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We develop and evaluate a high-order discontinuous Galerkin method

for the solution of the shallow water equations on the sphere. To overcome

well known problems with polar singularities, we consider the shallow water

equations in Cartesian coordinates, augmented with a Lagrange multiplier

to ensure that fluid particles are constrained to the spherical surface.

The global solutions are represented by a collection of curvilinear quadri-

laterals from an icosahedral grid. On each of these elements the local

solutions are assumed to be well approximated by a high-order nodal La-

grange polynomial, constructed from a tensor-product of the Legendre-

Gauss-Lobatto points which also supplies a high-order quadrature. The

shallow water equations are satisfied in a local discontinuous element fash-

ion with solution continuity being enforced weakly.

The numerical experiments, involving a comparison of weak and strong

conservation forms as well as the impact of over-integration, confirm the ex-

pected high-order accuracy and the potential for using such highly parallel

formulations in numerical weather prediction.

Key Words: discontinuous Galerkin method, high-order, icosahedral grid, shallow water
equations, spectral element method, spherical geometry.

1. INTRODUCTION

The majority of current climate and numerical weather prediction (NWP) mod-
els, e.g., the operational NWP models developed by the European Center for
Medium-Range Weather Forecasting (ECMWF), the National Center for Environ-
mental Prediction (NCEP), and the Naval Research Laboratory (NRL), are based
on globally defined spectral methods [11, 14, 24, 25]. While these methods continue
to be essential tools for NWP, their limitations are beginning to emerge. For one,
the fixed global grid makes adaptive solution techniques very complex if possible at
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2 GIRALDO, HESTHAVEN, AND WARBURTON

all. Furthermore, the recent paradigm shift in large-scale computing from vector
to distributed-memory computing platforms has exposed problems with achieving
efficiency due to the global, inter-processor, all-to-all communication needed in the
spectral transform.
Such considerations have stimulated research into parallel methods and poten-

tially adaptive methods, suitable for NWP, yet maintaining the accuracy of the
global spectral approach while overcoming its inherent limitations.
Continuous spectral element methods have recently been proposed for future

climate [26] and NWP [9] models. In these methods the solution is first constructed
in a local element-by-element manner and then a portion of this local solution is
distributed to the global grid points shared by adjacent elements. This global
assembly from the elements to the global grid points is what enforces continuity
and it is this requirement which reduces the locality of the method. Although
continuous spectral element methods parallelize quite well [27] their insistence on
continuity makes them cumbersome to employ in either a non-conforming approach
[17] or in an adaptive solution strategy.
In this paper we introduce a nodal high-order discontinuous Galerkin method for

geophysical flows on the sphere. Like continuous spectral element methods, discon-
tinuous Galerkin methods (DGM) can be constructed to have high-order accuracy,
while maintaining a large degree of locality, hence enabling high parallel perfor-
mance and adaptive solution procedures. The locality of these methods ensures
that they can be used with any type of grid, e.g., unstructured and non-conforming
if needed. In this paper we shall demonstrate this by using unstructured icosahedral
grids.
As a first step towards the construction of a fully 3D atmospheric model we

demonstrate the efficiency and accuracy of the nodal high-order DGM by solving
the shallow water equations on the sphere. The shallow water equations contain all
of the horizontal operators required in an atmospheric model and thus represent a
good first test for newly proposed methods for atmospheric models.
The remainder of the paper is organized as follows. In Sec. 2 we introduce the

spherical shallow water equations and discuss the reasons for using a Cartesian
grid. This sets the stage for Sec. 3 which introduces the numerical scheme and
discusses in detail the spatial curvilinear representation of the solution as well as
the formulation enabling one to satisfy the equations in a discontinuous fashion. We
also discuss the temporal time-stepping scheme and the approach taken to generate
a suitable grid on the sphere. In Sec. 4 we demonstrate the accuracy, efficiency, and
robustness of the complete scheme for the solution of benchmark problems for the
spherical shallow water equations. Section 5 contains a few remarks and outlines
natural extensions of the work presented here.

2. SPHERICAL SHALLOW WATER EQUATIONS
The spherical shallow water equations in conservation form are given as

∂q

∂t
+∇ · F (q) = S(x, q) , (1)

where
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q = [ϕ,ϕu, ϕv, ϕw]T ,

represents the state vector, q, composed of the geopotential height, ϕ, and the three
Cartesian velocity components, (u, v, w), all being a function of x ∈ R3 and time,
t. The units for ϕ and u are (m/s)2 and m/s, respectively.
The flux, F (q), takes the form

F (q) =




ϕu

ϕu2 + 1
2ϕ

2

ϕuv

ϕuw


 î+




ϕv

ϕuv

ϕv2 + 1
2ϕ

2

ϕvw


 ĵ +




ϕw

ϕuw

ϕvw

ϕw2 + 1
2ϕ

2


 k̂ , (2)

where (î, ĵ, k̂) represent the Cartesian unit vectors. The source term, S(x, q), in
Eq.(1), acting only on the momentum equations, is given as

S(x, q) = −2Ωϕ
R2

x × u − ϕ∇ϕs + µx .

