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A Knowledge-Based Architecture for Organizing Sensory Data

Grahame B. Smith and Thomas M. Strat

Artificial Intelligence Center
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

This paper describes an architecture for an information manager that is at the core of 2
sensor-based sutonomous system. The architecture provides the means by which sensor-
based data can be integrated with stored knowiedge to provide the information needed for
autonomous hehavior, The overall architecture can be viewed as a community of indepen-
dent processes, each of which interact with an active database whose structure mirrors that

of the three-dimensional world.

1 Introduction

This paper describes the architecture of an information man-
ager that js at the core of a sensor-based autonomous system.
The architecture accomodates data from a wide variety of
sensors as well as from other sources of stored knowledge.
Each source of information imposes its own constraints upon
the system design; however, our design decisions were moti-
vated by the requirements for organizing visual data. More
general sensory data includes visual data, but the informa-
tion that all sensors capture is information about the visual
world — information that is comprehendable only in terms
of the visual world. The task of organizing this informa-
tion is the task of providing a framework for data about the
world, whatever the data source (sensor type). The visual
world and the means for structuring data aensed from that
world are thus the subjects of this paper.

Current models of machine vision describe the vision pro-
cess ne a series of tasks that convert the visual signal into
a set of symbols that characterize the entities in the scene.
The series of tasks from signal to symbol is commonly de-
scribed by vision researcbers as moving from low-level to
bigh-leve} vision. Low-level vision proeesses the input signal
to find features of the signal such as image structure, e.g.
intensity edges, or features of the tbree-dimensionn] scene,
e.g. surface shape. High-level vision is more eognitive in na-
ture: it usually assumes that objects in the scene have been
delineated, and that the task at hand is to use world know!-
edge and reasoning tecbniques to recognize the objects and
to determine the relationships among them. Intermediate-
level vision bas the role of converting low-level features into
objects suitable for higher-level processing. Intermediate vi-
sion converts image features into scene entities, signals into
symbols.

In the past, machine vision research bas concentrated on

‘The work reported here was supported by the Defense Advanced Re-
search Projects Agency under Contract DACAT78.85-C-0004,

both low-level and high-level vision. Intermediate-leve] vi-
sion has received less attention, not because it is unimpor-
tant but hecause we needed to understand first what could
be extracted from images and what we could do with scene
obhjects if we were able to find them.

At the heart of the intermediate-leve! vision task is the
temporal difference between low and bigh level vision. The
visual signal we receive and its features are transitory in na-
ture. They exist for a short time before they change; new
features appear and old disappear. However, the objects of
high-level vision bave a continuity of existence. They ex-
ist when they are oot viewed. They exist when there are
no features in the current signal to expose them. Because
intermediate-level vision must map transitory image features
into scene entities that demonstrate this continuity of exis-
tence, it is the output of intermediate-level vision, rather
than its input, that bas temporal consistency. As a conse-
quence, intermedinte-level vision because of its very nature
must use previous output as input, as well as the features
of the signal, if it is to maintain temporal consisteney. It
must supplement the results of signal processing with stored
knowledge of the world — knowledge of the nature of ob-
jects in the world, knowledge of the constraints imposed on
objects by physieal reality — knowledge that learning may
provide in biological systems, but that must be otherwise
supplied in less accomplished systems.

An autenomous vehicle explores a world that has persis-
tence. Objects encountered exist when they are no longer
in view. Moving about in the world requires knowledge of
the environmental continuity. To permit sutonomous move-
ment, a vision system must be able to map transitory image
features into persistent scene entities, the task that is as.
signed to intermediate-level vision processes. Because an
autonomous vehicle must deal with continuity of existence,
we must address the problems of intermediate-leve] vision in
a way that has not been attempted in most previous vision
tasks.



In addition to their temporal differences, the various lev-
els of vision processing can be characterized in other ways.
Low-level vision processing usually requires a fixed set of
input on which to carry out its operations, and makes lit-
tle use of other information that is available. Because a
few image measurements do not characterize scene entities,
intermediate-level vision must have available many inputs
to mix and match as is necessary. A flexible architecture is
required so that the results of other processing are available
for input to the intermediate-level vision process. Previous
results, such as confirmation of previous hypotheses, are the
inputs necessary for mapping signal to symbol.

Low-level vision processing is usually independent of the
task at hand. The zero-crossing operator is the same
whether we are looking for roads or houses. High-leve] vision
and intermediate-level vision are task dependent. To clas-
sify the land cover of the terrain, we must know the task at
hand before we can determine the appropriate classification.
If we wish to determine whether the ground can support an
autonomous vehicle, we do not need to know the grass type.
However, if our task is to estimate wheel slippage, then de-
tails like grass type zre important, Task dependence has
always been a feature of high-level vision, but there we have
symbols to work with, The utility of intermediate-level vi-
sion can be substantially increased if task dependence can
be moved below tbe symbalic level.

Intermediate-leve]l vision must have flexible access to
many sources of information if it is to produce results that
are reliable and temporally consistent. The carefu) design of
an architecture to supply the various data is a prerequisite
to building an autonomous vision-based svstem. The ohjects
tbat intermediate-levei vision deals witb and the results it
produces are not the quantitative objects of low-level vi-
sion nor the symbolic objects of bigh-level vision, but rather
the qualitative descriptors that interpolate from quantitative
signal to symbolic objects. Intermediate-level vision must in-
tegrate the top-down approach of bigb-level vision with its
bottom-up, low-level counterpart. High-level models must
be :cadered and matched against image data as symholic
information is converted to iconie, while attributes of image
data must be identified and elassified wben iconic dats are
mapped into symbolic. The knowledge system architecture
described here seeks to provide a base on which various snd
varied approaches to machine vision may be explored.

