SNR -1.0 1.3 3.0 7.2 9.5 -
Rate 307.2 614.4 921.6 1228.8 1843.2 2457.6

Table 1: Rate vs. SNR for 1% packet loss (taken from [3]
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