Here the first term accounts for the Coriolis force, with R = 6.371 × 106 m being
the radius and Ω = 7.292 × 10−5 rad/s the angular frequency of the earth, while
the second contribution models the effects of a variable surface height through the
surface potential, ϕs. The last term is a Lagrange multiplier, the specification of
which we shall return to shortly.
Equation (1) is derived from the incompressible and inviscid Navier-Stokes equa-

tions by vertically integrating the mass to yield the geopotential height equation
(for further details see [22]). Contrary to most other work on the numerical solu-
tion of Eq.(1) on a spherical shell, we shall not recast it in spherical coordinates
but rather maintain the Cartesian coordinates. The main motivation for doing so,
albeit at the expense of introducing an additional momentum equation, is to avoid
the problems associated with the polar singularity. For a spherical shell, described
by the coordinates (λ, θ), of radius R the divergence of a vector field, F = f λ̂+ gθ̂,
is given as

∇ · F =
1

R cos θ

[
∂f

∂λ
+

∂g cos θ
∂θ

]
.

At the poles, i.e., θ = ±π/2, this is a source of numerical problems, caused by the
specific formulation rather than the nature of the shallow water equations and its
solutions. While the use of a local Cartesian coordinate system has been used to
overcome these problems in the past [26] we have, guided by the results of previous
work [9], chosen to maintain the Cartesian formulation everywhere.
To ensure that the fluid particles remain on the spherical shell, we require that

the fluid velocity remains perpendicular to the position vector, i.e., x ·u = 0, which
yields the Lagrange multiplier

µ(x, q) =
1
R2

[
ϕx · ∇ϕs + x ·

(
∇ · F̃

)]
. (3)



4 GIRALDO, HESTHAVEN, AND WARBURTON

Here F̃ represents the parts of the flux, Eq. (2), associated with the momentum
equations, i.e., the last three fluxes. Note that the term associated with the Coriolis
term vanishes identically at this exact level while this may not be case at the
discrete level. As no constraint is needed on the geophysical potential, essentially
representing the local mass, the multiplier is needed in the momentum equations
only.

3. THE NUMERICAL SCHEME

In developing the numerical scheme for the solution of Eq. (1) we shall split the
discussion into a treatment of the spatial discretization and the approximation of
the resulting semi-discrete approximation.

3.1. The Spatial Approximation
The discussion of the spatial approximation scheme involves, as does any formula-

tion of a scheme for solving partial differential equations, attention to the questions
of how to represent the solution as well as in which way the equations are required
to be satisfied. In the following we address these two issues in more detail.

3.1.1. Representing the Solution and Basic Operations
Initially, we assume that the computational domain, S, i.e., a spherical shell, is

covered by K non-overlapping curvilinear quadrilaterals, D, such that

S =
K⋃

k=1

Dk .

The construction of this sphere covering is not entirely trivial and we shall return
to this problem in Sec. 4. For now, however, we simply assume its existence.
To enable the efficient and accurate computation of operations such as differ-

entiation and integration, we introduce a nonsingular mapping, x = Ψ(ξ), which
connects the local physical coordinates, x = (x, y, z), defined on D with a refer-
ence system ξ = (ξ, η, ζ), defined on the local element such that (ξ, η) lies on the
spherical surface. Thus, ζ represents the spherical radius vector itself, i.e., ζ con-
stant corresponds to a shell of a constant radius. For simplicity we assume that
(ξ, η) ∈ [−1, 1]2 on each element, see Fig. 1.
Associated with the local mapping, Ψ, is the transformation Jacobian, J = ∂x

∂ξ
,

and the determinant

|J | = ∂x

∂ζ
· G , G =

∂x

∂ξ
× ∂x

∂η
,

where G represents the surface conforming component of the mapping (see [9] for
further details).
The mapping also supplies the local metric, ∇ξ and ∇η, as well as the local

normal vectors at the surface of the element. Indeed, as illustrated in Fig. 1, the
normals are given as

n̂ = η
∇η

|∇η|
∣∣∣∣
η=±1

, n̂ = ξ
∇ξ

|∇ξ|
∣∣∣∣
ξ=±1

,
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FIG. 1. The geometry of the mapping and the associated metric information.

for the sides 1/3 and 2/4, respectively.
With this in place we can now focus on the local element-wise representation of

the solution, q, and the approximation of operations such as differentiation and
integration. For simplicity, we assume ζ to be unity in what remains and denote
ξ = (ξ, η) unless clarification is deemed necessary.
The simple structure of the standard element, I, spanned by ξ ∈ [−1, 1]2, makes

it natural to represent the local solution by an Nth order polynomial in ξ as

qN (x) =
(N+1)2∑

k=1

qN (xk)Lk(x) ,

where xk represents (N+1)2 grid points and Lk(x) reflects the associated multivari-
ate Lagrange interpolation polynomial. The logical square structure of I simplifies
matters further in that we can express the Lagrange polynomial by a tensor-product
as

Lk(x) = hi(ξ(x))hj(η(x)) , (4)

where i, j = 0, ..., N .
While many choices of the grid points, (ξi, ηj), are possible, it is natural to choose

the Legendre-Gauss-Lobatto points, given as the tensor-product of the roots of

(1− ξ2)P ′
N (ξ) = 0 ,

where PN (ξ) is the Nth order Legendre polynomial. This choice is natural as these
points are endowed with a Gaussian quadrature rule which shall become useful
shortly. With this choice, the one-dimensional Lagrange polynomials, hi(ξ), also
known as the Legendre cardinal functions, become

hi(ξ) = − 1
N(N + 1)

(1− ξ2)P ′
N (ξ)

(ξ − ξi)PN (ξi)
,
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and likewise for hj(η).
The choice of the Legendre-Gauss-Lobatto points enables the straightforward

approximation of element-wise integrals, i.e.,

∫
D
q(x) dx =

∫
I
q(ξ)J(ξ) dξ �

N∑
i,j=0

q(ξi, ηj)J(ξi, ηj)ω
ξ
i ω

η
j ,

where J represents the local Jacobian for the transformation between D and I, and
ωξ

i and ωη
j are the Gaussian quadrature weights,

ωξ
i =

2
N(N + 1)

(
1

PN (ξi)