2 Vision System

It is impracticable, witb today’s technology, to implement
the activities of a vision system in a sufficiently eomplex
monolitbic algoritbm that can cope with the irregularities
and imperfections of the outdoor world. For this reason, the
overall arcbiteeture of our vision system can be viewed as
a communify of interacting processes, each of which has its
own limited goals and expertise, but all of whieb cooperate
to achieve tbe higher goals of the system. The various pro-
cesses may represent sensors, interpreters, econtrollers, user-
interface drivers, or any other information processar that
can be imagined. Each process can be both a producer of
information and a consumer, Information is shared among

processes by allowing them to read data stored by other pro-
cesses and to update that information. Each process con-
tioually and esynchronously updates information based on
pensor readings, deductions, renderings, or other interpreta-
tions that it makes,

Each process is & knowledge source that brings its exper-
tise to the processing of the data that represent the known
state of the world. These processes span the rapge from
low-level image processing to symbolic manipulation, and
their output will be available for use by all other knowl-
edge sources, Symbolic information may be used to set the
parameters in an image-processing procedure, while image
properties like texture may be used to confirm a deduced ori-
entation of a supporting surface. The type of information
that needs to be shared is cnormously varied. The datahase
that stores this information must he ahie to accept this vast
assortment of data types and make it available to requesting
processes,

Our system includes a global database through which in-
formation is shared. Because all processes share informa-
tion, the eommunication bandwidth between this database
and the various processes is of concern. If the granularity of
the information to be shared is too fine, then the communi-
cation channels will be overlonded with an enormous num-
ber of transactions, each of which involves small amounts
of data, while a granularity that is too coarse requires com-
plex knowledge sources that are beyond our ability to con-
struct. We view the knowledge sources as substantial enti-
ties that attempt to share data objects that are composite
in nature. For example, we do not expect that an image-
processing routine would wrnite intensity-edge information
into the database, but rather that it would share conclusions
about the three-dimensional objects tbat are in the world.
Of course, these three-dimensional objects will not be iden-
tified, nor will they be the final partitioning of the scene into
world objects, but they will be entities with wbich other pro-
cesses ean associate parameters and semantics. This does
not mean that the database contains only symbolic objects,
but rather that it contains objects that have some semantic
character, such as a borizental planar surface with approxi-
mately constant albedo. There are fewer transactions within
the system, hut each is associated with a significant amount
of data.

Some knowledge sources may need to communicate with
others at a level that is not provided by the global database,
Such eommunication is private to those sources. and im-
plementation is the responsihilty of the designers of those
processes. This level of information sharing often entails a
eertain computational speed requirement and usually a pro-
cessing szquence that can be prespecified. Although any
system that interacts with a complex world may use this
form of close eoupling between certmin processes, we have
tried to focus on the problems of sharing information that
is of a higher level and is substantially unstructured.

If processes are to communicate through tbe database,
the language of communication must be rich enough to al-
low items to be shared. Relevant information extracted from
the database is of little use if the receiving process eannot
understand it or make use of it. With the diversity of infor-
mation that is available, we choose to share that informa-
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Figure 1: Transaction Processing. The request parser
determines what must be retrieved from store, while
post-processing of the retrieved items occurs hefore infar-
mation is returned.

tion through semantic labels that classify the information in
the database. These labels must reflect the multiple levels
of specificity inherent in the information itself. The labels
form a vocabulary describing the information that is stored
in the database. Accessing information by means of the se-
mantic label allows processes to be independent of the par-
ticular data syntax used to store the information. We allow
database access through logical combinations of the seman-
tic labels, as well as procedural definitions to be passed to
the database so that a user may supplement the vocabu-
lary with additional terms. Passing procedural definitions
to the database also reduces the communication bandwidth
otherwise needed to return the results. Figure 1 shows this
view of transaction processing, in which the database has
been passed a request that necessitates the request parser
to determine what must be retrieved from store, while post-
processing of the retrieved items occurs before information
is returned to the requesting process,

A system that views processes as individual experts that
may make conflicting interpretations of the data must have
a policy to determine what is stored in the database. For ex-
ample, if two processes determine the height of a partieular
tree to be substantially different, whose opinion should he
stored: the last one given, that of the process with more ex-
pertise, or the average of the two? There is no “correct® way
to determine a single value. Traditionally, information inte-
gration has been accomplished when the data are inserted
into the database, and the data that are then stored are ex-
pected to be conflict-free. In our system, all processes are
considered equal, and only their opinions are stored. This

approach reflects the view that conclusions are a function
of the data used, the knowledge sources that provide that
data, and the anticipated use of the conclusion. The user of
information should have the eppeortunity to filter that infor-
mation with knowledge of hoth its content and its source.
Information in our data store can be modified only by the
process that created it, although other processes can cast
their opinions. To emphasize the contrast with conventiona!
databases we therefore view our data store not as a datahase
, but as an opinion base.

The opinion base stores information in the form of opin-
ions from the system processes ahout the domain of interest.
Another form of information that is critical to the perfor-
mance of the overall system is the knowledge used hy the
various knowledge sources. Should that knowledge he stored
in a datahase (possibly the one used to store domain knowl-
edge) or should it be encoded within the knowledge sources?
In some processes, particulary low-level image processing,
the flow of control is well known, and efficiency issues re-
quire that the knowledge he embedded in the procedures;
however, other processes, particularly goal-driven ones, gain
flexihility of control if the knowledge is separate {rom the
engine that applies that knowledge. Because we expect a
variety of processes to be used in intermediate-level vision.
we have selected a strategy in which there is no global repox-
itory for the knowledge used by the various processes. Each
process is free to determine its own knowledge representa-
tion. We have a future interest in having processes 1hat
modify the ways in which other processes operate. perhap
by generalizing the rules they use. We thus see a distinet
advantage in building processes in which the knowledge used
by each process is encoded in a form suitable for modifica-
tion by external processes. )

Any system that consists of a collection of independent,
asynchronous processes must have a control mechanism that
coordinates these processea to achieve the system’s goals. In
our system, each process is continually active. going about
its task of processing the data that define the current siate
of the world &nd placing its opinions in the database. When
certain combinations of data occur, we must be able to in-
terrupt particular processes and have them deal with this
new information. We use a daemon approach to implement
this strategy. Daemons are piaced in the datahase by the
processes that should he informed when particular events oc-
cur, and the processes are responsible for determining how
to proceed when they are interrupted by these daemons.
Control by means of the database is therefore data driven.
Alternatively, any process is free to call procedures that are
imbedded within another process, thus allowing control to
he pussed by procedure eall.