)2

,

associated with the one dimensional Legendre-Gauss-Lobatto quadrature. We recall
that if qJ is a polynomial of at most degree 2N − 1 in each local coordinate, the
quadrature is exact.
The evaluation of surface integrals, made particularly simple by the natural sep-

aration between interior and edge (side) nodes in the nodal formulation considered
here, follows the same line of thinking, i.e.,

∮
δD

q(x) dx =
∮

δI
q(ξ)J(ξ) dξ

�
N∑

i=0

[q(ξi,−1)J(ξi,−1) + q(ξi, 1)J(ξi, 1)]ω
ξ
i

+
N∑

j=0

[q(−1, ηj)J(−1, ηj) + q(1, ηj)J(1, ηj)]ω
η
j .

3.1.2. Satisfying the Equation
With the local representation of the solutions and the central operations in place,

we shall now proceed to consider the question of how to satisfy the equation. We
assume that the solution, q, to Eq.(1) is represented locally by high-order polyno-
mials, qN , defined on the curvilinear quadrilateral, D, and require that the equation
be satisfied element-wise in the following discontinuous Galerkin way

∫
D

(
∂qN

∂t
+∇ · F N − SN

)
Lk(x) dx =

∮
δD

Lk(x)n̂ · [F N − F ∗
N ] dx , (5)

where Lk(x) (k ∈ [1, ..., (N + 1)2]) is the local polynomial basis, Eq.(4). We have
also introduced the polynomial representation of the flux, F N = F N (qN ), and the
source, SN = SN (x, qN ), as

F N(qN ) =
(N+1)2∑

k=1

F (qN (xk))Lk(x) , SN (x, qN ) =
(N+1)2∑

k=1

S(xk, qN(xk))Lk(x) .
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The numerical flux, F ∗
N , in Eq.(5) shall be discussed in detail shortly. Prior to that,

however, a few remarks concerning Eq.(5), are in order. First of all we note that
the interface conditions, introduced into the formulation through the numerical
flux, are enforced only weakly, i.e., the solution is in general discontinuous. As
we shall see, however, this does not impact the accuracy as the size of the jump
vanishes to the order of the interior approximation. Furthermore, the discontinuous
formulation ensures a highly parallel scheme as all communication is local between
elements sharing edges in two-dimensions or faces in three-dimensions. Finally, the
locality of the approximation makes it straightforward to extend the scheme to
include support for different orders of approximations in different elements, non-
conforming or different types of elements, e.g., triangles and quadrilaterals.
Before discussing the numerical flux, let us note that a mathematically equivalent

but numerically different formulation of Eq.(5) can be obtained by an integration
by parts to recover

∫
D

(
∂qN

∂t
− F N · ∇ − SN

)
Lk(x) dx = −

∮
δD

Lk(x)F ∗
N dx . (6)

This can be recognized as the classical discontinuous Galerkin method for conser-
vation laws [1, 2, 4, 18]. To distinguish between the two formulations, we shall
refer to Eq.(5) as the divergence form and the more familiar one, Eq.(6), as Green’s
form. Other terms often used to describe these formulations are the strong and the
weak form, respectively.
The numerical flux, F ∗

N , is the part of the formulation that allows information
to be passed between the individual elements, the union of which forms S. The
discontinuous formulation implies that the solution at an interface is non-unique
and we must ensure that a unique solution be identified and passed to both elements
in a way consistent with the dynamics of the problem.
This is a situation similar to a classical finite volume formulation to which Eq.(6)

reduces for the lowest order elements. Thus, we can borrow from the extensive
literature devoted to the development and analysis of numerical fluxes within the
context of finite volume methods, e.g., upwinding by linearization or approximate
Riemann solvers such as Roe [23], Engquist-Osher [6] or Van Leer [28] fluxes.
For simplicity and generality we use subsequently the simple Lax-Friedrichs flux

of the form

F ∗
N =

F N (qN ) + F N (pN)
2

− |λ|
2
(pN − qN ) ,

where qN refers to the local computed solution and pN refers to the solution in
the neighboring element. The dissipative term is scaled by |λ| which represents the
maximum (local) eigenvalue of the flux Jacobian

∂n̂ · F
∂q

=




0 n̂x n̂y n̂z

n̂xϕ− uU n̂xu+ U n̂yu n̂zu

n̂yϕ− vU n̂xv n̂yv + U n̂zv

n̂zϕ− wU n̂xw n̂yw n̂zw + U


 ,
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where

U = n̂ · u .

The eigenvalues of the flux Jacobian are Λ =
[
U,U, U +

√
ϕ,U −√

ϕ
]T , such that

|λ| = |U |+√
ϕ ,

is the maximum wave speed of the shallow water equations entering the Lax-
Friedrichs flux. While it is well known that the use of a Lax-Friedrichs flux in a
classical finite volume formulation leads to a very dissipative scheme, this is much
less of a problem in a high-order formulation where the quality of the numerical
flux is less critical [5].
To simplify matters further for both formulations, let us introduce

Mlk =
∫
D
Ll(x)Lk(x) dx , Dlk =

∫
D
Ll(x)∇Lk(x) dx , (7)

as the mass matrix and the differentiation operator, respectively. Note that D =
[Dx,Dy,Dz] is a vector of matrices corresponding to a discrete gradient oeprator.
To account for the source we define

Slk =
2Ω
R2

(N+1)2∑
m=1

xm

∫
D
Lm(x)Ll(x)Lk(x) dx , Mϕ

lk =
∫
D
Ll(x)Lk(x)∇ϕs(x) dx .