Control that is dats driven is unlikely to be coordinated
to achieve the gouls of the system if those goals are not
available to the various processes that are performing the
data transformations. An important part of sensory inte-
gration is planning which activities will contribute to the
more genera! goals of the larger system in wbich the sen-
sory system is embedded. In our case, we inter{ace with the
goals of a planning system that controls the activities of an
autonomous vebicle. A planning system is viewed simply
as another process or set of processes that may access the



database. The list of tasks that the vision system is attemp-
ing to achieve serves as data that individual processes must
use to prioritize their own activities. Conclusions and data
transformations, no matter how correct or clever, are irrel-
evant if they are unrelated to fulfilling the mission of the
highest-level system.

3 Database

The database that we have designed to store the domain
data has many of the usual database features. It stores a
collection of data tokens that contain the domain knowl-
edge and has a set of indexing structures overlaid on these
tokens so that data manipulations based on the domain re-
quirements, such as data retrieval, may be implemented eff-
ciently. Unlike many vision-system databases, the database
has a continuity of life that cxceeds a single execution of the
system. In this respect it is much more like a conventional
database, whose integrity and usefulness must persist over
an extended period. Data acquired during execution of the
system becomes knowledge stored in the database for future
use. To ensure that the internal integrity of the database is
maintained, proresses do not have direct access to the data
tokens: instead copies of the data are transferred between
the database and the process. Clearly, data copying is com-
purationally expensive, which is incompatible with real-time
performance. We therefore provide a mechanism in the data
access language that allows a process (o pass a procedure to
the database so that internal processing can be used to min-
imize the data transferred and the amount of copying that
is pecessary.

The approach we adopt for controlling integrity is dic-
tated by a development environment in which the system
is not built by a single person or group but rather is a set
of processes provided by disparate implementers. Proteet-
ing the data from being corrupted by an errant process is
critieal if we want to aveid rolling back the database to a
previous version or editing it between actual uses. However
the mechanism used to reduce data copying, sometimes at
the expense of integrity, is desirable for certain time-criticnl
processes if real-time performance is to be achieved.

Because all processes are considered equal and their opin-
jons are stored, tbe database will contain conflicting and in-
compatible views of the state of the world. Some processes
may exist solely for the putpose of resolving such data in-
consistencies. Of course, even these processes will only be
allowed to cast an opinion. User proceases may choose to
take more notice of the opinions of these conflict resolution
processes tban of the opinions of processes whose conclu-
sions are drawn from less dats. The conflict resolution pro-
cesses will continually process data in tbe database {as spare
computational resourees allow), but they are conservative in
nature, preferring not to cast an opinion unless they have
overwhelming evidence to support their conclusion. How-
ever, & user process may call one of these conflict resolvers
to cast an opinion even if it would not have otherwise in-
tervened. Qur approach then is to allow inconsistencies to
be resolved whenever tbe data is sufficient to support the
resolution, or wbenever a user process requires that resolu-

tion, i.e. at access time. This approach differs from other
approaches that attempt to majntain a consistent data set:
in these approaches resolution must occur at insertion time.
The approach we adopt is to resolve if necessary, rather than
to resolve always. Often a decision-meking process can take
action without the need to expend resources in resolving
data discrepancies, For example, the navigation module of
an autonomous land vehicle may be faced with the conflict-
ing data that the object ahead is either a tree or a telephone
pole. If the task is to move forward avoiding obstacles, the
vision system does not need to resolve whether the object
ahead is a tree or telephone pole, The resolution require-
ment is & function of the task, not simply the data.

A database that stores opinion will rapidly consume stor-
age resources unless a mechanism is provided that will ailow
data to be deleted or at least archived. A process that is the
supplier of data may have little ability te evaluate the useful-
pess of that data, yet it is the useful data that we would want
available in tbe database, The approach we have adopted is
to have processes sponsor data; that is, a process (probably
a process that uses a particular data token) wiil allow that
data token to be “charged™ against its resource allocaiion.
Many processes can sponsor a single data token, and they are
charged proportionately. When a process nears its resource
limit (or at any time) it can withdraw its sponsorship of any
data that it has sponsored. Data that are unsponsored are
available for garbage collection (these data may be archived
or deleted). ln this manner each process is responsible for
deciding what data it finds useful, and this collection of data
forms the base of current available information. Glearly. this
procedure is not fail safe. Critical data may be removed be-
fore their criticality is realized. However. the criticality of
data is measured in terms of a process’s willingness te pay
for it and presumably in terms of the current usefuiness of
that data.

Although a data token is unsponsored. it will not neces-
marily be removed immediately. An information producer
may not wish to sponsor data for which it has little use. so
it may be some time before a sponsor for this information is
found. To avoid deleting useful data, the process whose job
is to remove data tokens evaluates additional information,
such 23 length of time the token bas been in the database, as
well as sponsorship information, before it is removed. Data
removal is a continuous process, so that the database ean be
assured of having adequate storage when time-critical tasks
demand that computational rescurces for garbage collection
be suspended.

Each process in the system does not have the same re-
souree allocation. At particular times some processes may
be more valuable than others. One process bas the task of
alloeating datahase resources to the other tasks. The al-
location is based on the frequency with which data tokens
produced by s process are consumed by anotber process.
Such = frequency measure is 2 moving statistic that allows
the allocation to adapt to the current situation. As is usual,
data tokens are time stamped to indicate the Tast time they
were modified — that is, the last time a new opinion was
added to one of the data slots — and they are time stamped
for last use. The time stamps provide data for the resource
allocator and the garbage collector.