As D, both S and Mϕ are 3-vectors of matrices.
Finally we introduce the operator associated with the surface integral as

Flk =
∮

δD
Ll(x)Lk(x) dx ,

where l includes the trace of nodes on the face of D only. Denoting the local
element-wise grid vector of the geopotential as ϕN and, correspondingly, the grid
vector for the three momentum components as ϕuN and qN = [ϕN ,ϕuN ]T , we
can now express the semi-discrete approximation of the divergence form, Eq.(5), as

(I4 ⊗M)
d

dt
qN +D · F N (qN ) = −

[
0 0

Mϕ S×
]

qN (8)

+
[
0 0
0 µI3 ⊗M

] [
0

xN

]
+ I4 ⊗ F [F N (qN)− F ∗] ,

where Ir is a rank-r identity matrix and the Lagrange multipliers are contained
in the diagonal matrix, µ = diag[µ1, ..., µ(N+1)2 ]. Finally we have introduced the
arrays of nodal physical coordinates, xN = [xN , yN , zN ]T .
Similarly, we can express the Green’s form, Eq.(6), using the above notation as

(I4 ⊗M)
d

dt
qN − DT · F N (qN ) = −

[
0 0

Mϕ S×
]

qN (9)

+
[
0 0
0 µI3 ⊗M

] [
0

xN

]
− (I4 ⊗ F)F ∗ .
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In both cases we can compute the Lagrange multipliers in a way similar to the
continuous case, Eq.(3), i.e., by requiring that the discrete momentum is pointwise
normal to the position vector. Note that the effect of the Coriolis force needs to be
included in the discrete form to ensure that fluid particles remain on the spherical
shell.
It is worth noticing that both schemes given above are fully explicit in time,

i.e., no global assembly is required in contrast to a classical finite element/spectral
element scheme, and is thus parallel by construction. The only overhead associated
with the above formulation is the additional memory required to store the multiple
solutions at the overlapping regions of the elements, i.e., the edges (sides). For
high-order elements this memory overhead is clearly negligible as the number of
edge to volume nodes decreases rapidly as the order increases.

3.2. Temporal Integration and Stability
The explicit nature of the semi-discrete formulation

∂qN

∂t
= B(qN ) ,

where B signifies the operators given in Eqs.(8)-(9), makes it natural to use a
standard explicit Runge-Kutta scheme. This yields

∀k = 1, ..., 3 : qk+1
N = qk

N +∆tαkB(qk) ,

with qk=1
N = qn

N and

qn+1
N = qn

N +
∆t

6

4∑
k=1

βkB(qk) ,

where

α1 = α2 =
1
2
, α3 = 1, and β1 = β4 = 1, β2 = β3 = 2 .

The time step, ∆t, is chosen in order to ensure a stable scheme and will generally
scale like

∆t ≤ CFL× min
x∈D

[|u · χ|+ ϕ
√

χ · χ]−1
,

where the local grid distortion is measured by

χ =
( |ξx|
∆ξ

+
|ηx|
∆η

,
|ξy|
∆ξ

+
|ηy|
∆η

,
|ξz |
∆ξ

+
|ηz |
∆η

)
.

Here (∆ξ,∆η) reflects the local average grid size and u = (u, v, w) the local velocity.
Even with a suitably chosen value of the time-step it is well known that high-

order methods are prone to instabilities due to the nonlinear mixing and lack of
dissipation, see e.g. [10]. This is particularly true for problems with marginally
resolved phenomena where the nonlinear mixing of the solution with the Gibbs
oscillations can drive the instability.



10 GIRALDO, HESTHAVEN, AND WARBURTON

The standard approach to avoid this instability in a controlled manner is through
the use of a weak high-order filter which modifies the high frequency modes without
altering the well resolved low frequency modes. As has been shown over the last
decade such filtering can be applied without sacrificing spectral accuracy [10, 26].
We shall focus on the filters developed by Boyd [3] and Vandeven [29]. While

these filters perform well, their use are known to pose difficulties in a classical
spectral element scheme where the solution is required to be continuous. As we
shall see shortly, however, these difficulties vanish in the current formulation.
Following the discussion in [3], consider the state variables, qN , as

qN =
(N+1)2∑

k=1

qN (ξk)Lk(ξ) =
N∑

i,j=0

q̂ijPi(ξ)Pj(η) ,

where Lk(ξ) is the Lagrange polynomial associated with the points, ξk, Pi(ξ) and
Pj(η) the Legendre polynomials in ξ and η, respectively, and q̂ij the discrete Leg-
endre expansion coefficients of the state vector computed by using the Legendre
quadrature.
The filtering approach proposed in [3] involves the weighted sum

qF
N = (1− ν)qN + ν

N∑
i,j=0

σiσj q̂ijPi(ξ)Pj(η) , (10)

where ν is the filter weighting, i.e., ν = 0 represents no filtering and ν = 1 full
filtering. Furthermore

σi =

{
1 for i < s

σ
(

i−s
N−s

)
for s ≤ i ≤ N

is the filter function with σ being the Boyd-Vandeven filter [3]; σj is defined likewise.
Note that the filtering is performed in an element sense. In other words, each
element yields its very own set of filtered values. However, if using a spectral element
formulation we would need to require that the state vector be continuous across
elements. As the filtering gives different values for grid points shared by elements
some form of weighting is typically required to recover continuity. Since we advocate
a discontinuous element formulation, however, this correction is unnecessary, hence
greatly simplifying the inclusion of filters into the schemes.