Data tokens are produced by individual processes and are
passed to the database for storage and subsequent retrieval.
For tbe database to access information from within the to-
ken, or for a requesting process to be able to extract infor-
mation from a token, each must cither know the form of that
information or have some procedure for recovering it. In the
design of a system we can choose to use a standard struc-
ture for a data token, such as a record structure in which the
position of parameter slots are known, or we can use a stan-
dard syntax for the token, such as s list of attribute-value
pairs, or we cag by procedural attachment sdd functions
that retrieve values from the internal data structure of the
token,

With standard structures, pesition, rather than name,
gives us access to the data hut we require all processes to use
some predetermined set of structures. In a system in which
different processes do entirely different tasks, it is unlikely
that one could find, no matter how clever, a single, or small,
set of representations that would he patural representations
of the data for all the processes that must have access to
that data.

With both fixed syntax and procedural attachment to s
data structure, a vocabulary of terms is needed to access
the data slots. This is the approach we take. We use a
vocabulary of terms that spans the entities and relationships
of interest in the application demain. For ab autonomous
land vehicle, the vocabulary consists of words or lahels that
deseribe the outdoor environment, e.g. tree and height, so
a process could ask a data token that represented a tree
for that tree's height. The actual structure used to hold

the data can be invisible to the user who gains access to’

the information through the labels. The Iahels must to he
known by all processes that wish to access this information
in the database. This semantic level does seem to be the
appropriate level on whick to share information.

Should we use a fixed syntax like attrihute-value pairs to
hold the informaticn in the database and provide a simple
routine to retrieve the value given the attnhute, or should
we use the more compliex approach of attaching to a data
structure a set of functions that can retrieve the value of a
data slot given the slot name? We take the latter approach
to increase the functionality that is available when we re-
trieve & value based on slot name. From the point of view of
systems huilding, in which parts of the system are buiit hy
independent groups, this approach places the decisions for
the form of the data structure and the accessing function-
ality within one group and provides a clean interface with
the database, Each process can now select its own internal
representations for the data it produces, and that data cap
he shared through access functions that are based on terms
or labels in the vocabulary which describes the underlying
domain. A common vocabulary requires that each process
know how to translate from its internal representation to
informaticn in vocabulary form. This avoids the need for
each process to know how to translate into the individual
representations used hy other processes. Additionally, new
processes can be added to the system without retrofitting
the new representations to the older processes.

A collection of data tokens is not a database unless there
is a means of accessing the information in the collection in
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Figure 2: Transaction Processing — Autonomous Land Ve-
hicle Database. Access to the data store is by means of a
spatial directory, a semantic directory, or both.

a manner that does not require a search through the en-
tire set. A set of indexing structures that allows access in
a more direct manner must be based on the subsets of the
data that need to be retrieved. These structures are there-
fore based on the domain requirements and relate to the
semantics of the actual data stored. Qur architecture for
sensory integration is implemented in the task domain of an
sutonomous land vehicle navigation. The indexing strue-
tures that we use are associated with the need to retrieve
information that is appropriately grouped for the task of
pavigation in the three-dimensional world. A spatial direc-
tory that forms suhsets of the data hased on spatial location,
and a semantic directorythat forms subsets of the data based
on object class are the principle indexing schemes that we
use to organize storage and retrieval of data tokens. Figure
2 gives an overview of transaction processing by means of
directories in the database designed to support autoncmous
vehicle navigation.

4 Spatial Directory

The spatial directory organizes the data tokens into groups
determined by spatial location. Because an autonomous ve-
hicle may roam about in an extensive environment, we need
a representation of that environment that can deal with its
spatial extent. In addition, the representation must be effi-
cient in indexing data when the data are distributed ponuni-
formly over the environment. Data will need to be accessed
at various levels of resclution depending on the task tha
is being addressed. Route planning needs lower-resclution
data than does, for example, landmark identification or ob-
stacle avoidance. Particular data may need to be stored ar
multiple levels of resolution to match the requirements of
different tasks, The world is three-dimensional hut the ve-
hicle is restricted to a two-dimensional surface embedded in
this world. Although there are many reasons for choosing a
two.-dimensional index, such as latitude and lengitude. and
then representing the third dimension as a data value, we



chose to use a three-dimensional index. Our selection was
motivated by the advantage such an index gives in encod-
ing spatial relations within the directory, in generating vis-
ibility information, and in using this architecture in other
spatial domains in which movement is not restricted to a
two-dimensional surface.

The three-dimensional index selects a volume in space
that we represent as vorels {4]. The largest voxel is the
world, which is subdivided into smaller volumes as we need
Lo represent spatial position with higher precision. The in-
dex granularity is fine enough to be able to position an object
in a volume that is precise enough for the application. Recall
that this index is an index into a directory; in the direetory
cell are pointers to the data tokens associated with the vol-
ume of space represented by this index. Data tokens need
not be placed in the directory at the finest index available
but only at the precision with which their spatial location is
known. A tree whose posilion is unknown would be placed
in the largest vaxel; this voxel represents the entire world.

The voxel-based directory not oniy gives a range of posi-
tion resolutions, it also allows different parts of the world to
use different resolutions for storing data. Parts of the world
tbat have little data assoctated with them may choose to
Place all the pointers to data tokens representing objects in
this area in coarse-grained volumes, while the part of the
world in which the vehicle is active can be subdivided into
finely partitioned volumes. We not only have multiple reso-
lution, but we also can select resolution relevant to the area
concerncd.