4. GENERATION OF ICOSAHEDRAL GRIDS ON THE SPHERE

Contrary to the more traditional solution techniques exploiting spherical har-
monics [11, 14, 16, 24, 25], the use of a multi-element formulation allows for the
use of any type of grid, e.g., not only unstructured grids but non-conforming grids
as well.
The generation of the grid on the sphere is a challenging problem and in this

section we describe the procedure for generation of general high order icosahedral
grid proposed in [8, 9]. This grid is derived from the icosahedron comprised of 20
equilateral triangular elements and 12 grid points.
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To construct icosahedral grids we consider the initial icosahedron and subdivide
each of the initial triangles by a triangular Lagrange polynomial of order nI . Prior
to mapping these elements onto the sphere it is convenient to map the triangles
onto a gnomonic space. The most unbiased mapping is obtained by mapping about
the centroid of the triangles.
Let (λc, θc) be the centroid of the triangle we wish to map. The gnomonic

mapping is then given by

x =
a cos θ sin(λ− λc)

sin θc sin θ + cos θc cos θ cos(λ− λc)
, (11)

y =
a [cos θc sin θ − sin θc cos θ cos(λ− λc)]
sin θc sin θ + cos θc cos θ cos(λ− λc)

.

To simplify matters a bit, we first apply a rotation whereby Eq.(11) becomes

x = a tanλ′, y = a tan θ′ secλ′ , (12)

in the new coordinate system with the coordinates (λ, θ) located at (0, 0). The
rotation mapping is given as

λ′ = arctan
[

cos θ sin(λ− λc)
sin θc sin θ + cos θc cos θ cos(λ− λc)

]
, (13)

θ′ = arcsin [cos θc sin θ − sin θc cos θ cos(λ− λc)] .

This approach enables the construction of a general icosahedral grid defined by

NT
p = 10(nI − 1)2 + 20(nI − 1) + 12 ,

NT
e = 2(NT

p − 2) , (14)

NT
s = 3(NT

p − 2) ,

where NT
p , NT

e , and NT
s denote the number of points, elements, and sides com-

prising the triangular grid.
Once the triangular icosahedral grid is constructed, we subdivide each triangular

element into 3 quadrilateral elements. Upon dividing the triangles into quadri-
laterals one can construct the higher order collocation points inside each element
resulting in a quadrilateral grid with the following properties

Np = 6(NT
p − 2)N2 + 2 ,

Ne = 6(NT
p − 2) , (15)

Ns = 12(NT
p − 2) ,

where Np, Ne, and Ns denote the number of points, elements and sides comprising
the quadrilateral grid, and N is the polynomial order used in the semi-discrete
discontinuous Galerkin scheme discussed in Sec. 3.1.2.
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TABLE I

The number of grid points, elements, and sides for the icosahedral

grid as a function of nI and N .

nI N nI · N Np Ne Ns

1 4 4 962 60 120

1 6 6 2162 60 120

1 8 8 3842 60 120

1 12 12 8642 60 120

1 16 16 15362 60 120

1 24 24 34562 60 120

1 32 32 61442 60 120

1 64 64 245762 60 120

4 1 4 962 960 1920

8 1 8 3842 3840 7680

16 1 16 15362 15360 30720

32 1 32 61442 61440 122880

64 1 64 245762 245760 491520

2 2 4 962 240 480

4 2 8 3842 960 1920

8 2 16 15362 3840 7680

16 2 32 61442 15360 30720

32 2 64 245762 61440 122880

1 4 4 962 60 120

2 4 8 3842 240 480

4 4 16 15362 960 1920

8 4 32 61442 3840 7680

16 4 64 245762 15360 30720

Substituting the values in Eq.(14) into Eq.(15) yields

Np = 60(nI)2N2 + 2 , (16)

Ne = 60(nI)2 , (17)

Ns = 120(nI)2 . (18)

Table I provides examples of grids for various values of nI and N . Examples of
corresponding grids for nI = 1 and N = 4, 8, 16, and 32 are illustrated in Fig. 2.

5. RESULTS
In the following we evaluate the performance of the scheme discussed in the

previous sections. As a measure of the error we use the normalized L2 error

‖qN‖L2
=

√∫
D (qexact − qN )2 dx∫

D q2
exact dx

.
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a) b)

c) d)

FIG. 2. An icosahedral grid for nI = 1 and a) N = 4, b) N = 8, c) N = 16, and d) N = 32.

throughout this section. Here qN represents the computed conservation variables
and qexact the exact when available. The global error is computed as a broken norm
using the local quadratures.
Six test cases are used in order to test the algorithms and form a framework for

comparison between the two formulations. Cases 1, 2, 3, 5 and 6 correspond to the
test cases given in [30]. Case 4 has been used as a test case for the shallow water
equations in [8, 9, 20, 21]. Cases 1, 2, and 3 have analytic solutions and are used to
evaluate the accuracy of the discontinuous Galerkin method quantitatively. Cases
4, 5, and 6, on the other hand, do not have analytic solutions and are thus used to
obtain a qualitative assessment of the accuracy of the scheme.

• Case 1: Steady-State Advection. This case concerns the solid body rotation of
a cosine wave. It only tests the mass equation as the velocity field is assumed to
remain unchanged throughout the computation. The cosine wave completes one
full revolution after 12 days of integration.
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• Case 2: Global Steady-State Nonlinear Zonal Geostrophic Flow. This case is a
steady-state solution to the nonlinear shallow water equations. The equations are
geostrophically balanced and remain so for the duration of the integration. The
velocity field thus remains constant throughout the computation. The geopotential
height ϕ undergoes a solid body rotation but since the initial height field is given
as a constant band, the solution remains the same throughout the time integration.
The velocity field is the same as that used in Case 1. Williamson et al. [30]
recommend that the error be computed after 5 days of integration.
• Case 3: Steady-State Nonlinear Zonal Geostrophic Flow with Compact Support.