In selecting a voxel-based representation of space, we have
the option of dividing that space into regular voxels in which
all voxels, at a given level of subdivision of the space, are
of equal size, or we can choose to divide the space into ir-
regularly sized chunks. Irregularly sized voxels have some
attractions, as they allow irregularly shaped ohjects to be
confined, and hence indexed, within a volume that matches
them. Regularly sized voxels often are unneccessarily large
when they are large enough to contain a irregularly shaped
object. However, if we use irregularly sized voxels we may
need multiple indices to allow for overlapping voxels that are
indexing different irregularly sized objects in the same vol-
ume of space, Multiple indices increase the computational
load, and we are, after all, trying to index data tockens in
an efficient manner. We therefore use a regular subdivision
of space in which each voxel is suhdivided into eight equally
sized and shaped smaller voxels.

In making this chotce we must addreas the problem of in-
dexing objects whose shape does not match this partitioning
of space. Generelly, it is easy to place stationary compact
objects within a voxel that can completely contain them, but
cbjects like linear structures, surfaces, and moving objects
require alternative approaches. Lineae atructures like roads,
rivers, telephone wires, and fences are stored as one data to-
ken, but pointers are placed in all the voxels through which
the structure passes. We use the smallest-sized voxels that
are appropriate; for example, the voxel size for & road will
be determined by the road width so that we can be assured
that the road “fits” within the voxel.

The same approach is taken with other extended objects,
such as surfaces: a single data token bas pointers to it from

the set of voxels through which the surface passes. The size
of the voxel is seleeted by the process inserting the surface
into the database, based on such factors as accuracy of the
surface shape, and extent. Recall that tbis placement in
space is to aid retrieval, not to specily exactly where things
are. Detailed location information in available from within
the data token. There is no need to place objects in the
spatial directory in the smallest voxel that might be possible.

Moving ohjects are usually compact objects so they
present little problem in placement at their current posi-
tion, but there may be times when we want their track rep-
resented in the directory. We use the same approach we used
for linear structures and extended objects: we represent the
moving objects with a single data token and point to the
token from voxels assoeiated with its track.

An advantage of a multiresolution spatial directory is the
ease with which we can represent approximate location. We
place an object in a voxe] that is large enough to contain the
limits of its possible [ocations. Object location may be ap-
proximate because of image processing errors when deteet-
ing objects in imagery, or because we do not know our exact
position when we make an observation. The latter is pariic-
ularly relevant in tbe ease of an autonomous vehicle. Data
can be added to the database before its position is known,
and then, when better location information is known. the
directory can be updated by moving the data to a smaller
volume. If this is not done the data will be retrieved and
examined when requests are processed for data from the
original larger voxel. A background process whose task is
to move objects to their most precise location wirhin rhe
direetory {when processing resources are available) accom-
plishes the directory update and therchy achicves retrieval
efficiency. Hence all data can be directly inserted into one
directory whether their location is known accurately or only
approximately.

Having all data, whether its position is known or uncer-
tain, within one directory structure allows us to respond
emsily to data retrieval requests Lhat want “all objects that
are within a certain volume in space™ as weli as “all objects
that are possibly within that particular volume of space.”
Clearly, in the task domain of an autonomous land vehicle.
knowing what might be ahead and what rs ahead is necessary
for competent navigation and obstacle avoidance. Within
the voxel structure, *within a volume™ maps to the tree of
voxels helow (finer than) the voxel containing the volume
while "possibly within a volume” maps to the tree above
(coarser than) the vaxel containing the volume. When data
can be retrieved on the basis of their location, then retrievals
on the basis of spatial relations are also possible.

The apatial directory encodes the spatial relationships he-
tween items stored in the database. As objects are moved
or their spatial positions refined, these spatijal relations are
maintained without additional processing resources. New
objects entered into the database encode their spatial rela-
tionship with previously entered data. In our task domain,
we expect to retrieve items based on relative position — ob-
jects to tbe right of the road, trees casting shadows on the
road, and so on. Having an indexing structure that matches
the world structure allows this without tbe overhead that
would be presented by alternative schemes, such as a rela-
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Figure 3: Octree Representation of the Voxel Description of Space. Hash tahles are used to implement the octree; more than

one level of the octree is stored in a single hash table.

tional datahase.

The reduction of eomputational rescurces used to main-
tain the database was also instrumental in our treatment of
time. The datahase is always assumed to represent the world
at current time. If historical information is to be stored,
then it must he time-stamped, otherwise it is implied that
the data reflect the state of the world as it currently is. We

adopted this approach so that we could avoid elements of*

the traditional frame problem [1]: if time is a parameter
of the data token, then this token has to be updated cven
when the real data has not changed but time has passed. We
take the usual approach adopted in conventional databases,
in that information is assumed to be still true if it has not
been altered or specifically marked as applying only to some
particular interval of time.

Voxels are the representation of the world used in the spa-
tial directory, but there is the independent issue of how we
represent voxels in our implementation of the spatial direc-
tory. We use a “pointerless” ectree [3] that itself is imple-
mented by multiple hash tables. The use of an octree to
implement a voxel representation is natural; our selection
of the pointerless approach was based on the expectation
that many voxels will contain no data, and many voxels wiil
not be subdivided into smaller units. Hence the more usual
approach of using cells with explicit pointers to the fner
cells will produce many cells eontaining mainly null point-
ers. With the pointerless approach, only voxels that contain
data tokens are allocated any storage, and null pointers are
not used. Figure 3 shows an abstract view (using null point-
ers) of the way we use an octree to represent the voxel de-
scription of the world. The actual implementation uses hash
tables to store the links between voxels. The number of lev-
els of hash tables is in fact somewhat less than the number

of octree levels, because several octree levels are stored in a
single hash table, as shown in Figure 3.

5 Semantic Directory

The spatial directory provides an indexing scheme that
matches the spatial nature of the data in the task demain;
the semantic directory provides an indexing scheme that
matches the semaniic nature of the data in that domain.
As previously mentioned, we use a vocabulary of terms to
facilitate communication between processes. The semantic
directory specifies these terms and defines the et of connee-
tions between them. The vocabulary provides a set of labels
that is used to describe the data tokens in the database.
Such a set is dependent on the task domair, and for au-
tonomous land vehicles we use terms that label objects in
the outdoor environment, such as tree, road, rock, meadow,
or ditch, as well as terms with less specificity, such as im-
movable_object, ohstacle, or object,

The need for terms that define the semantics of things in
the world at various |evels of abstraction or multiple levels
of resolution is apparent if we wish to interpret imagery as
seen from a moving vehicle: objects usually appear first at
a distance, at poor resolution, and gradually change form as
we approach them. The levels of abstraction that we need
are a function of the processes we have and their ability
to instantiate the terms. There is no point in being able
to describe leaves on a tree if the sensors are incapable of
resolving objects that small. Equally there is no point in
describing trees as belonging to the superset “wooden ob-
jeets” if mo process makes use of that set. The vocabulary
choice that we have made is based on our assessment of the
competence of low-level image processing routines and the
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Figure 4: Semantic Directory. Implemented as a semantic network, it gives access to the database data tokens by means of

their semantic type.

requirements of higher-level processes. The choice is criti-
cal to sensory integration, for within the vocabulary we are
restricting the means of integration, the informaticn that
higher-level processes can transfer to the low-level routines
(and vice versa), and the functionality requirements of hoth
ligher and lower-level processes. [n absolute terms, success-
ful sensor integration demands selection of an mappropriate
vacabulary.

Any vocabulary whose constituent terms span a wide
range of specificity in a domain must include terms that are
related to one another. The second component of the seman-
tic directory, a semantic network [1], defines these connec-
tions. Tbe network itsell bas two parts: one which definea
the specialization of terms by a graph, that is, a lattice that
specifies subsef/superse! relations and that is augmented hy
the inclusion of the disfoint set relation, and a second part
that describes the decomposition of eomposite objecta into
parts. While the first part indicates relationships that must
hold, such as “a pine tree is a tree,” the second decomposea
composite objects into parts that are usually present, such
as “fire engipes usually have ladders.” The first part of the
network is used for inference; for example, in inferring that a
pine.tree is a tree, which is an immovable object, which is an
object, and so on. The second part gives default values that
may be used to trigger some procesa to find them, or may be
used by an evidential reasoning process that is attempting,
say, to classify an object based on what bas been detected
and what one might expect to see when viewing that par
ticular object. For example, when a process is attempting
to decide whether an object that is composed of several ver-
tical rectangular objects and some horizontal lines could be
a portion of a fence, knowledge of the expected parta of a
fence is crucial to that determination. Additionally, the net-
work provides a means for inheriting properties from a more

general class; e.g. if a tree is usually composed of branches,
leaves, and a trunk, then a subclass, like pine_trees. will
inherit this parts decomposition as its default description.
The approach taken reflects the peed, on one hand, for the
system to reason ahout objects, while, on the other hand,
the system must be able to recognize composite gbjects on
the basis of tbeir likely parts. A mechanism for logical in-
ference and a mechanism for object decomposition that is
usual but not unequivocal must therefore be provided.

The semantic network we use is implemented as a graph
in which the nodes represent the voeabulary items and the
labeled arcs represent the relationships among terms. Both
the subset/superset and disjoint set relations, together with
the composite object decomposition, are combined on the
one graph using various Jabels on the ares to distinguish
between them. For example, the lattice fragment

St — B

encodes the sentence ¥z : (A(z) = B(z)), wbile

encodea ~3z : (C(z) A D{z)). This network representation
allown selected inferences to be made rapidly through grapb
operations. The particular implementation allows display of
the semantic network in its entirety or of selected clusters
of related information. Figure 4 shows a small part of cur
semantic network. The grapbical display of the network is
tbe intetface we use to build the semantic directory and to
add new words and relations to our vocabulary.

Each node of the semantic network is associated with a



vocahulary term, and to it we attach pointers to all the data
tokens in the database that have been Jabeled with this term.
The podes of the semantic network can be accessed by the
vocahuiary label, and thus provide a directory to data tokens
on the basis of the semantic label.

Although we view the semantic directory as a graph struc-
ture and display the semantic network as a graph, the imple-
mentation uses hash tables for speed of access. When data
tokens are added to the database or when additional labels
are added to a token’s description, the semantic directory is
updated appropriately.

Data tokens are attached to the most specific network
nodes possible. If, for example, a data token had been
laheled by a process as heing a paved.road, then it is at-
tached only to the semantic network node for paved.road
even though all paved_roads are known to be roadways. This
approach was adopted to save storage as well as to provide
a straight-forward implementation of the retrieval request
to return all objects that are paved.roads as opposed to all
objects that might be paved roads. The second descriptor
includes ohjects in the more general class “roadways” as well
as those labeled “paved.roads.” Paved._roads are found at-
tached to the nodes of the [attice that form the tree rooted at
the node labeled paved road, whereas roadways that mght
be paved roads are found attached to the nodes of the net-
work tree above the node labeled paved _road. This arrange-
ment parallels the mechanisms used in the spatial directory
to find objects that are at a particular location, as opposed
to those that might be at that location. It is the responsibil-
ity of the access routines to retrieve the appropriate items
from the datahase by means of the semantic network.

The semantic network serves partly as a definition of the
meaning of concepts. If a process designer wishes to know
what questions he can ask of a data token that is, for exam-
ple, a tree, the network specifies the relevant terms, such as
height, or color. The semantic network defines more than
just the communication language between processes; it de-
fines something of the domain concepts that all proceases
must use. However, while the coneept “tree,” for cxample,
may be seen in the semantic network to include pine.trees,
and oak.trees, and so on, and while & tree is &n immov-
able_object and an object, and while it has parts (and prop-
erties) of height, and eolor, it is not "defined” hy the net-
work. The network does not define for a process the concept
“tree;” it specifies only the concepts that processes can wse
to communicate about a tree. A particular process may
determine that an object is & pine.tree on the basis of its
temperature and the soil type around it, but it must share
its inforination in terms of the concepts defined in the net-
work. This approach was adopted for important pragmatic
reasons — it is impossible to “define” & concept like a tree;
yet we need to communicate information about a tree in
terms that other processes understand.