This case is similar to Case 2 except that the velocity is zero everywhere except in
a very small isolated region. This isolated region, or jet, encapsulates the flow and
limits the geopotential height field to remain within a very confined circular region.
As in Case 2, the errors are computed after 5 days.
• Case 4: Dancing High-Low Waves. This case comes from [20] and is not an

analytic solution to the shallow water equations. The initial geopotential height is
comprised of two large waves with the left wave being the low wave and the right
wave being the high wave, when viewed from the north pole. The waves rotate
clockwise in a swirling dance-like fashion so that after 10 days of integration, the
low wave is again on the left and the high wave is on the right.
• Case 5: Zonal Flow over an Isolated Mountain. This case is similar to Case 2

except that a mountain has been included on the sphere. This is the only problem
in the test cases studied here which includes topography. The mountain is conical
in shape and forces the zonal flow to deflect off the mountain. Due to the zonal
flow impinging on the mountain, wave structures form and propagate around the
sphere. Results are reported for a 10 day integration period.
• Case 6: Rossby-Haurwitz Wave. Although Rossby-Haurwitz waves are not

analytic solutions to the shallow water equations, they have become a standard
test case. In a non-divergent barotropic model, the initial geopotential height field
undergoes a solid body rotation in a counterclockwise direction (when viewed from
the north pole). Results are reported for a 14 day integration.

In the following we shall use these 6 benchmarks as the stick against which to
measure and compare the schemes and their numerical properties such as robustness
and accuracy. For the former we shall discuss the impact of various simplifications
and approximations introduced into the two schemes, Eqs.(8)-(9), while the latter is
evaluated by comparison with exact solutions as well as studies of a more qualitative
nature.

5.1. Basic Convergence Tests
Prior to that, however, it seems only natural to discuss and illustrate the advan-

tages of using a high-order scheme for solving the shallow water equations. For this
purpose we shall consider the solution of Cases 1, 2, and 3 using the divergence
form of the scheme, Eq.(8), only.
Figure 3 shows the computed mass error for the 3 cases using the following

orders of accuracy: N = 1 (dashed), N = 2 (dotted), N = 4 (dashed-dotted), and
nI = 1 (solid). We plot the mass error norm as a function of the product nIN . The
N = 1 results are obtained by using linear elements but increasing nI for increasing
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FIG. 3. The mass error norm for the divergence form of the DGM comparing low order
schemes (N ≤ 4) with the Nth order scheme (nI = 1) for a) Case 1, b) Case 2, and c) Case 3 for
a one day integration.

nIN , i.e., it corresponds to a classic element refinement known as h-refinement. In
contrast, the nI = 1 results shown in the plots represent our Nth order scheme
where we keep the number of elements constant (given by nI = 1) and increase N
as is done in classic high-order/spectral convergence.
The results in Fig. 3 confirm the spectral accuracy of the scheme for all three

test cases. These results also illustrate well the advantages offered by high-order
schemes over low-order schemes in terms of accuracy.
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However, it is crucial to understand the cost incurred by this additional accuracy,
e.g., if the high-order scheme is prohibitively expensive for levels of accuracy of
relevance then the scheme loses much of its appeal.
In order to measure cost versus accuracy, we shall consider the number of op-

erations associated with the different schemes. The simplest reasonable operation
count is O(N5N

3/2
e ), where N is the local approximation order on the Ne elements.

This estimate is obtained by including the Ne evaluations of the derivatives, being
O(N3Ne), and including an additional O(N2

√
Ne) work to account for the number

of time-steps required to advance the high-order method. Taking the expression for
Ne from Eq.(18), this yields an estimate of the work as O(N5n3

I).
The main interest is naturally to limit the number of operations needed to achieve

a result with a given accuracy, which, on the other hand is a problem dependent
entity. Let us first consider the results of Case 1, illustrated in Fig. 3a. Taking
an accuracy of 10−3 as the goal, it is easily found from Fig. 3a that the 4th order
scheme is the one with the least operations, about half that of the 2nd order scheme
and almost 5 times less than the first order scheme. In a similar fashion one finds
for Case 2 and an accuracy goal of 10−6 that the Nth order scheme seems most
efficient while the 1st and 2nd order methods are prohibitively expensive. For Case
3 and an accuracy goal of 10−3 we again find that the Nth order scheme appears
to be most efficient.
These results provide only guidelines but they do confirm the advantages in

using a high-order scheme over lower accuracy methods. Whether one should use
the highest order approximation possible or rather limit the order and refine the
element size may well be problem dependent. However, as has also been found in
other similar studies [9, 12, 13, 15, 26] it is generally advantageous to use a moderate
order of approximation, N = 8 − 16, and refine the element size accordingly to
achieve a practical level of accuracy. Only for problems requiring very high accuracy
or long time integration can one benefit from using a very high order scheme, i.e.,
N > 16. The results obtained here support the validity of these guidelines.

5.2. The Divergence Form versus the Green’s Form
As a second test we shall evaluate the differences between the divergence form,

Eq.(8), and the Green’s formulation, Eq.(9), subject to various approximations
and simplifications. As a basis for this comparison we shall again use Cases 1, 2,
and 3, with the comparisons including the impact of using full or lumped diagonal
mass matrices, and the use of exact or inexact integration to compute the discrete
operators. Although these differences appear as being small we shall see that the
performance of the divergence and Green’s formulations can be quite different as a
consequence of these differences.