6 Other Directories

The system architecture we have described is independent of
the indexing structures that are overlaid on the database: to
change those structures requires only changes to the parser

that processes database requests (as can he seen in Figure
2). The extensihility of the directory system allows future
requirements to he accommodated without change to the
overall system structure. The two directories we describe
were devised to allow an autonomous land vebicle to navi-
gate through a world in which most ohjects are static and
motion comes primarily from the movement of the vehicle
itsell. In other scenerios, this will he inadequate. In en-
vironments in which thcre are many moving objects, and
fast-moving objects that are Jikely to impact the mission re-
sults, other directories that index the database through addi-
tional parameters, such as those associated with movement,
are vital. The architecture described has the Aexibility to
accommodate such extensions.

7 Process Control

We have described the various processes that form the -vs-
tem as independent, asynchronous processes that can be ac-
tivated he means of daemons imbedded in the database or
by more conventional procedure calls. Each method uses vo-
cabulary terms to interact with the database. Each process
is continucusly executing, although a process may put irself
to sleep only to be awakened when predetermined data con-
ditions exist. Who determines these conditions? Should ev-
ery process he permitted to determine the conditions needed
to interrupt another process? Some processes may be time
critical and prefer not to be interrupted. QOur approach i=
to require that the process itself set these conditions within
the database. Any process can attach one of its daemons 10
any data slot of any data token, so that the process will be
interrupted whenever any new or changed opinion modifies
that data slot. We selected data slots rather than data to-
kens as the items on which to attach daemons because data
tokens usunlly represent a complex item and any one pro-
cess is probably interested in only some aspects of it: for
example, the navigational module of an autonomous vehicle
will want to be interrupted if a sensor process gives a new
opinion on the position of an obstacle, but it is unlikely to
peed to be interrupted if the obstacle’s color changes. It is.
therefore, the responsibility of a process to determine when
it is to be interrupted.

In a like manner, it is the process that determines what
action to take when it is interrupted. The interrupt han-
dler is part of the definition of each process. As processes
are quite varied, there is no sense to the notion of a generic
interrupt handler. Clearly, processes may chocse to con-
tinue with what they are doing rather than to process the
interrupt if they assess the current task to be more relevent
to mission succeas than that associated with the interrupt.
Conversely, & process may instead suspend or abandon what
it is doing in favor of the interrupt. The overall system con-
eept is that of a [oosely coupled system in which all processes
work on their goals cognizant of the overall goals of the mis-
sion. Each process determines how it can best support the
mission goals and is responsible for the means to achieve
this.

The process architecture we use parallels that of black-
board systems that were brought to prominence in the build-



ing of speech understanding systems [2]. In these systems
data were placed on a blackboard; if the combination of
datz on the blackboard met the preconditions for a particu-
lar procedure to execute, then that procedure was triggered
and put on the schedule for computing resources. In an im-
portant way, the approach of activating processes using dae-
mons differs from the triggering mechanism used on hlack-
board systems. We do not have a pattern matcher whose job
is to trigger processes when a partieular pattern of data ap-
pears in the database (or on the biackhoard). For efficiency
reasons, the patterns that pattern matchers are to recognize
must be predetermined and compiled in at system building
time. In a system that is loosely coupled, in which differ-
ent processes may be present during different executions of
the system — in which the system must fupetion even if
some of the processes (or hardware) fail — an approach to
pattern matching that decentralizes the responsihility for de-
termining whether a process should be triggered seems more
manageable. We have chosen to trigger on an opinion heing
changed rather than on a particular pattern in the data it-
self. In selecting this mechanism, we weighed the cost of the
additional processing that is done by the interrupt bandler
in each process against the computational cost of running a
generalized pattern matcher.

In any system that is a collection of processes, priority
will sometimes need to be given to processes that perform
time-critical tasks. At other times, the system could be
underutilized. As = result some processes should be sched-
uled as foreground jobs, which compete for resources when
they request them, while others should be backgrourd pro-
cesses using only spare resources. We identified some of the
background processes: the module that resolves data incon-
sistenties, the one that recovers storage space, and parts of
the resource allocator itself. The system should never be
idle. We allocate computational resources to modules via a
separate process, a metalevel process, that changes the time
slice allocated to various processes. A process that produces
data. including opinions, that are used by other proceasea
gets more resources than a producer of unused data. In ad-
dition, a process can request more resources if it determines
such a peed, so that critical processes can ask for priority.

Qur current system implementation is one in which all
the various processes execute on one computer system and
all interact through a common virtual address space, This
approach was adopted to eliminate the system building nec-
essary to run experiments on multiple processors. However,
the design of the system assumes a virtual environment in
which there are many processors running in parallel, with
a communications network between them. This accounts
for the design decision of the rather loose coupling between
processes. On a network of parallel processors, we would ex-
pect some processors to be dedicated to particular processes
whbose computational task is matched to the particular ma-
chine hardware. Other processes would be allocated among
the available processors. Although we are aware of the bot-
tleneck that might be caused by centralizing the databaze we
envisage 8 system in which the process accepting requests for
database transactions will be centralized but the database
itsell and the procedures that carry out the internal process-
ing may be split across processors.
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8 Tasks

The information system that we have described presupposes
that the job of interpreting sensor data can be subdivided
into pieces, and that it is the combination of the process-
ing provided by these pieces {using stored knowledge) that
achieves sensor interpretation. The goal of sensor interpre-
tation is clear: we need to build a model of the world that
is being sensed, but what the individual tasks are, and how
stored knowledge is used is not obvious.

In the vision literature we see a8 wide range of experiments
that have probed for an answer to the first of these, identify-
ing the tasks. However, this question has usually been posed
in a context in which little data were available, save the sen-
sory signal. In s system like the one we describe, knowledge
is vitally important; we might therefore expect the division
to be into tasks that are somewhat different to those used
when the signal is the only data. To be more specific let us
look at an example of how the availability of knowledge may
influence sensory processing on an autonomous vehicle.

Given that our database includes a general description of
the terrain and the major objects in the area, we can use
the generic iconic models of the objects to construct the
image that the sensor expects to see. One task that must
be performed is to confirm that the expected objects are
present. This is model-based vision, but it differs from the
conventional model-based approach in that the models we
have are only generic.

The procedure for verifying models must he ahle to match
properties and parameters of this model to the data, rather
than use template-based matching of intensity images. Of
eourse we will not be ahle to generate all the ohjects in
the scene; some, such as unexpected ohjects, will not he in
the initial datahase. Here a bottom-up approach is needed.
However, as we verify the existence of some objects, tasks
like image segmentation will be focussed on those areas that
atil] must be explained.

Even the approach taken to a low-level procedure like seg-
mentation is altered hy the availability of terrain data. That
data can be used to break the interdependence of surface
slope and surface albedo in determining image intensity, and
hence can allow segmentation of the intensity image to be
replaced by segmentation of the albedo image. In addition,
textures seen in previous images can directly influence the
manner in which segmentation proceeds in the new image.
Stored knowledge, in this case terrain data, can even be
used to torrect the textures for perspective distortion. The
results obtained by algorithms for low-level processes, like
segmentation, are now as much a function of the database
knowledge as the signal.

The correct decomposition of the job of interpreting sen-
sory data into tasks is an open research issue, but one that
will be greatly inAuenced by the availability of stored knowl-
edge. In a similar fashion, bigber-level reasoning tasks are
influenced hy the increasing competence of low-level pro-
cesses to provide information in summary form. The inte-
gration of higher-level reasoning and low-level signal pro-
cessing should not be achieved by resorting to mechanisms
in which bigher-level processes reason about image features;
high-level processes sbould use the qualitative deseriptors




Figure 5: Database Display. Generic models are used to
display the current contents of the database. Sketch maps
designed with the same tool are used to put information into
the database.

that intermediate-level vision can assemble from low-level
signal processing and stored knowledge.

9 Experimental Environment

Any project that involves substantial software development
makes use of available software tools and builds others where
they do not afready exist (or are unattainahle). We have
mentioned using a graph manipulation package to build the
semantic network, and various preocesses have made use of
existing image-processing, graphics, and three-dimensional
modecling packages. Our system is huilt in Lisp and makes
extensive use of the flexibility a Lisp environment can pro-
vide. The svstem described runs on the Symhbolics 3600
family of Lisp machines. All system-huilding tools can be
executed as independent processes that run simultaneously
with the processes that manipulate data and carry out rea-
soning activities. They provide an interactive environment
in which to experiment. An example of the flexibility such
an environment can provide is shown in Figure 5, which dis-
plays a portion of the database. Because we must be able
to determine the current state of the datahase as process-
ing proceeds and because most of the data eontsined in it
describe spatial information, we choose to display it pictori-
ally. As some data tokens may only be labeled with general
terms, such as immovahle.object, we display generic iconic
models of the data tokens. Entering spatial data into the
database, particularly more qualitative data like a sketch
map, is made easy with such a tool. We create a display us-
ing generic models and place the sketch-map data into the
database.

Tools that lessen the effort needed to build systems make
it possible to embark on the experiments that require a com-
plete system to he in place hefore the simplest trial can com-
mence. Only through experimentation with real dats on a
running system can competence he fairly evaluated.
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10 Summary

The natural, cutdoor environment in which an autonomous
tand vehicle operates imposes substantial obstacles to the in-
tegration of the vehicle’s various sensory, planning, naviga-
tional, and control activities. The complexity of the domain
and the requirement for bigh reliability rule out approaches
that do not make substantial use of stored knowledge about
the environment. An intelligent database that competently
contributes to the processes that perform these various ac-
tivities is central to tbe overall design of an autonomous
aystem.

Today’s technology is not capable of directly integrating
sensory information with stored knowledge in one step. To
cope with the irregularities and imperfections of the outdoor
world, a series of interactions is needed to reach tentative
conclusions that constrain the final outcome. For this rea-
son, our soltware architecture for sensory integration is a
community of interacting processes, each of which has its
own limited goals and expertise, but all of which cooperate
to achieve the higher goals of the system.

Processes must be able to take advantage of relevant
knowledge that may he available. The design of a knowl-
edge system must include a means for eflectively commu-
picating semantic information to the multiple and varied
processes that wish to consider it. A vocabulary of terms
and a set of connections among them serve this purpose in
our system. The vocabulary consists of a domain-specific
set of terms that bave heen identified as being both useful
for, and instantiable by, the computational processes. A se-
mantic network is used to encode the specialization lattice
of the concepts and the physical decompoxition of composite
objects.

The database architecture for an autonomous system:
must allow multiple representations of world data. It must
support quantitative and qualitative, inconsisient and ap-
proximate data at multiple levels of resolution. Qur archi-
tecture is based on spatial and semantic directories that or-
ganizes the various representations of the knowledge to allow
for focussed processing, for flexihility of access, for modular-
ity of task processing, and for asynchronous process control.
The directories both link information stored in the different
representations and encode the relationships among objects.
They permit the achievement of partial data consistency, as
required for the task at hand, rather than complete consis-
tency of all data, relevant or not. In a departure from the
traditional strategy of resolving all conflicts at the time of
insertion, our knowledge system defers this chore until the
dats are required — when the relation of the information
to s task ia known, and when more data are Jikely to he
available.

The autonomous system that we describe consists of a
community of interacting processes that attempt to cooper-
ate in achieving the goals of the system. The database is
2D active participant in the system, not merely a data store,
merging the functional aspects of process control and data
organization.
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