5.2.1. Full versus Diagonal Mass Matrix
One of the most immediate ways of improving the efficiency of the discontinuous

Galerkin method is to approximate the mass matrix, M, Eq.(7), by a diagonal (or
lumped) form. We form the diagonal approximation of the mass matrix by simply
summing all of the entries of each row and storing the sum in the main diagonal.
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FIG. 4. Evaluation of the ϕ error induced by using diagonal (square) and full (triangle)
mass matrices, M , in the DGM formulations. The error norms are illustrated for the divergence
form (solid line) and the Green’s form (dashed line) for a) Case 1, b) Case 2, and c) Case 3. All
results correspond to one day integrations.

Figure 4 shows the errors obtained using the full and diagonal mass matrices for
the divergence and Green’s forms, Eqs.(8)-(9), on the nI = 1 grid for Cases 1, 2,
and 3.
The results illustrate that the divergence form is generally more robust towards

the approximation induced by the diagonal mass matrix, exemplified most clearly
by the solution of Case 2. Note, however, that the disparity in accuracy between
the full and diagonal forms decreases for all three cases as the order of the basis
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functions is increased. The level off of the error decay in Case 2 we attribute to
finite precision effects in combination with doing the computations in dimensional
variables. This effect, however, does not impact the conclusions.

5.2.2. Exact versus Inexact Integration
The evaluation of the discrete operators, e.g., Eq.(7), requires the computations

of integrals. Despite the fact that we have the solution defined on Legendre-Gauss-
Lobatto quadrature points, the curvilinear geometry, reflected by the transforma-
tion Jacobian, and the terms associated with the Coriolis force will create polynomi-
als of higher order and over-integration would be needed to integrated these terms
exactly. Indeed, to integrate all of the matrices exactly requires Q = (cN + 1)/2
quadrature points, where c is an integer constant denoting the factor of the maxi-
mum order matrix. For the spherical shallow water equations c = 4, coming from
the Coriolis term. For highly skewed elements, however, this factor increases to 6
because of the impact of the transformation Jacobians.
The question to address here is what is the effect of employing inexact in-

tegration only, as is done traditionally in continuous spectral element schemes
[7, 15, 19, 26]. Here we shall simply use the straightforward quadrature associ-
ated with the Legendre-Gauss-Lobatto nodes, to evaluate the inner products and,
thus, the discrete operators.
Figure 5 shows the mass error obtained using exact and inexact integration for

the matrices of the divergence and the Green’s forms on the nI = 1 grid for Cases
1, 2, and 3. Both the divergence and the Green’s forms clearly loose accuracy
when using inexact integration. Similar to the discussion for the lumped mass
matrix, however, we observe that the divergence form appears to be more robust
towards such approximations, i.e., the results obtained using the divergence form is
always less affected by the approximations than the Green’s form. Furthermore, we
observe that this increased error level for the Green’s form seems to persist for large
orders of approximation in Case 2. In other words, the accuracy disparity between
the exact and inexact integration of the Green’s form appears to not decrease for
increased basis function order as it does for the divergence form.

5.2.3. Divergence versus Green’s Form
The results in Figs. 4 and 5 indicate that the Green’s form, Eq.(9), is superior in

accuracy to the divergence form, Eq.(8), of the discontinuous Galerkin formulation
only if everything is done exactly, i.e., full mass matrices and over-integration to
evaluate the discrete operators exactly. However, for all cases, the divergence form
performs almost as well even when doing all operations exactly and it was found to
be more robust to performance enhancing approximations such as diagonal mass
matrices and inexact integration.
Based on these results we shall use the divergence form with inexact integration

and diagonal mass matrices for the remainder of the paper as these approximations
have a negligible impact on the accuracy. It should be noted, however, that the
problems we have considered and on which we have based this choice are limited
and it is not clear which formulation to choose for problems of a more general
nature, e.g., problems with discontinuous solutions. We hope to address this in
future work.
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FIG. 5. Evaluation of the ϕ error induced by using exact (triangle) and inexact (square)
integration for the computation of the operators in the DGM formulations. The error norms are
illustrated for the divergence form (solid line) and the Green’s form (dashed line) for a) Case 1,
b) Case 2, and c) Case 3. All results correspond to one day integrations.

5.3. Convergence and Stability Study
In this section we show convergence results for all six cases. Cases 1, 2, and

3 have analytic solutions and so we use these cases to judge the accuracy of our
results quantitatively. Cases 4, 5, and 6, on the other hand, are only used to judge
the convergence of the scheme qualitatively, as we do not have analytic solutions
to these cases. All six test cases are integrated for long periods of time in order to
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confirm the stability of the scheme. To ensure stability we apply the Boyd-Vandeven
filter after every 10 time steps.

5.3.1. Quantitative Study
Figure 6 shows the mass error norm as a function of the approximation order,

N , for Cases 1, 2, and 3. The results for Case 1 are for a 12 day integration
which corresponds to a complete revolution of the cosine wave around the sphere.
For Cases 2 and 3, the results are for 5 day integrations which is the time frame
recommended in [30].
For all cases we observe exponential convergence rates until the effect of the

finite precision impacts the solution accuracy. To confirm that the leveling off is
due to finite precision effects we have performed studies at a decreased time-step,
confirming that the dominating error source is spatial and not temporal.
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FIG. 6. The ϕ error as a function of the spatial approximation order, N , for Case 1
(dashed), Case 2 (dotted), and Case 3 (solid) after 12, 5, and 5 days of integrations, respectively.
The nI = 1 grid is used.

5.3.2. Qualitative Study
In the previous section we tested cases with analytic solutions against which to

compare and judge the accuracy of the schemes. However, the more relevant Cases
4, 5, and 6, do not allow such simple analytic solutions. Instead we shall evaluate
the convergence characteristics of the scheme qualitatively by running the cases
using different resolutions.
In Figs. 7, 8, and 9 the left panels show the contours of the mass, the middle

panels show the zonal velocity component, and the right panels show the meridional
velocity component. The zonal velocity component is the u component in spherical
coordinates which is associated with the longitude λ and is positive when traveling
west to east in a direction parallel to the Equator. The meridional velocity com-
ponent is the v component in spherical coordinates which is associated with the
latitude θ and is positive when traveling from the South Pole to the North Pole.
Figure 7 shows the results for Case 4 using the nI = 1 grid with various orders

of approximation, N , for a 10 day integration and confirm that the wave structures
remain the same for all three values ofN . However the wave pattern clearly becomes
better resolved when increasingN . This is most obvious near the North Pole (center
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a)

b)

c)

FIG. 7. Case 4. Contours of the mass (left), u-velocity (middle), and v-velocity (right) on
grid nI = 1 and a) N = 8, b) N = 16, and c) N = 32 after a 10 day integration viewed from
(λ, θ) = (0, 90).

of the plots) for the velocity components. The contours are a bit jagged for N = 8
but become smoother for N = 16. Finally, for N = 32 we see that the same
patterns exist as in the N = 8 and N = 16 contours but the curves are much
smoother throughout, indicating a converged result.
Figure 8 shows the results of Case 5 for a 10 day integration using N = 8, 16,

and 32, respectively. The contours are shown from the viewpoint (λ, θ) = (180, 0),
where the peak of the mountain resides at (λ, θ) = (180, 30). The flow impinging on
the mountain causes the resulting wave structures which we see in the figure around
the mid-latitudes (θ = ±45). The contours for N = 8 are again a little jagged -
not just for the mass contours but for the velocity components as well. Increasing
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a)

b)

c)

FIG. 8. Case 5. Contours of the mass (left), u-velocity (middle), and v-velocity (right) on
grid nI = 1 and a) N = 8, b) N = 16, and c) N = 32 after a 10 day integration viewed from
(λ, θ) = (180, 0).

N to 16 removes much of the jaggedness visible in the contours and increasing N

further to 32 smoothen the contours completely resulting in clearly visible cohesive
wave structures.
Figure 9 shows the results of Case 6 after a 14 day integration at different resolu-

tions with the contours being shown from a viewpoint corresponding to the North
Pole (λ, θ) = (0, 90). In contrast to the previous two cases, the results for N = 8
show that the wave structures are beginning to break down at this resolution which
is insufficient to support the dynamics of the system. This breakdown of the wave
structures is most obvious by looking at the mass and velocity field. Increasing N

to 16 results in a dramatic improvement with the wave structures becoming more
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cohesive. This is particularly noticeable in the mass contours where we see that the
rotated Greek cross pattern remains intact instead of breaking off into distinct blobs
as in Fig. 9a. Increasing N further to 32 significantly improves the wave patterns.
The mass contours for the N = 16 scheme are beginning to reveal a semblance of
break-off of the wave pattern. This can be seen by looking at the bottom left tip
of the cross. For N = 32 the wave pattern remains completely intact without any
indication of break-off.

a)

b)

c)

FIG. 9. Case 6. Contours of the mass (left), u-velocity (middle), and v-velocity (right) on
grid nI = 1 and a) N = 8, b) N = 16, and c) N = 32 after a 14 day integration viewed from
(λ, θ) = (0, 90).

The results for these three cases show that increasing the order of the approxi-
mation, N , either improves the smoothness of the contour curves or allows for the
resolution of finer scale waves. This is particularly noticeable in Cases 5 and 6. In
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Case 5, the velocity components exhibit very localized wave formations that are
extremely well resolved by our nodal Nth order DGM scheme. Case 6 illustrates
the breakdown of the wave structure if insufficient grid resolution is used.

6. CONCLUSIONS
The objective of this paper has been to present the formulation and verification of

a high-order accurate nodal discontinuous Galerkin formulation for the solution of
the spherical shallow water equations. Curvilinear quadrilateral elements are used
to cover the sphere, using an icosahedral grid as the basis for the grid generation,
and the equations are solved in Cartesian form to avoid problems with coordinate
singularities. On each curvilinear element the solutions are represented by Lagrange
polynomials in a purely nodal form, i.e., the solutions are given on quadrature
points and operations such as differentiation and integration become matrix-matrix
operations. The equations are satisfied in a discontinuous element form with the
element continuity being imposed only weakly. This decouples all elements and
makes the formulation highly parallel as well as well-suited for adaptive solution
techniques as no constraints on element conformity is needed.
The accuracy of the scheme, given in two mathematically equivalent but com-

putationally different forms, has been illustrated by considering the solution of the
standard set of benchmarks proposed in [30]. The results confirm the expected
high-order/spectral accuracy and illustrate the advantages of using such methods
to efficiently solve geophysical flow problems.
To understand, however, whether the approach proposed here provides a realistic

alternative to existing methods based on spherical harmonics or continuous spectral
element methods requires extensive further validation. The inherent properties
of the proposed technique, e.g., high parallel efficiency, high-order accuracy and
support for adaptive, non-conforming solution techniques, are sufficient to warrant
such exhaustive studies and we hope to report on such results in the near future.
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